metadata
library_name: peft
license: llama3
base_model: Eurdem/Defne_llama3_2x8B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 0b374da8-9512-45d0-8319-e7658575b722
results: []
See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: Eurdem/Defne_llama3_2x8B
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 2c789b3f43ada452_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/2c789b3f43ada452_train_data.json
type:
field_input: transcript
field_instruction: title
field_output: explanation
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: true
hub_model_id: dsakerkwq/0b374da8-9512-45d0-8319-e7658575b722
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 75GiB
max_steps: 30
micro_batch_size: 2
mlflow_experiment_name: /tmp/2c789b3f43ada452_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
s2_attention: false
sample_packing: false
saves_per_epoch: 4
sequence_len: 2048
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 0b374da8-9512-45d0-8319-e7658575b722
wandb_project: Gradients-On-Demand
wandb_runid: 0b374da8-9512-45d0-8319-e7658575b722
warmup_steps: 100
weight_decay: 0.01
xformers_attention: false
0b374da8-9512-45d0-8319-e7658575b722
This model is a fine-tuned version of Eurdem/Defne_llama3_2x8B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.7612
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 30
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.7596 | 0.0081 | 1 | 2.0286 |
1.7619 | 0.0244 | 3 | 2.0279 |
2.0661 | 0.0489 | 6 | 2.0255 |
2.0519 | 0.0733 | 9 | 2.0052 |
2.0356 | 0.0978 | 12 | 1.9552 |
1.9888 | 0.1222 | 15 | 1.8931 |
1.978 | 0.1466 | 18 | 1.8897 |
1.8592 | 0.1711 | 21 | 1.8555 |
1.7885 | 0.1955 | 24 | 1.8108 |
1.8262 | 0.2200 | 27 | 1.7847 |
1.9361 | 0.2444 | 30 | 1.7612 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1