LLäMmlein 1B CoreML

This repository contains the CoreML version of LLäMmlein 1B, a German language model trained from scratch using the Tinyllama codebase on the German portion of RedPajama V2.

Model Details

  • Model Type: German Language Model based on TinyLlama architecture
  • Language: German
  • Framework: CoreML
  • Original Model: LSX-UniWue/LLaMmlein_1B
  • Size: 1B parameters
  • Format: CoreML (.mlpackage)
  • Minimum Deployment Target: iOS 16
  • Compute Units: ALL (CPU + Neural Engine)
  • Input Sequence Length: 512 tokens

Conversion Process

The model was converted from PyTorch to CoreML using the following steps:

import torch
import numpy as np
from transformers import AutoModelForCausalLM, AutoTokenizer
import coremltools as ct

# Load model and convert to TorchScript
model = AutoModelForCausalLM.from_pretrained("LSX-UniWue/LLaMmlein_1B")
tokenizer = AutoTokenizer.from_pretrained("LSX-UniWue/LLaMmlein_1B")

# Set model to eval mode
model.eval()

# Create example input
text = "Ein Beispieltext"
inputs = tokenizer(text, return_tensors="pt")

# Create a wrapper class for tracing
class ModelWrapper(torch.nn.Module):
    def __init__(self, model):
        super().__init__()
        self.model = model

    def forward(self, input_ids):
        return self.model(input_ids).logits

# Wrap and trace model
wrapped_model = ModelWrapper(model)
traced_model = torch.jit.trace(wrapped_model, inputs.input_ids)

# Convert to CoreML
model_mlpackage = ct.convert(
    traced_model,
    inputs=[
        ct.TensorType(
            name="input_ids",
            shape=inputs.input_ids.shape,
            dtype=np.int32
        )
    ],
    source="pytorch",
    minimum_deployment_target=ct.target.iOS16,
    convert_to="mlprogram",
    compute_precision=ct.precision.FLOAT16,
    compute_units=ct.ComputeUnit.ALL,
)

model_mlpackage.save("LLaMmlein_1B.mlpackage")

Usage

To use this model on Apple devices:

import CoreML

// Load the model
let config = MLModelConfiguration()
let model = try LLaMmlein_1B(configuration: config)

// Prepare input
let inputIds = // Your tokenized input as [Int32]

// Make prediction
let prediction = try model.prediction(input_ids: inputIds)

Performance Considerations

  • The model is optimized for Apple Neural Engine
  • Recommended for iOS 16+ devices
  • Best performance achieved with batch size of 1
  • Maximum sequence length is set to 512 tokens

Original Model Information

The original model was trained on the German portion of RedPajama V2. For more details about the base model:

License

This model inherits its license from the original LLäMmlein 1B model.

Citation

If you use this model, please cite the original work:

@misc{llammlein2024,
  title={LLäMmlein: A German Language Model},
  author={LSX-UniWue},
  year={2024},
  publisher={Hugging Face},
  journal={Hugging Face Hub},
  howpublished={\url{https://huggingface.co./LSX-UniWue/LLaMmlein_1B}},
}

For the original model description and evaluation results, see the original model card.

Downloads last month
3
Inference Examples
Inference API (serverless) does not yet support coremltools models for this pipeline type.

Dataset used to train dotwee/LLaMmlein_1B_CoreML