Transformers documentation

FLAN-T5

You are viewing main version, which requires installation from source. If you'd like regular pip install, checkout the latest stable version (v4.47.1).
Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

FLAN-T5

Overview

FLAN-T5 was released in the paper Scaling Instruction-Finetuned Language Models - it is an enhanced version of T5 that has been finetuned in a mixture of tasks.

One can directly use FLAN-T5 weights without finetuning the model:

>>> from transformers import AutoModelForSeq2SeqLM, AutoTokenizer

>>> model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-small")
>>> tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-small")

>>> inputs = tokenizer("A step by step recipe to make bolognese pasta:", return_tensors="pt")
>>> outputs = model.generate(**inputs)
>>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
['Pour a cup of bolognese into a large bowl and add the pasta']

FLAN-T5 includes the same improvements as T5 version 1.1 (see here for the full details of the model’s improvements.)

Google has released the following variants:

The original checkpoints can be found here.

Refer to T5’s documentation page for all API reference, code examples and notebooks. For more details regarding training and evaluation of the FLAN-T5, refer to the model card.

< > Update on GitHub