Transformers documentation

DepthPro

You are viewing main version, which requires installation from source. If you'd like regular pip install, checkout the latest stable version (v4.48.2).
Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

DepthPro

Overview

The DepthPro model was proposed in Depth Pro: Sharp Monocular Metric Depth in Less Than a Second by Aleksei Bochkovskii, AmaΓ«l Delaunoy, Hugo Germain, Marcel Santos, Yichao Zhou, Stephan R. Richter, Vladlen Koltun.

DepthPro is a foundation model for zero-shot metric monocular depth estimation, designed to generate high-resolution depth maps with remarkable sharpness and fine-grained details. It employs a multi-scale Vision Transformer (ViT)-based architecture, where images are downsampled, divided into patches, and processed using a shared Dinov2 encoder. The extracted patch-level features are merged, upsampled, and refined using a DPT-like fusion stage, enabling precise depth estimation.

The abstract from the paper is the following:

We present a foundation model for zero-shot metric monocular depth estimation. Our model, Depth Pro, synthesizes high-resolution depth maps with unparalleled sharpness and high-frequency details. The predictions are metric, with absolute scale, without relying on the availability of metadata such as camera intrinsics. And the model is fast, producing a 2.25-megapixel depth map in 0.3 seconds on a standard GPU. These characteristics are enabled by a number of technical contributions, including an efficient multi-scale vision transformer for dense prediction, a training protocol that combines real and synthetic datasets to achieve high metric accuracy alongside fine boundary tracing, dedicated evaluation metrics for boundary accuracy in estimated depth maps, and state-of-the-art focal length estimation from a single image. Extensive experiments analyze specific design choices and demonstrate that Depth Pro outperforms prior work along multiple dimensions.

drawing DepthPro Outputs. Taken from the official code.

This model was contributed by geetu040. The original code can be found here.

Usage Tips

The DepthPro model processes an input image by first downsampling it at multiple scales and splitting each scaled version into patches. These patches are then encoded using a shared Vision Transformer (ViT)-based Dinov2 patch encoder, while the full image is processed by a separate image encoder. The extracted patch features are merged into feature maps, upsampled, and fused using a DPT-like decoder to generate the final depth estimation. If enabled, an additional Field of View (FOV) encoder processes the image for estimating the camera’s field of view, aiding in depth accuracy.

>>> import requests
>>> from PIL import Image
>>> import torch
>>> from transformers import DepthProImageProcessorFast, DepthProForDepthEstimation

>>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

>>> url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
>>> image = Image.open(requests.get(url, stream=True).raw)

>>> image_processor = DepthProImageProcessorFast.from_pretrained("apple/DepthPro-hf")
>>> model = DepthProForDepthEstimation.from_pretrained("apple/DepthPro-hf").to(device)

>>> inputs = image_processor(images=image, return_tensors="pt").to(device)

>>> with torch.no_grad():
...     outputs = model(**inputs)

>>> post_processed_output = image_processor.post_process_depth_estimation(
...     outputs, target_sizes=[(image.height, image.width)],
... )

>>> field_of_view = post_processed_output[0]["field_of_view"]
>>> focal_length = post_processed_output[0]["focal_length"]
>>> depth = post_processed_output[0]["predicted_depth"]
>>> depth = (depth - depth.min()) / depth.max()
>>> depth = depth * 255.
>>> depth = depth.detach().cpu().numpy()
>>> depth = Image.fromarray(depth.astype("uint8"))

Architecture and Configuration

drawing DepthPro architecture. Taken from the original paper.

The DepthProForDepthEstimation model uses a DepthProEncoder, for encoding the input image and a FeatureFusionStage for fusing the output features from encoder.

The DepthProEncoder further uses two encoders:

  • patch_encoder
    • Input image is scaled with multiple ratios, as specified in the scaled_images_ratios configuration.
    • Each scaled image is split into smaller patches of size patch_size with overlapping areas determined by scaled_images_overlap_ratios.
    • These patches are processed by the patch_encoder
  • image_encoder
    • Input image is also rescaled to patch_size and processed by the image_encoder

Both these encoders can be configured via patch_model_config and image_model_config respectively, both of which are seperate Dinov2Model by default.

Outputs from both encoders (last_hidden_state) and selected intermediate states (hidden_states) from patch_encoder are fused by a DPT-based FeatureFusionStage for depth estimation.

Field-of-View (FOV) Prediction

The network is supplemented with a focal length estimation head. A small convolutional head ingests frozen features from the depth estimation network and task-specific features from a separate ViT image encoder to predict the horizontal angular field-of-view.

The use_fov_model parameter in DepthProConfig controls whether FOV prediction is enabled. By default, it is set to False to conserve memory and computation. When enabled, the FOV encoder is instantiated based on the fov_model_config parameter, which defaults to a Dinov2Model. The use_fov_model parameter can also be passed when initializing the DepthProForDepthEstimation model.

The pretrained model at checkpoint apple/DepthPro-hf uses the FOV encoder. To use the pretrained-model without FOV encoder, set use_fov_model=False when loading the model, which saves computation.

>>> from transformers import DepthProForDepthEstimation
>>> model = DepthProForDepthEstimation.from_pretrained("apple/DepthPro-hf", use_fov_model=False)

To instantiate a new model with FOV encoder, set use_fov_model=True in the config.

>>> from transformers import DepthProConfig, DepthProForDepthEstimation
>>> config = DepthProConfig(use_fov_model=True)
>>> model = DepthProForDepthEstimation(config)

Or set use_fov_model=True when initializing the model, which overrides the value in config.

>>> from transformers import DepthProConfig, DepthProForDepthEstimation
>>> config = DepthProConfig()
>>> model = DepthProForDepthEstimation(config, use_fov_model=True)

Using Scaled Dot Product Attention (SDPA)

PyTorch includes a native scaled dot-product attention (SDPA) operator as part of torch.nn.functional. This function encompasses several implementations that can be applied depending on the inputs and the hardware in use. See the official documentation or the GPU Inference page for more information.

SDPA is used by default for torch>=2.1.1 when an implementation is available, but you may also set attn_implementation="sdpa" in from_pretrained() to explicitly request SDPA to be used.

from transformers import DepthProForDepthEstimation
model = DepthProForDepthEstimation.from_pretrained("apple/DepthPro-hf", attn_implementation="sdpa", torch_dtype=torch.float16)

For the best speedups, we recommend loading the model in half-precision (e.g. torch.float16 or torch.bfloat16).

On a local benchmark (A100-40GB, PyTorch 2.3.0, OS Ubuntu 22.04) with float32 and google/vit-base-patch16-224 model, we saw the following speedups during inference.

Batch size Average inference time (ms), eager mode Average inference time (ms), sdpa model Speed up, Sdpa / Eager (x)
1 7 6 1.17
2 8 6 1.33
4 8 6 1.33
8 8 6 1.33

Resources

A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with DepthPro:

If you’re interested in submitting a resource to be included here, please feel free to open a Pull Request and we’ll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.

DepthProConfig

class transformers.DepthProConfig

< >

( fusion_hidden_size = 256 patch_size = 384 initializer_range = 0.02 intermediate_hook_ids = [11, 5] intermediate_feature_dims = [256, 256] scaled_images_ratios = [0.25, 0.5, 1] scaled_images_overlap_ratios = [0.0, 0.5, 0.25] scaled_images_feature_dims = [1024, 1024, 512] merge_padding_value = 3 use_batch_norm_in_fusion_residual = False use_bias_in_fusion_residual = True use_fov_model = False num_fov_head_layers = 2 image_model_config = None patch_model_config = None fov_model_config = None **kwargs )

Parameters

  • fusion_hidden_size (int, optional, defaults to 256) — The number of channels before fusion.
  • patch_size (int, optional, defaults to 384) — The size (resolution) of each patch. This is also the image_size for backbone model.
  • initializer_range (float, optional, defaults to 0.02) — The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
  • intermediate_hook_ids (List[int], optional, defaults to [11, 5]) — Indices of the intermediate hidden states from the patch encoder to use for fusion.
  • intermediate_feature_dims (List[int], optional, defaults to [256, 256]) — Hidden state dimensions during upsampling for each intermediate hidden state in intermediate_hook_ids.
  • scaled_images_ratios (List[float], optional, defaults to [0.25, 0.5, 1]) — Ratios of scaled images to be used by the patch encoder.
  • scaled_images_overlap_ratios (List[float], optional, defaults to [0.0, 0.5, 0.25]) — Overlap ratios between patches for each scaled image in scaled_images_ratios.
  • scaled_images_feature_dims (List[int], optional, defaults to [1024, 1024, 512]) — Hidden state dimensions during upsampling for each scaled image in scaled_images_ratios.
  • merge_padding_value (int, optional, defaults to 3) — When merging smaller patches back to the image size, overlapping sections of this size are removed.
  • use_batch_norm_in_fusion_residual (bool, optional, defaults to False) — Whether to use batch normalization in the pre-activate residual units of the fusion blocks.
  • use_bias_in_fusion_residual (bool, optional, defaults to True) — Whether to use bias in the pre-activate residual units of the fusion blocks.
  • use_fov_model (bool, optional, defaults to False) — Whether to use DepthProFovModel to generate the field of view.
  • num_fov_head_layers (int, optional, defaults to 2) — Number of convolution layers in the head of DepthProFovModel.
  • image_model_config (Union[Dict[str, Any], PretrainedConfig], optional) — The configuration of the image encoder model, which is loaded using the AutoModel API. By default, Dinov2 model is used as backbone.
  • patch_model_config (Union[Dict[str, Any], PretrainedConfig], optional) — The configuration of the patch encoder model, which is loaded using the AutoModel API. By default, Dinov2 model is used as backbone.
  • fov_model_config (Union[Dict[str, Any], PretrainedConfig], optional) — The configuration of the fov encoder model, which is loaded using the AutoModel API. By default, Dinov2 model is used as backbone.

This is the configuration class to store the configuration of a DepthProModel. It is used to instantiate a DepthPro model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the DepthPro apple/DepthPro architecture.

Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.

Example:

>>> from transformers import DepthProConfig, DepthProModel

>>> # Initializing a DepthPro apple/DepthPro style configuration
>>> configuration = DepthProConfig()

>>> # Initializing a model (with random weights) from the apple/DepthPro style configuration
>>> model = DepthProModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

DepthProImageProcessor

class transformers.DepthProImageProcessor

< >

( do_resize: bool = True size: typing.Optional[typing.Dict[str, int]] = None resample: Resampling = <Resampling.BILINEAR: 2> do_rescale: bool = True rescale_factor: typing.Union[int, float] = 0.00392156862745098 do_normalize: bool = True image_mean: typing.Union[float, typing.List[float], NoneType] = None image_std: typing.Union[float, typing.List[float], NoneType] = None **kwargs )

Parameters

  • do_resize (bool, optional, defaults to True) — Whether to resize the image’s (height, width) dimensions to the specified (size["height"], size["width"]). Can be overridden by the do_resize parameter in the preprocess method.
  • size (dict, optional, defaults to {"height" -- 1536, "width": 1536}): Size of the output image after resizing. Can be overridden by the size parameter in the preprocess method.
  • resample (PILImageResampling, optional, defaults to Resampling.BILINEAR) — Resampling filter to use if resizing the image. Can be overridden by the resample parameter in the preprocess method.
  • do_rescale (bool, optional, defaults to True) — Whether to rescale the image by the specified scale rescale_factor. Can be overridden by the do_rescale parameter in the preprocess method.
  • rescale_factor (int or float, optional, defaults to 1/255) — Scale factor to use if rescaling the image. Can be overridden by the rescale_factor parameter in the preprocess method.
  • do_normalize (bool, optional, defaults to True) — Whether to normalize the image. Can be overridden by the do_normalize parameter in the preprocess method.
  • image_mean (float or List[float], optional, defaults to IMAGENET_STANDARD_MEAN) — Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the image_mean parameter in the preprocess method.
  • image_std (float or List[float], optional, defaults to IMAGENET_STANDARD_STD) — Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the image_std parameter in the preprocess method.

Constructs a DepthPro image processor.

preprocess

< >

( images: typing.Union[ForwardRef('PIL.Image.Image'), numpy.ndarray, ForwardRef('torch.Tensor'), typing.List[ForwardRef('PIL.Image.Image')], typing.List[numpy.ndarray], typing.List[ForwardRef('torch.Tensor')]] do_resize: typing.Optional[bool] = None size: typing.Optional[typing.Dict[str, int]] = None resample: typing.Optional[PIL.Image.Resampling] = None do_rescale: typing.Optional[bool] = None rescale_factor: typing.Optional[float] = None do_normalize: typing.Optional[bool] = None image_mean: typing.Union[float, typing.List[float], NoneType] = None image_std: typing.Union[float, typing.List[float], NoneType] = None return_tensors: typing.Union[str, transformers.utils.generic.TensorType, NoneType] = None data_format: typing.Union[str, transformers.image_utils.ChannelDimension] = <ChannelDimension.FIRST: 'channels_first'> input_data_format: typing.Union[str, transformers.image_utils.ChannelDimension, NoneType] = None )

Parameters

  • images (ImageInput) — Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set do_rescale=False.
  • do_resize (bool, optional, defaults to self.do_resize) — Whether to resize the image.
  • size (Dict[str, int], optional, defaults to self.size) — Dictionary in the format {"height": h, "width": w} specifying the size of the output image after resizing.
  • resample (PILImageResampling filter, optional, defaults to self.resample) — PILImageResampling filter to use if resizing the image e.g. PILImageResampling.BILINEAR. Only has an effect if do_resize is set to True.
  • do_rescale (bool, optional, defaults to self.do_rescale) — Whether to rescale the image values between [0 - 1].
  • rescale_factor (float, optional, defaults to self.rescale_factor) — Rescale factor to rescale the image by if do_rescale is set to True.
  • do_normalize (bool, optional, defaults to self.do_normalize) — Whether to normalize the image.
  • image_mean (float or List[float], optional, defaults to self.image_mean) — Image mean to use if do_normalize is set to True.
  • image_std (float or List[float], optional, defaults to self.image_std) — Image standard deviation to use if do_normalize is set to True.
  • return_tensors (str or TensorType, optional) — The type of tensors to return. Can be one of:
    • Unset: Return a list of np.ndarray.
    • TensorType.TENSORFLOW or 'tf': Return a batch of type tf.Tensor.
    • TensorType.PYTORCH or 'pt': Return a batch of type torch.Tensor.
    • TensorType.NUMPY or 'np': Return a batch of type np.ndarray.
    • TensorType.JAX or 'jax': Return a batch of type jax.numpy.ndarray.
  • data_format (ChannelDimension or str, optional, defaults to ChannelDimension.FIRST) — The channel dimension format for the output image. Can be one of:
    • "channels_first" or ChannelDimension.FIRST: image in (num_channels, height, width) format.
    • "channels_last" or ChannelDimension.LAST: image in (height, width, num_channels) format.
    • Unset: Use the channel dimension format of the input image.
  • input_data_format (ChannelDimension or str, optional) — The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of:
    • "channels_first" or ChannelDimension.FIRST: image in (num_channels, height, width) format.
    • "channels_last" or ChannelDimension.LAST: image in (height, width, num_channels) format.
    • "none" or ChannelDimension.NONE: image in (height, width) format.

Preprocess an image or batch of images.

post_process_depth_estimation

< >

( outputs: DepthProDepthEstimatorOutput target_sizes: typing.Union[transformers.utils.generic.TensorType, typing.List[typing.Tuple[int, int]], NoneType] = None ) β†’ List[Dict[str, TensorType]]

Parameters

  • outputs (DepthProDepthEstimatorOutput) — Raw outputs of the model.
  • target_sizes (Optional[Union[TensorType, List[Tuple[int, int]], None]], optional, defaults to None) — Target sizes to resize the depth predictions. Can be a tensor of shape (batch_size, 2) or a list of tuples (height, width) for each image in the batch. If None, no resizing is performed.

Returns

List[Dict[str, TensorType]]

A list of dictionaries of tensors representing the processed depth predictions, and field of view (degrees) and focal length (pixels) if field_of_view is given in outputs.

Raises

ValueError

  • ValueError β€” If the lengths of predicted_depths, fovs, or target_sizes are mismatched.

Post-processes the raw depth predictions from the model to generate final depth predictions which is caliberated using the field of view if provided and resized to specified target sizes if provided.

DepthProImageProcessorFast

class transformers.DepthProImageProcessorFast

< >

( **kwargs: typing_extensions.Unpack[transformers.image_processing_utils_fast.DefaultFastImageProcessorInitKwargs] )

Parameters

  • do_resize (bool, optional, defaults to self.do_resize) — Whether to resize the image’s (height, width) dimensions to the specified size. Can be overridden by the do_resize parameter in the preprocess method.
  • size (dict, optional, defaults to self.size) — Size of the output image after resizing. Can be overridden by the size parameter in the preprocess method.
  • default_to_square (bool, optional, defaults to self.default_to_square) — Whether to default to a square image when resizing, if size is an int.
  • resample (PILImageResampling, optional, defaults to self.resample) — Resampling filter to use if resizing the image. Only has an effect if do_resize is set to True. Can be overridden by the resample parameter in the preprocess method.
  • do_center_crop (bool, optional, defaults to self.do_center_crop) — Whether to center crop the image to the specified crop_size. Can be overridden by do_center_crop in the preprocess method.
  • crop_size (Dict[str, int] optional, defaults to self.crop_size) — Size of the output image after applying center_crop. Can be overridden by crop_size in the preprocess method.
  • do_rescale (bool, optional, defaults to self.do_rescale) — Whether to rescale the image by the specified scale rescale_factor. Can be overridden by the do_rescale parameter in the preprocess method.
  • rescale_factor (int or float, optional, defaults to self.rescale_factor) — Scale factor to use if rescaling the image. Only has an effect if do_rescale is set to True. Can be overridden by the rescale_factor parameter in the preprocess method.
  • do_normalize (bool, optional, defaults to self.do_normalize) — Whether to normalize the image. Can be overridden by the do_normalize parameter in the preprocess method. Can be overridden by the do_normalize parameter in the preprocess method.
  • image_mean (float or List[float], optional, defaults to self.image_mean) — Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the image_mean parameter in the preprocess method. Can be overridden by the image_mean parameter in the preprocess method.
  • image_std (float or List[float], optional, defaults to self.image_std) — Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the image_std parameter in the preprocess method. Can be overridden by the image_std parameter in the preprocess method.
  • do_convert_rgb (bool, optional, defaults to self.image_std) — Whether to convert the image to RGB.

Constructs a fast DepthPro image processor.

preprocess

< >

( images: typing.Union[ForwardRef('PIL.Image.Image'), numpy.ndarray, ForwardRef('torch.Tensor'), typing.List[ForwardRef('PIL.Image.Image')], typing.List[numpy.ndarray], typing.List[ForwardRef('torch.Tensor')]] **kwargs: typing_extensions.Unpack[transformers.image_processing_utils_fast.DefaultFastImageProcessorPreprocessKwargs] )

Parameters

  • images (ImageInput) — Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set do_rescale=False.
  • do_resize (bool, optional, defaults to self.do_resize) — Whether to resize the image.
  • size (Dict[str, int], optional, defaults to self.size) — Describes the maximum input dimensions to the model.
  • resample (PILImageResampling or InterpolationMode, optional, defaults to self.resample) — Resampling filter to use if resizing the image. This can be one of the enum PILImageResampling. Only has an effect if do_resize is set to True.
  • do_center_crop (bool, optional, defaults to self.do_center_crop) — Whether to center crop the image.
  • crop_size (Dict[str, int], optional, defaults to self.crop_size) — Size of the output image after applying center_crop.
  • do_rescale (bool, optional, defaults to self.do_rescale) — Whether to rescale the image.
  • rescale_factor (float, optional, defaults to self.rescale_factor) — Rescale factor to rescale the image by if do_rescale is set to True.
  • do_normalize (bool, optional, defaults to self.do_normalize) — Whether to normalize the image.
  • image_mean (float or List[float], optional, defaults to self.image_mean) — Image mean to use for normalization. Only has an effect if do_normalize is set to True.
  • image_std (float or List[float], optional, defaults to self.image_std) — Image standard deviation to use for normalization. Only has an effect if do_normalize is set to True.
  • do_convert_rgb (bool, optional, defaults to self.do_convert_rgb) — Whether to convert the image to RGB.
  • return_tensors (str or TensorType, optional) — Returns stacked tensors if set to `pt, otherwise returns a list of tensors.
  • data_format (ChannelDimension or str, optional, defaults to ChannelDimension.FIRST) — The channel dimension format for the output image. Can be one of:
    • "channels_first" or ChannelDimension.FIRST: image in (num_channels, height, width) format.
    • "channels_last" or ChannelDimension.LAST: image in (height, width, num_channels) format.
    • Unset: Use the channel dimension format of the input image.
  • input_data_format (ChannelDimension or str, optional) — The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of:
    • "channels_first" or ChannelDimension.FIRST: image in (num_channels, height, width) format.
    • "channels_last" or ChannelDimension.LAST: image in (height, width, num_channels) format.
    • "none" or ChannelDimension.NONE: image in (height, width) format.
  • device (torch.device, optional) — The device to process the images on. If unset, the device is inferred from the input images.

Preprocess an image or batch of images.

post_process_depth_estimation

< >

( outputs: DepthProDepthEstimatorOutput target_sizes: typing.Union[transformers.utils.generic.TensorType, typing.List[typing.Tuple[int, int]], NoneType] = None ) β†’ List[Dict[str, TensorType]]

Parameters

  • outputs (DepthProDepthEstimatorOutput) — Raw outputs of the model.
  • target_sizes (Optional[Union[TensorType, List[Tuple[int, int]], None]], optional, defaults to None) — Target sizes to resize the depth predictions. Can be a tensor of shape (batch_size, 2) or a list of tuples (height, width) for each image in the batch. If None, no resizing is performed.

Returns

List[Dict[str, TensorType]]

A list of dictionaries of tensors representing the processed depth predictions, and field of view (degrees) and focal length (pixels) if field_of_view is given in outputs.

Raises

ValueError

  • ValueError β€” If the lengths of predicted_depths, fovs, or target_sizes are mismatched.

Post-processes the raw depth predictions from the model to generate final depth predictions which is caliberated using the field of view if provided and resized to specified target sizes if provided.

DepthProModel

class transformers.DepthProModel

< >

( config )

Parameters

  • config (DepthProConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

The bare DepthPro Model transformer outputting raw hidden-states without any specific head on top. This model is a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

forward

< >

( pixel_values: FloatTensor head_mask: typing.Optional[torch.FloatTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) β†’ transformers.modeling_outputs.BaseModelOutput or tuple(torch.FloatTensor)

Parameters

  • pixel_values (torch.FloatTensor of shape (batch_size, num_channels, height, width)) — Pixel values. Pixel values can be obtained using AutoImageProcessor. See DPTImageProcessor.call() for details.
  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,
    • 0 indicates the head is masked.
  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.
  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.
  • return_dict (bool, optional) — Whether or not to return a ModelOutput instead of a plain tuple.

Returns

transformers.modeling_outputs.BaseModelOutput or tuple(torch.FloatTensor)

A transformers.modeling_outputs.BaseModelOutput or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (DepthProConfig) and inputs.

  • last_hidden_state (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size)) β€” Sequence of hidden-states at the output of the last layer of the model.

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) β€” Tuple of torch.FloatTensor (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) β€” Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

The DepthProModel forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Examples:

>>> import torch
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, DepthProModel

>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)

>>> checkpoint = "apple/DepthPro-hf"
>>> processor = AutoProcessor.from_pretrained(checkpoint)
>>> model = DepthProModel.from_pretrained(checkpoint)

>>> # prepare image for the model
>>> inputs = processor(images=image, return_tensors="pt")

>>> with torch.no_grad():
...     output = model(**inputs)

>>> output.last_hidden_state.shape
torch.Size([1, 35, 577, 1024])

DepthProForDepthEstimation

class transformers.DepthProForDepthEstimation

< >

( config use_fov_model = None )

Parameters

  • config (DepthProConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
  • use_fov_model (bool, optional, defaults to True) — Whether to use DepthProFovModel to generate the field of view.

DepthPro Model with a depth estimation head on top (consisting of 3 convolutional layers).

This model is a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

forward

< >

( pixel_values: FloatTensor head_mask: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) β†’ transformers.models.depth_pro.modeling_depth_pro.DepthProDepthEstimatorOutput or tuple(torch.FloatTensor)

Parameters

  • pixel_values (torch.FloatTensor of shape (batch_size, num_channels, height, width)) — Pixel values. Pixel values can be obtained using AutoImageProcessor. See DPTImageProcessor.call() for details.
  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,
    • 0 indicates the head is masked.
  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.
  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.
  • return_dict (bool, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
  • labels (torch.LongTensor of shape (batch_size, height, width), optional) — Ground truth depth estimation maps for computing the loss.

Returns

transformers.models.depth_pro.modeling_depth_pro.DepthProDepthEstimatorOutput or tuple(torch.FloatTensor)

A transformers.models.depth_pro.modeling_depth_pro.DepthProDepthEstimatorOutput or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (DepthProConfig) and inputs.

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) β€” Classification (or regression if config.num_labels==1) loss.

  • predicted_depth (torch.FloatTensor of shape (batch_size, height, width)) β€” Predicted depth for each pixel.

  • field_of_view (torch.FloatTensor of shape (batch_size,), optional, returned when use_fov_model is provided) β€” Field of View Scaler.

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) β€” Tuple of torch.FloatTensor (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, n_patches_per_batch, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer and the optional initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) β€” Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, n_patches_per_batch, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

The DepthProForDepthEstimation forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Examples:

>>> from transformers import AutoImageProcessor, DepthProForDepthEstimation
>>> import torch
>>> from PIL import Image
>>> import requests

>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)

>>> checkpoint = "apple/DepthPro-hf"
>>> processor = AutoImageProcessor.from_pretrained(checkpoint)
>>> model = DepthProForDepthEstimation.from_pretrained(checkpoint)

>>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
>>> model.to(device)

>>> # prepare image for the model
>>> inputs = processor(images=image, return_tensors="pt").to(device)

>>> with torch.no_grad():
...     outputs = model(**inputs)

>>> # interpolate to original size
>>> post_processed_output = processor.post_process_depth_estimation(
...     outputs, target_sizes=[(image.height, image.width)],
... )

>>> # get the field of view (fov) predictions
>>> field_of_view = post_processed_output[0]["field_of_view"]
>>> focal_length = post_processed_output[0]["focal_length"]

>>> # visualize the prediction
>>> predicted_depth = post_processed_output[0]["predicted_depth"]
>>> depth = predicted_depth * 255 / predicted_depth.max()
>>> depth = depth.detach().cpu().numpy()
>>> depth = Image.fromarray(depth.astype("uint8"))
< > Update on GitHub