You are viewing v0.32.0 version.
A newer version
v0.32.1 is available.
LTXVideoTransformer3DModel
A Diffusion Transformer model for 3D data from LTX was introduced by Lightricks.
The model can be loaded with the following code snippet.
from diffusers import LTXVideoTransformer3DModel
transformer = LTXVideoTransformer3DModel.from_pretrained("Lightricks/LTX-Video", subfolder="transformer", torch_dtype=torch.bfloat16).to("cuda")
LTXVideoTransformer3DModel
class diffusers.LTXVideoTransformer3DModel
< source >( in_channels: int = 128 out_channels: int = 128 patch_size: int = 1 patch_size_t: int = 1 num_attention_heads: int = 32 attention_head_dim: int = 64 cross_attention_dim: int = 2048 num_layers: int = 28 activation_fn: str = 'gelu-approximate' qk_norm: str = 'rms_norm_across_heads' norm_elementwise_affine: bool = False norm_eps: float = 1e-06 caption_channels: int = 4096 attention_bias: bool = True attention_out_bias: bool = True )
Parameters
- in_channels (
int
, defaults to128
) — The number of channels in the input. - out_channels (
int
, defaults to128
) — The number of channels in the output. - patch_size (
int
, defaults to1
) — The size of the spatial patches to use in the patch embedding layer. - patch_size_t (
int
, defaults to1
) — The size of the tmeporal patches to use in the patch embedding layer. - num_attention_heads (
int
, defaults to32
) — The number of heads to use for multi-head attention. - attention_head_dim (
int
, defaults to64
) — The number of channels in each head. - cross_attention_dim (
int
, defaults to2048
) — The number of channels for cross attention heads. - num_layers (
int
, defaults to28
) — The number of layers of Transformer blocks to use. - activation_fn (
str
, defaults to"gelu-approximate"
) — Activation function to use in feed-forward. - qk_norm (
str
, defaults to"rms_norm_across_heads"
) — The normalization layer to use.
A Transformer model for video-like data used in LTX.
Transformer2DModelOutput
class diffusers.models.modeling_outputs.Transformer2DModelOutput
< source >( sample: torch.Tensor )
Parameters
- sample (
torch.Tensor
of shape(batch_size, num_channels, height, width)
or(batch size, num_vector_embeds - 1, num_latent_pixels)
if Transformer2DModel is discrete) — The hidden states output conditioned on theencoder_hidden_states
input. If discrete, returns probability distributions for the unnoised latent pixels.
The output of Transformer2DModel.