djovak's picture
Update README.md
9489f14
metadata
tags:
  - mteb
model-index:
  - name: multi-qa-MiniLM-L6-cos-v1
    results:
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (en)
          config: en
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 61.791044776119406
          - type: ap
            value: 25.829130082463124
          - type: f1
            value: 56.00432262887535
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_polarity
          name: MTEB AmazonPolarityClassification
          config: default
          split: test
          revision: e2d317d38cd51312af73b3d32a06d1a08b442046
        metrics:
          - type: accuracy
            value: 62.36077499999999
          - type: ap
            value: 57.68938427410222
          - type: f1
            value: 62.247666843818436
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (en)
          config: en
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 29.59
          - type: f1
            value: 29.241975951560622
      - task:
          type: Retrieval
        dataset:
          type: arguana
          name: MTEB ArguAna
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 25.249
          - type: map_at_10
            value: 40.196
          - type: map_at_100
            value: 41.336
          - type: map_at_1000
            value: 41.343
          - type: map_at_3
            value: 34.934
          - type: map_at_5
            value: 37.871
          - type: mrr_at_1
            value: 26.031
          - type: mrr_at_10
            value: 40.488
          - type: mrr_at_100
            value: 41.628
          - type: mrr_at_1000
            value: 41.634
          - type: mrr_at_3
            value: 35.171
          - type: mrr_at_5
            value: 38.126
          - type: ndcg_at_1
            value: 25.249
          - type: ndcg_at_10
            value: 49.11
          - type: ndcg_at_100
            value: 53.827999999999996
          - type: ndcg_at_1000
            value: 53.993
          - type: ndcg_at_3
            value: 38.175
          - type: ndcg_at_5
            value: 43.488
          - type: precision_at_1
            value: 25.249
          - type: precision_at_10
            value: 7.788
          - type: precision_at_100
            value: 0.9820000000000001
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 15.861
          - type: precision_at_5
            value: 12.105
          - type: recall_at_1
            value: 25.249
          - type: recall_at_10
            value: 77.881
          - type: recall_at_100
            value: 98.222
          - type: recall_at_1000
            value: 99.502
          - type: recall_at_3
            value: 47.582
          - type: recall_at_5
            value: 60.526
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-p2p
          name: MTEB ArxivClusteringP2P
          config: default
          split: test
          revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
        metrics:
          - type: v_measure
            value: 37.75242616816114
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-s2s
          name: MTEB ArxivClusteringS2S
          config: default
          split: test
          revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
        metrics:
          - type: v_measure
            value: 27.70031808300247
      - task:
          type: Reranking
        dataset:
          type: mteb/askubuntudupquestions-reranking
          name: MTEB AskUbuntuDupQuestions
          config: default
          split: test
          revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
        metrics:
          - type: map
            value: 63.09199068762668
          - type: mrr
            value: 76.08055225783757
      - task:
          type: STS
        dataset:
          type: mteb/biosses-sts
          name: MTEB BIOSSES
          config: default
          split: test
          revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
        metrics:
          - type: cos_sim_pearson
            value: 80.83007234777145
          - type: cos_sim_spearman
            value: 79.76446808992547
          - type: euclidean_pearson
            value: 80.24418669808917
          - type: euclidean_spearman
            value: 79.76446808992547
          - type: manhattan_pearson
            value: 79.58896133042379
          - type: manhattan_spearman
            value: 78.9614377441415
      - task:
          type: Classification
        dataset:
          type: mteb/banking77
          name: MTEB Banking77Classification
          config: default
          split: test
          revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
        metrics:
          - type: accuracy
            value: 78.6038961038961
          - type: f1
            value: 77.95572823168757
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-p2p
          name: MTEB BiorxivClusteringP2P
          config: default
          split: test
          revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
        metrics:
          - type: v_measure
            value: 30.240388191413935
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-s2s
          name: MTEB BiorxivClusteringS2S
          config: default
          split: test
          revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
        metrics:
          - type: v_measure
            value: 22.670413424756212
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackAndroidRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 32.694
          - type: map_at_10
            value: 43.811
          - type: map_at_100
            value: 45.274
          - type: map_at_1000
            value: 45.393
          - type: map_at_3
            value: 40.043
          - type: map_at_5
            value: 41.983
          - type: mrr_at_1
            value: 39.628
          - type: mrr_at_10
            value: 49.748
          - type: mrr_at_100
            value: 50.356
          - type: mrr_at_1000
            value: 50.39900000000001
          - type: mrr_at_3
            value: 46.924
          - type: mrr_at_5
            value: 48.598
          - type: ndcg_at_1
            value: 39.628
          - type: ndcg_at_10
            value: 50.39
          - type: ndcg_at_100
            value: 55.489
          - type: ndcg_at_1000
            value: 57.291000000000004
          - type: ndcg_at_3
            value: 44.849
          - type: ndcg_at_5
            value: 47.195
          - type: precision_at_1
            value: 39.628
          - type: precision_at_10
            value: 9.714
          - type: precision_at_100
            value: 1.591
          - type: precision_at_1000
            value: 0.2
          - type: precision_at_3
            value: 21.507
          - type: precision_at_5
            value: 15.393
          - type: recall_at_1
            value: 32.694
          - type: recall_at_10
            value: 63.031000000000006
          - type: recall_at_100
            value: 84.49
          - type: recall_at_1000
            value: 96.148
          - type: recall_at_3
            value: 46.851
          - type: recall_at_5
            value: 53.64
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackEnglishRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 28.183000000000003
          - type: map_at_10
            value: 38.796
          - type: map_at_100
            value: 40.117000000000004
          - type: map_at_1000
            value: 40.251
          - type: map_at_3
            value: 35.713
          - type: map_at_5
            value: 37.446
          - type: mrr_at_1
            value: 35.605
          - type: mrr_at_10
            value: 44.824000000000005
          - type: mrr_at_100
            value: 45.544000000000004
          - type: mrr_at_1000
            value: 45.59
          - type: mrr_at_3
            value: 42.452
          - type: mrr_at_5
            value: 43.891999999999996
          - type: ndcg_at_1
            value: 35.605
          - type: ndcg_at_10
            value: 44.857
          - type: ndcg_at_100
            value: 49.68
          - type: ndcg_at_1000
            value: 51.841
          - type: ndcg_at_3
            value: 40.445
          - type: ndcg_at_5
            value: 42.535000000000004
          - type: precision_at_1
            value: 35.605
          - type: precision_at_10
            value: 8.624
          - type: precision_at_100
            value: 1.438
          - type: precision_at_1000
            value: 0.193
          - type: precision_at_3
            value: 19.808999999999997
          - type: precision_at_5
            value: 14.191
          - type: recall_at_1
            value: 28.183000000000003
          - type: recall_at_10
            value: 55.742000000000004
          - type: recall_at_100
            value: 76.416
          - type: recall_at_1000
            value: 90.20899999999999
          - type: recall_at_3
            value: 42.488
          - type: recall_at_5
            value: 48.431999999999995
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGamingRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 36.156
          - type: map_at_10
            value: 47.677
          - type: map_at_100
            value: 48.699999999999996
          - type: map_at_1000
            value: 48.756
          - type: map_at_3
            value: 44.467
          - type: map_at_5
            value: 46.132
          - type: mrr_at_1
            value: 41.567
          - type: mrr_at_10
            value: 51.06699999999999
          - type: mrr_at_100
            value: 51.800000000000004
          - type: mrr_at_1000
            value: 51.827999999999996
          - type: mrr_at_3
            value: 48.620999999999995
          - type: mrr_at_5
            value: 50.013
          - type: ndcg_at_1
            value: 41.567
          - type: ndcg_at_10
            value: 53.418
          - type: ndcg_at_100
            value: 57.743
          - type: ndcg_at_1000
            value: 58.940000000000005
          - type: ndcg_at_3
            value: 47.923
          - type: ndcg_at_5
            value: 50.352
          - type: precision_at_1
            value: 41.567
          - type: precision_at_10
            value: 8.74
          - type: precision_at_100
            value: 1.1809999999999998
          - type: precision_at_1000
            value: 0.133
          - type: precision_at_3
            value: 21.337999999999997
          - type: precision_at_5
            value: 14.646
          - type: recall_at_1
            value: 36.156
          - type: recall_at_10
            value: 67.084
          - type: recall_at_100
            value: 86.299
          - type: recall_at_1000
            value: 94.82000000000001
          - type: recall_at_3
            value: 52.209
          - type: recall_at_5
            value: 58.175
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGisRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 23.513
          - type: map_at_10
            value: 32.699
          - type: map_at_100
            value: 33.788000000000004
          - type: map_at_1000
            value: 33.878
          - type: map_at_3
            value: 30.044999999999998
          - type: map_at_5
            value: 31.506
          - type: mrr_at_1
            value: 25.311
          - type: mrr_at_10
            value: 34.457
          - type: mrr_at_100
            value: 35.443999999999996
          - type: mrr_at_1000
            value: 35.504999999999995
          - type: mrr_at_3
            value: 31.902
          - type: mrr_at_5
            value: 33.36
          - type: ndcg_at_1
            value: 25.311
          - type: ndcg_at_10
            value: 37.929
          - type: ndcg_at_100
            value: 43.1
          - type: ndcg_at_1000
            value: 45.275999999999996
          - type: ndcg_at_3
            value: 32.745999999999995
          - type: ndcg_at_5
            value: 35.235
          - type: precision_at_1
            value: 25.311
          - type: precision_at_10
            value: 6.034
          - type: precision_at_100
            value: 0.8959999999999999
          - type: precision_at_1000
            value: 0.11299999999999999
          - type: precision_at_3
            value: 14.237
          - type: precision_at_5
            value: 10.034
          - type: recall_at_1
            value: 23.513
          - type: recall_at_10
            value: 52.312999999999995
          - type: recall_at_100
            value: 75.762
          - type: recall_at_1000
            value: 91.85799999999999
          - type: recall_at_3
            value: 38.222
          - type: recall_at_5
            value: 44.316
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackMathematicaRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 16.333000000000002
          - type: map_at_10
            value: 24.605
          - type: map_at_100
            value: 25.924000000000003
          - type: map_at_1000
            value: 26.039
          - type: map_at_3
            value: 21.907
          - type: map_at_5
            value: 23.294999999999998
          - type: mrr_at_1
            value: 20.647
          - type: mrr_at_10
            value: 29.442
          - type: mrr_at_100
            value: 30.54
          - type: mrr_at_1000
            value: 30.601
          - type: mrr_at_3
            value: 26.802999999999997
          - type: mrr_at_5
            value: 28.147
          - type: ndcg_at_1
            value: 20.647
          - type: ndcg_at_10
            value: 30.171999999999997
          - type: ndcg_at_100
            value: 36.466
          - type: ndcg_at_1000
            value: 39.095
          - type: ndcg_at_3
            value: 25.134
          - type: ndcg_at_5
            value: 27.211999999999996
          - type: precision_at_1
            value: 20.647
          - type: precision_at_10
            value: 5.659
          - type: precision_at_100
            value: 1.012
          - type: precision_at_1000
            value: 0.13899999999999998
          - type: precision_at_3
            value: 12.148
          - type: precision_at_5
            value: 8.881
          - type: recall_at_1
            value: 16.333000000000002
          - type: recall_at_10
            value: 42.785000000000004
          - type: recall_at_100
            value: 70.282
          - type: recall_at_1000
            value: 88.539
          - type: recall_at_3
            value: 28.307
          - type: recall_at_5
            value: 33.751
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackPhysicsRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 26.821
          - type: map_at_10
            value: 37.188
          - type: map_at_100
            value: 38.516
          - type: map_at_1000
            value: 38.635000000000005
          - type: map_at_3
            value: 33.821
          - type: map_at_5
            value: 35.646
          - type: mrr_at_1
            value: 33.109
          - type: mrr_at_10
            value: 43.003
          - type: mrr_at_100
            value: 43.849
          - type: mrr_at_1000
            value: 43.889
          - type: mrr_at_3
            value: 40.263
          - type: mrr_at_5
            value: 41.957
          - type: ndcg_at_1
            value: 33.109
          - type: ndcg_at_10
            value: 43.556
          - type: ndcg_at_100
            value: 49.197
          - type: ndcg_at_1000
            value: 51.269
          - type: ndcg_at_3
            value: 38.01
          - type: ndcg_at_5
            value: 40.647
          - type: precision_at_1
            value: 33.109
          - type: precision_at_10
            value: 8.085
          - type: precision_at_100
            value: 1.286
          - type: precision_at_1000
            value: 0.166
          - type: precision_at_3
            value: 18.191
          - type: precision_at_5
            value: 13.050999999999998
          - type: recall_at_1
            value: 26.821
          - type: recall_at_10
            value: 56.818000000000005
          - type: recall_at_100
            value: 80.63
          - type: recall_at_1000
            value: 94.042
          - type: recall_at_3
            value: 41.266000000000005
          - type: recall_at_5
            value: 48.087999999999994
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackProgrammersRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 22.169
          - type: map_at_10
            value: 31.682
          - type: map_at_100
            value: 32.988
          - type: map_at_1000
            value: 33.097
          - type: map_at_3
            value: 28.708
          - type: map_at_5
            value: 30.319000000000003
          - type: mrr_at_1
            value: 27.854
          - type: mrr_at_10
            value: 36.814
          - type: mrr_at_100
            value: 37.741
          - type: mrr_at_1000
            value: 37.798
          - type: mrr_at_3
            value: 34.418
          - type: mrr_at_5
            value: 35.742000000000004
          - type: ndcg_at_1
            value: 27.854
          - type: ndcg_at_10
            value: 37.388
          - type: ndcg_at_100
            value: 43.342999999999996
          - type: ndcg_at_1000
            value: 45.829
          - type: ndcg_at_3
            value: 32.512
          - type: ndcg_at_5
            value: 34.613
          - type: precision_at_1
            value: 27.854
          - type: precision_at_10
            value: 7.031999999999999
          - type: precision_at_100
            value: 1.18
          - type: precision_at_1000
            value: 0.158
          - type: precision_at_3
            value: 15.753
          - type: precision_at_5
            value: 11.301
          - type: recall_at_1
            value: 22.169
          - type: recall_at_10
            value: 49.44
          - type: recall_at_100
            value: 75.644
          - type: recall_at_1000
            value: 92.919
          - type: recall_at_3
            value: 35.528999999999996
          - type: recall_at_5
            value: 41.271
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 24.20158333333334
          - type: map_at_10
            value: 33.509
          - type: map_at_100
            value: 34.76525
          - type: map_at_1000
            value: 34.885999999999996
          - type: map_at_3
            value: 30.594333333333335
          - type: map_at_5
            value: 32.160666666666664
          - type: mrr_at_1
            value: 28.803833333333333
          - type: mrr_at_10
            value: 37.61358333333333
          - type: mrr_at_100
            value: 38.5105
          - type: mrr_at_1000
            value: 38.56841666666667
          - type: mrr_at_3
            value: 35.090666666666664
          - type: mrr_at_5
            value: 36.49575
          - type: ndcg_at_1
            value: 28.803833333333333
          - type: ndcg_at_10
            value: 39.038333333333334
          - type: ndcg_at_100
            value: 44.49175
          - type: ndcg_at_1000
            value: 46.835499999999996
          - type: ndcg_at_3
            value: 34.011916666666664
          - type: ndcg_at_5
            value: 36.267
          - type: precision_at_1
            value: 28.803833333333333
          - type: precision_at_10
            value: 6.974583333333334
          - type: precision_at_100
            value: 1.1565
          - type: precision_at_1000
            value: 0.15533333333333332
          - type: precision_at_3
            value: 15.78025
          - type: precision_at_5
            value: 11.279583333333333
          - type: recall_at_1
            value: 24.20158333333334
          - type: recall_at_10
            value: 51.408
          - type: recall_at_100
            value: 75.36958333333334
          - type: recall_at_1000
            value: 91.5765
          - type: recall_at_3
            value: 37.334500000000006
          - type: recall_at_5
            value: 43.14666666666667
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackStatsRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 21.394
          - type: map_at_10
            value: 28.807
          - type: map_at_100
            value: 29.851
          - type: map_at_1000
            value: 29.959999999999997
          - type: map_at_3
            value: 26.694000000000003
          - type: map_at_5
            value: 27.805999999999997
          - type: mrr_at_1
            value: 23.773
          - type: mrr_at_10
            value: 30.895
          - type: mrr_at_100
            value: 31.894
          - type: mrr_at_1000
            value: 31.971
          - type: mrr_at_3
            value: 28.988000000000003
          - type: mrr_at_5
            value: 29.908
          - type: ndcg_at_1
            value: 23.773
          - type: ndcg_at_10
            value: 32.976
          - type: ndcg_at_100
            value: 38.109
          - type: ndcg_at_1000
            value: 40.797
          - type: ndcg_at_3
            value: 28.993999999999996
          - type: ndcg_at_5
            value: 30.659999999999997
          - type: precision_at_1
            value: 23.773
          - type: precision_at_10
            value: 5.2299999999999995
          - type: precision_at_100
            value: 0.857
          - type: precision_at_1000
            value: 0.117
          - type: precision_at_3
            value: 12.73
          - type: precision_at_5
            value: 8.741999999999999
          - type: recall_at_1
            value: 21.394
          - type: recall_at_10
            value: 43.75
          - type: recall_at_100
            value: 66.765
          - type: recall_at_1000
            value: 86.483
          - type: recall_at_3
            value: 32.542
          - type: recall_at_5
            value: 36.689
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackTexRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 16.266
          - type: map_at_10
            value: 23.639
          - type: map_at_100
            value: 24.814
          - type: map_at_1000
            value: 24.948
          - type: map_at_3
            value: 21.401999999999997
          - type: map_at_5
            value: 22.581
          - type: mrr_at_1
            value: 19.718
          - type: mrr_at_10
            value: 27.276
          - type: mrr_at_100
            value: 28.252
          - type: mrr_at_1000
            value: 28.33
          - type: mrr_at_3
            value: 25.086000000000002
          - type: mrr_at_5
            value: 26.304
          - type: ndcg_at_1
            value: 19.718
          - type: ndcg_at_10
            value: 28.254
          - type: ndcg_at_100
            value: 34.022999999999996
          - type: ndcg_at_1000
            value: 37.031
          - type: ndcg_at_3
            value: 24.206
          - type: ndcg_at_5
            value: 26.009
          - type: precision_at_1
            value: 19.718
          - type: precision_at_10
            value: 5.189
          - type: precision_at_100
            value: 0.9690000000000001
          - type: precision_at_1000
            value: 0.14200000000000002
          - type: precision_at_3
            value: 11.551
          - type: precision_at_5
            value: 8.362
          - type: recall_at_1
            value: 16.266
          - type: recall_at_10
            value: 38.550000000000004
          - type: recall_at_100
            value: 64.63499999999999
          - type: recall_at_1000
            value: 86.059
          - type: recall_at_3
            value: 27.156000000000002
          - type: recall_at_5
            value: 31.829
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackUnixRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 26.124000000000002
          - type: map_at_10
            value: 35.099000000000004
          - type: map_at_100
            value: 36.269
          - type: map_at_1000
            value: 36.388999999999996
          - type: map_at_3
            value: 32.017
          - type: map_at_5
            value: 33.614
          - type: mrr_at_1
            value: 31.25
          - type: mrr_at_10
            value: 39.269999999999996
          - type: mrr_at_100
            value: 40.134
          - type: mrr_at_1000
            value: 40.197
          - type: mrr_at_3
            value: 36.536
          - type: mrr_at_5
            value: 37.842
          - type: ndcg_at_1
            value: 31.25
          - type: ndcg_at_10
            value: 40.643
          - type: ndcg_at_100
            value: 45.967999999999996
          - type: ndcg_at_1000
            value: 48.455999999999996
          - type: ndcg_at_3
            value: 34.954
          - type: ndcg_at_5
            value: 37.273
          - type: precision_at_1
            value: 31.25
          - type: precision_at_10
            value: 6.894
          - type: precision_at_100
            value: 1.086
          - type: precision_at_1000
            value: 0.14200000000000002
          - type: precision_at_3
            value: 15.672
          - type: precision_at_5
            value: 11.082
          - type: recall_at_1
            value: 26.124000000000002
          - type: recall_at_10
            value: 53.730999999999995
          - type: recall_at_100
            value: 76.779
          - type: recall_at_1000
            value: 93.908
          - type: recall_at_3
            value: 37.869
          - type: recall_at_5
            value: 43.822
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWebmastersRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 21.776
          - type: map_at_10
            value: 31.384
          - type: map_at_100
            value: 33.108
          - type: map_at_1000
            value: 33.339
          - type: map_at_3
            value: 28.269
          - type: map_at_5
            value: 30.108
          - type: mrr_at_1
            value: 26.482
          - type: mrr_at_10
            value: 35.876000000000005
          - type: mrr_at_100
            value: 36.887
          - type: mrr_at_1000
            value: 36.949
          - type: mrr_at_3
            value: 32.971000000000004
          - type: mrr_at_5
            value: 34.601
          - type: ndcg_at_1
            value: 26.482
          - type: ndcg_at_10
            value: 37.403999999999996
          - type: ndcg_at_100
            value: 43.722
          - type: ndcg_at_1000
            value: 46.417
          - type: ndcg_at_3
            value: 32.149
          - type: ndcg_at_5
            value: 34.818
          - type: precision_at_1
            value: 26.482
          - type: precision_at_10
            value: 7.411
          - type: precision_at_100
            value: 1.532
          - type: precision_at_1000
            value: 0.24
          - type: precision_at_3
            value: 15.152
          - type: precision_at_5
            value: 11.501999999999999
          - type: recall_at_1
            value: 21.776
          - type: recall_at_10
            value: 49.333
          - type: recall_at_100
            value: 76.753
          - type: recall_at_1000
            value: 93.762
          - type: recall_at_3
            value: 35.329
          - type: recall_at_5
            value: 41.82
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWordpressRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 18.990000000000002
          - type: map_at_10
            value: 26.721
          - type: map_at_100
            value: 27.833999999999996
          - type: map_at_1000
            value: 27.947
          - type: map_at_3
            value: 24.046
          - type: map_at_5
            value: 25.491999999999997
          - type: mrr_at_1
            value: 20.702
          - type: mrr_at_10
            value: 28.691
          - type: mrr_at_100
            value: 29.685
          - type: mrr_at_1000
            value: 29.764000000000003
          - type: mrr_at_3
            value: 26.124000000000002
          - type: mrr_at_5
            value: 27.584999999999997
          - type: ndcg_at_1
            value: 20.702
          - type: ndcg_at_10
            value: 31.473000000000003
          - type: ndcg_at_100
            value: 37.061
          - type: ndcg_at_1000
            value: 39.784000000000006
          - type: ndcg_at_3
            value: 26.221
          - type: ndcg_at_5
            value: 28.655
          - type: precision_at_1
            value: 20.702
          - type: precision_at_10
            value: 5.083
          - type: precision_at_100
            value: 0.8500000000000001
          - type: precision_at_1000
            value: 0.121
          - type: precision_at_3
            value: 11.275
          - type: precision_at_5
            value: 8.17
          - type: recall_at_1
            value: 18.990000000000002
          - type: recall_at_10
            value: 44.318999999999996
          - type: recall_at_100
            value: 69.98
          - type: recall_at_1000
            value: 90.171
          - type: recall_at_3
            value: 30.246000000000002
          - type: recall_at_5
            value: 35.927
      - task:
          type: Retrieval
        dataset:
          type: climate-fever
          name: MTEB ClimateFEVER
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 9.584
          - type: map_at_10
            value: 16.148
          - type: map_at_100
            value: 17.727
          - type: map_at_1000
            value: 17.913999999999998
          - type: map_at_3
            value: 13.456000000000001
          - type: map_at_5
            value: 14.841999999999999
          - type: mrr_at_1
            value: 21.564
          - type: mrr_at_10
            value: 31.579
          - type: mrr_at_100
            value: 32.586999999999996
          - type: mrr_at_1000
            value: 32.638
          - type: mrr_at_3
            value: 28.294999999999998
          - type: mrr_at_5
            value: 30.064
          - type: ndcg_at_1
            value: 21.564
          - type: ndcg_at_10
            value: 23.294999999999998
          - type: ndcg_at_100
            value: 29.997
          - type: ndcg_at_1000
            value: 33.517
          - type: ndcg_at_3
            value: 18.759
          - type: ndcg_at_5
            value: 20.324
          - type: precision_at_1
            value: 21.564
          - type: precision_at_10
            value: 7.362
          - type: precision_at_100
            value: 1.451
          - type: precision_at_1000
            value: 0.21
          - type: precision_at_3
            value: 13.919999999999998
          - type: precision_at_5
            value: 10.879
          - type: recall_at_1
            value: 9.584
          - type: recall_at_10
            value: 28.508
          - type: recall_at_100
            value: 51.873999999999995
          - type: recall_at_1000
            value: 71.773
          - type: recall_at_3
            value: 17.329
          - type: recall_at_5
            value: 21.823
      - task:
          type: Retrieval
        dataset:
          type: dbpedia-entity
          name: MTEB DBPedia
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 7.034
          - type: map_at_10
            value: 14.664
          - type: map_at_100
            value: 19.652
          - type: map_at_1000
            value: 20.701
          - type: map_at_3
            value: 10.626
          - type: map_at_5
            value: 12.334
          - type: mrr_at_1
            value: 54
          - type: mrr_at_10
            value: 63.132
          - type: mrr_at_100
            value: 63.639
          - type: mrr_at_1000
            value: 63.663000000000004
          - type: mrr_at_3
            value: 61.083
          - type: mrr_at_5
            value: 62.483
          - type: ndcg_at_1
            value: 42.875
          - type: ndcg_at_10
            value: 32.04
          - type: ndcg_at_100
            value: 35.157
          - type: ndcg_at_1000
            value: 41.4
          - type: ndcg_at_3
            value: 35.652
          - type: ndcg_at_5
            value: 33.617000000000004
          - type: precision_at_1
            value: 54
          - type: precision_at_10
            value: 25.55
          - type: precision_at_100
            value: 7.5600000000000005
          - type: precision_at_1000
            value: 1.577
          - type: precision_at_3
            value: 38.833
          - type: precision_at_5
            value: 33.15
          - type: recall_at_1
            value: 7.034
          - type: recall_at_10
            value: 19.627
          - type: recall_at_100
            value: 40.528
          - type: recall_at_1000
            value: 60.789
          - type: recall_at_3
            value: 11.833
          - type: recall_at_5
            value: 14.804
      - task:
          type: Classification
        dataset:
          type: mteb/emotion
          name: MTEB EmotionClassification
          config: default
          split: test
          revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
        metrics:
          - type: accuracy
            value: 39.6
          - type: f1
            value: 35.3770765501984
      - task:
          type: Retrieval
        dataset:
          type: fever
          name: MTEB FEVER
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 35.098
          - type: map_at_10
            value: 46.437
          - type: map_at_100
            value: 47.156
          - type: map_at_1000
            value: 47.193000000000005
          - type: map_at_3
            value: 43.702000000000005
          - type: map_at_5
            value: 45.326
          - type: mrr_at_1
            value: 37.774
          - type: mrr_at_10
            value: 49.512
          - type: mrr_at_100
            value: 50.196
          - type: mrr_at_1000
            value: 50.224000000000004
          - type: mrr_at_3
            value: 46.747
          - type: mrr_at_5
            value: 48.415
          - type: ndcg_at_1
            value: 37.774
          - type: ndcg_at_10
            value: 52.629000000000005
          - type: ndcg_at_100
            value: 55.995
          - type: ndcg_at_1000
            value: 56.962999999999994
          - type: ndcg_at_3
            value: 47.188
          - type: ndcg_at_5
            value: 50.019000000000005
          - type: precision_at_1
            value: 37.774
          - type: precision_at_10
            value: 7.541
          - type: precision_at_100
            value: 0.931
          - type: precision_at_1000
            value: 0.10300000000000001
          - type: precision_at_3
            value: 19.572
          - type: precision_at_5
            value: 13.288
          - type: recall_at_1
            value: 35.098
          - type: recall_at_10
            value: 68.818
          - type: recall_at_100
            value: 84.004
          - type: recall_at_1000
            value: 91.36800000000001
          - type: recall_at_3
            value: 54.176
          - type: recall_at_5
            value: 60.968999999999994
      - task:
          type: Retrieval
        dataset:
          type: fiqa
          name: MTEB FiQA2018
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 17.982
          - type: map_at_10
            value: 28.994999999999997
          - type: map_at_100
            value: 30.868000000000002
          - type: map_at_1000
            value: 31.045
          - type: map_at_3
            value: 25.081999999999997
          - type: map_at_5
            value: 27.303
          - type: mrr_at_1
            value: 35.031
          - type: mrr_at_10
            value: 43.537
          - type: mrr_at_100
            value: 44.422
          - type: mrr_at_1000
            value: 44.471
          - type: mrr_at_3
            value: 41.024
          - type: mrr_at_5
            value: 42.42
          - type: ndcg_at_1
            value: 35.031
          - type: ndcg_at_10
            value: 36.346000000000004
          - type: ndcg_at_100
            value: 43.275000000000006
          - type: ndcg_at_1000
            value: 46.577
          - type: ndcg_at_3
            value: 32.42
          - type: ndcg_at_5
            value: 33.841
          - type: precision_at_1
            value: 35.031
          - type: precision_at_10
            value: 10.231
          - type: precision_at_100
            value: 1.728
          - type: precision_at_1000
            value: 0.231
          - type: precision_at_3
            value: 21.553
          - type: precision_at_5
            value: 16.204
          - type: recall_at_1
            value: 17.982
          - type: recall_at_10
            value: 43.169000000000004
          - type: recall_at_100
            value: 68.812
          - type: recall_at_1000
            value: 89.008
          - type: recall_at_3
            value: 29.309
          - type: recall_at_5
            value: 35.514
      - task:
          type: Retrieval
        dataset:
          type: hotpotqa
          name: MTEB HotpotQA
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 27.387
          - type: map_at_10
            value: 36.931000000000004
          - type: map_at_100
            value: 37.734
          - type: map_at_1000
            value: 37.818000000000005
          - type: map_at_3
            value: 34.691
          - type: map_at_5
            value: 36.016999999999996
          - type: mrr_at_1
            value: 54.774
          - type: mrr_at_10
            value: 62.133
          - type: mrr_at_100
            value: 62.587
          - type: mrr_at_1000
            value: 62.61600000000001
          - type: mrr_at_3
            value: 60.49099999999999
          - type: mrr_at_5
            value: 61.480999999999995
          - type: ndcg_at_1
            value: 54.774
          - type: ndcg_at_10
            value: 45.657
          - type: ndcg_at_100
            value: 48.954
          - type: ndcg_at_1000
            value: 50.78
          - type: ndcg_at_3
            value: 41.808
          - type: ndcg_at_5
            value: 43.816
          - type: precision_at_1
            value: 54.774
          - type: precision_at_10
            value: 9.479
          - type: precision_at_100
            value: 1.208
          - type: precision_at_1000
            value: 0.145
          - type: precision_at_3
            value: 25.856
          - type: precision_at_5
            value: 17.102
          - type: recall_at_1
            value: 27.387
          - type: recall_at_10
            value: 47.394
          - type: recall_at_100
            value: 60.397999999999996
          - type: recall_at_1000
            value: 72.54599999999999
          - type: recall_at_3
            value: 38.785
          - type: recall_at_5
            value: 42.754999999999995
      - task:
          type: Classification
        dataset:
          type: mteb/imdb
          name: MTEB ImdbClassification
          config: default
          split: test
          revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
        metrics:
          - type: accuracy
            value: 61.217999999999996
          - type: ap
            value: 56.84286974948407
          - type: f1
            value: 60.99211195455131
      - task:
          type: Retrieval
        dataset:
          type: msmarco
          name: MTEB MSMARCO
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 19.224
          - type: map_at_10
            value: 30.448999999999998
          - type: map_at_100
            value: 31.663999999999998
          - type: map_at_1000
            value: 31.721
          - type: map_at_3
            value: 26.922
          - type: map_at_5
            value: 28.906
          - type: mrr_at_1
            value: 19.756
          - type: mrr_at_10
            value: 30.994
          - type: mrr_at_100
            value: 32.161
          - type: mrr_at_1000
            value: 32.213
          - type: mrr_at_3
            value: 27.502
          - type: mrr_at_5
            value: 29.48
          - type: ndcg_at_1
            value: 19.742
          - type: ndcg_at_10
            value: 36.833
          - type: ndcg_at_100
            value: 42.785000000000004
          - type: ndcg_at_1000
            value: 44.291000000000004
          - type: ndcg_at_3
            value: 29.580000000000002
          - type: ndcg_at_5
            value: 33.139
          - type: precision_at_1
            value: 19.742
          - type: precision_at_10
            value: 5.894
          - type: precision_at_100
            value: 0.889
          - type: precision_at_1000
            value: 0.10200000000000001
          - type: precision_at_3
            value: 12.665000000000001
          - type: precision_at_5
            value: 9.393
          - type: recall_at_1
            value: 19.224
          - type: recall_at_10
            value: 56.538999999999994
          - type: recall_at_100
            value: 84.237
          - type: recall_at_1000
            value: 95.965
          - type: recall_at_3
            value: 36.71
          - type: recall_at_5
            value: 45.283
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (en)
          config: en
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 89.97264021887824
          - type: f1
            value: 89.53607318488027
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (en)
          config: en
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 59.566803465572285
          - type: f1
            value: 40.94003955225124
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (en)
          config: en
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 66.7787491593813
          - type: f1
            value: 64.51190971513093
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (en)
          config: en
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 73.7794216543376
          - type: f1
            value: 72.71852261076475
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-p2p
          name: MTEB MedrxivClusteringP2P
          config: default
          split: test
          revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
        metrics:
          - type: v_measure
            value: 28.40883054472429
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-s2s
          name: MTEB MedrxivClusteringS2S
          config: default
          split: test
          revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
        metrics:
          - type: v_measure
            value: 26.144338339113617
      - task:
          type: Reranking
        dataset:
          type: mteb/mind_small
          name: MTEB MindSmallReranking
          config: default
          split: test
          revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
        metrics:
          - type: map
            value: 30.894071459751267
          - type: mrr
            value: 31.965886150526256
      - task:
          type: Retrieval
        dataset:
          type: nfcorpus
          name: MTEB NFCorpus
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 5.024
          - type: map_at_10
            value: 10.533
          - type: map_at_100
            value: 12.97
          - type: map_at_1000
            value: 14.163
          - type: map_at_3
            value: 7.971
          - type: map_at_5
            value: 9.15
          - type: mrr_at_1
            value: 40.867
          - type: mrr_at_10
            value: 48.837
          - type: mrr_at_100
            value: 49.464999999999996
          - type: mrr_at_1000
            value: 49.509
          - type: mrr_at_3
            value: 46.800999999999995
          - type: mrr_at_5
            value: 47.745
          - type: ndcg_at_1
            value: 38.854
          - type: ndcg_at_10
            value: 29.674
          - type: ndcg_at_100
            value: 26.66
          - type: ndcg_at_1000
            value: 35.088
          - type: ndcg_at_3
            value: 34.838
          - type: ndcg_at_5
            value: 32.423
          - type: precision_at_1
            value: 40.248
          - type: precision_at_10
            value: 21.826999999999998
          - type: precision_at_100
            value: 6.78
          - type: precision_at_1000
            value: 1.889
          - type: precision_at_3
            value: 32.405
          - type: precision_at_5
            value: 27.74
          - type: recall_at_1
            value: 5.024
          - type: recall_at_10
            value: 13.996
          - type: recall_at_100
            value: 26.636
          - type: recall_at_1000
            value: 57.816
          - type: recall_at_3
            value: 9.063
          - type: recall_at_5
            value: 10.883
      - task:
          type: Retrieval
        dataset:
          type: nq
          name: MTEB NQ
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 23.088
          - type: map_at_10
            value: 36.915
          - type: map_at_100
            value: 38.141999999999996
          - type: map_at_1000
            value: 38.191
          - type: map_at_3
            value: 32.458999999999996
          - type: map_at_5
            value: 35.004999999999995
          - type: mrr_at_1
            value: 26.101000000000003
          - type: mrr_at_10
            value: 39.1
          - type: mrr_at_100
            value: 40.071
          - type: mrr_at_1000
            value: 40.106
          - type: mrr_at_3
            value: 35.236000000000004
          - type: mrr_at_5
            value: 37.43
          - type: ndcg_at_1
            value: 26.072
          - type: ndcg_at_10
            value: 44.482
          - type: ndcg_at_100
            value: 49.771
          - type: ndcg_at_1000
            value: 50.903
          - type: ndcg_at_3
            value: 35.922
          - type: ndcg_at_5
            value: 40.178000000000004
          - type: precision_at_1
            value: 26.072
          - type: precision_at_10
            value: 7.795000000000001
          - type: precision_at_100
            value: 1.072
          - type: precision_at_1000
            value: 0.11800000000000001
          - type: precision_at_3
            value: 16.725
          - type: precision_at_5
            value: 12.468
          - type: recall_at_1
            value: 23.088
          - type: recall_at_10
            value: 65.534
          - type: recall_at_100
            value: 88.68
          - type: recall_at_1000
            value: 97.101
          - type: recall_at_3
            value: 43.161
          - type: recall_at_5
            value: 52.959999999999994
      - task:
          type: Retrieval
        dataset:
          type: quora
          name: MTEB QuoraRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 69.612
          - type: map_at_10
            value: 83.292
          - type: map_at_100
            value: 83.96000000000001
          - type: map_at_1000
            value: 83.978
          - type: map_at_3
            value: 80.26299999999999
          - type: map_at_5
            value: 82.11500000000001
          - type: mrr_at_1
            value: 80.21000000000001
          - type: mrr_at_10
            value: 86.457
          - type: mrr_at_100
            value: 86.58500000000001
          - type: mrr_at_1000
            value: 86.587
          - type: mrr_at_3
            value: 85.452
          - type: mrr_at_5
            value: 86.101
          - type: ndcg_at_1
            value: 80.21000000000001
          - type: ndcg_at_10
            value: 87.208
          - type: ndcg_at_100
            value: 88.549
          - type: ndcg_at_1000
            value: 88.683
          - type: ndcg_at_3
            value: 84.20400000000001
          - type: ndcg_at_5
            value: 85.768
          - type: precision_at_1
            value: 80.21000000000001
          - type: precision_at_10
            value: 13.29
          - type: precision_at_100
            value: 1.5230000000000001
          - type: precision_at_1000
            value: 0.156
          - type: precision_at_3
            value: 36.767
          - type: precision_at_5
            value: 24.2
          - type: recall_at_1
            value: 69.612
          - type: recall_at_10
            value: 94.651
          - type: recall_at_100
            value: 99.297
          - type: recall_at_1000
            value: 99.95100000000001
          - type: recall_at_3
            value: 86.003
          - type: recall_at_5
            value: 90.45100000000001
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering
          name: MTEB RedditClustering
          config: default
          split: test
          revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
        metrics:
          - type: v_measure
            value: 46.28945925252077
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering-p2p
          name: MTEB RedditClusteringP2P
          config: default
          split: test
          revision: 282350215ef01743dc01b456c7f5241fa8937f16
        metrics:
          - type: v_measure
            value: 50.954446620859684
      - task:
          type: Retrieval
        dataset:
          type: scidocs
          name: MTEB SCIDOCS
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 3.888
          - type: map_at_10
            value: 9.21
          - type: map_at_100
            value: 10.629
          - type: map_at_1000
            value: 10.859
          - type: map_at_3
            value: 6.743
          - type: map_at_5
            value: 7.982
          - type: mrr_at_1
            value: 19.1
          - type: mrr_at_10
            value: 28.294000000000004
          - type: mrr_at_100
            value: 29.326999999999998
          - type: mrr_at_1000
            value: 29.414
          - type: mrr_at_3
            value: 25.367
          - type: mrr_at_5
            value: 27.002
          - type: ndcg_at_1
            value: 19.1
          - type: ndcg_at_10
            value: 15.78
          - type: ndcg_at_100
            value: 21.807000000000002
          - type: ndcg_at_1000
            value: 26.593
          - type: ndcg_at_3
            value: 15.204999999999998
          - type: ndcg_at_5
            value: 13.217
          - type: precision_at_1
            value: 19.1
          - type: precision_at_10
            value: 7.9799999999999995
          - type: precision_at_100
            value: 1.667
          - type: precision_at_1000
            value: 0.28300000000000003
          - type: precision_at_3
            value: 13.933000000000002
          - type: precision_at_5
            value: 11.379999999999999
          - type: recall_at_1
            value: 3.888
          - type: recall_at_10
            value: 16.17
          - type: recall_at_100
            value: 33.848
          - type: recall_at_1000
            value: 57.345
          - type: recall_at_3
            value: 8.468
          - type: recall_at_5
            value: 11.540000000000001
      - task:
          type: STS
        dataset:
          type: mteb/sickr-sts
          name: MTEB SICK-R
          config: default
          split: test
          revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
        metrics:
          - type: cos_sim_pearson
            value: 79.05803116288386
          - type: cos_sim_spearman
            value: 70.0403855402571
          - type: euclidean_pearson
            value: 75.59006280166072
          - type: euclidean_spearman
            value: 70.04038926247613
          - type: manhattan_pearson
            value: 75.48136278078455
          - type: manhattan_spearman
            value: 69.9608897701754
      - task:
          type: STS
        dataset:
          type: mteb/sts12-sts
          name: MTEB STS12
          config: default
          split: test
          revision: a0d554a64d88156834ff5ae9920b964011b16384
        metrics:
          - type: cos_sim_pearson
            value: 68.56836430603597
          - type: cos_sim_spearman
            value: 64.38407759822387
          - type: euclidean_pearson
            value: 65.93619045541732
          - type: euclidean_spearman
            value: 64.38184049884836
          - type: manhattan_pearson
            value: 65.97148637646873
          - type: manhattan_spearman
            value: 64.48011982438929
      - task:
          type: STS
        dataset:
          type: mteb/sts13-sts
          name: MTEB STS13
          config: default
          split: test
          revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
        metrics:
          - type: cos_sim_pearson
            value: 75.990362280318
          - type: cos_sim_spearman
            value: 76.40621890996734
          - type: euclidean_pearson
            value: 76.01739766577184
          - type: euclidean_spearman
            value: 76.4062736496846
          - type: manhattan_pearson
            value: 76.04738378838042
          - type: manhattan_spearman
            value: 76.44991409719592
      - task:
          type: STS
        dataset:
          type: mteb/sts14-sts
          name: MTEB STS14
          config: default
          split: test
          revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
        metrics:
          - type: cos_sim_pearson
            value: 74.8516957692617
          - type: cos_sim_spearman
            value: 69.325199098278
          - type: euclidean_pearson
            value: 73.37922793254768
          - type: euclidean_spearman
            value: 69.32520119670215
          - type: manhattan_pearson
            value: 73.3795212376615
          - type: manhattan_spearman
            value: 69.35306787926315
      - task:
          type: STS
        dataset:
          type: mteb/sts15-sts
          name: MTEB STS15
          config: default
          split: test
          revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
        metrics:
          - type: cos_sim_pearson
            value: 78.644002190612
          - type: cos_sim_spearman
            value: 80.18337978181648
          - type: euclidean_pearson
            value: 79.7628642371887
          - type: euclidean_spearman
            value: 80.18337906907526
          - type: manhattan_pearson
            value: 79.68810722704522
          - type: manhattan_spearman
            value: 80.10664518173466
      - task:
          type: STS
        dataset:
          type: mteb/sts16-sts
          name: MTEB STS16
          config: default
          split: test
          revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
        metrics:
          - type: cos_sim_pearson
            value: 77.8303940874723
          - type: cos_sim_spearman
            value: 79.56812599677549
          - type: euclidean_pearson
            value: 79.38928950396344
          - type: euclidean_spearman
            value: 79.56812556750812
          - type: manhattan_pearson
            value: 79.41057583507681
          - type: manhattan_spearman
            value: 79.57604428731142
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-en)
          config: en-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 78.90792116013353
          - type: cos_sim_spearman
            value: 81.18059230233499
          - type: euclidean_pearson
            value: 80.2622631297375
          - type: euclidean_spearman
            value: 81.18059230233499
          - type: manhattan_pearson
            value: 80.23946026135997
          - type: manhattan_spearman
            value: 81.11947325071426
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (en)
          config: en
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 64.46850619973324
          - type: cos_sim_spearman
            value: 65.50839374141563
          - type: euclidean_pearson
            value: 66.60130812260707
          - type: euclidean_spearman
            value: 65.50839374141563
          - type: manhattan_pearson
            value: 66.58871918195092
          - type: manhattan_spearman
            value: 65.7347325297592
      - task:
          type: STS
        dataset:
          type: mteb/stsbenchmark-sts
          name: MTEB STSBenchmark
          config: default
          split: test
          revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
        metrics:
          - type: cos_sim_pearson
            value: 75.71536124107834
          - type: cos_sim_spearman
            value: 75.98365906208434
          - type: euclidean_pearson
            value: 76.64573753881218
          - type: euclidean_spearman
            value: 75.98365906208434
          - type: manhattan_pearson
            value: 76.63637189172626
          - type: manhattan_spearman
            value: 75.9660207821009
      - task:
          type: Reranking
        dataset:
          type: mteb/scidocs-reranking
          name: MTEB SciDocsRR
          config: default
          split: test
          revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
        metrics:
          - type: map
            value: 74.27669440147513
          - type: mrr
            value: 91.7729356699945
      - task:
          type: Retrieval
        dataset:
          type: scifact
          name: MTEB SciFact
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 41.028
          - type: map_at_10
            value: 49.919000000000004
          - type: map_at_100
            value: 50.91
          - type: map_at_1000
            value: 50.955
          - type: map_at_3
            value: 47.785
          - type: map_at_5
            value: 49.084
          - type: mrr_at_1
            value: 43.667
          - type: mrr_at_10
            value: 51.342
          - type: mrr_at_100
            value: 52.197
          - type: mrr_at_1000
            value: 52.236000000000004
          - type: mrr_at_3
            value: 49.667
          - type: mrr_at_5
            value: 50.766999999999996
          - type: ndcg_at_1
            value: 43.667
          - type: ndcg_at_10
            value: 54.029
          - type: ndcg_at_100
            value: 58.909
          - type: ndcg_at_1000
            value: 60.131
          - type: ndcg_at_3
            value: 50.444
          - type: ndcg_at_5
            value: 52.354
          - type: precision_at_1
            value: 43.667
          - type: precision_at_10
            value: 7.432999999999999
          - type: precision_at_100
            value: 1
          - type: precision_at_1000
            value: 0.11100000000000002
          - type: precision_at_3
            value: 20.444000000000003
          - type: precision_at_5
            value: 13.533000000000001
          - type: recall_at_1
            value: 41.028
          - type: recall_at_10
            value: 65.011
          - type: recall_at_100
            value: 88.033
          - type: recall_at_1000
            value: 97.667
          - type: recall_at_3
            value: 55.394
          - type: recall_at_5
            value: 60.183
      - task:
          type: PairClassification
        dataset:
          type: mteb/sprintduplicatequestions-pairclassification
          name: MTEB SprintDuplicateQuestions
          config: default
          split: test
          revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
        metrics:
          - type: cos_sim_accuracy
            value: 99.76534653465346
          - type: cos_sim_ap
            value: 93.83756773536699
          - type: cos_sim_f1
            value: 87.91097622660598
          - type: cos_sim_precision
            value: 88.94575230296827
          - type: cos_sim_recall
            value: 86.9
          - type: dot_accuracy
            value: 99.76534653465346
          - type: dot_ap
            value: 93.83756773536699
          - type: dot_f1
            value: 87.91097622660598
          - type: dot_precision
            value: 88.94575230296827
          - type: dot_recall
            value: 86.9
          - type: euclidean_accuracy
            value: 99.76534653465346
          - type: euclidean_ap
            value: 93.837567735367
          - type: euclidean_f1
            value: 87.91097622660598
          - type: euclidean_precision
            value: 88.94575230296827
          - type: euclidean_recall
            value: 86.9
          - type: manhattan_accuracy
            value: 99.76633663366337
          - type: manhattan_ap
            value: 93.84480825492724
          - type: manhattan_f1
            value: 87.97145769622833
          - type: manhattan_precision
            value: 89.70893970893971
          - type: manhattan_recall
            value: 86.3
          - type: max_accuracy
            value: 99.76633663366337
          - type: max_ap
            value: 93.84480825492724
          - type: max_f1
            value: 87.97145769622833
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering
          name: MTEB StackExchangeClustering
          config: default
          split: test
          revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
        metrics:
          - type: v_measure
            value: 48.078155553339585
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering-p2p
          name: MTEB StackExchangeClusteringP2P
          config: default
          split: test
          revision: 815ca46b2622cec33ccafc3735d572c266efdb44
        metrics:
          - type: v_measure
            value: 33.34857297824906
      - task:
          type: Reranking
        dataset:
          type: mteb/stackoverflowdupquestions-reranking
          name: MTEB StackOverflowDupQuestions
          config: default
          split: test
          revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
        metrics:
          - type: map
            value: 50.06219491505384
          - type: mrr
            value: 50.77479097699686
      - task:
          type: Summarization
        dataset:
          type: mteb/summeval
          name: MTEB SummEval
          config: default
          split: test
          revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
        metrics:
          - type: cos_sim_pearson
            value: 30.48401937651373
          - type: cos_sim_spearman
            value: 31.048654273022606
          - type: dot_pearson
            value: 30.484020082707847
          - type: dot_spearman
            value: 31.048654273022606
      - task:
          type: Retrieval
        dataset:
          type: trec-covid
          name: MTEB TRECCOVID
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.183
          - type: map_at_10
            value: 1.32
          - type: map_at_100
            value: 7.01
          - type: map_at_1000
            value: 16.957
          - type: map_at_3
            value: 0.481
          - type: map_at_5
            value: 0.737
          - type: mrr_at_1
            value: 66
          - type: mrr_at_10
            value: 78.7
          - type: mrr_at_100
            value: 78.7
          - type: mrr_at_1000
            value: 78.7
          - type: mrr_at_3
            value: 76
          - type: mrr_at_5
            value: 78.7
          - type: ndcg_at_1
            value: 56.99999999999999
          - type: ndcg_at_10
            value: 55.846
          - type: ndcg_at_100
            value: 43.138
          - type: ndcg_at_1000
            value: 39.4
          - type: ndcg_at_3
            value: 57.306999999999995
          - type: ndcg_at_5
            value: 57.294
          - type: precision_at_1
            value: 66
          - type: precision_at_10
            value: 60
          - type: precision_at_100
            value: 44.6
          - type: precision_at_1000
            value: 17.8
          - type: precision_at_3
            value: 62
          - type: precision_at_5
            value: 62
          - type: recall_at_1
            value: 0.183
          - type: recall_at_10
            value: 1.583
          - type: recall_at_100
            value: 10.412
          - type: recall_at_1000
            value: 37.358999999999995
          - type: recall_at_3
            value: 0.516
          - type: recall_at_5
            value: 0.845
      - task:
          type: Retrieval
        dataset:
          type: webis-touche2020
          name: MTEB Touche2020
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 1.7420000000000002
          - type: map_at_10
            value: 6.4879999999999995
          - type: map_at_100
            value: 11.654
          - type: map_at_1000
            value: 13.23
          - type: map_at_3
            value: 3.148
          - type: map_at_5
            value: 4.825
          - type: mrr_at_1
            value: 18.367
          - type: mrr_at_10
            value: 30.258000000000003
          - type: mrr_at_100
            value: 31.570999999999998
          - type: mrr_at_1000
            value: 31.594
          - type: mrr_at_3
            value: 26.19
          - type: mrr_at_5
            value: 28.027
          - type: ndcg_at_1
            value: 15.306000000000001
          - type: ndcg_at_10
            value: 15.608
          - type: ndcg_at_100
            value: 28.808
          - type: ndcg_at_1000
            value: 41.603
          - type: ndcg_at_3
            value: 13.357
          - type: ndcg_at_5
            value: 15.306000000000001
          - type: precision_at_1
            value: 18.367
          - type: precision_at_10
            value: 15.101999999999999
          - type: precision_at_100
            value: 6.49
          - type: precision_at_1000
            value: 1.488
          - type: precision_at_3
            value: 14.966
          - type: precision_at_5
            value: 17.143
          - type: recall_at_1
            value: 1.7420000000000002
          - type: recall_at_10
            value: 12.267
          - type: recall_at_100
            value: 41.105999999999995
          - type: recall_at_1000
            value: 80.569
          - type: recall_at_3
            value: 4.009
          - type: recall_at_5
            value: 7.417999999999999
      - task:
          type: Classification
        dataset:
          type: mteb/toxic_conversations_50k
          name: MTEB ToxicConversationsClassification
          config: default
          split: test
          revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
        metrics:
          - type: accuracy
            value: 65.1178
          - type: ap
            value: 11.974961582206614
          - type: f1
            value: 50.24491996814835
      - task:
          type: Classification
        dataset:
          type: mteb/tweet_sentiment_extraction
          name: MTEB TweetSentimentExtractionClassification
          config: default
          split: test
          revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
        metrics:
          - type: accuracy
            value: 51.63271080928127
          - type: f1
            value: 51.81589904316042
      - task:
          type: Clustering
        dataset:
          type: mteb/twentynewsgroups-clustering
          name: MTEB TwentyNewsgroupsClustering
          config: default
          split: test
          revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
        metrics:
          - type: v_measure
            value: 40.791709673552276
      - task:
          type: PairClassification
        dataset:
          type: mteb/twittersemeval2015-pairclassification
          name: MTEB TwitterSemEval2015
          config: default
          split: test
          revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
        metrics:
          - type: cos_sim_accuracy
            value: 83.05418131966383
          - type: cos_sim_ap
            value: 64.72353098186304
          - type: cos_sim_f1
            value: 61.313330054107226
          - type: cos_sim_precision
            value: 57.415937356057114
          - type: cos_sim_recall
            value: 65.77836411609499
          - type: dot_accuracy
            value: 83.05418131966383
          - type: dot_ap
            value: 64.72352701424393
          - type: dot_f1
            value: 61.313330054107226
          - type: dot_precision
            value: 57.415937356057114
          - type: dot_recall
            value: 65.77836411609499
          - type: euclidean_accuracy
            value: 83.05418131966383
          - type: euclidean_ap
            value: 64.72353124585976
          - type: euclidean_f1
            value: 61.313330054107226
          - type: euclidean_precision
            value: 57.415937356057114
          - type: euclidean_recall
            value: 65.77836411609499
          - type: manhattan_accuracy
            value: 82.98861536627525
          - type: manhattan_ap
            value: 64.53981837182303
          - type: manhattan_f1
            value: 60.94911377930246
          - type: manhattan_precision
            value: 53.784056508577194
          - type: manhattan_recall
            value: 70.31662269129288
          - type: max_accuracy
            value: 83.05418131966383
          - type: max_ap
            value: 64.72353124585976
          - type: max_f1
            value: 61.313330054107226
      - task:
          type: PairClassification
        dataset:
          type: mteb/twitterurlcorpus-pairclassification
          name: MTEB TwitterURLCorpus
          config: default
          split: test
          revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
        metrics:
          - type: cos_sim_accuracy
            value: 88.06225016493966
          - type: cos_sim_ap
            value: 84.00829172423475
          - type: cos_sim_f1
            value: 76.1288446157202
          - type: cos_sim_precision
            value: 72.11737153877945
          - type: cos_sim_recall
            value: 80.61287342161995
          - type: dot_accuracy
            value: 88.06225016493966
          - type: dot_ap
            value: 84.00827913374181
          - type: dot_f1
            value: 76.1288446157202
          - type: dot_precision
            value: 72.11737153877945
          - type: dot_recall
            value: 80.61287342161995
          - type: euclidean_accuracy
            value: 88.06225016493966
          - type: euclidean_ap
            value: 84.00827099295034
          - type: euclidean_f1
            value: 76.1288446157202
          - type: euclidean_precision
            value: 72.11737153877945
          - type: euclidean_recall
            value: 80.61287342161995
          - type: manhattan_accuracy
            value: 88.05642876547523
          - type: manhattan_ap
            value: 83.9157542691417
          - type: manhattan_f1
            value: 76.09045667447307
          - type: manhattan_precision
            value: 72.50348675034869
          - type: manhattan_recall
            value: 80.05081613797351
          - type: max_accuracy
            value: 88.06225016493966
          - type: max_ap
            value: 84.00829172423475
          - type: max_f1
            value: 76.1288446157202

MTEB evaluation results on English language for 'multi-qa-MiniLM-L6-cos-v1' sbert model

Model and licence can be found here