See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: NousResearch/Hermes-2-Pro-Mistral-7B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 1c3b0c467e5e9462_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/1c3b0c467e5e9462_train_data.json
type:
field_instruction: premise
field_output: hypothesis
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: dixedus/d6b38ba5-4c51-46e3-891f-102c83c54137
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 200
micro_batch_size: 8
mlflow_experiment_name: /tmp/1c3b0c467e5e9462_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: techspear-hub
wandb_mode: online
wandb_name: 3fa83bc0-9ea8-4c94-88e9-eef3e04954b1
wandb_project: Gradients-On-Eight
wandb_run: your_name
wandb_runid: 3fa83bc0-9ea8-4c94-88e9-eef3e04954b1
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
d6b38ba5-4c51-46e3-891f-102c83c54137
This model is a fine-tuned version of NousResearch/Hermes-2-Pro-Mistral-7B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.2918
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 200
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0055 | 1 | 3.4534 |
7.2107 | 0.0938 | 17 | 1.9857 |
6.9594 | 0.1876 | 34 | 1.7610 |
6.6298 | 0.2814 | 51 | 1.6575 |
6.2049 | 0.3752 | 68 | 1.5573 |
6.3583 | 0.4690 | 85 | 1.4905 |
5.5978 | 0.5628 | 102 | 1.4475 |
5.467 | 0.6566 | 119 | 1.3825 |
5.188 | 0.7503 | 136 | 1.3418 |
5.4644 | 0.8441 | 153 | 1.3172 |
5.5569 | 0.9379 | 170 | 1.2984 |
4.2698 | 1.0317 | 187 | 1.2918 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 8
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for dixedus/d6b38ba5-4c51-46e3-891f-102c83c54137
Base model
mistralai/Mistral-7B-v0.1
Finetuned
NousResearch/Hermes-2-Pro-Mistral-7B