Daniel van Strien's picture

Daniel van Strien PRO

davanstrien

AI & ML interests

Machine Learning Librarian

Recent Activity

Articles

Organizations

Hugging Face's profile picture Notebooks-explorers's profile picture Living with Machines's profile picture BigScience Workshop's profile picture Spaces-explorers's profile picture BigScience Catalogue Data's profile picture Hacks/Hackers's profile picture BigScience: LMs for Historical Texts's profile picture flyswot's profile picture Cohere For AI's profile picture Webhooks Explorers (BETA)'s profile picture HuggingFaceM4's profile picture Open Access AI Collective's profile picture HF Canonical Model Maintainers's profile picture BigLAM: BigScience Libraries, Archives and Museums's profile picture Hugging Face OSS Metrics's profile picture ImageIN's profile picture Stable Diffusion Bias Eval's profile picture Librarian Bots's profile picture Blog-explorers's profile picture Hacktoberfest 2023's profile picture Hugging Face TB Research's profile picture geospatial's profile picture HF-IA-archiving's profile picture 2A2I Legacy Models & Datasets's profile picture testy's profile picture DIBT-for-Klingon's profile picture Wikimedia Movement's profile picture DIBT-for-Esperanto's profile picture Journalists on Hugging Face's profile picture PleIAs's profile picture Persian AI Community's profile picture Argilla Explorers's profile picture HuggingFaceFW's profile picture Data Is Better Together's profile picture Social Post Explorers's profile picture OMOTO AI's profile picture academic-datasets's profile picture HuggingFaceFW-Dev's profile picture Hugging Face Discord Community's profile picture UCSF-JHU Opioid Industry Documents Archive's profile picture Dataset Tools's profile picture PDFPages's profile picture dibt-private's profile picture Data Is Better Together Contributor's profile picture Bluesky Community's profile picture

davanstrien's activity

reacted to fdaudens's post with ❀️ about 2 hours ago
view post
Post
417
Yes, DeepSeek R1's release is impressive. But the real story is what happened in just 7 days after:

- Original release: 8 models, 540K downloads. Just the beginning...

- The community turned those open-weight models into +550 NEW models on Hugging Face. Total downloads? 2.5Mβ€”nearly 5X the originals.

The reason? DeepSeek models are open-weight, letting anyone build on top of them. Interesting to note that the community focused on quantized versions for better efficiency & accessibility. They want models that use less memory, run faster, and are more energy-efficient.

When you empower builders, innovation explodes. For everyone. πŸš€

The most popular community model? @bartowski 's DeepSeek-R1-Distill-Qwen-32B-GGUF version β€” 1M downloads alone.
posted an update about 6 hours ago
view post
Post
402
🌍 Big step for multilingual AI data!

The Hugging Face community has rated educational content in languages spoken by 1.6 billion people! New additions:
β€’ Japanese
β€’ Italian
β€’ Old High German

Learn more and contribute: https://huggingface.co./blog/davanstrien/fineweb2-community

These ratings can help enhance training data for major world languages.
reacted to tomaarsen's post with πŸ”₯❀️ 12 days ago
view post
Post
4364
🏎️ Today I'm introducing a method to train static embedding models that run 100x to 400x faster on CPU than common embedding models, while retaining 85%+ of the quality! Including 2 fully open models: training scripts, datasets, metrics.

We apply our recipe to train 2 Static Embedding models that we release today! We release:
2️⃣ an English Retrieval model and a general-purpose Multilingual similarity model (e.g. classification, clustering, etc.), both Apache 2.0
🧠 my modern training strategy: ideation -> dataset choice -> implementation -> evaluation
πŸ“œ my training scripts, using the Sentence Transformers library
πŸ“Š my Weights & Biases reports with losses & metrics
πŸ“• my list of 30 training and 13 evaluation datasets

The 2 Static Embedding models have the following properties:
🏎️ Extremely fast, e.g. 107500 sentences per second on a consumer CPU, compared to 270 for 'all-mpnet-base-v2' and 56 for 'gte-large-en-v1.5'
0️⃣ Zero active parameters: No Transformer blocks, no attention, not even a matrix multiplication. Super speed!
πŸ“ No maximum sequence length! Embed texts at any length (note: longer texts may embed worse)
πŸ“ Linear instead of exponential complexity: 2x longer text takes 2x longer, instead of 2.5x or more.
πŸͺ† Matryoshka support: allow you to truncate embeddings with minimal performance loss (e.g. 4x smaller with a 0.56% perf. decrease for English Similarity tasks)

Check out the full blogpost if you'd like to 1) use these lightning-fast models or 2) learn how to train them with consumer-level hardware: https://huggingface.co./blog/static-embeddings

The blogpost contains a lengthy list of possible advancements; I'm very confident that our 2 models are only the tip of the iceberg, and we may be able to get even better performance.

Alternatively, check out the models:
* sentence-transformers/static-retrieval-mrl-en-v1
* sentence-transformers/static-similarity-mrl-multilingual-v1
  • 1 reply
Β·
reacted to AdinaY's post with πŸ”₯ 12 days ago
view post
Post
3080
MiniMax, the company behind Hailuo_AI, has joined the open source community by releasing both models and demos of MiniMax-Text-01 & MiniMax-VL-01πŸ”₯
- Model
MiniMaxAI/MiniMax-VL-01
MiniMaxAI/MiniMax-Text-01
- Demo
MiniMaxAI/MiniMax-VL-01
MiniMaxAI/MiniMax-Text-01

✨ MiniMax-text-01:
- 456B with 45.9B activated per token
- Combines Lightning Attention, Softmax Attention, and MoE for optimal performance
- Training context up to 1M tokens, inference handles 4M tokens

✨ MiniMax-VL-01:
- ViT-MLP-LLM framework ( non-transformerπŸ‘€)
- Handles image inputs from 336Γ—336 to 2016Γ—2016
- 694M image-caption pairs + 512B tokens processed across 4 stages
  • 1 reply
Β·
reacted to AdinaY's post with πŸ”₯ 13 days ago
view post
Post
3167
MiniCPM-o2.6 πŸ”₯ an end-side multimodal LLMs released by OpenBMB from the Chinese community
Model: openbmb/MiniCPM-o-2_6
✨ Real-time English/Chinese conversation, emotion control and ASR/STT
✨ Real-time video/audio understanding
✨ Processes up to 1.8M pixels, leads OCRBench & supports 30+ languages
reacted to their post with πŸ€— 14 days ago
view post
Post
3025
Introducing scandi-fine-web-cleaner davanstrien/scandi-fine-web-cleaner, the first model trained on FineWeb-C community annotations!

FineWeb2 is a massive multilingual dataset for pre-training language models. Like any web-scale dataset, it contains low-quality content. How can we improve it?

Over the past months, an amazing community of 400+ annotators has been labelling content quality (using Argilla) across 23 languages through the FineWeb-C initiative.

Today, I'm happy to share the first classifier trained on this data.

πŸ” What we've built:

- A lightweight classifier that efficiently removes low-quality content
- 90%+ precision demonstrated on Danish & Swedish
- Can process the 43M+ documents in Danish FineWeb2 with minimal compute

🌍 Why this matters: The approach can be reproduced for any of the 23 languages in FineWeb-C ( data-is-better-together/fineweb-c). We can improve training data quality at scale without massive compute resources by starting with community annotations and training small, efficient classifiers.

Want to build a classifier for your language? Check out the full blog post with code examples and implementation details: https://danielvanstrien.xyz/posts/2025/FineWeb-c/scandinavian-content-filtering-fineweb.html
  • 1 reply
Β·
posted an update 14 days ago
view post
Post
3025
Introducing scandi-fine-web-cleaner davanstrien/scandi-fine-web-cleaner, the first model trained on FineWeb-C community annotations!

FineWeb2 is a massive multilingual dataset for pre-training language models. Like any web-scale dataset, it contains low-quality content. How can we improve it?

Over the past months, an amazing community of 400+ annotators has been labelling content quality (using Argilla) across 23 languages through the FineWeb-C initiative.

Today, I'm happy to share the first classifier trained on this data.

πŸ” What we've built:

- A lightweight classifier that efficiently removes low-quality content
- 90%+ precision demonstrated on Danish & Swedish
- Can process the 43M+ documents in Danish FineWeb2 with minimal compute

🌍 Why this matters: The approach can be reproduced for any of the 23 languages in FineWeb-C ( data-is-better-together/fineweb-c). We can improve training data quality at scale without massive compute resources by starting with community annotations and training small, efficient classifiers.

Want to build a classifier for your language? Check out the full blog post with code examples and implementation details: https://danielvanstrien.xyz/posts/2025/FineWeb-c/scandinavian-content-filtering-fineweb.html
  • 1 reply
Β·
posted an update 17 days ago
view post
Post
2199
The data-is-better-together/fineweb-c dataset is growing!

This week a few more languages have got 1,000 annotations for the educational quality of data from HuggingFaceFW/fineweb-2.

Why should you care?

The quality of pre-training data can have a big impact on the performance of downstream language models trained on that data ( HuggingFaceFW/blogpost-fineweb-v1).

Being able to filter by educational quality is on way of improving the quality of the data you use for training an LLM. Very importantly this approach can also reduce the amount of data needed for pertaining.

Why not use an LLM?

LLMs can be used to annotate educational quality for a subset of data. This data can then be used to train a smaller encoder only model to label the full dataset. However, this may not work well for languages outside of english. This is where fineweb-c (community) comes in.

The community is annotating the educational quality of fineweb2 data. Currently 114 languages have some annotations. These annotations will enable a number of things:

- Evaluate whether an LLM can label the educational quality for texts in that language well
- Directly be used for training quality classifiers
- Help discover other rules and huerisitcs for refining fineweb2 further for different languages.

This week the following languages where done:

Swedish thanks to: @Lauler @AntonVic @ohallstrom @bjarlestam @menbom @Ekgren @apsod

Ukrainian thanks to: @hannayukhymenko @robinhad @realPivo @RabotiahovDmytro @reciprocate

Assamese thanks to: @moyoor97 @Arpanjyoti @nawaf-helmi123 @pahigogoi1 @aelhence @kishorekashyap

Want to learn more: https://huggingface.co./blog/davanstrien/fineweb2-community

Contribute yourself here: data-is-better-together/fineweb-c
  • 1 reply
Β·
reacted to albertvillanova's post with πŸ‘€ 20 days ago
replied to their post about 1 month ago
view reply

Thanks to the hard work of @ivykopal , the first 1,000 annotations for Slovak have been completed! Make sure to give Ivan a follow :)

reacted to nicolay-r's post with ❀️ about 1 month ago
view post
Post
2131
πŸ“’ Deligted to share the most recent milestone on quick deployment of Named Entity Recognition (NER) in Gen-AI powered systems.

Releasing the bulk-ner 0.25.0 which represent a tiny framework that would save you time for deploing NER with any model.

πŸ’Ž Why is this important? In the era of GenAI the handling out textual output might be challenging. Instead, recognizing named-entities via domain-oriented systems for your donwstream LLM would be preferable option.

πŸ“¦: https://pypi.org/project/bulk-ner/0.25.0/
🌟: https://github.com/nicolay-r/bulk-ner

I noticed that the direct adaptaion of the LM for NER would result in spending signifcant amount of time on formatting your texts according to the NER-model needs.
In particular:
1. Processing CONLL format with B-I-O tags from model outputs
2. Input trimming: long input content might not be completely fitted

To cope with these problems, in version 0.25.0 I made a huge steps forward by providing:
βœ… 🐍 Python API support: see screenshot below for a quick deployment (see screenshot below πŸ“Έ)
βœ… πŸͺΆ No-string: dependencies are now clear, so it is purely Python implementation for API calls.
βœ… πŸ‘Œ Simplified output formatting: we use lists to represent texts with inner lists that refer to annotated objects (see screenshot below πŸ“Έ)

πŸ“’ We have a colab for a quick start here (or screenshot for bash / Python API πŸ“Έ)
https://colab.research.google.com/github/nicolay-r/ner-service/blob/main/NER_annotation_service.ipynb

πŸ‘ The code for pipeline deployment is taken from the AREkit project:
https://github.com/nicolay-r/AREkit
reacted to their post with ❀️ about 1 month ago
view post
Post
3190
πŸ‡ΈπŸ‡° Hovorte po slovensky? Help build better AI for Slovak!

We only need 90 more annotations to include Slovak in the next Hugging Face FineWeb2-C dataset ( data-is-better-together/fineweb-c) release!

Your contribution will help create better language models for 5+ million Slovak speakers.

Annotate here: data-is-better-together/fineweb-c.

Read more about why we're doing it: https://huggingface.co./blog/davanstrien/fineweb2-community
  • 3 replies
Β·
posted an update about 1 month ago
view post
Post
3190
πŸ‡ΈπŸ‡° Hovorte po slovensky? Help build better AI for Slovak!

We only need 90 more annotations to include Slovak in the next Hugging Face FineWeb2-C dataset ( data-is-better-together/fineweb-c) release!

Your contribution will help create better language models for 5+ million Slovak speakers.

Annotate here: data-is-better-together/fineweb-c.

Read more about why we're doing it: https://huggingface.co./blog/davanstrien/fineweb2-community
  • 3 replies
Β·
posted an update about 1 month ago
view post
Post
1787
Introducing FineWeb-C πŸŒπŸŽ“, a community-built dataset for improving language models in ALL languages.

Inspired by FineWeb-Edu the community is labelling the educational quality of texts for many languages.

318 annotators, 32K+ annotations, 12 languages - and growing! 🌍

data-is-better-together/fineweb-c
reacted to anton-l's post with πŸ”₯ about 1 month ago
view post
Post
2290
Introducing πŸ“π…π’π§πžπŒπšπ­π‘: the best public math pre-training dataset with 50B+ tokens!
HuggingFaceTB/finemath

Math remains challenging for LLMs and by training on FineMath we see considerable gains over other math datasets, especially on GSM8K and MATH.

We build the dataset by:
πŸ› οΈ carefully extracting math data from Common Crawl;
πŸ”Ž iteratively filtering and recalling high quality math pages using a classifier trained on synthetic annotations to identify math reasoning and deduction.

We conducted a series of ablations comparing the performance of Llama-3.2-3B-Base after continued pre-training on FineMath and observe notable gains compared to the baseline model and other public math datasets.

We hope this helps advance the performance of LLMs on math and reasoning! πŸš€
We’re also releasing all the ablation models as well as the evaluation code.

HuggingFaceTB/finemath-6763fb8f71b6439b653482c2
reacted to stefan-it's post with ❀️ about 2 months ago
view post
Post
1383
My latest project is the outcome of the last 2+ years working with TPUs from the amazing TPU Research Cloud (TRC) program and training Encoder-only LMs with the TensorFlow Model Garden library.

πŸ‘‰ Link: https://github.com/stefan-it/model-garden-lms

An overview of some features:

- Cheatsheet for setting-up a TPU VM Pod (with all necessary dependencies) to pretrain LMs with TF Model Garden
- Conversion scripts that convert TF Model Garden weights to Hugging Face Transformers-compatible models
- Supported architectures include BERT, BERT with Token Dropping and TEAMS

I also released BERT-based models pretrained on the great Hugging Face FineWeb and FineWeb-Edu datasets (10BT subset). With more to come!

πŸ‘‰ Model Hub Link: https://huggingface.co./model-garden-lms

If you find these resources useful, please give them a like!

Made from Bavarian Oberland with ❀️ and πŸ₯¨.
reacted to davidberenstein1957's post with πŸ”₯ about 2 months ago
view post
Post
2082
Open Preference Dataset for Text-to-Image Generation by the πŸ€— Community

Open Image Preferences is an Apache 2.0 licensed dataset for text-to-image generation. This dataset contains 10K text-to-image preference pairs across common image generation categories, while using different model families and varying prompt complexities.

https://huggingface.co./blog/image-preferences