Datasets:
Tasks:
Image Segmentation
Modalities:
Image
Sub-tasks:
semantic-segmentation
Languages:
English
Size:
10K - 100K
License:
Search is not available for this dataset
patient_id
int64 1.52k
65.5k
| series_id
int64 137
64.5k
| frame_id
int64 0
1.04k
| image
imagewidth (px) 512
882
| mask
imagewidth (px) 512
882
| liver
int16 0
1
| spleen
int16 0
1
| right_kidney
int16 0
1
| left_kidney
int16 0
1
| bowel
int16 0
1
| aortic_hu
int16 87
736
| incomplete_organ
int16 0
1
| bowel_healthy
int16 0
1
| bowel_injury
int16 0
1
| extravasation_healthy
int16 0
1
| extravasation_injury
int16 0
1
| kidney_healthy
int16 0
1
| kidney_low
int16 0
1
| kidney_high
int16 0
1
| liver_healthy
int16 0
1
| liver_low
int16 0
1
| liver_high
int16 0
1
| spleen_healthy
int16 0
1
| spleen_low
int16 0
1
| spleen_high
int16 0
1
| any_injury
int16 1
1
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10,004 | 21,057 | 0 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 1 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 10 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 100 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 1,000 | 0 | 0 | 0 | 0 | 0 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 1,001 | 0 | 0 | 0 | 0 | 0 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 1,002 | 0 | 0 | 0 | 0 | 0 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 1,003 | 0 | 0 | 0 | 0 | 0 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 1,004 | 0 | 0 | 0 | 0 | 0 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 1,005 | 0 | 0 | 0 | 0 | 0 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 1,006 | 0 | 0 | 0 | 0 | 0 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 1,007 | 0 | 0 | 0 | 0 | 0 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 1,008 | 0 | 0 | 0 | 0 | 0 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 1,009 | 0 | 0 | 0 | 0 | 0 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 101 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 1,010 | 0 | 0 | 0 | 0 | 0 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 1,011 | 0 | 0 | 0 | 0 | 0 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 1,012 | 0 | 0 | 0 | 0 | 0 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 1,013 | 0 | 0 | 0 | 0 | 0 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 1,014 | 0 | 0 | 0 | 0 | 0 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 1,015 | 0 | 0 | 0 | 0 | 0 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 1,016 | 0 | 0 | 0 | 0 | 0 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 1,017 | 0 | 0 | 0 | 0 | 0 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 1,018 | 0 | 0 | 0 | 0 | 0 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 1,019 | 0 | 0 | 0 | 0 | 0 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 102 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 1,020 | 0 | 0 | 0 | 0 | 0 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 1,021 | 0 | 0 | 0 | 0 | 0 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 103 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 104 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 105 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 106 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 107 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 108 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 109 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 11 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 110 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 111 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 112 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 113 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 114 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 115 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 116 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 117 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 118 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 119 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 12 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 120 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 121 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 122 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 123 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 124 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 125 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 126 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 127 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 128 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 129 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 13 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 130 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 131 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 132 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 133 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 134 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 135 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 136 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 137 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 138 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 139 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 14 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 140 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 141 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 142 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 143 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 144 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 145 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 146 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 147 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 148 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 149 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 15 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 150 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 151 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 152 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 153 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 154 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 155 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 156 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 157 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 158 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 159 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 16 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 160 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 161 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 162 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 163 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 164 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 165 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 166 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 167 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
||
10,004 | 21,057 | 168 | 0 | 0 | 0 | 0 | 1 | 146 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
End of preview. Expand
in Dataset Viewer.
π Dataset
This dataset only comprised of 205 series of CT scans in .png
file with raw images and raw mask.
Data source: Kaggle RSNA 2023 Abdominal Trauma Detection
π Setup
pip install datasets
π€© Feel the Magic
Load Dataset
from datasets import load_dataset
data = load_dataset('ziq/RSNA-ATD2023')
print(data)
DatasetDict({
train: Dataset({
features: ['patient_id', 'series_id', 'frame_id', 'image', 'mask'],
num_rows: 70291
})
})
Set Labels
labels = ["background", "liver", "spleen", "right_kidney", "left_kidney", "bowel"]
Train Test Split
data = data['train'].train_test_split(test_size=0.2)
train, test = data['train'], data['test']
# train[0]['patient_id']
# train[0]['image'] -> PIL Image
# train[0]['mask'] -> PIL Image
Get Image & Segmentation Mask
ids = 3
image, mask = train[ids]['image'], \ # shape: (512, 512)
train[ids]['mask'] # shape: (512, 512)
Convert mask into np.ndarray
mask = np.array(mask)
Visualize Image & Mask
fig = plt.figure(figsize=(16,16))
ax1 = fig.add_subplot(131)
plt.axis('off')
ax1.imshow(image, cmap='gray')
ax2 = fig.add_subplot(132)
plt.axis('off')
ax2.imshow(mask, cmap='gray')
ax3 = fig.add_subplot(133)
ax3.imshow(image*np.where(mask>0,1,0), cmap='gray')
plt.axis('off')
plt.show()
Write Custom Plotting Function
from matplotlib.colors import ListedColormap, BoundaryNorm
colors = ['#02020e', '#520e6d', '#c13a50', '#f57d15', '#fac62c', '#f4f88e'] # inferno
bounds = range(0, len(colors) + 1)
# Define the boundaries for each class in the colormap
cmap, norm = ListedColormap(colors), BoundaryNorm(bounds, len(colors))
# Plot the segmentation mask with the custom colormap
def plot_mask(mask, alpha=1.0):
_, ax = plt.subplots()
cax = ax.imshow(mask, cmap=cmap, norm=norm, alpha=alpha)
cbar = plt.colorbar(cax, cmap=cmap, norm=norm, boundaries=bounds, ticks=bounds)
cbar.set_ticks([])
_labels = [""] + labels
for i in range(1, len(_labels)):
cbar.ax.text(2, -0.5 + i, _labels[i], ha='left', color=colors[i - 1], fontsize=8)
plt.axis('off')
plt.show()
Custom Color
plot_mask(mask)
Plot only one class (e.g. liver)
liver, spleen, right_kidney, left_kidney, bowel = [(mask == i,1,0)[0] * i for i in range(1, len(labels))]
plot_mask(liver)
- Downloads last month
- 123