conllpp / conllpp.py
Tom Aarsen
Add 'document_id' and 'sentence_id' columns
00dc020
# coding=utf-8
# Copyright 2020 HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""CrossWeigh: Training Named Entity Tagger from Imperfect Annotations"""
import logging
import datasets
_CITATION = """\
@inproceedings{wang2019crossweigh,
title={CrossWeigh: Training Named Entity Tagger from Imperfect Annotations},
author={Wang, Zihan and Shang, Jingbo and Liu, Liyuan and Lu, Lihao and Liu, Jiacheng and Han, Jiawei},
booktitle={Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)},
pages={5157--5166},
year={2019}
}
"""
_DESCRIPTION = """\
CoNLLpp is a corrected version of the CoNLL2003 NER dataset where labels of 5.38% of the sentences in the test set
have been manually corrected. The training set and development set are included for completeness.
For more details see https://www.aclweb.org/anthology/D19-1519/ and https://github.com/ZihanWangKi/CrossWeigh
"""
_URL = "https://github.com/ZihanWangKi/CrossWeigh/raw/master/data/"
_TRAINING_FILE = "conllpp_train.txt"
_DEV_FILE = "conllpp_dev.txt"
_TEST_FILE = "conllpp_test.txt"
class ConllppConfig(datasets.BuilderConfig):
"""BuilderConfig for Conll2003"""
def __init__(self, **kwargs):
"""BuilderConfig forConll2003.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(ConllppConfig, self).__init__(**kwargs)
class Conllpp(datasets.GeneratorBasedBuilder):
"""Conllpp dataset."""
BUILDER_CONFIGS = [
ConllppConfig(name="conllpp", version=datasets.Version("1.0.0"), description="Conllpp dataset"),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"document_id": datasets.Value("int32"),
"sentence_id": datasets.Value("int32"),
"tokens": datasets.Sequence(datasets.Value("string")),
"pos_tags": datasets.Sequence(
datasets.features.ClassLabel(
names=[
'"',
"''",
"#",
"$",
"(",
")",
",",
".",
":",
"``",
"CC",
"CD",
"DT",
"EX",
"FW",
"IN",
"JJ",
"JJR",
"JJS",
"LS",
"MD",
"NN",
"NNP",
"NNPS",
"NNS",
"NN|SYM",
"PDT",
"POS",
"PRP",
"PRP$",
"RB",
"RBR",
"RBS",
"RP",
"SYM",
"TO",
"UH",
"VB",
"VBD",
"VBG",
"VBN",
"VBP",
"VBZ",
"WDT",
"WP",
"WP$",
"WRB",
]
)
),
"chunk_tags": datasets.Sequence(
datasets.features.ClassLabel(
names=[
"O",
"B-ADJP",
"I-ADJP",
"B-ADVP",
"I-ADVP",
"B-CONJP",
"I-CONJP",
"B-INTJ",
"I-INTJ",
"B-LST",
"I-LST",
"B-NP",
"I-NP",
"B-PP",
"I-PP",
"B-PRT",
"I-PRT",
"B-SBAR",
"I-SBAR",
"B-UCP",
"I-UCP",
"B-VP",
"I-VP",
]
)
),
"ner_tags": datasets.Sequence(
datasets.features.ClassLabel(
names=[
"O",
"B-PER",
"I-PER",
"B-ORG",
"I-ORG",
"B-LOC",
"I-LOC",
"B-MISC",
"I-MISC",
]
)
),
}
),
supervised_keys=None,
homepage="https://github.com/ZihanWangKi/CrossWeigh",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
urls_to_download = {
"train": f"{_URL}{_TRAINING_FILE}",
"dev": f"{_URL}{_DEV_FILE}",
"test": f"{_URL}{_TEST_FILE}",
}
downloaded_files = dl_manager.download_and_extract(urls_to_download)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
]
def _generate_examples(self, filepath):
logging.info("⏳ Generating examples from = %s", filepath)
with open(filepath, encoding="utf-8") as f:
guid = 0
document_id = 0
sentence_id = 0
tokens = []
pos_tags = []
chunk_tags = []
ner_tags = []
for line in f:
if line.startswith("-DOCSTART-") or line == "" or line == "\n":
if line.startswith("-DOCSTART-"):
document_id += 1
sentence_id = 0
if tokens:
yield guid, {
"id": str(guid),
"document_id": document_id,
"sentence_id": sentence_id,
"tokens": tokens,
"pos_tags": pos_tags,
"chunk_tags": chunk_tags,
"ner_tags": ner_tags,
}
sentence_id += 1
guid += 1
tokens = []
pos_tags = []
chunk_tags = []
ner_tags = []
else:
# conll2003 tokens are space separated
splits = line.split(" ")
tokens.append(splits[0])
pos_tags.append(splits[1])
chunk_tags.append(splits[2])
ner_tags.append(splits[3].rstrip())
# last example
if tokens:
yield guid, {
"id": str(guid),
"document_id": document_id,
"sentence_id": sentence_id,
"tokens": tokens,
"pos_tags": pos_tags,
"chunk_tags": chunk_tags,
"ner_tags": ner_tags,
}