File size: 9,286 Bytes
1c691e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00dc020
 
1c691e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00dc020
 
1c691e8
 
 
 
 
 
00dc020
 
 
1c691e8
 
 
00dc020
 
1c691e8
 
 
 
 
00dc020
1c691e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00dc020
 
1c691e8
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
# coding=utf-8
# Copyright 2020 HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""CrossWeigh: Training Named Entity Tagger from Imperfect Annotations"""

import logging

import datasets


_CITATION = """\
@inproceedings{wang2019crossweigh,
  title={CrossWeigh: Training Named Entity Tagger from Imperfect Annotations},
  author={Wang, Zihan and Shang, Jingbo and Liu, Liyuan and Lu, Lihao and Liu, Jiacheng and Han, Jiawei},
  booktitle={Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)},
  pages={5157--5166},
  year={2019}
}
"""

_DESCRIPTION = """\
CoNLLpp is a corrected version of the CoNLL2003 NER dataset where labels of 5.38% of the sentences in the test set
have been manually corrected. The training set and development set are included for completeness.
For more details see https://www.aclweb.org/anthology/D19-1519/ and https://github.com/ZihanWangKi/CrossWeigh
"""

_URL = "https://github.com/ZihanWangKi/CrossWeigh/raw/master/data/"
_TRAINING_FILE = "conllpp_train.txt"
_DEV_FILE = "conllpp_dev.txt"
_TEST_FILE = "conllpp_test.txt"


class ConllppConfig(datasets.BuilderConfig):
    """BuilderConfig for Conll2003"""

    def __init__(self, **kwargs):
        """BuilderConfig forConll2003.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(ConllppConfig, self).__init__(**kwargs)


class Conllpp(datasets.GeneratorBasedBuilder):
    """Conllpp dataset."""

    BUILDER_CONFIGS = [
        ConllppConfig(name="conllpp", version=datasets.Version("1.0.0"), description="Conllpp dataset"),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "document_id": datasets.Value("int32"),
                    "sentence_id": datasets.Value("int32"),
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "pos_tags": datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=[
                                '"',
                                "''",
                                "#",
                                "$",
                                "(",
                                ")",
                                ",",
                                ".",
                                ":",
                                "``",
                                "CC",
                                "CD",
                                "DT",
                                "EX",
                                "FW",
                                "IN",
                                "JJ",
                                "JJR",
                                "JJS",
                                "LS",
                                "MD",
                                "NN",
                                "NNP",
                                "NNPS",
                                "NNS",
                                "NN|SYM",
                                "PDT",
                                "POS",
                                "PRP",
                                "PRP$",
                                "RB",
                                "RBR",
                                "RBS",
                                "RP",
                                "SYM",
                                "TO",
                                "UH",
                                "VB",
                                "VBD",
                                "VBG",
                                "VBN",
                                "VBP",
                                "VBZ",
                                "WDT",
                                "WP",
                                "WP$",
                                "WRB",
                            ]
                        )
                    ),
                    "chunk_tags": datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=[
                                "O",
                                "B-ADJP",
                                "I-ADJP",
                                "B-ADVP",
                                "I-ADVP",
                                "B-CONJP",
                                "I-CONJP",
                                "B-INTJ",
                                "I-INTJ",
                                "B-LST",
                                "I-LST",
                                "B-NP",
                                "I-NP",
                                "B-PP",
                                "I-PP",
                                "B-PRT",
                                "I-PRT",
                                "B-SBAR",
                                "I-SBAR",
                                "B-UCP",
                                "I-UCP",
                                "B-VP",
                                "I-VP",
                            ]
                        )
                    ),
                    "ner_tags": datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=[
                                "O",
                                "B-PER",
                                "I-PER",
                                "B-ORG",
                                "I-ORG",
                                "B-LOC",
                                "I-LOC",
                                "B-MISC",
                                "I-MISC",
                            ]
                        )
                    ),
                }
            ),
            supervised_keys=None,
            homepage="https://github.com/ZihanWangKi/CrossWeigh",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        urls_to_download = {
            "train": f"{_URL}{_TRAINING_FILE}",
            "dev": f"{_URL}{_DEV_FILE}",
            "test": f"{_URL}{_TEST_FILE}",
        }
        downloaded_files = dl_manager.download_and_extract(urls_to_download)

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
        ]

    def _generate_examples(self, filepath):
        logging.info("⏳ Generating examples from = %s", filepath)
        with open(filepath, encoding="utf-8") as f:
            guid = 0
            document_id = 0
            sentence_id = 0
            tokens = []
            pos_tags = []
            chunk_tags = []
            ner_tags = []
            for line in f:
                if line.startswith("-DOCSTART-") or line == "" or line == "\n":
                    if line.startswith("-DOCSTART-"):
                        document_id += 1
                        sentence_id = 0
                    if tokens:
                        yield guid, {
                            "id": str(guid),
                            "document_id": document_id,
                            "sentence_id": sentence_id,
                            "tokens": tokens,
                            "pos_tags": pos_tags,
                            "chunk_tags": chunk_tags,
                            "ner_tags": ner_tags,
                        }
                        sentence_id += 1
                        guid += 1
                        tokens = []
                        pos_tags = []
                        chunk_tags = []
                        ner_tags = []
                else:
                    # conll2003 tokens are space separated
                    splits = line.split(" ")
                    tokens.append(splits[0])
                    pos_tags.append(splits[1])
                    chunk_tags.append(splits[2])
                    ner_tags.append(splits[3].rstrip())
            # last example
            if tokens:
                yield guid, {
                    "id": str(guid),
                    "document_id": document_id,
                    "sentence_id": sentence_id,
                    "tokens": tokens,
                    "pos_tags": pos_tags,
                    "chunk_tags": chunk_tags,
                    "ner_tags": ner_tags,
                }