The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
Error code: DatasetGenerationError Exception: ParserError Message: Error tokenizing data. C error: EOF inside string starting at row 117511 Traceback: Traceback (most recent call last): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1995, in _prepare_split_single for _, table in generator: File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/csv/csv.py", line 195, in _generate_tables for batch_idx, df in enumerate(csv_file_reader): File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/parsers/readers.py", line 1843, in __next__ return self.get_chunk() File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/parsers/readers.py", line 1985, in get_chunk return self.read(nrows=size) File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/parsers/readers.py", line 1923, in read ) = self._engine.read( # type: ignore[attr-defined] File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/parsers/c_parser_wrapper.py", line 234, in read chunks = self._reader.read_low_memory(nrows) File "parsers.pyx", line 850, in pandas._libs.parsers.TextReader.read_low_memory File "parsers.pyx", line 905, in pandas._libs.parsers.TextReader._read_rows File "parsers.pyx", line 874, in pandas._libs.parsers.TextReader._tokenize_rows File "parsers.pyx", line 891, in pandas._libs.parsers.TextReader._check_tokenize_status File "parsers.pyx", line 2061, in pandas._libs.parsers.raise_parser_error pandas.errors.ParserError: Error tokenizing data. C error: EOF inside string starting at row 117511 The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1529, in compute_config_parquet_and_info_response parquet_operations = convert_to_parquet(builder) File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1154, in convert_to_parquet builder.download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1027, in download_and_prepare self._download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1122, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1882, in _prepare_split for job_id, done, content in self._prepare_split_single( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2038, in _prepare_split_single raise DatasetGenerationError("An error occurred while generating the dataset") from e datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
#
string | n-tv.de vom 26.02.2005
string | [2005-02-26]
string | __index_level_0__
string |
---|---|---|---|
Schartau | B-PER | O | 1 |
sagte | O | O | 2 |
dem | O | O | 3 |
O O
5 Tagesspiegel B-ORG O
6 | O | O | 4 |
vom | O | O | 7 |
Freitag | O | O | 8 |
, | O | O | 9 |
Fischer | B-PER | O | 10 |
sei | O | O | 11 |
O O
13 in O O
14 einer O O
15 Weise O O
16 aufgetreten O O
17 , O O
18 die O O
19 alles O O
20 andere O O
21 als O O
22 überzeugend O O
23 war O O
24 | O | O | 12 |
. | O | O | 25 |
welt.de vom 29.10.2005 | [2005-10-29] | null | # |
Firmengründer | O | O | 1 |
Wolf | B-PER | O | 2 |
Peter | I-PER | O | 3 |
Bree | I-PER | O | 4 |
arbeitete | O | O | 5 |
Anfang | O | O | 6 |
der | O | O | 7 |
siebziger | O | O | 8 |
Jahre | O | O | 9 |
als | O | O | 10 |
Möbelvertreter | O | O | 11 |
, | O | O | 12 |
als | O | O | 13 |
er | O | O | 14 |
einen | O | O | 15 |
fliegenden | O | O | 16 |
Händler | O | O | 17 |
aus | O | O | 18 |
dem | O | O | 19 |
Libanon | B-LOC | O | 20 |
traf | O | O | 21 |
. | O | O | 22 |
http://www.stern.de/sport/fussball/krawalle-in-der-fussball-bundesliga-dfb-setzt-auf-falsche-konzepte-1553657.html#utm_source=standard&utm_medium=rss-feed&utm_campaign=sport | [2010-03-25] | null | # |
Ob | O | O | 1 |
sie | O | O | 2 |
dabei | O | O | 3 |
nach | O | O | 4 |
dem | O | O | 5 |
Runden | O | O | 6 |
Tisch | O | O | 7 |
am | O | O | 8 |
23. | O | O | 9 |
April | O | O | 10 |
in | O | O | 11 |
Berlin | B-LOC | O | 12 |
durch | O | O | 13 |
ein | O | O | 14 |
pädagogisches | O | O | 15 |
Konzept | O | O | 16 |
unterstützt | O | O | 17 |
wird | O | O | 18 |
, | O | O | 19 |
ist | O | O | 20 |
allerdings | O | O | 21 |
zu | O | O | 22 |
bezweifeln | O | O | 23 |
. | O | O | 24 |
stern.de vom 21.03.2006 | [2006-03-21] | null | # |
Bayern | B-ORG | B-LOC | 1 |
München | I-ORG | B-LOC | 2 |
ist | O | O | 3 |
wieder | O | O | 4 |
alleiniger | O | O | 5 |
Top- | O | O | 6 |
Favorit | O | O | 7 |
auf | O | O | 8 |
den | O | O | 9 |
Gewinn | O | O | 10 |
der | O | O | 11 |
deutschen | B-LOCderiv | O | 12 |
Fußball-Meisterschaft | O | O | 13 |
. | O | O | 14 |
http://www.fr-online.de/in_und_ausland/sport/aktuell/1618625_Frings-schaut-finster-in-die-Zukunft.html | [2008-10-24] | null | # |
Dabei | O | O | 1 |
hätte | O | O | 2 |
der | O | O | 3 |
tapfere | O | O | 4 |
Schlussmann | O | O | 5 |
allen | O | O | 6 |
Grund | O | O | 7 |
gehabt | O | O | 8 |
, | O | O | 9 |
sich | O | O | 10 |
viel | O | O | 11 |
früher | O | O | 12 |
aufzuregen | O | O | 13 |
. | O | O | 14 |
handelsblatt.com vom 12.07.2005 | [2005-07-12] | null | # |
ARD-Programmchef | B-ORGpart | O | 1 |
Günter | B-PER | O | 2 |
Struve | I-PER | O | 3 |
war | O | O | 4 |
wegen | O | O | 5 |
eines | O | O | 6 |
vierwöchigen | O | O | 7 |
Urlaubs | O | O | 8 |
für | O | O | 9 |
eine | O | O | 10 |
Filtered GermEval 2014 NER Dataset
This repository hosts a filtered version of the great GermEval 2014 NER Dataset.
After some analysis of the annotated examples in this dataset, it can be seen that the dataset is highly biased by Wikipedia articles.
Dataset Stats
We present an overview of the top 10 top-level domains where annotations were retrieved from for training, development and test splits:
Training Split
TLD | Number of examples (Percentage) |
---|---|
wikipedia.org | 12,007 (50.03%) |
welt.de | 662 (2.76%) |
spiegel.de | 512 (2.13%) |
tagesspiegel.de | 424 (1.77%) |
handelsblatt.com | 369 (1.54%) |
fr-aktuell.de | 344 (1.43%) |
sueddeutsche.de | 308 (1.28%) |
abendblatt.de | 283 (1.18%) |
berlinonline.de | 255 (1.06%) |
szon.de | 249 (1.04%) |
Development Split
TLD | Number of examples (Percentage) |
---|---|
wikipedia.org | 1,119 (50.86%) |
welt.de | 46 (2.09%) |
spiegel.de | 43 (1.95%) |
fr-aktuell.de | 38 (1.73%) |
tagesspiegel.de | 37 (1.68%) |
handelsblatt.com | 35 (1.59%) |
sueddeutsche.de | 28 (1.27%) |
szon.de | 25 (1.14%) |
feedsportal.com | 24 (1.09%) |
berlinonline.de | 22 (1.0%) |
Test Split
TLD | Number of examples (Percentage) |
---|---|
wikipedia.org | 2,547 (49.94%) |
welt.de | 139 (2.73%) |
spiegel.de | 88 (1.73%) |
tagesspiegel.de | 86 (1.69%) |
handelsblatt.com | 84 (1.65%) |
sueddeutsche.de | 78 (1.53%) |
abendblatt.de | 72 (1.41%) |
fr-aktuell.de | 62 (1.22%) |
berlinonline.de | 59 (1.16%) |
szon.de | 57 (1.12%) |
Summary
For each dataset split it can be seen, that the portion of annotated examples from Wikipedia are around 50%!
Filtered Version & Motivation
We now create a Wikipedia-filtered-out version of the GermEval 2014 dataset. Here's one scenario for the main motivation:
Imagine you are pretraining a nice language model and you want to measure performance on GermEval 2014 for named entity recognition. Additionally, you want of course to compare performance to other existing language models.
What would be the easiest way to get high performance on GermEval 2014 dataset? Yes, you can literally pretrain a language model on Wikipedia only (just as I did)!
It will outperform models that are even pretrained on 100+ GB! See the great ScandEval leaderboard and have a look at the gwlms
models.
However, the model performance for this pretrained model on Wikipedia-only will be worse on other downstream tasks such as Question Answering.
So this Wikipedia-filtered-out version could help to achieve better comparisons between LMs.
Stats for Filtered Version
Additionally, we now present the stats for the filtered version of GermEval 2014 dataset:
Training Split
TLD | Number of examples (Percentage) |
---|---|
welt.de | 662 (5.52%) |
spiegel.de | 512 (4.27%) |
tagesspiegel.de | 424 (3.54%) |
handelsblatt.com | 369 (3.08%) |
fr-aktuell.de | 344 (2.87%) |
sueddeutsche.de | 308 (2.57%) |
abendblatt.de | 283 (2.36%) |
berlinonline.de | 255 (2.13%) |
szon.de | 249 (2.08%) |
n-tv.de | 195 (1.63%) |
Development Split
TLD | Number of examples (Percentage) |
---|---|
welt.de | 46 (4.26%) |
spiegel.de | 43 (3.98%) |
fr-aktuell.de | 38 (3.52%) |
tagesspiegel.de | 37 (3.42%) |
handelsblatt.com | 35 (3.24%) |
sueddeutsche.de | 28 (2.59%) |
szon.de | 25 (2.31%) |
feedsportal.com | 24 (2.22%) |
berlinonline.de | 22 (2.04%) |
rp-online.de | 21 (1.94%) |
Test Split
TLD | Number of examples (Percentage) |
---|---|
welt.de | 139 (5.44%) |
spiegel.de | 88 (3.45%) |
tagesspiegel.de | 86 (3.37%) |
handelsblatt.com | 84 (3.29%) |
sueddeutsche.de | 78 (3.06%) |
abendblatt.de | 72 (2.82%) |
fr-aktuell.de | 62 (2.43%) |
berlinonline.de | 59 (2.31%) |
szon.de | 57 (2.23%) |
feedsportal.com | 52 (2.04%) |
Dataset Creation
We provide a notebook that shows how to recreate this filtered version of GermEval 2014. It can be found here.
Additionally, we provide a dataset loader for the awesome Flair library!
Licence
We keep the original license of GermEval 2014 dataset ( CC-BY-4.0).
- Downloads last month
- 55