id
stringlengths
2
115
private
bool
1 class
tags
sequence
description
stringlengths
0
5.93k
downloads
int64
0
1.14M
likes
int64
0
1.79k
jeopardy
false
[ "language:en" ]
Dataset containing 216,930 Jeopardy questions, answers and other data. The json file is an unordered list of questions where each question has 'category' : the question category, e.g. "HISTORY" 'value' : integer $ value of the question as string, e.g. "200" Note: This is "None" for Final Jeopardy! and Tiebreaker questions 'question' : text of question Note: This sometimes contains hyperlinks and other things messy text such as when there's a picture or video question 'answer' : text of answer 'round' : one of "Jeopardy!","Double Jeopardy!","Final Jeopardy!" or "Tiebreaker" Note: Tiebreaker questions do happen but they're very rare (like once every 20 years) 'show_number' : int of show number, e.g '4680' 'air_date' : string of the show air date in format YYYY-MM-DD
301
2
jfleg
false
[ "task_categories:text2text-generation", "annotations_creators:expert-generated", "language_creators:found", "multilinguality:monolingual", "multilinguality:other-language-learner", "size_categories:1K<n<10K", "source_datasets:extended|other-GUG-grammaticality-judgements", "language:en", "license:cc-by-nc-sa-4.0", "grammatical-error-correction" ]
JFLEG (JHU FLuency-Extended GUG) is an English grammatical error correction (GEC) corpus. It is a gold standard benchmark for developing and evaluating GEC systems with respect to fluency (extent to which a text is native-sounding) as well as grammaticality. For each source document, there are four human-written corrections (ref0 to ref3).
1,667
18
jigsaw_toxicity_pred
false
[ "task_categories:text-classification", "task_ids:multi-label-classification", "annotations_creators:crowdsourced", "language_creators:other", "multilinguality:monolingual", "size_categories:100K<n<1M", "source_datasets:original", "language:en", "license:cc0-1.0" ]
This dataset consists of a large number of Wikipedia comments which have been labeled by human raters for toxic behavior.
1,343
9
jigsaw_unintended_bias
false
[ "task_categories:text-classification", "task_ids:text-scoring", "annotations_creators:crowdsourced", "language_creators:crowdsourced", "multilinguality:monolingual", "size_categories:1M<n<10M", "source_datasets:original", "language:en", "license:cc0-1.0", "toxicity-prediction" ]
A collection of comments from the defunct Civil Comments platform that have been annotated for their toxicity.
575
1
jnlpba
false
[ "task_categories:token-classification", "task_ids:named-entity-recognition", "annotations_creators:expert-generated", "language_creators:expert-generated", "multilinguality:monolingual", "size_categories:10K<n<100K", "source_datasets:extended|other-genia-v3.02", "language:en", "license:unknown" ]
The data came from the GENIA version 3.02 corpus (Kim et al., 2003). This was formed from a controlled search on MEDLINE using the MeSH terms human, blood cells and transcription factors. From this search 2,000 abstracts were selected and hand annotated according to a small taxonomy of 48 classes based on a chemical classification. Among the classes, 36 terminal classes were used to annotate the GENIA corpus.
471
5
journalists_questions
false
[ "task_categories:text-classification", "annotations_creators:crowdsourced", "language_creators:other", "multilinguality:monolingual", "size_categories:10K<n<100K", "source_datasets:original", "language:ar", "license:unknown", "question-identification" ]
\ The journalists_questions corpus (version 1.0) is a collection of 10K human-written Arabic tweets manually labeled for question identification over Arabic tweets posted by journalists.
269
0
kan_hope
false
[ "task_categories:text-classification", "task_ids:multi-label-classification", "annotations_creators:expert-generated", "language_creators:crowdsourced", "multilinguality:multilingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "language:kn", "license:cc-by-4.0", "hope-speech-detection", "arxiv:2108.04616" ]
Numerous methods have been developed to monitor the spread of negativity in modern years by eliminating vulgar, offensive, and fierce comments from social media platforms. However, there are relatively lesser amounts of study that converges on embracing positivity, reinforcing supportive and reassuring content in online forums. Consequently, we propose creating an English Kannada Hope speech dataset, KanHope and comparing several experiments to benchmark the dataset. The dataset consists of 6,176 user generated comments in code mixed Kannada scraped from YouTube and manually annotated as bearing hope speech or Not-hope speech. This dataset was prepared for hope-speech text classification benchmark on code-mixed Kannada, an under-resourced language.
269
1
kannada_news
false
[ "task_categories:text-classification", "task_ids:topic-classification", "annotations_creators:other", "language_creators:other", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:kn", "license:cc-by-sa-4.0" ]
The Kannada news dataset contains only the headlines of news article in three categories: Entertainment, Tech, and Sports. The data set contains around 6300 news article headlines which collected from Kannada news websites. The data set has been cleaned and contains train and test set using which can be used to benchmark classification models in Kannada.
268
0
kd_conv
false
[ "task_categories:text-generation", "task_categories:fill-mask", "task_ids:dialogue-modeling", "annotations_creators:crowdsourced", "annotations_creators:machine-generated", "language_creators:crowdsourced", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:zh", "license:apache-2.0" ]
KdConv is a Chinese multi-domain Knowledge-driven Conversionsation dataset, grounding the topics in multi-turn conversations to knowledge graphs. KdConv contains 4.5K conversations from three domains (film, music, and travel), and 86K utterances with an average turn number of 19.0. These conversations contain in-depth discussions on related topics and natural transition between multiple topics, while the corpus can also used for exploration of transfer learning and domain adaptation.\
1,194
4
kde4
false
[ "task_categories:translation", "annotations_creators:found", "language_creators:found", "multilinguality:multilingual", "size_categories:100K<n<1M", "source_datasets:original", "language:af", "language:ar", "language:as", "language:ast", "language:be", "language:bg", "language:bn", "language:br", "language:ca", "language:crh", "language:cs", "language:csb", "language:cy", "language:da", "language:de", "language:el", "language:en", "language:eo", "language:es", "language:et", "language:eu", "language:fa", "language:fi", "language:fr", "language:fy", "language:ga", "language:gl", "language:gu", "language:ha", "language:he", "language:hi", "language:hne", "language:hr", "language:hsb", "language:hu", "language:hy", "language:id", "language:is", "language:it", "language:ja", "language:ka", "language:kk", "language:km", "language:kn", "language:ko", "language:ku", "language:lb", "language:lt", "language:lv", "language:mai", "language:mk", "language:ml", "language:mr", "language:ms", "language:mt", "language:nb", "language:nds", "language:ne", "language:nl", "language:nn", "language:nso", "language:oc", "language:or", "language:pa", "language:pl", "language:ps", "language:pt", "language:ro", "language:ru", "language:rw", "language:se", "language:si", "language:sk", "language:sl", "language:sr", "language:sv", "language:ta", "language:te", "language:tg", "language:th", "language:tr", "language:uk", "language:uz", "language:vi", "language:wa", "language:xh", "language:zh", "license:unknown" ]
A parallel corpus of KDE4 localization files (v.2). 92 languages, 4,099 bitexts total number of files: 75,535 total number of tokens: 60.75M total number of sentence fragments: 8.89M
1,536
5
kelm
false
[ "task_categories:other", "annotations_creators:found", "language_creators:found", "multilinguality:monolingual", "size_categories:1M<n<10M", "source_datasets:original", "language:en", "license:cc-by-sa-3.0", "data-to-text-generation", "arxiv:2010.12688" ]
Data-To-Text Generation involves converting knowledge graph (KG) triples of the form (subject, relation, object) into a natural language sentence(s). This dataset consists of English KG data converted into paired natural language text. The generated corpus consists of ∼18M sentences spanning ∼45M triples with ∼1500 distinct relations.
869
5
kilt_tasks
false
[ "task_categories:fill-mask", "task_categories:question-answering", "task_categories:text-classification", "task_categories:text-generation", "task_categories:text-retrieval", "task_categories:text2text-generation", "task_ids:abstractive-qa", "task_ids:dialogue-modeling", "task_ids:document-retrieval", "task_ids:entity-linking-retrieval", "task_ids:extractive-qa", "task_ids:fact-checking", "task_ids:fact-checking-retrieval", "task_ids:open-domain-abstractive-qa", "task_ids:open-domain-qa", "task_ids:slot-filling", "annotations_creators:crowdsourced", "annotations_creators:found", "annotations_creators:machine-generated", "language_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:100K<n<1M", "size_categories:10K<n<100K", "size_categories:1K<n<10K", "size_categories:1M<n<10M", "source_datasets:extended|natural_questions", "source_datasets:extended|other-aidayago", "source_datasets:extended|other-fever", "source_datasets:extended|other-hotpotqa", "source_datasets:extended|other-trex", "source_datasets:extended|other-triviaqa", "source_datasets:extended|other-wizardsofwikipedia", "source_datasets:extended|other-wned-cweb", "source_datasets:extended|other-wned-wiki", "source_datasets:extended|other-zero-shot-re", "source_datasets:original", "language:en", "license:mit", "arxiv:2009.02252" ]
KILT tasks training and evaluation data. - [FEVER](https://fever.ai) | Fact Checking | fever - [AIDA CoNLL-YAGO](https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/ambiverse-nlu/aida/downloads) | Entity Linking | aidayago2 - [WNED-WIKI](https://github.com/U-Alberta/wned) | Entity Linking | wned - [WNED-CWEB](https://github.com/U-Alberta/wned) | Entity Linking | cweb - [T-REx](https://hadyelsahar.github.io/t-rex) | Slot Filling | trex - [Zero-Shot RE](http://nlp.cs.washington.edu/zeroshot) | Slot Filling | structured_zeroshot - [Natural Questions](https://ai.google.com/research/NaturalQuestions) | Open Domain QA | nq - [HotpotQA](https://hotpotqa.github.io) | Open Domain QA | hotpotqa - [TriviaQA](http://nlp.cs.washington.edu/triviaqa) | Open Domain QA | triviaqa - [ELI5](https://facebookresearch.github.io/ELI5/explore.html) | Open Domain QA | eli5 - [Wizard of Wikipedia](https://parl.ai/projects/wizard_of_wikipedia) | Dialogue | wow To finish linking TriviaQA questions to the IDs provided, follow the instructions [here](http://github.com/huggingface/datasets/datasets/kilt_tasks/README.md).
36,930
15
kilt_wikipedia
false
[]
KILT-Wikipedia: Wikipedia pre-processed for KILT.
360
7
kinnews_kirnews
false
[ "task_categories:text-classification", "task_ids:multi-class-classification", "task_ids:topic-classification", "annotations_creators:expert-generated", "language_creators:found", "multilinguality:monolingual", "size_categories:10K<n<100K", "size_categories:1K<n<10K", "source_datasets:original", "language:rn", "language:rw", "license:mit", "arxiv:2010.12174" ]
Kinyarwanda and Kirundi news classification datasets
664
0
klue
false
[ "task_categories:fill-mask", "task_categories:question-answering", "task_categories:text-classification", "task_categories:text-generation", "task_categories:token-classification", "task_ids:extractive-qa", "task_ids:named-entity-recognition", "task_ids:natural-language-inference", "task_ids:parsing", "task_ids:semantic-similarity-scoring", "task_ids:text-scoring", "task_ids:topic-classification", "annotations_creators:expert-generated", "language_creators:expert-generated", "multilinguality:monolingual", "size_categories:10K<n<100K", "source_datasets:original", "language:ko", "license:cc-by-sa-4.0", "relation-extraction", "arxiv:2105.09680" ]
KLUE (Korean Language Understanding Evaluation) Korean Language Understanding Evaluation (KLUE) benchmark is a series of datasets to evaluate natural language understanding capability of Korean language models. KLUE consists of 8 diverse and representative tasks, which are accessible to anyone without any restrictions. With ethical considerations in mind, we deliberately design annotation guidelines to obtain unambiguous annotations for all datasets. Futhermore, we build an evaluation system and carefully choose evaluations metrics for every task, thus establishing fair comparison across Korean language models.
13,782
13
kor_3i4k
false
[ "task_categories:text-classification", "task_ids:intent-classification", "annotations_creators:expert-generated", "language_creators:expert-generated", "multilinguality:monolingual", "size_categories:10K<n<100K", "source_datasets:original", "language:ko", "license:cc-by-4.0", "arxiv:1811.04231" ]
This dataset is designed to identify speaker intention based on real-life spoken utterance in Korean into one of 7 categories: fragment, description, question, command, rhetorical question, rhetorical command, utterances.
269
1
kor_hate
false
[ "task_categories:text-classification", "task_ids:multi-label-classification", "annotations_creators:crowdsourced", "annotations_creators:expert-generated", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:ko", "license:cc-by-sa-4.0", "arxiv:2005.12503" ]
Human-annotated Korean corpus collected from a popular domestic entertainment news aggregation platform for toxic speech detection. Comments are annotated for gender bias, social bias and hate speech.
294
3
kor_ner
false
[ "task_categories:token-classification", "task_ids:named-entity-recognition", "annotations_creators:expert-generated", "language_creators:other", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:ko", "license:mit" ]
Korean named entity recognition dataset
313
0
kor_nli
false
[ "task_categories:text-classification", "task_ids:natural-language-inference", "task_ids:multi-input-text-classification", "annotations_creators:crowdsourced", "language_creators:machine-generated", "language_creators:expert-generated", "multilinguality:monolingual", "size_categories:100K<n<1M", "source_datasets:extended|multi_nli", "source_datasets:extended|snli", "source_datasets:extended|xnli", "language:ko", "license:cc-by-sa-4.0" ]
Korean Natural Language Inference datasets
575
1
kor_nlu
false
[ "task_categories:text-classification", "task_ids:natural-language-inference", "task_ids:semantic-similarity-scoring", "task_ids:text-scoring", "annotations_creators:found", "language_creators:expert-generated", "language_creators:found", "language_creators:machine-generated", "multilinguality:monolingual", "size_categories:100K<n<1M", "source_datasets:extended|snli", "language:ko", "license:cc-by-sa-4.0", "arxiv:2004.03289" ]
The dataset contains data for bechmarking korean models on NLI and STS
465
1
kor_qpair
false
[ "task_categories:text-classification", "task_ids:semantic-similarity-classification", "annotations_creators:expert-generated", "language_creators:other", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:ko", "license:mit" ]
This is a Korean paired question dataset containing labels indicating whether two questions in a given pair are semantically identical. This dataset was used to evaluate the performance of [KoGPT2](https://github.com/SKT-AI/KoGPT2#subtask-evaluations) on a phrase detection downstream task.
302
2
kor_sae
false
[ "task_categories:text-classification", "task_ids:intent-classification", "annotations_creators:expert-generated", "language_creators:expert-generated", "multilinguality:monolingual", "size_categories:10K<n<100K", "source_datasets:original", "language:ko", "license:cc-by-sa-4.0", "arxiv:1912.00342", "arxiv:1811.04231" ]
This new dataset is designed to extract intent from non-canonical directives which will help dialog managers extract intent from user dialog that may have no clear objective or are paraphrased forms of utterances.
273
2
kor_sarcasm
false
[ "task_categories:text-classification", "annotations_creators:expert-generated", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:ko", "license:mit", "sarcasm-detection" ]
This is a dataset designed to detect sarcasm in Korean because it distorts the literal meaning of a sentence and is highly related to sentiment classification.
268
1
labr
false
[ "task_categories:text-classification", "task_ids:multi-class-classification", "annotations_creators:found", "language_creators:found", "multilinguality:monolingual", "size_categories:10K<n<100K", "source_datasets:original", "language:ar", "license:unknown" ]
This dataset contains over 63,000 book reviews in Arabic.It is the largest sentiment analysis dataset for Arabic to-date.The book reviews were harvested from the website Goodreads during the month or March 2013.Each book review comes with the goodreads review id, the user id, the book id, the rating (1 to 5) and the text of the review.
302
0
lama
false
[ "task_categories:text-retrieval", "task_categories:text-classification", "task_ids:fact-checking-retrieval", "task_ids:text-scoring", "annotations_creators:crowdsourced", "annotations_creators:expert-generated", "annotations_creators:machine-generated", "language_creators:crowdsourced", "language_creators:expert-generated", "language_creators:machine-generated", "multilinguality:monolingual", "size_categories:10K<n<100K", "size_categories:1K<n<10K", "size_categories:1M<n<10M", "size_categories:n<1K", "source_datasets:extended|conceptnet5", "source_datasets:extended|squad", "language:en", "license:cc-by-4.0", "probing" ]
LAMA is a dataset used to probe and analyze the factual and commonsense knowledge contained in pretrained language models. See https://github.com/facebookresearch/LAMA.
2,551
4
lambada
false
[ "task_categories:text2text-generation", "annotations_creators:expert-generated", "language_creators:found", "multilinguality:monolingual", "size_categories:10K<n<100K", "source_datasets:extended|bookcorpus", "language:en", "license:cc-by-4.0", "long-range-dependency" ]
The LAMBADA evaluates the capabilities of computational models for text understanding by means of a word prediction task. LAMBADA is a collection of narrative passages sharing the characteristic that human subjects are able to guess their last word if they are exposed to the whole passage, but not if they only see the last sentence preceding the target word. To succeed on LAMBADA, computational models cannot simply rely on local context, but must be able to keep track of information in the broader discourse. The LAMBADA dataset is extracted from BookCorpus and consists of 10'022 passages, divided into 4'869 development and 5'153 test passages. The training data for language models to be tested on LAMBADA include the full text of 2'662 novels (disjoint from those in dev+test), comprising 203 million words.
16,151
17
large_spanish_corpus
false
[ "task_categories:other", "annotations_creators:no-annotation", "language_creators:expert-generated", "multilinguality:monolingual", "size_categories:100K<n<1M", "size_categories:100M<n<1B", "size_categories:10K<n<100K", "size_categories:10M<n<100M", "size_categories:1M<n<10M", "source_datasets:original", "language:es", "license:mit" ]
The Large Spanish Corpus is a compilation of 15 unlabelled Spanish corpora spanning Wikipedia to European parliament notes. Each config contains the data corresponding to a different corpus. For example, "all_wiki" only includes examples from Spanish Wikipedia. By default, the config is set to "combined" which loads all the corpora; with this setting you can also specify the number of samples to return per corpus by configuring the "split" argument.
2,557
10
laroseda
false
[ "task_categories:text-classification", "task_ids:sentiment-classification", "annotations_creators:found", "language_creators:found", "multilinguality:monolingual", "size_categories:10K<n<100K", "source_datasets:original", "language:ro", "license:cc-by-4.0", "arxiv:2101.04197", "arxiv:1901.06543" ]
LaRoSeDa (A Large Romanian Sentiment Data Set) contains 15,000 reviews written in Romanian, of which 7,500 are positive and 7,500 negative. Star ratings of 1 and 2 and of 4 and 5 are provided for negative and positive reviews respectively. The current dataset uses star rating as the label for multi-class classification.
828
0
lc_quad
false
[ "task_categories:question-answering", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:10K<n<100K", "source_datasets:original", "language:en", "license:cc-by-3.0", "knowledge-base-qa" ]
LC-QuAD 2.0 is a Large Question Answering dataset with 30,000 pairs of question and its corresponding SPARQL query. The target knowledge base is Wikidata and DBpedia, specifically the 2018 version. Please see our paper for details about the dataset creation process and framework.
332
0
lener_br
false
[ "task_categories:token-classification", "task_ids:named-entity-recognition", "annotations_creators:expert-generated", "language_creators:expert-generated", "multilinguality:monolingual", "size_categories:10K<n<100K", "source_datasets:original", "language:pt", "license:unknown" ]
LeNER-Br is a Portuguese language dataset for named entity recognition applied to legal documents. LeNER-Br consists entirely of manually annotated legislation and legal cases texts and contains tags for persons, locations, time entities, organizations, legislation and legal cases. To compose the dataset, 66 legal documents from several Brazilian Courts were collected. Courts of superior and state levels were considered, such as Supremo Tribunal Federal, Superior Tribunal de Justiça, Tribunal de Justiça de Minas Gerais and Tribunal de Contas da União. In addition, four legislation documents were collected, such as "Lei Maria da Penha", giving a total of 70 documents
326
14
lex_glue
false
[ "task_categories:question-answering", "task_categories:text-classification", "task_ids:multi-class-classification", "task_ids:multi-label-classification", "task_ids:multiple-choice-qa", "task_ids:topic-classification", "annotations_creators:found", "language_creators:found", "multilinguality:monolingual", "size_categories:10K<n<100K", "source_datasets:extended", "language:en", "license:cc-by-4.0", "arxiv:2110.00976", "arxiv:2109.00904", "arxiv:1805.01217", "arxiv:2104.08671" ]
Legal General Language Understanding Evaluation (LexGLUE) benchmark is a collection of datasets for evaluating model performance across a diverse set of legal NLU tasks
6,171
19
liar
false
[ "task_categories:text-classification", "annotations_creators:expert-generated", "language_creators:found", "multilinguality:monolingual", "size_categories:10K<n<100K", "source_datasets:original", "language:en", "license:unknown", "fake-news-detection", "arxiv:1705.00648" ]
LIAR is a dataset for fake news detection with 12.8K human labeled short statements from politifact.com's API, and each statement is evaluated by a politifact.com editor for its truthfulness. The distribution of labels in the LIAR dataset is relatively well-balanced: except for 1,050 pants-fire cases, the instances for all other labels range from 2,063 to 2,638. In each case, the labeler provides a lengthy analysis report to ground each judgment.
1,966
3
librispeech_asr
false
[ "task_categories:automatic-speech-recognition", "task_categories:audio-classification", "task_ids:speaker-identification", "annotations_creators:expert-generated", "language_creators:crowdsourced", "language_creators:expert-generated", "multilinguality:monolingual", "size_categories:100K<n<1M", "source_datasets:original", "language:en", "license:cc-by-4.0" ]
LibriSpeech is a corpus of approximately 1000 hours of read English speech with sampling rate of 16 kHz, prepared by Vassil Panayotov with the assistance of Daniel Povey. The data is derived from read audiobooks from the LibriVox project, and has been carefully segmented and aligned.87
15,039
35
librispeech_lm
false
[ "task_categories:text-generation", "task_ids:language-modeling", "annotations_creators:no-annotation", "language_creators:found", "multilinguality:monolingual", "size_categories:10M<n<100M", "source_datasets:original", "language:en", "license:cc0-1.0" ]
Language modeling resources to be used in conjunction with the LibriSpeech ASR corpus.
269
0
limit
false
[ "task_categories:token-classification", "task_categories:text-classification", "task_ids:multi-class-classification", "task_ids:named-entity-recognition", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:10K<n<100K", "source_datasets:extended|net-activities-captions", "source_datasets:original", "language:en", "license:cc-by-sa-4.0" ]
Motion recognition is one of the basic cognitive capabilities of many life forms, yet identifying motion of physical entities in natural language have not been explored extensively and empirically. Literal-Motion-in-Text (LiMiT) dataset, is a large human-annotated collection of English text sentences describing physical occurrence of motion, with annotated physical entities in motion.
867
3
lince
false
[]
LinCE is a centralized Linguistic Code-switching Evaluation benchmark (https://ritual.uh.edu/lince/) that contains data for training and evaluating NLP systems on code-switching tasks.
1,591
4
linnaeus
false
[ "task_categories:token-classification", "task_ids:named-entity-recognition", "annotations_creators:expert-generated", "language_creators:expert-generated", "multilinguality:monolingual", "size_categories:10K<n<100K", "source_datasets:original", "language:en", "license:unknown" ]
A novel corpus of full-text documents manually annotated for species mentions.
271
1
liveqa
false
[ "task_categories:question-answering", "task_ids:extractive-qa", "annotations_creators:found", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:zh", "license:unknown" ]
This is LiveQA, a Chinese dataset constructed from play-by-play live broadcast. It contains 117k multiple-choice questions written by human commentators for over 1,670 NBA games, which are collected from the Chinese Hupu website.
271
0
lj_speech
false
[ "task_categories:automatic-speech-recognition", "annotations_creators:expert-generated", "language_creators:found", "multilinguality:monolingual", "size_categories:10K<n<100K", "source_datasets:original", "language:en", "license:unlicense" ]
This is a public domain speech dataset consisting of 13,100 short audio clips of a single speaker reading passages from 7 non-fiction books in English. A transcription is provided for each clip. Clips vary in length from 1 to 10 seconds and have a total length of approximately 24 hours. Note that in order to limit the required storage for preparing this dataset, the audio is stored in the .wav format and is not converted to a float32 array. To convert the audio file to a float32 array, please make use of the `.map()` function as follows: ```python import soundfile as sf def map_to_array(batch): speech_array, _ = sf.read(batch["file"]) batch["speech"] = speech_array return batch dataset = dataset.map(map_to_array, remove_columns=["file"]) ```
392
5
lm1b
false
[ "task_categories:text-generation", "task_categories:fill-mask", "task_ids:language-modeling", "task_ids:masked-language-modeling" ]
A benchmark corpus to be used for measuring progress in statistical language modeling. This has almost one billion words in the training data.
534
8
lst20
false
[ "task_categories:token-classification", "task_ids:named-entity-recognition", "task_ids:part-of-speech", "annotations_creators:expert-generated", "language_creators:found", "multilinguality:monolingual", "size_categories:10K<n<100K", "source_datasets:original", "language:th", "license:other", "word-segmentation", "clause-segmentation", "sentence-segmentation" ]
LST20 Corpus is a dataset for Thai language processing developed by National Electronics and Computer Technology Center (NECTEC), Thailand. It offers five layers of linguistic annotation: word boundaries, POS tagging, named entities, clause boundaries, and sentence boundaries. At a large scale, it consists of 3,164,002 words, 288,020 named entities, 248,181 clauses, and 74,180 sentences, while it is annotated with 16 distinct POS tags. All 3,745 documents are also annotated with one of 15 news genres. Regarding its sheer size, this dataset is considered large enough for developing joint neural models for NLP. Manually download at https://aiforthai.in.th/corpus.php
853
3
m_lama
false
[ "task_categories:question-answering", "task_categories:text-classification", "task_ids:open-domain-qa", "task_ids:text-scoring", "annotations_creators:crowdsourced", "annotations_creators:expert-generated", "annotations_creators:machine-generated", "language_creators:crowdsourced", "language_creators:expert-generated", "language_creators:machine-generated", "multilinguality:translation", "size_categories:100K<n<1M", "source_datasets:extended|lama", "language:af", "language:ar", "language:az", "language:be", "language:bg", "language:bn", "language:ca", "language:ceb", "language:cs", "language:cy", "language:da", "language:de", "language:el", "language:en", "language:es", "language:et", "language:eu", "language:fa", "language:fi", "language:fr", "language:ga", "language:gl", "language:he", "language:hi", "language:hr", "language:hu", "language:hy", "language:id", "language:it", "language:ja", "language:ka", "language:ko", "language:la", "language:lt", "language:lv", "language:ms", "language:nl", "language:pl", "language:pt", "language:ro", "language:ru", "language:sk", "language:sl", "language:sq", "language:sr", "language:sv", "language:ta", "language:th", "language:tr", "language:uk", "language:ur", "language:vi", "language:zh", "license:cc-by-nc-sa-4.0", "probing", "arxiv:2102.00894" ]
mLAMA: a multilingual version of the LAMA benchmark (T-REx and GoogleRE) covering 53 languages.
269
1
mac_morpho
false
[ "task_categories:token-classification", "task_ids:part-of-speech", "annotations_creators:expert-generated", "language_creators:found", "multilinguality:monolingual", "size_categories:10K<n<100K", "source_datasets:original", "language:pt", "license:cc-by-4.0" ]
Mac-Morpho is a corpus of Brazilian Portuguese texts annotated with part-of-speech tags. Its first version was released in 2003 [1], and since then, two revisions have been made in order to improve the quality of the resource [2, 3]. The corpus is available for download split into train, development and test sections. These are 76%, 4% and 20% of the corpus total, respectively (the reason for the unusual numbers is that the corpus was first split into 80%/20% train/test, and then 5% of the train section was set aside for development). This split was used in [3], and new POS tagging research with Mac-Morpho is encouraged to follow it in order to make consistent comparisons possible. [1] Aluísio, S., Pelizzoni, J., Marchi, A.R., de Oliveira, L., Manenti, R., Marquiafável, V. 2003. An account of the challenge of tagging a reference corpus for brazilian portuguese. In: Proceedings of the 6th International Conference on Computational Processing of the Portuguese Language. PROPOR 2003 [2] Fonseca, E.R., Rosa, J.L.G. 2013. Mac-morpho revisited: Towards robust part-of-speech. In: Proceedings of the 9th Brazilian Symposium in Information and Human Language Technology – STIL [3] Fonseca, E.R., Aluísio, Sandra Maria, Rosa, J.L.G. 2015. Evaluating word embeddings and a revised corpus for part-of-speech tagging in Portuguese. Journal of the Brazilian Computer Society.
283
1
makhzan
false
[ "task_categories:text-generation", "task_categories:fill-mask", "task_ids:language-modeling", "task_ids:masked-language-modeling", "annotations_creators:expert-generated", "language_creators:expert-generated", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:ur", "license:other" ]
An Urdu text corpus for machine learning, natural language processing and linguistic analysis.
269
0
masakhaner
false
[ "task_categories:token-classification", "task_ids:named-entity-recognition", "annotations_creators:expert-generated", "language_creators:expert-generated", "multilinguality:multilingual", "size_categories:10K<n<100K", "source_datasets:original", "language:am", "language:ha", "language:ig", "language:lg", "language:luo", "language:pcm", "language:rw", "language:sw", "language:wo", "language:yo", "license:unknown", "arxiv:2103.11811" ]
MasakhaNER is the first large publicly available high-quality dataset for named entity recognition (NER) in ten African languages. Named entities are phrases that contain the names of persons, organizations, locations, times and quantities. Example: [PER Wolff] , currently a journalist in [LOC Argentina] , played with [PER Del Bosque] in the final years of the seventies in [ORG Real Madrid] . MasakhaNER is a named entity dataset consisting of PER, ORG, LOC, and DATE entities annotated by Masakhane for ten African languages: - Amharic - Hausa - Igbo - Kinyarwanda - Luganda - Luo - Nigerian-Pidgin - Swahili - Wolof - Yoruba The train/validation/test sets are available for all the ten languages. For more details see https://arxiv.org/abs/2103.11811
16,031
3
math_dataset
false
[ "language:en" ]
Mathematics database. This dataset code generates mathematical question and answer pairs, from a range of question types at roughly school-level difficulty. This is designed to test the mathematical learning and algebraic reasoning skills of learning models. Original paper: Analysing Mathematical Reasoning Abilities of Neural Models (Saxton, Grefenstette, Hill, Kohli). Example usage: train_examples, val_examples = datasets.load_dataset( 'math_dataset/arithmetic__mul', split=['train', 'test'], as_supervised=True)
19,467
9
math_qa
false
[ "task_categories:question-answering", "task_ids:multiple-choice-qa", "annotations_creators:crowdsourced", "language_creators:crowdsourced", "language_creators:expert-generated", "multilinguality:monolingual", "size_categories:10K<n<100K", "source_datasets:extended|aqua_rat", "language:en", "license:apache-2.0" ]
Our dataset is gathered by using a new representation language to annotate over the AQuA-RAT dataset. AQuA-RAT has provided the questions, options, rationale, and the correct options.
9,851
10
matinf
false
[]
MATINF is the first jointly labeled large-scale dataset for classification, question answering and summarization. MATINF contains 1.07 million question-answer pairs with human-labeled categories and user-generated question descriptions. Based on such rich information, MATINF is applicable for three major NLP tasks, including classification, question answering, and summarization. We benchmark existing methods and a novel multi-task baseline over MATINF to inspire further research. Our comprehensive comparison and experiments over MATINF and other datasets demonstrate the merits held by MATINF.
672
1
mbpp
false
[ "task_categories:text2text-generation", "annotations_creators:crowdsourced", "annotations_creators:expert-generated", "language_creators:crowdsourced", "language_creators:expert-generated", "multilinguality:monolingual", "size_categories:n<1K", "source_datasets:original", "language:en", "license:cc-by-4.0", "code-generation", "arxiv:2108.07732" ]
The MBPP (Mostly Basic Python Problems) dataset consists of around 1,000 crowd-sourced Python programming problems, designed to be solvable by entry level programmers, covering programming fundamentals, standard library functionality, and so on. Each problem consists of a task description, code solution and 3 automated test cases. The sanitized subset of the data has been hand-verified by the authors.
30,716
13
mc4
false
[ "task_categories:text-generation", "task_categories:fill-mask", "task_ids:language-modeling", "task_ids:masked-language-modeling", "annotations_creators:no-annotation", "language_creators:found", "multilinguality:multilingual", "size_categories:n<1K", "size_categories:1K<n<10K", "size_categories:10K<n<100K", "size_categories:100K<n<1M", "size_categories:1M<n<10M", "size_categories:10M<n<100M", "size_categories:100M<n<1B", "size_categories:1B<n<10B", "source_datasets:original", "language:af", "language:am", "language:ar", "language:az", "language:be", "language:bg", "language:bn", "language:ca", "language:ceb", "language:co", "language:cs", "language:cy", "language:da", "language:de", "language:el", "language:en", "language:eo", "language:es", "language:et", "language:eu", "language:fa", "language:fi", "language:fil", "language:fr", "language:fy", "language:ga", "language:gd", "language:gl", "language:gu", "language:ha", "language:haw", "language:he", "language:hi", "language:hmn", "language:ht", "language:hu", "language:hy", "language:id", "language:ig", "language:is", "language:it", "language:iw", "language:ja", "language:jv", "language:ka", "language:kk", "language:km", "language:kn", "language:ko", "language:ku", "language:ky", "language:la", "language:lb", "language:lo", "language:lt", "language:lv", "language:mg", "language:mi", "language:mk", "language:ml", "language:mn", "language:mr", "language:ms", "language:mt", "language:my", "language:ne", "language:nl", "language:no", "language:ny", "language:pa", "language:pl", "language:ps", "language:pt", "language:ro", "language:ru", "language:sd", "language:si", "language:sk", "language:sl", "language:sm", "language:sn", "language:so", "language:sq", "language:sr", "language:st", "language:su", "language:sv", "language:sw", "language:ta", "language:te", "language:tg", "language:th", "language:tr", "language:uk", "language:und", "language:ur", "language:uz", "language:vi", "language:xh", "language:yi", "language:yo", "language:zh", "language:zu", "license:odc-by", "arxiv:1910.10683" ]
A colossal, cleaned version of Common Crawl's web crawl corpus. Based on Common Crawl dataset: "https://commoncrawl.org". This is the processed version of Google's mC4 dataset by AllenAI.
44,342
51
mc_taco
false
[ "task_categories:question-answering", "task_ids:multiple-choice-qa", "annotations_creators:crowdsourced", "annotations_creators:machine-generated", "language_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:10K<n<100K", "source_datasets:original", "language:en", "license:unknown", "arxiv:1909.03065" ]
MC-TACO (Multiple Choice TemporAl COmmonsense) is a dataset of 13k question-answer pairs that require temporal commonsense comprehension. A system receives a sentence providing context information, a question designed to require temporal commonsense knowledge, and multiple candidate answers. More than one candidate answer can be plausible. The task is framed as binary classification: givent he context, the question, and the candidate answer, the task is to determine whether the candidate answer is plausible ("yes") or not ("no").
1,471
0
md_gender_bias
false
[ "task_categories:text-classification", "annotations_creators:crowdsourced", "annotations_creators:found", "annotations_creators:machine-generated", "language_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:100K<n<1M", "size_categories:10K<n<100K", "size_categories:1K<n<10K", "size_categories:1M<n<10M", "size_categories:n<1K", "source_datasets:extended|other-convai2", "source_datasets:extended|other-light", "source_datasets:extended|other-opensubtitles", "source_datasets:extended|other-yelp", "source_datasets:original", "language:en", "license:mit", "gender-bias", "arxiv:1811.00552" ]
Machine learning models are trained to find patterns in data. NLP models can inadvertently learn socially undesirable patterns when training on gender biased text. In this work, we propose a general framework that decomposes gender bias in text along several pragmatic and semantic dimensions: bias from the gender of the person being spoken about, bias from the gender of the person being spoken to, and bias from the gender of the speaker. Using this fine-grained framework, we automatically annotate eight large scale datasets with gender information. In addition, we collect a novel, crowdsourced evaluation benchmark of utterance-level gender rewrites. Distinguishing between gender bias along multiple dimensions is important, as it enables us to train finer-grained gender bias classifiers. We show our classifiers prove valuable for a variety of important applications, such as controlling for gender bias in generative models, detecting gender bias in arbitrary text, and shed light on offensive language in terms of genderedness.
4,472
7
mdd
false
[ "task_categories:text-generation", "task_categories:fill-mask", "task_ids:dialogue-modeling", "annotations_creators:no-annotation", "language_creators:found", "multilinguality:monolingual", "size_categories:100K<n<1M", "size_categories:1M<n<10M", "source_datasets:original", "language:en", "license:cc-by-3.0", "arxiv:1511.06931" ]
The Movie Dialog dataset (MDD) is designed to measure how well models can perform at goal and non-goal orientated dialog centered around the topic of movies (question answering, recommendation and discussion).
2,187
2
med_hop
false
[ "task_categories:question-answering", "task_ids:extractive-qa", "annotations_creators:crowdsourced", "language_creators:expert-generated", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc-by-sa-3.0", "multi-hop", "arxiv:1710.06481" ]
MedHop is based on research paper abstracts from PubMed, and the queries are about interactions between pairs of drugs. The correct answer has to be inferred by combining information from a chain of reactions of drugs and proteins.
554
2
medal
false
[ "task_categories:other", "annotations_creators:expert-generated", "language_creators:expert-generated", "multilinguality:monolingual", "size_categories:10M<n<100M", "source_datasets:original", "language:en", "license:unknown", "disambiguation" ]
A large medical text dataset (14Go) curated to 4Go for abbreviation disambiguation, designed for natural language understanding pre-training in the medical domain. For example, DHF can be disambiguated to dihydrofolate, diastolic heart failure, dengue hemorragic fever or dihydroxyfumarate
860
5
medical_dialog
false
[ "task_categories:question-answering", "task_ids:closed-domain-qa", "annotations_creators:found", "language_creators:expert-generated", "language_creators:found", "multilinguality:monolingual", "size_categories:1M<n<10M", "source_datasets:original", "language:en", "language:zh", "license:unknown", "arxiv:2004.03329" ]
The MedDialog dataset (English) contains conversations (in English) between doctors and patients.It has 0.26 million dialogues. The data is continuously growing and more dialogues will be added. The raw dialogues are from healthcaremagic.com and icliniq.com. All copyrights of the data belong to healthcaremagic.com and icliniq.com.
637
11
medical_questions_pairs
false
[ "task_categories:text-classification", "task_ids:semantic-similarity-classification", "annotations_creators:expert-generated", "language_creators:other", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:unknown", "arxiv:2008.13546" ]
This dataset consists of 3048 similar and dissimilar medical question pairs hand-generated and labeled by Curai's doctors.
1,512
11
menyo20k_mt
false
[ "task_categories:translation", "annotations_creators:expert-generated", "annotations_creators:found", "language_creators:found", "multilinguality:translation", "size_categories:10K<n<100K", "source_datasets:original", "language:en", "language:yo", "license:cc-by-nc-4.0", "arxiv:2103.08647" ]
MENYO-20k is a multi-domain parallel dataset with texts obtained from news articles, ted talks, movie transcripts, radio transcripts, science and technology texts, and other short articles curated from the web and professional translators. The dataset has 20,100 parallel sentences split into 10,070 training sentences, 3,397 development sentences, and 6,633 test sentences (3,419 multi-domain, 1,714 news domain, and 1,500 ted talks speech transcript domain). The development and test sets are available upon request.
268
1
meta_woz
false
[ "task_categories:text-generation", "task_categories:fill-mask", "task_ids:dialogue-modeling", "annotations_creators:crowdsourced", "language_creators:crowdsourced", "multilinguality:monolingual", "size_categories:10K<n<100K", "source_datasets:original", "language:en", "license:other", "arxiv:2003.01680" ]
MetaLWOz: A Dataset of Multi-Domain Dialogues for the Fast Adaptation of Conversation Models. We introduce the Meta-Learning Wizard of Oz (MetaLWOz) dialogue dataset for developing fast adaptation methods for conversation models. This data can be used to train task-oriented dialogue models, specifically to develop methods to quickly simulate user responses with a small amount of data. Such fast-adaptation models fall into the research areas of transfer learning and meta learning. The dataset consists of 37,884 crowdsourced dialogues recorded between two human users in a Wizard of Oz setup, in which one was instructed to behave like a bot, and the other a true human user. The users are assigned a task belonging to a particular domain, for example booking a reservation at a particular restaurant, and work together to complete the task. Our dataset spans 47 domains having 227 tasks total. Dialogues are a minimum of 10 turns long.
1,091
3
metooma
false
[ "task_categories:text-classification", "task_categories:text-retrieval", "task_ids:multi-class-classification", "task_ids:multi-label-classification", "annotations_creators:expert-generated", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc0-1.0" ]
The dataset consists of tweets belonging to #MeToo movement on Twitter, labelled into different categories. Due to Twitter's development policies, we only provide the tweet ID's and corresponding labels, other data can be fetched via Twitter API. The data has been labelled by experts, with the majority taken into the account for deciding the final label. We provide these labels for each of the tweets. The labels provided for each data point includes -- Relevance, Directed Hate, Generalized Hate, Sarcasm, Allegation, Justification, Refutation, Support, Oppose
271
0
metrec
false
[ "task_categories:text-classification", "annotations_creators:no-annotation", "language_creators:found", "multilinguality:monolingual", "size_categories:10K<n<100K", "source_datasets:original", "language:ar", "license:unknown", "poetry-classification" ]
Arabic Poetry Metric Classification. The dataset contains the verses and their corresponding meter classes.Meter classes are represented as numbers from 0 to 13. The dataset can be highly useful for further research in order to improve the field of Arabic poems’ meter classification.The train dataset contains 47,124 records and the test dataset contains 8316 records.
278
2
miam
false
[ "task_categories:text-generation", "task_categories:fill-mask", "task_categories:text-classification", "task_ids:dialogue-modeling", "task_ids:language-modeling", "task_ids:masked-language-modeling", "annotations_creators:expert-generated", "language_creators:expert-generated", "multilinguality:multilingual", "size_categories:10K<n<100K", "source_datasets:original", "language:de", "language:en", "language:es", "language:fr", "language:it", "license:cc-by-sa-4.0", "dialogue-act-classification" ]
Multilingual dIalogAct benchMark is a collection of resources for training, evaluating, and analyzing natural language understanding systems specifically designed for spoken language. Datasets are in English, French, German, Italian and Spanish. They cover a variety of domains including spontaneous speech, scripted scenarios, and joint task completion. Some datasets additionally include emotion and/or sentimant labels.
950
1
mkb
false
[ "task_categories:text-generation", "task_categories:fill-mask", "task_ids:language-modeling", "task_ids:masked-language-modeling", "annotations_creators:no-annotation", "multilinguality:translation", "size_categories:1K<n<10K", "size_categories:n<1K", "source_datasets:original", "language:bn", "language:en", "language:gu", "language:hi", "language:ml", "language:mr", "language:or", "language:pa", "language:ta", "language:te", "language:ur", "license:cc-by-4.0", "arxiv:2007.07691" ]
The Prime Minister's speeches - Mann Ki Baat, on All India Radio, translated into many languages.
6,052
1
mkqa
false
[ "task_categories:question-answering", "task_ids:open-domain-qa", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:multilingual", "multilinguality:translation", "size_categories:10K<n<100K", "source_datasets:extended|natural_questions", "source_datasets:original", "language:ar", "language:da", "language:de", "language:en", "language:es", "language:fi", "language:fr", "language:he", "language:hu", "language:it", "language:ja", "language:km", "language:ko", "language:ms", "language:nl", "language:no", "language:pl", "language:pt", "language:ru", "language:sv", "language:th", "language:tr", "language:vi", "language:zh", "license:cc-by-3.0", "arxiv:2007.15207" ]
We introduce MKQA, an open-domain question answering evaluation set comprising 10k question-answer pairs sampled from the Google Natural Questions dataset, aligned across 26 typologically diverse languages (260k question-answer pairs in total). For each query we collected new passage-independent answers. These queries and answers were then human translated into 25 Non-English languages.
977
6
mlqa
false
[ "task_categories:question-answering", "task_ids:extractive-qa", "annotations_creators:crowdsourced", "language_creators:crowdsourced", "multilinguality:multilingual", "size_categories:10K<n<100K", "source_datasets:original", "language:en", "language:de", "language:es", "language:ar", "language:zh", "language:vi", "language:hi", "license:cc-by-sa-3.0" ]
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance. MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic, German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between 4 different languages on average.
10,987
8
mlsum
false
[ "task_categories:summarization", "task_categories:translation", "task_categories:text-classification", "task_ids:news-articles-summarization", "task_ids:multi-class-classification", "task_ids:multi-label-classification", "task_ids:topic-classification", "annotations_creators:found", "language_creators:found", "multilinguality:multilingual", "size_categories:100K<n<1M", "size_categories:10K<n<100K", "source_datasets:extended|cnn_dailymail", "source_datasets:original", "language:de", "language:es", "language:fr", "language:ru", "language:tr", "license:other" ]
We present MLSUM, the first large-scale MultiLingual SUMmarization dataset. Obtained from online newspapers, it contains 1.5M+ article/summary pairs in five different languages -- namely, French, German, Spanish, Russian, Turkish. Together with English newspapers from the popular CNN/Daily mail dataset, the collected data form a large scale multilingual dataset which can enable new research directions for the text summarization community. We report cross-lingual comparative analyses based on state-of-the-art systems. These highlight existing biases which motivate the use of a multi-lingual dataset.
5,283
13
mnist
false
[ "task_categories:image-classification", "task_ids:multi-class-image-classification", "annotations_creators:expert-generated", "language_creators:found", "multilinguality:monolingual", "size_categories:10K<n<100K", "source_datasets:extended|other-nist", "language:en", "license:mit" ]
The MNIST dataset consists of 70,000 28x28 black-and-white images in 10 classes (one for each digits), with 7,000 images per class. There are 60,000 training images and 10,000 test images.
9,528
23
mocha
false
[ "task_categories:question-answering", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:10K<n<100K", "source_datasets:original", "language:en", "license:cc-by-sa-4.0", "generative-reading-comprehension-metric" ]
Posing reading comprehension as a generation problem provides a great deal of flexibility, allowing for open-ended questions with few restrictions on possible answers. However, progress is impeded by existing generation metrics, which rely on token overlap and are agnostic to the nuances of reading comprehension. To address this, we introduce a benchmark for training and evaluating generative reading comprehension metrics: MOdeling Correctness with Human Annotations. MOCHA contains 40K human judgement scores on model outputs from 6 diverse question answering datasets and an additional set of minimal pairs for evaluation. Using MOCHA, we train an evaluation metric: LERC, a Learned Evaluation metric for Reading Comprehension, to mimic human judgement scores.
853
0
moroco
false
[ "task_categories:text-classification", "task_ids:topic-classification", "annotations_creators:found", "language_creators:found", "multilinguality:monolingual", "size_categories:10K<n<100K", "source_datasets:original", "language:ro", "license:cc-by-4.0", "arxiv:1901.06543" ]
The MOROCO (Moldavian and Romanian Dialectal Corpus) dataset contains 33564 samples of text collected from the news domain. The samples belong to one of the following six topics: - culture - finance - politics - science - sports - tech
294
0
movie_rationales
false
[ "task_categories:text-classification", "task_ids:sentiment-classification", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:unknown" ]
The movie rationale dataset contains human annotated rationales for movie reviews.
1,186
2
mrqa
false
[ "task_categories:question-answering", "task_ids:extractive-qa", "annotations_creators:found", "language_creators:found", "multilinguality:monolingual", "size_categories:100K<n<1M", "source_datasets:extended|drop", "source_datasets:extended|hotpot_qa", "source_datasets:extended|natural_questions", "source_datasets:extended|race", "source_datasets:extended|search_qa", "source_datasets:extended|squad", "source_datasets:extended|trivia_qa", "language:en", "license:unknown", "arxiv:1910.09753", "arxiv:1606.05250", "arxiv:1611.09830", "arxiv:1705.03551", "arxiv:1704.05179", "arxiv:1809.09600", "arxiv:1903.00161", "arxiv:1804.07927", "arxiv:1704.04683", "arxiv:1706.04115" ]
The MRQA 2019 Shared Task focuses on generalization in question answering. An effective question answering system should do more than merely interpolate from the training set to answer test examples drawn from the same distribution: it should also be able to extrapolate to out-of-distribution examples — a significantly harder challenge. The dataset is a collection of 18 existing QA dataset (carefully selected subset of them) and converted to the same format (SQuAD format). Among these 18 datasets, six datasets were made available for training, six datasets were made available for development, and the final six for testing. The dataset is released as part of the MRQA 2019 Shared Task.
728
6
ms_marco
false
[ "language:en", "arxiv:1611.09268" ]
Starting with a paper released at NIPS 2016, MS MARCO is a collection of datasets focused on deep learning in search. The first dataset was a question answering dataset featuring 100,000 real Bing questions and a human generated answer. Since then we released a 1,000,000 question dataset, a natural langauge generation dataset, a passage ranking dataset, keyphrase extraction dataset, crawling dataset, and a conversational search. There have been 277 submissions. 20 KeyPhrase Extraction submissions, 87 passage ranking submissions, 0 document ranking submissions, 73 QnA V2 submissions, 82 NLGEN submisions, and 15 QnA V1 submissions This data comes in three tasks/forms: Original QnA dataset(v1.1), Question Answering(v2.1), Natural Language Generation(v2.1). The original question answering datset featured 100,000 examples and was released in 2016. Leaderboard is now closed but data is availible below. The current competitive tasks are Question Answering and Natural Language Generation. Question Answering features over 1,000,000 queries and is much like the original QnA dataset but bigger and with higher quality. The Natural Language Generation dataset features 180,000 examples and builds upon the QnA dataset to deliver answers that could be spoken by a smart speaker.
6,792
13
ms_terms
false
[ "task_categories:translation", "annotations_creators:expert-generated", "language_creators:expert-generated", "multilinguality:multilingual", "multilinguality:translation", "size_categories:10K<n<100K", "source_datasets:original", "language:af", "language:am", "language:ar", "language:as", "language:az", "language:be", "language:bg", "language:bn", "language:bs", "language:ca", "language:chr", "language:cs", "language:cy", "language:da", "language:de", "language:el", "language:en", "language:es", "language:et", "language:eu", "language:fa", "language:fi", "language:fil", "language:fr", "language:ga", "language:gd", "language:gl", "language:gu", "language:guc", "language:ha", "language:he", "language:hi", "language:hr", "language:hu", "language:hy", "language:id", "language:ig", "language:is", "language:it", "language:iu", "language:ja", "language:ka", "language:kk", "language:km", "language:kn", "language:knn", "language:ko", "language:ku", "language:ky", "language:lb", "language:lo", "language:lt", "language:lv", "language:mi", "language:mk", "language:ml", "language:mn", "language:mr", "language:ms", "language:mt", "language:nb", "language:ne", "language:nl", "language:nn", "language:ory", "language:pa", "language:pl", "language:prs", "language:pst", "language:pt", "language:qu", "language:quc", "language:ro", "language:ru", "language:rw", "language:sd", "language:si", "language:sk", "language:sl", "language:sq", "language:sr", "language:st", "language:sv", "language:swh", "language:ta", "language:te", "language:tg", "language:th", "language:ti", "language:tk", "language:tn", "language:tr", "language:tt", "language:ug", "language:uk", "language:ur", "language:uz", "language:vi", "language:wo", "language:xh", "language:yo", "language:zh", "language:zu", "license:ms-pl" ]
The Microsoft Terminology Collection can be used to develop localized versions of applications that integrate with Microsoft products. It can also be used to integrate Microsoft terminology into other terminology collections or serve as a base IT glossary for language development in the nearly 100 languages available. Terminology is provided in .tbx format, an industry standard for terminology exchange.
268
0
msr_genomics_kbcomp
false
[ "task_categories:other", "annotations_creators:expert-generated", "language_creators:expert-generated", "multilinguality:monolingual", "size_categories:10K<n<100K", "source_datasets:original", "language:en", "license:other", "genomics-knowledge-base-bompletion" ]
The database is derived from the NCI PID Pathway Interaction Database, and the textual mentions are extracted from cooccurring pairs of genes in PubMed abstracts, processed and annotated by Literome (Poon et al. 2014). This dataset was used in the paper “Compositional Learning of Embeddings for Relation Paths in Knowledge Bases and Text” (Toutanova, Lin, Yih, Poon, and Quirk, 2016).
269
0
msr_sqa
false
[ "task_categories:question-answering", "task_ids:extractive-qa", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:10K<n<100K", "source_datasets:original", "language:en", "license:ms-pl" ]
Recent work in semantic parsing for question answering has focused on long and complicated questions, many of which would seem unnatural if asked in a normal conversation between two humans. In an effort to explore a conversational QA setting, we present a more realistic task: answering sequences of simple but inter-related questions. We created SQA by asking crowdsourced workers to decompose 2,022 questions from WikiTableQuestions (WTQ), which contains highly-compositional questions about tables from Wikipedia. We had three workers decompose each WTQ question, resulting in a dataset of 6,066 sequences that contain 17,553 questions in total. Each question is also associated with answers in the form of cell locations in the tables.
368
0
msr_text_compression
false
[ "task_categories:summarization", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:extended|other-Open-American-National-Corpus-(OANC1)", "language:en", "license:other" ]
This dataset contains sentences and short paragraphs with corresponding shorter (compressed) versions. There are up to five compressions for each input text, together with quality judgements of their meaning preservation and grammaticality. The dataset is derived using source texts from the Open American National Corpus (ww.anc.org) and crowd-sourcing.
282
2
msr_zhen_translation_parity
false
[ "task_categories:translation", "annotations_creators:no-annotation", "language_creators:expert-generated", "language_creators:machine-generated", "multilinguality:monolingual", "multilinguality:translation", "size_categories:1K<n<10K", "source_datasets:extended|other-newstest2017", "language:en", "license:ms-pl" ]
Translator Human Parity Data Human evaluation results and translation output for the Translator Human Parity Data release, as described in https://blogs.microsoft.com/ai/machine-translation-news-test-set-human-parity/. The Translator Human Parity Data release contains all human evaluation results and translations related to our paper "Achieving Human Parity on Automatic Chinese to English News Translation", published on March 14, 2018.
279
0
msra_ner
false
[ "task_categories:token-classification", "task_ids:named-entity-recognition", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:10K<n<100K", "source_datasets:original", "language:zh", "license:unknown" ]
The Third International Chinese Language Processing Bakeoff was held in Spring 2006 to assess the state of the art in two important tasks: word segmentation and named entity recognition. Twenty-nine groups submitted result sets in the two tasks across two tracks and a total of five corpora. We found strong results in both tasks as well as continuing challenges. MSRA NER is one of the provided dataset. There are three types of NE, PER (person), ORG (organization) and LOC (location). The dataset is in the BIO scheme. For more details see https://faculty.washington.edu/levow/papers/sighan06.pdf
751
11
mt_eng_vietnamese
false
[ "task_categories:translation", "annotations_creators:found", "language_creators:found", "multilinguality:multilingual", "size_categories:100K<n<1M", "source_datasets:original", "language:en", "language:vi", "license:unknown" ]
Preprocessed Dataset from IWSLT'15 English-Vietnamese machine translation: English-Vietnamese.
575
7
muchocine
false
[ "task_categories:text-classification", "task_ids:sentiment-classification", "annotations_creators:found", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:es", "license:unknown" ]
The Muchocine reviews dataset contains 3,872 longform movie reviews in Spanish language, each with a shorter summary review, and a rating on a 1-5 scale.
270
4
multi_booked
false
[ "task_categories:text-classification", "task_ids:sentiment-classification", "annotations_creators:expert-generated", "language_creators:found", "multilinguality:monolingual", "size_categories:n<1K", "source_datasets:original", "language:ca", "language:eu", "license:cc-by-3.0", "arxiv:1803.08614" ]
MultiBooked is a corpus of Basque and Catalan Hotel Reviews Annotated for Aspect-level Sentiment Classification. The corpora are compiled from hotel reviews taken mainly from booking.com. The corpora are in Kaf/Naf format, which is an xml-style stand-off format that allows for multiple layers of annotation. Each review was sentence- and word-tokenized and lemmatized using Freeling for Catalan and ixa-pipes for Basque. Finally, for each language two annotators annotated opinion holders, opinion targets, and opinion expressions for each review, following the guidelines set out in the OpeNER project.
399
0
multi_eurlex
false
[ "task_categories:text-classification", "task_ids:multi-label-classification", "task_ids:topic-classification", "annotations_creators:found", "language_creators:found", "multilinguality:multilingual", "size_categories:10K<n<100K", "source_datasets:original", "language:bg", "language:cs", "language:da", "language:de", "language:el", "language:en", "language:es", "language:et", "language:fi", "language:fr", "language:hr", "language:hu", "language:it", "language:lt", "language:lv", "language:mt", "language:nl", "language:pl", "language:pt", "language:ro", "language:sk", "language:sl", "language:sv", "license:cc-by-sa-4.0", "arxiv:2109.00904" ]
MultiEURLEX comprises 65k EU laws in 23 official EU languages (some low-ish resource). Each EU law has been annotated with EUROVOC concepts (labels) by the Publication Office of EU. As with the English EURLEX, the goal is to predict the relevant EUROVOC concepts (labels); this is multi-label classification task (given the text, predict multiple labels).
3,776
12
multi_news
false
[ "task_categories:summarization", "task_ids:news-articles-summarization", "annotations_creators:expert-generated", "language_creators:expert-generated", "multilinguality:monolingual", "size_categories:10K<n<100K", "source_datasets:original", "language:en", "license:other", "arxiv:1906.01749" ]
Multi-News, consists of news articles and human-written summaries of these articles from the site newser.com. Each summary is professionally written by editors and includes links to the original articles cited. There are two features: - document: text of news articles seperated by special token "|||||". - summary: news summary.
10,765
14
multi_nli
false
[ "task_categories:text-classification", "task_ids:natural-language-inference", "task_ids:multi-input-text-classification", "annotations_creators:crowdsourced", "language_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:100K<n<1M", "source_datasets:original", "language:en", "license:cc-by-3.0", "license:cc-by-sa-3.0", "license:mit", "license:other" ]
The Multi-Genre Natural Language Inference (MultiNLI) corpus is a crowd-sourced collection of 433k sentence pairs annotated with textual entailment information. The corpus is modeled on the SNLI corpus, but differs in that covers a range of genres of spoken and written text, and supports a distinctive cross-genre generalization evaluation. The corpus served as the basis for the shared task of the RepEval 2017 Workshop at EMNLP in Copenhagen.
5,186
23
multi_nli_mismatch
false
[ "task_categories:text-classification", "task_ids:natural-language-inference", "task_ids:multi-input-text-classification", "annotations_creators:crowdsourced", "language_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:100K<n<1M", "source_datasets:original", "language:en", "license:cc-by-3.0", "license:cc-by-sa-3.0", "license:mit", "license:other" ]
The Multi-Genre Natural Language Inference (MultiNLI) corpus is a crowd-sourced collection of 433k sentence pairs annotated with textual entailment information. The corpus is modeled on the SNLI corpus, but differs in that covers a range of genres of spoken and written text, and supports a distinctive cross-genre generalization evaluation. The corpus served as the basis for the shared task of the RepEval 2017 Workshop at EMNLP in Copenhagen.
270
1
multi_para_crawl
false
[ "task_categories:translation", "annotations_creators:found", "language_creators:found", "multilinguality:multilingual", "size_categories:100K<n<1M", "source_datasets:original", "language:bg", "language:ca", "language:cs", "language:da", "language:de", "language:el", "language:es", "language:et", "language:eu", "language:fi", "language:fr", "language:ga", "language:gl", "language:ha", "language:hr", "language:hu", "language:ig", "language:is", "language:it", "language:km", "language:lt", "language:lv", "language:mt", "language:my", "language:nb", "language:ne", "language:nl", "language:nn", "language:pl", "language:ps", "language:pt", "language:ro", "language:ru", "language:si", "language:sk", "language:sl", "language:so", "language:sv", "language:sw", "language:tl", "license:cc0-1.0" ]
Parallel corpora from Web Crawls collected in the ParaCrawl project and further processed for making it a multi-parallel corpus by pivoting via English. Here we only provide the additional language pairs that came out of pivoting. The bitexts for English are available from the ParaCrawl release. 40 languages, 669 bitexts total number of files: 40 total number of tokens: 10.14G total number of sentence fragments: 505.48M Please, acknowledge the ParaCrawl project at http://paracrawl.eu. This version is derived from the original release at their website adjusted for redistribution via the OPUS corpus collection. Please, acknowledge OPUS as well for this service.
797
0
multi_re_qa
false
[ "task_categories:question-answering", "task_ids:extractive-qa", "task_ids:open-domain-qa", "annotations_creators:expert-generated", "annotations_creators:found", "language_creators:expert-generated", "language_creators:found", "multilinguality:monolingual", "size_categories:100K<n<1M", "size_categories:10K<n<100K", "size_categories:1K<n<10K", "size_categories:1M<n<10M", "source_datasets:extended|other-BioASQ", "source_datasets:extended|other-DuoRC", "source_datasets:extended|other-HotpotQA", "source_datasets:extended|other-Natural-Questions", "source_datasets:extended|other-Relation-Extraction", "source_datasets:extended|other-SQuAD", "source_datasets:extended|other-SearchQA", "source_datasets:extended|other-TextbookQA", "source_datasets:extended|other-TriviaQA", "language:en", "license:unknown", "arxiv:2005.02507" ]
MultiReQA contains the sentence boundary annotation from eight publicly available QA datasets including SearchQA, TriviaQA, HotpotQA, NaturalQuestions, SQuAD, BioASQ, RelationExtraction, and TextbookQA. Five of these datasets, including SearchQA, TriviaQA, HotpotQA, NaturalQuestions, SQuAD, contain both training and test data, and three, including BioASQ, RelationExtraction, TextbookQA, contain only the test data
1,336
0
multi_woz_v22
false
[ "task_categories:text-generation", "task_categories:fill-mask", "task_categories:token-classification", "task_categories:text-classification", "task_ids:dialogue-modeling", "task_ids:multi-class-classification", "task_ids:parsing", "annotations_creators:machine-generated", "language_creators:crowdsourced", "language_creators:machine-generated", "multilinguality:monolingual", "size_categories:10K<n<100K", "source_datasets:original", "language:en", "license:apache-2.0", "arxiv:1810.00278" ]
Multi-Domain Wizard-of-Oz dataset (MultiWOZ), a fully-labeled collection of human-human written conversations spanning over multiple domains and topics. MultiWOZ 2.1 (Eric et al., 2019) identified and fixed many erroneous annotations and user utterances in the original version, resulting in an improved version of the dataset. MultiWOZ 2.2 is a yet another improved version of this dataset, which identifies and fizes dialogue state annotation errors across 17.3% of the utterances on top of MultiWOZ 2.1 and redefines the ontology by disallowing vocabularies of slots with a large number of possible values (e.g., restaurant name, time of booking) and introducing standardized slot span annotations for these slots.
1,900
9
multi_x_science_sum
false
[ "task_categories:summarization", "annotations_creators:found", "language_creators:found", "multilinguality:monolingual", "size_categories:10K<n<100K", "source_datasets:original", "language:en", "license:unknown", "paper-abstract-generation", "arxiv:2010.14235" ]
Multi-XScience, a large-scale multi-document summarization dataset created from scientific articles. Multi-XScience introduces a challenging multi-document summarization task: writing the related-work section of a paper based on its abstract and the articles it references.
2,224
7
multidoc2dial
false
[ "task_categories:question-answering", "task_ids:open-domain-qa", "annotations_creators:crowdsourced", "language_creators:crowdsourced", "language_creators:expert-generated", "multilinguality:monolingual", "size_categories:10K<n<100K", "size_categories:1K<n<10K", "size_categories:n<1K", "source_datasets:extended|doc2dial", "language:en", "license:apache-2.0", "arxiv:2109.12595" ]
MultiDoc2Dial is a new task and dataset on modeling goal-oriented dialogues grounded in multiple documents. Most previous works treat document-grounded dialogue modeling as a machine reading comprehension task based on a single given document or passage. We aim to address more realistic scenarios where a goal-oriented information-seeking conversation involves multiple topics, and hence is grounded on different documents.
602
2
multilingual_librispeech
false
[ "task_categories:automatic-speech-recognition", "task_categories:audio-classification", "task_ids:speaker-identification", "annotations_creators:expert-generated", "language_creators:crowdsourced", "language_creators:expert-generated", "multilinguality:multilingual", "size_categories:100K<n<1M", "source_datasets:original", "language:de", "language:es", "language:fr", "language:it", "language:nl", "language:pl", "language:pt", "license:cc-by-4.0", "arxiv:2012.03411" ]
Multilingual LibriSpeech (MLS) dataset is a large multilingual corpus suitable for speech research. The dataset is derived from read audiobooks from LibriVox and consists of 8 languages - English, German, Dutch, Spanish, French, Italian, Portuguese, Polish.
1,073
5
mutual_friends
false
[ "task_categories:text-generation", "task_categories:fill-mask", "task_ids:dialogue-modeling", "annotations_creators:crowdsourced", "language_creators:crowdsourced", "multilinguality:monolingual", "size_categories:10K<n<100K", "source_datasets:original", "language:en", "license:unknown", "arxiv:1704.07130" ]
Our goal is to build systems that collaborate with people by exchanging information through natural language and reasoning over structured knowledge base. In the MutualFriend task, two agents, A and B, each have a private knowledge base, which contains a list of friends with multiple attributes (e.g., name, school, major, etc.). The agents must chat with each other to find their unique mutual friend.
269
2
mwsc
false
[ "task_categories:multiple-choice", "task_ids:multiple-choice-coreference-resolution", "annotations_creators:expert-generated", "language_creators:expert-generated", "multilinguality:monolingual", "size_categories:n<1K", "source_datasets:extended|winograd_wsc", "language:en", "license:cc-by-4.0", "arxiv:1806.08730" ]
Examples taken from the Winograd Schema Challenge modified to ensure that answers are a single word from the context. This modified Winograd Schema Challenge (MWSC) ensures that scores are neither inflated nor deflated by oddities in phrasing.
1,127
0
myanmar_news
false
[ "task_categories:text-classification", "task_ids:topic-classification", "annotations_creators:found", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:my", "license:gpl-3.0" ]
The Myanmar news dataset contains article snippets in four categories: Business, Entertainment, Politics, and Sport. These were collected in October 2017 by Aye Hninn Khine
269
0
narrativeqa
false
[ "task_categories:text2text-generation", "task_ids:abstractive-qa", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:10K<n<100K", "source_datasets:original", "language:en", "license:apache-2.0", "arxiv:1712.07040" ]
The NarrativeQA dataset for question answering on long documents (movie scripts, books). It includes the list of documents with Wikipedia summaries, links to full stories, and questions and answers.
1,009
0
narrativeqa_manual
false
[ "task_categories:text2text-generation", "task_ids:abstractive-qa", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:10K<n<100K", "source_datasets:original", "language:en", "license:apache-2.0", "arxiv:1712.07040" ]
The Narrative QA Manual dataset is a reading comprehension dataset, in which the reader must answer questions about stories by reading entire books or movie scripts. The QA tasks are designed so that successfully answering their questions requires understanding the underlying narrative rather than relying on shallow pattern matching or salience.\THIS DATASET REQUIRES A MANUALLY DOWNLOADED FILE! Because of a script in the original repository which downloads the stories from original URLs everytime, The links are sometimes broken or invalid. Therefore, you need to manually download the stories for this dataset using the script provided by the authors (https://github.com/deepmind/narrativeqa/blob/master/download_stories.sh). Running the shell script creates a folder named "tmp" in the root directory and downloads the stories there. This folder containing the storiescan be used to load the dataset via `datasets.load_dataset("narrativeqa_manual", data_dir="<path/to/folder>")`.
294
0
natural_questions
false
[ "task_categories:question-answering", "task_ids:open-domain-qa", "annotations_creators:no-annotation", "language_creators:crowdsourced", "multilinguality:monolingual", "size_categories:100K<n<1M", "source_datasets:original", "language:en", "license:cc-by-sa-3.0" ]
The NQ corpus contains questions from real users, and it requires QA systems to read and comprehend an entire Wikipedia article that may or may not contain the answer to the question. The inclusion of real user questions, and the requirement that solutions should read an entire page to find the answer, cause NQ to be a more realistic and challenging task than prior QA datasets.
1,304
12
ncbi_disease
false
[ "task_categories:token-classification", "task_ids:named-entity-recognition", "annotations_creators:expert-generated", "language_creators:expert-generated", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:unknown" ]
This paper presents the disease name and concept annotations of the NCBI disease corpus, a collection of 793 PubMed abstracts fully annotated at the mention and concept level to serve as a research resource for the biomedical natural language processing community. Each PubMed abstract was manually annotated by two annotators with disease mentions and their corresponding concepts in Medical Subject Headings (MeSH®) or Online Mendelian Inheritance in Man (OMIM®). Manual curation was performed using PubTator, which allowed the use of pre-annotations as a pre-step to manual annotations. Fourteen annotators were randomly paired and differing annotations were discussed for reaching a consensus in two annotation phases. In this setting, a high inter-annotator agreement was observed. Finally, all results were checked against annotations of the rest of the corpus to assure corpus-wide consistency. For more details, see: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3951655/ The original dataset can be downloaded from: https://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/DISEASE/NCBI_corpus.zip This dataset has been converted to CoNLL format for NER using the following tool: https://github.com/spyysalo/standoff2conll Note: there is a duplicate document (PMID 8528200) in the original data, and the duplicate is recreated in the converted data.
2,686
15
nchlt
false
[ "task_categories:token-classification", "task_ids:named-entity-recognition", "annotations_creators:expert-generated", "language_creators:expert-generated", "multilinguality:multilingual", "size_categories:1K<n<10K", "source_datasets:original", "language:af", "language:nr", "language:nso", "language:ss", "language:tn", "language:ts", "language:ve", "language:xh", "language:zu", "license:cc-by-2.5" ]
The development of linguistic resources for use in natural language processingis of utmost importance for the continued growth of research anddevelopment in the field, especially for resource-scarce languages. In this paper we describe the process and challenges of simultaneouslydevelopingmultiple linguistic resources for ten of the official languages of South Africa. The project focussed on establishing a set of foundational resources that can foster further development of both resources and technologies for the NLP industry in South Africa. The development efforts during the project included creating monolingual unannotated corpora, of which a subset of the corpora for each language was annotated on token, orthographic, morphological and morphosyntactic layers. The annotated subsetsincludes both development and test setsand were used in the creation of five core-technologies, viz. atokeniser, sentenciser,lemmatiser, part of speech tagger and morphological decomposer for each language. We report on the quality of these tools for each language and provide some more context of the importance of the resources within the South African context.
1,463
2
ncslgr
false
[ "task_categories:translation", "annotations_creators:expert-generated", "language_creators:expert-generated", "multilinguality:translation", "size_categories:n<1K", "source_datasets:original", "language:ase", "language:en", "license:mit" ]
A small corpus of American Sign Language (ASL) video data from native signers, annotated with non-manual features.
401
2