effect
stringclasses 48
values | original_source_type
stringlengths 0
23k
| opens_and_abbrevs
listlengths 2
92
| isa_cross_project_example
bool 1
class | source_definition
stringlengths 9
57.9k
| partial_definition
stringlengths 7
23.3k
| is_div
bool 2
classes | is_type
null | is_proof
bool 2
classes | completed_definiton
stringlengths 1
250k
| dependencies
dict | effect_flags
sequencelengths 0
2
| ideal_premises
sequencelengths 0
236
| mutual_with
sequencelengths 0
11
| file_context
stringlengths 0
407k
| interleaved
bool 1
class | is_simply_typed
bool 2
classes | file_name
stringlengths 5
48
| vconfig
dict | is_simple_lemma
null | source_type
stringlengths 10
23k
| proof_features
sequencelengths 0
1
| name
stringlengths 8
95
| source
dict | verbose_type
stringlengths 1
7.42k
| source_range
dict |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Prims.Tot | val elab_pats (ps: list pattern) : Tot (list R.pattern) | [
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "Pulse.RuntimeUtils",
"short_module": "RU"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let elab_pats (ps:list pattern) : Tot (list R.pattern) = L.map elab_pat ps | val elab_pats (ps: list pattern) : Tot (list R.pattern)
let elab_pats (ps: list pattern) : Tot (list R.pattern) = | false | null | false | L.map elab_pat ps | {
"checked_file": "Pulse.Elaborate.Pure.fst.checked",
"dependencies": [
"Pulse.Syntax.Base.fsti.checked",
"Pulse.RuntimeUtils.fsti.checked",
"Pulse.Reflection.Util.fst.checked",
"Pulse.Common.fst.checked",
"prims.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Pulse.Elaborate.Pure.fst"
} | [
"total"
] | [
"Prims.list",
"Pulse.Syntax.Base.pattern",
"FStar.List.Tot.Base.map",
"FStar.Reflection.V2.Data.pattern",
"Pulse.Elaborate.Pure.elab_pat"
] | [] | module Pulse.Elaborate.Pure
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
module RU = Pulse.RuntimeUtils
open FStar.List.Tot
open Pulse.Syntax.Base
open Pulse.Reflection.Util
let (let!) (f:option 'a) (g: 'a -> option 'b) : option 'b =
match f with
| None -> None
| Some x -> g x
let elab_qual = function
| None -> R.Q_Explicit
| Some Implicit -> R.Q_Implicit
let rec elab_term (top:term)
: R.term
= let open R in
let w t' = RU.set_range t' top.range in
match top.t with
| Tm_VProp ->
w (pack_ln (Tv_FVar (pack_fv vprop_lid)))
| Tm_Emp ->
w (pack_ln (Tv_FVar (pack_fv emp_lid)))
| Tm_Pure p ->
let p = elab_term p in
let head = pack_ln (Tv_FVar (pack_fv pure_lid)) in
w (pack_ln (Tv_App head (p, Q_Explicit)))
| Tm_Star l r ->
let l = elab_term l in
let r = elab_term r in
w (mk_star l r)
| Tm_ExistsSL u b body
| Tm_ForallSL u b body ->
let t = elab_term b.binder_ty in
let body = elab_term body in
let t = set_range_of t b.binder_ppname.range in
if Tm_ExistsSL? top.t
then w (mk_exists u t (mk_abs_with_name_and_range b.binder_ppname.name b.binder_ppname.range t R.Q_Explicit body))
else w (mk_forall u t (mk_abs_with_name_and_range b.binder_ppname.name b.binder_ppname.range t R.Q_Explicit body))
| Tm_Inames ->
w (pack_ln (Tv_FVar (pack_fv inames_lid)))
| Tm_EmpInames ->
w (emp_inames_tm)
| Tm_Unknown ->
w (pack_ln R.Tv_Unknown)
| Tm_FStar t ->
w t
let rec elab_pat (p:pattern) : Tot R.pattern =
let elab_fv (f:fv) : R.fv =
R.pack_fv f.fv_name
in
match p with
| Pat_Constant c -> R.Pat_Constant c
| Pat_Var v ty -> R.Pat_Var RT.sort_default v
| Pat_Cons fv vs ->
R.Pat_Cons (elab_fv fv) None (Pulse.Common.map_dec p vs elab_sub_pat)
| Pat_Dot_Term None ->
R.Pat_Dot_Term None
| Pat_Dot_Term (Some t) ->
R.Pat_Dot_Term (Some (elab_term t))
and elab_sub_pat (pi : pattern & bool) : R.pattern & bool =
let (p, i) = pi in
elab_pat p, i | false | true | Pulse.Elaborate.Pure.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val elab_pats (ps: list pattern) : Tot (list R.pattern) | [] | Pulse.Elaborate.Pure.elab_pats | {
"file_name": "lib/steel/pulse/Pulse.Elaborate.Pure.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | ps: Prims.list Pulse.Syntax.Base.pattern -> Prims.list FStar.Reflection.V2.Data.pattern | {
"end_col": 74,
"end_line": 80,
"start_col": 57,
"start_line": 80
} |
Prims.Tot | val elab_st_comp (c: st_comp) : R.universe & R.term & R.term & R.term | [
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "Pulse.RuntimeUtils",
"short_module": "RU"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let elab_st_comp (c:st_comp)
: R.universe & R.term & R.term & R.term
= let res = elab_term c.res in
let pre = elab_term c.pre in
let post = elab_term c.post in
c.u, res, pre, post | val elab_st_comp (c: st_comp) : R.universe & R.term & R.term & R.term
let elab_st_comp (c: st_comp) : R.universe & R.term & R.term & R.term = | false | null | false | let res = elab_term c.res in
let pre = elab_term c.pre in
let post = elab_term c.post in
c.u, res, pre, post | {
"checked_file": "Pulse.Elaborate.Pure.fst.checked",
"dependencies": [
"Pulse.Syntax.Base.fsti.checked",
"Pulse.RuntimeUtils.fsti.checked",
"Pulse.Reflection.Util.fst.checked",
"Pulse.Common.fst.checked",
"prims.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Pulse.Elaborate.Pure.fst"
} | [
"total"
] | [
"Pulse.Syntax.Base.st_comp",
"FStar.Pervasives.Native.Mktuple4",
"FStar.Reflection.Types.universe",
"FStar.Reflection.Types.term",
"Pulse.Syntax.Base.__proj__Mkst_comp__item__u",
"Pulse.Elaborate.Pure.elab_term",
"Pulse.Syntax.Base.__proj__Mkst_comp__item__post",
"Pulse.Syntax.Base.__proj__Mkst_comp__item__pre",
"Pulse.Syntax.Base.__proj__Mkst_comp__item__res",
"FStar.Pervasives.Native.tuple4"
] | [] | module Pulse.Elaborate.Pure
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
module RU = Pulse.RuntimeUtils
open FStar.List.Tot
open Pulse.Syntax.Base
open Pulse.Reflection.Util
let (let!) (f:option 'a) (g: 'a -> option 'b) : option 'b =
match f with
| None -> None
| Some x -> g x
let elab_qual = function
| None -> R.Q_Explicit
| Some Implicit -> R.Q_Implicit
let rec elab_term (top:term)
: R.term
= let open R in
let w t' = RU.set_range t' top.range in
match top.t with
| Tm_VProp ->
w (pack_ln (Tv_FVar (pack_fv vprop_lid)))
| Tm_Emp ->
w (pack_ln (Tv_FVar (pack_fv emp_lid)))
| Tm_Pure p ->
let p = elab_term p in
let head = pack_ln (Tv_FVar (pack_fv pure_lid)) in
w (pack_ln (Tv_App head (p, Q_Explicit)))
| Tm_Star l r ->
let l = elab_term l in
let r = elab_term r in
w (mk_star l r)
| Tm_ExistsSL u b body
| Tm_ForallSL u b body ->
let t = elab_term b.binder_ty in
let body = elab_term body in
let t = set_range_of t b.binder_ppname.range in
if Tm_ExistsSL? top.t
then w (mk_exists u t (mk_abs_with_name_and_range b.binder_ppname.name b.binder_ppname.range t R.Q_Explicit body))
else w (mk_forall u t (mk_abs_with_name_and_range b.binder_ppname.name b.binder_ppname.range t R.Q_Explicit body))
| Tm_Inames ->
w (pack_ln (Tv_FVar (pack_fv inames_lid)))
| Tm_EmpInames ->
w (emp_inames_tm)
| Tm_Unknown ->
w (pack_ln R.Tv_Unknown)
| Tm_FStar t ->
w t
let rec elab_pat (p:pattern) : Tot R.pattern =
let elab_fv (f:fv) : R.fv =
R.pack_fv f.fv_name
in
match p with
| Pat_Constant c -> R.Pat_Constant c
| Pat_Var v ty -> R.Pat_Var RT.sort_default v
| Pat_Cons fv vs ->
R.Pat_Cons (elab_fv fv) None (Pulse.Common.map_dec p vs elab_sub_pat)
| Pat_Dot_Term None ->
R.Pat_Dot_Term None
| Pat_Dot_Term (Some t) ->
R.Pat_Dot_Term (Some (elab_term t))
and elab_sub_pat (pi : pattern & bool) : R.pattern & bool =
let (p, i) = pi in
elab_pat p, i
let elab_pats (ps:list pattern) : Tot (list R.pattern) = L.map elab_pat ps
let elab_st_comp (c:st_comp) | false | true | Pulse.Elaborate.Pure.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val elab_st_comp (c: st_comp) : R.universe & R.term & R.term & R.term | [] | Pulse.Elaborate.Pure.elab_st_comp | {
"file_name": "lib/steel/pulse/Pulse.Elaborate.Pure.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | c: Pulse.Syntax.Base.st_comp
-> ((FStar.Reflection.Types.universe * FStar.Reflection.Types.term) * FStar.Reflection.Types.term) *
FStar.Reflection.Types.term | {
"end_col": 23,
"end_line": 87,
"start_col": 3,
"start_line": 84
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "Pulse.RuntimeUtils",
"short_module": "RU"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let elab_qual = function
| None -> R.Q_Explicit
| Some Implicit -> R.Q_Implicit | let elab_qual = | false | null | false | function
| None -> R.Q_Explicit
| Some Implicit -> R.Q_Implicit | {
"checked_file": "Pulse.Elaborate.Pure.fst.checked",
"dependencies": [
"Pulse.Syntax.Base.fsti.checked",
"Pulse.RuntimeUtils.fsti.checked",
"Pulse.Reflection.Util.fst.checked",
"Pulse.Common.fst.checked",
"prims.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Pulse.Elaborate.Pure.fst"
} | [
"total"
] | [
"FStar.Pervasives.Native.option",
"Pulse.Syntax.Base.qualifier",
"FStar.Reflection.V2.Data.Q_Explicit",
"FStar.Reflection.V2.Data.Q_Implicit",
"FStar.Reflection.V2.Data.aqualv"
] | [] | module Pulse.Elaborate.Pure
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
module RU = Pulse.RuntimeUtils
open FStar.List.Tot
open Pulse.Syntax.Base
open Pulse.Reflection.Util
let (let!) (f:option 'a) (g: 'a -> option 'b) : option 'b =
match f with
| None -> None
| Some x -> g x | false | true | Pulse.Elaborate.Pure.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val elab_qual : _: FStar.Pervasives.Native.option Pulse.Syntax.Base.qualifier -> FStar.Reflection.V2.Data.aqualv | [] | Pulse.Elaborate.Pure.elab_qual | {
"file_name": "lib/steel/pulse/Pulse.Elaborate.Pure.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | _: FStar.Pervasives.Native.option Pulse.Syntax.Base.qualifier -> FStar.Reflection.V2.Data.aqualv | {
"end_col": 33,
"end_line": 18,
"start_col": 16,
"start_line": 16
} |
|
Prims.Tot | val op_let_Bang (f: option 'a) (g: ('a -> option 'b)) : option 'b | [
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "Pulse.RuntimeUtils",
"short_module": "RU"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let (let!) (f:option 'a) (g: 'a -> option 'b) : option 'b =
match f with
| None -> None
| Some x -> g x | val op_let_Bang (f: option 'a) (g: ('a -> option 'b)) : option 'b
let op_let_Bang (f: option 'a) (g: ('a -> option 'b)) : option 'b = | false | null | false | match f with
| None -> None
| Some x -> g x | {
"checked_file": "Pulse.Elaborate.Pure.fst.checked",
"dependencies": [
"Pulse.Syntax.Base.fsti.checked",
"Pulse.RuntimeUtils.fsti.checked",
"Pulse.Reflection.Util.fst.checked",
"Pulse.Common.fst.checked",
"prims.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Pulse.Elaborate.Pure.fst"
} | [
"total"
] | [
"FStar.Pervasives.Native.option",
"FStar.Pervasives.Native.None"
] | [] | module Pulse.Elaborate.Pure
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
module RU = Pulse.RuntimeUtils
open FStar.List.Tot
open Pulse.Syntax.Base
open Pulse.Reflection.Util | false | false | Pulse.Elaborate.Pure.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val op_let_Bang (f: option 'a) (g: ('a -> option 'b)) : option 'b | [] | Pulse.Elaborate.Pure.op_let_Bang | {
"file_name": "lib/steel/pulse/Pulse.Elaborate.Pure.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | f: FStar.Pervasives.Native.option 'a -> g: (_: 'a -> FStar.Pervasives.Native.option 'b)
-> FStar.Pervasives.Native.option 'b | {
"end_col": 17,
"end_line": 14,
"start_col": 2,
"start_line": 12
} |
Prims.Tot | val elab_comp (c: comp) : R.term | [
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "Pulse.RuntimeUtils",
"short_module": "RU"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let elab_comp (c:comp)
: R.term
= match c with
| C_Tot t ->
elab_term t
| C_ST c ->
let u, res, pre, post = elab_st_comp c in
mk_stt_comp u res pre (mk_abs res R.Q_Explicit post)
| C_STAtomic inames c ->
let inames = elab_term inames in
let u, res, pre, post = elab_st_comp c in
mk_stt_atomic_comp u res inames pre (mk_abs res R.Q_Explicit post)
| C_STGhost inames c ->
let inames = elab_term inames in
let u, res, pre, post = elab_st_comp c in
mk_stt_ghost_comp u res inames pre (mk_abs res R.Q_Explicit post) | val elab_comp (c: comp) : R.term
let elab_comp (c: comp) : R.term = | false | null | false | match c with
| C_Tot t -> elab_term t
| C_ST c ->
let u, res, pre, post = elab_st_comp c in
mk_stt_comp u res pre (mk_abs res R.Q_Explicit post)
| C_STAtomic inames c ->
let inames = elab_term inames in
let u, res, pre, post = elab_st_comp c in
mk_stt_atomic_comp u res inames pre (mk_abs res R.Q_Explicit post)
| C_STGhost inames c ->
let inames = elab_term inames in
let u, res, pre, post = elab_st_comp c in
mk_stt_ghost_comp u res inames pre (mk_abs res R.Q_Explicit post) | {
"checked_file": "Pulse.Elaborate.Pure.fst.checked",
"dependencies": [
"Pulse.Syntax.Base.fsti.checked",
"Pulse.RuntimeUtils.fsti.checked",
"Pulse.Reflection.Util.fst.checked",
"Pulse.Common.fst.checked",
"prims.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Pulse.Elaborate.Pure.fst"
} | [
"total"
] | [
"Pulse.Syntax.Base.comp",
"Pulse.Syntax.Base.term",
"Pulse.Elaborate.Pure.elab_term",
"Pulse.Syntax.Base.st_comp",
"FStar.Reflection.Types.universe",
"FStar.Reflection.Types.term",
"Pulse.Reflection.Util.mk_stt_comp",
"Pulse.Reflection.Util.mk_abs",
"FStar.Reflection.V2.Data.Q_Explicit",
"FStar.Pervasives.Native.tuple4",
"Pulse.Elaborate.Pure.elab_st_comp",
"Pulse.Reflection.Util.mk_stt_atomic_comp",
"Pulse.Reflection.Util.mk_stt_ghost_comp"
] | [] | module Pulse.Elaborate.Pure
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
module RU = Pulse.RuntimeUtils
open FStar.List.Tot
open Pulse.Syntax.Base
open Pulse.Reflection.Util
let (let!) (f:option 'a) (g: 'a -> option 'b) : option 'b =
match f with
| None -> None
| Some x -> g x
let elab_qual = function
| None -> R.Q_Explicit
| Some Implicit -> R.Q_Implicit
let rec elab_term (top:term)
: R.term
= let open R in
let w t' = RU.set_range t' top.range in
match top.t with
| Tm_VProp ->
w (pack_ln (Tv_FVar (pack_fv vprop_lid)))
| Tm_Emp ->
w (pack_ln (Tv_FVar (pack_fv emp_lid)))
| Tm_Pure p ->
let p = elab_term p in
let head = pack_ln (Tv_FVar (pack_fv pure_lid)) in
w (pack_ln (Tv_App head (p, Q_Explicit)))
| Tm_Star l r ->
let l = elab_term l in
let r = elab_term r in
w (mk_star l r)
| Tm_ExistsSL u b body
| Tm_ForallSL u b body ->
let t = elab_term b.binder_ty in
let body = elab_term body in
let t = set_range_of t b.binder_ppname.range in
if Tm_ExistsSL? top.t
then w (mk_exists u t (mk_abs_with_name_and_range b.binder_ppname.name b.binder_ppname.range t R.Q_Explicit body))
else w (mk_forall u t (mk_abs_with_name_and_range b.binder_ppname.name b.binder_ppname.range t R.Q_Explicit body))
| Tm_Inames ->
w (pack_ln (Tv_FVar (pack_fv inames_lid)))
| Tm_EmpInames ->
w (emp_inames_tm)
| Tm_Unknown ->
w (pack_ln R.Tv_Unknown)
| Tm_FStar t ->
w t
let rec elab_pat (p:pattern) : Tot R.pattern =
let elab_fv (f:fv) : R.fv =
R.pack_fv f.fv_name
in
match p with
| Pat_Constant c -> R.Pat_Constant c
| Pat_Var v ty -> R.Pat_Var RT.sort_default v
| Pat_Cons fv vs ->
R.Pat_Cons (elab_fv fv) None (Pulse.Common.map_dec p vs elab_sub_pat)
| Pat_Dot_Term None ->
R.Pat_Dot_Term None
| Pat_Dot_Term (Some t) ->
R.Pat_Dot_Term (Some (elab_term t))
and elab_sub_pat (pi : pattern & bool) : R.pattern & bool =
let (p, i) = pi in
elab_pat p, i
let elab_pats (ps:list pattern) : Tot (list R.pattern) = L.map elab_pat ps
let elab_st_comp (c:st_comp)
: R.universe & R.term & R.term & R.term
= let res = elab_term c.res in
let pre = elab_term c.pre in
let post = elab_term c.post in
c.u, res, pre, post
let elab_comp (c:comp) | false | true | Pulse.Elaborate.Pure.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val elab_comp (c: comp) : R.term | [] | Pulse.Elaborate.Pure.elab_comp | {
"file_name": "lib/steel/pulse/Pulse.Elaborate.Pure.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | c: Pulse.Syntax.Base.comp -> FStar.Reflection.Types.term | {
"end_col": 71,
"end_line": 107,
"start_col": 4,
"start_line": 91
} |
Prims.Tot | val elab_term (top: term) : R.term | [
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "Pulse.RuntimeUtils",
"short_module": "RU"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec elab_term (top:term)
: R.term
= let open R in
let w t' = RU.set_range t' top.range in
match top.t with
| Tm_VProp ->
w (pack_ln (Tv_FVar (pack_fv vprop_lid)))
| Tm_Emp ->
w (pack_ln (Tv_FVar (pack_fv emp_lid)))
| Tm_Pure p ->
let p = elab_term p in
let head = pack_ln (Tv_FVar (pack_fv pure_lid)) in
w (pack_ln (Tv_App head (p, Q_Explicit)))
| Tm_Star l r ->
let l = elab_term l in
let r = elab_term r in
w (mk_star l r)
| Tm_ExistsSL u b body
| Tm_ForallSL u b body ->
let t = elab_term b.binder_ty in
let body = elab_term body in
let t = set_range_of t b.binder_ppname.range in
if Tm_ExistsSL? top.t
then w (mk_exists u t (mk_abs_with_name_and_range b.binder_ppname.name b.binder_ppname.range t R.Q_Explicit body))
else w (mk_forall u t (mk_abs_with_name_and_range b.binder_ppname.name b.binder_ppname.range t R.Q_Explicit body))
| Tm_Inames ->
w (pack_ln (Tv_FVar (pack_fv inames_lid)))
| Tm_EmpInames ->
w (emp_inames_tm)
| Tm_Unknown ->
w (pack_ln R.Tv_Unknown)
| Tm_FStar t ->
w t | val elab_term (top: term) : R.term
let rec elab_term (top: term) : R.term = | false | null | false | let open R in
let w t' = RU.set_range t' top.range in
match top.t with
| Tm_VProp -> w (pack_ln (Tv_FVar (pack_fv vprop_lid)))
| Tm_Emp -> w (pack_ln (Tv_FVar (pack_fv emp_lid)))
| Tm_Pure p ->
let p = elab_term p in
let head = pack_ln (Tv_FVar (pack_fv pure_lid)) in
w (pack_ln (Tv_App head (p, Q_Explicit)))
| Tm_Star l r ->
let l = elab_term l in
let r = elab_term r in
w (mk_star l r)
| Tm_ExistsSL u b body
| Tm_ForallSL u b body ->
let t = elab_term b.binder_ty in
let body = elab_term body in
let t = set_range_of t b.binder_ppname.range in
if Tm_ExistsSL? top.t
then
w (mk_exists u
t
(mk_abs_with_name_and_range b.binder_ppname.name b.binder_ppname.range t R.Q_Explicit body
))
else
w (mk_forall u
t
(mk_abs_with_name_and_range b.binder_ppname.name b.binder_ppname.range t R.Q_Explicit body
))
| Tm_Inames -> w (pack_ln (Tv_FVar (pack_fv inames_lid)))
| Tm_EmpInames -> w (emp_inames_tm)
| Tm_Unknown -> w (pack_ln R.Tv_Unknown)
| Tm_FStar t -> w t | {
"checked_file": "Pulse.Elaborate.Pure.fst.checked",
"dependencies": [
"Pulse.Syntax.Base.fsti.checked",
"Pulse.RuntimeUtils.fsti.checked",
"Pulse.Reflection.Util.fst.checked",
"Pulse.Common.fst.checked",
"prims.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Pulse.Elaborate.Pure.fst"
} | [
"total"
] | [
"Pulse.Syntax.Base.term",
"Pulse.Syntax.Base.__proj__Mkterm__item__t",
"FStar.Reflection.V2.Builtins.pack_ln",
"FStar.Reflection.V2.Data.Tv_FVar",
"FStar.Reflection.V2.Builtins.pack_fv",
"Pulse.Reflection.Util.vprop_lid",
"Pulse.Reflection.Util.emp_lid",
"FStar.Reflection.V2.Data.Tv_App",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Reflection.Types.term",
"FStar.Reflection.V2.Data.aqualv",
"FStar.Reflection.V2.Data.Q_Explicit",
"Pulse.Reflection.Util.pure_lid",
"Pulse.Elaborate.Pure.elab_term",
"Pulse.Reflection.Util.mk_star",
"Pulse.Syntax.Base.universe",
"Pulse.Syntax.Base.binder",
"Pulse.Syntax.Base.uu___is_Tm_ExistsSL",
"Pulse.Reflection.Util.mk_exists",
"Pulse.Reflection.Util.mk_abs_with_name_and_range",
"Pulse.Syntax.Base.__proj__Mkppname__item__name",
"Pulse.Syntax.Base.__proj__Mkbinder__item__binder_ppname",
"Pulse.Syntax.Base.__proj__Mkppname__item__range",
"Prims.bool",
"Pulse.Reflection.Util.mk_forall",
"range",
"binder_ppname",
"Pulse.Syntax.Base.__proj__Mkbinder__item__binder_ty",
"Pulse.Reflection.Util.inames_lid",
"Pulse.Reflection.Util.emp_inames_tm",
"FStar.Reflection.V2.Data.Tv_Unknown",
"Pulse.Syntax.Base.host_term",
"Prims.eq2",
"Pulse.RuntimeUtils.set_range",
"Pulse.Syntax.Base.__proj__Mkterm__item__range"
] | [] | module Pulse.Elaborate.Pure
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
module RU = Pulse.RuntimeUtils
open FStar.List.Tot
open Pulse.Syntax.Base
open Pulse.Reflection.Util
let (let!) (f:option 'a) (g: 'a -> option 'b) : option 'b =
match f with
| None -> None
| Some x -> g x
let elab_qual = function
| None -> R.Q_Explicit
| Some Implicit -> R.Q_Implicit
let rec elab_term (top:term) | false | true | Pulse.Elaborate.Pure.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val elab_term (top: term) : R.term | [
"recursion"
] | Pulse.Elaborate.Pure.elab_term | {
"file_name": "lib/steel/pulse/Pulse.Elaborate.Pure.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | top: Pulse.Syntax.Base.term -> FStar.Reflection.Types.term | {
"end_col": 9,
"end_line": 60,
"start_col": 4,
"start_line": 22
} |
Prims.Tot | val elab_stt_equiv
(g: R.env)
(c: comp{C_ST? c})
(pre post: R.term)
(eq_pre: RT.equiv g pre (elab_term (comp_pre c)))
(eq_post:
RT.equiv g post (mk_abs (elab_term (comp_res c)) R.Q_Explicit (elab_term (comp_post c))))
: RT.equiv g
(let C_ST { u = u ; res = res } = c in
mk_stt_comp u (elab_term res) pre post)
(elab_comp c) | [
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "Pulse.RuntimeUtils",
"short_module": "RU"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let elab_stt_equiv (g:R.env) (c:comp{C_ST? c}) (pre:R.term) (post:R.term)
(eq_pre:RT.equiv g pre (elab_term (comp_pre c)))
(eq_post:RT.equiv g post
(mk_abs (elab_term (comp_res c)) R.Q_Explicit (elab_term (comp_post c))))
: RT.equiv g
(let C_ST {u;res} = c in
mk_stt_comp u
(elab_term res)
pre
post)
(elab_comp c) =
mk_stt_comp_equiv _
(comp_u c)
(elab_term (comp_res c))
_ _ _ _ _ (RT.Rel_refl _ _ _) eq_pre eq_post | val elab_stt_equiv
(g: R.env)
(c: comp{C_ST? c})
(pre post: R.term)
(eq_pre: RT.equiv g pre (elab_term (comp_pre c)))
(eq_post:
RT.equiv g post (mk_abs (elab_term (comp_res c)) R.Q_Explicit (elab_term (comp_post c))))
: RT.equiv g
(let C_ST { u = u ; res = res } = c in
mk_stt_comp u (elab_term res) pre post)
(elab_comp c)
let elab_stt_equiv
(g: R.env)
(c: comp{C_ST? c})
(pre post: R.term)
(eq_pre: RT.equiv g pre (elab_term (comp_pre c)))
(eq_post:
RT.equiv g post (mk_abs (elab_term (comp_res c)) R.Q_Explicit (elab_term (comp_post c))))
: RT.equiv g
(let C_ST { u = u ; res = res } = c in
mk_stt_comp u (elab_term res) pre post)
(elab_comp c) = | false | null | false | mk_stt_comp_equiv _ (comp_u c) (elab_term (comp_res c)) _ _ _ _ _ (RT.Rel_refl _ _ _) eq_pre eq_post | {
"checked_file": "Pulse.Elaborate.Pure.fst.checked",
"dependencies": [
"Pulse.Syntax.Base.fsti.checked",
"Pulse.RuntimeUtils.fsti.checked",
"Pulse.Reflection.Util.fst.checked",
"Pulse.Common.fst.checked",
"prims.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Pulse.Elaborate.Pure.fst"
} | [
"total"
] | [
"FStar.Reflection.Types.env",
"Pulse.Syntax.Base.comp",
"Prims.b2t",
"Pulse.Syntax.Base.uu___is_C_ST",
"FStar.Reflection.Types.term",
"FStar.Reflection.Typing.equiv",
"Pulse.Elaborate.Pure.elab_term",
"Pulse.Syntax.Base.comp_pre",
"Pulse.Reflection.Util.mk_abs",
"Pulse.Syntax.Base.comp_res",
"FStar.Reflection.V2.Data.Q_Explicit",
"Pulse.Syntax.Base.comp_post",
"Pulse.Reflection.Util.mk_stt_comp_equiv",
"Pulse.Syntax.Base.comp_u",
"FStar.Reflection.Typing.Rel_refl",
"FStar.Reflection.Typing.R_Eq",
"Pulse.Syntax.Base.universe",
"Pulse.Syntax.Base.term",
"Pulse.Syntax.Base.vprop",
"Pulse.Reflection.Util.mk_stt_comp",
"Pulse.Elaborate.Pure.elab_comp"
] | [] | module Pulse.Elaborate.Pure
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
module RU = Pulse.RuntimeUtils
open FStar.List.Tot
open Pulse.Syntax.Base
open Pulse.Reflection.Util
let (let!) (f:option 'a) (g: 'a -> option 'b) : option 'b =
match f with
| None -> None
| Some x -> g x
let elab_qual = function
| None -> R.Q_Explicit
| Some Implicit -> R.Q_Implicit
let rec elab_term (top:term)
: R.term
= let open R in
let w t' = RU.set_range t' top.range in
match top.t with
| Tm_VProp ->
w (pack_ln (Tv_FVar (pack_fv vprop_lid)))
| Tm_Emp ->
w (pack_ln (Tv_FVar (pack_fv emp_lid)))
| Tm_Pure p ->
let p = elab_term p in
let head = pack_ln (Tv_FVar (pack_fv pure_lid)) in
w (pack_ln (Tv_App head (p, Q_Explicit)))
| Tm_Star l r ->
let l = elab_term l in
let r = elab_term r in
w (mk_star l r)
| Tm_ExistsSL u b body
| Tm_ForallSL u b body ->
let t = elab_term b.binder_ty in
let body = elab_term body in
let t = set_range_of t b.binder_ppname.range in
if Tm_ExistsSL? top.t
then w (mk_exists u t (mk_abs_with_name_and_range b.binder_ppname.name b.binder_ppname.range t R.Q_Explicit body))
else w (mk_forall u t (mk_abs_with_name_and_range b.binder_ppname.name b.binder_ppname.range t R.Q_Explicit body))
| Tm_Inames ->
w (pack_ln (Tv_FVar (pack_fv inames_lid)))
| Tm_EmpInames ->
w (emp_inames_tm)
| Tm_Unknown ->
w (pack_ln R.Tv_Unknown)
| Tm_FStar t ->
w t
let rec elab_pat (p:pattern) : Tot R.pattern =
let elab_fv (f:fv) : R.fv =
R.pack_fv f.fv_name
in
match p with
| Pat_Constant c -> R.Pat_Constant c
| Pat_Var v ty -> R.Pat_Var RT.sort_default v
| Pat_Cons fv vs ->
R.Pat_Cons (elab_fv fv) None (Pulse.Common.map_dec p vs elab_sub_pat)
| Pat_Dot_Term None ->
R.Pat_Dot_Term None
| Pat_Dot_Term (Some t) ->
R.Pat_Dot_Term (Some (elab_term t))
and elab_sub_pat (pi : pattern & bool) : R.pattern & bool =
let (p, i) = pi in
elab_pat p, i
let elab_pats (ps:list pattern) : Tot (list R.pattern) = L.map elab_pat ps
let elab_st_comp (c:st_comp)
: R.universe & R.term & R.term & R.term
= let res = elab_term c.res in
let pre = elab_term c.pre in
let post = elab_term c.post in
c.u, res, pre, post
let elab_comp (c:comp)
: R.term
= match c with
| C_Tot t ->
elab_term t
| C_ST c ->
let u, res, pre, post = elab_st_comp c in
mk_stt_comp u res pre (mk_abs res R.Q_Explicit post)
| C_STAtomic inames c ->
let inames = elab_term inames in
let u, res, pre, post = elab_st_comp c in
mk_stt_atomic_comp u res inames pre (mk_abs res R.Q_Explicit post)
| C_STGhost inames c ->
let inames = elab_term inames in
let u, res, pre, post = elab_st_comp c in
mk_stt_ghost_comp u res inames pre (mk_abs res R.Q_Explicit post)
let elab_stt_equiv (g:R.env) (c:comp{C_ST? c}) (pre:R.term) (post:R.term)
(eq_pre:RT.equiv g pre (elab_term (comp_pre c)))
(eq_post:RT.equiv g post
(mk_abs (elab_term (comp_res c)) R.Q_Explicit (elab_term (comp_post c))))
: RT.equiv g
(let C_ST {u;res} = c in
mk_stt_comp u
(elab_term res)
pre
post)
(elab_comp c) = | false | false | Pulse.Elaborate.Pure.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val elab_stt_equiv
(g: R.env)
(c: comp{C_ST? c})
(pre post: R.term)
(eq_pre: RT.equiv g pre (elab_term (comp_pre c)))
(eq_post:
RT.equiv g post (mk_abs (elab_term (comp_res c)) R.Q_Explicit (elab_term (comp_post c))))
: RT.equiv g
(let C_ST { u = u ; res = res } = c in
mk_stt_comp u (elab_term res) pre post)
(elab_comp c) | [] | Pulse.Elaborate.Pure.elab_stt_equiv | {
"file_name": "lib/steel/pulse/Pulse.Elaborate.Pure.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} |
g: FStar.Reflection.Types.env ->
c: Pulse.Syntax.Base.comp{C_ST? c} ->
pre: FStar.Reflection.Types.term ->
post: FStar.Reflection.Types.term ->
eq_pre:
FStar.Reflection.Typing.equiv g
pre
(Pulse.Elaborate.Pure.elab_term (Pulse.Syntax.Base.comp_pre c)) ->
eq_post:
FStar.Reflection.Typing.equiv g
post
(Pulse.Reflection.Util.mk_abs (Pulse.Elaborate.Pure.elab_term (Pulse.Syntax.Base.comp_res c)
)
FStar.Reflection.V2.Data.Q_Explicit
(Pulse.Elaborate.Pure.elab_term (Pulse.Syntax.Base.comp_post c)))
-> FStar.Reflection.Typing.equiv g
(let _ = c in
(let Pulse.Syntax.Base.C_ST { u = u25 ; res = res ; pre = _ ; post = _ } = _ in
Pulse.Reflection.Util.mk_stt_comp u25 (Pulse.Elaborate.Pure.elab_term res) pre post)
<:
FStar.Reflection.Types.term)
(Pulse.Elaborate.Pure.elab_comp c) | {
"end_col": 48,
"end_line": 124,
"start_col": 2,
"start_line": 121
} |
Prims.Tot | val elab_statomic_equiv
(g: R.env)
(c: comp{C_STAtomic? c})
(pre post: R.term)
(eq_pre: RT.equiv g pre (elab_term (comp_pre c)))
(eq_post:
RT.equiv g post (mk_abs (elab_term (comp_res c)) R.Q_Explicit (elab_term (comp_post c))))
: RT.equiv g
(let C_STAtomic inames { u = u ; res = res } = c in
mk_stt_atomic_comp u (elab_term res) (elab_term inames) pre post)
(elab_comp c) | [
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "Pulse.RuntimeUtils",
"short_module": "RU"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let elab_statomic_equiv (g:R.env) (c:comp{C_STAtomic? c}) (pre:R.term) (post:R.term)
(eq_pre:RT.equiv g pre (elab_term (comp_pre c)))
(eq_post:RT.equiv g post
(mk_abs (elab_term (comp_res c)) R.Q_Explicit (elab_term (comp_post c))))
: RT.equiv g
(let C_STAtomic inames {u;res} = c in
mk_stt_atomic_comp u
(elab_term res)
(elab_term inames)
pre
post)
(elab_comp c) =
let C_STAtomic inames _ = c in
mk_stt_atomic_comp_equiv _
(comp_u c)
(elab_term (comp_res c))
(elab_term inames)
_ _ _ _ eq_pre eq_post | val elab_statomic_equiv
(g: R.env)
(c: comp{C_STAtomic? c})
(pre post: R.term)
(eq_pre: RT.equiv g pre (elab_term (comp_pre c)))
(eq_post:
RT.equiv g post (mk_abs (elab_term (comp_res c)) R.Q_Explicit (elab_term (comp_post c))))
: RT.equiv g
(let C_STAtomic inames { u = u ; res = res } = c in
mk_stt_atomic_comp u (elab_term res) (elab_term inames) pre post)
(elab_comp c)
let elab_statomic_equiv
(g: R.env)
(c: comp{C_STAtomic? c})
(pre post: R.term)
(eq_pre: RT.equiv g pre (elab_term (comp_pre c)))
(eq_post:
RT.equiv g post (mk_abs (elab_term (comp_res c)) R.Q_Explicit (elab_term (comp_post c))))
: RT.equiv g
(let C_STAtomic inames { u = u ; res = res } = c in
mk_stt_atomic_comp u (elab_term res) (elab_term inames) pre post)
(elab_comp c) = | false | null | false | let C_STAtomic inames _ = c in
mk_stt_atomic_comp_equiv _ (comp_u c) (elab_term (comp_res c)) (elab_term inames) _ _ _ _ eq_pre
eq_post | {
"checked_file": "Pulse.Elaborate.Pure.fst.checked",
"dependencies": [
"Pulse.Syntax.Base.fsti.checked",
"Pulse.RuntimeUtils.fsti.checked",
"Pulse.Reflection.Util.fst.checked",
"Pulse.Common.fst.checked",
"prims.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Pulse.Elaborate.Pure.fst"
} | [
"total"
] | [
"FStar.Reflection.Types.env",
"Pulse.Syntax.Base.comp",
"Prims.b2t",
"Pulse.Syntax.Base.uu___is_C_STAtomic",
"FStar.Reflection.Types.term",
"FStar.Reflection.Typing.equiv",
"Pulse.Elaborate.Pure.elab_term",
"Pulse.Syntax.Base.comp_pre",
"Pulse.Reflection.Util.mk_abs",
"Pulse.Syntax.Base.comp_res",
"FStar.Reflection.V2.Data.Q_Explicit",
"Pulse.Syntax.Base.comp_post",
"Pulse.Syntax.Base.term",
"Pulse.Syntax.Base.st_comp",
"Pulse.Reflection.Util.mk_stt_atomic_comp_equiv",
"Pulse.Syntax.Base.comp_u",
"Pulse.Syntax.Base.universe",
"Pulse.Syntax.Base.vprop",
"Pulse.Reflection.Util.mk_stt_atomic_comp",
"Pulse.Elaborate.Pure.elab_comp"
] | [] | module Pulse.Elaborate.Pure
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
module RU = Pulse.RuntimeUtils
open FStar.List.Tot
open Pulse.Syntax.Base
open Pulse.Reflection.Util
let (let!) (f:option 'a) (g: 'a -> option 'b) : option 'b =
match f with
| None -> None
| Some x -> g x
let elab_qual = function
| None -> R.Q_Explicit
| Some Implicit -> R.Q_Implicit
let rec elab_term (top:term)
: R.term
= let open R in
let w t' = RU.set_range t' top.range in
match top.t with
| Tm_VProp ->
w (pack_ln (Tv_FVar (pack_fv vprop_lid)))
| Tm_Emp ->
w (pack_ln (Tv_FVar (pack_fv emp_lid)))
| Tm_Pure p ->
let p = elab_term p in
let head = pack_ln (Tv_FVar (pack_fv pure_lid)) in
w (pack_ln (Tv_App head (p, Q_Explicit)))
| Tm_Star l r ->
let l = elab_term l in
let r = elab_term r in
w (mk_star l r)
| Tm_ExistsSL u b body
| Tm_ForallSL u b body ->
let t = elab_term b.binder_ty in
let body = elab_term body in
let t = set_range_of t b.binder_ppname.range in
if Tm_ExistsSL? top.t
then w (mk_exists u t (mk_abs_with_name_and_range b.binder_ppname.name b.binder_ppname.range t R.Q_Explicit body))
else w (mk_forall u t (mk_abs_with_name_and_range b.binder_ppname.name b.binder_ppname.range t R.Q_Explicit body))
| Tm_Inames ->
w (pack_ln (Tv_FVar (pack_fv inames_lid)))
| Tm_EmpInames ->
w (emp_inames_tm)
| Tm_Unknown ->
w (pack_ln R.Tv_Unknown)
| Tm_FStar t ->
w t
let rec elab_pat (p:pattern) : Tot R.pattern =
let elab_fv (f:fv) : R.fv =
R.pack_fv f.fv_name
in
match p with
| Pat_Constant c -> R.Pat_Constant c
| Pat_Var v ty -> R.Pat_Var RT.sort_default v
| Pat_Cons fv vs ->
R.Pat_Cons (elab_fv fv) None (Pulse.Common.map_dec p vs elab_sub_pat)
| Pat_Dot_Term None ->
R.Pat_Dot_Term None
| Pat_Dot_Term (Some t) ->
R.Pat_Dot_Term (Some (elab_term t))
and elab_sub_pat (pi : pattern & bool) : R.pattern & bool =
let (p, i) = pi in
elab_pat p, i
let elab_pats (ps:list pattern) : Tot (list R.pattern) = L.map elab_pat ps
let elab_st_comp (c:st_comp)
: R.universe & R.term & R.term & R.term
= let res = elab_term c.res in
let pre = elab_term c.pre in
let post = elab_term c.post in
c.u, res, pre, post
let elab_comp (c:comp)
: R.term
= match c with
| C_Tot t ->
elab_term t
| C_ST c ->
let u, res, pre, post = elab_st_comp c in
mk_stt_comp u res pre (mk_abs res R.Q_Explicit post)
| C_STAtomic inames c ->
let inames = elab_term inames in
let u, res, pre, post = elab_st_comp c in
mk_stt_atomic_comp u res inames pre (mk_abs res R.Q_Explicit post)
| C_STGhost inames c ->
let inames = elab_term inames in
let u, res, pre, post = elab_st_comp c in
mk_stt_ghost_comp u res inames pre (mk_abs res R.Q_Explicit post)
let elab_stt_equiv (g:R.env) (c:comp{C_ST? c}) (pre:R.term) (post:R.term)
(eq_pre:RT.equiv g pre (elab_term (comp_pre c)))
(eq_post:RT.equiv g post
(mk_abs (elab_term (comp_res c)) R.Q_Explicit (elab_term (comp_post c))))
: RT.equiv g
(let C_ST {u;res} = c in
mk_stt_comp u
(elab_term res)
pre
post)
(elab_comp c) =
mk_stt_comp_equiv _
(comp_u c)
(elab_term (comp_res c))
_ _ _ _ _ (RT.Rel_refl _ _ _) eq_pre eq_post
let elab_statomic_equiv (g:R.env) (c:comp{C_STAtomic? c}) (pre:R.term) (post:R.term)
(eq_pre:RT.equiv g pre (elab_term (comp_pre c)))
(eq_post:RT.equiv g post
(mk_abs (elab_term (comp_res c)) R.Q_Explicit (elab_term (comp_post c))))
: RT.equiv g
(let C_STAtomic inames {u;res} = c in
mk_stt_atomic_comp u
(elab_term res)
(elab_term inames)
pre | false | false | Pulse.Elaborate.Pure.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val elab_statomic_equiv
(g: R.env)
(c: comp{C_STAtomic? c})
(pre post: R.term)
(eq_pre: RT.equiv g pre (elab_term (comp_pre c)))
(eq_post:
RT.equiv g post (mk_abs (elab_term (comp_res c)) R.Q_Explicit (elab_term (comp_post c))))
: RT.equiv g
(let C_STAtomic inames { u = u ; res = res } = c in
mk_stt_atomic_comp u (elab_term res) (elab_term inames) pre post)
(elab_comp c) | [] | Pulse.Elaborate.Pure.elab_statomic_equiv | {
"file_name": "lib/steel/pulse/Pulse.Elaborate.Pure.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} |
g: FStar.Reflection.Types.env ->
c: Pulse.Syntax.Base.comp{C_STAtomic? c} ->
pre: FStar.Reflection.Types.term ->
post: FStar.Reflection.Types.term ->
eq_pre:
FStar.Reflection.Typing.equiv g
pre
(Pulse.Elaborate.Pure.elab_term (Pulse.Syntax.Base.comp_pre c)) ->
eq_post:
FStar.Reflection.Typing.equiv g
post
(Pulse.Reflection.Util.mk_abs (Pulse.Elaborate.Pure.elab_term (Pulse.Syntax.Base.comp_res c)
)
FStar.Reflection.V2.Data.Q_Explicit
(Pulse.Elaborate.Pure.elab_term (Pulse.Syntax.Base.comp_post c)))
-> FStar.Reflection.Typing.equiv g
(let _ = c in
(let Pulse.Syntax.Base.C_STAtomic inames { u = u32 ; res = res ; pre = _ ; post = _ } = _ in
Pulse.Reflection.Util.mk_stt_atomic_comp u32
(Pulse.Elaborate.Pure.elab_term res)
(Pulse.Elaborate.Pure.elab_term inames)
pre
post)
<:
FStar.Reflection.Types.term)
(Pulse.Elaborate.Pure.elab_comp c) | {
"end_col": 26,
"end_line": 144,
"start_col": 21,
"start_line": 137
} |
Prims.Tot | val elab_stghost_equiv
(g: R.env)
(c: comp{C_STGhost? c})
(pre post: R.term)
(eq_pre: RT.equiv g pre (elab_term (comp_pre c)))
(eq_post:
RT.equiv g post (mk_abs (elab_term (comp_res c)) R.Q_Explicit (elab_term (comp_post c))))
: RT.equiv g
(let C_STGhost inames { u = u ; res = res } = c in
mk_stt_ghost_comp u (elab_term res) (elab_term inames) pre post)
(elab_comp c) | [
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "Pulse.RuntimeUtils",
"short_module": "RU"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let elab_stghost_equiv (g:R.env) (c:comp{C_STGhost? c}) (pre:R.term) (post:R.term)
(eq_pre:RT.equiv g pre (elab_term (comp_pre c)))
(eq_post:RT.equiv g post
(mk_abs (elab_term (comp_res c)) R.Q_Explicit (elab_term (comp_post c))))
: RT.equiv g
(let C_STGhost inames {u;res} = c in
mk_stt_ghost_comp u
(elab_term res)
(elab_term inames)
pre
post)
(elab_comp c) =
let C_STGhost inames _ = c in
mk_stt_ghost_comp_equiv _
(comp_u c)
(elab_term (comp_res c))
(elab_term inames)
_ _ _ _ eq_pre eq_post | val elab_stghost_equiv
(g: R.env)
(c: comp{C_STGhost? c})
(pre post: R.term)
(eq_pre: RT.equiv g pre (elab_term (comp_pre c)))
(eq_post:
RT.equiv g post (mk_abs (elab_term (comp_res c)) R.Q_Explicit (elab_term (comp_post c))))
: RT.equiv g
(let C_STGhost inames { u = u ; res = res } = c in
mk_stt_ghost_comp u (elab_term res) (elab_term inames) pre post)
(elab_comp c)
let elab_stghost_equiv
(g: R.env)
(c: comp{C_STGhost? c})
(pre post: R.term)
(eq_pre: RT.equiv g pre (elab_term (comp_pre c)))
(eq_post:
RT.equiv g post (mk_abs (elab_term (comp_res c)) R.Q_Explicit (elab_term (comp_post c))))
: RT.equiv g
(let C_STGhost inames { u = u ; res = res } = c in
mk_stt_ghost_comp u (elab_term res) (elab_term inames) pre post)
(elab_comp c) = | false | null | false | let C_STGhost inames _ = c in
mk_stt_ghost_comp_equiv _ (comp_u c) (elab_term (comp_res c)) (elab_term inames) _ _ _ _ eq_pre
eq_post | {
"checked_file": "Pulse.Elaborate.Pure.fst.checked",
"dependencies": [
"Pulse.Syntax.Base.fsti.checked",
"Pulse.RuntimeUtils.fsti.checked",
"Pulse.Reflection.Util.fst.checked",
"Pulse.Common.fst.checked",
"prims.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Pulse.Elaborate.Pure.fst"
} | [
"total"
] | [
"FStar.Reflection.Types.env",
"Pulse.Syntax.Base.comp",
"Prims.b2t",
"Pulse.Syntax.Base.uu___is_C_STGhost",
"FStar.Reflection.Types.term",
"FStar.Reflection.Typing.equiv",
"Pulse.Elaborate.Pure.elab_term",
"Pulse.Syntax.Base.comp_pre",
"Pulse.Reflection.Util.mk_abs",
"Pulse.Syntax.Base.comp_res",
"FStar.Reflection.V2.Data.Q_Explicit",
"Pulse.Syntax.Base.comp_post",
"Pulse.Syntax.Base.term",
"Pulse.Syntax.Base.st_comp",
"Pulse.Reflection.Util.mk_stt_ghost_comp_equiv",
"Pulse.Syntax.Base.comp_u",
"Pulse.Syntax.Base.universe",
"Pulse.Syntax.Base.vprop",
"Pulse.Reflection.Util.mk_stt_ghost_comp",
"Pulse.Elaborate.Pure.elab_comp"
] | [] | module Pulse.Elaborate.Pure
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
module RU = Pulse.RuntimeUtils
open FStar.List.Tot
open Pulse.Syntax.Base
open Pulse.Reflection.Util
let (let!) (f:option 'a) (g: 'a -> option 'b) : option 'b =
match f with
| None -> None
| Some x -> g x
let elab_qual = function
| None -> R.Q_Explicit
| Some Implicit -> R.Q_Implicit
let rec elab_term (top:term)
: R.term
= let open R in
let w t' = RU.set_range t' top.range in
match top.t with
| Tm_VProp ->
w (pack_ln (Tv_FVar (pack_fv vprop_lid)))
| Tm_Emp ->
w (pack_ln (Tv_FVar (pack_fv emp_lid)))
| Tm_Pure p ->
let p = elab_term p in
let head = pack_ln (Tv_FVar (pack_fv pure_lid)) in
w (pack_ln (Tv_App head (p, Q_Explicit)))
| Tm_Star l r ->
let l = elab_term l in
let r = elab_term r in
w (mk_star l r)
| Tm_ExistsSL u b body
| Tm_ForallSL u b body ->
let t = elab_term b.binder_ty in
let body = elab_term body in
let t = set_range_of t b.binder_ppname.range in
if Tm_ExistsSL? top.t
then w (mk_exists u t (mk_abs_with_name_and_range b.binder_ppname.name b.binder_ppname.range t R.Q_Explicit body))
else w (mk_forall u t (mk_abs_with_name_and_range b.binder_ppname.name b.binder_ppname.range t R.Q_Explicit body))
| Tm_Inames ->
w (pack_ln (Tv_FVar (pack_fv inames_lid)))
| Tm_EmpInames ->
w (emp_inames_tm)
| Tm_Unknown ->
w (pack_ln R.Tv_Unknown)
| Tm_FStar t ->
w t
let rec elab_pat (p:pattern) : Tot R.pattern =
let elab_fv (f:fv) : R.fv =
R.pack_fv f.fv_name
in
match p with
| Pat_Constant c -> R.Pat_Constant c
| Pat_Var v ty -> R.Pat_Var RT.sort_default v
| Pat_Cons fv vs ->
R.Pat_Cons (elab_fv fv) None (Pulse.Common.map_dec p vs elab_sub_pat)
| Pat_Dot_Term None ->
R.Pat_Dot_Term None
| Pat_Dot_Term (Some t) ->
R.Pat_Dot_Term (Some (elab_term t))
and elab_sub_pat (pi : pattern & bool) : R.pattern & bool =
let (p, i) = pi in
elab_pat p, i
let elab_pats (ps:list pattern) : Tot (list R.pattern) = L.map elab_pat ps
let elab_st_comp (c:st_comp)
: R.universe & R.term & R.term & R.term
= let res = elab_term c.res in
let pre = elab_term c.pre in
let post = elab_term c.post in
c.u, res, pre, post
let elab_comp (c:comp)
: R.term
= match c with
| C_Tot t ->
elab_term t
| C_ST c ->
let u, res, pre, post = elab_st_comp c in
mk_stt_comp u res pre (mk_abs res R.Q_Explicit post)
| C_STAtomic inames c ->
let inames = elab_term inames in
let u, res, pre, post = elab_st_comp c in
mk_stt_atomic_comp u res inames pre (mk_abs res R.Q_Explicit post)
| C_STGhost inames c ->
let inames = elab_term inames in
let u, res, pre, post = elab_st_comp c in
mk_stt_ghost_comp u res inames pre (mk_abs res R.Q_Explicit post)
let elab_stt_equiv (g:R.env) (c:comp{C_ST? c}) (pre:R.term) (post:R.term)
(eq_pre:RT.equiv g pre (elab_term (comp_pre c)))
(eq_post:RT.equiv g post
(mk_abs (elab_term (comp_res c)) R.Q_Explicit (elab_term (comp_post c))))
: RT.equiv g
(let C_ST {u;res} = c in
mk_stt_comp u
(elab_term res)
pre
post)
(elab_comp c) =
mk_stt_comp_equiv _
(comp_u c)
(elab_term (comp_res c))
_ _ _ _ _ (RT.Rel_refl _ _ _) eq_pre eq_post
let elab_statomic_equiv (g:R.env) (c:comp{C_STAtomic? c}) (pre:R.term) (post:R.term)
(eq_pre:RT.equiv g pre (elab_term (comp_pre c)))
(eq_post:RT.equiv g post
(mk_abs (elab_term (comp_res c)) R.Q_Explicit (elab_term (comp_post c))))
: RT.equiv g
(let C_STAtomic inames {u;res} = c in
mk_stt_atomic_comp u
(elab_term res)
(elab_term inames)
pre
post)
(elab_comp c) =
let C_STAtomic inames _ = c in
mk_stt_atomic_comp_equiv _
(comp_u c)
(elab_term (comp_res c))
(elab_term inames)
_ _ _ _ eq_pre eq_post
let elab_stghost_equiv (g:R.env) (c:comp{C_STGhost? c}) (pre:R.term) (post:R.term)
(eq_pre:RT.equiv g pre (elab_term (comp_pre c)))
(eq_post:RT.equiv g post
(mk_abs (elab_term (comp_res c)) R.Q_Explicit (elab_term (comp_post c))))
: RT.equiv g
(let C_STGhost inames {u;res} = c in
mk_stt_ghost_comp u
(elab_term res)
(elab_term inames)
pre | false | false | Pulse.Elaborate.Pure.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val elab_stghost_equiv
(g: R.env)
(c: comp{C_STGhost? c})
(pre post: R.term)
(eq_pre: RT.equiv g pre (elab_term (comp_pre c)))
(eq_post:
RT.equiv g post (mk_abs (elab_term (comp_res c)) R.Q_Explicit (elab_term (comp_post c))))
: RT.equiv g
(let C_STGhost inames { u = u ; res = res } = c in
mk_stt_ghost_comp u (elab_term res) (elab_term inames) pre post)
(elab_comp c) | [] | Pulse.Elaborate.Pure.elab_stghost_equiv | {
"file_name": "lib/steel/pulse/Pulse.Elaborate.Pure.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} |
g: FStar.Reflection.Types.env ->
c: Pulse.Syntax.Base.comp{C_STGhost? c} ->
pre: FStar.Reflection.Types.term ->
post: FStar.Reflection.Types.term ->
eq_pre:
FStar.Reflection.Typing.equiv g
pre
(Pulse.Elaborate.Pure.elab_term (Pulse.Syntax.Base.comp_pre c)) ->
eq_post:
FStar.Reflection.Typing.equiv g
post
(Pulse.Reflection.Util.mk_abs (Pulse.Elaborate.Pure.elab_term (Pulse.Syntax.Base.comp_res c)
)
FStar.Reflection.V2.Data.Q_Explicit
(Pulse.Elaborate.Pure.elab_term (Pulse.Syntax.Base.comp_post c)))
-> FStar.Reflection.Typing.equiv g
(let _ = c in
(let Pulse.Syntax.Base.C_STGhost inames { u = u38 ; res = res ; pre = _ ; post = _ } = _ in
Pulse.Reflection.Util.mk_stt_ghost_comp u38
(Pulse.Elaborate.Pure.elab_term res)
(Pulse.Elaborate.Pure.elab_term inames)
pre
post)
<:
FStar.Reflection.Types.term)
(Pulse.Elaborate.Pure.elab_comp c) | {
"end_col": 26,
"end_line": 164,
"start_col": 21,
"start_line": 157
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let arrow (a: Type) (b: (a -> Type)) = x: a -> Tot (b x) | let arrow (a: Type) (b: (a -> Type)) = | false | null | false | x: a -> Tot (b x) | {
"checked_file": "FStar.FunctionalExtensionality.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FunctionalExtensionality.fsti"
} | [
"total"
] | [] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.FunctionalExtensionality
/// Functional extensionality asserts the equality of pointwise-equal
/// functions.
///
/// The formulation of this axiom is particularly subtle in F* because
/// of its interaction with subtyping. In fact, prior formulations of
/// this axiom were discovered to be unsound by Aseem Rastogi.
///
/// The predicate [feq #a #b f g] asserts that [f, g: x:a -> (b x)] are
/// pointwise equal on the domain [a].
///
/// However, due to subtyping [f] and [g] may also be defined on some
/// domain larger than [a]. We need to be careful to ensure that merely
/// proving [f] and [g] equal on their sub-domain [a] does not lead us
/// to conclude that they are equal everywhere.
///
/// For more context on how functional extensionality works in F*, see
/// 1. tests/micro-benchmarks/Test.FunctionalExtensionality.fst
/// 2. ulib/FStar.Map.fst and ulib/FStar.Map.fsti
/// 3. Issue #1542 on github.com/FStarLang/FStar/issues/1542
(** The type of total, dependent functions *) | false | false | FStar.FunctionalExtensionality.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val arrow : a: Type -> b: (_: a -> Type) -> Type | [] | FStar.FunctionalExtensionality.arrow | {
"file_name": "ulib/FStar.FunctionalExtensionality.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: Type -> b: (_: a -> Type) -> Type | {
"end_col": 56,
"end_line": 41,
"start_col": 39,
"start_line": 41
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let op_Hat_Subtraction_Greater (a b: Type) = restricted_t a (fun _ -> b) | let op_Hat_Subtraction_Greater (a b: Type) = | false | null | false | restricted_t a (fun _ -> b) | {
"checked_file": "FStar.FunctionalExtensionality.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FunctionalExtensionality.fsti"
} | [
"total"
] | [
"FStar.FunctionalExtensionality.restricted_t"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.FunctionalExtensionality
/// Functional extensionality asserts the equality of pointwise-equal
/// functions.
///
/// The formulation of this axiom is particularly subtle in F* because
/// of its interaction with subtyping. In fact, prior formulations of
/// this axiom were discovered to be unsound by Aseem Rastogi.
///
/// The predicate [feq #a #b f g] asserts that [f, g: x:a -> (b x)] are
/// pointwise equal on the domain [a].
///
/// However, due to subtyping [f] and [g] may also be defined on some
/// domain larger than [a]. We need to be careful to ensure that merely
/// proving [f] and [g] equal on their sub-domain [a] does not lead us
/// to conclude that they are equal everywhere.
///
/// For more context on how functional extensionality works in F*, see
/// 1. tests/micro-benchmarks/Test.FunctionalExtensionality.fst
/// 2. ulib/FStar.Map.fst and ulib/FStar.Map.fsti
/// 3. Issue #1542 on github.com/FStarLang/FStar/issues/1542
(** The type of total, dependent functions *)
unfold
let arrow (a: Type) (b: (a -> Type)) = x: a -> Tot (b x)
(** Using [arrow] instead *)
[@@ (deprecated "Use arrow instead")]
let efun (a: Type) (b: (a -> Type)) = arrow a b
(** feq #a #b f g: pointwise equality of [f] and [g] on domain [a] *)
let feq (#a: Type) (#b: (a -> Type)) (f g: arrow a b) = forall x. {:pattern (f x)\/(g x)} f x == g x
(** [on_domain a f]:
This is a key function provided by the module. It has several
features.
1. Intuitively, [on_domain a f] can be seen as a function whose
maximal domain is [a].
2. While, [on_domain a f] is proven to be *pointwise* equal to [f],
crucially it is not provably equal to [f], since [f] may
actually have a domain larger than [a].
3. [on_domain] is idempotent
4. [on_domain a f x] has special treatment in F*'s normalizer. It
reduces to [f x], reflecting the pointwise equality of
[on_domain a f] and [f].
5. [on_domain] is marked [inline_for_extraction], to eliminate the
overhead of an indirection in extracted code. (This feature
will be exercised as part of cross-module inlining across
interface boundaries)
*)
inline_for_extraction
val on_domain (a: Type) (#b: (a -> Type)) ([@@@strictly_positive] f: arrow a b) : Tot (arrow a b)
(** feq_on_domain:
[on_domain a f] is pointwise equal to [f]
*)
val feq_on_domain (#a: Type) (#b: (a -> Type)) (f: arrow a b)
: Lemma (feq (on_domain a f) f) [SMTPat (on_domain a f)]
(** on_domain is idempotent *)
val idempotence_on_domain (#a: Type) (#b: (a -> Type)) (f: arrow a b)
: Lemma (on_domain a (on_domain a f) == on_domain a f) [SMTPat (on_domain a (on_domain a f))]
(** [is_restricted a f]:
Though stated indirectly, [is_restricted a f] is valid when [f]
is a function whose maximal domain is equal to [a].
Equivalently, one may see its definition as
[exists g. f == on_domain a g]
*)
let is_restricted (a: Type) (#b: (a -> Type)) (f: arrow a b) = on_domain a f == f
(** restricted_t a b:
Lifts the [is_restricted] predicate into a refinement type
This is the type of functions whose maximal domain is [a]
and whose (dependent) co-domain is [b].
*)
let restricted_t (a: Type) (b: (a -> Type)) = f: arrow a b {is_restricted a f}
(** [a ^-> b]:
Notation for non-dependent restricted functions from [a] to [b].
The first symbol [^] makes it right associative, as expected for
arrows.
*) | false | true | FStar.FunctionalExtensionality.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val op_Hat_Subtraction_Greater : a: Type -> b: Type -> Type | [] | FStar.FunctionalExtensionality.op_Hat_Subtraction_Greater | {
"file_name": "ulib/FStar.FunctionalExtensionality.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: Type -> b: Type -> Type | {
"end_col": 72,
"end_line": 111,
"start_col": 45,
"start_line": 111
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let arrow_g (a: Type) (b: (a -> Type)) = x: a -> GTot (b x) | let arrow_g (a: Type) (b: (a -> Type)) = | false | null | false | x: a -> GTot (b x) | {
"checked_file": "FStar.FunctionalExtensionality.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FunctionalExtensionality.fsti"
} | [
"total"
] | [] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.FunctionalExtensionality
/// Functional extensionality asserts the equality of pointwise-equal
/// functions.
///
/// The formulation of this axiom is particularly subtle in F* because
/// of its interaction with subtyping. In fact, prior formulations of
/// this axiom were discovered to be unsound by Aseem Rastogi.
///
/// The predicate [feq #a #b f g] asserts that [f, g: x:a -> (b x)] are
/// pointwise equal on the domain [a].
///
/// However, due to subtyping [f] and [g] may also be defined on some
/// domain larger than [a]. We need to be careful to ensure that merely
/// proving [f] and [g] equal on their sub-domain [a] does not lead us
/// to conclude that they are equal everywhere.
///
/// For more context on how functional extensionality works in F*, see
/// 1. tests/micro-benchmarks/Test.FunctionalExtensionality.fst
/// 2. ulib/FStar.Map.fst and ulib/FStar.Map.fsti
/// 3. Issue #1542 on github.com/FStarLang/FStar/issues/1542
(** The type of total, dependent functions *)
unfold
let arrow (a: Type) (b: (a -> Type)) = x: a -> Tot (b x)
(** Using [arrow] instead *)
[@@ (deprecated "Use arrow instead")]
let efun (a: Type) (b: (a -> Type)) = arrow a b
(** feq #a #b f g: pointwise equality of [f] and [g] on domain [a] *)
let feq (#a: Type) (#b: (a -> Type)) (f g: arrow a b) = forall x. {:pattern (f x)\/(g x)} f x == g x
(** [on_domain a f]:
This is a key function provided by the module. It has several
features.
1. Intuitively, [on_domain a f] can be seen as a function whose
maximal domain is [a].
2. While, [on_domain a f] is proven to be *pointwise* equal to [f],
crucially it is not provably equal to [f], since [f] may
actually have a domain larger than [a].
3. [on_domain] is idempotent
4. [on_domain a f x] has special treatment in F*'s normalizer. It
reduces to [f x], reflecting the pointwise equality of
[on_domain a f] and [f].
5. [on_domain] is marked [inline_for_extraction], to eliminate the
overhead of an indirection in extracted code. (This feature
will be exercised as part of cross-module inlining across
interface boundaries)
*)
inline_for_extraction
val on_domain (a: Type) (#b: (a -> Type)) ([@@@strictly_positive] f: arrow a b) : Tot (arrow a b)
(** feq_on_domain:
[on_domain a f] is pointwise equal to [f]
*)
val feq_on_domain (#a: Type) (#b: (a -> Type)) (f: arrow a b)
: Lemma (feq (on_domain a f) f) [SMTPat (on_domain a f)]
(** on_domain is idempotent *)
val idempotence_on_domain (#a: Type) (#b: (a -> Type)) (f: arrow a b)
: Lemma (on_domain a (on_domain a f) == on_domain a f) [SMTPat (on_domain a (on_domain a f))]
(** [is_restricted a f]:
Though stated indirectly, [is_restricted a f] is valid when [f]
is a function whose maximal domain is equal to [a].
Equivalently, one may see its definition as
[exists g. f == on_domain a g]
*)
let is_restricted (a: Type) (#b: (a -> Type)) (f: arrow a b) = on_domain a f == f
(** restricted_t a b:
Lifts the [is_restricted] predicate into a refinement type
This is the type of functions whose maximal domain is [a]
and whose (dependent) co-domain is [b].
*)
let restricted_t (a: Type) (b: (a -> Type)) = f: arrow a b {is_restricted a f}
(** [a ^-> b]:
Notation for non-dependent restricted functions from [a] to [b].
The first symbol [^] makes it right associative, as expected for
arrows.
*)
unfold
let op_Hat_Subtraction_Greater (a b: Type) = restricted_t a (fun _ -> b)
(** [on_dom a f]:
A convenience function to introduce a restricted, dependent function
*)
unfold
let on_dom (a: Type) (#b: (a -> Type)) (f: arrow a b) : restricted_t a b = on_domain a f
(** [on a f]:
A convenience function to introduce a restricted, non-dependent function
*)
unfold
let on (a #b: Type) (f: (a -> Tot b)) : (a ^-> b) = on_dom a f
(**** MAIN AXIOM *)
(** [extensionality]:
The main axiom of this module states that functions [f] and [g]
that are pointwise equal on domain [a] are provably equal when
restricted to [a] *)
val extensionality (a: Type) (b: (a -> Type)) (f g: arrow a b)
: Lemma (ensures (feq #a #b f g <==> on_domain a f == on_domain a g)) [SMTPat (feq #a #b f g)]
(**** DUPLICATED FOR GHOST FUNCTIONS *)
(** The type of ghost, total, dependent functions *) | false | false | FStar.FunctionalExtensionality.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val arrow_g : a: Type -> b: (_: a -> Type) -> Type | [] | FStar.FunctionalExtensionality.arrow_g | {
"file_name": "ulib/FStar.FunctionalExtensionality.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: Type -> b: (_: a -> Type) -> Type | {
"end_col": 59,
"end_line": 139,
"start_col": 41,
"start_line": 139
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let efun (a: Type) (b: (a -> Type)) = arrow a b | let efun (a: Type) (b: (a -> Type)) = | false | null | false | arrow a b | {
"checked_file": "FStar.FunctionalExtensionality.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FunctionalExtensionality.fsti"
} | [
"total"
] | [
"FStar.FunctionalExtensionality.arrow"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.FunctionalExtensionality
/// Functional extensionality asserts the equality of pointwise-equal
/// functions.
///
/// The formulation of this axiom is particularly subtle in F* because
/// of its interaction with subtyping. In fact, prior formulations of
/// this axiom were discovered to be unsound by Aseem Rastogi.
///
/// The predicate [feq #a #b f g] asserts that [f, g: x:a -> (b x)] are
/// pointwise equal on the domain [a].
///
/// However, due to subtyping [f] and [g] may also be defined on some
/// domain larger than [a]. We need to be careful to ensure that merely
/// proving [f] and [g] equal on their sub-domain [a] does not lead us
/// to conclude that they are equal everywhere.
///
/// For more context on how functional extensionality works in F*, see
/// 1. tests/micro-benchmarks/Test.FunctionalExtensionality.fst
/// 2. ulib/FStar.Map.fst and ulib/FStar.Map.fsti
/// 3. Issue #1542 on github.com/FStarLang/FStar/issues/1542
(** The type of total, dependent functions *)
unfold
let arrow (a: Type) (b: (a -> Type)) = x: a -> Tot (b x)
(** Using [arrow] instead *) | false | false | FStar.FunctionalExtensionality.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val efun : a: Type -> b: (_: a -> Type) -> Type | [] | FStar.FunctionalExtensionality.efun | {
"file_name": "ulib/FStar.FunctionalExtensionality.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: Type -> b: (_: a -> Type) -> Type | {
"end_col": 47,
"end_line": 45,
"start_col": 38,
"start_line": 45
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let restricted_t (a: Type) (b: (a -> Type)) = f: arrow a b {is_restricted a f} | let restricted_t (a: Type) (b: (a -> Type)) = | false | null | false | f: arrow a b {is_restricted a f} | {
"checked_file": "FStar.FunctionalExtensionality.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FunctionalExtensionality.fsti"
} | [
"total"
] | [
"FStar.FunctionalExtensionality.arrow",
"FStar.FunctionalExtensionality.is_restricted"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.FunctionalExtensionality
/// Functional extensionality asserts the equality of pointwise-equal
/// functions.
///
/// The formulation of this axiom is particularly subtle in F* because
/// of its interaction with subtyping. In fact, prior formulations of
/// this axiom were discovered to be unsound by Aseem Rastogi.
///
/// The predicate [feq #a #b f g] asserts that [f, g: x:a -> (b x)] are
/// pointwise equal on the domain [a].
///
/// However, due to subtyping [f] and [g] may also be defined on some
/// domain larger than [a]. We need to be careful to ensure that merely
/// proving [f] and [g] equal on their sub-domain [a] does not lead us
/// to conclude that they are equal everywhere.
///
/// For more context on how functional extensionality works in F*, see
/// 1. tests/micro-benchmarks/Test.FunctionalExtensionality.fst
/// 2. ulib/FStar.Map.fst and ulib/FStar.Map.fsti
/// 3. Issue #1542 on github.com/FStarLang/FStar/issues/1542
(** The type of total, dependent functions *)
unfold
let arrow (a: Type) (b: (a -> Type)) = x: a -> Tot (b x)
(** Using [arrow] instead *)
[@@ (deprecated "Use arrow instead")]
let efun (a: Type) (b: (a -> Type)) = arrow a b
(** feq #a #b f g: pointwise equality of [f] and [g] on domain [a] *)
let feq (#a: Type) (#b: (a -> Type)) (f g: arrow a b) = forall x. {:pattern (f x)\/(g x)} f x == g x
(** [on_domain a f]:
This is a key function provided by the module. It has several
features.
1. Intuitively, [on_domain a f] can be seen as a function whose
maximal domain is [a].
2. While, [on_domain a f] is proven to be *pointwise* equal to [f],
crucially it is not provably equal to [f], since [f] may
actually have a domain larger than [a].
3. [on_domain] is idempotent
4. [on_domain a f x] has special treatment in F*'s normalizer. It
reduces to [f x], reflecting the pointwise equality of
[on_domain a f] and [f].
5. [on_domain] is marked [inline_for_extraction], to eliminate the
overhead of an indirection in extracted code. (This feature
will be exercised as part of cross-module inlining across
interface boundaries)
*)
inline_for_extraction
val on_domain (a: Type) (#b: (a -> Type)) ([@@@strictly_positive] f: arrow a b) : Tot (arrow a b)
(** feq_on_domain:
[on_domain a f] is pointwise equal to [f]
*)
val feq_on_domain (#a: Type) (#b: (a -> Type)) (f: arrow a b)
: Lemma (feq (on_domain a f) f) [SMTPat (on_domain a f)]
(** on_domain is idempotent *)
val idempotence_on_domain (#a: Type) (#b: (a -> Type)) (f: arrow a b)
: Lemma (on_domain a (on_domain a f) == on_domain a f) [SMTPat (on_domain a (on_domain a f))]
(** [is_restricted a f]:
Though stated indirectly, [is_restricted a f] is valid when [f]
is a function whose maximal domain is equal to [a].
Equivalently, one may see its definition as
[exists g. f == on_domain a g]
*)
let is_restricted (a: Type) (#b: (a -> Type)) (f: arrow a b) = on_domain a f == f
(** restricted_t a b:
Lifts the [is_restricted] predicate into a refinement type
This is the type of functions whose maximal domain is [a]
and whose (dependent) co-domain is [b]. | false | false | FStar.FunctionalExtensionality.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val restricted_t : a: Type -> b: (_: a -> Type) -> Type | [] | FStar.FunctionalExtensionality.restricted_t | {
"file_name": "ulib/FStar.FunctionalExtensionality.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: Type -> b: (_: a -> Type) -> Type | {
"end_col": 78,
"end_line": 102,
"start_col": 46,
"start_line": 102
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let is_restricted (a: Type) (#b: (a -> Type)) (f: arrow a b) = on_domain a f == f | let is_restricted (a: Type) (#b: (a -> Type)) (f: arrow a b) = | false | null | false | on_domain a f == f | {
"checked_file": "FStar.FunctionalExtensionality.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FunctionalExtensionality.fsti"
} | [
"total"
] | [
"FStar.FunctionalExtensionality.arrow",
"Prims.eq2",
"FStar.FunctionalExtensionality.on_domain",
"Prims.logical"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.FunctionalExtensionality
/// Functional extensionality asserts the equality of pointwise-equal
/// functions.
///
/// The formulation of this axiom is particularly subtle in F* because
/// of its interaction with subtyping. In fact, prior formulations of
/// this axiom were discovered to be unsound by Aseem Rastogi.
///
/// The predicate [feq #a #b f g] asserts that [f, g: x:a -> (b x)] are
/// pointwise equal on the domain [a].
///
/// However, due to subtyping [f] and [g] may also be defined on some
/// domain larger than [a]. We need to be careful to ensure that merely
/// proving [f] and [g] equal on their sub-domain [a] does not lead us
/// to conclude that they are equal everywhere.
///
/// For more context on how functional extensionality works in F*, see
/// 1. tests/micro-benchmarks/Test.FunctionalExtensionality.fst
/// 2. ulib/FStar.Map.fst and ulib/FStar.Map.fsti
/// 3. Issue #1542 on github.com/FStarLang/FStar/issues/1542
(** The type of total, dependent functions *)
unfold
let arrow (a: Type) (b: (a -> Type)) = x: a -> Tot (b x)
(** Using [arrow] instead *)
[@@ (deprecated "Use arrow instead")]
let efun (a: Type) (b: (a -> Type)) = arrow a b
(** feq #a #b f g: pointwise equality of [f] and [g] on domain [a] *)
let feq (#a: Type) (#b: (a -> Type)) (f g: arrow a b) = forall x. {:pattern (f x)\/(g x)} f x == g x
(** [on_domain a f]:
This is a key function provided by the module. It has several
features.
1. Intuitively, [on_domain a f] can be seen as a function whose
maximal domain is [a].
2. While, [on_domain a f] is proven to be *pointwise* equal to [f],
crucially it is not provably equal to [f], since [f] may
actually have a domain larger than [a].
3. [on_domain] is idempotent
4. [on_domain a f x] has special treatment in F*'s normalizer. It
reduces to [f x], reflecting the pointwise equality of
[on_domain a f] and [f].
5. [on_domain] is marked [inline_for_extraction], to eliminate the
overhead of an indirection in extracted code. (This feature
will be exercised as part of cross-module inlining across
interface boundaries)
*)
inline_for_extraction
val on_domain (a: Type) (#b: (a -> Type)) ([@@@strictly_positive] f: arrow a b) : Tot (arrow a b)
(** feq_on_domain:
[on_domain a f] is pointwise equal to [f]
*)
val feq_on_domain (#a: Type) (#b: (a -> Type)) (f: arrow a b)
: Lemma (feq (on_domain a f) f) [SMTPat (on_domain a f)]
(** on_domain is idempotent *)
val idempotence_on_domain (#a: Type) (#b: (a -> Type)) (f: arrow a b)
: Lemma (on_domain a (on_domain a f) == on_domain a f) [SMTPat (on_domain a (on_domain a f))]
(** [is_restricted a f]:
Though stated indirectly, [is_restricted a f] is valid when [f]
is a function whose maximal domain is equal to [a].
Equivalently, one may see its definition as
[exists g. f == on_domain a g] | false | false | FStar.FunctionalExtensionality.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val is_restricted : a: Type -> f: FStar.FunctionalExtensionality.arrow a b -> Prims.logical | [] | FStar.FunctionalExtensionality.is_restricted | {
"file_name": "ulib/FStar.FunctionalExtensionality.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: Type -> f: FStar.FunctionalExtensionality.arrow a b -> Prims.logical | {
"end_col": 81,
"end_line": 94,
"start_col": 63,
"start_line": 94
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let efun_g (a: Type) (b: (a -> Type)) = arrow_g a b | let efun_g (a: Type) (b: (a -> Type)) = | false | null | false | arrow_g a b | {
"checked_file": "FStar.FunctionalExtensionality.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FunctionalExtensionality.fsti"
} | [
"total"
] | [
"FStar.FunctionalExtensionality.arrow_g"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.FunctionalExtensionality
/// Functional extensionality asserts the equality of pointwise-equal
/// functions.
///
/// The formulation of this axiom is particularly subtle in F* because
/// of its interaction with subtyping. In fact, prior formulations of
/// this axiom were discovered to be unsound by Aseem Rastogi.
///
/// The predicate [feq #a #b f g] asserts that [f, g: x:a -> (b x)] are
/// pointwise equal on the domain [a].
///
/// However, due to subtyping [f] and [g] may also be defined on some
/// domain larger than [a]. We need to be careful to ensure that merely
/// proving [f] and [g] equal on their sub-domain [a] does not lead us
/// to conclude that they are equal everywhere.
///
/// For more context on how functional extensionality works in F*, see
/// 1. tests/micro-benchmarks/Test.FunctionalExtensionality.fst
/// 2. ulib/FStar.Map.fst and ulib/FStar.Map.fsti
/// 3. Issue #1542 on github.com/FStarLang/FStar/issues/1542
(** The type of total, dependent functions *)
unfold
let arrow (a: Type) (b: (a -> Type)) = x: a -> Tot (b x)
(** Using [arrow] instead *)
[@@ (deprecated "Use arrow instead")]
let efun (a: Type) (b: (a -> Type)) = arrow a b
(** feq #a #b f g: pointwise equality of [f] and [g] on domain [a] *)
let feq (#a: Type) (#b: (a -> Type)) (f g: arrow a b) = forall x. {:pattern (f x)\/(g x)} f x == g x
(** [on_domain a f]:
This is a key function provided by the module. It has several
features.
1. Intuitively, [on_domain a f] can be seen as a function whose
maximal domain is [a].
2. While, [on_domain a f] is proven to be *pointwise* equal to [f],
crucially it is not provably equal to [f], since [f] may
actually have a domain larger than [a].
3. [on_domain] is idempotent
4. [on_domain a f x] has special treatment in F*'s normalizer. It
reduces to [f x], reflecting the pointwise equality of
[on_domain a f] and [f].
5. [on_domain] is marked [inline_for_extraction], to eliminate the
overhead of an indirection in extracted code. (This feature
will be exercised as part of cross-module inlining across
interface boundaries)
*)
inline_for_extraction
val on_domain (a: Type) (#b: (a -> Type)) ([@@@strictly_positive] f: arrow a b) : Tot (arrow a b)
(** feq_on_domain:
[on_domain a f] is pointwise equal to [f]
*)
val feq_on_domain (#a: Type) (#b: (a -> Type)) (f: arrow a b)
: Lemma (feq (on_domain a f) f) [SMTPat (on_domain a f)]
(** on_domain is idempotent *)
val idempotence_on_domain (#a: Type) (#b: (a -> Type)) (f: arrow a b)
: Lemma (on_domain a (on_domain a f) == on_domain a f) [SMTPat (on_domain a (on_domain a f))]
(** [is_restricted a f]:
Though stated indirectly, [is_restricted a f] is valid when [f]
is a function whose maximal domain is equal to [a].
Equivalently, one may see its definition as
[exists g. f == on_domain a g]
*)
let is_restricted (a: Type) (#b: (a -> Type)) (f: arrow a b) = on_domain a f == f
(** restricted_t a b:
Lifts the [is_restricted] predicate into a refinement type
This is the type of functions whose maximal domain is [a]
and whose (dependent) co-domain is [b].
*)
let restricted_t (a: Type) (b: (a -> Type)) = f: arrow a b {is_restricted a f}
(** [a ^-> b]:
Notation for non-dependent restricted functions from [a] to [b].
The first symbol [^] makes it right associative, as expected for
arrows.
*)
unfold
let op_Hat_Subtraction_Greater (a b: Type) = restricted_t a (fun _ -> b)
(** [on_dom a f]:
A convenience function to introduce a restricted, dependent function
*)
unfold
let on_dom (a: Type) (#b: (a -> Type)) (f: arrow a b) : restricted_t a b = on_domain a f
(** [on a f]:
A convenience function to introduce a restricted, non-dependent function
*)
unfold
let on (a #b: Type) (f: (a -> Tot b)) : (a ^-> b) = on_dom a f
(**** MAIN AXIOM *)
(** [extensionality]:
The main axiom of this module states that functions [f] and [g]
that are pointwise equal on domain [a] are provably equal when
restricted to [a] *)
val extensionality (a: Type) (b: (a -> Type)) (f g: arrow a b)
: Lemma (ensures (feq #a #b f g <==> on_domain a f == on_domain a g)) [SMTPat (feq #a #b f g)]
(**** DUPLICATED FOR GHOST FUNCTIONS *)
(** The type of ghost, total, dependent functions *)
unfold
let arrow_g (a: Type) (b: (a -> Type)) = x: a -> GTot (b x)
(** Use [arrow_g] instead *) | false | false | FStar.FunctionalExtensionality.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val efun_g : a: Type -> b: (_: a -> Type) -> Type | [] | FStar.FunctionalExtensionality.efun_g | {
"file_name": "ulib/FStar.FunctionalExtensionality.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: Type -> b: (_: a -> Type) -> Type | {
"end_col": 51,
"end_line": 143,
"start_col": 40,
"start_line": 143
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let feq (#a: Type) (#b: (a -> Type)) (f g: arrow a b) = forall x. {:pattern (f x)\/(g x)} f x == g x | let feq (#a: Type) (#b: (a -> Type)) (f g: arrow a b) = | false | null | false | forall x. {:pattern (f x)\/(g x)} f x == g x | {
"checked_file": "FStar.FunctionalExtensionality.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FunctionalExtensionality.fsti"
} | [
"total"
] | [
"FStar.FunctionalExtensionality.arrow",
"Prims.l_Forall",
"Prims.eq2",
"Prims.logical"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.FunctionalExtensionality
/// Functional extensionality asserts the equality of pointwise-equal
/// functions.
///
/// The formulation of this axiom is particularly subtle in F* because
/// of its interaction with subtyping. In fact, prior formulations of
/// this axiom were discovered to be unsound by Aseem Rastogi.
///
/// The predicate [feq #a #b f g] asserts that [f, g: x:a -> (b x)] are
/// pointwise equal on the domain [a].
///
/// However, due to subtyping [f] and [g] may also be defined on some
/// domain larger than [a]. We need to be careful to ensure that merely
/// proving [f] and [g] equal on their sub-domain [a] does not lead us
/// to conclude that they are equal everywhere.
///
/// For more context on how functional extensionality works in F*, see
/// 1. tests/micro-benchmarks/Test.FunctionalExtensionality.fst
/// 2. ulib/FStar.Map.fst and ulib/FStar.Map.fsti
/// 3. Issue #1542 on github.com/FStarLang/FStar/issues/1542
(** The type of total, dependent functions *)
unfold
let arrow (a: Type) (b: (a -> Type)) = x: a -> Tot (b x)
(** Using [arrow] instead *)
[@@ (deprecated "Use arrow instead")]
let efun (a: Type) (b: (a -> Type)) = arrow a b | false | false | FStar.FunctionalExtensionality.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val feq : f: FStar.FunctionalExtensionality.arrow a b -> g: FStar.FunctionalExtensionality.arrow a b
-> Prims.logical | [] | FStar.FunctionalExtensionality.feq | {
"file_name": "ulib/FStar.FunctionalExtensionality.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | f: FStar.FunctionalExtensionality.arrow a b -> g: FStar.FunctionalExtensionality.arrow a b
-> Prims.logical | {
"end_col": 100,
"end_line": 48,
"start_col": 56,
"start_line": 48
} |
|
Prims.Tot | val on_g (a #b: Type) (f: (a -> GTot b)) : (a ^->> b) | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let on_g (a #b: Type) (f: (a -> GTot b)) : (a ^->> b) = on_dom_g a f | val on_g (a #b: Type) (f: (a -> GTot b)) : (a ^->> b)
let on_g (a #b: Type) (f: (a -> GTot b)) : (a ^->> b) = | false | null | false | on_dom_g a f | {
"checked_file": "FStar.FunctionalExtensionality.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FunctionalExtensionality.fsti"
} | [
"total"
] | [
"FStar.FunctionalExtensionality.on_dom_g",
"FStar.FunctionalExtensionality.op_Hat_Subtraction_Greater_Greater"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.FunctionalExtensionality
/// Functional extensionality asserts the equality of pointwise-equal
/// functions.
///
/// The formulation of this axiom is particularly subtle in F* because
/// of its interaction with subtyping. In fact, prior formulations of
/// this axiom were discovered to be unsound by Aseem Rastogi.
///
/// The predicate [feq #a #b f g] asserts that [f, g: x:a -> (b x)] are
/// pointwise equal on the domain [a].
///
/// However, due to subtyping [f] and [g] may also be defined on some
/// domain larger than [a]. We need to be careful to ensure that merely
/// proving [f] and [g] equal on their sub-domain [a] does not lead us
/// to conclude that they are equal everywhere.
///
/// For more context on how functional extensionality works in F*, see
/// 1. tests/micro-benchmarks/Test.FunctionalExtensionality.fst
/// 2. ulib/FStar.Map.fst and ulib/FStar.Map.fsti
/// 3. Issue #1542 on github.com/FStarLang/FStar/issues/1542
(** The type of total, dependent functions *)
unfold
let arrow (a: Type) (b: (a -> Type)) = x: a -> Tot (b x)
(** Using [arrow] instead *)
[@@ (deprecated "Use arrow instead")]
let efun (a: Type) (b: (a -> Type)) = arrow a b
(** feq #a #b f g: pointwise equality of [f] and [g] on domain [a] *)
let feq (#a: Type) (#b: (a -> Type)) (f g: arrow a b) = forall x. {:pattern (f x)\/(g x)} f x == g x
(** [on_domain a f]:
This is a key function provided by the module. It has several
features.
1. Intuitively, [on_domain a f] can be seen as a function whose
maximal domain is [a].
2. While, [on_domain a f] is proven to be *pointwise* equal to [f],
crucially it is not provably equal to [f], since [f] may
actually have a domain larger than [a].
3. [on_domain] is idempotent
4. [on_domain a f x] has special treatment in F*'s normalizer. It
reduces to [f x], reflecting the pointwise equality of
[on_domain a f] and [f].
5. [on_domain] is marked [inline_for_extraction], to eliminate the
overhead of an indirection in extracted code. (This feature
will be exercised as part of cross-module inlining across
interface boundaries)
*)
inline_for_extraction
val on_domain (a: Type) (#b: (a -> Type)) ([@@@strictly_positive] f: arrow a b) : Tot (arrow a b)
(** feq_on_domain:
[on_domain a f] is pointwise equal to [f]
*)
val feq_on_domain (#a: Type) (#b: (a -> Type)) (f: arrow a b)
: Lemma (feq (on_domain a f) f) [SMTPat (on_domain a f)]
(** on_domain is idempotent *)
val idempotence_on_domain (#a: Type) (#b: (a -> Type)) (f: arrow a b)
: Lemma (on_domain a (on_domain a f) == on_domain a f) [SMTPat (on_domain a (on_domain a f))]
(** [is_restricted a f]:
Though stated indirectly, [is_restricted a f] is valid when [f]
is a function whose maximal domain is equal to [a].
Equivalently, one may see its definition as
[exists g. f == on_domain a g]
*)
let is_restricted (a: Type) (#b: (a -> Type)) (f: arrow a b) = on_domain a f == f
(** restricted_t a b:
Lifts the [is_restricted] predicate into a refinement type
This is the type of functions whose maximal domain is [a]
and whose (dependent) co-domain is [b].
*)
let restricted_t (a: Type) (b: (a -> Type)) = f: arrow a b {is_restricted a f}
(** [a ^-> b]:
Notation for non-dependent restricted functions from [a] to [b].
The first symbol [^] makes it right associative, as expected for
arrows.
*)
unfold
let op_Hat_Subtraction_Greater (a b: Type) = restricted_t a (fun _ -> b)
(** [on_dom a f]:
A convenience function to introduce a restricted, dependent function
*)
unfold
let on_dom (a: Type) (#b: (a -> Type)) (f: arrow a b) : restricted_t a b = on_domain a f
(** [on a f]:
A convenience function to introduce a restricted, non-dependent function
*)
unfold
let on (a #b: Type) (f: (a -> Tot b)) : (a ^-> b) = on_dom a f
(**** MAIN AXIOM *)
(** [extensionality]:
The main axiom of this module states that functions [f] and [g]
that are pointwise equal on domain [a] are provably equal when
restricted to [a] *)
val extensionality (a: Type) (b: (a -> Type)) (f g: arrow a b)
: Lemma (ensures (feq #a #b f g <==> on_domain a f == on_domain a g)) [SMTPat (feq #a #b f g)]
(**** DUPLICATED FOR GHOST FUNCTIONS *)
(** The type of ghost, total, dependent functions *)
unfold
let arrow_g (a: Type) (b: (a -> Type)) = x: a -> GTot (b x)
(** Use [arrow_g] instead *)
[@@ (deprecated "Use arrow_g instead")]
let efun_g (a: Type) (b: (a -> Type)) = arrow_g a b
(** [feq_g #a #b f g]: pointwise equality of [f] and [g] on domain [a] **)
let feq_g (#a: Type) (#b: (a -> Type)) (f g: arrow_g a b) =
forall x. {:pattern (f x)\/(g x)} f x == g x
(** The counterpart of [on_domain] for ghost functions *)
val on_domain_g (a: Type) (#b: (a -> Type)) (f: arrow_g a b) : Tot (arrow_g a b)
(** [on_domain_g a f] is pointwise equal to [f] *)
val feq_on_domain_g (#a: Type) (#b: (a -> Type)) (f: arrow_g a b)
: Lemma (feq_g (on_domain_g a f) f) [SMTPat (on_domain_g a f)]
(** on_domain_g is idempotent *)
val idempotence_on_domain_g (#a: Type) (#b: (a -> Type)) (f: arrow_g a b)
: Lemma (on_domain_g a (on_domain_g a f) == on_domain_g a f)
[SMTPat (on_domain_g a (on_domain_g a f))]
(** Counterpart of [is_restricted] for ghost functions *)
let is_restricted_g (a: Type) (#b: (a -> Type)) (f: arrow_g a b) = on_domain_g a f == f
(** Counterpart of [restricted_t] for ghost functions *)
let restricted_g_t (a: Type) (b: (a -> Type)) = f: arrow_g a b {is_restricted_g a f}
(** [a ^->> b]:
Notation for ghost, non-dependent restricted functions from [a]
a to [b].
*)
unfold
let op_Hat_Subtraction_Greater_Greater (a b: Type) = restricted_g_t a (fun _ -> b)
(** [on_dom_g a f]:
A convenience function to introduce a restricted, ghost, dependent function
*)
unfold
let on_dom_g (a: Type) (#b: (a -> Type)) (f: arrow_g a b) : restricted_g_t a b = on_domain_g a f
(** [on_g a f]:
A convenience function to introduce a restricted, ghost, non-dependent function
*) | false | false | FStar.FunctionalExtensionality.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val on_g (a #b: Type) (f: (a -> GTot b)) : (a ^->> b) | [] | FStar.FunctionalExtensionality.on_g | {
"file_name": "ulib/FStar.FunctionalExtensionality.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: Type -> f: (_: a -> Prims.GTot b) -> a ^->> b | {
"end_col": 68,
"end_line": 185,
"start_col": 56,
"start_line": 185
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let is_restricted_g (a: Type) (#b: (a -> Type)) (f: arrow_g a b) = on_domain_g a f == f | let is_restricted_g (a: Type) (#b: (a -> Type)) (f: arrow_g a b) = | false | null | false | on_domain_g a f == f | {
"checked_file": "FStar.FunctionalExtensionality.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FunctionalExtensionality.fsti"
} | [
"total"
] | [
"FStar.FunctionalExtensionality.arrow_g",
"Prims.eq2",
"FStar.FunctionalExtensionality.on_domain_g",
"Prims.logical"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.FunctionalExtensionality
/// Functional extensionality asserts the equality of pointwise-equal
/// functions.
///
/// The formulation of this axiom is particularly subtle in F* because
/// of its interaction with subtyping. In fact, prior formulations of
/// this axiom were discovered to be unsound by Aseem Rastogi.
///
/// The predicate [feq #a #b f g] asserts that [f, g: x:a -> (b x)] are
/// pointwise equal on the domain [a].
///
/// However, due to subtyping [f] and [g] may also be defined on some
/// domain larger than [a]. We need to be careful to ensure that merely
/// proving [f] and [g] equal on their sub-domain [a] does not lead us
/// to conclude that they are equal everywhere.
///
/// For more context on how functional extensionality works in F*, see
/// 1. tests/micro-benchmarks/Test.FunctionalExtensionality.fst
/// 2. ulib/FStar.Map.fst and ulib/FStar.Map.fsti
/// 3. Issue #1542 on github.com/FStarLang/FStar/issues/1542
(** The type of total, dependent functions *)
unfold
let arrow (a: Type) (b: (a -> Type)) = x: a -> Tot (b x)
(** Using [arrow] instead *)
[@@ (deprecated "Use arrow instead")]
let efun (a: Type) (b: (a -> Type)) = arrow a b
(** feq #a #b f g: pointwise equality of [f] and [g] on domain [a] *)
let feq (#a: Type) (#b: (a -> Type)) (f g: arrow a b) = forall x. {:pattern (f x)\/(g x)} f x == g x
(** [on_domain a f]:
This is a key function provided by the module. It has several
features.
1. Intuitively, [on_domain a f] can be seen as a function whose
maximal domain is [a].
2. While, [on_domain a f] is proven to be *pointwise* equal to [f],
crucially it is not provably equal to [f], since [f] may
actually have a domain larger than [a].
3. [on_domain] is idempotent
4. [on_domain a f x] has special treatment in F*'s normalizer. It
reduces to [f x], reflecting the pointwise equality of
[on_domain a f] and [f].
5. [on_domain] is marked [inline_for_extraction], to eliminate the
overhead of an indirection in extracted code. (This feature
will be exercised as part of cross-module inlining across
interface boundaries)
*)
inline_for_extraction
val on_domain (a: Type) (#b: (a -> Type)) ([@@@strictly_positive] f: arrow a b) : Tot (arrow a b)
(** feq_on_domain:
[on_domain a f] is pointwise equal to [f]
*)
val feq_on_domain (#a: Type) (#b: (a -> Type)) (f: arrow a b)
: Lemma (feq (on_domain a f) f) [SMTPat (on_domain a f)]
(** on_domain is idempotent *)
val idempotence_on_domain (#a: Type) (#b: (a -> Type)) (f: arrow a b)
: Lemma (on_domain a (on_domain a f) == on_domain a f) [SMTPat (on_domain a (on_domain a f))]
(** [is_restricted a f]:
Though stated indirectly, [is_restricted a f] is valid when [f]
is a function whose maximal domain is equal to [a].
Equivalently, one may see its definition as
[exists g. f == on_domain a g]
*)
let is_restricted (a: Type) (#b: (a -> Type)) (f: arrow a b) = on_domain a f == f
(** restricted_t a b:
Lifts the [is_restricted] predicate into a refinement type
This is the type of functions whose maximal domain is [a]
and whose (dependent) co-domain is [b].
*)
let restricted_t (a: Type) (b: (a -> Type)) = f: arrow a b {is_restricted a f}
(** [a ^-> b]:
Notation for non-dependent restricted functions from [a] to [b].
The first symbol [^] makes it right associative, as expected for
arrows.
*)
unfold
let op_Hat_Subtraction_Greater (a b: Type) = restricted_t a (fun _ -> b)
(** [on_dom a f]:
A convenience function to introduce a restricted, dependent function
*)
unfold
let on_dom (a: Type) (#b: (a -> Type)) (f: arrow a b) : restricted_t a b = on_domain a f
(** [on a f]:
A convenience function to introduce a restricted, non-dependent function
*)
unfold
let on (a #b: Type) (f: (a -> Tot b)) : (a ^-> b) = on_dom a f
(**** MAIN AXIOM *)
(** [extensionality]:
The main axiom of this module states that functions [f] and [g]
that are pointwise equal on domain [a] are provably equal when
restricted to [a] *)
val extensionality (a: Type) (b: (a -> Type)) (f g: arrow a b)
: Lemma (ensures (feq #a #b f g <==> on_domain a f == on_domain a g)) [SMTPat (feq #a #b f g)]
(**** DUPLICATED FOR GHOST FUNCTIONS *)
(** The type of ghost, total, dependent functions *)
unfold
let arrow_g (a: Type) (b: (a -> Type)) = x: a -> GTot (b x)
(** Use [arrow_g] instead *)
[@@ (deprecated "Use arrow_g instead")]
let efun_g (a: Type) (b: (a -> Type)) = arrow_g a b
(** [feq_g #a #b f g]: pointwise equality of [f] and [g] on domain [a] **)
let feq_g (#a: Type) (#b: (a -> Type)) (f g: arrow_g a b) =
forall x. {:pattern (f x)\/(g x)} f x == g x
(** The counterpart of [on_domain] for ghost functions *)
val on_domain_g (a: Type) (#b: (a -> Type)) (f: arrow_g a b) : Tot (arrow_g a b)
(** [on_domain_g a f] is pointwise equal to [f] *)
val feq_on_domain_g (#a: Type) (#b: (a -> Type)) (f: arrow_g a b)
: Lemma (feq_g (on_domain_g a f) f) [SMTPat (on_domain_g a f)]
(** on_domain_g is idempotent *)
val idempotence_on_domain_g (#a: Type) (#b: (a -> Type)) (f: arrow_g a b)
: Lemma (on_domain_g a (on_domain_g a f) == on_domain_g a f)
[SMTPat (on_domain_g a (on_domain_g a f))] | false | false | FStar.FunctionalExtensionality.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val is_restricted_g : a: Type -> f: FStar.FunctionalExtensionality.arrow_g a b -> Prims.logical | [] | FStar.FunctionalExtensionality.is_restricted_g | {
"file_name": "ulib/FStar.FunctionalExtensionality.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: Type -> f: FStar.FunctionalExtensionality.arrow_g a b -> Prims.logical | {
"end_col": 87,
"end_line": 162,
"start_col": 67,
"start_line": 162
} |
|
Prims.Tot | val on (a #b: Type) (f: (a -> Tot b)) : (a ^-> b) | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let on (a #b: Type) (f: (a -> Tot b)) : (a ^-> b) = on_dom a f | val on (a #b: Type) (f: (a -> Tot b)) : (a ^-> b)
let on (a #b: Type) (f: (a -> Tot b)) : (a ^-> b) = | false | null | false | on_dom a f | {
"checked_file": "FStar.FunctionalExtensionality.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FunctionalExtensionality.fsti"
} | [
"total"
] | [
"FStar.FunctionalExtensionality.on_dom",
"FStar.FunctionalExtensionality.op_Hat_Subtraction_Greater"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.FunctionalExtensionality
/// Functional extensionality asserts the equality of pointwise-equal
/// functions.
///
/// The formulation of this axiom is particularly subtle in F* because
/// of its interaction with subtyping. In fact, prior formulations of
/// this axiom were discovered to be unsound by Aseem Rastogi.
///
/// The predicate [feq #a #b f g] asserts that [f, g: x:a -> (b x)] are
/// pointwise equal on the domain [a].
///
/// However, due to subtyping [f] and [g] may also be defined on some
/// domain larger than [a]. We need to be careful to ensure that merely
/// proving [f] and [g] equal on their sub-domain [a] does not lead us
/// to conclude that they are equal everywhere.
///
/// For more context on how functional extensionality works in F*, see
/// 1. tests/micro-benchmarks/Test.FunctionalExtensionality.fst
/// 2. ulib/FStar.Map.fst and ulib/FStar.Map.fsti
/// 3. Issue #1542 on github.com/FStarLang/FStar/issues/1542
(** The type of total, dependent functions *)
unfold
let arrow (a: Type) (b: (a -> Type)) = x: a -> Tot (b x)
(** Using [arrow] instead *)
[@@ (deprecated "Use arrow instead")]
let efun (a: Type) (b: (a -> Type)) = arrow a b
(** feq #a #b f g: pointwise equality of [f] and [g] on domain [a] *)
let feq (#a: Type) (#b: (a -> Type)) (f g: arrow a b) = forall x. {:pattern (f x)\/(g x)} f x == g x
(** [on_domain a f]:
This is a key function provided by the module. It has several
features.
1. Intuitively, [on_domain a f] can be seen as a function whose
maximal domain is [a].
2. While, [on_domain a f] is proven to be *pointwise* equal to [f],
crucially it is not provably equal to [f], since [f] may
actually have a domain larger than [a].
3. [on_domain] is idempotent
4. [on_domain a f x] has special treatment in F*'s normalizer. It
reduces to [f x], reflecting the pointwise equality of
[on_domain a f] and [f].
5. [on_domain] is marked [inline_for_extraction], to eliminate the
overhead of an indirection in extracted code. (This feature
will be exercised as part of cross-module inlining across
interface boundaries)
*)
inline_for_extraction
val on_domain (a: Type) (#b: (a -> Type)) ([@@@strictly_positive] f: arrow a b) : Tot (arrow a b)
(** feq_on_domain:
[on_domain a f] is pointwise equal to [f]
*)
val feq_on_domain (#a: Type) (#b: (a -> Type)) (f: arrow a b)
: Lemma (feq (on_domain a f) f) [SMTPat (on_domain a f)]
(** on_domain is idempotent *)
val idempotence_on_domain (#a: Type) (#b: (a -> Type)) (f: arrow a b)
: Lemma (on_domain a (on_domain a f) == on_domain a f) [SMTPat (on_domain a (on_domain a f))]
(** [is_restricted a f]:
Though stated indirectly, [is_restricted a f] is valid when [f]
is a function whose maximal domain is equal to [a].
Equivalently, one may see its definition as
[exists g. f == on_domain a g]
*)
let is_restricted (a: Type) (#b: (a -> Type)) (f: arrow a b) = on_domain a f == f
(** restricted_t a b:
Lifts the [is_restricted] predicate into a refinement type
This is the type of functions whose maximal domain is [a]
and whose (dependent) co-domain is [b].
*)
let restricted_t (a: Type) (b: (a -> Type)) = f: arrow a b {is_restricted a f}
(** [a ^-> b]:
Notation for non-dependent restricted functions from [a] to [b].
The first symbol [^] makes it right associative, as expected for
arrows.
*)
unfold
let op_Hat_Subtraction_Greater (a b: Type) = restricted_t a (fun _ -> b)
(** [on_dom a f]:
A convenience function to introduce a restricted, dependent function
*)
unfold
let on_dom (a: Type) (#b: (a -> Type)) (f: arrow a b) : restricted_t a b = on_domain a f
(** [on a f]:
A convenience function to introduce a restricted, non-dependent function
*) | false | false | FStar.FunctionalExtensionality.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val on (a #b: Type) (f: (a -> Tot b)) : (a ^-> b) | [] | FStar.FunctionalExtensionality.on | {
"file_name": "ulib/FStar.FunctionalExtensionality.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: Type -> f: (_: a -> b) -> a ^-> b | {
"end_col": 62,
"end_line": 123,
"start_col": 52,
"start_line": 123
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let op_Hat_Subtraction_Greater_Greater (a b: Type) = restricted_g_t a (fun _ -> b) | let op_Hat_Subtraction_Greater_Greater (a b: Type) = | false | null | false | restricted_g_t a (fun _ -> b) | {
"checked_file": "FStar.FunctionalExtensionality.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FunctionalExtensionality.fsti"
} | [
"total"
] | [
"FStar.FunctionalExtensionality.restricted_g_t"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.FunctionalExtensionality
/// Functional extensionality asserts the equality of pointwise-equal
/// functions.
///
/// The formulation of this axiom is particularly subtle in F* because
/// of its interaction with subtyping. In fact, prior formulations of
/// this axiom were discovered to be unsound by Aseem Rastogi.
///
/// The predicate [feq #a #b f g] asserts that [f, g: x:a -> (b x)] are
/// pointwise equal on the domain [a].
///
/// However, due to subtyping [f] and [g] may also be defined on some
/// domain larger than [a]. We need to be careful to ensure that merely
/// proving [f] and [g] equal on their sub-domain [a] does not lead us
/// to conclude that they are equal everywhere.
///
/// For more context on how functional extensionality works in F*, see
/// 1. tests/micro-benchmarks/Test.FunctionalExtensionality.fst
/// 2. ulib/FStar.Map.fst and ulib/FStar.Map.fsti
/// 3. Issue #1542 on github.com/FStarLang/FStar/issues/1542
(** The type of total, dependent functions *)
unfold
let arrow (a: Type) (b: (a -> Type)) = x: a -> Tot (b x)
(** Using [arrow] instead *)
[@@ (deprecated "Use arrow instead")]
let efun (a: Type) (b: (a -> Type)) = arrow a b
(** feq #a #b f g: pointwise equality of [f] and [g] on domain [a] *)
let feq (#a: Type) (#b: (a -> Type)) (f g: arrow a b) = forall x. {:pattern (f x)\/(g x)} f x == g x
(** [on_domain a f]:
This is a key function provided by the module. It has several
features.
1. Intuitively, [on_domain a f] can be seen as a function whose
maximal domain is [a].
2. While, [on_domain a f] is proven to be *pointwise* equal to [f],
crucially it is not provably equal to [f], since [f] may
actually have a domain larger than [a].
3. [on_domain] is idempotent
4. [on_domain a f x] has special treatment in F*'s normalizer. It
reduces to [f x], reflecting the pointwise equality of
[on_domain a f] and [f].
5. [on_domain] is marked [inline_for_extraction], to eliminate the
overhead of an indirection in extracted code. (This feature
will be exercised as part of cross-module inlining across
interface boundaries)
*)
inline_for_extraction
val on_domain (a: Type) (#b: (a -> Type)) ([@@@strictly_positive] f: arrow a b) : Tot (arrow a b)
(** feq_on_domain:
[on_domain a f] is pointwise equal to [f]
*)
val feq_on_domain (#a: Type) (#b: (a -> Type)) (f: arrow a b)
: Lemma (feq (on_domain a f) f) [SMTPat (on_domain a f)]
(** on_domain is idempotent *)
val idempotence_on_domain (#a: Type) (#b: (a -> Type)) (f: arrow a b)
: Lemma (on_domain a (on_domain a f) == on_domain a f) [SMTPat (on_domain a (on_domain a f))]
(** [is_restricted a f]:
Though stated indirectly, [is_restricted a f] is valid when [f]
is a function whose maximal domain is equal to [a].
Equivalently, one may see its definition as
[exists g. f == on_domain a g]
*)
let is_restricted (a: Type) (#b: (a -> Type)) (f: arrow a b) = on_domain a f == f
(** restricted_t a b:
Lifts the [is_restricted] predicate into a refinement type
This is the type of functions whose maximal domain is [a]
and whose (dependent) co-domain is [b].
*)
let restricted_t (a: Type) (b: (a -> Type)) = f: arrow a b {is_restricted a f}
(** [a ^-> b]:
Notation for non-dependent restricted functions from [a] to [b].
The first symbol [^] makes it right associative, as expected for
arrows.
*)
unfold
let op_Hat_Subtraction_Greater (a b: Type) = restricted_t a (fun _ -> b)
(** [on_dom a f]:
A convenience function to introduce a restricted, dependent function
*)
unfold
let on_dom (a: Type) (#b: (a -> Type)) (f: arrow a b) : restricted_t a b = on_domain a f
(** [on a f]:
A convenience function to introduce a restricted, non-dependent function
*)
unfold
let on (a #b: Type) (f: (a -> Tot b)) : (a ^-> b) = on_dom a f
(**** MAIN AXIOM *)
(** [extensionality]:
The main axiom of this module states that functions [f] and [g]
that are pointwise equal on domain [a] are provably equal when
restricted to [a] *)
val extensionality (a: Type) (b: (a -> Type)) (f g: arrow a b)
: Lemma (ensures (feq #a #b f g <==> on_domain a f == on_domain a g)) [SMTPat (feq #a #b f g)]
(**** DUPLICATED FOR GHOST FUNCTIONS *)
(** The type of ghost, total, dependent functions *)
unfold
let arrow_g (a: Type) (b: (a -> Type)) = x: a -> GTot (b x)
(** Use [arrow_g] instead *)
[@@ (deprecated "Use arrow_g instead")]
let efun_g (a: Type) (b: (a -> Type)) = arrow_g a b
(** [feq_g #a #b f g]: pointwise equality of [f] and [g] on domain [a] **)
let feq_g (#a: Type) (#b: (a -> Type)) (f g: arrow_g a b) =
forall x. {:pattern (f x)\/(g x)} f x == g x
(** The counterpart of [on_domain] for ghost functions *)
val on_domain_g (a: Type) (#b: (a -> Type)) (f: arrow_g a b) : Tot (arrow_g a b)
(** [on_domain_g a f] is pointwise equal to [f] *)
val feq_on_domain_g (#a: Type) (#b: (a -> Type)) (f: arrow_g a b)
: Lemma (feq_g (on_domain_g a f) f) [SMTPat (on_domain_g a f)]
(** on_domain_g is idempotent *)
val idempotence_on_domain_g (#a: Type) (#b: (a -> Type)) (f: arrow_g a b)
: Lemma (on_domain_g a (on_domain_g a f) == on_domain_g a f)
[SMTPat (on_domain_g a (on_domain_g a f))]
(** Counterpart of [is_restricted] for ghost functions *)
let is_restricted_g (a: Type) (#b: (a -> Type)) (f: arrow_g a b) = on_domain_g a f == f
(** Counterpart of [restricted_t] for ghost functions *)
let restricted_g_t (a: Type) (b: (a -> Type)) = f: arrow_g a b {is_restricted_g a f}
(** [a ^->> b]:
Notation for ghost, non-dependent restricted functions from [a]
a to [b].
*) | false | true | FStar.FunctionalExtensionality.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val op_Hat_Subtraction_Greater_Greater : a: Type -> b: Type -> Type | [] | FStar.FunctionalExtensionality.op_Hat_Subtraction_Greater_Greater | {
"file_name": "ulib/FStar.FunctionalExtensionality.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: Type -> b: Type -> Type | {
"end_col": 82,
"end_line": 173,
"start_col": 53,
"start_line": 173
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let restricted_g_t (a: Type) (b: (a -> Type)) = f: arrow_g a b {is_restricted_g a f} | let restricted_g_t (a: Type) (b: (a -> Type)) = | false | null | false | f: arrow_g a b {is_restricted_g a f} | {
"checked_file": "FStar.FunctionalExtensionality.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FunctionalExtensionality.fsti"
} | [
"total"
] | [
"FStar.FunctionalExtensionality.arrow_g",
"FStar.FunctionalExtensionality.is_restricted_g"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.FunctionalExtensionality
/// Functional extensionality asserts the equality of pointwise-equal
/// functions.
///
/// The formulation of this axiom is particularly subtle in F* because
/// of its interaction with subtyping. In fact, prior formulations of
/// this axiom were discovered to be unsound by Aseem Rastogi.
///
/// The predicate [feq #a #b f g] asserts that [f, g: x:a -> (b x)] are
/// pointwise equal on the domain [a].
///
/// However, due to subtyping [f] and [g] may also be defined on some
/// domain larger than [a]. We need to be careful to ensure that merely
/// proving [f] and [g] equal on their sub-domain [a] does not lead us
/// to conclude that they are equal everywhere.
///
/// For more context on how functional extensionality works in F*, see
/// 1. tests/micro-benchmarks/Test.FunctionalExtensionality.fst
/// 2. ulib/FStar.Map.fst and ulib/FStar.Map.fsti
/// 3. Issue #1542 on github.com/FStarLang/FStar/issues/1542
(** The type of total, dependent functions *)
unfold
let arrow (a: Type) (b: (a -> Type)) = x: a -> Tot (b x)
(** Using [arrow] instead *)
[@@ (deprecated "Use arrow instead")]
let efun (a: Type) (b: (a -> Type)) = arrow a b
(** feq #a #b f g: pointwise equality of [f] and [g] on domain [a] *)
let feq (#a: Type) (#b: (a -> Type)) (f g: arrow a b) = forall x. {:pattern (f x)\/(g x)} f x == g x
(** [on_domain a f]:
This is a key function provided by the module. It has several
features.
1. Intuitively, [on_domain a f] can be seen as a function whose
maximal domain is [a].
2. While, [on_domain a f] is proven to be *pointwise* equal to [f],
crucially it is not provably equal to [f], since [f] may
actually have a domain larger than [a].
3. [on_domain] is idempotent
4. [on_domain a f x] has special treatment in F*'s normalizer. It
reduces to [f x], reflecting the pointwise equality of
[on_domain a f] and [f].
5. [on_domain] is marked [inline_for_extraction], to eliminate the
overhead of an indirection in extracted code. (This feature
will be exercised as part of cross-module inlining across
interface boundaries)
*)
inline_for_extraction
val on_domain (a: Type) (#b: (a -> Type)) ([@@@strictly_positive] f: arrow a b) : Tot (arrow a b)
(** feq_on_domain:
[on_domain a f] is pointwise equal to [f]
*)
val feq_on_domain (#a: Type) (#b: (a -> Type)) (f: arrow a b)
: Lemma (feq (on_domain a f) f) [SMTPat (on_domain a f)]
(** on_domain is idempotent *)
val idempotence_on_domain (#a: Type) (#b: (a -> Type)) (f: arrow a b)
: Lemma (on_domain a (on_domain a f) == on_domain a f) [SMTPat (on_domain a (on_domain a f))]
(** [is_restricted a f]:
Though stated indirectly, [is_restricted a f] is valid when [f]
is a function whose maximal domain is equal to [a].
Equivalently, one may see its definition as
[exists g. f == on_domain a g]
*)
let is_restricted (a: Type) (#b: (a -> Type)) (f: arrow a b) = on_domain a f == f
(** restricted_t a b:
Lifts the [is_restricted] predicate into a refinement type
This is the type of functions whose maximal domain is [a]
and whose (dependent) co-domain is [b].
*)
let restricted_t (a: Type) (b: (a -> Type)) = f: arrow a b {is_restricted a f}
(** [a ^-> b]:
Notation for non-dependent restricted functions from [a] to [b].
The first symbol [^] makes it right associative, as expected for
arrows.
*)
unfold
let op_Hat_Subtraction_Greater (a b: Type) = restricted_t a (fun _ -> b)
(** [on_dom a f]:
A convenience function to introduce a restricted, dependent function
*)
unfold
let on_dom (a: Type) (#b: (a -> Type)) (f: arrow a b) : restricted_t a b = on_domain a f
(** [on a f]:
A convenience function to introduce a restricted, non-dependent function
*)
unfold
let on (a #b: Type) (f: (a -> Tot b)) : (a ^-> b) = on_dom a f
(**** MAIN AXIOM *)
(** [extensionality]:
The main axiom of this module states that functions [f] and [g]
that are pointwise equal on domain [a] are provably equal when
restricted to [a] *)
val extensionality (a: Type) (b: (a -> Type)) (f g: arrow a b)
: Lemma (ensures (feq #a #b f g <==> on_domain a f == on_domain a g)) [SMTPat (feq #a #b f g)]
(**** DUPLICATED FOR GHOST FUNCTIONS *)
(** The type of ghost, total, dependent functions *)
unfold
let arrow_g (a: Type) (b: (a -> Type)) = x: a -> GTot (b x)
(** Use [arrow_g] instead *)
[@@ (deprecated "Use arrow_g instead")]
let efun_g (a: Type) (b: (a -> Type)) = arrow_g a b
(** [feq_g #a #b f g]: pointwise equality of [f] and [g] on domain [a] **)
let feq_g (#a: Type) (#b: (a -> Type)) (f g: arrow_g a b) =
forall x. {:pattern (f x)\/(g x)} f x == g x
(** The counterpart of [on_domain] for ghost functions *)
val on_domain_g (a: Type) (#b: (a -> Type)) (f: arrow_g a b) : Tot (arrow_g a b)
(** [on_domain_g a f] is pointwise equal to [f] *)
val feq_on_domain_g (#a: Type) (#b: (a -> Type)) (f: arrow_g a b)
: Lemma (feq_g (on_domain_g a f) f) [SMTPat (on_domain_g a f)]
(** on_domain_g is idempotent *)
val idempotence_on_domain_g (#a: Type) (#b: (a -> Type)) (f: arrow_g a b)
: Lemma (on_domain_g a (on_domain_g a f) == on_domain_g a f)
[SMTPat (on_domain_g a (on_domain_g a f))]
(** Counterpart of [is_restricted] for ghost functions *)
let is_restricted_g (a: Type) (#b: (a -> Type)) (f: arrow_g a b) = on_domain_g a f == f | false | false | FStar.FunctionalExtensionality.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val restricted_g_t : a: Type -> b: (_: a -> Type) -> Type | [] | FStar.FunctionalExtensionality.restricted_g_t | {
"file_name": "ulib/FStar.FunctionalExtensionality.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: Type -> b: (_: a -> Type) -> Type | {
"end_col": 84,
"end_line": 165,
"start_col": 48,
"start_line": 165
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let feq_g (#a: Type) (#b: (a -> Type)) (f g: arrow_g a b) =
forall x. {:pattern (f x)\/(g x)} f x == g x | let feq_g (#a: Type) (#b: (a -> Type)) (f g: arrow_g a b) = | false | null | false | forall x. {:pattern (f x)\/(g x)} f x == g x | {
"checked_file": "FStar.FunctionalExtensionality.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FunctionalExtensionality.fsti"
} | [
"total"
] | [
"FStar.FunctionalExtensionality.arrow_g",
"Prims.l_Forall",
"Prims.eq2",
"Prims.logical"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.FunctionalExtensionality
/// Functional extensionality asserts the equality of pointwise-equal
/// functions.
///
/// The formulation of this axiom is particularly subtle in F* because
/// of its interaction with subtyping. In fact, prior formulations of
/// this axiom were discovered to be unsound by Aseem Rastogi.
///
/// The predicate [feq #a #b f g] asserts that [f, g: x:a -> (b x)] are
/// pointwise equal on the domain [a].
///
/// However, due to subtyping [f] and [g] may also be defined on some
/// domain larger than [a]. We need to be careful to ensure that merely
/// proving [f] and [g] equal on their sub-domain [a] does not lead us
/// to conclude that they are equal everywhere.
///
/// For more context on how functional extensionality works in F*, see
/// 1. tests/micro-benchmarks/Test.FunctionalExtensionality.fst
/// 2. ulib/FStar.Map.fst and ulib/FStar.Map.fsti
/// 3. Issue #1542 on github.com/FStarLang/FStar/issues/1542
(** The type of total, dependent functions *)
unfold
let arrow (a: Type) (b: (a -> Type)) = x: a -> Tot (b x)
(** Using [arrow] instead *)
[@@ (deprecated "Use arrow instead")]
let efun (a: Type) (b: (a -> Type)) = arrow a b
(** feq #a #b f g: pointwise equality of [f] and [g] on domain [a] *)
let feq (#a: Type) (#b: (a -> Type)) (f g: arrow a b) = forall x. {:pattern (f x)\/(g x)} f x == g x
(** [on_domain a f]:
This is a key function provided by the module. It has several
features.
1. Intuitively, [on_domain a f] can be seen as a function whose
maximal domain is [a].
2. While, [on_domain a f] is proven to be *pointwise* equal to [f],
crucially it is not provably equal to [f], since [f] may
actually have a domain larger than [a].
3. [on_domain] is idempotent
4. [on_domain a f x] has special treatment in F*'s normalizer. It
reduces to [f x], reflecting the pointwise equality of
[on_domain a f] and [f].
5. [on_domain] is marked [inline_for_extraction], to eliminate the
overhead of an indirection in extracted code. (This feature
will be exercised as part of cross-module inlining across
interface boundaries)
*)
inline_for_extraction
val on_domain (a: Type) (#b: (a -> Type)) ([@@@strictly_positive] f: arrow a b) : Tot (arrow a b)
(** feq_on_domain:
[on_domain a f] is pointwise equal to [f]
*)
val feq_on_domain (#a: Type) (#b: (a -> Type)) (f: arrow a b)
: Lemma (feq (on_domain a f) f) [SMTPat (on_domain a f)]
(** on_domain is idempotent *)
val idempotence_on_domain (#a: Type) (#b: (a -> Type)) (f: arrow a b)
: Lemma (on_domain a (on_domain a f) == on_domain a f) [SMTPat (on_domain a (on_domain a f))]
(** [is_restricted a f]:
Though stated indirectly, [is_restricted a f] is valid when [f]
is a function whose maximal domain is equal to [a].
Equivalently, one may see its definition as
[exists g. f == on_domain a g]
*)
let is_restricted (a: Type) (#b: (a -> Type)) (f: arrow a b) = on_domain a f == f
(** restricted_t a b:
Lifts the [is_restricted] predicate into a refinement type
This is the type of functions whose maximal domain is [a]
and whose (dependent) co-domain is [b].
*)
let restricted_t (a: Type) (b: (a -> Type)) = f: arrow a b {is_restricted a f}
(** [a ^-> b]:
Notation for non-dependent restricted functions from [a] to [b].
The first symbol [^] makes it right associative, as expected for
arrows.
*)
unfold
let op_Hat_Subtraction_Greater (a b: Type) = restricted_t a (fun _ -> b)
(** [on_dom a f]:
A convenience function to introduce a restricted, dependent function
*)
unfold
let on_dom (a: Type) (#b: (a -> Type)) (f: arrow a b) : restricted_t a b = on_domain a f
(** [on a f]:
A convenience function to introduce a restricted, non-dependent function
*)
unfold
let on (a #b: Type) (f: (a -> Tot b)) : (a ^-> b) = on_dom a f
(**** MAIN AXIOM *)
(** [extensionality]:
The main axiom of this module states that functions [f] and [g]
that are pointwise equal on domain [a] are provably equal when
restricted to [a] *)
val extensionality (a: Type) (b: (a -> Type)) (f g: arrow a b)
: Lemma (ensures (feq #a #b f g <==> on_domain a f == on_domain a g)) [SMTPat (feq #a #b f g)]
(**** DUPLICATED FOR GHOST FUNCTIONS *)
(** The type of ghost, total, dependent functions *)
unfold
let arrow_g (a: Type) (b: (a -> Type)) = x: a -> GTot (b x)
(** Use [arrow_g] instead *)
[@@ (deprecated "Use arrow_g instead")]
let efun_g (a: Type) (b: (a -> Type)) = arrow_g a b
(** [feq_g #a #b f g]: pointwise equality of [f] and [g] on domain [a] **) | false | false | FStar.FunctionalExtensionality.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val feq_g : f: FStar.FunctionalExtensionality.arrow_g a b -> g: FStar.FunctionalExtensionality.arrow_g a b
-> Prims.logical | [] | FStar.FunctionalExtensionality.feq_g | {
"file_name": "ulib/FStar.FunctionalExtensionality.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | f: FStar.FunctionalExtensionality.arrow_g a b -> g: FStar.FunctionalExtensionality.arrow_g a b
-> Prims.logical | {
"end_col": 46,
"end_line": 147,
"start_col": 2,
"start_line": 147
} |
|
Prims.Tot | val on_dom (a: Type) (#b: (a -> Type)) (f: arrow a b) : restricted_t a b | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let on_dom (a: Type) (#b: (a -> Type)) (f: arrow a b) : restricted_t a b = on_domain a f | val on_dom (a: Type) (#b: (a -> Type)) (f: arrow a b) : restricted_t a b
let on_dom (a: Type) (#b: (a -> Type)) (f: arrow a b) : restricted_t a b = | false | null | false | on_domain a f | {
"checked_file": "FStar.FunctionalExtensionality.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FunctionalExtensionality.fsti"
} | [
"total"
] | [
"FStar.FunctionalExtensionality.arrow",
"FStar.FunctionalExtensionality.on_domain",
"FStar.FunctionalExtensionality.restricted_t"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.FunctionalExtensionality
/// Functional extensionality asserts the equality of pointwise-equal
/// functions.
///
/// The formulation of this axiom is particularly subtle in F* because
/// of its interaction with subtyping. In fact, prior formulations of
/// this axiom were discovered to be unsound by Aseem Rastogi.
///
/// The predicate [feq #a #b f g] asserts that [f, g: x:a -> (b x)] are
/// pointwise equal on the domain [a].
///
/// However, due to subtyping [f] and [g] may also be defined on some
/// domain larger than [a]. We need to be careful to ensure that merely
/// proving [f] and [g] equal on their sub-domain [a] does not lead us
/// to conclude that they are equal everywhere.
///
/// For more context on how functional extensionality works in F*, see
/// 1. tests/micro-benchmarks/Test.FunctionalExtensionality.fst
/// 2. ulib/FStar.Map.fst and ulib/FStar.Map.fsti
/// 3. Issue #1542 on github.com/FStarLang/FStar/issues/1542
(** The type of total, dependent functions *)
unfold
let arrow (a: Type) (b: (a -> Type)) = x: a -> Tot (b x)
(** Using [arrow] instead *)
[@@ (deprecated "Use arrow instead")]
let efun (a: Type) (b: (a -> Type)) = arrow a b
(** feq #a #b f g: pointwise equality of [f] and [g] on domain [a] *)
let feq (#a: Type) (#b: (a -> Type)) (f g: arrow a b) = forall x. {:pattern (f x)\/(g x)} f x == g x
(** [on_domain a f]:
This is a key function provided by the module. It has several
features.
1. Intuitively, [on_domain a f] can be seen as a function whose
maximal domain is [a].
2. While, [on_domain a f] is proven to be *pointwise* equal to [f],
crucially it is not provably equal to [f], since [f] may
actually have a domain larger than [a].
3. [on_domain] is idempotent
4. [on_domain a f x] has special treatment in F*'s normalizer. It
reduces to [f x], reflecting the pointwise equality of
[on_domain a f] and [f].
5. [on_domain] is marked [inline_for_extraction], to eliminate the
overhead of an indirection in extracted code. (This feature
will be exercised as part of cross-module inlining across
interface boundaries)
*)
inline_for_extraction
val on_domain (a: Type) (#b: (a -> Type)) ([@@@strictly_positive] f: arrow a b) : Tot (arrow a b)
(** feq_on_domain:
[on_domain a f] is pointwise equal to [f]
*)
val feq_on_domain (#a: Type) (#b: (a -> Type)) (f: arrow a b)
: Lemma (feq (on_domain a f) f) [SMTPat (on_domain a f)]
(** on_domain is idempotent *)
val idempotence_on_domain (#a: Type) (#b: (a -> Type)) (f: arrow a b)
: Lemma (on_domain a (on_domain a f) == on_domain a f) [SMTPat (on_domain a (on_domain a f))]
(** [is_restricted a f]:
Though stated indirectly, [is_restricted a f] is valid when [f]
is a function whose maximal domain is equal to [a].
Equivalently, one may see its definition as
[exists g. f == on_domain a g]
*)
let is_restricted (a: Type) (#b: (a -> Type)) (f: arrow a b) = on_domain a f == f
(** restricted_t a b:
Lifts the [is_restricted] predicate into a refinement type
This is the type of functions whose maximal domain is [a]
and whose (dependent) co-domain is [b].
*)
let restricted_t (a: Type) (b: (a -> Type)) = f: arrow a b {is_restricted a f}
(** [a ^-> b]:
Notation for non-dependent restricted functions from [a] to [b].
The first symbol [^] makes it right associative, as expected for
arrows.
*)
unfold
let op_Hat_Subtraction_Greater (a b: Type) = restricted_t a (fun _ -> b)
(** [on_dom a f]:
A convenience function to introduce a restricted, dependent function
*) | false | false | FStar.FunctionalExtensionality.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val on_dom (a: Type) (#b: (a -> Type)) (f: arrow a b) : restricted_t a b | [] | FStar.FunctionalExtensionality.on_dom | {
"file_name": "ulib/FStar.FunctionalExtensionality.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: Type -> f: FStar.FunctionalExtensionality.arrow a b
-> FStar.FunctionalExtensionality.restricted_t a b | {
"end_col": 88,
"end_line": 117,
"start_col": 75,
"start_line": 117
} |
Prims.Tot | val on_dom_g (a: Type) (#b: (a -> Type)) (f: arrow_g a b) : restricted_g_t a b | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let on_dom_g (a: Type) (#b: (a -> Type)) (f: arrow_g a b) : restricted_g_t a b = on_domain_g a f | val on_dom_g (a: Type) (#b: (a -> Type)) (f: arrow_g a b) : restricted_g_t a b
let on_dom_g (a: Type) (#b: (a -> Type)) (f: arrow_g a b) : restricted_g_t a b = | false | null | false | on_domain_g a f | {
"checked_file": "FStar.FunctionalExtensionality.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.FunctionalExtensionality.fsti"
} | [
"total"
] | [
"FStar.FunctionalExtensionality.arrow_g",
"FStar.FunctionalExtensionality.on_domain_g",
"FStar.FunctionalExtensionality.restricted_g_t"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.FunctionalExtensionality
/// Functional extensionality asserts the equality of pointwise-equal
/// functions.
///
/// The formulation of this axiom is particularly subtle in F* because
/// of its interaction with subtyping. In fact, prior formulations of
/// this axiom were discovered to be unsound by Aseem Rastogi.
///
/// The predicate [feq #a #b f g] asserts that [f, g: x:a -> (b x)] are
/// pointwise equal on the domain [a].
///
/// However, due to subtyping [f] and [g] may also be defined on some
/// domain larger than [a]. We need to be careful to ensure that merely
/// proving [f] and [g] equal on their sub-domain [a] does not lead us
/// to conclude that they are equal everywhere.
///
/// For more context on how functional extensionality works in F*, see
/// 1. tests/micro-benchmarks/Test.FunctionalExtensionality.fst
/// 2. ulib/FStar.Map.fst and ulib/FStar.Map.fsti
/// 3. Issue #1542 on github.com/FStarLang/FStar/issues/1542
(** The type of total, dependent functions *)
unfold
let arrow (a: Type) (b: (a -> Type)) = x: a -> Tot (b x)
(** Using [arrow] instead *)
[@@ (deprecated "Use arrow instead")]
let efun (a: Type) (b: (a -> Type)) = arrow a b
(** feq #a #b f g: pointwise equality of [f] and [g] on domain [a] *)
let feq (#a: Type) (#b: (a -> Type)) (f g: arrow a b) = forall x. {:pattern (f x)\/(g x)} f x == g x
(** [on_domain a f]:
This is a key function provided by the module. It has several
features.
1. Intuitively, [on_domain a f] can be seen as a function whose
maximal domain is [a].
2. While, [on_domain a f] is proven to be *pointwise* equal to [f],
crucially it is not provably equal to [f], since [f] may
actually have a domain larger than [a].
3. [on_domain] is idempotent
4. [on_domain a f x] has special treatment in F*'s normalizer. It
reduces to [f x], reflecting the pointwise equality of
[on_domain a f] and [f].
5. [on_domain] is marked [inline_for_extraction], to eliminate the
overhead of an indirection in extracted code. (This feature
will be exercised as part of cross-module inlining across
interface boundaries)
*)
inline_for_extraction
val on_domain (a: Type) (#b: (a -> Type)) ([@@@strictly_positive] f: arrow a b) : Tot (arrow a b)
(** feq_on_domain:
[on_domain a f] is pointwise equal to [f]
*)
val feq_on_domain (#a: Type) (#b: (a -> Type)) (f: arrow a b)
: Lemma (feq (on_domain a f) f) [SMTPat (on_domain a f)]
(** on_domain is idempotent *)
val idempotence_on_domain (#a: Type) (#b: (a -> Type)) (f: arrow a b)
: Lemma (on_domain a (on_domain a f) == on_domain a f) [SMTPat (on_domain a (on_domain a f))]
(** [is_restricted a f]:
Though stated indirectly, [is_restricted a f] is valid when [f]
is a function whose maximal domain is equal to [a].
Equivalently, one may see its definition as
[exists g. f == on_domain a g]
*)
let is_restricted (a: Type) (#b: (a -> Type)) (f: arrow a b) = on_domain a f == f
(** restricted_t a b:
Lifts the [is_restricted] predicate into a refinement type
This is the type of functions whose maximal domain is [a]
and whose (dependent) co-domain is [b].
*)
let restricted_t (a: Type) (b: (a -> Type)) = f: arrow a b {is_restricted a f}
(** [a ^-> b]:
Notation for non-dependent restricted functions from [a] to [b].
The first symbol [^] makes it right associative, as expected for
arrows.
*)
unfold
let op_Hat_Subtraction_Greater (a b: Type) = restricted_t a (fun _ -> b)
(** [on_dom a f]:
A convenience function to introduce a restricted, dependent function
*)
unfold
let on_dom (a: Type) (#b: (a -> Type)) (f: arrow a b) : restricted_t a b = on_domain a f
(** [on a f]:
A convenience function to introduce a restricted, non-dependent function
*)
unfold
let on (a #b: Type) (f: (a -> Tot b)) : (a ^-> b) = on_dom a f
(**** MAIN AXIOM *)
(** [extensionality]:
The main axiom of this module states that functions [f] and [g]
that are pointwise equal on domain [a] are provably equal when
restricted to [a] *)
val extensionality (a: Type) (b: (a -> Type)) (f g: arrow a b)
: Lemma (ensures (feq #a #b f g <==> on_domain a f == on_domain a g)) [SMTPat (feq #a #b f g)]
(**** DUPLICATED FOR GHOST FUNCTIONS *)
(** The type of ghost, total, dependent functions *)
unfold
let arrow_g (a: Type) (b: (a -> Type)) = x: a -> GTot (b x)
(** Use [arrow_g] instead *)
[@@ (deprecated "Use arrow_g instead")]
let efun_g (a: Type) (b: (a -> Type)) = arrow_g a b
(** [feq_g #a #b f g]: pointwise equality of [f] and [g] on domain [a] **)
let feq_g (#a: Type) (#b: (a -> Type)) (f g: arrow_g a b) =
forall x. {:pattern (f x)\/(g x)} f x == g x
(** The counterpart of [on_domain] for ghost functions *)
val on_domain_g (a: Type) (#b: (a -> Type)) (f: arrow_g a b) : Tot (arrow_g a b)
(** [on_domain_g a f] is pointwise equal to [f] *)
val feq_on_domain_g (#a: Type) (#b: (a -> Type)) (f: arrow_g a b)
: Lemma (feq_g (on_domain_g a f) f) [SMTPat (on_domain_g a f)]
(** on_domain_g is idempotent *)
val idempotence_on_domain_g (#a: Type) (#b: (a -> Type)) (f: arrow_g a b)
: Lemma (on_domain_g a (on_domain_g a f) == on_domain_g a f)
[SMTPat (on_domain_g a (on_domain_g a f))]
(** Counterpart of [is_restricted] for ghost functions *)
let is_restricted_g (a: Type) (#b: (a -> Type)) (f: arrow_g a b) = on_domain_g a f == f
(** Counterpart of [restricted_t] for ghost functions *)
let restricted_g_t (a: Type) (b: (a -> Type)) = f: arrow_g a b {is_restricted_g a f}
(** [a ^->> b]:
Notation for ghost, non-dependent restricted functions from [a]
a to [b].
*)
unfold
let op_Hat_Subtraction_Greater_Greater (a b: Type) = restricted_g_t a (fun _ -> b)
(** [on_dom_g a f]:
A convenience function to introduce a restricted, ghost, dependent function
*) | false | false | FStar.FunctionalExtensionality.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val on_dom_g (a: Type) (#b: (a -> Type)) (f: arrow_g a b) : restricted_g_t a b | [] | FStar.FunctionalExtensionality.on_dom_g | {
"file_name": "ulib/FStar.FunctionalExtensionality.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: Type -> f: FStar.FunctionalExtensionality.arrow_g a b
-> FStar.FunctionalExtensionality.restricted_g_t a b | {
"end_col": 96,
"end_line": 179,
"start_col": 81,
"start_line": 179
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "Steel.ST.Util",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.SizeT",
"short_module": "US"
},
{
"abbrev": false,
"full_module": "Steel.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let u32_between (s f:US.t)
= x:US.t { US.v s <= US.v x /\ US.v x < US.v f} | let u32_between (s f: US.t) = | false | null | false | x: US.t{US.v s <= US.v x /\ US.v x < US.v f} | {
"checked_file": "Steel.ST.Loops.fsti.checked",
"dependencies": [
"Steel.ST.Util.fsti.checked",
"prims.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.Loops.fsti"
} | [
"total"
] | [
"FStar.SizeT.t",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.SizeT.v",
"Prims.op_LessThan"
] | [] | (*
Copyright 2021 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.ST.Loops
module US = FStar.SizeT
open Steel.ST.Util
(* This module provides some common iterative looping combinators *)
let nat_at_most (f:US.t)
= x:nat{ x <= US.v f } | false | true | Steel.ST.Loops.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val u32_between : s: FStar.SizeT.t -> f: FStar.SizeT.t -> Type0 | [] | Steel.ST.Loops.u32_between | {
"file_name": "lib/steel/Steel.ST.Loops.fsti",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | s: FStar.SizeT.t -> f: FStar.SizeT.t -> Type0 | {
"end_col": 49,
"end_line": 26,
"start_col": 4,
"start_line": 26
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "Steel.ST.Util",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.SizeT",
"short_module": "US"
},
{
"abbrev": false,
"full_module": "Steel.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let nat_at_most (f:US.t)
= x:nat{ x <= US.v f } | let nat_at_most (f: US.t) = | false | null | false | x: nat{x <= US.v f} | {
"checked_file": "Steel.ST.Loops.fsti.checked",
"dependencies": [
"Steel.ST.Util.fsti.checked",
"prims.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.Loops.fsti"
} | [
"total"
] | [
"FStar.SizeT.t",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.SizeT.v"
] | [] | (*
Copyright 2021 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.ST.Loops
module US = FStar.SizeT
open Steel.ST.Util
(* This module provides some common iterative looping combinators *) | false | true | Steel.ST.Loops.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val nat_at_most : f: FStar.SizeT.t -> Type0 | [] | Steel.ST.Loops.nat_at_most | {
"file_name": "lib/steel/Steel.ST.Loops.fsti",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | f: FStar.SizeT.t -> Type0 | {
"end_col": 24,
"end_line": 23,
"start_col": 4,
"start_line": 23
} |
|
FStar.Tactics.Effect.Tac | val forall_maybe_enum_key_unknown_tac: Prims.unit -> T.Tac unit | [
{
"abbrev": true,
"full_module": "LowParse.TacLib",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Enum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Tac",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Tac",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let forall_maybe_enum_key_unknown_tac () : T.Tac unit =
let open T in
let x = intro () in
norm [delta; iota; zeta; primops];
trivial ();
qed () | val forall_maybe_enum_key_unknown_tac: Prims.unit -> T.Tac unit
let forall_maybe_enum_key_unknown_tac () : T.Tac unit = | true | null | false | let open T in
let x = intro () in
norm [delta; iota; zeta; primops];
trivial ();
qed () | {
"checked_file": "LowParse.Spec.Tac.Enum.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.TacLib.fst.checked",
"LowParse.Spec.Enum.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.Tac.Enum.fst"
} | [] | [
"Prims.unit",
"FStar.Tactics.V1.Derived.qed",
"FStar.Tactics.V1.Derived.trivial",
"FStar.Tactics.V1.Builtins.norm",
"Prims.Cons",
"FStar.Pervasives.norm_step",
"FStar.Pervasives.delta",
"FStar.Pervasives.iota",
"FStar.Pervasives.zeta",
"FStar.Pervasives.primops",
"Prims.Nil",
"FStar.Reflection.Types.binder",
"FStar.Tactics.V1.Builtins.intro"
] | [] | module LowParse.Spec.Tac.Enum
include LowParse.Spec.Enum
module T = LowParse.TacLib
//
// The enum tactic solves goals of type ?u:eqtype with enum types that are
// in the environment at type Type0
// So typechecking such uvars fails since F* 2635 bug fix
// (since uvar solutions are checked with smt off)
//
// To circumvent that, we use t_apply with tc_resolve_uvars flag on,
// so that ?u will be typechecked as soon as it is resolved,
// resulting in an smt guard that will be added to the proofstate
//
let apply (t:T.term) : T.Tac unit =
T.t_apply true false true t
noextract
let rec enum_tac_gen
(t_cons_nil: T.term)
(t_cons: T.term)
(#key #repr: Type)
(e: list (key * repr))
: T.Tac unit
= match e with
| [] -> T.fail "enum_tac_gen: e must be cons"
| [_] ->
apply t_cons_nil;
T.iseq [
T.solve_vc;
T.solve_vc;
];
T.qed ()
| _ :: e_ ->
apply t_cons;
T.iseq [
T.solve_vc;
(fun () -> enum_tac_gen t_cons_nil t_cons e_);
];
T.qed ()
noextract
let maybe_enum_key_of_repr_tac
(#key #repr: Type)
(e: list (key * repr))
: T.Tac unit
= enum_tac_gen (quote maybe_enum_key_of_repr'_t_cons_nil') (quote maybe_enum_key_of_repr'_t_cons') e
noextract
let enum_repr_of_key_tac
(#key #repr: Type)
(e: list (key * repr))
: T.Tac unit
= enum_tac_gen (quote enum_repr_of_key_cons_nil') (quote enum_repr_of_key_cons') e
noextract
let synth_maybe_enum_key_inv_unknown_tac (#key: Type) (x: key) : T.Tac unit =
let open T in
destruct (quote x);
to_all_goals (fun () ->
let breq = intros_until_squash () in
rewrite breq;
norm [delta; iota; zeta; primops];
trivial ();
qed ()
);
qed ()
noextract
let forall_maybe_enum_key_known_tac () : T.Tac unit =
let open T in
norm [delta; iota; zeta; primops];
trivial ();
qed ()
noextract | false | false | LowParse.Spec.Tac.Enum.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val forall_maybe_enum_key_unknown_tac: Prims.unit -> T.Tac unit | [] | LowParse.Spec.Tac.Enum.forall_maybe_enum_key_unknown_tac | {
"file_name": "src/lowparse/LowParse.Spec.Tac.Enum.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | {
"end_col": 12,
"end_line": 84,
"start_col": 6,
"start_line": 80
} |
FStar.Tactics.Effect.Tac | val forall_maybe_enum_key_known_tac: Prims.unit -> T.Tac unit | [
{
"abbrev": true,
"full_module": "LowParse.TacLib",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Enum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Tac",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Tac",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let forall_maybe_enum_key_known_tac () : T.Tac unit =
let open T in
norm [delta; iota; zeta; primops];
trivial ();
qed () | val forall_maybe_enum_key_known_tac: Prims.unit -> T.Tac unit
let forall_maybe_enum_key_known_tac () : T.Tac unit = | true | null | false | let open T in
norm [delta; iota; zeta; primops];
trivial ();
qed () | {
"checked_file": "LowParse.Spec.Tac.Enum.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.TacLib.fst.checked",
"LowParse.Spec.Enum.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.Tac.Enum.fst"
} | [] | [
"Prims.unit",
"FStar.Tactics.V1.Derived.qed",
"FStar.Tactics.V1.Derived.trivial",
"FStar.Tactics.V1.Builtins.norm",
"Prims.Cons",
"FStar.Pervasives.norm_step",
"FStar.Pervasives.delta",
"FStar.Pervasives.iota",
"FStar.Pervasives.zeta",
"FStar.Pervasives.primops",
"Prims.Nil"
] | [] | module LowParse.Spec.Tac.Enum
include LowParse.Spec.Enum
module T = LowParse.TacLib
//
// The enum tactic solves goals of type ?u:eqtype with enum types that are
// in the environment at type Type0
// So typechecking such uvars fails since F* 2635 bug fix
// (since uvar solutions are checked with smt off)
//
// To circumvent that, we use t_apply with tc_resolve_uvars flag on,
// so that ?u will be typechecked as soon as it is resolved,
// resulting in an smt guard that will be added to the proofstate
//
let apply (t:T.term) : T.Tac unit =
T.t_apply true false true t
noextract
let rec enum_tac_gen
(t_cons_nil: T.term)
(t_cons: T.term)
(#key #repr: Type)
(e: list (key * repr))
: T.Tac unit
= match e with
| [] -> T.fail "enum_tac_gen: e must be cons"
| [_] ->
apply t_cons_nil;
T.iseq [
T.solve_vc;
T.solve_vc;
];
T.qed ()
| _ :: e_ ->
apply t_cons;
T.iseq [
T.solve_vc;
(fun () -> enum_tac_gen t_cons_nil t_cons e_);
];
T.qed ()
noextract
let maybe_enum_key_of_repr_tac
(#key #repr: Type)
(e: list (key * repr))
: T.Tac unit
= enum_tac_gen (quote maybe_enum_key_of_repr'_t_cons_nil') (quote maybe_enum_key_of_repr'_t_cons') e
noextract
let enum_repr_of_key_tac
(#key #repr: Type)
(e: list (key * repr))
: T.Tac unit
= enum_tac_gen (quote enum_repr_of_key_cons_nil') (quote enum_repr_of_key_cons') e
noextract
let synth_maybe_enum_key_inv_unknown_tac (#key: Type) (x: key) : T.Tac unit =
let open T in
destruct (quote x);
to_all_goals (fun () ->
let breq = intros_until_squash () in
rewrite breq;
norm [delta; iota; zeta; primops];
trivial ();
qed ()
);
qed ()
noextract | false | false | LowParse.Spec.Tac.Enum.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val forall_maybe_enum_key_known_tac: Prims.unit -> T.Tac unit | [] | LowParse.Spec.Tac.Enum.forall_maybe_enum_key_known_tac | {
"file_name": "src/lowparse/LowParse.Spec.Tac.Enum.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | {
"end_col": 12,
"end_line": 76,
"start_col": 6,
"start_line": 73
} |
FStar.Tactics.Effect.Tac | val apply (t: T.term) : T.Tac unit | [
{
"abbrev": true,
"full_module": "LowParse.TacLib",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Enum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Tac",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Tac",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let apply (t:T.term) : T.Tac unit =
T.t_apply true false true t | val apply (t: T.term) : T.Tac unit
let apply (t: T.term) : T.Tac unit = | true | null | false | T.t_apply true false true t | {
"checked_file": "LowParse.Spec.Tac.Enum.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.TacLib.fst.checked",
"LowParse.Spec.Enum.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.Tac.Enum.fst"
} | [] | [
"FStar.Reflection.Types.term",
"FStar.Tactics.V1.Builtins.t_apply",
"Prims.unit"
] | [] | module LowParse.Spec.Tac.Enum
include LowParse.Spec.Enum
module T = LowParse.TacLib
//
// The enum tactic solves goals of type ?u:eqtype with enum types that are
// in the environment at type Type0
// So typechecking such uvars fails since F* 2635 bug fix
// (since uvar solutions are checked with smt off)
//
// To circumvent that, we use t_apply with tc_resolve_uvars flag on,
// so that ?u will be typechecked as soon as it is resolved,
// resulting in an smt guard that will be added to the proofstate
// | false | false | LowParse.Spec.Tac.Enum.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val apply (t: T.term) : T.Tac unit | [] | LowParse.Spec.Tac.Enum.apply | {
"file_name": "src/lowparse/LowParse.Spec.Tac.Enum.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | t: FStar.Reflection.Types.term -> FStar.Tactics.Effect.Tac Prims.unit | {
"end_col": 29,
"end_line": 18,
"start_col": 2,
"start_line": 18
} |
FStar.Tactics.Effect.Tac | val maybe_enum_key_of_repr_tac (#key #repr: Type) (e: list (key * repr)) : T.Tac unit | [
{
"abbrev": true,
"full_module": "LowParse.TacLib",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Enum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Tac",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Tac",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let maybe_enum_key_of_repr_tac
(#key #repr: Type)
(e: list (key * repr))
: T.Tac unit
= enum_tac_gen (quote maybe_enum_key_of_repr'_t_cons_nil') (quote maybe_enum_key_of_repr'_t_cons') e | val maybe_enum_key_of_repr_tac (#key #repr: Type) (e: list (key * repr)) : T.Tac unit
let maybe_enum_key_of_repr_tac (#key #repr: Type) (e: list (key * repr)) : T.Tac unit = | true | null | false | enum_tac_gen (quote maybe_enum_key_of_repr'_t_cons_nil') (quote maybe_enum_key_of_repr'_t_cons') e | {
"checked_file": "LowParse.Spec.Tac.Enum.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.TacLib.fst.checked",
"LowParse.Spec.Enum.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.Tac.Enum.fst"
} | [] | [
"Prims.list",
"FStar.Pervasives.Native.tuple2",
"LowParse.Spec.Tac.Enum.enum_tac_gen",
"Prims.unit",
"FStar.Reflection.Types.term",
"LowParse.Spec.Enum.maybe_enum_key_of_repr'_t_cons'",
"LowParse.Spec.Enum.maybe_enum_key_of_repr'_t_cons_nil'"
] | [] | module LowParse.Spec.Tac.Enum
include LowParse.Spec.Enum
module T = LowParse.TacLib
//
// The enum tactic solves goals of type ?u:eqtype with enum types that are
// in the environment at type Type0
// So typechecking such uvars fails since F* 2635 bug fix
// (since uvar solutions are checked with smt off)
//
// To circumvent that, we use t_apply with tc_resolve_uvars flag on,
// so that ?u will be typechecked as soon as it is resolved,
// resulting in an smt guard that will be added to the proofstate
//
let apply (t:T.term) : T.Tac unit =
T.t_apply true false true t
noextract
let rec enum_tac_gen
(t_cons_nil: T.term)
(t_cons: T.term)
(#key #repr: Type)
(e: list (key * repr))
: T.Tac unit
= match e with
| [] -> T.fail "enum_tac_gen: e must be cons"
| [_] ->
apply t_cons_nil;
T.iseq [
T.solve_vc;
T.solve_vc;
];
T.qed ()
| _ :: e_ ->
apply t_cons;
T.iseq [
T.solve_vc;
(fun () -> enum_tac_gen t_cons_nil t_cons e_);
];
T.qed ()
noextract
let maybe_enum_key_of_repr_tac
(#key #repr: Type)
(e: list (key * repr)) | false | false | LowParse.Spec.Tac.Enum.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val maybe_enum_key_of_repr_tac (#key #repr: Type) (e: list (key * repr)) : T.Tac unit | [] | LowParse.Spec.Tac.Enum.maybe_enum_key_of_repr_tac | {
"file_name": "src/lowparse/LowParse.Spec.Tac.Enum.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | e: Prims.list (key * repr) -> FStar.Tactics.Effect.Tac Prims.unit | {
"end_col": 100,
"end_line": 49,
"start_col": 2,
"start_line": 49
} |
FStar.Tactics.Effect.Tac | val enum_repr_of_key_tac (#key #repr: Type) (e: list (key * repr)) : T.Tac unit | [
{
"abbrev": true,
"full_module": "LowParse.TacLib",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Enum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Tac",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Tac",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let enum_repr_of_key_tac
(#key #repr: Type)
(e: list (key * repr))
: T.Tac unit
= enum_tac_gen (quote enum_repr_of_key_cons_nil') (quote enum_repr_of_key_cons') e | val enum_repr_of_key_tac (#key #repr: Type) (e: list (key * repr)) : T.Tac unit
let enum_repr_of_key_tac (#key #repr: Type) (e: list (key * repr)) : T.Tac unit = | true | null | false | enum_tac_gen (quote enum_repr_of_key_cons_nil') (quote enum_repr_of_key_cons') e | {
"checked_file": "LowParse.Spec.Tac.Enum.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.TacLib.fst.checked",
"LowParse.Spec.Enum.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.Tac.Enum.fst"
} | [] | [
"Prims.list",
"FStar.Pervasives.Native.tuple2",
"LowParse.Spec.Tac.Enum.enum_tac_gen",
"Prims.unit",
"FStar.Reflection.Types.term",
"LowParse.Spec.Enum.enum_repr_of_key_cons'",
"LowParse.Spec.Enum.enum_repr_of_key_cons_nil'"
] | [] | module LowParse.Spec.Tac.Enum
include LowParse.Spec.Enum
module T = LowParse.TacLib
//
// The enum tactic solves goals of type ?u:eqtype with enum types that are
// in the environment at type Type0
// So typechecking such uvars fails since F* 2635 bug fix
// (since uvar solutions are checked with smt off)
//
// To circumvent that, we use t_apply with tc_resolve_uvars flag on,
// so that ?u will be typechecked as soon as it is resolved,
// resulting in an smt guard that will be added to the proofstate
//
let apply (t:T.term) : T.Tac unit =
T.t_apply true false true t
noextract
let rec enum_tac_gen
(t_cons_nil: T.term)
(t_cons: T.term)
(#key #repr: Type)
(e: list (key * repr))
: T.Tac unit
= match e with
| [] -> T.fail "enum_tac_gen: e must be cons"
| [_] ->
apply t_cons_nil;
T.iseq [
T.solve_vc;
T.solve_vc;
];
T.qed ()
| _ :: e_ ->
apply t_cons;
T.iseq [
T.solve_vc;
(fun () -> enum_tac_gen t_cons_nil t_cons e_);
];
T.qed ()
noextract
let maybe_enum_key_of_repr_tac
(#key #repr: Type)
(e: list (key * repr))
: T.Tac unit
= enum_tac_gen (quote maybe_enum_key_of_repr'_t_cons_nil') (quote maybe_enum_key_of_repr'_t_cons') e
noextract
let enum_repr_of_key_tac
(#key #repr: Type)
(e: list (key * repr)) | false | false | LowParse.Spec.Tac.Enum.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val enum_repr_of_key_tac (#key #repr: Type) (e: list (key * repr)) : T.Tac unit | [] | LowParse.Spec.Tac.Enum.enum_repr_of_key_tac | {
"file_name": "src/lowparse/LowParse.Spec.Tac.Enum.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | e: Prims.list (key * repr) -> FStar.Tactics.Effect.Tac Prims.unit | {
"end_col": 82,
"end_line": 56,
"start_col": 2,
"start_line": 56
} |
FStar.Tactics.Effect.Tac | val synth_maybe_enum_key_inv_unknown_tac (#key: Type) (x: key) : T.Tac unit | [
{
"abbrev": true,
"full_module": "LowParse.TacLib",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Enum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Tac",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Tac",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let synth_maybe_enum_key_inv_unknown_tac (#key: Type) (x: key) : T.Tac unit =
let open T in
destruct (quote x);
to_all_goals (fun () ->
let breq = intros_until_squash () in
rewrite breq;
norm [delta; iota; zeta; primops];
trivial ();
qed ()
);
qed () | val synth_maybe_enum_key_inv_unknown_tac (#key: Type) (x: key) : T.Tac unit
let synth_maybe_enum_key_inv_unknown_tac (#key: Type) (x: key) : T.Tac unit = | true | null | false | let open T in
destruct (quote x);
to_all_goals (fun () ->
let breq = intros_until_squash () in
rewrite breq;
norm [delta; iota; zeta; primops];
trivial ();
qed ());
qed () | {
"checked_file": "LowParse.Spec.Tac.Enum.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.TacLib.fst.checked",
"LowParse.Spec.Enum.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.Tac.Enum.fst"
} | [] | [
"FStar.Tactics.V1.Derived.qed",
"Prims.unit",
"LowParse.TacLib.to_all_goals",
"FStar.Tactics.V1.Derived.trivial",
"FStar.Tactics.V1.Builtins.norm",
"Prims.Cons",
"FStar.Pervasives.norm_step",
"FStar.Pervasives.delta",
"FStar.Pervasives.iota",
"FStar.Pervasives.zeta",
"FStar.Pervasives.primops",
"Prims.Nil",
"FStar.Tactics.V1.Builtins.rewrite",
"FStar.Reflection.Types.binder",
"LowParse.TacLib.intros_until_squash",
"FStar.Tactics.V1.Derived.destruct",
"FStar.Reflection.Types.term"
] | [] | module LowParse.Spec.Tac.Enum
include LowParse.Spec.Enum
module T = LowParse.TacLib
//
// The enum tactic solves goals of type ?u:eqtype with enum types that are
// in the environment at type Type0
// So typechecking such uvars fails since F* 2635 bug fix
// (since uvar solutions are checked with smt off)
//
// To circumvent that, we use t_apply with tc_resolve_uvars flag on,
// so that ?u will be typechecked as soon as it is resolved,
// resulting in an smt guard that will be added to the proofstate
//
let apply (t:T.term) : T.Tac unit =
T.t_apply true false true t
noextract
let rec enum_tac_gen
(t_cons_nil: T.term)
(t_cons: T.term)
(#key #repr: Type)
(e: list (key * repr))
: T.Tac unit
= match e with
| [] -> T.fail "enum_tac_gen: e must be cons"
| [_] ->
apply t_cons_nil;
T.iseq [
T.solve_vc;
T.solve_vc;
];
T.qed ()
| _ :: e_ ->
apply t_cons;
T.iseq [
T.solve_vc;
(fun () -> enum_tac_gen t_cons_nil t_cons e_);
];
T.qed ()
noextract
let maybe_enum_key_of_repr_tac
(#key #repr: Type)
(e: list (key * repr))
: T.Tac unit
= enum_tac_gen (quote maybe_enum_key_of_repr'_t_cons_nil') (quote maybe_enum_key_of_repr'_t_cons') e
noextract
let enum_repr_of_key_tac
(#key #repr: Type)
(e: list (key * repr))
: T.Tac unit
= enum_tac_gen (quote enum_repr_of_key_cons_nil') (quote enum_repr_of_key_cons') e
noextract | false | false | LowParse.Spec.Tac.Enum.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val synth_maybe_enum_key_inv_unknown_tac (#key: Type) (x: key) : T.Tac unit | [] | LowParse.Spec.Tac.Enum.synth_maybe_enum_key_inv_unknown_tac | {
"file_name": "src/lowparse/LowParse.Spec.Tac.Enum.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | x: key -> FStar.Tactics.Effect.Tac Prims.unit | {
"end_col": 10,
"end_line": 69,
"start_col": 2,
"start_line": 60
} |
FStar.Tactics.Effect.Tac | val enum_tac_gen (t_cons_nil t_cons: T.term) (#key #repr: Type) (e: list (key * repr)) : T.Tac unit | [
{
"abbrev": true,
"full_module": "LowParse.TacLib",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Enum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Tac",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Tac",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec enum_tac_gen
(t_cons_nil: T.term)
(t_cons: T.term)
(#key #repr: Type)
(e: list (key * repr))
: T.Tac unit
= match e with
| [] -> T.fail "enum_tac_gen: e must be cons"
| [_] ->
apply t_cons_nil;
T.iseq [
T.solve_vc;
T.solve_vc;
];
T.qed ()
| _ :: e_ ->
apply t_cons;
T.iseq [
T.solve_vc;
(fun () -> enum_tac_gen t_cons_nil t_cons e_);
];
T.qed () | val enum_tac_gen (t_cons_nil t_cons: T.term) (#key #repr: Type) (e: list (key * repr)) : T.Tac unit
let rec enum_tac_gen (t_cons_nil t_cons: T.term) (#key #repr: Type) (e: list (key * repr))
: T.Tac unit = | true | null | false | match e with
| [] -> T.fail "enum_tac_gen: e must be cons"
| [_] ->
apply t_cons_nil;
T.iseq [T.solve_vc; T.solve_vc];
T.qed ()
| _ :: e_ ->
apply t_cons;
T.iseq [T.solve_vc; (fun () -> enum_tac_gen t_cons_nil t_cons e_)];
T.qed () | {
"checked_file": "LowParse.Spec.Tac.Enum.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.TacLib.fst.checked",
"LowParse.Spec.Enum.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.Tac.Enum.fst"
} | [] | [
"FStar.Reflection.Types.term",
"Prims.list",
"FStar.Pervasives.Native.tuple2",
"FStar.Tactics.V1.Derived.fail",
"Prims.unit",
"FStar.Tactics.V1.Derived.qed",
"FStar.Tactics.V1.Derived.iseq",
"Prims.Cons",
"LowParse.TacLib.solve_vc",
"Prims.Nil",
"LowParse.Spec.Tac.Enum.apply",
"LowParse.Spec.Tac.Enum.enum_tac_gen"
] | [] | module LowParse.Spec.Tac.Enum
include LowParse.Spec.Enum
module T = LowParse.TacLib
//
// The enum tactic solves goals of type ?u:eqtype with enum types that are
// in the environment at type Type0
// So typechecking such uvars fails since F* 2635 bug fix
// (since uvar solutions are checked with smt off)
//
// To circumvent that, we use t_apply with tc_resolve_uvars flag on,
// so that ?u will be typechecked as soon as it is resolved,
// resulting in an smt guard that will be added to the proofstate
//
let apply (t:T.term) : T.Tac unit =
T.t_apply true false true t
noextract
let rec enum_tac_gen
(t_cons_nil: T.term)
(t_cons: T.term)
(#key #repr: Type)
(e: list (key * repr)) | false | false | LowParse.Spec.Tac.Enum.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val enum_tac_gen (t_cons_nil t_cons: T.term) (#key #repr: Type) (e: list (key * repr)) : T.Tac unit | [
"recursion"
] | LowParse.Spec.Tac.Enum.enum_tac_gen | {
"file_name": "src/lowparse/LowParse.Spec.Tac.Enum.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
t_cons_nil: FStar.Reflection.Types.term ->
t_cons: FStar.Reflection.Types.term ->
e: Prims.list (key * repr)
-> FStar.Tactics.Effect.Tac Prims.unit | {
"end_col": 12,
"end_line": 42,
"start_col": 2,
"start_line": 27
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let vec_t4 (t:v_inttype) = vec_t t 4 & vec_t t 4 & vec_t t 4 & vec_t t 4 | let vec_t4 (t: v_inttype) = | false | null | false | vec_t t 4 & vec_t t 4 & vec_t t 4 & vec_t t 4 | {
"checked_file": "Lib.IntVector.Transpose.fsti.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntVector.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Lib.IntVector.Transpose.fsti"
} | [
"total"
] | [
"Lib.IntVector.v_inttype",
"FStar.Pervasives.Native.tuple4",
"Lib.IntVector.vec_t"
] | [] | module Lib.IntVector.Transpose
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.IntVector
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0" | false | true | Lib.IntVector.Transpose.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val vec_t4 : t: Lib.IntVector.v_inttype -> Type0 | [] | Lib.IntVector.Transpose.vec_t4 | {
"file_name": "lib/Lib.IntVector.Transpose.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | t: Lib.IntVector.v_inttype -> Type0 | {
"end_col": 72,
"end_line": 11,
"start_col": 27,
"start_line": 11
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let vec_t8 (t:v_inttype) = vec_t t 8 & vec_t t 8 & vec_t t 8 & vec_t t 8 & vec_t t 8 & vec_t t 8 & vec_t t 8 & vec_t t 8 | let vec_t8 (t: v_inttype) = | false | null | false | vec_t t 8 & vec_t t 8 & vec_t t 8 & vec_t t 8 & vec_t t 8 & vec_t t 8 & vec_t t 8 & vec_t t 8 | {
"checked_file": "Lib.IntVector.Transpose.fsti.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntVector.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Lib.IntVector.Transpose.fsti"
} | [
"total"
] | [
"Lib.IntVector.v_inttype",
"FStar.Pervasives.Native.tuple8",
"Lib.IntVector.vec_t"
] | [] | module Lib.IntVector.Transpose
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.IntVector
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction
let vec_t4 (t:v_inttype) = vec_t t 4 & vec_t t 4 & vec_t t 4 & vec_t t 4 | false | true | Lib.IntVector.Transpose.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val vec_t8 : t: Lib.IntVector.v_inttype -> Type0 | [] | Lib.IntVector.Transpose.vec_t8 | {
"file_name": "lib/Lib.IntVector.Transpose.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | t: Lib.IntVector.v_inttype -> Type0 | {
"end_col": 120,
"end_line": 14,
"start_col": 27,
"start_line": 14
} |
|
Prims.Tot | val transpose4x4_lseq (#t: v_inttype{t = U32 \/ t = U64}) (vs: lseq (vec_t t 4) 4)
: lseq (vec_t t 4) 4 | [
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let transpose4x4_lseq (#t:v_inttype{t = U32 \/ t = U64}) (vs:lseq (vec_t t 4) 4) : lseq (vec_t t 4) 4 =
let (v0,v1,v2,v3) = (vs.[0],vs.[1],vs.[2],vs.[3]) in
let (r0,r1,r2,r3) = transpose4x4 (v0,v1,v2,v3) in
create4 r0 r1 r2 r3 | val transpose4x4_lseq (#t: v_inttype{t = U32 \/ t = U64}) (vs: lseq (vec_t t 4) 4)
: lseq (vec_t t 4) 4
let transpose4x4_lseq (#t: v_inttype{t = U32 \/ t = U64}) (vs: lseq (vec_t t 4) 4)
: lseq (vec_t t 4) 4 = | false | null | false | let v0, v1, v2, v3 = (vs.[ 0 ], vs.[ 1 ], vs.[ 2 ], vs.[ 3 ]) in
let r0, r1, r2, r3 = transpose4x4 (v0, v1, v2, v3) in
create4 r0 r1 r2 r3 | {
"checked_file": "Lib.IntVector.Transpose.fsti.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntVector.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Lib.IntVector.Transpose.fsti"
} | [
"total"
] | [
"Lib.IntVector.v_inttype",
"Prims.l_or",
"Prims.b2t",
"Prims.op_Equality",
"Lib.IntTypes.inttype",
"Lib.IntTypes.U32",
"Lib.IntTypes.U64",
"Lib.Sequence.lseq",
"Lib.IntVector.vec_t",
"Lib.Sequence.create4",
"Lib.IntVector.Transpose.vec_t4",
"Lib.IntVector.Transpose.transpose4x4",
"FStar.Pervasives.Native.Mktuple4",
"FStar.Pervasives.Native.tuple4",
"Lib.Sequence.op_String_Access"
] | [] | module Lib.IntVector.Transpose
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.IntVector
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction
let vec_t4 (t:v_inttype) = vec_t t 4 & vec_t t 4 & vec_t t 4 & vec_t t 4
inline_for_extraction
let vec_t8 (t:v_inttype) = vec_t t 8 & vec_t t 8 & vec_t t 8 & vec_t t 8 & vec_t t 8 & vec_t t 8 & vec_t t 8 & vec_t t 8
inline_for_extraction
val transpose4x4: #t:v_inttype{t = U32 \/ t = U64} -> vec_t4 t -> vec_t4 t
inline_for_extraction
val transpose8x8: #t:v_inttype{t = U32} -> vec_t8 t -> vec_t8 t | false | false | Lib.IntVector.Transpose.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val transpose4x4_lseq (#t: v_inttype{t = U32 \/ t = U64}) (vs: lseq (vec_t t 4) 4)
: lseq (vec_t t 4) 4 | [] | Lib.IntVector.Transpose.transpose4x4_lseq | {
"file_name": "lib/Lib.IntVector.Transpose.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | vs: Lib.Sequence.lseq (Lib.IntVector.vec_t t 4) 4 -> Lib.Sequence.lseq (Lib.IntVector.vec_t t 4) 4 | {
"end_col": 21,
"end_line": 28,
"start_col": 103,
"start_line": 25
} |
Prims.Tot | val transpose8x8_lseq (#t: v_inttype{t = U32}) (vs: lseq (vec_t t 8) 8) : lseq (vec_t t 8) 8 | [
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let transpose8x8_lseq (#t:v_inttype{t = U32}) (vs:lseq (vec_t t 8) 8) : lseq (vec_t t 8) 8 =
let (v0,v1,v2,v3,v4,v5,v6,v7) = (vs.[0],vs.[1],vs.[2],vs.[3],vs.[4],vs.[5],vs.[6],vs.[7]) in
let (r0,r1,r2,r3,r4,r5,r6,r7) = transpose8x8 (v0,v1,v2,v3,v4,v5,v6,v7) in
create8 r0 r1 r2 r3 r4 r5 r6 r7 | val transpose8x8_lseq (#t: v_inttype{t = U32}) (vs: lseq (vec_t t 8) 8) : lseq (vec_t t 8) 8
let transpose8x8_lseq (#t: v_inttype{t = U32}) (vs: lseq (vec_t t 8) 8) : lseq (vec_t t 8) 8 = | false | null | false | let v0, v1, v2, v3, v4, v5, v6, v7 =
(vs.[ 0 ], vs.[ 1 ], vs.[ 2 ], vs.[ 3 ], vs.[ 4 ], vs.[ 5 ], vs.[ 6 ], vs.[ 7 ])
in
let r0, r1, r2, r3, r4, r5, r6, r7 = transpose8x8 (v0, v1, v2, v3, v4, v5, v6, v7) in
create8 r0 r1 r2 r3 r4 r5 r6 r7 | {
"checked_file": "Lib.IntVector.Transpose.fsti.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntVector.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Lib.IntVector.Transpose.fsti"
} | [
"total"
] | [
"Lib.IntVector.v_inttype",
"Prims.b2t",
"Prims.op_Equality",
"Lib.IntTypes.inttype",
"Lib.IntTypes.U32",
"Lib.Sequence.lseq",
"Lib.IntVector.vec_t",
"Lib.Sequence.create8",
"Lib.IntVector.Transpose.vec_t8",
"Lib.IntVector.Transpose.transpose8x8",
"FStar.Pervasives.Native.Mktuple8",
"FStar.Pervasives.Native.tuple8",
"Lib.Sequence.op_String_Access"
] | [] | module Lib.IntVector.Transpose
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.IntVector
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction
let vec_t4 (t:v_inttype) = vec_t t 4 & vec_t t 4 & vec_t t 4 & vec_t t 4
inline_for_extraction
let vec_t8 (t:v_inttype) = vec_t t 8 & vec_t t 8 & vec_t t 8 & vec_t t 8 & vec_t t 8 & vec_t t 8 & vec_t t 8 & vec_t t 8
inline_for_extraction
val transpose4x4: #t:v_inttype{t = U32 \/ t = U64} -> vec_t4 t -> vec_t4 t
inline_for_extraction
val transpose8x8: #t:v_inttype{t = U32} -> vec_t8 t -> vec_t8 t
inline_for_extraction
let transpose4x4_lseq (#t:v_inttype{t = U32 \/ t = U64}) (vs:lseq (vec_t t 4) 4) : lseq (vec_t t 4) 4 =
let (v0,v1,v2,v3) = (vs.[0],vs.[1],vs.[2],vs.[3]) in
let (r0,r1,r2,r3) = transpose4x4 (v0,v1,v2,v3) in
create4 r0 r1 r2 r3 | false | false | Lib.IntVector.Transpose.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val transpose8x8_lseq (#t: v_inttype{t = U32}) (vs: lseq (vec_t t 8) 8) : lseq (vec_t t 8) 8 | [] | Lib.IntVector.Transpose.transpose8x8_lseq | {
"file_name": "lib/Lib.IntVector.Transpose.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | vs: Lib.Sequence.lseq (Lib.IntVector.vec_t t 8) 8 -> Lib.Sequence.lseq (Lib.IntVector.vec_t t 8) 8 | {
"end_col": 33,
"end_line": 34,
"start_col": 92,
"start_line": 31
} |
Prims.Pure | [
{
"abbrev": false,
"full_module": "LowParse.Tot.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let fail_parser = tot_fail_parser | let fail_parser = | false | null | false | tot_fail_parser | {
"checked_file": "LowParse.Tot.Combinators.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Tot.Base.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Tot.Combinators.fst"
} | [] | [
"LowParse.Spec.Combinators.tot_fail_parser"
] | [] | module LowParse.Tot.Combinators
include LowParse.Spec.Combinators
include LowParse.Tot.Base | false | false | LowParse.Tot.Combinators.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val fail_parser : k: LowParse.Spec.Base.parser_kind -> t: Type -> Prims.Pure (LowParse.Spec.Base.tot_parser k t) | [] | LowParse.Tot.Combinators.fail_parser | {
"file_name": "src/lowparse/LowParse.Tot.Combinators.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | k: LowParse.Spec.Base.parser_kind -> t: Type -> Prims.Pure (LowParse.Spec.Base.tot_parser k t) | {
"end_col": 33,
"end_line": 6,
"start_col": 18,
"start_line": 6
} |
|
Prims.Tot | val parse_empty:parser parse_ret_kind unit | [
{
"abbrev": false,
"full_module": "LowParse.Tot.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let parse_empty : parser parse_ret_kind unit =
parse_ret () | val parse_empty:parser parse_ret_kind unit
let parse_empty:parser parse_ret_kind unit = | false | null | false | parse_ret () | {
"checked_file": "LowParse.Tot.Combinators.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Tot.Base.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Tot.Combinators.fst"
} | [
"total"
] | [
"LowParse.Tot.Combinators.parse_ret",
"Prims.unit"
] | [] | module LowParse.Tot.Combinators
include LowParse.Spec.Combinators
include LowParse.Tot.Base
inline_for_extraction
let fail_parser = tot_fail_parser
inline_for_extraction
let parse_ret = tot_parse_ret
inline_for_extraction | false | true | LowParse.Tot.Combinators.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val parse_empty:parser parse_ret_kind unit | [] | LowParse.Tot.Combinators.parse_empty | {
"file_name": "src/lowparse/LowParse.Tot.Combinators.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | LowParse.Tot.Base.parser LowParse.Spec.Combinators.parse_ret_kind Prims.unit | {
"end_col": 14,
"end_line": 13,
"start_col": 2,
"start_line": 13
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "LowParse.Tot.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let parse_ret = tot_parse_ret | let parse_ret = | false | null | false | tot_parse_ret | {
"checked_file": "LowParse.Tot.Combinators.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Tot.Base.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Tot.Combinators.fst"
} | [
"total"
] | [
"LowParse.Spec.Combinators.tot_parse_ret",
"LowParse.Spec.Base.tot_parser",
"LowParse.Spec.Combinators.parse_ret_kind"
] | [] | module LowParse.Tot.Combinators
include LowParse.Spec.Combinators
include LowParse.Tot.Base
inline_for_extraction
let fail_parser = tot_fail_parser | false | false | LowParse.Tot.Combinators.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val parse_ret : v: _ -> LowParse.Spec.Base.tot_parser LowParse.Spec.Combinators.parse_ret_kind _ | [] | LowParse.Tot.Combinators.parse_ret | {
"file_name": "src/lowparse/LowParse.Tot.Combinators.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | v: _ -> LowParse.Spec.Base.tot_parser LowParse.Spec.Combinators.parse_ret_kind _ | {
"end_col": 29,
"end_line": 9,
"start_col": 16,
"start_line": 9
} |
|
Prims.Tot | val parse_tagged_union
(#kt: parser_kind)
(#tag_t: Type)
(pt: parser kt tag_t)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
: Tot (parser (and_then_kind kt k) data_t) | [
{
"abbrev": false,
"full_module": "LowParse.Tot.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let parse_tagged_union #kt #tag_t = tot_parse_tagged_union #kt #tag_t | val parse_tagged_union
(#kt: parser_kind)
(#tag_t: Type)
(pt: parser kt tag_t)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
: Tot (parser (and_then_kind kt k) data_t)
let parse_tagged_union #kt #tag_t = | false | null | false | tot_parse_tagged_union #kt #tag_t | {
"checked_file": "LowParse.Tot.Combinators.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Tot.Base.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Tot.Combinators.fst"
} | [
"total"
] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Combinators.tot_parse_tagged_union",
"LowParse.Tot.Base.parser",
"LowParse.Spec.Base.refine_with_tag",
"LowParse.Spec.Combinators.and_then_kind"
] | [] | module LowParse.Tot.Combinators
include LowParse.Spec.Combinators
include LowParse.Tot.Base
inline_for_extraction
let fail_parser = tot_fail_parser
inline_for_extraction
let parse_ret = tot_parse_ret
inline_for_extraction
let parse_empty : parser parse_ret_kind unit =
parse_ret ()
inline_for_extraction
let parse_synth #k #t1 #t2 = tot_parse_synth #k #t1 #t2
val parse_synth_eq
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: parser k t1)
(f2: t1 -> Tot t2)
(b: bytes)
: Lemma
(requires (synth_injective f2))
(ensures (parse (parse_synth p1 f2) b == parse_synth' #k p1 f2 b))
let parse_synth_eq #k #t1 #t2 = tot_parse_synth_eq #k #t1 #t2
val serialize_synth
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: tot_parser k t1)
(f2: t1 -> Tot t2)
(s1: serializer p1)
(g1: t2 -> GTot t1)
(u: unit {
synth_inverse f2 g1 /\
synth_injective f2
})
: Tot (serializer (tot_parse_synth p1 f2))
let serialize_synth #k #t1 #t2 = serialize_tot_synth #k #t1 #t2
let serialize_weaken
(#k: parser_kind)
(#t: Type)
(k' : parser_kind)
(#p: parser k t)
(s: serializer p { k' `is_weaker_than` k })
: Tot (serializer (weaken k' p))
= serialize_weaken #k k' s
inline_for_extraction
let parse_filter #k #t = tot_parse_filter #k #t
val parse_filter_eq
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(f: (t -> Tot bool))
(input: bytes)
: Lemma
(parse (parse_filter p f) input == (match parse p input with
| None -> None
| Some (x, consumed) ->
if f x
then Some (x, consumed)
else None
))
let parse_filter_eq #k #t = tot_parse_filter_eq #k #t
let serialize_filter
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(f: (t -> Tot bool))
: Tot (serializer (parse_filter p f))
= Classical.forall_intro (parse_filter_eq #k #t p f);
serialize_ext _ (serialize_filter s f) _
inline_for_extraction
let and_then #k #t = tot_and_then #k #t
val and_then_eq
(#k: parser_kind)
(#t:Type)
(p: parser k t)
(#k': parser_kind)
(#t':Type)
(p': (t -> Tot (parser k' t')))
(input: bytes)
: Lemma
(requires (and_then_cases_injective p'))
(ensures (parse (and_then p p') input == and_then_bare p p' input))
let and_then_eq #k #t p #k' #t' p' input = and_then_eq #k #t p #k' #t' p' input
inline_for_extraction
val parse_tagged_union_payload
(#tag_t: Type)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
(tg: tag_t)
: Tot (parser k data_t)
let parse_tagged_union_payload #tag_t #data_t = tot_parse_tagged_union_payload #tag_t #data_t
inline_for_extraction
val parse_tagged_union
(#kt: parser_kind)
(#tag_t: Type)
(pt: parser kt tag_t)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
: Tot (parser (and_then_kind kt k) data_t) | false | false | LowParse.Tot.Combinators.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val parse_tagged_union
(#kt: parser_kind)
(#tag_t: Type)
(pt: parser kt tag_t)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
: Tot (parser (and_then_kind kt k) data_t) | [] | LowParse.Tot.Combinators.parse_tagged_union | {
"file_name": "src/lowparse/LowParse.Tot.Combinators.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
pt: LowParse.Tot.Base.parser kt tag_t ->
tag_of_data: (_: data_t -> tag_t) ->
p: (t: tag_t -> LowParse.Tot.Base.parser k (LowParse.Spec.Base.refine_with_tag tag_of_data t))
-> LowParse.Tot.Base.parser (LowParse.Spec.Combinators.and_then_kind kt k) data_t | {
"end_col": 69,
"end_line": 126,
"start_col": 36,
"start_line": 126
} |
Prims.Tot | val nondep_then
(#k1: parser_kind)
(#t1: Type)
(p1: parser k1 t1)
(#k2: parser_kind)
(#t2: Type)
(p2: parser k2 t2)
: Tot (parser (and_then_kind k1 k2) (t1 * t2)) | [
{
"abbrev": false,
"full_module": "LowParse.Tot.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let nondep_then #k1 = tot_nondep_then #k1 | val nondep_then
(#k1: parser_kind)
(#t1: Type)
(p1: parser k1 t1)
(#k2: parser_kind)
(#t2: Type)
(p2: parser k2 t2)
: Tot (parser (and_then_kind k1 k2) (t1 * t2))
let nondep_then #k1 = | false | null | false | tot_nondep_then #k1 | {
"checked_file": "LowParse.Tot.Combinators.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Tot.Base.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Tot.Combinators.fst"
} | [
"total"
] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Combinators.tot_nondep_then",
"LowParse.Tot.Base.parser",
"LowParse.Spec.Combinators.and_then_kind",
"FStar.Pervasives.Native.tuple2"
] | [] | module LowParse.Tot.Combinators
include LowParse.Spec.Combinators
include LowParse.Tot.Base
inline_for_extraction
let fail_parser = tot_fail_parser
inline_for_extraction
let parse_ret = tot_parse_ret
inline_for_extraction
let parse_empty : parser parse_ret_kind unit =
parse_ret ()
inline_for_extraction
let parse_synth #k #t1 #t2 = tot_parse_synth #k #t1 #t2
val parse_synth_eq
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: parser k t1)
(f2: t1 -> Tot t2)
(b: bytes)
: Lemma
(requires (synth_injective f2))
(ensures (parse (parse_synth p1 f2) b == parse_synth' #k p1 f2 b))
let parse_synth_eq #k #t1 #t2 = tot_parse_synth_eq #k #t1 #t2
val serialize_synth
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: tot_parser k t1)
(f2: t1 -> Tot t2)
(s1: serializer p1)
(g1: t2 -> GTot t1)
(u: unit {
synth_inverse f2 g1 /\
synth_injective f2
})
: Tot (serializer (tot_parse_synth p1 f2))
let serialize_synth #k #t1 #t2 = serialize_tot_synth #k #t1 #t2
let serialize_weaken
(#k: parser_kind)
(#t: Type)
(k' : parser_kind)
(#p: parser k t)
(s: serializer p { k' `is_weaker_than` k })
: Tot (serializer (weaken k' p))
= serialize_weaken #k k' s
inline_for_extraction
let parse_filter #k #t = tot_parse_filter #k #t
val parse_filter_eq
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(f: (t -> Tot bool))
(input: bytes)
: Lemma
(parse (parse_filter p f) input == (match parse p input with
| None -> None
| Some (x, consumed) ->
if f x
then Some (x, consumed)
else None
))
let parse_filter_eq #k #t = tot_parse_filter_eq #k #t
let serialize_filter
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(f: (t -> Tot bool))
: Tot (serializer (parse_filter p f))
= Classical.forall_intro (parse_filter_eq #k #t p f);
serialize_ext _ (serialize_filter s f) _
inline_for_extraction
let and_then #k #t = tot_and_then #k #t
val and_then_eq
(#k: parser_kind)
(#t:Type)
(p: parser k t)
(#k': parser_kind)
(#t':Type)
(p': (t -> Tot (parser k' t')))
(input: bytes)
: Lemma
(requires (and_then_cases_injective p'))
(ensures (parse (and_then p p') input == and_then_bare p p' input))
let and_then_eq #k #t p #k' #t' p' input = and_then_eq #k #t p #k' #t' p' input
inline_for_extraction
val parse_tagged_union_payload
(#tag_t: Type)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
(tg: tag_t)
: Tot (parser k data_t)
let parse_tagged_union_payload #tag_t #data_t = tot_parse_tagged_union_payload #tag_t #data_t
inline_for_extraction
val parse_tagged_union
(#kt: parser_kind)
(#tag_t: Type)
(pt: parser kt tag_t)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
: Tot (parser (and_then_kind kt k) data_t)
let parse_tagged_union #kt #tag_t = tot_parse_tagged_union #kt #tag_t
let parse_tagged_union_payload_and_then_cases_injective
(#tag_t: Type)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
: Lemma
(and_then_cases_injective (parse_tagged_union_payload tag_of_data p))
= parse_tagged_union_payload_and_then_cases_injective tag_of_data #k p
val parse_tagged_union_eq
(#kt: parser_kind)
(#tag_t: Type)
(pt: parser kt tag_t)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
(input: bytes)
: Lemma
(parse (parse_tagged_union pt tag_of_data p) input == (match parse pt input with
| None -> None
| Some (tg, consumed_tg) ->
let input_tg = Seq.slice input consumed_tg (Seq.length input) in
begin match parse (p tg) input_tg with
| Some (x, consumed_x) -> Some ((x <: data_t), consumed_tg + consumed_x)
| None -> None
end
))
let parse_tagged_union_eq #kt #tag_t pt #data_t tag_of_data #k p input =
parse_tagged_union_eq #kt #tag_t pt #data_t tag_of_data #k p input
val serialize_tagged_union
(#kt: parser_kind)
(#tag_t: Type)
(#pt: parser kt tag_t)
(st: serializer pt)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(#p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
(s: (t: tag_t) -> Tot (serializer (p t)))
: Pure (serializer (parse_tagged_union pt tag_of_data p))
(requires (kt.parser_kind_subkind == Some ParserStrong))
(ensures (fun _ -> True))
let serialize_tagged_union #kt st tag_of_data #k s = serialize_tot_tagged_union #kt st tag_of_data #k s
val nondep_then
(#k1: parser_kind)
(#t1: Type)
(p1: parser k1 t1)
(#k2: parser_kind)
(#t2: Type)
(p2: parser k2 t2)
: Tot (parser (and_then_kind k1 k2) (t1 * t2)) | false | false | LowParse.Tot.Combinators.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val nondep_then
(#k1: parser_kind)
(#t1: Type)
(p1: parser k1 t1)
(#k2: parser_kind)
(#t2: Type)
(p2: parser k2 t2)
: Tot (parser (and_then_kind k1 k2) (t1 * t2)) | [] | LowParse.Tot.Combinators.nondep_then | {
"file_name": "src/lowparse/LowParse.Tot.Combinators.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | p1: LowParse.Tot.Base.parser k1 t1 -> p2: LowParse.Tot.Base.parser k2 t2
-> LowParse.Tot.Base.parser (LowParse.Spec.Combinators.and_then_kind k1 k2) (t1 * t2) | {
"end_col": 41,
"end_line": 186,
"start_col": 22,
"start_line": 186
} |
Prims.Tot | val parse_tagged_union_payload
(#tag_t: Type)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
(tg: tag_t)
: Tot (parser k data_t) | [
{
"abbrev": false,
"full_module": "LowParse.Tot.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let parse_tagged_union_payload #tag_t #data_t = tot_parse_tagged_union_payload #tag_t #data_t | val parse_tagged_union_payload
(#tag_t: Type)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
(tg: tag_t)
: Tot (parser k data_t)
let parse_tagged_union_payload #tag_t #data_t = | false | null | false | tot_parse_tagged_union_payload #tag_t #data_t | {
"checked_file": "LowParse.Tot.Combinators.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Tot.Base.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Tot.Combinators.fst"
} | [
"total"
] | [
"LowParse.Spec.Combinators.tot_parse_tagged_union_payload",
"LowParse.Spec.Base.parser_kind",
"LowParse.Tot.Base.parser",
"LowParse.Spec.Base.refine_with_tag"
] | [] | module LowParse.Tot.Combinators
include LowParse.Spec.Combinators
include LowParse.Tot.Base
inline_for_extraction
let fail_parser = tot_fail_parser
inline_for_extraction
let parse_ret = tot_parse_ret
inline_for_extraction
let parse_empty : parser parse_ret_kind unit =
parse_ret ()
inline_for_extraction
let parse_synth #k #t1 #t2 = tot_parse_synth #k #t1 #t2
val parse_synth_eq
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: parser k t1)
(f2: t1 -> Tot t2)
(b: bytes)
: Lemma
(requires (synth_injective f2))
(ensures (parse (parse_synth p1 f2) b == parse_synth' #k p1 f2 b))
let parse_synth_eq #k #t1 #t2 = tot_parse_synth_eq #k #t1 #t2
val serialize_synth
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: tot_parser k t1)
(f2: t1 -> Tot t2)
(s1: serializer p1)
(g1: t2 -> GTot t1)
(u: unit {
synth_inverse f2 g1 /\
synth_injective f2
})
: Tot (serializer (tot_parse_synth p1 f2))
let serialize_synth #k #t1 #t2 = serialize_tot_synth #k #t1 #t2
let serialize_weaken
(#k: parser_kind)
(#t: Type)
(k' : parser_kind)
(#p: parser k t)
(s: serializer p { k' `is_weaker_than` k })
: Tot (serializer (weaken k' p))
= serialize_weaken #k k' s
inline_for_extraction
let parse_filter #k #t = tot_parse_filter #k #t
val parse_filter_eq
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(f: (t -> Tot bool))
(input: bytes)
: Lemma
(parse (parse_filter p f) input == (match parse p input with
| None -> None
| Some (x, consumed) ->
if f x
then Some (x, consumed)
else None
))
let parse_filter_eq #k #t = tot_parse_filter_eq #k #t
let serialize_filter
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(f: (t -> Tot bool))
: Tot (serializer (parse_filter p f))
= Classical.forall_intro (parse_filter_eq #k #t p f);
serialize_ext _ (serialize_filter s f) _
inline_for_extraction
let and_then #k #t = tot_and_then #k #t
val and_then_eq
(#k: parser_kind)
(#t:Type)
(p: parser k t)
(#k': parser_kind)
(#t':Type)
(p': (t -> Tot (parser k' t')))
(input: bytes)
: Lemma
(requires (and_then_cases_injective p'))
(ensures (parse (and_then p p') input == and_then_bare p p' input))
let and_then_eq #k #t p #k' #t' p' input = and_then_eq #k #t p #k' #t' p' input
inline_for_extraction
val parse_tagged_union_payload
(#tag_t: Type)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
(tg: tag_t)
: Tot (parser k data_t) | false | false | LowParse.Tot.Combinators.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val parse_tagged_union_payload
(#tag_t: Type)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
(tg: tag_t)
: Tot (parser k data_t) | [] | LowParse.Tot.Combinators.parse_tagged_union_payload | {
"file_name": "src/lowparse/LowParse.Tot.Combinators.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
tag_of_data: (_: data_t -> tag_t) ->
p: (t: tag_t -> LowParse.Tot.Base.parser k (LowParse.Spec.Base.refine_with_tag tag_of_data t)) ->
tg: tag_t
-> LowParse.Tot.Base.parser k data_t | {
"end_col": 93,
"end_line": 113,
"start_col": 48,
"start_line": 113
} |
Prims.Tot | val serialize_synth
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: tot_parser k t1)
(f2: t1 -> Tot t2)
(s1: serializer p1)
(g1: t2 -> GTot t1)
(u: unit {
synth_inverse f2 g1 /\
synth_injective f2
})
: Tot (serializer (tot_parse_synth p1 f2)) | [
{
"abbrev": false,
"full_module": "LowParse.Tot.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let serialize_synth #k #t1 #t2 = serialize_tot_synth #k #t1 #t2 | val serialize_synth
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: tot_parser k t1)
(f2: t1 -> Tot t2)
(s1: serializer p1)
(g1: t2 -> GTot t1)
(u: unit {
synth_inverse f2 g1 /\
synth_injective f2
})
: Tot (serializer (tot_parse_synth p1 f2))
let serialize_synth #k #t1 #t2 = | false | null | false | serialize_tot_synth #k #t1 #t2 | {
"checked_file": "LowParse.Tot.Combinators.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Tot.Base.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Tot.Combinators.fst"
} | [
"total"
] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Combinators.serialize_tot_synth",
"LowParse.Spec.Base.tot_parser",
"LowParse.Tot.Base.serializer",
"Prims.unit",
"Prims.l_and",
"LowParse.Spec.Combinators.synth_inverse",
"LowParse.Spec.Combinators.synth_injective",
"LowParse.Spec.Combinators.tot_parse_synth"
] | [] | module LowParse.Tot.Combinators
include LowParse.Spec.Combinators
include LowParse.Tot.Base
inline_for_extraction
let fail_parser = tot_fail_parser
inline_for_extraction
let parse_ret = tot_parse_ret
inline_for_extraction
let parse_empty : parser parse_ret_kind unit =
parse_ret ()
inline_for_extraction
let parse_synth #k #t1 #t2 = tot_parse_synth #k #t1 #t2
val parse_synth_eq
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: parser k t1)
(f2: t1 -> Tot t2)
(b: bytes)
: Lemma
(requires (synth_injective f2))
(ensures (parse (parse_synth p1 f2) b == parse_synth' #k p1 f2 b))
let parse_synth_eq #k #t1 #t2 = tot_parse_synth_eq #k #t1 #t2
val serialize_synth
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: tot_parser k t1)
(f2: t1 -> Tot t2)
(s1: serializer p1)
(g1: t2 -> GTot t1)
(u: unit {
synth_inverse f2 g1 /\
synth_injective f2
})
: Tot (serializer (tot_parse_synth p1 f2)) | false | false | LowParse.Tot.Combinators.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val serialize_synth
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: tot_parser k t1)
(f2: t1 -> Tot t2)
(s1: serializer p1)
(g1: t2 -> GTot t1)
(u: unit {
synth_inverse f2 g1 /\
synth_injective f2
})
: Tot (serializer (tot_parse_synth p1 f2)) | [] | LowParse.Tot.Combinators.serialize_synth | {
"file_name": "src/lowparse/LowParse.Tot.Combinators.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
p1: LowParse.Spec.Base.tot_parser k t1 ->
f2: (_: t1 -> t2) ->
s1: LowParse.Tot.Base.serializer p1 ->
g1: (_: t2 -> Prims.GTot t1) ->
u30:
u33:
Prims.unit
{ LowParse.Spec.Combinators.synth_inverse f2 g1 /\
LowParse.Spec.Combinators.synth_injective f2 }
-> LowParse.Tot.Base.serializer (LowParse.Spec.Combinators.tot_parse_synth p1 f2) | {
"end_col": 63,
"end_line": 45,
"start_col": 33,
"start_line": 45
} |
Prims.Pure | val serialize_tagged_union
(#kt: parser_kind)
(#tag_t: Type)
(#pt: parser kt tag_t)
(st: serializer pt)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(#p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
(s: (t: tag_t) -> Tot (serializer (p t)))
: Pure (serializer (parse_tagged_union pt tag_of_data p))
(requires (kt.parser_kind_subkind == Some ParserStrong))
(ensures (fun _ -> True)) | [
{
"abbrev": false,
"full_module": "LowParse.Tot.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let serialize_tagged_union #kt st tag_of_data #k s = serialize_tot_tagged_union #kt st tag_of_data #k s | val serialize_tagged_union
(#kt: parser_kind)
(#tag_t: Type)
(#pt: parser kt tag_t)
(st: serializer pt)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(#p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
(s: (t: tag_t) -> Tot (serializer (p t)))
: Pure (serializer (parse_tagged_union pt tag_of_data p))
(requires (kt.parser_kind_subkind == Some ParserStrong))
(ensures (fun _ -> True))
let serialize_tagged_union #kt st tag_of_data #k s = | false | null | false | serialize_tot_tagged_union #kt st tag_of_data #k s | {
"checked_file": "LowParse.Tot.Combinators.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Tot.Base.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Tot.Combinators.fst"
} | [] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Tot.Base.parser",
"LowParse.Tot.Base.serializer",
"LowParse.Spec.Base.refine_with_tag",
"LowParse.Spec.Combinators.serialize_tot_tagged_union",
"LowParse.Spec.Combinators.and_then_kind",
"LowParse.Tot.Combinators.parse_tagged_union"
] | [] | module LowParse.Tot.Combinators
include LowParse.Spec.Combinators
include LowParse.Tot.Base
inline_for_extraction
let fail_parser = tot_fail_parser
inline_for_extraction
let parse_ret = tot_parse_ret
inline_for_extraction
let parse_empty : parser parse_ret_kind unit =
parse_ret ()
inline_for_extraction
let parse_synth #k #t1 #t2 = tot_parse_synth #k #t1 #t2
val parse_synth_eq
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: parser k t1)
(f2: t1 -> Tot t2)
(b: bytes)
: Lemma
(requires (synth_injective f2))
(ensures (parse (parse_synth p1 f2) b == parse_synth' #k p1 f2 b))
let parse_synth_eq #k #t1 #t2 = tot_parse_synth_eq #k #t1 #t2
val serialize_synth
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: tot_parser k t1)
(f2: t1 -> Tot t2)
(s1: serializer p1)
(g1: t2 -> GTot t1)
(u: unit {
synth_inverse f2 g1 /\
synth_injective f2
})
: Tot (serializer (tot_parse_synth p1 f2))
let serialize_synth #k #t1 #t2 = serialize_tot_synth #k #t1 #t2
let serialize_weaken
(#k: parser_kind)
(#t: Type)
(k' : parser_kind)
(#p: parser k t)
(s: serializer p { k' `is_weaker_than` k })
: Tot (serializer (weaken k' p))
= serialize_weaken #k k' s
inline_for_extraction
let parse_filter #k #t = tot_parse_filter #k #t
val parse_filter_eq
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(f: (t -> Tot bool))
(input: bytes)
: Lemma
(parse (parse_filter p f) input == (match parse p input with
| None -> None
| Some (x, consumed) ->
if f x
then Some (x, consumed)
else None
))
let parse_filter_eq #k #t = tot_parse_filter_eq #k #t
let serialize_filter
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(f: (t -> Tot bool))
: Tot (serializer (parse_filter p f))
= Classical.forall_intro (parse_filter_eq #k #t p f);
serialize_ext _ (serialize_filter s f) _
inline_for_extraction
let and_then #k #t = tot_and_then #k #t
val and_then_eq
(#k: parser_kind)
(#t:Type)
(p: parser k t)
(#k': parser_kind)
(#t':Type)
(p': (t -> Tot (parser k' t')))
(input: bytes)
: Lemma
(requires (and_then_cases_injective p'))
(ensures (parse (and_then p p') input == and_then_bare p p' input))
let and_then_eq #k #t p #k' #t' p' input = and_then_eq #k #t p #k' #t' p' input
inline_for_extraction
val parse_tagged_union_payload
(#tag_t: Type)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
(tg: tag_t)
: Tot (parser k data_t)
let parse_tagged_union_payload #tag_t #data_t = tot_parse_tagged_union_payload #tag_t #data_t
inline_for_extraction
val parse_tagged_union
(#kt: parser_kind)
(#tag_t: Type)
(pt: parser kt tag_t)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
: Tot (parser (and_then_kind kt k) data_t)
let parse_tagged_union #kt #tag_t = tot_parse_tagged_union #kt #tag_t
let parse_tagged_union_payload_and_then_cases_injective
(#tag_t: Type)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
: Lemma
(and_then_cases_injective (parse_tagged_union_payload tag_of_data p))
= parse_tagged_union_payload_and_then_cases_injective tag_of_data #k p
val parse_tagged_union_eq
(#kt: parser_kind)
(#tag_t: Type)
(pt: parser kt tag_t)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
(input: bytes)
: Lemma
(parse (parse_tagged_union pt tag_of_data p) input == (match parse pt input with
| None -> None
| Some (tg, consumed_tg) ->
let input_tg = Seq.slice input consumed_tg (Seq.length input) in
begin match parse (p tg) input_tg with
| Some (x, consumed_x) -> Some ((x <: data_t), consumed_tg + consumed_x)
| None -> None
end
))
let parse_tagged_union_eq #kt #tag_t pt #data_t tag_of_data #k p input =
parse_tagged_union_eq #kt #tag_t pt #data_t tag_of_data #k p input
val serialize_tagged_union
(#kt: parser_kind)
(#tag_t: Type)
(#pt: parser kt tag_t)
(st: serializer pt)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(#p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
(s: (t: tag_t) -> Tot (serializer (p t)))
: Pure (serializer (parse_tagged_union pt tag_of_data p))
(requires (kt.parser_kind_subkind == Some ParserStrong))
(ensures (fun _ -> True)) | false | false | LowParse.Tot.Combinators.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val serialize_tagged_union
(#kt: parser_kind)
(#tag_t: Type)
(#pt: parser kt tag_t)
(st: serializer pt)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(#p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
(s: (t: tag_t) -> Tot (serializer (p t)))
: Pure (serializer (parse_tagged_union pt tag_of_data p))
(requires (kt.parser_kind_subkind == Some ParserStrong))
(ensures (fun _ -> True)) | [] | LowParse.Tot.Combinators.serialize_tagged_union | {
"file_name": "src/lowparse/LowParse.Tot.Combinators.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
st: LowParse.Tot.Base.serializer pt ->
tag_of_data: (_: data_t -> tag_t) ->
s: (t: tag_t -> LowParse.Tot.Base.serializer (p t))
-> Prims.Pure
(LowParse.Tot.Base.serializer (LowParse.Tot.Combinators.parse_tagged_union pt tag_of_data p)) | {
"end_col": 103,
"end_line": 175,
"start_col": 53,
"start_line": 175
} |
FStar.Pervasives.Lemma | val parse_tagged_union_payload_and_then_cases_injective
(#tag_t #data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t -> Tot (parser k (refine_with_tag tag_of_data t))))
: Lemma (and_then_cases_injective (parse_tagged_union_payload tag_of_data p)) | [
{
"abbrev": false,
"full_module": "LowParse.Tot.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let parse_tagged_union_payload_and_then_cases_injective
(#tag_t: Type)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
: Lemma
(and_then_cases_injective (parse_tagged_union_payload tag_of_data p))
= parse_tagged_union_payload_and_then_cases_injective tag_of_data #k p | val parse_tagged_union_payload_and_then_cases_injective
(#tag_t #data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t -> Tot (parser k (refine_with_tag tag_of_data t))))
: Lemma (and_then_cases_injective (parse_tagged_union_payload tag_of_data p))
let parse_tagged_union_payload_and_then_cases_injective
(#tag_t #data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t -> Tot (parser k (refine_with_tag tag_of_data t))))
: Lemma (and_then_cases_injective (parse_tagged_union_payload tag_of_data p)) = | false | null | true | parse_tagged_union_payload_and_then_cases_injective tag_of_data #k p | {
"checked_file": "LowParse.Tot.Combinators.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Tot.Base.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Tot.Combinators.fst"
} | [
"lemma"
] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Tot.Base.parser",
"LowParse.Spec.Base.refine_with_tag",
"LowParse.Spec.Combinators.parse_tagged_union_payload_and_then_cases_injective",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"LowParse.Spec.Combinators.and_then_cases_injective",
"LowParse.Tot.Combinators.parse_tagged_union_payload",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module LowParse.Tot.Combinators
include LowParse.Spec.Combinators
include LowParse.Tot.Base
inline_for_extraction
let fail_parser = tot_fail_parser
inline_for_extraction
let parse_ret = tot_parse_ret
inline_for_extraction
let parse_empty : parser parse_ret_kind unit =
parse_ret ()
inline_for_extraction
let parse_synth #k #t1 #t2 = tot_parse_synth #k #t1 #t2
val parse_synth_eq
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: parser k t1)
(f2: t1 -> Tot t2)
(b: bytes)
: Lemma
(requires (synth_injective f2))
(ensures (parse (parse_synth p1 f2) b == parse_synth' #k p1 f2 b))
let parse_synth_eq #k #t1 #t2 = tot_parse_synth_eq #k #t1 #t2
val serialize_synth
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: tot_parser k t1)
(f2: t1 -> Tot t2)
(s1: serializer p1)
(g1: t2 -> GTot t1)
(u: unit {
synth_inverse f2 g1 /\
synth_injective f2
})
: Tot (serializer (tot_parse_synth p1 f2))
let serialize_synth #k #t1 #t2 = serialize_tot_synth #k #t1 #t2
let serialize_weaken
(#k: parser_kind)
(#t: Type)
(k' : parser_kind)
(#p: parser k t)
(s: serializer p { k' `is_weaker_than` k })
: Tot (serializer (weaken k' p))
= serialize_weaken #k k' s
inline_for_extraction
let parse_filter #k #t = tot_parse_filter #k #t
val parse_filter_eq
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(f: (t -> Tot bool))
(input: bytes)
: Lemma
(parse (parse_filter p f) input == (match parse p input with
| None -> None
| Some (x, consumed) ->
if f x
then Some (x, consumed)
else None
))
let parse_filter_eq #k #t = tot_parse_filter_eq #k #t
let serialize_filter
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(f: (t -> Tot bool))
: Tot (serializer (parse_filter p f))
= Classical.forall_intro (parse_filter_eq #k #t p f);
serialize_ext _ (serialize_filter s f) _
inline_for_extraction
let and_then #k #t = tot_and_then #k #t
val and_then_eq
(#k: parser_kind)
(#t:Type)
(p: parser k t)
(#k': parser_kind)
(#t':Type)
(p': (t -> Tot (parser k' t')))
(input: bytes)
: Lemma
(requires (and_then_cases_injective p'))
(ensures (parse (and_then p p') input == and_then_bare p p' input))
let and_then_eq #k #t p #k' #t' p' input = and_then_eq #k #t p #k' #t' p' input
inline_for_extraction
val parse_tagged_union_payload
(#tag_t: Type)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
(tg: tag_t)
: Tot (parser k data_t)
let parse_tagged_union_payload #tag_t #data_t = tot_parse_tagged_union_payload #tag_t #data_t
inline_for_extraction
val parse_tagged_union
(#kt: parser_kind)
(#tag_t: Type)
(pt: parser kt tag_t)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
: Tot (parser (and_then_kind kt k) data_t)
let parse_tagged_union #kt #tag_t = tot_parse_tagged_union #kt #tag_t
let parse_tagged_union_payload_and_then_cases_injective
(#tag_t: Type)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
: Lemma | false | false | LowParse.Tot.Combinators.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val parse_tagged_union_payload_and_then_cases_injective
(#tag_t #data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t -> Tot (parser k (refine_with_tag tag_of_data t))))
: Lemma (and_then_cases_injective (parse_tagged_union_payload tag_of_data p)) | [] | LowParse.Tot.Combinators.parse_tagged_union_payload_and_then_cases_injective | {
"file_name": "src/lowparse/LowParse.Tot.Combinators.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
tag_of_data: (_: data_t -> tag_t) ->
p: (t: tag_t -> LowParse.Tot.Base.parser k (LowParse.Spec.Base.refine_with_tag tag_of_data t))
-> FStar.Pervasives.Lemma
(ensures
LowParse.Spec.Combinators.and_then_cases_injective (LowParse.Tot.Combinators.parse_tagged_union_payload
tag_of_data
p)) | {
"end_col": 70,
"end_line": 136,
"start_col": 2,
"start_line": 136
} |
Prims.Tot | val serialize_filter
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(f: (t -> Tot bool))
: Tot (serializer (parse_filter p f)) | [
{
"abbrev": false,
"full_module": "LowParse.Tot.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let serialize_filter
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(f: (t -> Tot bool))
: Tot (serializer (parse_filter p f))
= Classical.forall_intro (parse_filter_eq #k #t p f);
serialize_ext _ (serialize_filter s f) _ | val serialize_filter
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(f: (t -> Tot bool))
: Tot (serializer (parse_filter p f))
let serialize_filter
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(f: (t -> Tot bool))
: Tot (serializer (parse_filter p f)) = | false | null | false | Classical.forall_intro (parse_filter_eq #k #t p f);
serialize_ext _ (serialize_filter s f) _ | {
"checked_file": "LowParse.Tot.Combinators.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Tot.Base.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Tot.Combinators.fst"
} | [
"total"
] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Tot.Base.parser",
"LowParse.Tot.Base.serializer",
"Prims.bool",
"LowParse.Spec.Base.serialize_ext",
"LowParse.Spec.Combinators.parse_filter_kind",
"LowParse.Spec.Combinators.parse_filter_refine",
"LowParse.Spec.Combinators.parse_filter",
"LowParse.Spec.Combinators.serialize_filter",
"LowParse.Tot.Combinators.parse_filter",
"Prims.unit",
"FStar.Classical.forall_intro",
"LowParse.Bytes.bytes",
"Prims.eq2",
"FStar.Pervasives.Native.option",
"FStar.Pervasives.Native.tuple2",
"LowParse.Spec.Base.consumed_length",
"LowParse.Spec.Base.parse",
"FStar.Pervasives.Native.None",
"FStar.Pervasives.Native.Some",
"FStar.Pervasives.Native.Mktuple2",
"LowParse.Tot.Combinators.parse_filter_eq"
] | [] | module LowParse.Tot.Combinators
include LowParse.Spec.Combinators
include LowParse.Tot.Base
inline_for_extraction
let fail_parser = tot_fail_parser
inline_for_extraction
let parse_ret = tot_parse_ret
inline_for_extraction
let parse_empty : parser parse_ret_kind unit =
parse_ret ()
inline_for_extraction
let parse_synth #k #t1 #t2 = tot_parse_synth #k #t1 #t2
val parse_synth_eq
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: parser k t1)
(f2: t1 -> Tot t2)
(b: bytes)
: Lemma
(requires (synth_injective f2))
(ensures (parse (parse_synth p1 f2) b == parse_synth' #k p1 f2 b))
let parse_synth_eq #k #t1 #t2 = tot_parse_synth_eq #k #t1 #t2
val serialize_synth
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: tot_parser k t1)
(f2: t1 -> Tot t2)
(s1: serializer p1)
(g1: t2 -> GTot t1)
(u: unit {
synth_inverse f2 g1 /\
synth_injective f2
})
: Tot (serializer (tot_parse_synth p1 f2))
let serialize_synth #k #t1 #t2 = serialize_tot_synth #k #t1 #t2
let serialize_weaken
(#k: parser_kind)
(#t: Type)
(k' : parser_kind)
(#p: parser k t)
(s: serializer p { k' `is_weaker_than` k })
: Tot (serializer (weaken k' p))
= serialize_weaken #k k' s
inline_for_extraction
let parse_filter #k #t = tot_parse_filter #k #t
val parse_filter_eq
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(f: (t -> Tot bool))
(input: bytes)
: Lemma
(parse (parse_filter p f) input == (match parse p input with
| None -> None
| Some (x, consumed) ->
if f x
then Some (x, consumed)
else None
))
let parse_filter_eq #k #t = tot_parse_filter_eq #k #t
let serialize_filter
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(f: (t -> Tot bool)) | false | false | LowParse.Tot.Combinators.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val serialize_filter
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(f: (t -> Tot bool))
: Tot (serializer (parse_filter p f)) | [] | LowParse.Tot.Combinators.serialize_filter | {
"file_name": "src/lowparse/LowParse.Tot.Combinators.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | s: LowParse.Tot.Base.serializer p -> f: (_: t -> Prims.bool)
-> LowParse.Tot.Base.serializer (LowParse.Tot.Combinators.parse_filter p f) | {
"end_col": 42,
"end_line": 84,
"start_col": 2,
"start_line": 83
} |
Prims.Pure | val make_constant_size_parser
(sz: nat)
(t: Type)
(f: (s: bytes{Seq.length s == sz} -> Tot (option t)))
: Pure (tot_parser (constant_size_parser_kind sz) t)
(requires (make_constant_size_parser_precond sz t f))
(ensures (fun _ -> True)) | [
{
"abbrev": false,
"full_module": "LowParse.Tot.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let make_constant_size_parser
(sz: nat)
(t: Type)
(f: ((s: bytes {Seq.length s == sz}) -> Tot (option t)))
: Pure (
tot_parser
(constant_size_parser_kind sz)
t
)
(requires (
make_constant_size_parser_precond sz t f
))
(ensures (fun _ -> True))
= tot_make_constant_size_parser sz t f | val make_constant_size_parser
(sz: nat)
(t: Type)
(f: (s: bytes{Seq.length s == sz} -> Tot (option t)))
: Pure (tot_parser (constant_size_parser_kind sz) t)
(requires (make_constant_size_parser_precond sz t f))
(ensures (fun _ -> True))
let make_constant_size_parser
(sz: nat)
(t: Type)
(f: (s: bytes{Seq.length s == sz} -> Tot (option t)))
: Pure (tot_parser (constant_size_parser_kind sz) t)
(requires (make_constant_size_parser_precond sz t f))
(ensures (fun _ -> True)) = | false | null | false | tot_make_constant_size_parser sz t f | {
"checked_file": "LowParse.Tot.Combinators.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Tot.Base.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Tot.Combinators.fst"
} | [] | [
"Prims.nat",
"LowParse.Bytes.bytes",
"Prims.eq2",
"FStar.Seq.Base.length",
"LowParse.Bytes.byte",
"FStar.Pervasives.Native.option",
"LowParse.Spec.Combinators.tot_make_constant_size_parser",
"LowParse.Spec.Base.tot_parser",
"LowParse.Spec.Combinators.constant_size_parser_kind",
"LowParse.Spec.Combinators.make_constant_size_parser_precond",
"Prims.l_True"
] | [] | module LowParse.Tot.Combinators
include LowParse.Spec.Combinators
include LowParse.Tot.Base
inline_for_extraction
let fail_parser = tot_fail_parser
inline_for_extraction
let parse_ret = tot_parse_ret
inline_for_extraction
let parse_empty : parser parse_ret_kind unit =
parse_ret ()
inline_for_extraction
let parse_synth #k #t1 #t2 = tot_parse_synth #k #t1 #t2
val parse_synth_eq
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: parser k t1)
(f2: t1 -> Tot t2)
(b: bytes)
: Lemma
(requires (synth_injective f2))
(ensures (parse (parse_synth p1 f2) b == parse_synth' #k p1 f2 b))
let parse_synth_eq #k #t1 #t2 = tot_parse_synth_eq #k #t1 #t2
val serialize_synth
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: tot_parser k t1)
(f2: t1 -> Tot t2)
(s1: serializer p1)
(g1: t2 -> GTot t1)
(u: unit {
synth_inverse f2 g1 /\
synth_injective f2
})
: Tot (serializer (tot_parse_synth p1 f2))
let serialize_synth #k #t1 #t2 = serialize_tot_synth #k #t1 #t2
let serialize_weaken
(#k: parser_kind)
(#t: Type)
(k' : parser_kind)
(#p: parser k t)
(s: serializer p { k' `is_weaker_than` k })
: Tot (serializer (weaken k' p))
= serialize_weaken #k k' s
inline_for_extraction
let parse_filter #k #t = tot_parse_filter #k #t
val parse_filter_eq
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(f: (t -> Tot bool))
(input: bytes)
: Lemma
(parse (parse_filter p f) input == (match parse p input with
| None -> None
| Some (x, consumed) ->
if f x
then Some (x, consumed)
else None
))
let parse_filter_eq #k #t = tot_parse_filter_eq #k #t
let serialize_filter
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(f: (t -> Tot bool))
: Tot (serializer (parse_filter p f))
= Classical.forall_intro (parse_filter_eq #k #t p f);
serialize_ext _ (serialize_filter s f) _
inline_for_extraction
let and_then #k #t = tot_and_then #k #t
val and_then_eq
(#k: parser_kind)
(#t:Type)
(p: parser k t)
(#k': parser_kind)
(#t':Type)
(p': (t -> Tot (parser k' t')))
(input: bytes)
: Lemma
(requires (and_then_cases_injective p'))
(ensures (parse (and_then p p') input == and_then_bare p p' input))
let and_then_eq #k #t p #k' #t' p' input = and_then_eq #k #t p #k' #t' p' input
inline_for_extraction
val parse_tagged_union_payload
(#tag_t: Type)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
(tg: tag_t)
: Tot (parser k data_t)
let parse_tagged_union_payload #tag_t #data_t = tot_parse_tagged_union_payload #tag_t #data_t
inline_for_extraction
val parse_tagged_union
(#kt: parser_kind)
(#tag_t: Type)
(pt: parser kt tag_t)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
: Tot (parser (and_then_kind kt k) data_t)
let parse_tagged_union #kt #tag_t = tot_parse_tagged_union #kt #tag_t
let parse_tagged_union_payload_and_then_cases_injective
(#tag_t: Type)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
: Lemma
(and_then_cases_injective (parse_tagged_union_payload tag_of_data p))
= parse_tagged_union_payload_and_then_cases_injective tag_of_data #k p
val parse_tagged_union_eq
(#kt: parser_kind)
(#tag_t: Type)
(pt: parser kt tag_t)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
(input: bytes)
: Lemma
(parse (parse_tagged_union pt tag_of_data p) input == (match parse pt input with
| None -> None
| Some (tg, consumed_tg) ->
let input_tg = Seq.slice input consumed_tg (Seq.length input) in
begin match parse (p tg) input_tg with
| Some (x, consumed_x) -> Some ((x <: data_t), consumed_tg + consumed_x)
| None -> None
end
))
let parse_tagged_union_eq #kt #tag_t pt #data_t tag_of_data #k p input =
parse_tagged_union_eq #kt #tag_t pt #data_t tag_of_data #k p input
val serialize_tagged_union
(#kt: parser_kind)
(#tag_t: Type)
(#pt: parser kt tag_t)
(st: serializer pt)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(#p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
(s: (t: tag_t) -> Tot (serializer (p t)))
: Pure (serializer (parse_tagged_union pt tag_of_data p))
(requires (kt.parser_kind_subkind == Some ParserStrong))
(ensures (fun _ -> True))
let serialize_tagged_union #kt st tag_of_data #k s = serialize_tot_tagged_union #kt st tag_of_data #k s
val nondep_then
(#k1: parser_kind)
(#t1: Type)
(p1: parser k1 t1)
(#k2: parser_kind)
(#t2: Type)
(p2: parser k2 t2)
: Tot (parser (and_then_kind k1 k2) (t1 * t2))
let nondep_then #k1 = tot_nondep_then #k1
val nondep_then_eq
(#k1: parser_kind)
(#t1: Type)
(p1: parser k1 t1)
(#k2: parser_kind)
(#t2: Type)
(p2: parser k2 t2)
(b: bytes)
: Lemma
(parse (nondep_then p1 p2) b == (match parse p1 b with
| Some (x1, consumed1) ->
let b' = Seq.slice b consumed1 (Seq.length b) in
begin match parse p2 b' with
| Some (x2, consumed2) ->
Some ((x1, x2), consumed1 + consumed2)
| _ -> None
end
| _ -> None
))
let nondep_then_eq #k1 #t1 p1 #k2 #t2 p2 b =
nondep_then_eq #k1 p1 #k2 p2 b
let make_constant_size_parser
(sz: nat)
(t: Type)
(f: ((s: bytes {Seq.length s == sz}) -> Tot (option t)))
: Pure (
tot_parser
(constant_size_parser_kind sz)
t
)
(requires (
make_constant_size_parser_precond sz t f
)) | false | false | LowParse.Tot.Combinators.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val make_constant_size_parser
(sz: nat)
(t: Type)
(f: (s: bytes{Seq.length s == sz} -> Tot (option t)))
: Pure (tot_parser (constant_size_parser_kind sz) t)
(requires (make_constant_size_parser_precond sz t f))
(ensures (fun _ -> True)) | [] | LowParse.Tot.Combinators.make_constant_size_parser | {
"file_name": "src/lowparse/LowParse.Tot.Combinators.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
sz: Prims.nat ->
t: Type ->
f: (s: LowParse.Bytes.bytes{FStar.Seq.Base.length s == sz} -> FStar.Pervasives.Native.option t)
-> Prims.Pure
(LowParse.Spec.Base.tot_parser (LowParse.Spec.Combinators.constant_size_parser_kind sz) t) | {
"end_col": 38,
"end_line": 224,
"start_col": 2,
"start_line": 224
} |
Prims.Tot | val serialize_weaken
(#k: parser_kind)
(#t: Type)
(k': parser_kind)
(#p: parser k t)
(s: serializer p {k' `is_weaker_than` k})
: Tot (serializer (weaken k' p)) | [
{
"abbrev": false,
"full_module": "LowParse.Tot.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let serialize_weaken
(#k: parser_kind)
(#t: Type)
(k' : parser_kind)
(#p: parser k t)
(s: serializer p { k' `is_weaker_than` k })
: Tot (serializer (weaken k' p))
= serialize_weaken #k k' s | val serialize_weaken
(#k: parser_kind)
(#t: Type)
(k': parser_kind)
(#p: parser k t)
(s: serializer p {k' `is_weaker_than` k})
: Tot (serializer (weaken k' p))
let serialize_weaken
(#k: parser_kind)
(#t: Type)
(k': parser_kind)
(#p: parser k t)
(s: serializer p {k' `is_weaker_than` k})
: Tot (serializer (weaken k' p)) = | false | null | false | serialize_weaken #k k' s | {
"checked_file": "LowParse.Tot.Combinators.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Tot.Base.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Tot.Combinators.fst"
} | [
"total"
] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Tot.Base.parser",
"LowParse.Tot.Base.serializer",
"LowParse.Spec.Base.is_weaker_than",
"LowParse.Spec.Combinators.serialize_weaken",
"LowParse.Tot.Base.weaken"
] | [] | module LowParse.Tot.Combinators
include LowParse.Spec.Combinators
include LowParse.Tot.Base
inline_for_extraction
let fail_parser = tot_fail_parser
inline_for_extraction
let parse_ret = tot_parse_ret
inline_for_extraction
let parse_empty : parser parse_ret_kind unit =
parse_ret ()
inline_for_extraction
let parse_synth #k #t1 #t2 = tot_parse_synth #k #t1 #t2
val parse_synth_eq
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: parser k t1)
(f2: t1 -> Tot t2)
(b: bytes)
: Lemma
(requires (synth_injective f2))
(ensures (parse (parse_synth p1 f2) b == parse_synth' #k p1 f2 b))
let parse_synth_eq #k #t1 #t2 = tot_parse_synth_eq #k #t1 #t2
val serialize_synth
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: tot_parser k t1)
(f2: t1 -> Tot t2)
(s1: serializer p1)
(g1: t2 -> GTot t1)
(u: unit {
synth_inverse f2 g1 /\
synth_injective f2
})
: Tot (serializer (tot_parse_synth p1 f2))
let serialize_synth #k #t1 #t2 = serialize_tot_synth #k #t1 #t2
let serialize_weaken
(#k: parser_kind)
(#t: Type)
(k' : parser_kind)
(#p: parser k t)
(s: serializer p { k' `is_weaker_than` k }) | false | false | LowParse.Tot.Combinators.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val serialize_weaken
(#k: parser_kind)
(#t: Type)
(k': parser_kind)
(#p: parser k t)
(s: serializer p {k' `is_weaker_than` k})
: Tot (serializer (weaken k' p)) | [] | LowParse.Tot.Combinators.serialize_weaken | {
"file_name": "src/lowparse/LowParse.Tot.Combinators.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
k': LowParse.Spec.Base.parser_kind ->
s: LowParse.Tot.Base.serializer p {LowParse.Spec.Base.is_weaker_than k' k}
-> LowParse.Tot.Base.serializer (LowParse.Tot.Base.weaken k' p) | {
"end_col": 26,
"end_line": 54,
"start_col": 2,
"start_line": 54
} |
FStar.Pervasives.Lemma | val parse_synth_eq
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: parser k t1)
(f2: t1 -> Tot t2)
(b: bytes)
: Lemma
(requires (synth_injective f2))
(ensures (parse (parse_synth p1 f2) b == parse_synth' #k p1 f2 b)) | [
{
"abbrev": false,
"full_module": "LowParse.Tot.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let parse_synth_eq #k #t1 #t2 = tot_parse_synth_eq #k #t1 #t2 | val parse_synth_eq
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: parser k t1)
(f2: t1 -> Tot t2)
(b: bytes)
: Lemma
(requires (synth_injective f2))
(ensures (parse (parse_synth p1 f2) b == parse_synth' #k p1 f2 b))
let parse_synth_eq #k #t1 #t2 = | false | null | true | tot_parse_synth_eq #k #t1 #t2 | {
"checked_file": "LowParse.Tot.Combinators.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Tot.Base.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Tot.Combinators.fst"
} | [
"lemma"
] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Combinators.tot_parse_synth_eq",
"LowParse.Tot.Base.parser",
"LowParse.Bytes.bytes",
"Prims.unit",
"LowParse.Spec.Combinators.synth_injective",
"Prims.squash",
"Prims.eq2",
"FStar.Pervasives.Native.option",
"FStar.Pervasives.Native.tuple2",
"LowParse.Spec.Base.consumed_length",
"LowParse.Spec.Base.parse",
"LowParse.Tot.Combinators.parse_synth",
"LowParse.Spec.Combinators.parse_synth'",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module LowParse.Tot.Combinators
include LowParse.Spec.Combinators
include LowParse.Tot.Base
inline_for_extraction
let fail_parser = tot_fail_parser
inline_for_extraction
let parse_ret = tot_parse_ret
inline_for_extraction
let parse_empty : parser parse_ret_kind unit =
parse_ret ()
inline_for_extraction
let parse_synth #k #t1 #t2 = tot_parse_synth #k #t1 #t2
val parse_synth_eq
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: parser k t1)
(f2: t1 -> Tot t2)
(b: bytes)
: Lemma
(requires (synth_injective f2))
(ensures (parse (parse_synth p1 f2) b == parse_synth' #k p1 f2 b)) | false | false | LowParse.Tot.Combinators.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val parse_synth_eq
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: parser k t1)
(f2: t1 -> Tot t2)
(b: bytes)
: Lemma
(requires (synth_injective f2))
(ensures (parse (parse_synth p1 f2) b == parse_synth' #k p1 f2 b)) | [] | LowParse.Tot.Combinators.parse_synth_eq | {
"file_name": "src/lowparse/LowParse.Tot.Combinators.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | p1: LowParse.Tot.Base.parser k t1 -> f2: (_: t1 -> t2) -> b: LowParse.Bytes.bytes
-> FStar.Pervasives.Lemma (requires LowParse.Spec.Combinators.synth_injective f2)
(ensures
LowParse.Spec.Base.parse (LowParse.Tot.Combinators.parse_synth p1 f2) b ==
LowParse.Spec.Combinators.parse_synth' p1 f2 b) | {
"end_col": 61,
"end_line": 29,
"start_col": 32,
"start_line": 29
} |
FStar.Pervasives.Lemma | val and_then_eq
(#k: parser_kind)
(#t:Type)
(p: parser k t)
(#k': parser_kind)
(#t':Type)
(p': (t -> Tot (parser k' t')))
(input: bytes)
: Lemma
(requires (and_then_cases_injective p'))
(ensures (parse (and_then p p') input == and_then_bare p p' input)) | [
{
"abbrev": false,
"full_module": "LowParse.Tot.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let and_then_eq #k #t p #k' #t' p' input = and_then_eq #k #t p #k' #t' p' input | val and_then_eq
(#k: parser_kind)
(#t:Type)
(p: parser k t)
(#k': parser_kind)
(#t':Type)
(p': (t -> Tot (parser k' t')))
(input: bytes)
: Lemma
(requires (and_then_cases_injective p'))
(ensures (parse (and_then p p') input == and_then_bare p p' input))
let and_then_eq #k #t p #k' #t' p' input = | false | null | true | and_then_eq #k #t p #k' #t' p' input | {
"checked_file": "LowParse.Tot.Combinators.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Tot.Base.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Tot.Combinators.fst"
} | [
"lemma"
] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Tot.Base.parser",
"LowParse.Bytes.bytes",
"LowParse.Spec.Combinators.and_then_eq",
"Prims.unit"
] | [] | module LowParse.Tot.Combinators
include LowParse.Spec.Combinators
include LowParse.Tot.Base
inline_for_extraction
let fail_parser = tot_fail_parser
inline_for_extraction
let parse_ret = tot_parse_ret
inline_for_extraction
let parse_empty : parser parse_ret_kind unit =
parse_ret ()
inline_for_extraction
let parse_synth #k #t1 #t2 = tot_parse_synth #k #t1 #t2
val parse_synth_eq
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: parser k t1)
(f2: t1 -> Tot t2)
(b: bytes)
: Lemma
(requires (synth_injective f2))
(ensures (parse (parse_synth p1 f2) b == parse_synth' #k p1 f2 b))
let parse_synth_eq #k #t1 #t2 = tot_parse_synth_eq #k #t1 #t2
val serialize_synth
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: tot_parser k t1)
(f2: t1 -> Tot t2)
(s1: serializer p1)
(g1: t2 -> GTot t1)
(u: unit {
synth_inverse f2 g1 /\
synth_injective f2
})
: Tot (serializer (tot_parse_synth p1 f2))
let serialize_synth #k #t1 #t2 = serialize_tot_synth #k #t1 #t2
let serialize_weaken
(#k: parser_kind)
(#t: Type)
(k' : parser_kind)
(#p: parser k t)
(s: serializer p { k' `is_weaker_than` k })
: Tot (serializer (weaken k' p))
= serialize_weaken #k k' s
inline_for_extraction
let parse_filter #k #t = tot_parse_filter #k #t
val parse_filter_eq
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(f: (t -> Tot bool))
(input: bytes)
: Lemma
(parse (parse_filter p f) input == (match parse p input with
| None -> None
| Some (x, consumed) ->
if f x
then Some (x, consumed)
else None
))
let parse_filter_eq #k #t = tot_parse_filter_eq #k #t
let serialize_filter
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(f: (t -> Tot bool))
: Tot (serializer (parse_filter p f))
= Classical.forall_intro (parse_filter_eq #k #t p f);
serialize_ext _ (serialize_filter s f) _
inline_for_extraction
let and_then #k #t = tot_and_then #k #t
val and_then_eq
(#k: parser_kind)
(#t:Type)
(p: parser k t)
(#k': parser_kind)
(#t':Type)
(p': (t -> Tot (parser k' t')))
(input: bytes)
: Lemma
(requires (and_then_cases_injective p'))
(ensures (parse (and_then p p') input == and_then_bare p p' input)) | false | false | LowParse.Tot.Combinators.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val and_then_eq
(#k: parser_kind)
(#t:Type)
(p: parser k t)
(#k': parser_kind)
(#t':Type)
(p': (t -> Tot (parser k' t')))
(input: bytes)
: Lemma
(requires (and_then_cases_injective p'))
(ensures (parse (and_then p p') input == and_then_bare p p' input)) | [] | LowParse.Tot.Combinators.and_then_eq | {
"file_name": "src/lowparse/LowParse.Tot.Combinators.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
p: LowParse.Tot.Base.parser k t ->
p': (_: t -> LowParse.Tot.Base.parser k' t') ->
input: LowParse.Bytes.bytes
-> FStar.Pervasives.Lemma (requires LowParse.Spec.Combinators.and_then_cases_injective p')
(ensures
LowParse.Spec.Base.parse (LowParse.Tot.Combinators.and_then p p') input ==
LowParse.Spec.Combinators.and_then_bare p p' input) | {
"end_col": 79,
"end_line": 101,
"start_col": 43,
"start_line": 101
} |
FStar.Pervasives.Lemma | val parse_filter_eq
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(f: (t -> Tot bool))
(input: bytes)
: Lemma
(parse (parse_filter p f) input == (match parse p input with
| None -> None
| Some (x, consumed) ->
if f x
then Some (x, consumed)
else None
)) | [
{
"abbrev": false,
"full_module": "LowParse.Tot.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let parse_filter_eq #k #t = tot_parse_filter_eq #k #t | val parse_filter_eq
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(f: (t -> Tot bool))
(input: bytes)
: Lemma
(parse (parse_filter p f) input == (match parse p input with
| None -> None
| Some (x, consumed) ->
if f x
then Some (x, consumed)
else None
))
let parse_filter_eq #k #t = | false | null | true | tot_parse_filter_eq #k #t | {
"checked_file": "LowParse.Tot.Combinators.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Tot.Base.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Tot.Combinators.fst"
} | [
"lemma"
] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Combinators.tot_parse_filter_eq",
"LowParse.Tot.Base.parser",
"Prims.bool",
"LowParse.Bytes.bytes",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"FStar.Pervasives.Native.option",
"FStar.Pervasives.Native.tuple2",
"LowParse.Spec.Combinators.parse_filter_refine",
"LowParse.Spec.Base.consumed_length",
"LowParse.Spec.Base.parse",
"LowParse.Tot.Combinators.parse_filter",
"FStar.Pervasives.Native.None",
"FStar.Pervasives.Native.Some",
"FStar.Pervasives.Native.Mktuple2",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module LowParse.Tot.Combinators
include LowParse.Spec.Combinators
include LowParse.Tot.Base
inline_for_extraction
let fail_parser = tot_fail_parser
inline_for_extraction
let parse_ret = tot_parse_ret
inline_for_extraction
let parse_empty : parser parse_ret_kind unit =
parse_ret ()
inline_for_extraction
let parse_synth #k #t1 #t2 = tot_parse_synth #k #t1 #t2
val parse_synth_eq
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: parser k t1)
(f2: t1 -> Tot t2)
(b: bytes)
: Lemma
(requires (synth_injective f2))
(ensures (parse (parse_synth p1 f2) b == parse_synth' #k p1 f2 b))
let parse_synth_eq #k #t1 #t2 = tot_parse_synth_eq #k #t1 #t2
val serialize_synth
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: tot_parser k t1)
(f2: t1 -> Tot t2)
(s1: serializer p1)
(g1: t2 -> GTot t1)
(u: unit {
synth_inverse f2 g1 /\
synth_injective f2
})
: Tot (serializer (tot_parse_synth p1 f2))
let serialize_synth #k #t1 #t2 = serialize_tot_synth #k #t1 #t2
let serialize_weaken
(#k: parser_kind)
(#t: Type)
(k' : parser_kind)
(#p: parser k t)
(s: serializer p { k' `is_weaker_than` k })
: Tot (serializer (weaken k' p))
= serialize_weaken #k k' s
inline_for_extraction
let parse_filter #k #t = tot_parse_filter #k #t
val parse_filter_eq
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(f: (t -> Tot bool))
(input: bytes)
: Lemma
(parse (parse_filter p f) input == (match parse p input with
| None -> None
| Some (x, consumed) ->
if f x
then Some (x, consumed)
else None
)) | false | false | LowParse.Tot.Combinators.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val parse_filter_eq
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(f: (t -> Tot bool))
(input: bytes)
: Lemma
(parse (parse_filter p f) input == (match parse p input with
| None -> None
| Some (x, consumed) ->
if f x
then Some (x, consumed)
else None
)) | [] | LowParse.Tot.Combinators.parse_filter_eq | {
"file_name": "src/lowparse/LowParse.Tot.Combinators.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | p: LowParse.Tot.Base.parser k t -> f: (_: t -> Prims.bool) -> input: LowParse.Bytes.bytes
-> FStar.Pervasives.Lemma
(ensures
LowParse.Spec.Base.parse (LowParse.Tot.Combinators.parse_filter p f) input ==
((match LowParse.Spec.Base.parse p input with
| FStar.Pervasives.Native.None #_ -> FStar.Pervasives.Native.None
| FStar.Pervasives.Native.Some #_ (FStar.Pervasives.Native.Mktuple2 #_ #_ x consumed) ->
(match f x with
| true -> FStar.Pervasives.Native.Some (x, consumed)
| _ -> FStar.Pervasives.Native.None)
<:
FStar.Pervasives.Native.option (LowParse.Spec.Combinators.parse_filter_refine f *
LowParse.Spec.Base.consumed_length input))
<:
FStar.Pervasives.Native.option (LowParse.Spec.Combinators.parse_filter_refine f *
LowParse.Spec.Base.consumed_length input))) | {
"end_col": 53,
"end_line": 74,
"start_col": 28,
"start_line": 74
} |
FStar.Pervasives.Lemma | val nondep_then_eq
(#k1: parser_kind)
(#t1: Type)
(p1: parser k1 t1)
(#k2: parser_kind)
(#t2: Type)
(p2: parser k2 t2)
(b: bytes)
: Lemma
(parse (nondep_then p1 p2) b == (match parse p1 b with
| Some (x1, consumed1) ->
let b' = Seq.slice b consumed1 (Seq.length b) in
begin match parse p2 b' with
| Some (x2, consumed2) ->
Some ((x1, x2), consumed1 + consumed2)
| _ -> None
end
| _ -> None
)) | [
{
"abbrev": false,
"full_module": "LowParse.Tot.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let nondep_then_eq #k1 #t1 p1 #k2 #t2 p2 b =
nondep_then_eq #k1 p1 #k2 p2 b | val nondep_then_eq
(#k1: parser_kind)
(#t1: Type)
(p1: parser k1 t1)
(#k2: parser_kind)
(#t2: Type)
(p2: parser k2 t2)
(b: bytes)
: Lemma
(parse (nondep_then p1 p2) b == (match parse p1 b with
| Some (x1, consumed1) ->
let b' = Seq.slice b consumed1 (Seq.length b) in
begin match parse p2 b' with
| Some (x2, consumed2) ->
Some ((x1, x2), consumed1 + consumed2)
| _ -> None
end
| _ -> None
))
let nondep_then_eq #k1 #t1 p1 #k2 #t2 p2 b = | false | null | true | nondep_then_eq #k1 p1 #k2 p2 b | {
"checked_file": "LowParse.Tot.Combinators.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Tot.Base.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Tot.Combinators.fst"
} | [
"lemma"
] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Tot.Base.parser",
"LowParse.Bytes.bytes",
"LowParse.Spec.Combinators.nondep_then_eq",
"Prims.unit"
] | [] | module LowParse.Tot.Combinators
include LowParse.Spec.Combinators
include LowParse.Tot.Base
inline_for_extraction
let fail_parser = tot_fail_parser
inline_for_extraction
let parse_ret = tot_parse_ret
inline_for_extraction
let parse_empty : parser parse_ret_kind unit =
parse_ret ()
inline_for_extraction
let parse_synth #k #t1 #t2 = tot_parse_synth #k #t1 #t2
val parse_synth_eq
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: parser k t1)
(f2: t1 -> Tot t2)
(b: bytes)
: Lemma
(requires (synth_injective f2))
(ensures (parse (parse_synth p1 f2) b == parse_synth' #k p1 f2 b))
let parse_synth_eq #k #t1 #t2 = tot_parse_synth_eq #k #t1 #t2
val serialize_synth
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: tot_parser k t1)
(f2: t1 -> Tot t2)
(s1: serializer p1)
(g1: t2 -> GTot t1)
(u: unit {
synth_inverse f2 g1 /\
synth_injective f2
})
: Tot (serializer (tot_parse_synth p1 f2))
let serialize_synth #k #t1 #t2 = serialize_tot_synth #k #t1 #t2
let serialize_weaken
(#k: parser_kind)
(#t: Type)
(k' : parser_kind)
(#p: parser k t)
(s: serializer p { k' `is_weaker_than` k })
: Tot (serializer (weaken k' p))
= serialize_weaken #k k' s
inline_for_extraction
let parse_filter #k #t = tot_parse_filter #k #t
val parse_filter_eq
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(f: (t -> Tot bool))
(input: bytes)
: Lemma
(parse (parse_filter p f) input == (match parse p input with
| None -> None
| Some (x, consumed) ->
if f x
then Some (x, consumed)
else None
))
let parse_filter_eq #k #t = tot_parse_filter_eq #k #t
let serialize_filter
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(f: (t -> Tot bool))
: Tot (serializer (parse_filter p f))
= Classical.forall_intro (parse_filter_eq #k #t p f);
serialize_ext _ (serialize_filter s f) _
inline_for_extraction
let and_then #k #t = tot_and_then #k #t
val and_then_eq
(#k: parser_kind)
(#t:Type)
(p: parser k t)
(#k': parser_kind)
(#t':Type)
(p': (t -> Tot (parser k' t')))
(input: bytes)
: Lemma
(requires (and_then_cases_injective p'))
(ensures (parse (and_then p p') input == and_then_bare p p' input))
let and_then_eq #k #t p #k' #t' p' input = and_then_eq #k #t p #k' #t' p' input
inline_for_extraction
val parse_tagged_union_payload
(#tag_t: Type)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
(tg: tag_t)
: Tot (parser k data_t)
let parse_tagged_union_payload #tag_t #data_t = tot_parse_tagged_union_payload #tag_t #data_t
inline_for_extraction
val parse_tagged_union
(#kt: parser_kind)
(#tag_t: Type)
(pt: parser kt tag_t)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
: Tot (parser (and_then_kind kt k) data_t)
let parse_tagged_union #kt #tag_t = tot_parse_tagged_union #kt #tag_t
let parse_tagged_union_payload_and_then_cases_injective
(#tag_t: Type)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
: Lemma
(and_then_cases_injective (parse_tagged_union_payload tag_of_data p))
= parse_tagged_union_payload_and_then_cases_injective tag_of_data #k p
val parse_tagged_union_eq
(#kt: parser_kind)
(#tag_t: Type)
(pt: parser kt tag_t)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
(input: bytes)
: Lemma
(parse (parse_tagged_union pt tag_of_data p) input == (match parse pt input with
| None -> None
| Some (tg, consumed_tg) ->
let input_tg = Seq.slice input consumed_tg (Seq.length input) in
begin match parse (p tg) input_tg with
| Some (x, consumed_x) -> Some ((x <: data_t), consumed_tg + consumed_x)
| None -> None
end
))
let parse_tagged_union_eq #kt #tag_t pt #data_t tag_of_data #k p input =
parse_tagged_union_eq #kt #tag_t pt #data_t tag_of_data #k p input
val serialize_tagged_union
(#kt: parser_kind)
(#tag_t: Type)
(#pt: parser kt tag_t)
(st: serializer pt)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(#p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
(s: (t: tag_t) -> Tot (serializer (p t)))
: Pure (serializer (parse_tagged_union pt tag_of_data p))
(requires (kt.parser_kind_subkind == Some ParserStrong))
(ensures (fun _ -> True))
let serialize_tagged_union #kt st tag_of_data #k s = serialize_tot_tagged_union #kt st tag_of_data #k s
val nondep_then
(#k1: parser_kind)
(#t1: Type)
(p1: parser k1 t1)
(#k2: parser_kind)
(#t2: Type)
(p2: parser k2 t2)
: Tot (parser (and_then_kind k1 k2) (t1 * t2))
let nondep_then #k1 = tot_nondep_then #k1
val nondep_then_eq
(#k1: parser_kind)
(#t1: Type)
(p1: parser k1 t1)
(#k2: parser_kind)
(#t2: Type)
(p2: parser k2 t2)
(b: bytes)
: Lemma
(parse (nondep_then p1 p2) b == (match parse p1 b with
| Some (x1, consumed1) ->
let b' = Seq.slice b consumed1 (Seq.length b) in
begin match parse p2 b' with
| Some (x2, consumed2) ->
Some ((x1, x2), consumed1 + consumed2)
| _ -> None
end
| _ -> None
)) | false | false | LowParse.Tot.Combinators.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val nondep_then_eq
(#k1: parser_kind)
(#t1: Type)
(p1: parser k1 t1)
(#k2: parser_kind)
(#t2: Type)
(p2: parser k2 t2)
(b: bytes)
: Lemma
(parse (nondep_then p1 p2) b == (match parse p1 b with
| Some (x1, consumed1) ->
let b' = Seq.slice b consumed1 (Seq.length b) in
begin match parse p2 b' with
| Some (x2, consumed2) ->
Some ((x1, x2), consumed1 + consumed2)
| _ -> None
end
| _ -> None
)) | [] | LowParse.Tot.Combinators.nondep_then_eq | {
"file_name": "src/lowparse/LowParse.Tot.Combinators.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | p1: LowParse.Tot.Base.parser k1 t1 -> p2: LowParse.Tot.Base.parser k2 t2 -> b: LowParse.Bytes.bytes
-> FStar.Pervasives.Lemma
(ensures
LowParse.Spec.Base.parse (LowParse.Tot.Combinators.nondep_then p1 p2) b ==
((match LowParse.Spec.Base.parse p1 b with
| FStar.Pervasives.Native.Some #_ (FStar.Pervasives.Native.Mktuple2 #_ #_ x1 consumed1) ->
let b' = FStar.Seq.Base.slice b consumed1 (FStar.Seq.Base.length b) in
(match LowParse.Spec.Base.parse p2 b' with
| FStar.Pervasives.Native.Some
#_
(FStar.Pervasives.Native.Mktuple2 #_ #_ x2 consumed2) ->
FStar.Pervasives.Native.Some
(FStar.Pervasives.Native.Mktuple2 x1 x2, consumed1 + consumed2)
| _ -> FStar.Pervasives.Native.None)
<:
FStar.Pervasives.Native.option ((t1 * t2) * LowParse.Spec.Base.consumed_length b)
| _ -> FStar.Pervasives.Native.None)
<:
FStar.Pervasives.Native.option ((t1 * t2) * LowParse.Spec.Base.consumed_length b))) | {
"end_col": 32,
"end_line": 209,
"start_col": 2,
"start_line": 209
} |
FStar.Pervasives.Lemma | val parse_tagged_union_eq
(#kt: parser_kind)
(#tag_t: Type)
(pt: parser kt tag_t)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
(input: bytes)
: Lemma
(parse (parse_tagged_union pt tag_of_data p) input == (match parse pt input with
| None -> None
| Some (tg, consumed_tg) ->
let input_tg = Seq.slice input consumed_tg (Seq.length input) in
begin match parse (p tg) input_tg with
| Some (x, consumed_x) -> Some ((x <: data_t), consumed_tg + consumed_x)
| None -> None
end
)) | [
{
"abbrev": false,
"full_module": "LowParse.Tot.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let parse_tagged_union_eq #kt #tag_t pt #data_t tag_of_data #k p input =
parse_tagged_union_eq #kt #tag_t pt #data_t tag_of_data #k p input | val parse_tagged_union_eq
(#kt: parser_kind)
(#tag_t: Type)
(pt: parser kt tag_t)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
(input: bytes)
: Lemma
(parse (parse_tagged_union pt tag_of_data p) input == (match parse pt input with
| None -> None
| Some (tg, consumed_tg) ->
let input_tg = Seq.slice input consumed_tg (Seq.length input) in
begin match parse (p tg) input_tg with
| Some (x, consumed_x) -> Some ((x <: data_t), consumed_tg + consumed_x)
| None -> None
end
))
let parse_tagged_union_eq #kt #tag_t pt #data_t tag_of_data #k p input = | false | null | true | parse_tagged_union_eq #kt #tag_t pt #data_t tag_of_data #k p input | {
"checked_file": "LowParse.Tot.Combinators.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Tot.Base.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Tot.Combinators.fst"
} | [
"lemma"
] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Tot.Base.parser",
"LowParse.Spec.Base.refine_with_tag",
"LowParse.Bytes.bytes",
"LowParse.Spec.Combinators.parse_tagged_union_eq",
"Prims.unit"
] | [] | module LowParse.Tot.Combinators
include LowParse.Spec.Combinators
include LowParse.Tot.Base
inline_for_extraction
let fail_parser = tot_fail_parser
inline_for_extraction
let parse_ret = tot_parse_ret
inline_for_extraction
let parse_empty : parser parse_ret_kind unit =
parse_ret ()
inline_for_extraction
let parse_synth #k #t1 #t2 = tot_parse_synth #k #t1 #t2
val parse_synth_eq
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: parser k t1)
(f2: t1 -> Tot t2)
(b: bytes)
: Lemma
(requires (synth_injective f2))
(ensures (parse (parse_synth p1 f2) b == parse_synth' #k p1 f2 b))
let parse_synth_eq #k #t1 #t2 = tot_parse_synth_eq #k #t1 #t2
val serialize_synth
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: tot_parser k t1)
(f2: t1 -> Tot t2)
(s1: serializer p1)
(g1: t2 -> GTot t1)
(u: unit {
synth_inverse f2 g1 /\
synth_injective f2
})
: Tot (serializer (tot_parse_synth p1 f2))
let serialize_synth #k #t1 #t2 = serialize_tot_synth #k #t1 #t2
let serialize_weaken
(#k: parser_kind)
(#t: Type)
(k' : parser_kind)
(#p: parser k t)
(s: serializer p { k' `is_weaker_than` k })
: Tot (serializer (weaken k' p))
= serialize_weaken #k k' s
inline_for_extraction
let parse_filter #k #t = tot_parse_filter #k #t
val parse_filter_eq
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(f: (t -> Tot bool))
(input: bytes)
: Lemma
(parse (parse_filter p f) input == (match parse p input with
| None -> None
| Some (x, consumed) ->
if f x
then Some (x, consumed)
else None
))
let parse_filter_eq #k #t = tot_parse_filter_eq #k #t
let serialize_filter
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(f: (t -> Tot bool))
: Tot (serializer (parse_filter p f))
= Classical.forall_intro (parse_filter_eq #k #t p f);
serialize_ext _ (serialize_filter s f) _
inline_for_extraction
let and_then #k #t = tot_and_then #k #t
val and_then_eq
(#k: parser_kind)
(#t:Type)
(p: parser k t)
(#k': parser_kind)
(#t':Type)
(p': (t -> Tot (parser k' t')))
(input: bytes)
: Lemma
(requires (and_then_cases_injective p'))
(ensures (parse (and_then p p') input == and_then_bare p p' input))
let and_then_eq #k #t p #k' #t' p' input = and_then_eq #k #t p #k' #t' p' input
inline_for_extraction
val parse_tagged_union_payload
(#tag_t: Type)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
(tg: tag_t)
: Tot (parser k data_t)
let parse_tagged_union_payload #tag_t #data_t = tot_parse_tagged_union_payload #tag_t #data_t
inline_for_extraction
val parse_tagged_union
(#kt: parser_kind)
(#tag_t: Type)
(pt: parser kt tag_t)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
: Tot (parser (and_then_kind kt k) data_t)
let parse_tagged_union #kt #tag_t = tot_parse_tagged_union #kt #tag_t
let parse_tagged_union_payload_and_then_cases_injective
(#tag_t: Type)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
: Lemma
(and_then_cases_injective (parse_tagged_union_payload tag_of_data p))
= parse_tagged_union_payload_and_then_cases_injective tag_of_data #k p
val parse_tagged_union_eq
(#kt: parser_kind)
(#tag_t: Type)
(pt: parser kt tag_t)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
(input: bytes)
: Lemma
(parse (parse_tagged_union pt tag_of_data p) input == (match parse pt input with
| None -> None
| Some (tg, consumed_tg) ->
let input_tg = Seq.slice input consumed_tg (Seq.length input) in
begin match parse (p tg) input_tg with
| Some (x, consumed_x) -> Some ((x <: data_t), consumed_tg + consumed_x)
| None -> None
end
)) | false | false | LowParse.Tot.Combinators.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val parse_tagged_union_eq
(#kt: parser_kind)
(#tag_t: Type)
(pt: parser kt tag_t)
(#data_t: Type)
(tag_of_data: (data_t -> Tot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
(input: bytes)
: Lemma
(parse (parse_tagged_union pt tag_of_data p) input == (match parse pt input with
| None -> None
| Some (tg, consumed_tg) ->
let input_tg = Seq.slice input consumed_tg (Seq.length input) in
begin match parse (p tg) input_tg with
| Some (x, consumed_x) -> Some ((x <: data_t), consumed_tg + consumed_x)
| None -> None
end
)) | [] | LowParse.Tot.Combinators.parse_tagged_union_eq | {
"file_name": "src/lowparse/LowParse.Tot.Combinators.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
pt: LowParse.Tot.Base.parser kt tag_t ->
tag_of_data: (_: data_t -> tag_t) ->
p: (t: tag_t -> LowParse.Tot.Base.parser k (LowParse.Spec.Base.refine_with_tag tag_of_data t)) ->
input: LowParse.Bytes.bytes
-> FStar.Pervasives.Lemma
(ensures
LowParse.Spec.Base.parse (LowParse.Tot.Combinators.parse_tagged_union pt tag_of_data p) input ==
((match LowParse.Spec.Base.parse pt input with
| FStar.Pervasives.Native.None #_ -> FStar.Pervasives.Native.None
| FStar.Pervasives.Native.Some #_ (FStar.Pervasives.Native.Mktuple2 #_ #_ tg consumed_tg) ->
let input_tg = FStar.Seq.Base.slice input consumed_tg (FStar.Seq.Base.length input) in
(match LowParse.Spec.Base.parse (p tg) input_tg with
| FStar.Pervasives.Native.Some
#_
(FStar.Pervasives.Native.Mktuple2 #_ #_ x consumed_x) ->
FStar.Pervasives.Native.Some (x, consumed_tg + consumed_x)
| FStar.Pervasives.Native.None #_ -> FStar.Pervasives.Native.None)
<:
FStar.Pervasives.Native.option (data_t * LowParse.Spec.Base.consumed_length input))
<:
FStar.Pervasives.Native.option (data_t * LowParse.Spec.Base.consumed_length input))) | {
"end_col": 68,
"end_line": 159,
"start_col": 2,
"start_line": 159
} |
Prims.Tot | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let aff_point_mul = S.aff_point_mul | let aff_point_mul = | false | null | false | S.aff_point_mul | {
"checked_file": "Hacl.Spec.K256.GLV.fst.checked",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.GLV.fst"
} | [
"total"
] | [
"Spec.K256.aff_point_mul"
] | [] | module Hacl.Spec.K256.GLV
open FStar.Mul
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
This module implements the following two functions from libsecp256k1:
secp256k1_scalar_split_lambda [1] and secp256k1_ecmult_endo_split [2].
For the secp256k1 curve, we can replace the EC scalar multiplication
by `lambda` with one modular multiplication by `beta`:
[lambda](px, py) = (beta *% px, py) for any point on the curve P = (px, py),
where `lambda` and `beta` are primitive cube roots of unity and can be
fixed for the curve.
The main idea is to slit a 256-bit scalar k into k1 and k2 s.t.
k = (k1 + lambda * k2) % q, where k1 and k2 are 128-bit numbers:
[k]P = [(k1 + lambda * k2) % q]P = [k1]P + [k2]([lambda]P)
= [k1](px, py) + [k2](beta *% px, py).
Using a double fixed-window method, we can save 128 point_double:
| before | after
----------------------------------------------------------------------
point_double | 256 | 128
point_add | 256 / 5 = 51 | 128 / 5 + 128 / 5 + 1 = 25 + 25 + 1 = 51
Note that one precomputed table is enough for [k]P, as [r_small]([lambda]P)
can be obtained via [r_small]P.
[1]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/scalar_impl.h#L123
[2]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/ecmult_impl.h#L618
*)
(**
Fast computation of [lambda]P as (beta * x, y) in affine and projective coordinates
*)
let lambda : S.qelem = 0x5363ad4cc05c30e0a5261c028812645a122e22ea20816678df02967c1b23bd72
let beta : S.felem = 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee | false | true | Hacl.Spec.K256.GLV.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val aff_point_mul : a: Prims.nat -> p: Spec.K256.PointOps.aff_point -> Spec.K256.PointOps.aff_point | [] | Hacl.Spec.K256.GLV.aff_point_mul | {
"file_name": "code/k256/Hacl.Spec.K256.GLV.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Prims.nat -> p: Spec.K256.PointOps.aff_point -> Spec.K256.PointOps.aff_point | {
"end_col": 35,
"end_line": 51,
"start_col": 20,
"start_line": 51
} |
|
Prims.Tot | val aff_point_negate_cond (p: S.aff_point) (is_negate: bool) : S.aff_point | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let aff_point_negate_cond (p:S.aff_point) (is_negate:bool) : S.aff_point =
if is_negate then S.aff_point_negate p else p | val aff_point_negate_cond (p: S.aff_point) (is_negate: bool) : S.aff_point
let aff_point_negate_cond (p: S.aff_point) (is_negate: bool) : S.aff_point = | false | null | false | if is_negate then S.aff_point_negate p else p | {
"checked_file": "Hacl.Spec.K256.GLV.fst.checked",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.GLV.fst"
} | [
"total"
] | [
"Spec.K256.PointOps.aff_point",
"Prims.bool",
"Spec.K256.PointOps.aff_point_negate"
] | [] | module Hacl.Spec.K256.GLV
open FStar.Mul
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
This module implements the following two functions from libsecp256k1:
secp256k1_scalar_split_lambda [1] and secp256k1_ecmult_endo_split [2].
For the secp256k1 curve, we can replace the EC scalar multiplication
by `lambda` with one modular multiplication by `beta`:
[lambda](px, py) = (beta *% px, py) for any point on the curve P = (px, py),
where `lambda` and `beta` are primitive cube roots of unity and can be
fixed for the curve.
The main idea is to slit a 256-bit scalar k into k1 and k2 s.t.
k = (k1 + lambda * k2) % q, where k1 and k2 are 128-bit numbers:
[k]P = [(k1 + lambda * k2) % q]P = [k1]P + [k2]([lambda]P)
= [k1](px, py) + [k2](beta *% px, py).
Using a double fixed-window method, we can save 128 point_double:
| before | after
----------------------------------------------------------------------
point_double | 256 | 128
point_add | 256 / 5 = 51 | 128 / 5 + 128 / 5 + 1 = 25 + 25 + 1 = 51
Note that one precomputed table is enough for [k]P, as [r_small]([lambda]P)
can be obtained via [r_small]P.
[1]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/scalar_impl.h#L123
[2]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/ecmult_impl.h#L618
*)
(**
Fast computation of [lambda]P as (beta * x, y) in affine and projective coordinates
*)
let lambda : S.qelem = 0x5363ad4cc05c30e0a5261c028812645a122e22ea20816678df02967c1b23bd72
let beta : S.felem = 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee
// [a]P in affine coordinates
let aff_point_mul = S.aff_point_mul
// fast computation of [lambda]P in affine coordinates
let aff_point_mul_lambda (p:S.aff_point) : S.aff_point =
let (px, py) = p in (S.(beta *% px), py)
// fast computation of [lambda]P in projective coordinates
let point_mul_lambda (p:S.proj_point) : S.proj_point =
let (_X, _Y, _Z) = p in (S.(beta *% _X), _Y, _Z)
(**
Representing a scalar k as (r1 + r2 * lambda) mod S.q,
s.t. r1 and r2 are ~128 bits long
*)
let a1 : S.qelem = 0x3086d221a7d46bcde86c90e49284eb15
let minus_b1 : S.qelem = 0xe4437ed6010e88286f547fa90abfe4c3
let a2 : S.qelem = 0x114ca50f7a8e2f3f657c1108d9d44cfd8
let b2 : S.qelem = 0x3086d221a7d46bcde86c90e49284eb15
let minus_lambda : S.qelem =
let x = 0xac9c52b33fa3cf1f5ad9e3fd77ed9ba4a880b9fc8ec739c2e0cfc810b51283cf in
assert_norm (x = (- lambda) % S.q);
x
let b1 : S.qelem =
let x = 0xfffffffffffffffffffffffffffffffdd66b5e10ae3a1813507ddee3c5765c7e in
assert_norm (x = (- minus_b1) % S.q);
x
let minus_b2 : S.qelem =
let x = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE8A280AC50774346DD765CDA83DB1562C in
assert_norm (x = (- b2) % S.q);
x
let g1 : S.qelem =
let x = 0x3086D221A7D46BCDE86C90E49284EB153DAA8A1471E8CA7FE893209A45DBB031 in
assert_norm (pow2 384 * b2 / S.q + 1 = x);
x
let g2 : S.qelem =
let x = 0xE4437ED6010E88286F547FA90ABFE4C4221208AC9DF506C61571B4AE8AC47F71 in
assert_norm (pow2 384 * minus_b1 / S.q = x);
x
let qmul_shift_384 a b =
a * b / pow2 384 + (a * b / pow2 383 % 2)
val qmul_shift_384_lemma (a b:S.qelem) : Lemma (qmul_shift_384 a b < S.q)
let qmul_shift_384_lemma a b =
assert_norm (S.q < pow2 256);
Math.Lemmas.lemma_mult_lt_sqr a b (pow2 256);
Math.Lemmas.pow2_plus 256 256;
assert (a * b < pow2 512);
Math.Lemmas.lemma_div_lt_nat (a * b) 512 384;
assert (a * b / pow2 384 < pow2 128);
assert_norm (pow2 128 < S.q)
let scalar_split_lambda (k:S.qelem) : S.qelem & S.qelem =
qmul_shift_384_lemma k g1;
qmul_shift_384_lemma k g2;
let c1 : S.qelem = qmul_shift_384 k g1 in
let c2 : S.qelem = qmul_shift_384 k g2 in
let c1 = S.(c1 *^ minus_b1) in
let c2 = S.(c2 *^ minus_b2) in
let r2 = S.(c1 +^ c2) in
let r1 = S.(k +^ r2 *^ minus_lambda) in
r1, r2
(**
Fast computation of [k]P in affine coordinates
*) | false | true | Hacl.Spec.K256.GLV.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val aff_point_negate_cond (p: S.aff_point) (is_negate: bool) : S.aff_point | [] | Hacl.Spec.K256.GLV.aff_point_negate_cond | {
"file_name": "code/k256/Hacl.Spec.K256.GLV.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | p: Spec.K256.PointOps.aff_point -> is_negate: Prims.bool -> Spec.K256.PointOps.aff_point | {
"end_col": 47,
"end_line": 129,
"start_col": 2,
"start_line": 129
} |
Prims.Tot | val point_negate_cond (p: S.proj_point) (is_negate: bool) : S.proj_point | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let point_negate_cond (p:S.proj_point) (is_negate:bool) : S.proj_point =
if is_negate then S.point_negate p else p | val point_negate_cond (p: S.proj_point) (is_negate: bool) : S.proj_point
let point_negate_cond (p: S.proj_point) (is_negate: bool) : S.proj_point = | false | null | false | if is_negate then S.point_negate p else p | {
"checked_file": "Hacl.Spec.K256.GLV.fst.checked",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.GLV.fst"
} | [
"total"
] | [
"Spec.K256.PointOps.proj_point",
"Prims.bool",
"Spec.K256.PointOps.point_negate"
] | [] | module Hacl.Spec.K256.GLV
open FStar.Mul
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
This module implements the following two functions from libsecp256k1:
secp256k1_scalar_split_lambda [1] and secp256k1_ecmult_endo_split [2].
For the secp256k1 curve, we can replace the EC scalar multiplication
by `lambda` with one modular multiplication by `beta`:
[lambda](px, py) = (beta *% px, py) for any point on the curve P = (px, py),
where `lambda` and `beta` are primitive cube roots of unity and can be
fixed for the curve.
The main idea is to slit a 256-bit scalar k into k1 and k2 s.t.
k = (k1 + lambda * k2) % q, where k1 and k2 are 128-bit numbers:
[k]P = [(k1 + lambda * k2) % q]P = [k1]P + [k2]([lambda]P)
= [k1](px, py) + [k2](beta *% px, py).
Using a double fixed-window method, we can save 128 point_double:
| before | after
----------------------------------------------------------------------
point_double | 256 | 128
point_add | 256 / 5 = 51 | 128 / 5 + 128 / 5 + 1 = 25 + 25 + 1 = 51
Note that one precomputed table is enough for [k]P, as [r_small]([lambda]P)
can be obtained via [r_small]P.
[1]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/scalar_impl.h#L123
[2]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/ecmult_impl.h#L618
*)
(**
Fast computation of [lambda]P as (beta * x, y) in affine and projective coordinates
*)
let lambda : S.qelem = 0x5363ad4cc05c30e0a5261c028812645a122e22ea20816678df02967c1b23bd72
let beta : S.felem = 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee
// [a]P in affine coordinates
let aff_point_mul = S.aff_point_mul
// fast computation of [lambda]P in affine coordinates
let aff_point_mul_lambda (p:S.aff_point) : S.aff_point =
let (px, py) = p in (S.(beta *% px), py)
// fast computation of [lambda]P in projective coordinates
let point_mul_lambda (p:S.proj_point) : S.proj_point =
let (_X, _Y, _Z) = p in (S.(beta *% _X), _Y, _Z)
(**
Representing a scalar k as (r1 + r2 * lambda) mod S.q,
s.t. r1 and r2 are ~128 bits long
*)
let a1 : S.qelem = 0x3086d221a7d46bcde86c90e49284eb15
let minus_b1 : S.qelem = 0xe4437ed6010e88286f547fa90abfe4c3
let a2 : S.qelem = 0x114ca50f7a8e2f3f657c1108d9d44cfd8
let b2 : S.qelem = 0x3086d221a7d46bcde86c90e49284eb15
let minus_lambda : S.qelem =
let x = 0xac9c52b33fa3cf1f5ad9e3fd77ed9ba4a880b9fc8ec739c2e0cfc810b51283cf in
assert_norm (x = (- lambda) % S.q);
x
let b1 : S.qelem =
let x = 0xfffffffffffffffffffffffffffffffdd66b5e10ae3a1813507ddee3c5765c7e in
assert_norm (x = (- minus_b1) % S.q);
x
let minus_b2 : S.qelem =
let x = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE8A280AC50774346DD765CDA83DB1562C in
assert_norm (x = (- b2) % S.q);
x
let g1 : S.qelem =
let x = 0x3086D221A7D46BCDE86C90E49284EB153DAA8A1471E8CA7FE893209A45DBB031 in
assert_norm (pow2 384 * b2 / S.q + 1 = x);
x
let g2 : S.qelem =
let x = 0xE4437ED6010E88286F547FA90ABFE4C4221208AC9DF506C61571B4AE8AC47F71 in
assert_norm (pow2 384 * minus_b1 / S.q = x);
x
let qmul_shift_384 a b =
a * b / pow2 384 + (a * b / pow2 383 % 2)
val qmul_shift_384_lemma (a b:S.qelem) : Lemma (qmul_shift_384 a b < S.q)
let qmul_shift_384_lemma a b =
assert_norm (S.q < pow2 256);
Math.Lemmas.lemma_mult_lt_sqr a b (pow2 256);
Math.Lemmas.pow2_plus 256 256;
assert (a * b < pow2 512);
Math.Lemmas.lemma_div_lt_nat (a * b) 512 384;
assert (a * b / pow2 384 < pow2 128);
assert_norm (pow2 128 < S.q)
let scalar_split_lambda (k:S.qelem) : S.qelem & S.qelem =
qmul_shift_384_lemma k g1;
qmul_shift_384_lemma k g2;
let c1 : S.qelem = qmul_shift_384 k g1 in
let c2 : S.qelem = qmul_shift_384 k g2 in
let c1 = S.(c1 *^ minus_b1) in
let c2 = S.(c2 *^ minus_b2) in
let r2 = S.(c1 +^ c2) in
let r1 = S.(k +^ r2 *^ minus_lambda) in
r1, r2
(**
Fast computation of [k]P in affine coordinates
*)
let aff_point_negate_cond (p:S.aff_point) (is_negate:bool) : S.aff_point =
if is_negate then S.aff_point_negate p else p
let aff_negate_point_and_scalar_cond (k:S.qelem) (p:S.aff_point) : S.qelem & S.aff_point =
if S.scalar_is_high k then begin
let k_neg = S.qnegate k in
let p_neg = S.aff_point_negate p in
k_neg, p_neg end
else k, p
// https://github.com/bitcoin-core/secp256k1/blob/master/src/ecmult_impl.h
// [k]P = [r1 + r2 * lambda]P = [r1]P + [r2]([lambda]P) = [r1](x,y) + [r2](beta*x,y)
let aff_ecmult_endo_split (k:S.qelem) (p:S.aff_point) :
S.qelem & S.aff_point & S.qelem & S.aff_point
=
let r1, r2 = scalar_split_lambda k in
let lambda_p = aff_point_mul_lambda p in
let r1, p1 = aff_negate_point_and_scalar_cond r1 p in
let r2, p2 = aff_negate_point_and_scalar_cond r2 lambda_p in
(r1, p1, r2, p2)
// [k]P = [r1 + r2 * lambda]P = [r1]P + [r2]([lambda]P) = [r1](x,y) + [r2](beta*x,y)
// which can be computed as a double exponentiation ([a]P + [b]Q)
let aff_point_mul_endo_split (k:S.qelem) (p:S.aff_point) : S.aff_point =
let r1, p1, r2, p2 = aff_ecmult_endo_split k p in
S.aff_point_add (aff_point_mul r1 p1) (aff_point_mul r2 p2)
(**
Fast computation of [k]P in projective coordinates
*) | false | true | Hacl.Spec.K256.GLV.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val point_negate_cond (p: S.proj_point) (is_negate: bool) : S.proj_point | [] | Hacl.Spec.K256.GLV.point_negate_cond | {
"file_name": "code/k256/Hacl.Spec.K256.GLV.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | p: Spec.K256.PointOps.proj_point -> is_negate: Prims.bool -> Spec.K256.PointOps.proj_point | {
"end_col": 43,
"end_line": 160,
"start_col": 2,
"start_line": 160
} |
Prims.Tot | val aff_point_mul_lambda (p: S.aff_point) : S.aff_point | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let aff_point_mul_lambda (p:S.aff_point) : S.aff_point =
let (px, py) = p in (S.(beta *% px), py) | val aff_point_mul_lambda (p: S.aff_point) : S.aff_point
let aff_point_mul_lambda (p: S.aff_point) : S.aff_point = | false | null | false | let px, py = p in
(S.(beta *% px), py) | {
"checked_file": "Hacl.Spec.K256.GLV.fst.checked",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.GLV.fst"
} | [
"total"
] | [
"Spec.K256.PointOps.aff_point",
"Spec.K256.PointOps.felem",
"FStar.Pervasives.Native.Mktuple2",
"Spec.K256.PointOps.op_Star_Percent",
"Hacl.Spec.K256.GLV.beta"
] | [] | module Hacl.Spec.K256.GLV
open FStar.Mul
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
This module implements the following two functions from libsecp256k1:
secp256k1_scalar_split_lambda [1] and secp256k1_ecmult_endo_split [2].
For the secp256k1 curve, we can replace the EC scalar multiplication
by `lambda` with one modular multiplication by `beta`:
[lambda](px, py) = (beta *% px, py) for any point on the curve P = (px, py),
where `lambda` and `beta` are primitive cube roots of unity and can be
fixed for the curve.
The main idea is to slit a 256-bit scalar k into k1 and k2 s.t.
k = (k1 + lambda * k2) % q, where k1 and k2 are 128-bit numbers:
[k]P = [(k1 + lambda * k2) % q]P = [k1]P + [k2]([lambda]P)
= [k1](px, py) + [k2](beta *% px, py).
Using a double fixed-window method, we can save 128 point_double:
| before | after
----------------------------------------------------------------------
point_double | 256 | 128
point_add | 256 / 5 = 51 | 128 / 5 + 128 / 5 + 1 = 25 + 25 + 1 = 51
Note that one precomputed table is enough for [k]P, as [r_small]([lambda]P)
can be obtained via [r_small]P.
[1]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/scalar_impl.h#L123
[2]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/ecmult_impl.h#L618
*)
(**
Fast computation of [lambda]P as (beta * x, y) in affine and projective coordinates
*)
let lambda : S.qelem = 0x5363ad4cc05c30e0a5261c028812645a122e22ea20816678df02967c1b23bd72
let beta : S.felem = 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee
// [a]P in affine coordinates
let aff_point_mul = S.aff_point_mul | false | true | Hacl.Spec.K256.GLV.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val aff_point_mul_lambda (p: S.aff_point) : S.aff_point | [] | Hacl.Spec.K256.GLV.aff_point_mul_lambda | {
"file_name": "code/k256/Hacl.Spec.K256.GLV.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | p: Spec.K256.PointOps.aff_point -> Spec.K256.PointOps.aff_point | {
"end_col": 42,
"end_line": 55,
"start_col": 56,
"start_line": 54
} |
Prims.Tot | val aff_ecmult_endo_split (k: S.qelem) (p: S.aff_point)
: S.qelem & S.aff_point & S.qelem & S.aff_point | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let aff_ecmult_endo_split (k:S.qelem) (p:S.aff_point) :
S.qelem & S.aff_point & S.qelem & S.aff_point
=
let r1, r2 = scalar_split_lambda k in
let lambda_p = aff_point_mul_lambda p in
let r1, p1 = aff_negate_point_and_scalar_cond r1 p in
let r2, p2 = aff_negate_point_and_scalar_cond r2 lambda_p in
(r1, p1, r2, p2) | val aff_ecmult_endo_split (k: S.qelem) (p: S.aff_point)
: S.qelem & S.aff_point & S.qelem & S.aff_point
let aff_ecmult_endo_split (k: S.qelem) (p: S.aff_point)
: S.qelem & S.aff_point & S.qelem & S.aff_point = | false | null | false | let r1, r2 = scalar_split_lambda k in
let lambda_p = aff_point_mul_lambda p in
let r1, p1 = aff_negate_point_and_scalar_cond r1 p in
let r2, p2 = aff_negate_point_and_scalar_cond r2 lambda_p in
(r1, p1, r2, p2) | {
"checked_file": "Hacl.Spec.K256.GLV.fst.checked",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.GLV.fst"
} | [
"total"
] | [
"Spec.K256.PointOps.qelem",
"Spec.K256.PointOps.aff_point",
"FStar.Pervasives.Native.Mktuple4",
"FStar.Pervasives.Native.tuple4",
"FStar.Pervasives.Native.tuple2",
"Hacl.Spec.K256.GLV.aff_negate_point_and_scalar_cond",
"Hacl.Spec.K256.GLV.aff_point_mul_lambda",
"Hacl.Spec.K256.GLV.scalar_split_lambda"
] | [] | module Hacl.Spec.K256.GLV
open FStar.Mul
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
This module implements the following two functions from libsecp256k1:
secp256k1_scalar_split_lambda [1] and secp256k1_ecmult_endo_split [2].
For the secp256k1 curve, we can replace the EC scalar multiplication
by `lambda` with one modular multiplication by `beta`:
[lambda](px, py) = (beta *% px, py) for any point on the curve P = (px, py),
where `lambda` and `beta` are primitive cube roots of unity and can be
fixed for the curve.
The main idea is to slit a 256-bit scalar k into k1 and k2 s.t.
k = (k1 + lambda * k2) % q, where k1 and k2 are 128-bit numbers:
[k]P = [(k1 + lambda * k2) % q]P = [k1]P + [k2]([lambda]P)
= [k1](px, py) + [k2](beta *% px, py).
Using a double fixed-window method, we can save 128 point_double:
| before | after
----------------------------------------------------------------------
point_double | 256 | 128
point_add | 256 / 5 = 51 | 128 / 5 + 128 / 5 + 1 = 25 + 25 + 1 = 51
Note that one precomputed table is enough for [k]P, as [r_small]([lambda]P)
can be obtained via [r_small]P.
[1]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/scalar_impl.h#L123
[2]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/ecmult_impl.h#L618
*)
(**
Fast computation of [lambda]P as (beta * x, y) in affine and projective coordinates
*)
let lambda : S.qelem = 0x5363ad4cc05c30e0a5261c028812645a122e22ea20816678df02967c1b23bd72
let beta : S.felem = 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee
// [a]P in affine coordinates
let aff_point_mul = S.aff_point_mul
// fast computation of [lambda]P in affine coordinates
let aff_point_mul_lambda (p:S.aff_point) : S.aff_point =
let (px, py) = p in (S.(beta *% px), py)
// fast computation of [lambda]P in projective coordinates
let point_mul_lambda (p:S.proj_point) : S.proj_point =
let (_X, _Y, _Z) = p in (S.(beta *% _X), _Y, _Z)
(**
Representing a scalar k as (r1 + r2 * lambda) mod S.q,
s.t. r1 and r2 are ~128 bits long
*)
let a1 : S.qelem = 0x3086d221a7d46bcde86c90e49284eb15
let minus_b1 : S.qelem = 0xe4437ed6010e88286f547fa90abfe4c3
let a2 : S.qelem = 0x114ca50f7a8e2f3f657c1108d9d44cfd8
let b2 : S.qelem = 0x3086d221a7d46bcde86c90e49284eb15
let minus_lambda : S.qelem =
let x = 0xac9c52b33fa3cf1f5ad9e3fd77ed9ba4a880b9fc8ec739c2e0cfc810b51283cf in
assert_norm (x = (- lambda) % S.q);
x
let b1 : S.qelem =
let x = 0xfffffffffffffffffffffffffffffffdd66b5e10ae3a1813507ddee3c5765c7e in
assert_norm (x = (- minus_b1) % S.q);
x
let minus_b2 : S.qelem =
let x = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE8A280AC50774346DD765CDA83DB1562C in
assert_norm (x = (- b2) % S.q);
x
let g1 : S.qelem =
let x = 0x3086D221A7D46BCDE86C90E49284EB153DAA8A1471E8CA7FE893209A45DBB031 in
assert_norm (pow2 384 * b2 / S.q + 1 = x);
x
let g2 : S.qelem =
let x = 0xE4437ED6010E88286F547FA90ABFE4C4221208AC9DF506C61571B4AE8AC47F71 in
assert_norm (pow2 384 * minus_b1 / S.q = x);
x
let qmul_shift_384 a b =
a * b / pow2 384 + (a * b / pow2 383 % 2)
val qmul_shift_384_lemma (a b:S.qelem) : Lemma (qmul_shift_384 a b < S.q)
let qmul_shift_384_lemma a b =
assert_norm (S.q < pow2 256);
Math.Lemmas.lemma_mult_lt_sqr a b (pow2 256);
Math.Lemmas.pow2_plus 256 256;
assert (a * b < pow2 512);
Math.Lemmas.lemma_div_lt_nat (a * b) 512 384;
assert (a * b / pow2 384 < pow2 128);
assert_norm (pow2 128 < S.q)
let scalar_split_lambda (k:S.qelem) : S.qelem & S.qelem =
qmul_shift_384_lemma k g1;
qmul_shift_384_lemma k g2;
let c1 : S.qelem = qmul_shift_384 k g1 in
let c2 : S.qelem = qmul_shift_384 k g2 in
let c1 = S.(c1 *^ minus_b1) in
let c2 = S.(c2 *^ minus_b2) in
let r2 = S.(c1 +^ c2) in
let r1 = S.(k +^ r2 *^ minus_lambda) in
r1, r2
(**
Fast computation of [k]P in affine coordinates
*)
let aff_point_negate_cond (p:S.aff_point) (is_negate:bool) : S.aff_point =
if is_negate then S.aff_point_negate p else p
let aff_negate_point_and_scalar_cond (k:S.qelem) (p:S.aff_point) : S.qelem & S.aff_point =
if S.scalar_is_high k then begin
let k_neg = S.qnegate k in
let p_neg = S.aff_point_negate p in
k_neg, p_neg end
else k, p
// https://github.com/bitcoin-core/secp256k1/blob/master/src/ecmult_impl.h
// [k]P = [r1 + r2 * lambda]P = [r1]P + [r2]([lambda]P) = [r1](x,y) + [r2](beta*x,y)
let aff_ecmult_endo_split (k:S.qelem) (p:S.aff_point) : | false | true | Hacl.Spec.K256.GLV.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val aff_ecmult_endo_split (k: S.qelem) (p: S.aff_point)
: S.qelem & S.aff_point & S.qelem & S.aff_point | [] | Hacl.Spec.K256.GLV.aff_ecmult_endo_split | {
"file_name": "code/k256/Hacl.Spec.K256.GLV.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | k: Spec.K256.PointOps.qelem -> p: Spec.K256.PointOps.aff_point
-> ((Spec.K256.PointOps.qelem * Spec.K256.PointOps.aff_point) * Spec.K256.PointOps.qelem) *
Spec.K256.PointOps.aff_point | {
"end_col": 18,
"end_line": 147,
"start_col": 2,
"start_line": 142
} |
Prims.Tot | val aff_negate_point_and_scalar_cond (k: S.qelem) (p: S.aff_point) : S.qelem & S.aff_point | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let aff_negate_point_and_scalar_cond (k:S.qelem) (p:S.aff_point) : S.qelem & S.aff_point =
if S.scalar_is_high k then begin
let k_neg = S.qnegate k in
let p_neg = S.aff_point_negate p in
k_neg, p_neg end
else k, p | val aff_negate_point_and_scalar_cond (k: S.qelem) (p: S.aff_point) : S.qelem & S.aff_point
let aff_negate_point_and_scalar_cond (k: S.qelem) (p: S.aff_point) : S.qelem & S.aff_point = | false | null | false | if S.scalar_is_high k
then
let k_neg = S.qnegate k in
let p_neg = S.aff_point_negate p in
k_neg, p_neg
else k, p | {
"checked_file": "Hacl.Spec.K256.GLV.fst.checked",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.GLV.fst"
} | [
"total"
] | [
"Spec.K256.PointOps.qelem",
"Spec.K256.PointOps.aff_point",
"Spec.K256.PointOps.scalar_is_high",
"FStar.Pervasives.Native.Mktuple2",
"Spec.K256.PointOps.aff_point_negate",
"Spec.K256.PointOps.qnegate",
"Prims.bool",
"FStar.Pervasives.Native.tuple2"
] | [] | module Hacl.Spec.K256.GLV
open FStar.Mul
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
This module implements the following two functions from libsecp256k1:
secp256k1_scalar_split_lambda [1] and secp256k1_ecmult_endo_split [2].
For the secp256k1 curve, we can replace the EC scalar multiplication
by `lambda` with one modular multiplication by `beta`:
[lambda](px, py) = (beta *% px, py) for any point on the curve P = (px, py),
where `lambda` and `beta` are primitive cube roots of unity and can be
fixed for the curve.
The main idea is to slit a 256-bit scalar k into k1 and k2 s.t.
k = (k1 + lambda * k2) % q, where k1 and k2 are 128-bit numbers:
[k]P = [(k1 + lambda * k2) % q]P = [k1]P + [k2]([lambda]P)
= [k1](px, py) + [k2](beta *% px, py).
Using a double fixed-window method, we can save 128 point_double:
| before | after
----------------------------------------------------------------------
point_double | 256 | 128
point_add | 256 / 5 = 51 | 128 / 5 + 128 / 5 + 1 = 25 + 25 + 1 = 51
Note that one precomputed table is enough for [k]P, as [r_small]([lambda]P)
can be obtained via [r_small]P.
[1]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/scalar_impl.h#L123
[2]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/ecmult_impl.h#L618
*)
(**
Fast computation of [lambda]P as (beta * x, y) in affine and projective coordinates
*)
let lambda : S.qelem = 0x5363ad4cc05c30e0a5261c028812645a122e22ea20816678df02967c1b23bd72
let beta : S.felem = 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee
// [a]P in affine coordinates
let aff_point_mul = S.aff_point_mul
// fast computation of [lambda]P in affine coordinates
let aff_point_mul_lambda (p:S.aff_point) : S.aff_point =
let (px, py) = p in (S.(beta *% px), py)
// fast computation of [lambda]P in projective coordinates
let point_mul_lambda (p:S.proj_point) : S.proj_point =
let (_X, _Y, _Z) = p in (S.(beta *% _X), _Y, _Z)
(**
Representing a scalar k as (r1 + r2 * lambda) mod S.q,
s.t. r1 and r2 are ~128 bits long
*)
let a1 : S.qelem = 0x3086d221a7d46bcde86c90e49284eb15
let minus_b1 : S.qelem = 0xe4437ed6010e88286f547fa90abfe4c3
let a2 : S.qelem = 0x114ca50f7a8e2f3f657c1108d9d44cfd8
let b2 : S.qelem = 0x3086d221a7d46bcde86c90e49284eb15
let minus_lambda : S.qelem =
let x = 0xac9c52b33fa3cf1f5ad9e3fd77ed9ba4a880b9fc8ec739c2e0cfc810b51283cf in
assert_norm (x = (- lambda) % S.q);
x
let b1 : S.qelem =
let x = 0xfffffffffffffffffffffffffffffffdd66b5e10ae3a1813507ddee3c5765c7e in
assert_norm (x = (- minus_b1) % S.q);
x
let minus_b2 : S.qelem =
let x = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE8A280AC50774346DD765CDA83DB1562C in
assert_norm (x = (- b2) % S.q);
x
let g1 : S.qelem =
let x = 0x3086D221A7D46BCDE86C90E49284EB153DAA8A1471E8CA7FE893209A45DBB031 in
assert_norm (pow2 384 * b2 / S.q + 1 = x);
x
let g2 : S.qelem =
let x = 0xE4437ED6010E88286F547FA90ABFE4C4221208AC9DF506C61571B4AE8AC47F71 in
assert_norm (pow2 384 * minus_b1 / S.q = x);
x
let qmul_shift_384 a b =
a * b / pow2 384 + (a * b / pow2 383 % 2)
val qmul_shift_384_lemma (a b:S.qelem) : Lemma (qmul_shift_384 a b < S.q)
let qmul_shift_384_lemma a b =
assert_norm (S.q < pow2 256);
Math.Lemmas.lemma_mult_lt_sqr a b (pow2 256);
Math.Lemmas.pow2_plus 256 256;
assert (a * b < pow2 512);
Math.Lemmas.lemma_div_lt_nat (a * b) 512 384;
assert (a * b / pow2 384 < pow2 128);
assert_norm (pow2 128 < S.q)
let scalar_split_lambda (k:S.qelem) : S.qelem & S.qelem =
qmul_shift_384_lemma k g1;
qmul_shift_384_lemma k g2;
let c1 : S.qelem = qmul_shift_384 k g1 in
let c2 : S.qelem = qmul_shift_384 k g2 in
let c1 = S.(c1 *^ minus_b1) in
let c2 = S.(c2 *^ minus_b2) in
let r2 = S.(c1 +^ c2) in
let r1 = S.(k +^ r2 *^ minus_lambda) in
r1, r2
(**
Fast computation of [k]P in affine coordinates
*)
let aff_point_negate_cond (p:S.aff_point) (is_negate:bool) : S.aff_point =
if is_negate then S.aff_point_negate p else p | false | true | Hacl.Spec.K256.GLV.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val aff_negate_point_and_scalar_cond (k: S.qelem) (p: S.aff_point) : S.qelem & S.aff_point | [] | Hacl.Spec.K256.GLV.aff_negate_point_and_scalar_cond | {
"file_name": "code/k256/Hacl.Spec.K256.GLV.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | k: Spec.K256.PointOps.qelem -> p: Spec.K256.PointOps.aff_point
-> Spec.K256.PointOps.qelem * Spec.K256.PointOps.aff_point | {
"end_col": 11,
"end_line": 136,
"start_col": 2,
"start_line": 132
} |
Prims.Tot | val aff_point_mul_endo_split (k: S.qelem) (p: S.aff_point) : S.aff_point | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let aff_point_mul_endo_split (k:S.qelem) (p:S.aff_point) : S.aff_point =
let r1, p1, r2, p2 = aff_ecmult_endo_split k p in
S.aff_point_add (aff_point_mul r1 p1) (aff_point_mul r2 p2) | val aff_point_mul_endo_split (k: S.qelem) (p: S.aff_point) : S.aff_point
let aff_point_mul_endo_split (k: S.qelem) (p: S.aff_point) : S.aff_point = | false | null | false | let r1, p1, r2, p2 = aff_ecmult_endo_split k p in
S.aff_point_add (aff_point_mul r1 p1) (aff_point_mul r2 p2) | {
"checked_file": "Hacl.Spec.K256.GLV.fst.checked",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.GLV.fst"
} | [
"total"
] | [
"Spec.K256.PointOps.qelem",
"Spec.K256.PointOps.aff_point",
"Spec.K256.PointOps.aff_point_add",
"Hacl.Spec.K256.GLV.aff_point_mul",
"FStar.Pervasives.Native.tuple4",
"Hacl.Spec.K256.GLV.aff_ecmult_endo_split"
] | [] | module Hacl.Spec.K256.GLV
open FStar.Mul
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
This module implements the following two functions from libsecp256k1:
secp256k1_scalar_split_lambda [1] and secp256k1_ecmult_endo_split [2].
For the secp256k1 curve, we can replace the EC scalar multiplication
by `lambda` with one modular multiplication by `beta`:
[lambda](px, py) = (beta *% px, py) for any point on the curve P = (px, py),
where `lambda` and `beta` are primitive cube roots of unity and can be
fixed for the curve.
The main idea is to slit a 256-bit scalar k into k1 and k2 s.t.
k = (k1 + lambda * k2) % q, where k1 and k2 are 128-bit numbers:
[k]P = [(k1 + lambda * k2) % q]P = [k1]P + [k2]([lambda]P)
= [k1](px, py) + [k2](beta *% px, py).
Using a double fixed-window method, we can save 128 point_double:
| before | after
----------------------------------------------------------------------
point_double | 256 | 128
point_add | 256 / 5 = 51 | 128 / 5 + 128 / 5 + 1 = 25 + 25 + 1 = 51
Note that one precomputed table is enough for [k]P, as [r_small]([lambda]P)
can be obtained via [r_small]P.
[1]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/scalar_impl.h#L123
[2]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/ecmult_impl.h#L618
*)
(**
Fast computation of [lambda]P as (beta * x, y) in affine and projective coordinates
*)
let lambda : S.qelem = 0x5363ad4cc05c30e0a5261c028812645a122e22ea20816678df02967c1b23bd72
let beta : S.felem = 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee
// [a]P in affine coordinates
let aff_point_mul = S.aff_point_mul
// fast computation of [lambda]P in affine coordinates
let aff_point_mul_lambda (p:S.aff_point) : S.aff_point =
let (px, py) = p in (S.(beta *% px), py)
// fast computation of [lambda]P in projective coordinates
let point_mul_lambda (p:S.proj_point) : S.proj_point =
let (_X, _Y, _Z) = p in (S.(beta *% _X), _Y, _Z)
(**
Representing a scalar k as (r1 + r2 * lambda) mod S.q,
s.t. r1 and r2 are ~128 bits long
*)
let a1 : S.qelem = 0x3086d221a7d46bcde86c90e49284eb15
let minus_b1 : S.qelem = 0xe4437ed6010e88286f547fa90abfe4c3
let a2 : S.qelem = 0x114ca50f7a8e2f3f657c1108d9d44cfd8
let b2 : S.qelem = 0x3086d221a7d46bcde86c90e49284eb15
let minus_lambda : S.qelem =
let x = 0xac9c52b33fa3cf1f5ad9e3fd77ed9ba4a880b9fc8ec739c2e0cfc810b51283cf in
assert_norm (x = (- lambda) % S.q);
x
let b1 : S.qelem =
let x = 0xfffffffffffffffffffffffffffffffdd66b5e10ae3a1813507ddee3c5765c7e in
assert_norm (x = (- minus_b1) % S.q);
x
let minus_b2 : S.qelem =
let x = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE8A280AC50774346DD765CDA83DB1562C in
assert_norm (x = (- b2) % S.q);
x
let g1 : S.qelem =
let x = 0x3086D221A7D46BCDE86C90E49284EB153DAA8A1471E8CA7FE893209A45DBB031 in
assert_norm (pow2 384 * b2 / S.q + 1 = x);
x
let g2 : S.qelem =
let x = 0xE4437ED6010E88286F547FA90ABFE4C4221208AC9DF506C61571B4AE8AC47F71 in
assert_norm (pow2 384 * minus_b1 / S.q = x);
x
let qmul_shift_384 a b =
a * b / pow2 384 + (a * b / pow2 383 % 2)
val qmul_shift_384_lemma (a b:S.qelem) : Lemma (qmul_shift_384 a b < S.q)
let qmul_shift_384_lemma a b =
assert_norm (S.q < pow2 256);
Math.Lemmas.lemma_mult_lt_sqr a b (pow2 256);
Math.Lemmas.pow2_plus 256 256;
assert (a * b < pow2 512);
Math.Lemmas.lemma_div_lt_nat (a * b) 512 384;
assert (a * b / pow2 384 < pow2 128);
assert_norm (pow2 128 < S.q)
let scalar_split_lambda (k:S.qelem) : S.qelem & S.qelem =
qmul_shift_384_lemma k g1;
qmul_shift_384_lemma k g2;
let c1 : S.qelem = qmul_shift_384 k g1 in
let c2 : S.qelem = qmul_shift_384 k g2 in
let c1 = S.(c1 *^ minus_b1) in
let c2 = S.(c2 *^ minus_b2) in
let r2 = S.(c1 +^ c2) in
let r1 = S.(k +^ r2 *^ minus_lambda) in
r1, r2
(**
Fast computation of [k]P in affine coordinates
*)
let aff_point_negate_cond (p:S.aff_point) (is_negate:bool) : S.aff_point =
if is_negate then S.aff_point_negate p else p
let aff_negate_point_and_scalar_cond (k:S.qelem) (p:S.aff_point) : S.qelem & S.aff_point =
if S.scalar_is_high k then begin
let k_neg = S.qnegate k in
let p_neg = S.aff_point_negate p in
k_neg, p_neg end
else k, p
// https://github.com/bitcoin-core/secp256k1/blob/master/src/ecmult_impl.h
// [k]P = [r1 + r2 * lambda]P = [r1]P + [r2]([lambda]P) = [r1](x,y) + [r2](beta*x,y)
let aff_ecmult_endo_split (k:S.qelem) (p:S.aff_point) :
S.qelem & S.aff_point & S.qelem & S.aff_point
=
let r1, r2 = scalar_split_lambda k in
let lambda_p = aff_point_mul_lambda p in
let r1, p1 = aff_negate_point_and_scalar_cond r1 p in
let r2, p2 = aff_negate_point_and_scalar_cond r2 lambda_p in
(r1, p1, r2, p2)
// [k]P = [r1 + r2 * lambda]P = [r1]P + [r2]([lambda]P) = [r1](x,y) + [r2](beta*x,y) | false | true | Hacl.Spec.K256.GLV.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val aff_point_mul_endo_split (k: S.qelem) (p: S.aff_point) : S.aff_point | [] | Hacl.Spec.K256.GLV.aff_point_mul_endo_split | {
"file_name": "code/k256/Hacl.Spec.K256.GLV.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | k: Spec.K256.PointOps.qelem -> p: Spec.K256.PointOps.aff_point -> Spec.K256.PointOps.aff_point | {
"end_col": 61,
"end_line": 153,
"start_col": 72,
"start_line": 151
} |
Prims.Tot | val ecmult_endo_split (k: S.qelem) (p: S.proj_point)
: S.qelem & S.proj_point & S.qelem & S.proj_point | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let ecmult_endo_split (k:S.qelem) (p:S.proj_point) :
S.qelem & S.proj_point & S.qelem & S.proj_point
=
let r1, r2 = scalar_split_lambda k in
let lambda_p = point_mul_lambda p in
let r1, p1 = negate_point_and_scalar_cond r1 p in
let r2, p2 = negate_point_and_scalar_cond r2 lambda_p in
(r1, p1, r2, p2) | val ecmult_endo_split (k: S.qelem) (p: S.proj_point)
: S.qelem & S.proj_point & S.qelem & S.proj_point
let ecmult_endo_split (k: S.qelem) (p: S.proj_point)
: S.qelem & S.proj_point & S.qelem & S.proj_point = | false | null | false | let r1, r2 = scalar_split_lambda k in
let lambda_p = point_mul_lambda p in
let r1, p1 = negate_point_and_scalar_cond r1 p in
let r2, p2 = negate_point_and_scalar_cond r2 lambda_p in
(r1, p1, r2, p2) | {
"checked_file": "Hacl.Spec.K256.GLV.fst.checked",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.GLV.fst"
} | [
"total"
] | [
"Spec.K256.PointOps.qelem",
"Spec.K256.PointOps.proj_point",
"FStar.Pervasives.Native.Mktuple4",
"FStar.Pervasives.Native.tuple4",
"FStar.Pervasives.Native.tuple2",
"Hacl.Spec.K256.GLV.negate_point_and_scalar_cond",
"Hacl.Spec.K256.GLV.point_mul_lambda",
"Hacl.Spec.K256.GLV.scalar_split_lambda"
] | [] | module Hacl.Spec.K256.GLV
open FStar.Mul
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
This module implements the following two functions from libsecp256k1:
secp256k1_scalar_split_lambda [1] and secp256k1_ecmult_endo_split [2].
For the secp256k1 curve, we can replace the EC scalar multiplication
by `lambda` with one modular multiplication by `beta`:
[lambda](px, py) = (beta *% px, py) for any point on the curve P = (px, py),
where `lambda` and `beta` are primitive cube roots of unity and can be
fixed for the curve.
The main idea is to slit a 256-bit scalar k into k1 and k2 s.t.
k = (k1 + lambda * k2) % q, where k1 and k2 are 128-bit numbers:
[k]P = [(k1 + lambda * k2) % q]P = [k1]P + [k2]([lambda]P)
= [k1](px, py) + [k2](beta *% px, py).
Using a double fixed-window method, we can save 128 point_double:
| before | after
----------------------------------------------------------------------
point_double | 256 | 128
point_add | 256 / 5 = 51 | 128 / 5 + 128 / 5 + 1 = 25 + 25 + 1 = 51
Note that one precomputed table is enough for [k]P, as [r_small]([lambda]P)
can be obtained via [r_small]P.
[1]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/scalar_impl.h#L123
[2]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/ecmult_impl.h#L618
*)
(**
Fast computation of [lambda]P as (beta * x, y) in affine and projective coordinates
*)
let lambda : S.qelem = 0x5363ad4cc05c30e0a5261c028812645a122e22ea20816678df02967c1b23bd72
let beta : S.felem = 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee
// [a]P in affine coordinates
let aff_point_mul = S.aff_point_mul
// fast computation of [lambda]P in affine coordinates
let aff_point_mul_lambda (p:S.aff_point) : S.aff_point =
let (px, py) = p in (S.(beta *% px), py)
// fast computation of [lambda]P in projective coordinates
let point_mul_lambda (p:S.proj_point) : S.proj_point =
let (_X, _Y, _Z) = p in (S.(beta *% _X), _Y, _Z)
(**
Representing a scalar k as (r1 + r2 * lambda) mod S.q,
s.t. r1 and r2 are ~128 bits long
*)
let a1 : S.qelem = 0x3086d221a7d46bcde86c90e49284eb15
let minus_b1 : S.qelem = 0xe4437ed6010e88286f547fa90abfe4c3
let a2 : S.qelem = 0x114ca50f7a8e2f3f657c1108d9d44cfd8
let b2 : S.qelem = 0x3086d221a7d46bcde86c90e49284eb15
let minus_lambda : S.qelem =
let x = 0xac9c52b33fa3cf1f5ad9e3fd77ed9ba4a880b9fc8ec739c2e0cfc810b51283cf in
assert_norm (x = (- lambda) % S.q);
x
let b1 : S.qelem =
let x = 0xfffffffffffffffffffffffffffffffdd66b5e10ae3a1813507ddee3c5765c7e in
assert_norm (x = (- minus_b1) % S.q);
x
let minus_b2 : S.qelem =
let x = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE8A280AC50774346DD765CDA83DB1562C in
assert_norm (x = (- b2) % S.q);
x
let g1 : S.qelem =
let x = 0x3086D221A7D46BCDE86C90E49284EB153DAA8A1471E8CA7FE893209A45DBB031 in
assert_norm (pow2 384 * b2 / S.q + 1 = x);
x
let g2 : S.qelem =
let x = 0xE4437ED6010E88286F547FA90ABFE4C4221208AC9DF506C61571B4AE8AC47F71 in
assert_norm (pow2 384 * minus_b1 / S.q = x);
x
let qmul_shift_384 a b =
a * b / pow2 384 + (a * b / pow2 383 % 2)
val qmul_shift_384_lemma (a b:S.qelem) : Lemma (qmul_shift_384 a b < S.q)
let qmul_shift_384_lemma a b =
assert_norm (S.q < pow2 256);
Math.Lemmas.lemma_mult_lt_sqr a b (pow2 256);
Math.Lemmas.pow2_plus 256 256;
assert (a * b < pow2 512);
Math.Lemmas.lemma_div_lt_nat (a * b) 512 384;
assert (a * b / pow2 384 < pow2 128);
assert_norm (pow2 128 < S.q)
let scalar_split_lambda (k:S.qelem) : S.qelem & S.qelem =
qmul_shift_384_lemma k g1;
qmul_shift_384_lemma k g2;
let c1 : S.qelem = qmul_shift_384 k g1 in
let c2 : S.qelem = qmul_shift_384 k g2 in
let c1 = S.(c1 *^ minus_b1) in
let c2 = S.(c2 *^ minus_b2) in
let r2 = S.(c1 +^ c2) in
let r1 = S.(k +^ r2 *^ minus_lambda) in
r1, r2
(**
Fast computation of [k]P in affine coordinates
*)
let aff_point_negate_cond (p:S.aff_point) (is_negate:bool) : S.aff_point =
if is_negate then S.aff_point_negate p else p
let aff_negate_point_and_scalar_cond (k:S.qelem) (p:S.aff_point) : S.qelem & S.aff_point =
if S.scalar_is_high k then begin
let k_neg = S.qnegate k in
let p_neg = S.aff_point_negate p in
k_neg, p_neg end
else k, p
// https://github.com/bitcoin-core/secp256k1/blob/master/src/ecmult_impl.h
// [k]P = [r1 + r2 * lambda]P = [r1]P + [r2]([lambda]P) = [r1](x,y) + [r2](beta*x,y)
let aff_ecmult_endo_split (k:S.qelem) (p:S.aff_point) :
S.qelem & S.aff_point & S.qelem & S.aff_point
=
let r1, r2 = scalar_split_lambda k in
let lambda_p = aff_point_mul_lambda p in
let r1, p1 = aff_negate_point_and_scalar_cond r1 p in
let r2, p2 = aff_negate_point_and_scalar_cond r2 lambda_p in
(r1, p1, r2, p2)
// [k]P = [r1 + r2 * lambda]P = [r1]P + [r2]([lambda]P) = [r1](x,y) + [r2](beta*x,y)
// which can be computed as a double exponentiation ([a]P + [b]Q)
let aff_point_mul_endo_split (k:S.qelem) (p:S.aff_point) : S.aff_point =
let r1, p1, r2, p2 = aff_ecmult_endo_split k p in
S.aff_point_add (aff_point_mul r1 p1) (aff_point_mul r2 p2)
(**
Fast computation of [k]P in projective coordinates
*)
let point_negate_cond (p:S.proj_point) (is_negate:bool) : S.proj_point =
if is_negate then S.point_negate p else p
let negate_point_and_scalar_cond (k:S.qelem) (p:S.proj_point) : S.qelem & S.proj_point =
if S.scalar_is_high k then begin
let k_neg = S.qnegate k in
let p_neg = S.point_negate p in
k_neg, p_neg end
else k, p
let ecmult_endo_split (k:S.qelem) (p:S.proj_point) : | false | true | Hacl.Spec.K256.GLV.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val ecmult_endo_split (k: S.qelem) (p: S.proj_point)
: S.qelem & S.proj_point & S.qelem & S.proj_point | [] | Hacl.Spec.K256.GLV.ecmult_endo_split | {
"file_name": "code/k256/Hacl.Spec.K256.GLV.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | k: Spec.K256.PointOps.qelem -> p: Spec.K256.PointOps.proj_point
-> ((Spec.K256.PointOps.qelem * Spec.K256.PointOps.proj_point) * Spec.K256.PointOps.qelem) *
Spec.K256.PointOps.proj_point | {
"end_col": 18,
"end_line": 177,
"start_col": 2,
"start_line": 172
} |
Prims.Tot | val point_mul_lambda (p: S.proj_point) : S.proj_point | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let point_mul_lambda (p:S.proj_point) : S.proj_point =
let (_X, _Y, _Z) = p in (S.(beta *% _X), _Y, _Z) | val point_mul_lambda (p: S.proj_point) : S.proj_point
let point_mul_lambda (p: S.proj_point) : S.proj_point = | false | null | false | let _X, _Y, _Z = p in
(S.(beta *% _X), _Y, _Z) | {
"checked_file": "Hacl.Spec.K256.GLV.fst.checked",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.GLV.fst"
} | [
"total"
] | [
"Spec.K256.PointOps.proj_point",
"Spec.K256.PointOps.felem",
"FStar.Pervasives.Native.Mktuple3",
"Spec.K256.PointOps.op_Star_Percent",
"Hacl.Spec.K256.GLV.beta"
] | [] | module Hacl.Spec.K256.GLV
open FStar.Mul
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
This module implements the following two functions from libsecp256k1:
secp256k1_scalar_split_lambda [1] and secp256k1_ecmult_endo_split [2].
For the secp256k1 curve, we can replace the EC scalar multiplication
by `lambda` with one modular multiplication by `beta`:
[lambda](px, py) = (beta *% px, py) for any point on the curve P = (px, py),
where `lambda` and `beta` are primitive cube roots of unity and can be
fixed for the curve.
The main idea is to slit a 256-bit scalar k into k1 and k2 s.t.
k = (k1 + lambda * k2) % q, where k1 and k2 are 128-bit numbers:
[k]P = [(k1 + lambda * k2) % q]P = [k1]P + [k2]([lambda]P)
= [k1](px, py) + [k2](beta *% px, py).
Using a double fixed-window method, we can save 128 point_double:
| before | after
----------------------------------------------------------------------
point_double | 256 | 128
point_add | 256 / 5 = 51 | 128 / 5 + 128 / 5 + 1 = 25 + 25 + 1 = 51
Note that one precomputed table is enough for [k]P, as [r_small]([lambda]P)
can be obtained via [r_small]P.
[1]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/scalar_impl.h#L123
[2]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/ecmult_impl.h#L618
*)
(**
Fast computation of [lambda]P as (beta * x, y) in affine and projective coordinates
*)
let lambda : S.qelem = 0x5363ad4cc05c30e0a5261c028812645a122e22ea20816678df02967c1b23bd72
let beta : S.felem = 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee
// [a]P in affine coordinates
let aff_point_mul = S.aff_point_mul
// fast computation of [lambda]P in affine coordinates
let aff_point_mul_lambda (p:S.aff_point) : S.aff_point =
let (px, py) = p in (S.(beta *% px), py) | false | true | Hacl.Spec.K256.GLV.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val point_mul_lambda (p: S.proj_point) : S.proj_point | [] | Hacl.Spec.K256.GLV.point_mul_lambda | {
"file_name": "code/k256/Hacl.Spec.K256.GLV.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | p: Spec.K256.PointOps.proj_point -> Spec.K256.PointOps.proj_point | {
"end_col": 50,
"end_line": 59,
"start_col": 54,
"start_line": 58
} |
Prims.Tot | val negate_point_and_scalar_cond (k: S.qelem) (p: S.proj_point) : S.qelem & S.proj_point | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let negate_point_and_scalar_cond (k:S.qelem) (p:S.proj_point) : S.qelem & S.proj_point =
if S.scalar_is_high k then begin
let k_neg = S.qnegate k in
let p_neg = S.point_negate p in
k_neg, p_neg end
else k, p | val negate_point_and_scalar_cond (k: S.qelem) (p: S.proj_point) : S.qelem & S.proj_point
let negate_point_and_scalar_cond (k: S.qelem) (p: S.proj_point) : S.qelem & S.proj_point = | false | null | false | if S.scalar_is_high k
then
let k_neg = S.qnegate k in
let p_neg = S.point_negate p in
k_neg, p_neg
else k, p | {
"checked_file": "Hacl.Spec.K256.GLV.fst.checked",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.GLV.fst"
} | [
"total"
] | [
"Spec.K256.PointOps.qelem",
"Spec.K256.PointOps.proj_point",
"Spec.K256.PointOps.scalar_is_high",
"FStar.Pervasives.Native.Mktuple2",
"Spec.K256.PointOps.point_negate",
"Spec.K256.PointOps.qnegate",
"Prims.bool",
"FStar.Pervasives.Native.tuple2"
] | [] | module Hacl.Spec.K256.GLV
open FStar.Mul
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
This module implements the following two functions from libsecp256k1:
secp256k1_scalar_split_lambda [1] and secp256k1_ecmult_endo_split [2].
For the secp256k1 curve, we can replace the EC scalar multiplication
by `lambda` with one modular multiplication by `beta`:
[lambda](px, py) = (beta *% px, py) for any point on the curve P = (px, py),
where `lambda` and `beta` are primitive cube roots of unity and can be
fixed for the curve.
The main idea is to slit a 256-bit scalar k into k1 and k2 s.t.
k = (k1 + lambda * k2) % q, where k1 and k2 are 128-bit numbers:
[k]P = [(k1 + lambda * k2) % q]P = [k1]P + [k2]([lambda]P)
= [k1](px, py) + [k2](beta *% px, py).
Using a double fixed-window method, we can save 128 point_double:
| before | after
----------------------------------------------------------------------
point_double | 256 | 128
point_add | 256 / 5 = 51 | 128 / 5 + 128 / 5 + 1 = 25 + 25 + 1 = 51
Note that one precomputed table is enough for [k]P, as [r_small]([lambda]P)
can be obtained via [r_small]P.
[1]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/scalar_impl.h#L123
[2]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/ecmult_impl.h#L618
*)
(**
Fast computation of [lambda]P as (beta * x, y) in affine and projective coordinates
*)
let lambda : S.qelem = 0x5363ad4cc05c30e0a5261c028812645a122e22ea20816678df02967c1b23bd72
let beta : S.felem = 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee
// [a]P in affine coordinates
let aff_point_mul = S.aff_point_mul
// fast computation of [lambda]P in affine coordinates
let aff_point_mul_lambda (p:S.aff_point) : S.aff_point =
let (px, py) = p in (S.(beta *% px), py)
// fast computation of [lambda]P in projective coordinates
let point_mul_lambda (p:S.proj_point) : S.proj_point =
let (_X, _Y, _Z) = p in (S.(beta *% _X), _Y, _Z)
(**
Representing a scalar k as (r1 + r2 * lambda) mod S.q,
s.t. r1 and r2 are ~128 bits long
*)
let a1 : S.qelem = 0x3086d221a7d46bcde86c90e49284eb15
let minus_b1 : S.qelem = 0xe4437ed6010e88286f547fa90abfe4c3
let a2 : S.qelem = 0x114ca50f7a8e2f3f657c1108d9d44cfd8
let b2 : S.qelem = 0x3086d221a7d46bcde86c90e49284eb15
let minus_lambda : S.qelem =
let x = 0xac9c52b33fa3cf1f5ad9e3fd77ed9ba4a880b9fc8ec739c2e0cfc810b51283cf in
assert_norm (x = (- lambda) % S.q);
x
let b1 : S.qelem =
let x = 0xfffffffffffffffffffffffffffffffdd66b5e10ae3a1813507ddee3c5765c7e in
assert_norm (x = (- minus_b1) % S.q);
x
let minus_b2 : S.qelem =
let x = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE8A280AC50774346DD765CDA83DB1562C in
assert_norm (x = (- b2) % S.q);
x
let g1 : S.qelem =
let x = 0x3086D221A7D46BCDE86C90E49284EB153DAA8A1471E8CA7FE893209A45DBB031 in
assert_norm (pow2 384 * b2 / S.q + 1 = x);
x
let g2 : S.qelem =
let x = 0xE4437ED6010E88286F547FA90ABFE4C4221208AC9DF506C61571B4AE8AC47F71 in
assert_norm (pow2 384 * minus_b1 / S.q = x);
x
let qmul_shift_384 a b =
a * b / pow2 384 + (a * b / pow2 383 % 2)
val qmul_shift_384_lemma (a b:S.qelem) : Lemma (qmul_shift_384 a b < S.q)
let qmul_shift_384_lemma a b =
assert_norm (S.q < pow2 256);
Math.Lemmas.lemma_mult_lt_sqr a b (pow2 256);
Math.Lemmas.pow2_plus 256 256;
assert (a * b < pow2 512);
Math.Lemmas.lemma_div_lt_nat (a * b) 512 384;
assert (a * b / pow2 384 < pow2 128);
assert_norm (pow2 128 < S.q)
let scalar_split_lambda (k:S.qelem) : S.qelem & S.qelem =
qmul_shift_384_lemma k g1;
qmul_shift_384_lemma k g2;
let c1 : S.qelem = qmul_shift_384 k g1 in
let c2 : S.qelem = qmul_shift_384 k g2 in
let c1 = S.(c1 *^ minus_b1) in
let c2 = S.(c2 *^ minus_b2) in
let r2 = S.(c1 +^ c2) in
let r1 = S.(k +^ r2 *^ minus_lambda) in
r1, r2
(**
Fast computation of [k]P in affine coordinates
*)
let aff_point_negate_cond (p:S.aff_point) (is_negate:bool) : S.aff_point =
if is_negate then S.aff_point_negate p else p
let aff_negate_point_and_scalar_cond (k:S.qelem) (p:S.aff_point) : S.qelem & S.aff_point =
if S.scalar_is_high k then begin
let k_neg = S.qnegate k in
let p_neg = S.aff_point_negate p in
k_neg, p_neg end
else k, p
// https://github.com/bitcoin-core/secp256k1/blob/master/src/ecmult_impl.h
// [k]P = [r1 + r2 * lambda]P = [r1]P + [r2]([lambda]P) = [r1](x,y) + [r2](beta*x,y)
let aff_ecmult_endo_split (k:S.qelem) (p:S.aff_point) :
S.qelem & S.aff_point & S.qelem & S.aff_point
=
let r1, r2 = scalar_split_lambda k in
let lambda_p = aff_point_mul_lambda p in
let r1, p1 = aff_negate_point_and_scalar_cond r1 p in
let r2, p2 = aff_negate_point_and_scalar_cond r2 lambda_p in
(r1, p1, r2, p2)
// [k]P = [r1 + r2 * lambda]P = [r1]P + [r2]([lambda]P) = [r1](x,y) + [r2](beta*x,y)
// which can be computed as a double exponentiation ([a]P + [b]Q)
let aff_point_mul_endo_split (k:S.qelem) (p:S.aff_point) : S.aff_point =
let r1, p1, r2, p2 = aff_ecmult_endo_split k p in
S.aff_point_add (aff_point_mul r1 p1) (aff_point_mul r2 p2)
(**
Fast computation of [k]P in projective coordinates
*)
let point_negate_cond (p:S.proj_point) (is_negate:bool) : S.proj_point =
if is_negate then S.point_negate p else p | false | true | Hacl.Spec.K256.GLV.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val negate_point_and_scalar_cond (k: S.qelem) (p: S.proj_point) : S.qelem & S.proj_point | [] | Hacl.Spec.K256.GLV.negate_point_and_scalar_cond | {
"file_name": "code/k256/Hacl.Spec.K256.GLV.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | k: Spec.K256.PointOps.qelem -> p: Spec.K256.PointOps.proj_point
-> Spec.K256.PointOps.qelem * Spec.K256.PointOps.proj_point | {
"end_col": 11,
"end_line": 167,
"start_col": 2,
"start_line": 163
} |
Prims.Tot | val beta:S.felem | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let beta : S.felem = 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee | val beta:S.felem
let beta:S.felem = | false | null | false | 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee | {
"checked_file": "Hacl.Spec.K256.GLV.fst.checked",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.GLV.fst"
} | [
"total"
] | [] | [] | module Hacl.Spec.K256.GLV
open FStar.Mul
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
This module implements the following two functions from libsecp256k1:
secp256k1_scalar_split_lambda [1] and secp256k1_ecmult_endo_split [2].
For the secp256k1 curve, we can replace the EC scalar multiplication
by `lambda` with one modular multiplication by `beta`:
[lambda](px, py) = (beta *% px, py) for any point on the curve P = (px, py),
where `lambda` and `beta` are primitive cube roots of unity and can be
fixed for the curve.
The main idea is to slit a 256-bit scalar k into k1 and k2 s.t.
k = (k1 + lambda * k2) % q, where k1 and k2 are 128-bit numbers:
[k]P = [(k1 + lambda * k2) % q]P = [k1]P + [k2]([lambda]P)
= [k1](px, py) + [k2](beta *% px, py).
Using a double fixed-window method, we can save 128 point_double:
| before | after
----------------------------------------------------------------------
point_double | 256 | 128
point_add | 256 / 5 = 51 | 128 / 5 + 128 / 5 + 1 = 25 + 25 + 1 = 51
Note that one precomputed table is enough for [k]P, as [r_small]([lambda]P)
can be obtained via [r_small]P.
[1]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/scalar_impl.h#L123
[2]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/ecmult_impl.h#L618
*)
(**
Fast computation of [lambda]P as (beta * x, y) in affine and projective coordinates
*)
let lambda : S.qelem = 0x5363ad4cc05c30e0a5261c028812645a122e22ea20816678df02967c1b23bd72 | false | true | Hacl.Spec.K256.GLV.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val beta:S.felem | [] | Hacl.Spec.K256.GLV.beta | {
"file_name": "code/k256/Hacl.Spec.K256.GLV.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Spec.K256.PointOps.felem | {
"end_col": 87,
"end_line": 48,
"start_col": 21,
"start_line": 48
} |
Prims.Tot | val minus_lambda:S.qelem | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let minus_lambda : S.qelem =
let x = 0xac9c52b33fa3cf1f5ad9e3fd77ed9ba4a880b9fc8ec739c2e0cfc810b51283cf in
assert_norm (x = (- lambda) % S.q);
x | val minus_lambda:S.qelem
let minus_lambda:S.qelem = | false | null | false | let x = 0xac9c52b33fa3cf1f5ad9e3fd77ed9ba4a880b9fc8ec739c2e0cfc810b51283cf in
assert_norm (x = (- lambda) % S.q);
x | {
"checked_file": "Hacl.Spec.K256.GLV.fst.checked",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.GLV.fst"
} | [
"total"
] | [
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Modulus",
"Prims.op_Minus",
"Hacl.Spec.K256.GLV.lambda",
"Spec.K256.PointOps.q"
] | [] | module Hacl.Spec.K256.GLV
open FStar.Mul
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
This module implements the following two functions from libsecp256k1:
secp256k1_scalar_split_lambda [1] and secp256k1_ecmult_endo_split [2].
For the secp256k1 curve, we can replace the EC scalar multiplication
by `lambda` with one modular multiplication by `beta`:
[lambda](px, py) = (beta *% px, py) for any point on the curve P = (px, py),
where `lambda` and `beta` are primitive cube roots of unity and can be
fixed for the curve.
The main idea is to slit a 256-bit scalar k into k1 and k2 s.t.
k = (k1 + lambda * k2) % q, where k1 and k2 are 128-bit numbers:
[k]P = [(k1 + lambda * k2) % q]P = [k1]P + [k2]([lambda]P)
= [k1](px, py) + [k2](beta *% px, py).
Using a double fixed-window method, we can save 128 point_double:
| before | after
----------------------------------------------------------------------
point_double | 256 | 128
point_add | 256 / 5 = 51 | 128 / 5 + 128 / 5 + 1 = 25 + 25 + 1 = 51
Note that one precomputed table is enough for [k]P, as [r_small]([lambda]P)
can be obtained via [r_small]P.
[1]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/scalar_impl.h#L123
[2]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/ecmult_impl.h#L618
*)
(**
Fast computation of [lambda]P as (beta * x, y) in affine and projective coordinates
*)
let lambda : S.qelem = 0x5363ad4cc05c30e0a5261c028812645a122e22ea20816678df02967c1b23bd72
let beta : S.felem = 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee
// [a]P in affine coordinates
let aff_point_mul = S.aff_point_mul
// fast computation of [lambda]P in affine coordinates
let aff_point_mul_lambda (p:S.aff_point) : S.aff_point =
let (px, py) = p in (S.(beta *% px), py)
// fast computation of [lambda]P in projective coordinates
let point_mul_lambda (p:S.proj_point) : S.proj_point =
let (_X, _Y, _Z) = p in (S.(beta *% _X), _Y, _Z)
(**
Representing a scalar k as (r1 + r2 * lambda) mod S.q,
s.t. r1 and r2 are ~128 bits long
*)
let a1 : S.qelem = 0x3086d221a7d46bcde86c90e49284eb15
let minus_b1 : S.qelem = 0xe4437ed6010e88286f547fa90abfe4c3
let a2 : S.qelem = 0x114ca50f7a8e2f3f657c1108d9d44cfd8
let b2 : S.qelem = 0x3086d221a7d46bcde86c90e49284eb15 | false | true | Hacl.Spec.K256.GLV.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val minus_lambda:S.qelem | [] | Hacl.Spec.K256.GLV.minus_lambda | {
"file_name": "code/k256/Hacl.Spec.K256.GLV.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Spec.K256.PointOps.qelem | {
"end_col": 3,
"end_line": 74,
"start_col": 28,
"start_line": 71
} |
Prims.Tot | val lambda:S.qelem | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lambda : S.qelem = 0x5363ad4cc05c30e0a5261c028812645a122e22ea20816678df02967c1b23bd72 | val lambda:S.qelem
let lambda:S.qelem = | false | null | false | 0x5363ad4cc05c30e0a5261c028812645a122e22ea20816678df02967c1b23bd72 | {
"checked_file": "Hacl.Spec.K256.GLV.fst.checked",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.GLV.fst"
} | [
"total"
] | [] | [] | module Hacl.Spec.K256.GLV
open FStar.Mul
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
This module implements the following two functions from libsecp256k1:
secp256k1_scalar_split_lambda [1] and secp256k1_ecmult_endo_split [2].
For the secp256k1 curve, we can replace the EC scalar multiplication
by `lambda` with one modular multiplication by `beta`:
[lambda](px, py) = (beta *% px, py) for any point on the curve P = (px, py),
where `lambda` and `beta` are primitive cube roots of unity and can be
fixed for the curve.
The main idea is to slit a 256-bit scalar k into k1 and k2 s.t.
k = (k1 + lambda * k2) % q, where k1 and k2 are 128-bit numbers:
[k]P = [(k1 + lambda * k2) % q]P = [k1]P + [k2]([lambda]P)
= [k1](px, py) + [k2](beta *% px, py).
Using a double fixed-window method, we can save 128 point_double:
| before | after
----------------------------------------------------------------------
point_double | 256 | 128
point_add | 256 / 5 = 51 | 128 / 5 + 128 / 5 + 1 = 25 + 25 + 1 = 51
Note that one precomputed table is enough for [k]P, as [r_small]([lambda]P)
can be obtained via [r_small]P.
[1]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/scalar_impl.h#L123
[2]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/ecmult_impl.h#L618
*)
(**
Fast computation of [lambda]P as (beta * x, y) in affine and projective coordinates
*) | false | true | Hacl.Spec.K256.GLV.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lambda:S.qelem | [] | Hacl.Spec.K256.GLV.lambda | {
"file_name": "code/k256/Hacl.Spec.K256.GLV.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Spec.K256.PointOps.qelem | {
"end_col": 89,
"end_line": 46,
"start_col": 23,
"start_line": 46
} |
Prims.Tot | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let qmul_shift_384 a b =
a * b / pow2 384 + (a * b / pow2 383 % 2) | let qmul_shift_384 a b = | false | null | false | a * b / pow2 384 + (a * b / pow2 383 % 2) | {
"checked_file": "Hacl.Spec.K256.GLV.fst.checked",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.GLV.fst"
} | [
"total"
] | [
"Prims.int",
"Prims.op_Addition",
"Prims.op_Division",
"FStar.Mul.op_Star",
"Prims.pow2",
"Prims.op_Modulus"
] | [] | module Hacl.Spec.K256.GLV
open FStar.Mul
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
This module implements the following two functions from libsecp256k1:
secp256k1_scalar_split_lambda [1] and secp256k1_ecmult_endo_split [2].
For the secp256k1 curve, we can replace the EC scalar multiplication
by `lambda` with one modular multiplication by `beta`:
[lambda](px, py) = (beta *% px, py) for any point on the curve P = (px, py),
where `lambda` and `beta` are primitive cube roots of unity and can be
fixed for the curve.
The main idea is to slit a 256-bit scalar k into k1 and k2 s.t.
k = (k1 + lambda * k2) % q, where k1 and k2 are 128-bit numbers:
[k]P = [(k1 + lambda * k2) % q]P = [k1]P + [k2]([lambda]P)
= [k1](px, py) + [k2](beta *% px, py).
Using a double fixed-window method, we can save 128 point_double:
| before | after
----------------------------------------------------------------------
point_double | 256 | 128
point_add | 256 / 5 = 51 | 128 / 5 + 128 / 5 + 1 = 25 + 25 + 1 = 51
Note that one precomputed table is enough for [k]P, as [r_small]([lambda]P)
can be obtained via [r_small]P.
[1]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/scalar_impl.h#L123
[2]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/ecmult_impl.h#L618
*)
(**
Fast computation of [lambda]P as (beta * x, y) in affine and projective coordinates
*)
let lambda : S.qelem = 0x5363ad4cc05c30e0a5261c028812645a122e22ea20816678df02967c1b23bd72
let beta : S.felem = 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee
// [a]P in affine coordinates
let aff_point_mul = S.aff_point_mul
// fast computation of [lambda]P in affine coordinates
let aff_point_mul_lambda (p:S.aff_point) : S.aff_point =
let (px, py) = p in (S.(beta *% px), py)
// fast computation of [lambda]P in projective coordinates
let point_mul_lambda (p:S.proj_point) : S.proj_point =
let (_X, _Y, _Z) = p in (S.(beta *% _X), _Y, _Z)
(**
Representing a scalar k as (r1 + r2 * lambda) mod S.q,
s.t. r1 and r2 are ~128 bits long
*)
let a1 : S.qelem = 0x3086d221a7d46bcde86c90e49284eb15
let minus_b1 : S.qelem = 0xe4437ed6010e88286f547fa90abfe4c3
let a2 : S.qelem = 0x114ca50f7a8e2f3f657c1108d9d44cfd8
let b2 : S.qelem = 0x3086d221a7d46bcde86c90e49284eb15
let minus_lambda : S.qelem =
let x = 0xac9c52b33fa3cf1f5ad9e3fd77ed9ba4a880b9fc8ec739c2e0cfc810b51283cf in
assert_norm (x = (- lambda) % S.q);
x
let b1 : S.qelem =
let x = 0xfffffffffffffffffffffffffffffffdd66b5e10ae3a1813507ddee3c5765c7e in
assert_norm (x = (- minus_b1) % S.q);
x
let minus_b2 : S.qelem =
let x = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE8A280AC50774346DD765CDA83DB1562C in
assert_norm (x = (- b2) % S.q);
x
let g1 : S.qelem =
let x = 0x3086D221A7D46BCDE86C90E49284EB153DAA8A1471E8CA7FE893209A45DBB031 in
assert_norm (pow2 384 * b2 / S.q + 1 = x);
x
let g2 : S.qelem =
let x = 0xE4437ED6010E88286F547FA90ABFE4C4221208AC9DF506C61571B4AE8AC47F71 in
assert_norm (pow2 384 * minus_b1 / S.q = x);
x | false | true | Hacl.Spec.K256.GLV.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val qmul_shift_384 : a: Prims.int -> b: Prims.int -> Prims.int | [] | Hacl.Spec.K256.GLV.qmul_shift_384 | {
"file_name": "code/k256/Hacl.Spec.K256.GLV.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Prims.int -> b: Prims.int -> Prims.int | {
"end_col": 43,
"end_line": 97,
"start_col": 2,
"start_line": 97
} |
|
Prims.Tot | val a1:S.qelem | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let a1 : S.qelem = 0x3086d221a7d46bcde86c90e49284eb15 | val a1:S.qelem
let a1:S.qelem = | false | null | false | 0x3086d221a7d46bcde86c90e49284eb15 | {
"checked_file": "Hacl.Spec.K256.GLV.fst.checked",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.GLV.fst"
} | [
"total"
] | [] | [] | module Hacl.Spec.K256.GLV
open FStar.Mul
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
This module implements the following two functions from libsecp256k1:
secp256k1_scalar_split_lambda [1] and secp256k1_ecmult_endo_split [2].
For the secp256k1 curve, we can replace the EC scalar multiplication
by `lambda` with one modular multiplication by `beta`:
[lambda](px, py) = (beta *% px, py) for any point on the curve P = (px, py),
where `lambda` and `beta` are primitive cube roots of unity and can be
fixed for the curve.
The main idea is to slit a 256-bit scalar k into k1 and k2 s.t.
k = (k1 + lambda * k2) % q, where k1 and k2 are 128-bit numbers:
[k]P = [(k1 + lambda * k2) % q]P = [k1]P + [k2]([lambda]P)
= [k1](px, py) + [k2](beta *% px, py).
Using a double fixed-window method, we can save 128 point_double:
| before | after
----------------------------------------------------------------------
point_double | 256 | 128
point_add | 256 / 5 = 51 | 128 / 5 + 128 / 5 + 1 = 25 + 25 + 1 = 51
Note that one precomputed table is enough for [k]P, as [r_small]([lambda]P)
can be obtained via [r_small]P.
[1]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/scalar_impl.h#L123
[2]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/ecmult_impl.h#L618
*)
(**
Fast computation of [lambda]P as (beta * x, y) in affine and projective coordinates
*)
let lambda : S.qelem = 0x5363ad4cc05c30e0a5261c028812645a122e22ea20816678df02967c1b23bd72
let beta : S.felem = 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee
// [a]P in affine coordinates
let aff_point_mul = S.aff_point_mul
// fast computation of [lambda]P in affine coordinates
let aff_point_mul_lambda (p:S.aff_point) : S.aff_point =
let (px, py) = p in (S.(beta *% px), py)
// fast computation of [lambda]P in projective coordinates
let point_mul_lambda (p:S.proj_point) : S.proj_point =
let (_X, _Y, _Z) = p in (S.(beta *% _X), _Y, _Z)
(**
Representing a scalar k as (r1 + r2 * lambda) mod S.q,
s.t. r1 and r2 are ~128 bits long
*) | false | true | Hacl.Spec.K256.GLV.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val a1:S.qelem | [] | Hacl.Spec.K256.GLV.a1 | {
"file_name": "code/k256/Hacl.Spec.K256.GLV.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Spec.K256.PointOps.qelem | {
"end_col": 53,
"end_line": 66,
"start_col": 19,
"start_line": 66
} |
Prims.Tot | val minus_b2:S.qelem | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let minus_b2 : S.qelem =
let x = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE8A280AC50774346DD765CDA83DB1562C in
assert_norm (x = (- b2) % S.q);
x | val minus_b2:S.qelem
let minus_b2:S.qelem = | false | null | false | let x = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE8A280AC50774346DD765CDA83DB1562C in
assert_norm (x = (- b2) % S.q);
x | {
"checked_file": "Hacl.Spec.K256.GLV.fst.checked",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.GLV.fst"
} | [
"total"
] | [
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Modulus",
"Prims.op_Minus",
"Hacl.Spec.K256.GLV.b2",
"Spec.K256.PointOps.q"
] | [] | module Hacl.Spec.K256.GLV
open FStar.Mul
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
This module implements the following two functions from libsecp256k1:
secp256k1_scalar_split_lambda [1] and secp256k1_ecmult_endo_split [2].
For the secp256k1 curve, we can replace the EC scalar multiplication
by `lambda` with one modular multiplication by `beta`:
[lambda](px, py) = (beta *% px, py) for any point on the curve P = (px, py),
where `lambda` and `beta` are primitive cube roots of unity and can be
fixed for the curve.
The main idea is to slit a 256-bit scalar k into k1 and k2 s.t.
k = (k1 + lambda * k2) % q, where k1 and k2 are 128-bit numbers:
[k]P = [(k1 + lambda * k2) % q]P = [k1]P + [k2]([lambda]P)
= [k1](px, py) + [k2](beta *% px, py).
Using a double fixed-window method, we can save 128 point_double:
| before | after
----------------------------------------------------------------------
point_double | 256 | 128
point_add | 256 / 5 = 51 | 128 / 5 + 128 / 5 + 1 = 25 + 25 + 1 = 51
Note that one precomputed table is enough for [k]P, as [r_small]([lambda]P)
can be obtained via [r_small]P.
[1]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/scalar_impl.h#L123
[2]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/ecmult_impl.h#L618
*)
(**
Fast computation of [lambda]P as (beta * x, y) in affine and projective coordinates
*)
let lambda : S.qelem = 0x5363ad4cc05c30e0a5261c028812645a122e22ea20816678df02967c1b23bd72
let beta : S.felem = 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee
// [a]P in affine coordinates
let aff_point_mul = S.aff_point_mul
// fast computation of [lambda]P in affine coordinates
let aff_point_mul_lambda (p:S.aff_point) : S.aff_point =
let (px, py) = p in (S.(beta *% px), py)
// fast computation of [lambda]P in projective coordinates
let point_mul_lambda (p:S.proj_point) : S.proj_point =
let (_X, _Y, _Z) = p in (S.(beta *% _X), _Y, _Z)
(**
Representing a scalar k as (r1 + r2 * lambda) mod S.q,
s.t. r1 and r2 are ~128 bits long
*)
let a1 : S.qelem = 0x3086d221a7d46bcde86c90e49284eb15
let minus_b1 : S.qelem = 0xe4437ed6010e88286f547fa90abfe4c3
let a2 : S.qelem = 0x114ca50f7a8e2f3f657c1108d9d44cfd8
let b2 : S.qelem = 0x3086d221a7d46bcde86c90e49284eb15
let minus_lambda : S.qelem =
let x = 0xac9c52b33fa3cf1f5ad9e3fd77ed9ba4a880b9fc8ec739c2e0cfc810b51283cf in
assert_norm (x = (- lambda) % S.q);
x
let b1 : S.qelem =
let x = 0xfffffffffffffffffffffffffffffffdd66b5e10ae3a1813507ddee3c5765c7e in
assert_norm (x = (- minus_b1) % S.q);
x | false | true | Hacl.Spec.K256.GLV.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val minus_b2:S.qelem | [] | Hacl.Spec.K256.GLV.minus_b2 | {
"file_name": "code/k256/Hacl.Spec.K256.GLV.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Spec.K256.PointOps.qelem | {
"end_col": 3,
"end_line": 84,
"start_col": 24,
"start_line": 81
} |
Prims.Tot | val a2:S.qelem | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let a2 : S.qelem = 0x114ca50f7a8e2f3f657c1108d9d44cfd8 | val a2:S.qelem
let a2:S.qelem = | false | null | false | 0x114ca50f7a8e2f3f657c1108d9d44cfd8 | {
"checked_file": "Hacl.Spec.K256.GLV.fst.checked",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.GLV.fst"
} | [
"total"
] | [] | [] | module Hacl.Spec.K256.GLV
open FStar.Mul
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
This module implements the following two functions from libsecp256k1:
secp256k1_scalar_split_lambda [1] and secp256k1_ecmult_endo_split [2].
For the secp256k1 curve, we can replace the EC scalar multiplication
by `lambda` with one modular multiplication by `beta`:
[lambda](px, py) = (beta *% px, py) for any point on the curve P = (px, py),
where `lambda` and `beta` are primitive cube roots of unity and can be
fixed for the curve.
The main idea is to slit a 256-bit scalar k into k1 and k2 s.t.
k = (k1 + lambda * k2) % q, where k1 and k2 are 128-bit numbers:
[k]P = [(k1 + lambda * k2) % q]P = [k1]P + [k2]([lambda]P)
= [k1](px, py) + [k2](beta *% px, py).
Using a double fixed-window method, we can save 128 point_double:
| before | after
----------------------------------------------------------------------
point_double | 256 | 128
point_add | 256 / 5 = 51 | 128 / 5 + 128 / 5 + 1 = 25 + 25 + 1 = 51
Note that one precomputed table is enough for [k]P, as [r_small]([lambda]P)
can be obtained via [r_small]P.
[1]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/scalar_impl.h#L123
[2]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/ecmult_impl.h#L618
*)
(**
Fast computation of [lambda]P as (beta * x, y) in affine and projective coordinates
*)
let lambda : S.qelem = 0x5363ad4cc05c30e0a5261c028812645a122e22ea20816678df02967c1b23bd72
let beta : S.felem = 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee
// [a]P in affine coordinates
let aff_point_mul = S.aff_point_mul
// fast computation of [lambda]P in affine coordinates
let aff_point_mul_lambda (p:S.aff_point) : S.aff_point =
let (px, py) = p in (S.(beta *% px), py)
// fast computation of [lambda]P in projective coordinates
let point_mul_lambda (p:S.proj_point) : S.proj_point =
let (_X, _Y, _Z) = p in (S.(beta *% _X), _Y, _Z)
(**
Representing a scalar k as (r1 + r2 * lambda) mod S.q,
s.t. r1 and r2 are ~128 bits long
*)
let a1 : S.qelem = 0x3086d221a7d46bcde86c90e49284eb15 | false | true | Hacl.Spec.K256.GLV.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val a2:S.qelem | [] | Hacl.Spec.K256.GLV.a2 | {
"file_name": "code/k256/Hacl.Spec.K256.GLV.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Spec.K256.PointOps.qelem | {
"end_col": 54,
"end_line": 68,
"start_col": 19,
"start_line": 68
} |
Prims.Tot | val b1:S.qelem | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let b1 : S.qelem =
let x = 0xfffffffffffffffffffffffffffffffdd66b5e10ae3a1813507ddee3c5765c7e in
assert_norm (x = (- minus_b1) % S.q);
x | val b1:S.qelem
let b1:S.qelem = | false | null | false | let x = 0xfffffffffffffffffffffffffffffffdd66b5e10ae3a1813507ddee3c5765c7e in
assert_norm (x = (- minus_b1) % S.q);
x | {
"checked_file": "Hacl.Spec.K256.GLV.fst.checked",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.GLV.fst"
} | [
"total"
] | [
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Modulus",
"Prims.op_Minus",
"Hacl.Spec.K256.GLV.minus_b1",
"Spec.K256.PointOps.q"
] | [] | module Hacl.Spec.K256.GLV
open FStar.Mul
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
This module implements the following two functions from libsecp256k1:
secp256k1_scalar_split_lambda [1] and secp256k1_ecmult_endo_split [2].
For the secp256k1 curve, we can replace the EC scalar multiplication
by `lambda` with one modular multiplication by `beta`:
[lambda](px, py) = (beta *% px, py) for any point on the curve P = (px, py),
where `lambda` and `beta` are primitive cube roots of unity and can be
fixed for the curve.
The main idea is to slit a 256-bit scalar k into k1 and k2 s.t.
k = (k1 + lambda * k2) % q, where k1 and k2 are 128-bit numbers:
[k]P = [(k1 + lambda * k2) % q]P = [k1]P + [k2]([lambda]P)
= [k1](px, py) + [k2](beta *% px, py).
Using a double fixed-window method, we can save 128 point_double:
| before | after
----------------------------------------------------------------------
point_double | 256 | 128
point_add | 256 / 5 = 51 | 128 / 5 + 128 / 5 + 1 = 25 + 25 + 1 = 51
Note that one precomputed table is enough for [k]P, as [r_small]([lambda]P)
can be obtained via [r_small]P.
[1]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/scalar_impl.h#L123
[2]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/ecmult_impl.h#L618
*)
(**
Fast computation of [lambda]P as (beta * x, y) in affine and projective coordinates
*)
let lambda : S.qelem = 0x5363ad4cc05c30e0a5261c028812645a122e22ea20816678df02967c1b23bd72
let beta : S.felem = 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee
// [a]P in affine coordinates
let aff_point_mul = S.aff_point_mul
// fast computation of [lambda]P in affine coordinates
let aff_point_mul_lambda (p:S.aff_point) : S.aff_point =
let (px, py) = p in (S.(beta *% px), py)
// fast computation of [lambda]P in projective coordinates
let point_mul_lambda (p:S.proj_point) : S.proj_point =
let (_X, _Y, _Z) = p in (S.(beta *% _X), _Y, _Z)
(**
Representing a scalar k as (r1 + r2 * lambda) mod S.q,
s.t. r1 and r2 are ~128 bits long
*)
let a1 : S.qelem = 0x3086d221a7d46bcde86c90e49284eb15
let minus_b1 : S.qelem = 0xe4437ed6010e88286f547fa90abfe4c3
let a2 : S.qelem = 0x114ca50f7a8e2f3f657c1108d9d44cfd8
let b2 : S.qelem = 0x3086d221a7d46bcde86c90e49284eb15
let minus_lambda : S.qelem =
let x = 0xac9c52b33fa3cf1f5ad9e3fd77ed9ba4a880b9fc8ec739c2e0cfc810b51283cf in
assert_norm (x = (- lambda) % S.q);
x | false | true | Hacl.Spec.K256.GLV.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val b1:S.qelem | [] | Hacl.Spec.K256.GLV.b1 | {
"file_name": "code/k256/Hacl.Spec.K256.GLV.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Spec.K256.PointOps.qelem | {
"end_col": 3,
"end_line": 79,
"start_col": 18,
"start_line": 76
} |
Prims.Tot | val minus_b1:S.qelem | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let minus_b1 : S.qelem = 0xe4437ed6010e88286f547fa90abfe4c3 | val minus_b1:S.qelem
let minus_b1:S.qelem = | false | null | false | 0xe4437ed6010e88286f547fa90abfe4c3 | {
"checked_file": "Hacl.Spec.K256.GLV.fst.checked",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.GLV.fst"
} | [
"total"
] | [] | [] | module Hacl.Spec.K256.GLV
open FStar.Mul
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
This module implements the following two functions from libsecp256k1:
secp256k1_scalar_split_lambda [1] and secp256k1_ecmult_endo_split [2].
For the secp256k1 curve, we can replace the EC scalar multiplication
by `lambda` with one modular multiplication by `beta`:
[lambda](px, py) = (beta *% px, py) for any point on the curve P = (px, py),
where `lambda` and `beta` are primitive cube roots of unity and can be
fixed for the curve.
The main idea is to slit a 256-bit scalar k into k1 and k2 s.t.
k = (k1 + lambda * k2) % q, where k1 and k2 are 128-bit numbers:
[k]P = [(k1 + lambda * k2) % q]P = [k1]P + [k2]([lambda]P)
= [k1](px, py) + [k2](beta *% px, py).
Using a double fixed-window method, we can save 128 point_double:
| before | after
----------------------------------------------------------------------
point_double | 256 | 128
point_add | 256 / 5 = 51 | 128 / 5 + 128 / 5 + 1 = 25 + 25 + 1 = 51
Note that one precomputed table is enough for [k]P, as [r_small]([lambda]P)
can be obtained via [r_small]P.
[1]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/scalar_impl.h#L123
[2]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/ecmult_impl.h#L618
*)
(**
Fast computation of [lambda]P as (beta * x, y) in affine and projective coordinates
*)
let lambda : S.qelem = 0x5363ad4cc05c30e0a5261c028812645a122e22ea20816678df02967c1b23bd72
let beta : S.felem = 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee
// [a]P in affine coordinates
let aff_point_mul = S.aff_point_mul
// fast computation of [lambda]P in affine coordinates
let aff_point_mul_lambda (p:S.aff_point) : S.aff_point =
let (px, py) = p in (S.(beta *% px), py)
// fast computation of [lambda]P in projective coordinates
let point_mul_lambda (p:S.proj_point) : S.proj_point =
let (_X, _Y, _Z) = p in (S.(beta *% _X), _Y, _Z)
(**
Representing a scalar k as (r1 + r2 * lambda) mod S.q,
s.t. r1 and r2 are ~128 bits long
*) | false | true | Hacl.Spec.K256.GLV.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val minus_b1:S.qelem | [] | Hacl.Spec.K256.GLV.minus_b1 | {
"file_name": "code/k256/Hacl.Spec.K256.GLV.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Spec.K256.PointOps.qelem | {
"end_col": 59,
"end_line": 67,
"start_col": 25,
"start_line": 67
} |
Prims.Tot | val b2:S.qelem | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let b2 : S.qelem = 0x3086d221a7d46bcde86c90e49284eb15 | val b2:S.qelem
let b2:S.qelem = | false | null | false | 0x3086d221a7d46bcde86c90e49284eb15 | {
"checked_file": "Hacl.Spec.K256.GLV.fst.checked",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.GLV.fst"
} | [
"total"
] | [] | [] | module Hacl.Spec.K256.GLV
open FStar.Mul
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
This module implements the following two functions from libsecp256k1:
secp256k1_scalar_split_lambda [1] and secp256k1_ecmult_endo_split [2].
For the secp256k1 curve, we can replace the EC scalar multiplication
by `lambda` with one modular multiplication by `beta`:
[lambda](px, py) = (beta *% px, py) for any point on the curve P = (px, py),
where `lambda` and `beta` are primitive cube roots of unity and can be
fixed for the curve.
The main idea is to slit a 256-bit scalar k into k1 and k2 s.t.
k = (k1 + lambda * k2) % q, where k1 and k2 are 128-bit numbers:
[k]P = [(k1 + lambda * k2) % q]P = [k1]P + [k2]([lambda]P)
= [k1](px, py) + [k2](beta *% px, py).
Using a double fixed-window method, we can save 128 point_double:
| before | after
----------------------------------------------------------------------
point_double | 256 | 128
point_add | 256 / 5 = 51 | 128 / 5 + 128 / 5 + 1 = 25 + 25 + 1 = 51
Note that one precomputed table is enough for [k]P, as [r_small]([lambda]P)
can be obtained via [r_small]P.
[1]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/scalar_impl.h#L123
[2]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/ecmult_impl.h#L618
*)
(**
Fast computation of [lambda]P as (beta * x, y) in affine and projective coordinates
*)
let lambda : S.qelem = 0x5363ad4cc05c30e0a5261c028812645a122e22ea20816678df02967c1b23bd72
let beta : S.felem = 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee
// [a]P in affine coordinates
let aff_point_mul = S.aff_point_mul
// fast computation of [lambda]P in affine coordinates
let aff_point_mul_lambda (p:S.aff_point) : S.aff_point =
let (px, py) = p in (S.(beta *% px), py)
// fast computation of [lambda]P in projective coordinates
let point_mul_lambda (p:S.proj_point) : S.proj_point =
let (_X, _Y, _Z) = p in (S.(beta *% _X), _Y, _Z)
(**
Representing a scalar k as (r1 + r2 * lambda) mod S.q,
s.t. r1 and r2 are ~128 bits long
*)
let a1 : S.qelem = 0x3086d221a7d46bcde86c90e49284eb15
let minus_b1 : S.qelem = 0xe4437ed6010e88286f547fa90abfe4c3 | false | true | Hacl.Spec.K256.GLV.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val b2:S.qelem | [] | Hacl.Spec.K256.GLV.b2 | {
"file_name": "code/k256/Hacl.Spec.K256.GLV.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Spec.K256.PointOps.qelem | {
"end_col": 53,
"end_line": 69,
"start_col": 19,
"start_line": 69
} |
FStar.Pervasives.Lemma | val qmul_shift_384_lemma (a b:S.qelem) : Lemma (qmul_shift_384 a b < S.q) | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let qmul_shift_384_lemma a b =
assert_norm (S.q < pow2 256);
Math.Lemmas.lemma_mult_lt_sqr a b (pow2 256);
Math.Lemmas.pow2_plus 256 256;
assert (a * b < pow2 512);
Math.Lemmas.lemma_div_lt_nat (a * b) 512 384;
assert (a * b / pow2 384 < pow2 128);
assert_norm (pow2 128 < S.q) | val qmul_shift_384_lemma (a b:S.qelem) : Lemma (qmul_shift_384 a b < S.q)
let qmul_shift_384_lemma a b = | false | null | true | assert_norm (S.q < pow2 256);
Math.Lemmas.lemma_mult_lt_sqr a b (pow2 256);
Math.Lemmas.pow2_plus 256 256;
assert (a * b < pow2 512);
Math.Lemmas.lemma_div_lt_nat (a * b) 512 384;
assert (a * b / pow2 384 < pow2 128);
assert_norm (pow2 128 < S.q) | {
"checked_file": "Hacl.Spec.K256.GLV.fst.checked",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.GLV.fst"
} | [
"lemma"
] | [
"Spec.K256.PointOps.qelem",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.pow2",
"Spec.K256.PointOps.q",
"Prims.unit",
"Prims._assert",
"Prims.op_Division",
"FStar.Mul.op_Star",
"FStar.Math.Lemmas.lemma_div_lt_nat",
"FStar.Math.Lemmas.pow2_plus",
"FStar.Math.Lemmas.lemma_mult_lt_sqr"
] | [] | module Hacl.Spec.K256.GLV
open FStar.Mul
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
This module implements the following two functions from libsecp256k1:
secp256k1_scalar_split_lambda [1] and secp256k1_ecmult_endo_split [2].
For the secp256k1 curve, we can replace the EC scalar multiplication
by `lambda` with one modular multiplication by `beta`:
[lambda](px, py) = (beta *% px, py) for any point on the curve P = (px, py),
where `lambda` and `beta` are primitive cube roots of unity and can be
fixed for the curve.
The main idea is to slit a 256-bit scalar k into k1 and k2 s.t.
k = (k1 + lambda * k2) % q, where k1 and k2 are 128-bit numbers:
[k]P = [(k1 + lambda * k2) % q]P = [k1]P + [k2]([lambda]P)
= [k1](px, py) + [k2](beta *% px, py).
Using a double fixed-window method, we can save 128 point_double:
| before | after
----------------------------------------------------------------------
point_double | 256 | 128
point_add | 256 / 5 = 51 | 128 / 5 + 128 / 5 + 1 = 25 + 25 + 1 = 51
Note that one precomputed table is enough for [k]P, as [r_small]([lambda]P)
can be obtained via [r_small]P.
[1]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/scalar_impl.h#L123
[2]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/ecmult_impl.h#L618
*)
(**
Fast computation of [lambda]P as (beta * x, y) in affine and projective coordinates
*)
let lambda : S.qelem = 0x5363ad4cc05c30e0a5261c028812645a122e22ea20816678df02967c1b23bd72
let beta : S.felem = 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee
// [a]P in affine coordinates
let aff_point_mul = S.aff_point_mul
// fast computation of [lambda]P in affine coordinates
let aff_point_mul_lambda (p:S.aff_point) : S.aff_point =
let (px, py) = p in (S.(beta *% px), py)
// fast computation of [lambda]P in projective coordinates
let point_mul_lambda (p:S.proj_point) : S.proj_point =
let (_X, _Y, _Z) = p in (S.(beta *% _X), _Y, _Z)
(**
Representing a scalar k as (r1 + r2 * lambda) mod S.q,
s.t. r1 and r2 are ~128 bits long
*)
let a1 : S.qelem = 0x3086d221a7d46bcde86c90e49284eb15
let minus_b1 : S.qelem = 0xe4437ed6010e88286f547fa90abfe4c3
let a2 : S.qelem = 0x114ca50f7a8e2f3f657c1108d9d44cfd8
let b2 : S.qelem = 0x3086d221a7d46bcde86c90e49284eb15
let minus_lambda : S.qelem =
let x = 0xac9c52b33fa3cf1f5ad9e3fd77ed9ba4a880b9fc8ec739c2e0cfc810b51283cf in
assert_norm (x = (- lambda) % S.q);
x
let b1 : S.qelem =
let x = 0xfffffffffffffffffffffffffffffffdd66b5e10ae3a1813507ddee3c5765c7e in
assert_norm (x = (- minus_b1) % S.q);
x
let minus_b2 : S.qelem =
let x = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE8A280AC50774346DD765CDA83DB1562C in
assert_norm (x = (- b2) % S.q);
x
let g1 : S.qelem =
let x = 0x3086D221A7D46BCDE86C90E49284EB153DAA8A1471E8CA7FE893209A45DBB031 in
assert_norm (pow2 384 * b2 / S.q + 1 = x);
x
let g2 : S.qelem =
let x = 0xE4437ED6010E88286F547FA90ABFE4C4221208AC9DF506C61571B4AE8AC47F71 in
assert_norm (pow2 384 * minus_b1 / S.q = x);
x
let qmul_shift_384 a b =
a * b / pow2 384 + (a * b / pow2 383 % 2)
val qmul_shift_384_lemma (a b:S.qelem) : Lemma (qmul_shift_384 a b < S.q) | false | false | Hacl.Spec.K256.GLV.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val qmul_shift_384_lemma (a b:S.qelem) : Lemma (qmul_shift_384 a b < S.q) | [] | Hacl.Spec.K256.GLV.qmul_shift_384_lemma | {
"file_name": "code/k256/Hacl.Spec.K256.GLV.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Spec.K256.PointOps.qelem -> b: Spec.K256.PointOps.qelem
-> FStar.Pervasives.Lemma (ensures Hacl.Spec.K256.GLV.qmul_shift_384 a b < Spec.K256.PointOps.q) | {
"end_col": 30,
"end_line": 107,
"start_col": 2,
"start_line": 101
} |
Prims.Tot | val g1:S.qelem | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let g1 : S.qelem =
let x = 0x3086D221A7D46BCDE86C90E49284EB153DAA8A1471E8CA7FE893209A45DBB031 in
assert_norm (pow2 384 * b2 / S.q + 1 = x);
x | val g1:S.qelem
let g1:S.qelem = | false | null | false | let x = 0x3086D221A7D46BCDE86C90E49284EB153DAA8A1471E8CA7FE893209A45DBB031 in
assert_norm (pow2 384 * b2 / S.q + 1 = x);
x | {
"checked_file": "Hacl.Spec.K256.GLV.fst.checked",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.GLV.fst"
} | [
"total"
] | [
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Addition",
"Prims.op_Division",
"FStar.Mul.op_Star",
"Prims.pow2",
"Hacl.Spec.K256.GLV.b2",
"Spec.K256.PointOps.q"
] | [] | module Hacl.Spec.K256.GLV
open FStar.Mul
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
This module implements the following two functions from libsecp256k1:
secp256k1_scalar_split_lambda [1] and secp256k1_ecmult_endo_split [2].
For the secp256k1 curve, we can replace the EC scalar multiplication
by `lambda` with one modular multiplication by `beta`:
[lambda](px, py) = (beta *% px, py) for any point on the curve P = (px, py),
where `lambda` and `beta` are primitive cube roots of unity and can be
fixed for the curve.
The main idea is to slit a 256-bit scalar k into k1 and k2 s.t.
k = (k1 + lambda * k2) % q, where k1 and k2 are 128-bit numbers:
[k]P = [(k1 + lambda * k2) % q]P = [k1]P + [k2]([lambda]P)
= [k1](px, py) + [k2](beta *% px, py).
Using a double fixed-window method, we can save 128 point_double:
| before | after
----------------------------------------------------------------------
point_double | 256 | 128
point_add | 256 / 5 = 51 | 128 / 5 + 128 / 5 + 1 = 25 + 25 + 1 = 51
Note that one precomputed table is enough for [k]P, as [r_small]([lambda]P)
can be obtained via [r_small]P.
[1]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/scalar_impl.h#L123
[2]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/ecmult_impl.h#L618
*)
(**
Fast computation of [lambda]P as (beta * x, y) in affine and projective coordinates
*)
let lambda : S.qelem = 0x5363ad4cc05c30e0a5261c028812645a122e22ea20816678df02967c1b23bd72
let beta : S.felem = 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee
// [a]P in affine coordinates
let aff_point_mul = S.aff_point_mul
// fast computation of [lambda]P in affine coordinates
let aff_point_mul_lambda (p:S.aff_point) : S.aff_point =
let (px, py) = p in (S.(beta *% px), py)
// fast computation of [lambda]P in projective coordinates
let point_mul_lambda (p:S.proj_point) : S.proj_point =
let (_X, _Y, _Z) = p in (S.(beta *% _X), _Y, _Z)
(**
Representing a scalar k as (r1 + r2 * lambda) mod S.q,
s.t. r1 and r2 are ~128 bits long
*)
let a1 : S.qelem = 0x3086d221a7d46bcde86c90e49284eb15
let minus_b1 : S.qelem = 0xe4437ed6010e88286f547fa90abfe4c3
let a2 : S.qelem = 0x114ca50f7a8e2f3f657c1108d9d44cfd8
let b2 : S.qelem = 0x3086d221a7d46bcde86c90e49284eb15
let minus_lambda : S.qelem =
let x = 0xac9c52b33fa3cf1f5ad9e3fd77ed9ba4a880b9fc8ec739c2e0cfc810b51283cf in
assert_norm (x = (- lambda) % S.q);
x
let b1 : S.qelem =
let x = 0xfffffffffffffffffffffffffffffffdd66b5e10ae3a1813507ddee3c5765c7e in
assert_norm (x = (- minus_b1) % S.q);
x
let minus_b2 : S.qelem =
let x = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE8A280AC50774346DD765CDA83DB1562C in
assert_norm (x = (- b2) % S.q);
x | false | true | Hacl.Spec.K256.GLV.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val g1:S.qelem | [] | Hacl.Spec.K256.GLV.g1 | {
"file_name": "code/k256/Hacl.Spec.K256.GLV.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Spec.K256.PointOps.qelem | {
"end_col": 3,
"end_line": 89,
"start_col": 18,
"start_line": 86
} |
Prims.Tot | val g2:S.qelem | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let g2 : S.qelem =
let x = 0xE4437ED6010E88286F547FA90ABFE4C4221208AC9DF506C61571B4AE8AC47F71 in
assert_norm (pow2 384 * minus_b1 / S.q = x);
x | val g2:S.qelem
let g2:S.qelem = | false | null | false | let x = 0xE4437ED6010E88286F547FA90ABFE4C4221208AC9DF506C61571B4AE8AC47F71 in
assert_norm (pow2 384 * minus_b1 / S.q = x);
x | {
"checked_file": "Hacl.Spec.K256.GLV.fst.checked",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.GLV.fst"
} | [
"total"
] | [
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Division",
"FStar.Mul.op_Star",
"Prims.pow2",
"Hacl.Spec.K256.GLV.minus_b1",
"Spec.K256.PointOps.q"
] | [] | module Hacl.Spec.K256.GLV
open FStar.Mul
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
This module implements the following two functions from libsecp256k1:
secp256k1_scalar_split_lambda [1] and secp256k1_ecmult_endo_split [2].
For the secp256k1 curve, we can replace the EC scalar multiplication
by `lambda` with one modular multiplication by `beta`:
[lambda](px, py) = (beta *% px, py) for any point on the curve P = (px, py),
where `lambda` and `beta` are primitive cube roots of unity and can be
fixed for the curve.
The main idea is to slit a 256-bit scalar k into k1 and k2 s.t.
k = (k1 + lambda * k2) % q, where k1 and k2 are 128-bit numbers:
[k]P = [(k1 + lambda * k2) % q]P = [k1]P + [k2]([lambda]P)
= [k1](px, py) + [k2](beta *% px, py).
Using a double fixed-window method, we can save 128 point_double:
| before | after
----------------------------------------------------------------------
point_double | 256 | 128
point_add | 256 / 5 = 51 | 128 / 5 + 128 / 5 + 1 = 25 + 25 + 1 = 51
Note that one precomputed table is enough for [k]P, as [r_small]([lambda]P)
can be obtained via [r_small]P.
[1]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/scalar_impl.h#L123
[2]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/ecmult_impl.h#L618
*)
(**
Fast computation of [lambda]P as (beta * x, y) in affine and projective coordinates
*)
let lambda : S.qelem = 0x5363ad4cc05c30e0a5261c028812645a122e22ea20816678df02967c1b23bd72
let beta : S.felem = 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee
// [a]P in affine coordinates
let aff_point_mul = S.aff_point_mul
// fast computation of [lambda]P in affine coordinates
let aff_point_mul_lambda (p:S.aff_point) : S.aff_point =
let (px, py) = p in (S.(beta *% px), py)
// fast computation of [lambda]P in projective coordinates
let point_mul_lambda (p:S.proj_point) : S.proj_point =
let (_X, _Y, _Z) = p in (S.(beta *% _X), _Y, _Z)
(**
Representing a scalar k as (r1 + r2 * lambda) mod S.q,
s.t. r1 and r2 are ~128 bits long
*)
let a1 : S.qelem = 0x3086d221a7d46bcde86c90e49284eb15
let minus_b1 : S.qelem = 0xe4437ed6010e88286f547fa90abfe4c3
let a2 : S.qelem = 0x114ca50f7a8e2f3f657c1108d9d44cfd8
let b2 : S.qelem = 0x3086d221a7d46bcde86c90e49284eb15
let minus_lambda : S.qelem =
let x = 0xac9c52b33fa3cf1f5ad9e3fd77ed9ba4a880b9fc8ec739c2e0cfc810b51283cf in
assert_norm (x = (- lambda) % S.q);
x
let b1 : S.qelem =
let x = 0xfffffffffffffffffffffffffffffffdd66b5e10ae3a1813507ddee3c5765c7e in
assert_norm (x = (- minus_b1) % S.q);
x
let minus_b2 : S.qelem =
let x = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE8A280AC50774346DD765CDA83DB1562C in
assert_norm (x = (- b2) % S.q);
x
let g1 : S.qelem =
let x = 0x3086D221A7D46BCDE86C90E49284EB153DAA8A1471E8CA7FE893209A45DBB031 in
assert_norm (pow2 384 * b2 / S.q + 1 = x);
x | false | true | Hacl.Spec.K256.GLV.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val g2:S.qelem | [] | Hacl.Spec.K256.GLV.g2 | {
"file_name": "code/k256/Hacl.Spec.K256.GLV.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Spec.K256.PointOps.qelem | {
"end_col": 3,
"end_line": 94,
"start_col": 18,
"start_line": 91
} |
Prims.Tot | val scalar_split_lambda (k: S.qelem) : S.qelem & S.qelem | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let scalar_split_lambda (k:S.qelem) : S.qelem & S.qelem =
qmul_shift_384_lemma k g1;
qmul_shift_384_lemma k g2;
let c1 : S.qelem = qmul_shift_384 k g1 in
let c2 : S.qelem = qmul_shift_384 k g2 in
let c1 = S.(c1 *^ minus_b1) in
let c2 = S.(c2 *^ minus_b2) in
let r2 = S.(c1 +^ c2) in
let r1 = S.(k +^ r2 *^ minus_lambda) in
r1, r2 | val scalar_split_lambda (k: S.qelem) : S.qelem & S.qelem
let scalar_split_lambda (k: S.qelem) : S.qelem & S.qelem = | false | null | false | qmul_shift_384_lemma k g1;
qmul_shift_384_lemma k g2;
let c1:S.qelem = qmul_shift_384 k g1 in
let c2:S.qelem = qmul_shift_384 k g2 in
let c1 = let open S in c1 *^ minus_b1 in
let c2 = let open S in c2 *^ minus_b2 in
let r2 = let open S in c1 +^ c2 in
let r1 = let open S in k +^ r2 *^ minus_lambda in
r1, r2 | {
"checked_file": "Hacl.Spec.K256.GLV.fst.checked",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.GLV.fst"
} | [
"total"
] | [
"Spec.K256.PointOps.qelem",
"FStar.Pervasives.Native.Mktuple2",
"Spec.K256.PointOps.op_Plus_Hat",
"Spec.K256.PointOps.op_Star_Hat",
"Hacl.Spec.K256.GLV.minus_lambda",
"Hacl.Spec.K256.GLV.minus_b2",
"Hacl.Spec.K256.GLV.minus_b1",
"Hacl.Spec.K256.GLV.qmul_shift_384",
"Hacl.Spec.K256.GLV.g2",
"Hacl.Spec.K256.GLV.g1",
"Prims.unit",
"Hacl.Spec.K256.GLV.qmul_shift_384_lemma",
"FStar.Pervasives.Native.tuple2"
] | [] | module Hacl.Spec.K256.GLV
open FStar.Mul
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
This module implements the following two functions from libsecp256k1:
secp256k1_scalar_split_lambda [1] and secp256k1_ecmult_endo_split [2].
For the secp256k1 curve, we can replace the EC scalar multiplication
by `lambda` with one modular multiplication by `beta`:
[lambda](px, py) = (beta *% px, py) for any point on the curve P = (px, py),
where `lambda` and `beta` are primitive cube roots of unity and can be
fixed for the curve.
The main idea is to slit a 256-bit scalar k into k1 and k2 s.t.
k = (k1 + lambda * k2) % q, where k1 and k2 are 128-bit numbers:
[k]P = [(k1 + lambda * k2) % q]P = [k1]P + [k2]([lambda]P)
= [k1](px, py) + [k2](beta *% px, py).
Using a double fixed-window method, we can save 128 point_double:
| before | after
----------------------------------------------------------------------
point_double | 256 | 128
point_add | 256 / 5 = 51 | 128 / 5 + 128 / 5 + 1 = 25 + 25 + 1 = 51
Note that one precomputed table is enough for [k]P, as [r_small]([lambda]P)
can be obtained via [r_small]P.
[1]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/scalar_impl.h#L123
[2]https://github.com/bitcoin-core/secp256k1/blob/a43e982bca580f4fba19d7ffaf9b5ee3f51641cb/src/ecmult_impl.h#L618
*)
(**
Fast computation of [lambda]P as (beta * x, y) in affine and projective coordinates
*)
let lambda : S.qelem = 0x5363ad4cc05c30e0a5261c028812645a122e22ea20816678df02967c1b23bd72
let beta : S.felem = 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee
// [a]P in affine coordinates
let aff_point_mul = S.aff_point_mul
// fast computation of [lambda]P in affine coordinates
let aff_point_mul_lambda (p:S.aff_point) : S.aff_point =
let (px, py) = p in (S.(beta *% px), py)
// fast computation of [lambda]P in projective coordinates
let point_mul_lambda (p:S.proj_point) : S.proj_point =
let (_X, _Y, _Z) = p in (S.(beta *% _X), _Y, _Z)
(**
Representing a scalar k as (r1 + r2 * lambda) mod S.q,
s.t. r1 and r2 are ~128 bits long
*)
let a1 : S.qelem = 0x3086d221a7d46bcde86c90e49284eb15
let minus_b1 : S.qelem = 0xe4437ed6010e88286f547fa90abfe4c3
let a2 : S.qelem = 0x114ca50f7a8e2f3f657c1108d9d44cfd8
let b2 : S.qelem = 0x3086d221a7d46bcde86c90e49284eb15
let minus_lambda : S.qelem =
let x = 0xac9c52b33fa3cf1f5ad9e3fd77ed9ba4a880b9fc8ec739c2e0cfc810b51283cf in
assert_norm (x = (- lambda) % S.q);
x
let b1 : S.qelem =
let x = 0xfffffffffffffffffffffffffffffffdd66b5e10ae3a1813507ddee3c5765c7e in
assert_norm (x = (- minus_b1) % S.q);
x
let minus_b2 : S.qelem =
let x = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE8A280AC50774346DD765CDA83DB1562C in
assert_norm (x = (- b2) % S.q);
x
let g1 : S.qelem =
let x = 0x3086D221A7D46BCDE86C90E49284EB153DAA8A1471E8CA7FE893209A45DBB031 in
assert_norm (pow2 384 * b2 / S.q + 1 = x);
x
let g2 : S.qelem =
let x = 0xE4437ED6010E88286F547FA90ABFE4C4221208AC9DF506C61571B4AE8AC47F71 in
assert_norm (pow2 384 * minus_b1 / S.q = x);
x
let qmul_shift_384 a b =
a * b / pow2 384 + (a * b / pow2 383 % 2)
val qmul_shift_384_lemma (a b:S.qelem) : Lemma (qmul_shift_384 a b < S.q)
let qmul_shift_384_lemma a b =
assert_norm (S.q < pow2 256);
Math.Lemmas.lemma_mult_lt_sqr a b (pow2 256);
Math.Lemmas.pow2_plus 256 256;
assert (a * b < pow2 512);
Math.Lemmas.lemma_div_lt_nat (a * b) 512 384;
assert (a * b / pow2 384 < pow2 128);
assert_norm (pow2 128 < S.q) | false | true | Hacl.Spec.K256.GLV.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val scalar_split_lambda (k: S.qelem) : S.qelem & S.qelem | [] | Hacl.Spec.K256.GLV.scalar_split_lambda | {
"file_name": "code/k256/Hacl.Spec.K256.GLV.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | k: Spec.K256.PointOps.qelem -> Spec.K256.PointOps.qelem * Spec.K256.PointOps.qelem | {
"end_col": 8,
"end_line": 121,
"start_col": 2,
"start_line": 111
} |