url
stringlengths 61
61
| repository_url
stringclasses 1
value | labels_url
stringlengths 75
75
| comments_url
stringlengths 70
70
| events_url
stringlengths 68
68
| html_url
stringlengths 49
51
| id
int64 1.72B
1.82B
| node_id
stringlengths 18
19
| number
int64 5.88k
6.08k
| title
stringlengths 5
280
| user
dict | labels
list | state
stringclasses 2
values | locked
bool 1
class | assignee
dict | assignees
list | milestone
dict | comments
sequence | created_at
timestamp[s] | updated_at
timestamp[s] | closed_at
timestamp[s] | author_association
stringclasses 3
values | active_lock_reason
null | draft
bool 2
classes | pull_request
dict | body
stringlengths 9
16.9k
⌀ | reactions
dict | timeline_url
stringlengths 70
70
| performed_via_github_app
null | state_reason
stringclasses 1
value | is_pull_request
bool 2
classes |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
https://api.github.com/repos/huggingface/datasets/issues/6042 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6042/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6042/comments | https://api.github.com/repos/huggingface/datasets/issues/6042/events | https://github.com/huggingface/datasets/pull/6042 | 1,807,516,762 | PR_kwDODunzps5VqEyb | 6,042 | Fix unused DatasetInfosDict code in push_to_hub | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008634 / 0.011353 (-0.002719) | 0.005147 / 0.011008 (-0.005861) | 0.102865 / 0.038508 (0.064357) | 0.080245 / 0.023109 (0.057136) | 0.401288 / 0.275898 (0.125390) | 0.419708 / 0.323480 (0.096228) | 0.006342 / 0.007986 (-0.001644) | 0.003998 / 0.004328 (-0.000330) | 0.078880 / 0.004250 (0.074630) | 0.068199 / 0.037052 (0.031147) | 0.389573 / 0.258489 (0.131084) | 0.417292 / 0.293841 (0.123451) | 0.048856 / 0.128546 (-0.079691) | 0.014165 / 0.075646 (-0.061481) | 0.348063 / 0.419271 (-0.071209) | 0.067547 / 0.043533 (0.024014) | 0.402251 / 0.255139 (0.147112) | 0.419478 / 0.283200 (0.136278) | 0.034846 / 0.141683 (-0.106837) | 1.773493 / 1.452155 (0.321338) | 1.930546 / 1.492716 (0.437830) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.211835 / 0.018006 (0.193829) | 0.545311 / 0.000490 (0.544821) | 0.006766 / 0.000200 (0.006566) | 0.000104 / 0.000054 (0.000050) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035406 / 0.037411 (-0.002006) | 0.100769 / 0.014526 (0.086243) | 0.108667 / 0.176557 (-0.067890) | 0.193099 / 0.737135 (-0.544036) | 0.113539 / 0.296338 (-0.182799) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.586935 / 0.215209 (0.371726) | 5.895245 / 2.077655 (3.817591) | 2.528375 / 1.504120 (1.024255) | 2.228617 / 1.541195 (0.687423) | 2.295799 / 1.468490 (0.827309) | 0.859272 / 4.584777 (-3.725505) | 5.033434 / 3.745712 (1.287722) | 7.546587 / 5.269862 (2.276726) | 4.457137 / 4.565676 (-0.108539) | 0.099626 / 0.424275 (-0.324649) | 0.009296 / 0.007607 (0.001689) | 0.713498 / 0.226044 (0.487454) | 7.409385 / 2.268929 (5.140456) | 3.361418 / 55.444624 (-52.083206) | 2.681111 / 6.876477 (-4.195366) | 2.849598 / 2.142072 (0.707526) | 1.114863 / 4.805227 (-3.690364) | 0.215494 / 6.500664 (-6.285170) | 0.075807 / 0.075469 (0.000338) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.606458 / 1.841788 (-0.235330) | 23.751096 / 8.074308 (15.676788) | 21.279110 / 10.191392 (11.087718) | 0.220785 / 0.680424 (-0.459639) | 0.032688 / 0.534201 (-0.501513) | 0.530948 / 0.579283 (-0.048335) | 0.630056 / 0.434364 (0.195693) | 0.572743 / 0.540337 (0.032405) | 0.771853 / 1.386936 (-0.615083) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008693 / 0.011353 (-0.002660) | 0.004750 / 0.011008 (-0.006259) | 0.079764 / 0.038508 (0.041256) | 0.082096 / 0.023109 (0.058987) | 0.467198 / 0.275898 (0.191300) | 0.532361 / 0.323480 (0.208881) | 0.005836 / 0.007986 (-0.002149) | 0.004333 / 0.004328 (0.000005) | 0.080444 / 0.004250 (0.076194) | 0.065883 / 0.037052 (0.028831) | 0.464871 / 0.258489 (0.206382) | 0.575026 / 0.293841 (0.281185) | 0.057807 / 0.128546 (-0.070739) | 0.017462 / 0.075646 (-0.058185) | 0.093667 / 0.419271 (-0.325605) | 0.071466 / 0.043533 (0.027933) | 0.495846 / 0.255139 (0.240707) | 0.526100 / 0.283200 (0.242900) | 0.034852 / 0.141683 (-0.106831) | 1.884152 / 1.452155 (0.431998) | 1.922681 / 1.492716 (0.429965) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.250969 / 0.018006 (0.232963) | 0.504979 / 0.000490 (0.504489) | 0.000466 / 0.000200 (0.000266) | 0.000083 / 0.000054 (0.000028) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032411 / 0.037411 (-0.005000) | 0.093184 / 0.014526 (0.078658) | 0.110798 / 0.176557 (-0.065759) | 0.165741 / 0.737135 (-0.571394) | 0.111022 / 0.296338 (-0.185317) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.661284 / 0.215209 (0.446075) | 6.622388 / 2.077655 (4.544733) | 3.095705 / 1.504120 (1.591585) | 2.745698 / 1.541195 (1.204503) | 2.694103 / 1.468490 (1.225612) | 0.862154 / 4.584777 (-3.722623) | 5.109985 / 3.745712 (1.364273) | 5.040362 / 5.269862 (-0.229499) | 3.072837 / 4.565676 (-1.492840) | 0.110421 / 0.424275 (-0.313854) | 0.008476 / 0.007607 (0.000869) | 0.910020 / 0.226044 (0.683975) | 8.123626 / 2.268929 (5.854698) | 3.813811 / 55.444624 (-51.630813) | 3.017244 / 6.876477 (-3.859232) | 3.061222 / 2.142072 (0.919150) | 1.073548 / 4.805227 (-3.731680) | 0.216327 / 6.500664 (-6.284338) | 0.072977 / 0.075469 (-0.002492) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.722482 / 1.841788 (-0.119305) | 23.706716 / 8.074308 (15.632407) | 23.192134 / 10.191392 (13.000742) | 0.276733 / 0.680424 (-0.403691) | 0.033538 / 0.534201 (-0.500663) | 0.602083 / 0.579283 (0.022799) | 0.578718 / 0.434364 (0.144354) | 0.558311 / 0.540337 (0.017974) | 0.740341 / 1.386936 (-0.646595) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#7ac575b8ed57dac60d7ba33a616894f38601f84a \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006862 / 0.011353 (-0.004491) | 0.004223 / 0.011008 (-0.006786) | 0.085931 / 0.038508 (0.047423) | 0.081437 / 0.023109 (0.058328) | 0.349542 / 0.275898 (0.073644) | 0.379881 / 0.323480 (0.056401) | 0.005651 / 0.007986 (-0.002334) | 0.003662 / 0.004328 (-0.000666) | 0.065251 / 0.004250 (0.061001) | 0.061599 / 0.037052 (0.024547) | 0.359681 / 0.258489 (0.101192) | 0.392502 / 0.293841 (0.098661) | 0.031300 / 0.128546 (-0.097246) | 0.008591 / 0.075646 (-0.067055) | 0.288577 / 0.419271 (-0.130694) | 0.062920 / 0.043533 (0.019388) | 0.348989 / 0.255139 (0.093850) | 0.362769 / 0.283200 (0.079569) | 0.030087 / 0.141683 (-0.111596) | 1.480748 / 1.452155 (0.028594) | 1.580413 / 1.492716 (0.087697) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.205804 / 0.018006 (0.187798) | 0.455386 / 0.000490 (0.454897) | 0.003134 / 0.000200 (0.002934) | 0.000077 / 0.000054 (0.000023) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030252 / 0.037411 (-0.007159) | 0.087566 / 0.014526 (0.073041) | 0.098209 / 0.176557 (-0.078347) | 0.155816 / 0.737135 (-0.581319) | 0.098938 / 0.296338 (-0.197401) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.386688 / 0.215209 (0.171479) | 3.852777 / 2.077655 (1.775123) | 1.938688 / 1.504120 (0.434568) | 1.779234 / 1.541195 (0.238039) | 1.864262 / 1.468490 (0.395772) | 0.482472 / 4.584777 (-4.102305) | 3.658060 / 3.745712 (-0.087652) | 5.206489 / 5.269862 (-0.063373) | 3.262498 / 4.565676 (-1.303179) | 0.057523 / 0.424275 (-0.366752) | 0.007365 / 0.007607 (-0.000242) | 0.466886 / 0.226044 (0.240841) | 4.671026 / 2.268929 (2.402097) | 2.380357 / 55.444624 (-53.064268) | 2.096590 / 6.876477 (-4.779887) | 2.274415 / 2.142072 (0.132342) | 0.579705 / 4.805227 (-4.225522) | 0.134522 / 6.500664 (-6.366142) | 0.062232 / 0.075469 (-0.013237) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.245965 / 1.841788 (-0.595823) | 20.115180 / 8.074308 (12.040872) | 14.602983 / 10.191392 (4.411591) | 0.146890 / 0.680424 (-0.533533) | 0.018424 / 0.534201 (-0.515777) | 0.393941 / 0.579283 (-0.185342) | 0.413785 / 0.434364 (-0.020579) | 0.453344 / 0.540337 (-0.086993) | 0.655446 / 1.386936 (-0.731490) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006807 / 0.011353 (-0.004546) | 0.004083 / 0.011008 (-0.006925) | 0.065389 / 0.038508 (0.026881) | 0.081056 / 0.023109 (0.057947) | 0.362823 / 0.275898 (0.086925) | 0.401928 / 0.323480 (0.078448) | 0.005452 / 0.007986 (-0.002533) | 0.003413 / 0.004328 (-0.000915) | 0.065238 / 0.004250 (0.060987) | 0.057264 / 0.037052 (0.020211) | 0.375713 / 0.258489 (0.117224) | 0.407858 / 0.293841 (0.114017) | 0.031580 / 0.128546 (-0.096966) | 0.008643 / 0.075646 (-0.067003) | 0.071693 / 0.419271 (-0.347578) | 0.049392 / 0.043533 (0.005859) | 0.370194 / 0.255139 (0.115055) | 0.384647 / 0.283200 (0.101447) | 0.024805 / 0.141683 (-0.116877) | 1.509511 / 1.452155 (0.057356) | 1.560193 / 1.492716 (0.067477) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.234442 / 0.018006 (0.216436) | 0.458818 / 0.000490 (0.458329) | 0.000407 / 0.000200 (0.000207) | 0.000060 / 0.000054 (0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031661 / 0.037411 (-0.005750) | 0.093143 / 0.014526 (0.078618) | 0.102205 / 0.176557 (-0.074352) | 0.155850 / 0.737135 (-0.581286) | 0.104345 / 0.296338 (-0.191994) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.419641 / 0.215209 (0.204432) | 4.200808 / 2.077655 (2.123153) | 2.218227 / 1.504120 (0.714107) | 2.052604 / 1.541195 (0.511409) | 2.150611 / 1.468490 (0.682121) | 0.482665 / 4.584777 (-4.102112) | 3.606541 / 3.745712 (-0.139172) | 3.310637 / 5.269862 (-1.959224) | 2.070200 / 4.565676 (-2.495476) | 0.056586 / 0.424275 (-0.367689) | 0.007826 / 0.007607 (0.000218) | 0.491037 / 0.226044 (0.264992) | 4.901538 / 2.268929 (2.632610) | 2.676402 / 55.444624 (-52.768223) | 2.363935 / 6.876477 (-4.512542) | 2.587813 / 2.142072 (0.445741) | 0.579302 / 4.805227 (-4.225926) | 0.132792 / 6.500664 (-6.367873) | 0.061865 / 0.075469 (-0.013604) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.354315 / 1.841788 (-0.487473) | 20.874516 / 8.074308 (12.800208) | 14.863559 / 10.191392 (4.672167) | 0.183635 / 0.680424 (-0.496789) | 0.018636 / 0.534201 (-0.515565) | 0.395317 / 0.579283 (-0.183966) | 0.410598 / 0.434364 (-0.023766) | 0.476485 / 0.540337 (-0.063853) | 0.643246 / 1.386936 (-0.743690) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#4472a8795c603a95eef7c8f15cb04f1290cc8d11 \"CML watermark\")\n"
] | 2023-07-17T11:03:09 | 2023-07-18T16:17:52 | 2023-07-18T16:08:42 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6042",
"html_url": "https://github.com/huggingface/datasets/pull/6042",
"diff_url": "https://github.com/huggingface/datasets/pull/6042.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6042.patch",
"merged_at": "2023-07-18T16:08:42"
} | null | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6042/reactions",
"total_count": 1,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 1,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6042/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5958 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5958/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5958/comments | https://api.github.com/repos/huggingface/datasets/issues/5958/events | https://github.com/huggingface/datasets/pull/5958 | 1,757,265,971 | PR_kwDODunzps5TA3__ | 5,958 | set dev version | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5958). All of your documentation changes will be reflected on that endpoint.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006232 / 0.011353 (-0.005121) | 0.003788 / 0.011008 (-0.007220) | 0.100014 / 0.038508 (0.061506) | 0.036488 / 0.023109 (0.013379) | 0.306255 / 0.275898 (0.030357) | 0.363337 / 0.323480 (0.039857) | 0.004765 / 0.007986 (-0.003221) | 0.002935 / 0.004328 (-0.001394) | 0.078897 / 0.004250 (0.074647) | 0.052221 / 0.037052 (0.015169) | 0.315169 / 0.258489 (0.056680) | 0.353050 / 0.293841 (0.059209) | 0.029059 / 0.128546 (-0.099488) | 0.008599 / 0.075646 (-0.067047) | 0.318770 / 0.419271 (-0.100502) | 0.046631 / 0.043533 (0.003098) | 0.303728 / 0.255139 (0.048589) | 0.332379 / 0.283200 (0.049180) | 0.021164 / 0.141683 (-0.120519) | 1.576963 / 1.452155 (0.124808) | 1.629575 / 1.492716 (0.136859) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.204246 / 0.018006 (0.186240) | 0.426600 / 0.000490 (0.426110) | 0.004336 / 0.000200 (0.004136) | 0.000082 / 0.000054 (0.000027) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024039 / 0.037411 (-0.013372) | 0.098240 / 0.014526 (0.083715) | 0.108889 / 0.176557 (-0.067668) | 0.170827 / 0.737135 (-0.566308) | 0.111288 / 0.296338 (-0.185051) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.418103 / 0.215209 (0.202894) | 4.190759 / 2.077655 (2.113104) | 1.875978 / 1.504120 (0.371858) | 1.679198 / 1.541195 (0.138003) | 1.737965 / 1.468490 (0.269474) | 0.556660 / 4.584777 (-4.028117) | 3.413800 / 3.745712 (-0.331912) | 3.004999 / 5.269862 (-2.264862) | 1.464030 / 4.565676 (-3.101647) | 0.067338 / 0.424275 (-0.356937) | 0.011486 / 0.007607 (0.003879) | 0.522589 / 0.226044 (0.296544) | 5.214653 / 2.268929 (2.945724) | 2.316903 / 55.444624 (-53.127722) | 1.991941 / 6.876477 (-4.884536) | 2.110601 / 2.142072 (-0.031471) | 0.665400 / 4.805227 (-4.139828) | 0.135755 / 6.500664 (-6.364910) | 0.065980 / 0.075469 (-0.009489) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.197269 / 1.841788 (-0.644519) | 14.085205 / 8.074308 (6.010897) | 14.083360 / 10.191392 (3.891968) | 0.148054 / 0.680424 (-0.532369) | 0.016548 / 0.534201 (-0.517653) | 0.371538 / 0.579283 (-0.207745) | 0.391068 / 0.434364 (-0.043296) | 0.430589 / 0.540337 (-0.109748) | 0.529319 / 1.386936 (-0.857617) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006214 / 0.011353 (-0.005138) | 0.003846 / 0.011008 (-0.007162) | 0.078559 / 0.038508 (0.040051) | 0.037855 / 0.023109 (0.014745) | 0.437479 / 0.275898 (0.161581) | 0.497588 / 0.323480 (0.174108) | 0.003491 / 0.007986 (-0.004494) | 0.003900 / 0.004328 (-0.000428) | 0.078443 / 0.004250 (0.074193) | 0.048019 / 0.037052 (0.010967) | 0.452076 / 0.258489 (0.193587) | 0.494597 / 0.293841 (0.200756) | 0.028127 / 0.128546 (-0.100419) | 0.008549 / 0.075646 (-0.067098) | 0.082977 / 0.419271 (-0.336295) | 0.043133 / 0.043533 (-0.000400) | 0.441342 / 0.255139 (0.186203) | 0.464339 / 0.283200 (0.181139) | 0.020110 / 0.141683 (-0.121573) | 1.485181 / 1.452155 (0.033026) | 1.532019 / 1.492716 (0.039302) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.228014 / 0.018006 (0.210007) | 0.416887 / 0.000490 (0.416397) | 0.001133 / 0.000200 (0.000933) | 0.000108 / 0.000054 (0.000053) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026452 / 0.037411 (-0.010960) | 0.104328 / 0.014526 (0.089802) | 0.110045 / 0.176557 (-0.066511) | 0.164725 / 0.737135 (-0.572410) | 0.116348 / 0.296338 (-0.179990) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.483502 / 0.215209 (0.268293) | 4.829814 / 2.077655 (2.752159) | 2.505271 / 1.504120 (1.001151) | 2.305819 / 1.541195 (0.764624) | 2.348633 / 1.468490 (0.880143) | 0.562316 / 4.584777 (-4.022461) | 3.426425 / 3.745712 (-0.319287) | 1.737934 / 5.269862 (-3.531927) | 1.042616 / 4.565676 (-3.523061) | 0.068088 / 0.424275 (-0.356187) | 0.011735 / 0.007607 (0.004128) | 0.586339 / 0.226044 (0.360295) | 5.861283 / 2.268929 (3.592354) | 2.953956 / 55.444624 (-52.490668) | 2.626611 / 6.876477 (-4.249865) | 2.687978 / 2.142072 (0.545906) | 0.672748 / 4.805227 (-4.132479) | 0.137231 / 6.500664 (-6.363433) | 0.068149 / 0.075469 (-0.007320) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.323139 / 1.841788 (-0.518649) | 14.503102 / 8.074308 (6.428794) | 14.092102 / 10.191392 (3.900710) | 0.165395 / 0.680424 (-0.515028) | 0.016898 / 0.534201 (-0.517303) | 0.366905 / 0.579283 (-0.212378) | 0.396671 / 0.434364 (-0.037692) | 0.421831 / 0.540337 (-0.118506) | 0.514075 / 1.386936 (-0.872861) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#9d4238c132dd44b9a6e1dfe7101228bdeb538d57 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007778 / 0.011353 (-0.003575) | 0.004624 / 0.011008 (-0.006384) | 0.123426 / 0.038508 (0.084918) | 0.052209 / 0.023109 (0.029100) | 0.341084 / 0.275898 (0.065186) | 0.421905 / 0.323480 (0.098425) | 0.005768 / 0.007986 (-0.002217) | 0.003647 / 0.004328 (-0.000682) | 0.085569 / 0.004250 (0.081319) | 0.070473 / 0.037052 (0.033421) | 0.356626 / 0.258489 (0.098136) | 0.407413 / 0.293841 (0.113572) | 0.038800 / 0.128546 (-0.089746) | 0.010289 / 0.075646 (-0.065357) | 0.462707 / 0.419271 (0.043436) | 0.060390 / 0.043533 (0.016858) | 0.349805 / 0.255139 (0.094666) | 0.355288 / 0.283200 (0.072088) | 0.025364 / 0.141683 (-0.116318) | 1.745720 / 1.452155 (0.293565) | 1.852764 / 1.492716 (0.360048) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.290582 / 0.018006 (0.272576) | 0.480044 / 0.000490 (0.479554) | 0.007658 / 0.000200 (0.007458) | 0.000100 / 0.000054 (0.000046) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031529 / 0.037411 (-0.005882) | 0.130441 / 0.014526 (0.115915) | 0.147653 / 0.176557 (-0.028904) | 0.215935 / 0.737135 (-0.521200) | 0.149871 / 0.296338 (-0.146467) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.461662 / 0.215209 (0.246453) | 4.570353 / 2.077655 (2.492698) | 2.104416 / 1.504120 (0.600297) | 1.936974 / 1.541195 (0.395779) | 2.139167 / 1.468490 (0.670677) | 0.645100 / 4.584777 (-3.939677) | 4.361536 / 3.745712 (0.615824) | 2.155960 / 5.269862 (-3.113902) | 1.207854 / 4.565676 (-3.357822) | 0.080162 / 0.424275 (-0.344113) | 0.014265 / 0.007607 (0.006658) | 0.606294 / 0.226044 (0.380250) | 5.928093 / 2.268929 (3.659165) | 2.701811 / 55.444624 (-52.742813) | 2.344490 / 6.876477 (-4.531987) | 2.435997 / 2.142072 (0.293925) | 0.761020 / 4.805227 (-4.044207) | 0.165860 / 6.500664 (-6.334804) | 0.075666 / 0.075469 (0.000197) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.427318 / 1.841788 (-0.414469) | 17.327468 / 8.074308 (9.253160) | 15.323065 / 10.191392 (5.131673) | 0.178518 / 0.680424 (-0.501905) | 0.020888 / 0.534201 (-0.513313) | 0.497891 / 0.579283 (-0.081393) | 0.487717 / 0.434364 (0.053353) | 0.581430 / 0.540337 (0.041093) | 0.703430 / 1.386936 (-0.683506) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007954 / 0.011353 (-0.003399) | 0.004442 / 0.011008 (-0.006566) | 0.090950 / 0.038508 (0.052442) | 0.054282 / 0.023109 (0.031173) | 0.424474 / 0.275898 (0.148576) | 0.531770 / 0.323480 (0.208290) | 0.004492 / 0.007986 (-0.003493) | 0.004745 / 0.004328 (0.000416) | 0.088213 / 0.004250 (0.083962) | 0.063967 / 0.037052 (0.026914) | 0.454256 / 0.258489 (0.195767) | 0.502870 / 0.293841 (0.209029) | 0.038203 / 0.128546 (-0.090343) | 0.010327 / 0.075646 (-0.065319) | 0.097809 / 0.419271 (-0.321463) | 0.062136 / 0.043533 (0.018604) | 0.426148 / 0.255139 (0.171009) | 0.467812 / 0.283200 (0.184612) | 0.029148 / 0.141683 (-0.112535) | 1.762307 / 1.452155 (0.310152) | 1.814238 / 1.492716 (0.321521) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.195676 / 0.018006 (0.177670) | 0.475382 / 0.000490 (0.474892) | 0.003070 / 0.000200 (0.002870) | 0.000112 / 0.000054 (0.000057) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033945 / 0.037411 (-0.003466) | 0.134666 / 0.014526 (0.120140) | 0.147585 / 0.176557 (-0.028971) | 0.209472 / 0.737135 (-0.527664) | 0.154471 / 0.296338 (-0.141867) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.518132 / 0.215209 (0.302923) | 5.103423 / 2.077655 (3.025768) | 2.565207 / 1.504120 (1.061087) | 2.389454 / 1.541195 (0.848259) | 2.391706 / 1.468490 (0.923216) | 0.606463 / 4.584777 (-3.978314) | 4.392227 / 3.745712 (0.646515) | 2.067121 / 5.269862 (-3.202741) | 1.217551 / 4.565676 (-3.348125) | 0.074304 / 0.424275 (-0.349971) | 0.013418 / 0.007607 (0.005811) | 0.623327 / 0.226044 (0.397282) | 6.340233 / 2.268929 (4.071304) | 3.153948 / 55.444624 (-52.290677) | 2.824548 / 6.876477 (-4.051929) | 2.938402 / 2.142072 (0.796329) | 0.774305 / 4.805227 (-4.030922) | 0.170681 / 6.500664 (-6.329983) | 0.075895 / 0.075469 (0.000426) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.473491 / 1.841788 (-0.368296) | 17.372294 / 8.074308 (9.297986) | 15.550201 / 10.191392 (5.358809) | 0.191402 / 0.680424 (-0.489022) | 0.021401 / 0.534201 (-0.512800) | 0.484377 / 0.579283 (-0.094906) | 0.488844 / 0.434364 (0.054480) | 0.563336 / 0.540337 (0.022999) | 0.694210 / 1.386936 (-0.692726) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#b96da7f51d81e52d7b587685f820b5e55f71e07d \"CML watermark\")\n"
] | 2023-06-14T16:26:34 | 2023-06-14T16:34:55 | 2023-06-14T16:26:51 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5958",
"html_url": "https://github.com/huggingface/datasets/pull/5958",
"diff_url": "https://github.com/huggingface/datasets/pull/5958.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5958.patch",
"merged_at": "2023-06-14T16:26:51"
} | null | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5958/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5958/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5906 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5906/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5906/comments | https://api.github.com/repos/huggingface/datasets/issues/5906/events | https://github.com/huggingface/datasets/issues/5906 | 1,728,171,113 | I_kwDODunzps5nAcxp | 5,906 | Could you unpin responses version? | {
"login": "kenimou",
"id": 47789026,
"node_id": "MDQ6VXNlcjQ3Nzg5MDI2",
"avatar_url": "https://avatars.githubusercontent.com/u/47789026?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/kenimou",
"html_url": "https://github.com/kenimou",
"followers_url": "https://api.github.com/users/kenimou/followers",
"following_url": "https://api.github.com/users/kenimou/following{/other_user}",
"gists_url": "https://api.github.com/users/kenimou/gists{/gist_id}",
"starred_url": "https://api.github.com/users/kenimou/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/kenimou/subscriptions",
"organizations_url": "https://api.github.com/users/kenimou/orgs",
"repos_url": "https://api.github.com/users/kenimou/repos",
"events_url": "https://api.github.com/users/kenimou/events{/privacy}",
"received_events_url": "https://api.github.com/users/kenimou/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [] | 2023-05-26T20:02:14 | 2023-05-30T17:53:31 | 2023-05-30T17:53:31 | NONE | null | null | null | ### Describe the bug
Could you unpin [this](https://github.com/huggingface/datasets/blob/main/setup.py#L139) or move it to test requirements? This is a testing library and we also use it for our tests as well. We do not want to use a very outdated version.
### Steps to reproduce the bug
could not install this library due to dependency conflict.
### Expected behavior
can install datasets
### Environment info
linux 64 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5906/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5906/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5959 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5959/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5959/comments | https://api.github.com/repos/huggingface/datasets/issues/5959/events | https://github.com/huggingface/datasets/issues/5959 | 1,757,397,507 | I_kwDODunzps5ov8ID | 5,959 | read metric glue.py from local file | {
"login": "JiazhaoLi",
"id": 31148397,
"node_id": "MDQ6VXNlcjMxMTQ4Mzk3",
"avatar_url": "https://avatars.githubusercontent.com/u/31148397?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/JiazhaoLi",
"html_url": "https://github.com/JiazhaoLi",
"followers_url": "https://api.github.com/users/JiazhaoLi/followers",
"following_url": "https://api.github.com/users/JiazhaoLi/following{/other_user}",
"gists_url": "https://api.github.com/users/JiazhaoLi/gists{/gist_id}",
"starred_url": "https://api.github.com/users/JiazhaoLi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/JiazhaoLi/subscriptions",
"organizations_url": "https://api.github.com/users/JiazhaoLi/orgs",
"repos_url": "https://api.github.com/users/JiazhaoLi/repos",
"events_url": "https://api.github.com/users/JiazhaoLi/events{/privacy}",
"received_events_url": "https://api.github.com/users/JiazhaoLi/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Sorry, I solve this by call `evaluate.load('glue_metric.py','sst-2')`\r\n"
] | 2023-06-14T17:59:35 | 2023-06-14T18:04:16 | 2023-06-14T18:04:16 | NONE | null | null | null | ### Describe the bug
Currently, The server is off-line. I am using the glue metric from the local file downloaded from the hub.
I download / cached datasets using `load_dataset('glue','sst2', cache_dir='/xxx')` to cache them and then in the off-line mode, I use `load_dataset('xxx/glue.py','sst2', cache_dir='/xxx')`. I can successfully reuse cached datasets.
My problem is about the load_metric.
When I run `load_dataset('xxx/glue_metric.py','sst2',cache_dir='/xxx')` , it returns
` File "xx/lib64/python3.9/site-packages/datasets/utils/deprecation_utils.py", line 46, in wrapper
return deprecated_function(*args, **kwargs)
File "xx//lib64/python3.9/site-packages/datasets/load.py", line 1392, in load_metric
metric = metric_cls(
TypeError: 'NoneType' object is not callable`
Thanks in advance for help!
### Steps to reproduce the bug
N/A
### Expected behavior
N/A
### Environment info
`datasets == 2.12.0` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5959/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5959/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/6001 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6001/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6001/comments | https://api.github.com/repos/huggingface/datasets/issues/6001/events | https://github.com/huggingface/datasets/pull/6001 | 1,782,516,627 | PR_kwDODunzps5UVMMh | 6,001 | Align `column_names` type check with type hint in `sort` | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006038 / 0.011353 (-0.005315) | 0.003797 / 0.011008 (-0.007211) | 0.097686 / 0.038508 (0.059178) | 0.035235 / 0.023109 (0.012126) | 0.317294 / 0.275898 (0.041396) | 0.377682 / 0.323480 (0.054202) | 0.003485 / 0.007986 (-0.004501) | 0.003603 / 0.004328 (-0.000725) | 0.077268 / 0.004250 (0.073017) | 0.054649 / 0.037052 (0.017597) | 0.322293 / 0.258489 (0.063804) | 0.372277 / 0.293841 (0.078436) | 0.027927 / 0.128546 (-0.100619) | 0.008495 / 0.075646 (-0.067151) | 0.313078 / 0.419271 (-0.106193) | 0.046974 / 0.043533 (0.003441) | 0.313848 / 0.255139 (0.058709) | 0.338454 / 0.283200 (0.055255) | 0.020462 / 0.141683 (-0.121221) | 1.473027 / 1.452155 (0.020873) | 1.539468 / 1.492716 (0.046752) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.221429 / 0.018006 (0.203423) | 0.412044 / 0.000490 (0.411555) | 0.005866 / 0.000200 (0.005666) | 0.000075 / 0.000054 (0.000021) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022870 / 0.037411 (-0.014541) | 0.099129 / 0.014526 (0.084603) | 0.103463 / 0.176557 (-0.073094) | 0.164969 / 0.737135 (-0.572166) | 0.110000 / 0.296338 (-0.186339) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.431311 / 0.215209 (0.216102) | 4.293562 / 2.077655 (2.215907) | 1.961209 / 1.504120 (0.457089) | 1.733680 / 1.541195 (0.192485) | 1.793171 / 1.468490 (0.324681) | 0.568566 / 4.584777 (-4.016211) | 3.401794 / 3.745712 (-0.343918) | 1.827949 / 5.269862 (-3.441913) | 1.055963 / 4.565676 (-3.509714) | 0.068459 / 0.424275 (-0.355816) | 0.011586 / 0.007607 (0.003979) | 0.533936 / 0.226044 (0.307891) | 5.347637 / 2.268929 (3.078708) | 2.378056 / 55.444624 (-53.066569) | 2.032159 / 6.876477 (-4.844318) | 2.159064 / 2.142072 (0.016991) | 0.674528 / 4.805227 (-4.130699) | 0.136859 / 6.500664 (-6.363805) | 0.066629 / 0.075469 (-0.008840) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.218084 / 1.841788 (-0.623704) | 14.141710 / 8.074308 (6.067402) | 13.588415 / 10.191392 (3.397023) | 0.155104 / 0.680424 (-0.525320) | 0.017160 / 0.534201 (-0.517041) | 0.375558 / 0.579283 (-0.203725) | 0.386293 / 0.434364 (-0.048071) | 0.459476 / 0.540337 (-0.080862) | 0.548561 / 1.386936 (-0.838375) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005878 / 0.011353 (-0.005475) | 0.003750 / 0.011008 (-0.007259) | 0.077720 / 0.038508 (0.039212) | 0.034955 / 0.023109 (0.011846) | 0.357480 / 0.275898 (0.081582) | 0.418210 / 0.323480 (0.094730) | 0.004566 / 0.007986 (-0.003419) | 0.002918 / 0.004328 (-0.001410) | 0.076517 / 0.004250 (0.072266) | 0.050202 / 0.037052 (0.013150) | 0.368166 / 0.258489 (0.109677) | 0.415681 / 0.293841 (0.121840) | 0.029496 / 0.128546 (-0.099050) | 0.008547 / 0.075646 (-0.067099) | 0.083037 / 0.419271 (-0.336234) | 0.045001 / 0.043533 (0.001468) | 0.356503 / 0.255139 (0.101364) | 0.383747 / 0.283200 (0.100547) | 0.025071 / 0.141683 (-0.116612) | 1.541985 / 1.452155 (0.089830) | 1.594710 / 1.492716 (0.101994) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.204491 / 0.018006 (0.186484) | 0.408686 / 0.000490 (0.408196) | 0.002505 / 0.000200 (0.002305) | 0.000082 / 0.000054 (0.000027) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024446 / 0.037411 (-0.012965) | 0.101432 / 0.014526 (0.086906) | 0.108105 / 0.176557 (-0.068452) | 0.161195 / 0.737135 (-0.575940) | 0.112671 / 0.296338 (-0.183667) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.459697 / 0.215209 (0.244488) | 4.570071 / 2.077655 (2.492416) | 2.211547 / 1.504120 (0.707427) | 1.996651 / 1.541195 (0.455457) | 2.015621 / 1.468490 (0.547131) | 0.567423 / 4.584777 (-4.017354) | 3.408027 / 3.745712 (-0.337685) | 2.913824 / 5.269862 (-2.356038) | 1.423223 / 4.565676 (-3.142453) | 0.068740 / 0.424275 (-0.355535) | 0.010997 / 0.007607 (0.003390) | 0.567340 / 0.226044 (0.341296) | 5.666280 / 2.268929 (3.397351) | 2.804934 / 55.444624 (-52.639690) | 2.430761 / 6.876477 (-4.445716) | 2.451820 / 2.142072 (0.309748) | 0.681926 / 4.805227 (-4.123301) | 0.137761 / 6.500664 (-6.362903) | 0.067173 / 0.075469 (-0.008296) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.329853 / 1.841788 (-0.511934) | 14.436232 / 8.074308 (6.361924) | 14.398645 / 10.191392 (4.207253) | 0.147421 / 0.680424 (-0.533002) | 0.016743 / 0.534201 (-0.517458) | 0.364964 / 0.579283 (-0.214319) | 0.387072 / 0.434364 (-0.047292) | 0.423892 / 0.540337 (-0.116445) | 0.521304 / 1.386936 (-0.865632) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#a62b6ce65f718e9ff4189da86d160ae4bb197fc2 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006463 / 0.011353 (-0.004889) | 0.003923 / 0.011008 (-0.007086) | 0.102096 / 0.038508 (0.063588) | 0.040230 / 0.023109 (0.017121) | 0.384688 / 0.275898 (0.108789) | 0.445574 / 0.323480 (0.122094) | 0.003590 / 0.007986 (-0.004395) | 0.004023 / 0.004328 (-0.000306) | 0.080125 / 0.004250 (0.075875) | 0.057406 / 0.037052 (0.020354) | 0.395049 / 0.258489 (0.136560) | 0.438065 / 0.293841 (0.144224) | 0.028963 / 0.128546 (-0.099583) | 0.008693 / 0.075646 (-0.066954) | 0.317158 / 0.419271 (-0.102114) | 0.047930 / 0.043533 (0.004397) | 0.382442 / 0.255139 (0.127303) | 0.410665 / 0.283200 (0.127466) | 0.020127 / 0.141683 (-0.121555) | 1.558554 / 1.452155 (0.106400) | 1.590959 / 1.492716 (0.098242) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.208826 / 0.018006 (0.190820) | 0.432037 / 0.000490 (0.431547) | 0.006509 / 0.000200 (0.006309) | 0.000285 / 0.000054 (0.000230) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023460 / 0.037411 (-0.013951) | 0.099070 / 0.014526 (0.084545) | 0.105771 / 0.176557 (-0.070785) | 0.166683 / 0.737135 (-0.570452) | 0.108755 / 0.296338 (-0.187583) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.424324 / 0.215209 (0.209115) | 4.225696 / 2.077655 (2.148042) | 1.910955 / 1.504120 (0.406835) | 1.704493 / 1.541195 (0.163298) | 1.782784 / 1.468490 (0.314293) | 0.562927 / 4.584777 (-4.021850) | 3.380163 / 3.745712 (-0.365550) | 1.779641 / 5.269862 (-3.490221) | 1.029134 / 4.565676 (-3.536543) | 0.068325 / 0.424275 (-0.355950) | 0.011528 / 0.007607 (0.003921) | 0.530141 / 0.226044 (0.304097) | 5.323443 / 2.268929 (3.054514) | 2.346956 / 55.444624 (-53.097668) | 2.013335 / 6.876477 (-4.863142) | 2.118531 / 2.142072 (-0.023541) | 0.675206 / 4.805227 (-4.130021) | 0.135473 / 6.500664 (-6.365191) | 0.064804 / 0.075469 (-0.010665) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.240179 / 1.841788 (-0.601608) | 14.692449 / 8.074308 (6.618141) | 13.672223 / 10.191392 (3.480831) | 0.147748 / 0.680424 (-0.532676) | 0.017119 / 0.534201 (-0.517082) | 0.369481 / 0.579283 (-0.209802) | 0.390133 / 0.434364 (-0.044231) | 0.458768 / 0.540337 (-0.081569) | 0.548989 / 1.386936 (-0.837947) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006319 / 0.011353 (-0.005034) | 0.003975 / 0.011008 (-0.007033) | 0.077886 / 0.038508 (0.039378) | 0.038322 / 0.023109 (0.015213) | 0.379851 / 0.275898 (0.103953) | 0.456749 / 0.323480 (0.133269) | 0.005320 / 0.007986 (-0.002665) | 0.003135 / 0.004328 (-0.001194) | 0.078272 / 0.004250 (0.074022) | 0.059919 / 0.037052 (0.022866) | 0.430062 / 0.258489 (0.171573) | 0.477432 / 0.293841 (0.183591) | 0.029713 / 0.128546 (-0.098833) | 0.008704 / 0.075646 (-0.066942) | 0.082488 / 0.419271 (-0.336784) | 0.044667 / 0.043533 (0.001134) | 0.354910 / 0.255139 (0.099771) | 0.434637 / 0.283200 (0.151438) | 0.026402 / 0.141683 (-0.115281) | 1.528825 / 1.452155 (0.076671) | 1.548209 / 1.492716 (0.055493) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.237988 / 0.018006 (0.219982) | 0.420402 / 0.000490 (0.419913) | 0.003098 / 0.000200 (0.002898) | 0.000077 / 0.000054 (0.000023) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026253 / 0.037411 (-0.011159) | 0.106137 / 0.014526 (0.091611) | 0.110273 / 0.176557 (-0.066284) | 0.165316 / 0.737135 (-0.571819) | 0.115720 / 0.296338 (-0.180619) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.454244 / 0.215209 (0.239035) | 4.526018 / 2.077655 (2.448364) | 2.395985 / 1.504120 (0.891865) | 2.234822 / 1.541195 (0.693627) | 2.370235 / 1.468490 (0.901745) | 0.567607 / 4.584777 (-4.017169) | 3.650156 / 3.745712 (-0.095556) | 3.360094 / 5.269862 (-1.909768) | 1.415252 / 4.565676 (-3.150424) | 0.068012 / 0.424275 (-0.356263) | 0.011135 / 0.007607 (0.003528) | 0.561967 / 0.226044 (0.335923) | 5.621819 / 2.268929 (3.352890) | 2.676912 / 55.444624 (-52.767712) | 2.338306 / 6.876477 (-4.538171) | 2.430888 / 2.142072 (0.288815) | 0.684576 / 4.805227 (-4.120651) | 0.138923 / 6.500664 (-6.361741) | 0.069933 / 0.075469 (-0.005536) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.313383 / 1.841788 (-0.528405) | 15.125088 / 8.074308 (7.050780) | 14.801501 / 10.191392 (4.610109) | 0.134235 / 0.680424 (-0.546189) | 0.017058 / 0.534201 (-0.517143) | 0.365166 / 0.579283 (-0.214117) | 0.395415 / 0.434364 (-0.038949) | 0.419355 / 0.540337 (-0.120983) | 0.513411 / 1.386936 (-0.873525) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#8b9649b3cfb49342e44873ce7e29e0c75eaf3efa \"CML watermark\")\n"
] | 2023-06-30T13:15:50 | 2023-06-30T14:18:32 | 2023-06-30T14:11:24 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6001",
"html_url": "https://github.com/huggingface/datasets/pull/6001",
"diff_url": "https://github.com/huggingface/datasets/pull/6001.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6001.patch",
"merged_at": "2023-06-30T14:11:24"
} | Fix #5998 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6001/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6001/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5991 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5991/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5991/comments | https://api.github.com/repos/huggingface/datasets/issues/5991/events | https://github.com/huggingface/datasets/issues/5991 | 1,774,456,518 | I_kwDODunzps5pxA7G | 5,991 | `map` with any joblib backend | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] | open | false | null | [] | null | [] | 2023-06-26T10:33:42 | 2023-06-26T10:33:42 | null | MEMBER | null | null | null | We recently enabled the (experimental) parallel backend switch for data download and extraction but not for `map` yet.
Right now we're using our `iflatmap_unordered` implementation for multiprocessing that uses a shared Queue to gather progress updates from the subprocesses and show a progress bar in the main process.
If a Queue implementation that would work on any joblib backend by leveraging the filesystem that is shared among workers, we can have `iflatmap_unordered` for joblib and therefore a `map` with any joblib backend with a progress bar !
Note that the Queue doesn't need to be that optimized though since we can choose a small frequency for progress updates (like 1 update per second). | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5991/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5991/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5963 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5963/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5963/comments | https://api.github.com/repos/huggingface/datasets/issues/5963/events | https://github.com/huggingface/datasets/issues/5963 | 1,762,774,457 | I_kwDODunzps5pEc25 | 5,963 | Got an error _pickle.PicklingError use Dataset.from_spark. | {
"login": "yanzia12138",
"id": 112800614,
"node_id": "U_kgDOBrkzZg",
"avatar_url": "https://avatars.githubusercontent.com/u/112800614?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/yanzia12138",
"html_url": "https://github.com/yanzia12138",
"followers_url": "https://api.github.com/users/yanzia12138/followers",
"following_url": "https://api.github.com/users/yanzia12138/following{/other_user}",
"gists_url": "https://api.github.com/users/yanzia12138/gists{/gist_id}",
"starred_url": "https://api.github.com/users/yanzia12138/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/yanzia12138/subscriptions",
"organizations_url": "https://api.github.com/users/yanzia12138/orgs",
"repos_url": "https://api.github.com/users/yanzia12138/repos",
"events_url": "https://api.github.com/users/yanzia12138/events{/privacy}",
"received_events_url": "https://api.github.com/users/yanzia12138/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"i got error using method from_spark when using multi-node Spark cluster. seems could only use \"from_spark\" in local?",
"@lhoestq ",
"cc @maddiedawson it looks like there an issue with `_validate_cache_dir` ?\r\n\r\nIt looks like the function passed to mapPartitions has a reference to the Spark dataset builder, and therefore contains the SparkContext itself.\r\n\r\nI think it can be fixed by defining `create_cache_and_write_probe` outside the Spark dataset builder, and pass a `partial(create_cache_and_write_probe, cache_dir=self._cache_dir)` to `mapPartitions`",
"Just saw this; thanks for flagging! Your proposed solution sounds good. I can prepare a PR",
"@maddiedawson can you show me the demo ,so i can test in local .before your PR"
] | 2023-06-19T05:30:35 | 2023-07-24T11:55:46 | 2023-07-24T11:55:46 | NONE | null | null | null | python 3.9.2
Got an error _pickle.PicklingError use Dataset.from_spark.
Did the dataset import load data from spark dataframe using multi-node Spark cluster
df = spark.read.parquet(args.input_data).repartition(50)
ds = Dataset.from_spark(df, keep_in_memory=True,
cache_dir="/pnc-data/data/nuplan/t5_spark/cache_data")
ds.save_to_disk(args.output_data)
Error :
_pickle.PicklingError: Could not serialize object: RuntimeError: It appears that you are attempting to reference SparkContext from a broadcast variable, action, or transforma
tion. SparkContext can only be used on the driver, not in code that it run on workers. For more information, see SPARK-5063.
23/06/16 21:17:20 WARN ExecutorPodsWatchSnapshotSource: Kubernetes client has been closed (this is expected if the application is shutting down.)
_Originally posted by @yanzia12138 in https://github.com/huggingface/datasets/issues/5701#issuecomment-1594674306_
W
Traceback (most recent call last):
File "/home/work/main.py", line 100, in <module>
run(args)
File "/home/work/main.py", line 80, in run
ds = Dataset.from_spark(df1, keep_in_memory=True,
File "/home/work/.local/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 1281, in from_spark
return SparkDatasetReader(
File "/home/work/.local/lib/python3.9/site-packages/datasets/io/spark.py", line 53, in read
self.builder.download_and_prepare(
File "/home/work/.local/lib/python3.9/site-packages/datasets/builder.py", line 909, in download_and_prepare
self._download_and_prepare(
File "/home/work/.local/lib/python3.9/site-packages/datasets/builder.py", line 1004, in _download_and_prepare
self._prepare_split(split_generator, **prepare_split_kwargs)
File "/home/work/.local/lib/python3.9/site-packages/datasets/packaged_modules/spark/spark.py", line 254, in _prepare_split
self._validate_cache_dir()
File "/home/work/.local/lib/python3.9/site-packages/datasets/packaged_modules/spark/spark.py", line 122, in _validate_cache_dir
self._spark.sparkContext.parallelize(range(1), 1).mapPartitions(create_cache_and_write_probe).collect()
File "/home/work/.local/lib/python3.9/site-packages/pyspark/rdd.py", line 950, in collect
sock_info = self.ctx._jvm.PythonRDD.collectAndServe(self._jrdd.rdd())
File "/home/work/.local/lib/python3.9/site-packages/pyspark/rdd.py", line 2951, in _jrdd
wrapped_func = _wrap_function(self.ctx, self.func, self._prev_jrdd_deserializer,
File "/home/work/.local/lib/python3.9/site-packages/pyspark/rdd.py", line 2830, in _wrap_function
pickled_command, broadcast_vars, env, includes = _prepare_for_python_RDD(sc, command)
File "/home/work/.local/lib/python3.9/site-packages/pyspark/rdd.py", line 2816, in _prepare_for_python_RDD
pickled_command = ser.dumps(command)
File "/home/work/.local/lib/python3.9/site-packages/pyspark/serializers.py", line 447, in dumps
raise pickle.PicklingError(msg)
_pickle.PicklingError: Could not serialize object: RuntimeError: It appears that you are attempting to reference SparkContext from a broadcast variable, action, or transformation. S
parkContext can only be used on the driver, not in code that it run on workers. For more information, see SPARK-5063.
23/06/19 13:51:21 WARN ExecutorPodsWatchSnapshotSource: Kubernetes client has been closed (this is expected if the application is shutting down.)
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5963/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5963/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/6060 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6060/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6060/comments | https://api.github.com/repos/huggingface/datasets/issues/6060/events | https://github.com/huggingface/datasets/issues/6060 | 1,816,614,120 | I_kwDODunzps5sR1To | 6,060 | Dataset.map() execute twice when in PyTorch DDP mode | {
"login": "wanghaoyucn",
"id": 39429965,
"node_id": "MDQ6VXNlcjM5NDI5OTY1",
"avatar_url": "https://avatars.githubusercontent.com/u/39429965?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/wanghaoyucn",
"html_url": "https://github.com/wanghaoyucn",
"followers_url": "https://api.github.com/users/wanghaoyucn/followers",
"following_url": "https://api.github.com/users/wanghaoyucn/following{/other_user}",
"gists_url": "https://api.github.com/users/wanghaoyucn/gists{/gist_id}",
"starred_url": "https://api.github.com/users/wanghaoyucn/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/wanghaoyucn/subscriptions",
"organizations_url": "https://api.github.com/users/wanghaoyucn/orgs",
"repos_url": "https://api.github.com/users/wanghaoyucn/repos",
"events_url": "https://api.github.com/users/wanghaoyucn/events{/privacy}",
"received_events_url": "https://api.github.com/users/wanghaoyucn/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"Sorry for asking a duplicate question about `num_proc`, I searched the forum and find the solution.\r\n\r\nBut I still can't make the trick with `torch.distributed.barrier()` to only map at the main process work. The [post on forum]( https://discuss.huggingface.co/t/slow-processing-with-map-when-using-deepspeed-or-fairscale/7229/7) didn't help.",
"If it does the `map` twice then it means the hash of your map function is not some same between your two processes.\r\n\r\nCan you make sure your map functions have the same hash in different processes ?\r\n\r\n```python\r\nfrom datasets.fingerprint import Hasher\r\n\r\nprint(Hasher.hash(lambda x: cut_reorder_keys(x, num_stations_list=args.num_stations_list, is_pad=True, is_train=True)))\r\nprint(Hasher.hash(lambda x: random_shift(x, shift_range=(-160, 0), feature_scale=16)))\r\n```\r\n\r\nYou can also set the fingerprint used to reload the resulting dataset by passing `new_finegrprint=` in `map`, see https://huggingface.co./docs/datasets/v2.13.1/en/about_cache#the-cache. This will force the different processes to use the same fingerprint used to locate the resulting dataset in the cache.",
"Thanks for help! I find the fingerprint between processes don't have same hash:\r\n```\r\nRank 0: Gpu 0 cut_reorder_keys fingerprint c7f47f40e9a67657\r\nRank 0: Gpu 0 random_shift fingerprint 240a0ce79831e7d4\r\n\r\nRank 1: Gpu 1 cut_reorder_keys fingerprint 20edd3d9cf284001\r\nRank 1: Gpu 1 random_shift fingerprint 819f7c1c18e7733f\r\n```\r\nBut my functions only process the example one by one and don't need rank or other arguments. After all it can work in the test for dataset and dataloader.\r\nI'll try to set `new_fingerprint` to see if it works and figure out the reason of different hash."
] | 2023-07-22T05:06:43 | 2023-07-24T19:29:55 | null | NONE | null | null | null | ### Describe the bug
I use `torchrun --standalone --nproc_per_node=2 train.py` to start training. And write the code following the [docs](https://huggingface.co./docs/datasets/process#distributed-usage). The trick about using `torch.distributed.barrier()` to only execute map at the main process doesn't always work. When I am training model, it will map twice. When I am running a test for dataset and dataloader (just print the batches), it can work. Their code about loading dataset are same.
And on another server with 30 CPU cores, I use 2 GPUs and it can't work neither.
I have tried to use `rank` and `local_rank` to check, they all didn't make sense.
### Steps to reproduce the bug
use `torchrun --standalone --nproc_per_node=2 train.py` or `torchrun --standalone train.py` to run
This is my code:
```python
if args.distributed and world_size > 1:
if args.local_rank > 0:
print(f"Rank {args.rank}: Gpu {args.gpu} waiting for main process to perform the mapping", force=True)
torch.distributed.barrier()
print("Mapping dataset")
dataset = dataset.map(lambda x: cut_reorder_keys(x, num_stations_list=args.num_stations_list, is_pad=True, is_train=True), num_proc=8, desc="cut_reorder_keys")
dataset = dataset.map(lambda x: random_shift(x, shift_range=(-160, 0), feature_scale=16), num_proc=8, desc="random_shift")
dataset_test = dataset_test.map(lambda x: cut_reorder_keys(x, num_stations_list=args.num_stations_list, is_pad=True, is_train=False), num_proc=8, desc="cut_reorder_keys")
if args.local_rank == 0:
print("Mapping finished, loading results from main process")
torch.distributed.barrier()
```
### Expected behavior
Only the main process will execute `map`, while the sub process will load cache from disk.
### Environment info
server with 64 CPU cores (AMD Ryzen Threadripper PRO 5995WX 64-Cores) and 2 RTX 4090
- `python==3.9.16`
- `datasets==2.13.1`
- `torch==2.0.1+cu117`
- `22.04.1-Ubuntu`
server with 30 CPU cores (Intel(R) Xeon(R) Platinum 8375C CPU @ 2.90GHz) and 2 RTX 4090
- `python==3.9.0`
- `datasets==2.13.1`
- `torch==2.0.1+cu117`
- `Ubuntu 20.04` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6060/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6060/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5912 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5912/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5912/comments | https://api.github.com/repos/huggingface/datasets/issues/5912/events | https://github.com/huggingface/datasets/issues/5912 | 1,730,299,852 | I_kwDODunzps5nIkfM | 5,912 | Missing elements in `map` a batched dataset | {
"login": "sachinruk",
"id": 1410927,
"node_id": "MDQ6VXNlcjE0MTA5Mjc=",
"avatar_url": "https://avatars.githubusercontent.com/u/1410927?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinruk",
"html_url": "https://github.com/sachinruk",
"followers_url": "https://api.github.com/users/sachinruk/followers",
"following_url": "https://api.github.com/users/sachinruk/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinruk/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinruk/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinruk/subscriptions",
"organizations_url": "https://api.github.com/users/sachinruk/orgs",
"repos_url": "https://api.github.com/users/sachinruk/repos",
"events_url": "https://api.github.com/users/sachinruk/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinruk/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"Hi ! in your code batching is **only used within** `map`, to process examples in batch. The dataset itself however is not batched and returns elements one by one.\r\n\r\nTo iterate on batches, you can do\r\n```python\r\nfor batch in dataset.iter(batch_size=8):\r\n ...\r\n```"
] | 2023-05-29T08:09:19 | 2023-05-30T17:35:33 | null | NONE | null | null | null | ### Describe the bug
As outlined [here](https://discuss.huggingface.co/t/length-error-using-map-with-datasets/40969/3?u=sachin), the following collate function drops 5 out of possible 6 elements in the batch (it is 6 because out of the eight, two are bad links in laion). A reproducible [kaggle kernel ](https://www.kaggle.com/sachin/laion-hf-dataset/edit) can be found here.
The weirdest part is when inspecting the sizes of the tensors as shown below, both `tokenized_captions["input_ids"]` and `image_features` show the correct shapes. Simply the output only has one element (with the batch dimension squeezed out).
```python
class CollateFn:
def get_image(self, url):
try:
response = requests.get(url)
return Image.open(io.BytesIO(response.content)).convert("RGB")
except PIL.UnidentifiedImageError:
logger.info(f"Reading error: Could not transform f{url}")
return None
except requests.exceptions.ConnectionError:
logger.info(f"Connection error: Could not transform f{url}")
return None
def __call__(self, batch):
images = [self.get_image(url) for url in batch["url"]]
captions = [caption for caption, image in zip(batch["caption"], images) if image is not None]
images = [image for image in images if image is not None]
tokenized_captions = tokenizer(
captions,
padding="max_length",
truncation=True,
max_length=tokenizer.model_max_length,
return_tensors="pt",
)
image_features = torch.stack([torch.Tensor(feature_extractor(image)["pixel_values"][0]) for image in images])
# import pdb; pdb.set_trace()
return {"input_ids": tokenized_captions["input_ids"], "images": image_features}
collate_fn = CollateFn()
laion_ds = datasets.load_dataset("laion/laion400m", split="train", streaming=True)
laion_ds_batched = laion_ds.map(collate_fn, batched=True, batch_size=8, remove_columns=next(iter(laion_ds)).keys())
```
### Steps to reproduce the bug
A reproducible [kaggle kernel ](https://www.kaggle.com/sachin/laion-hf-dataset/edit) can be found here.
### Expected behavior
Would expect `next(iter(laion_ds_batched))` to produce two tensors of shape `(batch_size, 77)` and `batch_size, image_shape`.
### Environment info
datasets==2.12.0
python==3.10 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5912/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5912/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/6073 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6073/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6073/comments | https://api.github.com/repos/huggingface/datasets/issues/6073/events | https://github.com/huggingface/datasets/issues/6073 | 1,822,167,804 | I_kwDODunzps5snBL8 | 6,073 | version2.3.2 load_dataset()data_files can't include .xxxx in path | {
"login": "BUAAChuanWang",
"id": 45893496,
"node_id": "MDQ6VXNlcjQ1ODkzNDk2",
"avatar_url": "https://avatars.githubusercontent.com/u/45893496?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/BUAAChuanWang",
"html_url": "https://github.com/BUAAChuanWang",
"followers_url": "https://api.github.com/users/BUAAChuanWang/followers",
"following_url": "https://api.github.com/users/BUAAChuanWang/following{/other_user}",
"gists_url": "https://api.github.com/users/BUAAChuanWang/gists{/gist_id}",
"starred_url": "https://api.github.com/users/BUAAChuanWang/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/BUAAChuanWang/subscriptions",
"organizations_url": "https://api.github.com/users/BUAAChuanWang/orgs",
"repos_url": "https://api.github.com/users/BUAAChuanWang/repos",
"events_url": "https://api.github.com/users/BUAAChuanWang/events{/privacy}",
"received_events_url": "https://api.github.com/users/BUAAChuanWang/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"Version 2.3.2 is over one year old, so please use the latest release (2.14.0) to get the expected behavior. Version 2.3.2 does not contain some fixes we made to fix resolving hidden files/directories (starting with a dot)."
] | 2023-07-26T11:09:31 | 2023-07-26T12:34:45 | null | NONE | null | null | null | ### Describe the bug
First, I cd workdir.
Then, I just use load_dataset("json", data_file={"train":"/a/b/c/.d/train/train.json", "test":"/a/b/c/.d/train/test.json"})
that couldn't work and
<FileNotFoundError: Unable to find
'/a/b/c/.d/train/train.jsonl' at
/a/b/c/.d/>
And I debug, it is fine in version2.1.2
So there maybe a bug in path join.
Here is the whole bug report:
/x/datasets/loa │
│ d.py:1656 in load_dataset │
│ │
│ 1653 │ ignore_verifications = ignore_verifications or save_infos │
│ 1654 │ │
│ 1655 │ # Create a dataset builder │
│ ❱ 1656 │ builder_instance = load_dataset_builder( │
│ 1657 │ │ path=path, │
│ 1658 │ │ name=name, │
│ 1659 │ │ data_dir=data_dir, │
│ │
│ x/datasets/loa │
│ d.py:1439 in load_dataset_builder │
│ │
│ 1436 │ if use_auth_token is not None: │
│ 1437 │ │ download_config = download_config.copy() if download_config e │
│ 1438 │ │ download_config.use_auth_token = use_auth_token │
│ ❱ 1439 │ dataset_module = dataset_module_factory( │
│ 1440 │ │ path, │
│ 1441 │ │ revision=revision, │
│ 1442 │ │ download_config=download_config, │
│ │
│ x/datasets/loa │
│ d.py:1097 in dataset_module_factory │
│ │
│ 1094 │ │
│ 1095 │ # Try packaged │
│ 1096 │ if path in _PACKAGED_DATASETS_MODULES: │
│ ❱ 1097 │ │ return PackagedDatasetModuleFactory( │
│ 1098 │ │ │ path, │
│ 1099 │ │ │ data_dir=data_dir, │
│ 1100 │ │ │ data_files=data_files, │
│ │
│x/datasets/loa │
│ d.py:743 in get_module │
│ │
│ 740 │ │ │ if self.data_dir is not None │
│ 741 │ │ │ else get_patterns_locally(str(Path().resolve())) │
│ 742 │ │ ) │
│ ❱ 743 │ │ data_files = DataFilesDict.from_local_or_remote( │
│ 744 │ │ │ patterns, │
│ 745 │ │ │ use_auth_token=self.download_config.use_auth_token, │
│ 746 │ │ │ base_path=str(Path(self.data_dir).resolve()) if self.data │
│ │
│ x/datasets/dat │
│ a_files.py:590 in from_local_or_remote │
│ │
│ 587 │ │ out = cls() │
│ 588 │ │ for key, patterns_for_key in patterns.items(): │
│ 589 │ │ │ out[key] = ( │
│ ❱ 590 │ │ │ │ DataFilesList.from_local_or_remote( │
│ 591 │ │ │ │ │ patterns_for_key, │
│ 592 │ │ │ │ │ base_path=base_path, │
│ 593 │ │ │ │ │ allowed_extensions=allowed_extensions, │
│ │
│ /x/datasets/dat │
│ a_files.py:558 in from_local_or_remote │
│ │
│ 555 │ │ use_auth_token: Optional[Union[bool, str]] = None, │
│ 556 │ ) -> "DataFilesList": │
│ 557 │ │ base_path = base_path if base_path is not None else str(Path() │
│ ❱ 558 │ │ data_files = resolve_patterns_locally_or_by_urls(base_path, pa │
│ 559 │ │ origin_metadata = _get_origin_metadata_locally_or_by_urls(data │
│ 560 │ │ return cls(data_files, origin_metadata) │
│ 561 │
│ │
│ /x/datasets/dat │
│ a_files.py:195 in resolve_patterns_locally_or_by_urls │
│ │
│ 192 │ │ if is_remote_url(pattern): │
│ 193 │ │ │ data_files.append(Url(pattern)) │
│ 194 │ │ else: │
│ ❱ 195 │ │ │ for path in _resolve_single_pattern_locally(base_path, pat │
│ 196 │ │ │ │ data_files.append(path) │
│ 197 │ │
│ 198 │ if not data_files: │
│ │
│ /x/datasets/dat │
│ a_files.py:145 in _resolve_single_pattern_locally │
│ │
│ 142 │ │ error_msg = f"Unable to find '{pattern}' at {Path(base_path).r │
│ 143 │ │ if allowed_extensions is not None: │
│ 144 │ │ │ error_msg += f" with any supported extension {list(allowed │
│ ❱ 145 │ │ raise FileNotFoundError(error_msg) │
│ 146 │ return sorted(out) │
│ 147
### Steps to reproduce the bug
1. Version=2.3.2
2. In shell, cd workdir.(cd /a/b/c/.d/)
3. load_dataset("json", data_file={"train":"/a/b/c/.d/train/train.json", "test":"/a/b/c/.d/train/test.json"})
### Expected behavior
fix it please~
### Environment info
2.3.2 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6073/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6073/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5932 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5932/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5932/comments | https://api.github.com/repos/huggingface/datasets/issues/5932/events | https://github.com/huggingface/datasets/pull/5932 | 1,746,249,161 | PR_kwDODunzps5Sbrzo | 5,932 | [doc build] Use secrets | {
"login": "mishig25",
"id": 11827707,
"node_id": "MDQ6VXNlcjExODI3NzA3",
"avatar_url": "https://avatars.githubusercontent.com/u/11827707?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mishig25",
"html_url": "https://github.com/mishig25",
"followers_url": "https://api.github.com/users/mishig25/followers",
"following_url": "https://api.github.com/users/mishig25/following{/other_user}",
"gists_url": "https://api.github.com/users/mishig25/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mishig25/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mishig25/subscriptions",
"organizations_url": "https://api.github.com/users/mishig25/orgs",
"repos_url": "https://api.github.com/users/mishig25/repos",
"events_url": "https://api.github.com/users/mishig25/events{/privacy}",
"received_events_url": "https://api.github.com/users/mishig25/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008499 / 0.011353 (-0.002854) | 0.006155 / 0.011008 (-0.004853) | 0.124032 / 0.038508 (0.085524) | 0.037337 / 0.023109 (0.014228) | 0.389274 / 0.275898 (0.113376) | 0.427736 / 0.323480 (0.104257) | 0.006929 / 0.007986 (-0.001057) | 0.005017 / 0.004328 (0.000689) | 0.096356 / 0.004250 (0.092105) | 0.055694 / 0.037052 (0.018642) | 0.391417 / 0.258489 (0.132928) | 0.448098 / 0.293841 (0.154257) | 0.042442 / 0.128546 (-0.086105) | 0.013456 / 0.075646 (-0.062190) | 0.423502 / 0.419271 (0.004230) | 0.062919 / 0.043533 (0.019386) | 0.384317 / 0.255139 (0.129178) | 0.410851 / 0.283200 (0.127652) | 0.112807 / 0.141683 (-0.028875) | 1.746050 / 1.452155 (0.293895) | 1.977974 / 1.492716 (0.485257) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.306382 / 0.018006 (0.288375) | 0.620310 / 0.000490 (0.619820) | 0.009309 / 0.000200 (0.009109) | 0.000106 / 0.000054 (0.000052) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026900 / 0.037411 (-0.010511) | 0.140125 / 0.014526 (0.125599) | 0.136295 / 0.176557 (-0.040261) | 0.207721 / 0.737135 (-0.529414) | 0.146328 / 0.296338 (-0.150011) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.616712 / 0.215209 (0.401503) | 6.237820 / 2.077655 (4.160166) | 2.503809 / 1.504120 (0.999689) | 2.129739 / 1.541195 (0.588544) | 2.160768 / 1.468490 (0.692277) | 0.971273 / 4.584777 (-3.613504) | 5.687161 / 3.745712 (1.941449) | 2.738148 / 5.269862 (-2.531713) | 1.692695 / 4.565676 (-2.872981) | 0.113701 / 0.424275 (-0.310574) | 0.014809 / 0.007607 (0.007202) | 0.774795 / 0.226044 (0.548750) | 7.660012 / 2.268929 (5.391083) | 3.253036 / 55.444624 (-52.191588) | 2.607498 / 6.876477 (-4.268979) | 2.681678 / 2.142072 (0.539606) | 1.095275 / 4.805227 (-3.709952) | 0.239078 / 6.500664 (-6.261586) | 0.081034 / 0.075469 (0.005565) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.574547 / 1.841788 (-0.267240) | 18.323566 / 8.074308 (10.249258) | 19.274482 / 10.191392 (9.083090) | 0.210275 / 0.680424 (-0.470149) | 0.031843 / 0.534201 (-0.502358) | 0.514843 / 0.579283 (-0.064440) | 0.633782 / 0.434364 (0.199418) | 0.588569 / 0.540337 (0.048232) | 0.721401 / 1.386936 (-0.665535) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008866 / 0.011353 (-0.002487) | 0.006460 / 0.011008 (-0.004548) | 0.121337 / 0.038508 (0.082829) | 0.033896 / 0.023109 (0.010786) | 0.455702 / 0.275898 (0.179804) | 0.509685 / 0.323480 (0.186205) | 0.007650 / 0.007986 (-0.000336) | 0.005578 / 0.004328 (0.001250) | 0.098505 / 0.004250 (0.094255) | 0.056122 / 0.037052 (0.019069) | 0.478483 / 0.258489 (0.219994) | 0.560008 / 0.293841 (0.266167) | 0.044926 / 0.128546 (-0.083620) | 0.014562 / 0.075646 (-0.061085) | 0.115027 / 0.419271 (-0.304244) | 0.066494 / 0.043533 (0.022961) | 0.463434 / 0.255139 (0.208296) | 0.513856 / 0.283200 (0.230656) | 0.126436 / 0.141683 (-0.015247) | 1.874729 / 1.452155 (0.422575) | 1.925080 / 1.492716 (0.432364) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.012672 / 0.018006 (-0.005334) | 0.615797 / 0.000490 (0.615307) | 0.001606 / 0.000200 (0.001406) | 0.000118 / 0.000054 (0.000064) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031104 / 0.037411 (-0.006307) | 0.130107 / 0.014526 (0.115581) | 0.140587 / 0.176557 (-0.035970) | 0.205081 / 0.737135 (-0.532054) | 0.144068 / 0.296338 (-0.152270) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.646549 / 0.215209 (0.431340) | 6.403962 / 2.077655 (4.326307) | 2.812594 / 1.504120 (1.308474) | 2.478480 / 1.541195 (0.937285) | 2.552385 / 1.468490 (1.083895) | 0.991987 / 4.584777 (-3.592790) | 5.777917 / 3.745712 (2.032205) | 5.697830 / 5.269862 (0.427969) | 2.370583 / 4.565676 (-2.195094) | 0.109905 / 0.424275 (-0.314370) | 0.013801 / 0.007607 (0.006193) | 0.799932 / 0.226044 (0.573888) | 8.155672 / 2.268929 (5.886743) | 3.711662 / 55.444624 (-51.732963) | 3.042164 / 6.876477 (-3.834312) | 3.073549 / 2.142072 (0.931477) | 1.137515 / 4.805227 (-3.667712) | 0.231266 / 6.500664 (-6.269398) | 0.080893 / 0.075469 (0.005424) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.669210 / 1.841788 (-0.172577) | 18.747144 / 8.074308 (10.672836) | 21.084589 / 10.191392 (10.893197) | 0.241379 / 0.680424 (-0.439045) | 0.029473 / 0.534201 (-0.504728) | 0.524605 / 0.579283 (-0.054678) | 0.622852 / 0.434364 (0.188488) | 0.604941 / 0.540337 (0.064604) | 0.715978 / 1.386936 (-0.670958) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#142484a60b1330359d7713e906fc9e5e30aa9f64 \"CML watermark\")\n",
"Cool ! what about `.github/workflows/build_pr_documentation.yml` and `.github/workflows/delete_doc_comment.yml` ?",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005973 / 0.011353 (-0.005380) | 0.004389 / 0.011008 (-0.006620) | 0.096076 / 0.038508 (0.057568) | 0.031569 / 0.023109 (0.008460) | 0.328300 / 0.275898 (0.052402) | 0.359356 / 0.323480 (0.035876) | 0.005378 / 0.007986 (-0.002607) | 0.003703 / 0.004328 (-0.000625) | 0.075251 / 0.004250 (0.071000) | 0.042340 / 0.037052 (0.005287) | 0.346103 / 0.258489 (0.087614) | 0.379896 / 0.293841 (0.086055) | 0.027493 / 0.128546 (-0.101053) | 0.009033 / 0.075646 (-0.066613) | 0.327829 / 0.419271 (-0.091442) | 0.064074 / 0.043533 (0.020541) | 0.337703 / 0.255139 (0.082564) | 0.355335 / 0.283200 (0.072136) | 0.101179 / 0.141683 (-0.040504) | 1.471738 / 1.452155 (0.019584) | 1.539031 / 1.492716 (0.046315) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.194097 / 0.018006 (0.176091) | 0.434190 / 0.000490 (0.433701) | 0.005730 / 0.000200 (0.005530) | 0.000088 / 0.000054 (0.000033) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025634 / 0.037411 (-0.011778) | 0.105080 / 0.014526 (0.090555) | 0.116508 / 0.176557 (-0.060049) | 0.173867 / 0.737135 (-0.563269) | 0.117749 / 0.296338 (-0.178590) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.401566 / 0.215209 (0.186357) | 4.003558 / 2.077655 (1.925903) | 1.802756 / 1.504120 (0.298636) | 1.604222 / 1.541195 (0.063027) | 1.656617 / 1.468490 (0.188127) | 0.523385 / 4.584777 (-4.061392) | 3.744292 / 3.745712 (-0.001420) | 1.794295 / 5.269862 (-3.475567) | 1.044690 / 4.565676 (-3.520987) | 0.064992 / 0.424275 (-0.359284) | 0.011542 / 0.007607 (0.003935) | 0.507830 / 0.226044 (0.281785) | 5.061574 / 2.268929 (2.792645) | 2.252896 / 55.444624 (-53.191729) | 1.912551 / 6.876477 (-4.963926) | 2.073510 / 2.142072 (-0.068562) | 0.642148 / 4.805227 (-4.163079) | 0.140151 / 6.500664 (-6.360513) | 0.062623 / 0.075469 (-0.012846) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.180367 / 1.841788 (-0.661421) | 14.263475 / 8.074308 (6.189167) | 12.917251 / 10.191392 (2.725859) | 0.143815 / 0.680424 (-0.536608) | 0.017286 / 0.534201 (-0.516915) | 0.388411 / 0.579283 (-0.190872) | 0.430512 / 0.434364 (-0.003851) | 0.466595 / 0.540337 (-0.073742) | 0.564545 / 1.386936 (-0.822391) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006059 / 0.011353 (-0.005294) | 0.004419 / 0.011008 (-0.006590) | 0.074206 / 0.038508 (0.035697) | 0.031180 / 0.023109 (0.008071) | 0.380031 / 0.275898 (0.104133) | 0.410373 / 0.323480 (0.086893) | 0.005397 / 0.007986 (-0.002589) | 0.003952 / 0.004328 (-0.000376) | 0.074426 / 0.004250 (0.070176) | 0.046256 / 0.037052 (0.009203) | 0.385543 / 0.258489 (0.127054) | 0.430724 / 0.293841 (0.136883) | 0.028052 / 0.128546 (-0.100494) | 0.008810 / 0.075646 (-0.066836) | 0.080749 / 0.419271 (-0.338522) | 0.046746 / 0.043533 (0.003214) | 0.380325 / 0.255139 (0.125186) | 0.398901 / 0.283200 (0.115701) | 0.099607 / 0.141683 (-0.042076) | 1.433343 / 1.452155 (-0.018812) | 1.520447 / 1.492716 (0.027730) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.202232 / 0.018006 (0.184225) | 0.431342 / 0.000490 (0.430852) | 0.001020 / 0.000200 (0.000820) | 0.000089 / 0.000054 (0.000035) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028762 / 0.037411 (-0.008649) | 0.111777 / 0.014526 (0.097251) | 0.119283 / 0.176557 (-0.057273) | 0.168151 / 0.737135 (-0.568985) | 0.126093 / 0.296338 (-0.170245) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.442689 / 0.215209 (0.227480) | 4.369202 / 2.077655 (2.291547) | 2.167703 / 1.504120 (0.663583) | 1.960580 / 1.541195 (0.419385) | 2.001459 / 1.468490 (0.532969) | 0.527169 / 4.584777 (-4.057608) | 3.738987 / 3.745712 (-0.006726) | 1.819002 / 5.269862 (-3.450860) | 1.082786 / 4.565676 (-3.482891) | 0.066209 / 0.424275 (-0.358066) | 0.011549 / 0.007607 (0.003942) | 0.545959 / 0.226044 (0.319915) | 5.466655 / 2.268929 (3.197727) | 2.671448 / 55.444624 (-52.773176) | 2.340968 / 6.876477 (-4.535509) | 2.358805 / 2.142072 (0.216733) | 0.649456 / 4.805227 (-4.155771) | 0.142009 / 6.500664 (-6.358655) | 0.064199 / 0.075469 (-0.011270) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.259819 / 1.841788 (-0.581969) | 14.456988 / 8.074308 (6.382680) | 14.478982 / 10.191392 (4.287590) | 0.163156 / 0.680424 (-0.517268) | 0.017090 / 0.534201 (-0.517111) | 0.391339 / 0.579283 (-0.187944) | 0.422021 / 0.434364 (-0.012343) | 0.465340 / 0.540337 (-0.074997) | 0.564517 / 1.386936 (-0.822419) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#97358c88f996a65f49923ec215358044e4146a95 \"CML watermark\")\n",
"> .github/workflows/delete_doc_comment.yml \r\n\r\nis already updated https://github.com/huggingface/datasets/pull/5932/files\r\n\r\n> .github/workflows/build_pr_documentation.yml\r\n\r\nindeed no changes are needed"
] | 2023-06-07T16:09:39 | 2023-06-09T10:16:58 | 2023-06-09T09:53:16 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5932",
"html_url": "https://github.com/huggingface/datasets/pull/5932",
"diff_url": "https://github.com/huggingface/datasets/pull/5932.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5932.patch",
"merged_at": "2023-06-09T09:53:16"
} | Companion pr to https://github.com/huggingface/doc-builder/pull/379 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5932/reactions",
"total_count": 1,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5932/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6023 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6023/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6023/comments | https://api.github.com/repos/huggingface/datasets/issues/6023/events | https://github.com/huggingface/datasets/pull/6023 | 1,801,272,420 | PR_kwDODunzps5VU7EG | 6,023 | Fix `ClassLabel` min max check for `None` values | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007108 / 0.011353 (-0.004245) | 0.004446 / 0.011008 (-0.006562) | 0.084013 / 0.038508 (0.045505) | 0.084271 / 0.023109 (0.061162) | 0.324496 / 0.275898 (0.048598) | 0.347783 / 0.323480 (0.024303) | 0.004382 / 0.007986 (-0.003604) | 0.005200 / 0.004328 (0.000872) | 0.065117 / 0.004250 (0.060866) | 0.063368 / 0.037052 (0.026316) | 0.328731 / 0.258489 (0.070242) | 0.356676 / 0.293841 (0.062835) | 0.031155 / 0.128546 (-0.097392) | 0.008672 / 0.075646 (-0.066975) | 0.287573 / 0.419271 (-0.131698) | 0.053692 / 0.043533 (0.010160) | 0.308796 / 0.255139 (0.053657) | 0.330521 / 0.283200 (0.047321) | 0.025010 / 0.141683 (-0.116672) | 1.498968 / 1.452155 (0.046813) | 1.552096 / 1.492716 (0.059380) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.263580 / 0.018006 (0.245574) | 0.559765 / 0.000490 (0.559275) | 0.003450 / 0.000200 (0.003250) | 0.000079 / 0.000054 (0.000024) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029403 / 0.037411 (-0.008008) | 0.088154 / 0.014526 (0.073628) | 0.100372 / 0.176557 (-0.076185) | 0.157777 / 0.737135 (-0.579359) | 0.102273 / 0.296338 (-0.194066) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.387027 / 0.215209 (0.171818) | 3.854260 / 2.077655 (1.776605) | 1.875159 / 1.504120 (0.371039) | 1.703734 / 1.541195 (0.162539) | 1.814305 / 1.468490 (0.345815) | 0.482524 / 4.584777 (-4.102253) | 3.463602 / 3.745712 (-0.282110) | 4.004766 / 5.269862 (-1.265095) | 2.406751 / 4.565676 (-2.158925) | 0.057069 / 0.424275 (-0.367206) | 0.007448 / 0.007607 (-0.000159) | 0.465801 / 0.226044 (0.239757) | 4.636700 / 2.268929 (2.367771) | 2.329475 / 55.444624 (-53.115150) | 1.998330 / 6.876477 (-4.878146) | 2.264617 / 2.142072 (0.122544) | 0.577998 / 4.805227 (-4.227230) | 0.130846 / 6.500664 (-6.369818) | 0.059713 / 0.075469 (-0.015756) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.275931 / 1.841788 (-0.565857) | 20.396288 / 8.074308 (12.321980) | 13.875242 / 10.191392 (3.683850) | 0.164367 / 0.680424 (-0.516057) | 0.018573 / 0.534201 (-0.515628) | 0.397516 / 0.579283 (-0.181767) | 0.398977 / 0.434364 (-0.035387) | 0.462386 / 0.540337 (-0.077951) | 0.610129 / 1.386936 (-0.776807) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006912 / 0.011353 (-0.004441) | 0.004212 / 0.011008 (-0.006797) | 0.065707 / 0.038508 (0.027199) | 0.090435 / 0.023109 (0.067325) | 0.380539 / 0.275898 (0.104641) | 0.412692 / 0.323480 (0.089212) | 0.005545 / 0.007986 (-0.002441) | 0.003657 / 0.004328 (-0.000672) | 0.065380 / 0.004250 (0.061130) | 0.062901 / 0.037052 (0.025848) | 0.385931 / 0.258489 (0.127442) | 0.416272 / 0.293841 (0.122431) | 0.031974 / 0.128546 (-0.096572) | 0.008783 / 0.075646 (-0.066863) | 0.071424 / 0.419271 (-0.347847) | 0.049454 / 0.043533 (0.005921) | 0.374231 / 0.255139 (0.119092) | 0.386530 / 0.283200 (0.103331) | 0.025404 / 0.141683 (-0.116279) | 1.469869 / 1.452155 (0.017715) | 1.548629 / 1.492716 (0.055913) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.218413 / 0.018006 (0.200406) | 0.573863 / 0.000490 (0.573373) | 0.004156 / 0.000200 (0.003956) | 0.000097 / 0.000054 (0.000043) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032610 / 0.037411 (-0.004801) | 0.088270 / 0.014526 (0.073744) | 0.106821 / 0.176557 (-0.069735) | 0.164498 / 0.737135 (-0.572638) | 0.106881 / 0.296338 (-0.189457) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.433730 / 0.215209 (0.218520) | 4.323902 / 2.077655 (2.246247) | 2.308607 / 1.504120 (0.804487) | 2.138888 / 1.541195 (0.597693) | 2.246760 / 1.468490 (0.778269) | 0.486863 / 4.584777 (-4.097914) | 3.561826 / 3.745712 (-0.183886) | 5.592685 / 5.269862 (0.322824) | 3.318560 / 4.565676 (-1.247116) | 0.057348 / 0.424275 (-0.366927) | 0.007434 / 0.007607 (-0.000174) | 0.506767 / 0.226044 (0.280723) | 5.083097 / 2.268929 (2.814168) | 2.780618 / 55.444624 (-52.664006) | 2.456924 / 6.876477 (-4.419553) | 2.564184 / 2.142072 (0.422112) | 0.580693 / 4.805227 (-4.224534) | 0.134471 / 6.500664 (-6.366194) | 0.062883 / 0.075469 (-0.012586) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.346618 / 1.841788 (-0.495169) | 20.547998 / 8.074308 (12.473690) | 14.404159 / 10.191392 (4.212767) | 0.176612 / 0.680424 (-0.503812) | 0.018372 / 0.534201 (-0.515829) | 0.395636 / 0.579283 (-0.183647) | 0.410661 / 0.434364 (-0.023703) | 0.468782 / 0.540337 (-0.071555) | 0.637476 / 1.386936 (-0.749460) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#0172d4dac0ca823e8bd293cfd4d28e78d92efe42 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009896 / 0.011353 (-0.001457) | 0.004658 / 0.011008 (-0.006351) | 0.101185 / 0.038508 (0.062677) | 0.075480 / 0.023109 (0.052371) | 0.410620 / 0.275898 (0.134722) | 0.470639 / 0.323480 (0.147159) | 0.007042 / 0.007986 (-0.000943) | 0.003909 / 0.004328 (-0.000419) | 0.079676 / 0.004250 (0.075425) | 0.066921 / 0.037052 (0.029869) | 0.423624 / 0.258489 (0.165135) | 0.473008 / 0.293841 (0.179167) | 0.048492 / 0.128546 (-0.080054) | 0.012833 / 0.075646 (-0.062813) | 0.335286 / 0.419271 (-0.083985) | 0.083506 / 0.043533 (0.039973) | 0.401918 / 0.255139 (0.146779) | 0.467975 / 0.283200 (0.184775) | 0.050025 / 0.141683 (-0.091658) | 1.679392 / 1.452155 (0.227237) | 1.852812 / 1.492716 (0.360095) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.248067 / 0.018006 (0.230061) | 0.584818 / 0.000490 (0.584328) | 0.021558 / 0.000200 (0.021358) | 0.000104 / 0.000054 (0.000050) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028572 / 0.037411 (-0.008839) | 0.097212 / 0.014526 (0.082686) | 0.121675 / 0.176557 (-0.054881) | 0.186597 / 0.737135 (-0.550538) | 0.122285 / 0.296338 (-0.174053) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.586279 / 0.215209 (0.371070) | 5.634402 / 2.077655 (3.556747) | 2.560648 / 1.504120 (1.056528) | 2.288796 / 1.541195 (0.747601) | 2.402580 / 1.468490 (0.934090) | 0.801453 / 4.584777 (-3.783324) | 5.036654 / 3.745712 (1.290942) | 8.319972 / 5.269862 (3.050110) | 4.665620 / 4.565676 (0.099944) | 0.107292 / 0.424275 (-0.316983) | 0.009206 / 0.007607 (0.001599) | 0.766505 / 0.226044 (0.540461) | 7.333784 / 2.268929 (5.064856) | 3.601875 / 55.444624 (-51.842749) | 2.886388 / 6.876477 (-3.990089) | 3.231797 / 2.142072 (1.089725) | 1.179509 / 4.805227 (-3.625718) | 0.224656 / 6.500664 (-6.276008) | 0.084749 / 0.075469 (0.009280) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.772345 / 1.841788 (-0.069443) | 24.138788 / 8.074308 (16.064480) | 20.712416 / 10.191392 (10.521024) | 0.254655 / 0.680424 (-0.425769) | 0.028858 / 0.534201 (-0.505343) | 0.499314 / 0.579283 (-0.079969) | 0.605797 / 0.434364 (0.171433) | 0.567628 / 0.540337 (0.027290) | 0.752288 / 1.386936 (-0.634648) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010134 / 0.011353 (-0.001219) | 0.004630 / 0.011008 (-0.006378) | 0.082282 / 0.038508 (0.043774) | 0.081722 / 0.023109 (0.058613) | 0.465018 / 0.275898 (0.189120) | 0.516392 / 0.323480 (0.192912) | 0.006618 / 0.007986 (-0.001368) | 0.004310 / 0.004328 (-0.000018) | 0.078990 / 0.004250 (0.074739) | 0.077729 / 0.037052 (0.040677) | 0.464892 / 0.258489 (0.206403) | 0.510551 / 0.293841 (0.216710) | 0.050750 / 0.128546 (-0.077796) | 0.014402 / 0.075646 (-0.061244) | 0.092587 / 0.419271 (-0.326685) | 0.074769 / 0.043533 (0.031237) | 0.468591 / 0.255139 (0.213452) | 0.508138 / 0.283200 (0.224938) | 0.047774 / 0.141683 (-0.093909) | 1.798354 / 1.452155 (0.346199) | 1.851431 / 1.492716 (0.358714) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.282528 / 0.018006 (0.264522) | 0.588286 / 0.000490 (0.587797) | 0.004892 / 0.000200 (0.004692) | 0.000136 / 0.000054 (0.000082) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.037048 / 0.037411 (-0.000364) | 0.101513 / 0.014526 (0.086987) | 0.133238 / 0.176557 (-0.043319) | 0.234799 / 0.737135 (-0.502336) | 0.120636 / 0.296338 (-0.175703) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.615377 / 0.215209 (0.400168) | 6.225717 / 2.077655 (4.148062) | 2.974137 / 1.504120 (1.470018) | 2.642168 / 1.541195 (1.100973) | 2.706051 / 1.468490 (1.237561) | 0.837171 / 4.584777 (-3.747606) | 5.143368 / 3.745712 (1.397656) | 4.560241 / 5.269862 (-0.709621) | 2.838375 / 4.565676 (-1.727301) | 0.092505 / 0.424275 (-0.331770) | 0.008962 / 0.007607 (0.001355) | 0.726361 / 0.226044 (0.500317) | 7.323998 / 2.268929 (5.055070) | 3.650531 / 55.444624 (-51.794094) | 2.960886 / 6.876477 (-3.915591) | 3.003889 / 2.142072 (0.861816) | 0.979264 / 4.805227 (-3.825963) | 0.204531 / 6.500664 (-6.296133) | 0.078285 / 0.075469 (0.002816) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.774225 / 1.841788 (-0.067563) | 26.399536 / 8.074308 (18.325228) | 22.312890 / 10.191392 (12.121498) | 0.244651 / 0.680424 (-0.435773) | 0.026950 / 0.534201 (-0.507251) | 0.493037 / 0.579283 (-0.086246) | 0.620399 / 0.434364 (0.186036) | 0.748985 / 0.540337 (0.208648) | 0.799766 / 1.386936 (-0.587170) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#a49ac2864177ec4fb34c43b59a6e49de1f21f973 \"CML watermark\")\n"
] | 2023-07-12T15:46:12 | 2023-07-12T16:29:26 | 2023-07-12T16:18:04 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6023",
"html_url": "https://github.com/huggingface/datasets/pull/6023",
"diff_url": "https://github.com/huggingface/datasets/pull/6023.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6023.patch",
"merged_at": "2023-07-12T16:18:04"
} | Fix #6022 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6023/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6023/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6046 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6046/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6046/comments | https://api.github.com/repos/huggingface/datasets/issues/6046/events | https://github.com/huggingface/datasets/issues/6046 | 1,808,154,414 | I_kwDODunzps5rxj8u | 6,046 | Support proxy and user-agent in fsspec calls | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
},
{
"id": 3761482852,
"node_id": "LA_kwDODunzps7gM6xk",
"url": "https://api.github.com/repos/huggingface/datasets/labels/good%20second%20issue",
"name": "good second issue",
"color": "BDE59C",
"default": false,
"description": "Issues a bit more difficult than \"Good First\" issues"
}
] | open | false | null | [] | null | [] | 2023-07-17T16:39:26 | 2023-07-17T16:40:37 | null | MEMBER | null | null | null | Since we switched to the new HfFileSystem we no longer apply user's proxy and user-agent.
Using the HTTP_PROXY and HTTPS_PROXY environment variables works though since we use aiohttp to call the HF Hub.
This can be implemented in `_prepare_single_hop_path_and_storage_options`.
Though ideally the `HfFileSystem` could support passing at least the proxies | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6046/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6046/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/6072 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6072/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6072/comments | https://api.github.com/repos/huggingface/datasets/issues/6072/events | https://github.com/huggingface/datasets/pull/6072 | 1,822,123,560 | PR_kwDODunzps5WbWFN | 6,072 | Fix fsspec storage_options from load_dataset | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6072). All of your documentation changes will be reflected on that endpoint.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007617 / 0.011353 (-0.003736) | 0.004580 / 0.011008 (-0.006428) | 0.100913 / 0.038508 (0.062405) | 0.087703 / 0.023109 (0.064594) | 0.424159 / 0.275898 (0.148261) | 0.467195 / 0.323480 (0.143715) | 0.006890 / 0.007986 (-0.001096) | 0.003765 / 0.004328 (-0.000564) | 0.077513 / 0.004250 (0.073262) | 0.064889 / 0.037052 (0.027837) | 0.422349 / 0.258489 (0.163860) | 0.477391 / 0.293841 (0.183550) | 0.036025 / 0.128546 (-0.092522) | 0.009939 / 0.075646 (-0.065707) | 0.342409 / 0.419271 (-0.076862) | 0.061568 / 0.043533 (0.018035) | 0.431070 / 0.255139 (0.175931) | 0.462008 / 0.283200 (0.178809) | 0.027480 / 0.141683 (-0.114203) | 1.802271 / 1.452155 (0.350116) | 1.861336 / 1.492716 (0.368620) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.255806 / 0.018006 (0.237800) | 0.507969 / 0.000490 (0.507479) | 0.010060 / 0.000200 (0.009860) | 0.000112 / 0.000054 (0.000058) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032286 / 0.037411 (-0.005125) | 0.104468 / 0.014526 (0.089942) | 0.112707 / 0.176557 (-0.063850) | 0.181285 / 0.737135 (-0.555850) | 0.113180 / 0.296338 (-0.183158) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.449265 / 0.215209 (0.234056) | 4.465941 / 2.077655 (2.388287) | 2.177889 / 1.504120 (0.673769) | 1.969864 / 1.541195 (0.428669) | 2.077502 / 1.468490 (0.609011) | 0.561607 / 4.584777 (-4.023170) | 4.281873 / 3.745712 (0.536161) | 4.975352 / 5.269862 (-0.294510) | 2.907121 / 4.565676 (-1.658555) | 0.070205 / 0.424275 (-0.354070) | 0.009164 / 0.007607 (0.001557) | 0.581921 / 0.226044 (0.355876) | 5.538667 / 2.268929 (3.269739) | 2.798853 / 55.444624 (-52.645771) | 2.314015 / 6.876477 (-4.562462) | 2.584836 / 2.142072 (0.442763) | 0.672333 / 4.805227 (-4.132894) | 0.153828 / 6.500664 (-6.346836) | 0.069757 / 0.075469 (-0.005712) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.559670 / 1.841788 (-0.282118) | 23.994639 / 8.074308 (15.920331) | 16.856160 / 10.191392 (6.664768) | 0.195555 / 0.680424 (-0.484869) | 0.021586 / 0.534201 (-0.512615) | 0.469295 / 0.579283 (-0.109989) | 0.481582 / 0.434364 (0.047218) | 0.588667 / 0.540337 (0.048329) | 0.734347 / 1.386936 (-0.652589) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009614 / 0.011353 (-0.001739) | 0.004616 / 0.011008 (-0.006392) | 0.077223 / 0.038508 (0.038715) | 0.103074 / 0.023109 (0.079965) | 0.447834 / 0.275898 (0.171936) | 0.524696 / 0.323480 (0.201216) | 0.007120 / 0.007986 (-0.000866) | 0.003890 / 0.004328 (-0.000438) | 0.076406 / 0.004250 (0.072156) | 0.073488 / 0.037052 (0.036436) | 0.466221 / 0.258489 (0.207732) | 0.532206 / 0.293841 (0.238365) | 0.037596 / 0.128546 (-0.090950) | 0.010029 / 0.075646 (-0.065617) | 0.084313 / 0.419271 (-0.334959) | 0.060088 / 0.043533 (0.016555) | 0.437792 / 0.255139 (0.182653) | 0.512850 / 0.283200 (0.229650) | 0.032424 / 0.141683 (-0.109259) | 1.762130 / 1.452155 (0.309975) | 1.946097 / 1.492716 (0.453381) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.250774 / 0.018006 (0.232768) | 0.506869 / 0.000490 (0.506379) | 0.008232 / 0.000200 (0.008032) | 0.000164 / 0.000054 (0.000110) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.037779 / 0.037411 (0.000368) | 0.111933 / 0.014526 (0.097407) | 0.122385 / 0.176557 (-0.054172) | 0.190372 / 0.737135 (-0.546763) | 0.122472 / 0.296338 (-0.173866) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.488502 / 0.215209 (0.273293) | 4.878114 / 2.077655 (2.800459) | 2.504144 / 1.504120 (1.000024) | 2.321077 / 1.541195 (0.779883) | 2.416797 / 1.468490 (0.948307) | 0.583582 / 4.584777 (-4.001195) | 4.277896 / 3.745712 (0.532184) | 3.874780 / 5.269862 (-1.395082) | 2.540099 / 4.565676 (-2.025577) | 0.068734 / 0.424275 (-0.355541) | 0.009158 / 0.007607 (0.001550) | 0.578401 / 0.226044 (0.352357) | 5.763354 / 2.268929 (3.494426) | 3.167771 / 55.444624 (-52.276853) | 2.675220 / 6.876477 (-4.201257) | 2.920927 / 2.142072 (0.778855) | 0.673948 / 4.805227 (-4.131280) | 0.157908 / 6.500664 (-6.342756) | 0.071672 / 0.075469 (-0.003797) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.635120 / 1.841788 (-0.206668) | 24.853480 / 8.074308 (16.779172) | 17.162978 / 10.191392 (6.971586) | 0.209577 / 0.680424 (-0.470847) | 0.030110 / 0.534201 (-0.504091) | 0.546970 / 0.579283 (-0.032313) | 0.581912 / 0.434364 (0.147548) | 0.571460 / 0.540337 (0.031123) | 0.823411 / 1.386936 (-0.563525) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#83b792dddd074ccd007c407f942f6870aac7ee84 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006674 / 0.011353 (-0.004679) | 0.004198 / 0.011008 (-0.006810) | 0.084859 / 0.038508 (0.046351) | 0.076065 / 0.023109 (0.052955) | 0.316065 / 0.275898 (0.040167) | 0.352097 / 0.323480 (0.028617) | 0.005610 / 0.007986 (-0.002376) | 0.003600 / 0.004328 (-0.000729) | 0.064921 / 0.004250 (0.060671) | 0.054493 / 0.037052 (0.017441) | 0.318125 / 0.258489 (0.059636) | 0.370183 / 0.293841 (0.076342) | 0.031141 / 0.128546 (-0.097405) | 0.008755 / 0.075646 (-0.066891) | 0.288241 / 0.419271 (-0.131030) | 0.052379 / 0.043533 (0.008846) | 0.328147 / 0.255139 (0.073008) | 0.347548 / 0.283200 (0.064348) | 0.024393 / 0.141683 (-0.117290) | 1.480646 / 1.452155 (0.028492) | 1.575867 / 1.492716 (0.083151) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.268978 / 0.018006 (0.250971) | 0.586470 / 0.000490 (0.585980) | 0.003190 / 0.000200 (0.002990) | 0.000081 / 0.000054 (0.000026) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030595 / 0.037411 (-0.006816) | 0.083037 / 0.014526 (0.068511) | 0.103706 / 0.176557 (-0.072850) | 0.164104 / 0.737135 (-0.573031) | 0.104536 / 0.296338 (-0.191802) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.382274 / 0.215209 (0.167065) | 3.811878 / 2.077655 (1.734223) | 1.840098 / 1.504120 (0.335978) | 1.670949 / 1.541195 (0.129754) | 1.763755 / 1.468490 (0.295264) | 0.479526 / 4.584777 (-4.105251) | 3.544443 / 3.745712 (-0.201269) | 3.263004 / 5.269862 (-2.006858) | 2.092801 / 4.565676 (-2.472875) | 0.057167 / 0.424275 (-0.367108) | 0.007450 / 0.007607 (-0.000157) | 0.463731 / 0.226044 (0.237686) | 4.624630 / 2.268929 (2.355701) | 2.327078 / 55.444624 (-53.117546) | 1.977734 / 6.876477 (-4.898743) | 2.237152 / 2.142072 (0.095079) | 0.573210 / 4.805227 (-4.232018) | 0.132095 / 6.500664 (-6.368569) | 0.060283 / 0.075469 (-0.015186) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.243404 / 1.841788 (-0.598384) | 20.306778 / 8.074308 (12.232470) | 14.561660 / 10.191392 (4.370268) | 0.170826 / 0.680424 (-0.509598) | 0.018574 / 0.534201 (-0.515627) | 0.392367 / 0.579283 (-0.186916) | 0.402918 / 0.434364 (-0.031446) | 0.476629 / 0.540337 (-0.063708) | 0.653709 / 1.386936 (-0.733227) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006562 / 0.011353 (-0.004791) | 0.004092 / 0.011008 (-0.006916) | 0.065951 / 0.038508 (0.027443) | 0.078090 / 0.023109 (0.054981) | 0.369679 / 0.275898 (0.093781) | 0.411442 / 0.323480 (0.087962) | 0.005646 / 0.007986 (-0.002339) | 0.003537 / 0.004328 (-0.000791) | 0.066024 / 0.004250 (0.061773) | 0.058947 / 0.037052 (0.021895) | 0.389219 / 0.258489 (0.130730) | 0.414200 / 0.293841 (0.120359) | 0.030372 / 0.128546 (-0.098174) | 0.008631 / 0.075646 (-0.067015) | 0.071692 / 0.419271 (-0.347580) | 0.048035 / 0.043533 (0.004502) | 0.376960 / 0.255139 (0.121821) | 0.389847 / 0.283200 (0.106648) | 0.023940 / 0.141683 (-0.117743) | 1.487633 / 1.452155 (0.035479) | 1.561680 / 1.492716 (0.068964) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.301467 / 0.018006 (0.283461) | 0.544159 / 0.000490 (0.543669) | 0.000408 / 0.000200 (0.000208) | 0.000055 / 0.000054 (0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030939 / 0.037411 (-0.006472) | 0.087432 / 0.014526 (0.072906) | 0.103263 / 0.176557 (-0.073293) | 0.154551 / 0.737135 (-0.582585) | 0.104631 / 0.296338 (-0.191707) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.422348 / 0.215209 (0.207139) | 4.206003 / 2.077655 (2.128348) | 2.212619 / 1.504120 (0.708499) | 2.049616 / 1.541195 (0.508421) | 2.139093 / 1.468490 (0.670603) | 0.489647 / 4.584777 (-4.095130) | 3.523291 / 3.745712 (-0.222422) | 3.277657 / 5.269862 (-1.992205) | 2.111353 / 4.565676 (-2.454324) | 0.057597 / 0.424275 (-0.366679) | 0.007675 / 0.007607 (0.000068) | 0.493068 / 0.226044 (0.267023) | 4.939493 / 2.268929 (2.670565) | 2.695995 / 55.444624 (-52.748630) | 2.374904 / 6.876477 (-4.501573) | 2.600110 / 2.142072 (0.458038) | 0.586306 / 4.805227 (-4.218921) | 0.134137 / 6.500664 (-6.366527) | 0.061897 / 0.075469 (-0.013572) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.330628 / 1.841788 (-0.511160) | 20.557964 / 8.074308 (12.483656) | 14.251632 / 10.191392 (4.060240) | 0.148772 / 0.680424 (-0.531652) | 0.018383 / 0.534201 (-0.515817) | 0.392552 / 0.579283 (-0.186731) | 0.403959 / 0.434364 (-0.030405) | 0.462154 / 0.540337 (-0.078184) | 0.608832 / 1.386936 (-0.778104) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#7a291b2b659a356199dff0ab004ad3845459034b \"CML watermark\")\n"
] | 2023-07-26T10:44:23 | 2023-07-26T13:01:27 | null | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6072",
"html_url": "https://github.com/huggingface/datasets/pull/6072",
"diff_url": "https://github.com/huggingface/datasets/pull/6072.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6072.patch",
"merged_at": null
} | close https://github.com/huggingface/datasets/issues/6071 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6072/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6072/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5991 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5991/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5991/comments | https://api.github.com/repos/huggingface/datasets/issues/5991/events | https://github.com/huggingface/datasets/issues/5991 | 1,774,456,518 | I_kwDODunzps5pxA7G | 5,991 | `map` with any joblib backend | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] | open | false | null | [] | null | [] | 2023-06-26T10:33:42 | 2023-06-26T10:33:42 | null | MEMBER | null | null | null | We recently enabled the (experimental) parallel backend switch for data download and extraction but not for `map` yet.
Right now we're using our `iflatmap_unordered` implementation for multiprocessing that uses a shared Queue to gather progress updates from the subprocesses and show a progress bar in the main process.
If a Queue implementation that would work on any joblib backend by leveraging the filesystem that is shared among workers, we can have `iflatmap_unordered` for joblib and therefore a `map` with any joblib backend with a progress bar !
Note that the Queue doesn't need to be that optimized though since we can choose a small frequency for progress updates (like 1 update per second). | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5991/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5991/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/6048 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6048/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6048/comments | https://api.github.com/repos/huggingface/datasets/issues/6048/events | https://github.com/huggingface/datasets/issues/6048 | 1,809,629,346 | I_kwDODunzps5r3MCi | 6,048 | when i use datasets.load_dataset, i encounter the http connect error! | {
"login": "yangy1992",
"id": 137855591,
"node_id": "U_kgDOCDeCZw",
"avatar_url": "https://avatars.githubusercontent.com/u/137855591?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/yangy1992",
"html_url": "https://github.com/yangy1992",
"followers_url": "https://api.github.com/users/yangy1992/followers",
"following_url": "https://api.github.com/users/yangy1992/following{/other_user}",
"gists_url": "https://api.github.com/users/yangy1992/gists{/gist_id}",
"starred_url": "https://api.github.com/users/yangy1992/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/yangy1992/subscriptions",
"organizations_url": "https://api.github.com/users/yangy1992/orgs",
"repos_url": "https://api.github.com/users/yangy1992/repos",
"events_url": "https://api.github.com/users/yangy1992/events{/privacy}",
"received_events_url": "https://api.github.com/users/yangy1992/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"The `audiofolder` loader is not available in version `2.3.2`, hence the error. Please run the `pip install -U datasets` command to update the `datasets` installation to make `load_dataset(\"audiofolder\", ...)` work."
] | 2023-07-18T10:16:34 | 2023-07-18T16:18:39 | 2023-07-18T16:18:39 | NONE | null | null | null | ### Describe the bug
`common_voice_test = load_dataset("audiofolder", data_dir="./dataset/",cache_dir="./cache",split=datasets.Split.TEST)`
when i run the code above, i got the error as below:
--------------------------------------------
ConnectionError: Couldn't reach https://raw.githubusercontent.com/huggingface/datasets/2.3.2/datasets/audiofolder/audiofolder.py (ConnectionError(MaxRetryError("HTTPSConnectionPool(host='raw.githubusercontent.com', port=443): Max retries exceeded with url: /huggingface/datasets/2.3.2/datasets/audiofolder/audiofolder.py (Caused by NewConnectionError('<urllib3.connection.HTTPSConnection object at 0x7f299ed082e0>: Failed to establish a new connection: [Errno 101] Network is unreachable'))")))
--------------------------------------------------
My all data is on local machine, why does it need to connect the internet? how can i fix it, because my machine cannot connect the internet.
### Steps to reproduce the bug
1
### Expected behavior
no error when i use the load_dataset func
### Environment info
python=3.8.15 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6048/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6048/timeline | null | completed | false |
End of preview. Expand
in Dataset Viewer.
annotations_creators:
- crowdsourced language_creators:
- crowdsourced languages:
- en-US
- '' licenses:
- osl-2.0 multilinguality:
- monolingual pretty_name: github_issues_300 size_categories:
- n<1K source_datasets: [] task_categories:
- text-classification task_ids:
- acceptability-classification
- topic-classification
Dataset Card for github_issues_300
Dataset Summary
GitHub issues dataset as in the Hugging Face course (https://huggingface.co./course/chapter5/5?fw=pt) but restricted to 300 issues
Supported Tasks and Leaderboards
[Needs More Information]
Languages
[Needs More Information]
Dataset Structure
Data Instances
[Needs More Information]
Data Fields
[Needs More Information]
Data Splits
[Needs More Information]
Dataset Creation
Curation Rationale
[Needs More Information]
Source Data
Initial Data Collection and Normalization
[Needs More Information]
Who are the source language producers?
[Needs More Information]
Annotations
Annotation process
[Needs More Information]
Who are the annotators?
[Needs More Information]
Personal and Sensitive Information
[Needs More Information]
Considerations for Using the Data
Social Impact of Dataset
[Needs More Information]
Discussion of Biases
[Needs More Information]
Other Known Limitations
[Needs More Information]
Additional Information
Dataset Curators
[Needs More Information]
Licensing Information
[Needs More Information]
Citation Information
[Needs More Information]
- Downloads last month
- 66