url
stringlengths
61
61
repository_url
stringclasses
1 value
labels_url
stringlengths
75
75
comments_url
stringlengths
70
70
events_url
stringlengths
68
68
html_url
stringlengths
49
51
id
int64
1.42B
1.84B
node_id
stringlengths
18
19
number
int64
5.16k
6.14k
title
stringlengths
1
290
user
dict
labels
list
state
stringclasses
2 values
locked
bool
1 class
assignee
dict
assignees
list
milestone
dict
comments
sequence
created_at
timestamp[s]
updated_at
timestamp[s]
closed_at
timestamp[s]
author_association
stringclasses
3 values
active_lock_reason
null
draft
bool
2 classes
pull_request
dict
body
stringlengths
3
33.9k
reactions
dict
timeline_url
stringlengths
70
70
performed_via_github_app
null
state_reason
stringclasses
3 values
is_pull_request
bool
2 classes
https://api.github.com/repos/huggingface/datasets/issues/6138
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6138/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6138/comments
https://api.github.com/repos/huggingface/datasets/issues/6138/events
https://github.com/huggingface/datasets/pull/6138
1,844,952,496
PR_kwDODunzps5XoH2V
6,138
Ignore CI lint rule violation in Pickler.memoize
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006536 / 0.011353 (-0.004817) | 0.003890 / 0.011008 (-0.007118) | 0.084044 / 0.038508 (0.045536) | 0.071893 / 0.023109 (0.048784) | 0.346926 / 0.275898 (0.071028) | 0.397487 / 0.323480 (0.074007) | 0.004065 / 0.007986 (-0.003921) | 0.003218 / 0.004328 (-0.001111) | 0.064670 / 0.004250 (0.060420) | 0.052414 / 0.037052 (0.015362) | 0.355413 / 0.258489 (0.096924) | 0.398894 / 0.293841 (0.105053) | 0.030763 / 0.128546 (-0.097783) | 0.008590 / 0.075646 (-0.067056) | 0.286857 / 0.419271 (-0.132415) | 0.051126 / 0.043533 (0.007593) | 0.346125 / 0.255139 (0.090986) | 0.395673 / 0.283200 (0.112474) | 0.025766 / 0.141683 (-0.115917) | 1.466238 / 1.452155 (0.014084) | 1.543117 / 1.492716 (0.050400) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.213210 / 0.018006 (0.195204) | 0.451981 / 0.000490 (0.451491) | 0.003784 / 0.000200 (0.003585) | 0.000096 / 0.000054 (0.000041) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027756 / 0.037411 (-0.009655) | 0.082446 / 0.014526 (0.067920) | 0.095414 / 0.176557 (-0.081142) | 0.151812 / 0.737135 (-0.585323) | 0.096296 / 0.296338 (-0.200042) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.383729 / 0.215209 (0.168520) | 3.835126 / 2.077655 (1.757471) | 1.891972 / 1.504120 (0.387852) | 1.719934 / 1.541195 (0.178739) | 1.899980 / 1.468490 (0.431490) | 0.488741 / 4.584777 (-4.096036) | 3.634120 / 3.745712 (-0.111592) | 3.243314 / 5.269862 (-2.026547) | 2.028382 / 4.565676 (-2.537294) | 0.057355 / 0.424275 (-0.366920) | 0.007717 / 0.007607 (0.000110) | 0.459835 / 0.226044 (0.233790) | 4.591793 / 2.268929 (2.322864) | 2.346861 / 55.444624 (-53.097764) | 2.067357 / 6.876477 (-4.809120) | 2.254954 / 2.142072 (0.112882) | 0.587016 / 4.805227 (-4.218211) | 0.133918 / 6.500664 (-6.366746) | 0.060311 / 0.075469 (-0.015158) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.250016 / 1.841788 (-0.591772) | 19.674333 / 8.074308 (11.600025) | 14.522764 / 10.191392 (4.331372) | 0.145741 / 0.680424 (-0.534683) | 0.018593 / 0.534201 (-0.515608) | 0.392833 / 0.579283 (-0.186450) | 0.408194 / 0.434364 (-0.026170) | 0.455164 / 0.540337 (-0.085174) | 0.622722 / 1.386936 (-0.764214) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006583 / 0.011353 (-0.004770) | 0.004008 / 0.011008 (-0.007000) | 0.064688 / 0.038508 (0.026180) | 0.074969 / 0.023109 (0.051860) | 0.360504 / 0.275898 (0.084606) | 0.396926 / 0.323480 (0.073446) | 0.005190 / 0.007986 (-0.002796) | 0.003363 / 0.004328 (-0.000966) | 0.064372 / 0.004250 (0.060122) | 0.054428 / 0.037052 (0.017376) | 0.361204 / 0.258489 (0.102715) | 0.400917 / 0.293841 (0.107077) | 0.031117 / 0.128546 (-0.097429) | 0.008406 / 0.075646 (-0.067241) | 0.069655 / 0.419271 (-0.349617) | 0.048582 / 0.043533 (0.005049) | 0.365396 / 0.255139 (0.110257) | 0.381344 / 0.283200 (0.098145) | 0.023809 / 0.141683 (-0.117874) | 1.472926 / 1.452155 (0.020772) | 1.547298 / 1.492716 (0.054582) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.276912 / 0.018006 (0.258906) | 0.449096 / 0.000490 (0.448607) | 0.018921 / 0.000200 (0.018721) | 0.000111 / 0.000054 (0.000056) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030237 / 0.037411 (-0.007174) | 0.088610 / 0.014526 (0.074084) | 0.101529 / 0.176557 (-0.075027) | 0.154070 / 0.737135 (-0.583065) | 0.103471 / 0.296338 (-0.192867) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.416047 / 0.215209 (0.200838) | 4.152374 / 2.077655 (2.074719) | 2.111181 / 1.504120 (0.607061) | 1.943582 / 1.541195 (0.402387) | 2.031729 / 1.468490 (0.563239) | 0.486740 / 4.584777 (-4.098037) | 3.631547 / 3.745712 (-0.114165) | 3.251202 / 5.269862 (-2.018660) | 2.041272 / 4.565676 (-2.524405) | 0.057287 / 0.424275 (-0.366988) | 0.007303 / 0.007607 (-0.000304) | 0.491027 / 0.226044 (0.264982) | 4.906757 / 2.268929 (2.637829) | 2.581694 / 55.444624 (-52.862931) | 2.250996 / 6.876477 (-4.625481) | 2.441771 / 2.142072 (0.299698) | 0.600714 / 4.805227 (-4.204514) | 0.133233 / 6.500664 (-6.367431) | 0.060856 / 0.075469 (-0.014613) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.340062 / 1.841788 (-0.501725) | 19.973899 / 8.074308 (11.899591) | 14.347381 / 10.191392 (4.155989) | 0.166651 / 0.680424 (-0.513773) | 0.018691 / 0.534201 (-0.515510) | 0.393580 / 0.579283 (-0.185703) | 0.409425 / 0.434364 (-0.024939) | 0.474409 / 0.540337 (-0.065929) | 0.649423 / 1.386936 (-0.737514) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#c5da68102297c3639207a7901952d2765a4cdb8b \"CML watermark\")\n", "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6138). All of your documentation changes will be reflected on that endpoint." ]
2023-08-10T11:03:15
2023-08-10T11:10:42
null
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6138", "html_url": "https://github.com/huggingface/datasets/pull/6138", "diff_url": "https://github.com/huggingface/datasets/pull/6138.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6138.patch", "merged_at": null }
This PR ignores the violation of the lint rule E721 in `Pickler.memoize`. The lint rule violation was introduced in this PR: - #3182 @lhoestq is there a reason you did not use `isinstance` instead? As a hotfix, we just ignore the violation of the lint rule. Fix #6136.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6138/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6138/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6137
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6137/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6137/comments
https://api.github.com/repos/huggingface/datasets/issues/6137/events
https://github.com/huggingface/datasets/issues/6137
1,844,952,312
I_kwDODunzps5t97z4
6,137
(`from_spark()`) Unable to connect HDFS in pyspark YARN setting
{ "login": "kyoungrok0517", "id": 1051900, "node_id": "MDQ6VXNlcjEwNTE5MDA=", "avatar_url": "https://avatars.githubusercontent.com/u/1051900?v=4", "gravatar_id": "", "url": "https://api.github.com/users/kyoungrok0517", "html_url": "https://github.com/kyoungrok0517", "followers_url": "https://api.github.com/users/kyoungrok0517/followers", "following_url": "https://api.github.com/users/kyoungrok0517/following{/other_user}", "gists_url": "https://api.github.com/users/kyoungrok0517/gists{/gist_id}", "starred_url": "https://api.github.com/users/kyoungrok0517/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/kyoungrok0517/subscriptions", "organizations_url": "https://api.github.com/users/kyoungrok0517/orgs", "repos_url": "https://api.github.com/users/kyoungrok0517/repos", "events_url": "https://api.github.com/users/kyoungrok0517/events{/privacy}", "received_events_url": "https://api.github.com/users/kyoungrok0517/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[]
2023-08-10T11:03:08
2023-08-10T11:03:08
null
NONE
null
null
null
### Describe the bug related issue: https://github.com/apache/arrow/issues/37057#issue-1841013613 --- Hello. I'm trying to interact with HDFS storage from a driver and workers of pyspark YARN cluster. Precisely I'm using **huggingface's `datasets`** ([link](https://github.com/huggingface/datasets)) library that relies on pyarrow to communicate with HDFS. The `from_spark()` ([link](https://huggingface.co./docs/datasets/use_with_spark#load-from-spark)) is what I'm invoking in my script. Below is the error I'm encountering. Note that I've masked sensitive paths. My code is sent to worker containers (docker) from driver container then executed. I confirmed that in both driver and worker images I can connect to HDFS using pyarrow since the envs and required jars are properly set, but strangely that becomes impossible when the same image runs as remote worker process. These are some peculiarities in my environment that might caused this issue. * **Cluster requires kerberos authentication** * But I think the error message implies that's not the problem in this case * **The user that runs the worker process is different from that built the docker image** * To avoid permission-related issues I made all directories that are accessed from the script accessible to everyone * **Pyspark-part of my code has no problem interacting with HDFS.** * Even pyarrow doesn't experience problem when I run the code in interactive session of the same docker images (driver, worker) * The problem occurs only when it runs as cluster's worker runtime Hope I could get some help. Thanks. ```bash 2023-08-08 18:51:19,638 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable 2023-08-08 18:51:20,280 WARN shortcircuit.DomainSocketFactory: The short-circuit local reads feature cannot be used because libhadoop cannot be loaded. 23/08/08 18:51:22 WARN TaskSetManager: Lost task 0.0 in stage 142.0 (TID 9732) (ac3bax2062.bdp.bdata.ai executor 1): org.apache.spark.api.python.PythonException: Traceback (most recent call last): File "<MASKED>/application_1682476586273_25865777/container_e143_1682476586273_25865777_01_000003/pyspark.zip/pyspark/worker.py", line 830, in main process() File "<MASKED>/application_1682476586273_25865777/container_e143_1682476586273_25865777_01_000003/pyspark.zip/pyspark/worker.py", line 820, in process out_iter = func(split_index, iterator) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/spark/python/pyspark/rdd.py", line 5405, in pipeline_func File "/root/spark/python/pyspark/rdd.py", line 828, in func File "/opt/conda/lib/python3.11/site-packages/datasets/packaged_modules/spark/spark.py", line 130, in create_cache_and_write_probe open(probe_file, "a") File "/opt/conda/lib/python3.11/site-packages/datasets/streaming.py", line 74, in wrapper return function(*args, download_config=download_config, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/datasets/download/streaming_download_manager.py", line 496, in xopen file_obj = fsspec.open(file, mode=mode, *args, **kwargs).open() ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/fsspec/core.py", line 439, in open out = open_files( ^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/fsspec/core.py", line 282, in open_files fs, fs_token, paths = get_fs_token_paths( ^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/fsspec/core.py", line 609, in get_fs_token_paths fs = filesystem(protocol, **inkwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/fsspec/registry.py", line 267, in filesystem return cls(**storage_options) ^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/fsspec/spec.py", line 79, in __call__ obj = super().__call__(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/fsspec/implementations/arrow.py", line 278, in __init__ fs = HadoopFileSystem( ^^^^^^^^^^^^^^^^^ File "pyarrow/_hdfs.pyx", line 96, in pyarrow._hdfs.HadoopFileSystem.__init__ File "pyarrow/error.pxi", line 144, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 115, in pyarrow.lib.check_status OSError: HDFS connection failed at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.handlePythonException(PythonRunner.scala:561) at org.apache.spark.api.python.PythonRunner$$anon$3.read(PythonRunner.scala:767) at org.apache.spark.api.python.PythonRunner$$anon$3.read(PythonRunner.scala:749) at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:514) at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37) at scala.collection.Iterator.foreach(Iterator.scala:943) at scala.collection.Iterator.foreach$(Iterator.scala:943) at org.apache.spark.InterruptibleIterator.foreach(InterruptibleIterator.scala:28) at scala.collection.generic.Growable.$plus$plus$eq(Growable.scala:62) at scala.collection.generic.Growable.$plus$plus$eq$(Growable.scala:53) at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:105) at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:49) at scala.collection.TraversableOnce.to(TraversableOnce.scala:366) at scala.collection.TraversableOnce.to$(TraversableOnce.scala:364) at org.apache.spark.InterruptibleIterator.to(InterruptibleIterator.scala:28) at scala.collection.TraversableOnce.toBuffer(TraversableOnce.scala:358) at scala.collection.TraversableOnce.toBuffer$(TraversableOnce.scala:358) at org.apache.spark.InterruptibleIterator.toBuffer(InterruptibleIterator.scala:28) at scala.collection.TraversableOnce.toArray(TraversableOnce.scala:345) at scala.collection.TraversableOnce.toArray$(TraversableOnce.scala:339) at org.apache.spark.InterruptibleIterator.toArray(InterruptibleIterator.scala:28) at org.apache.spark.rdd.RDD.$anonfun$collect$2(RDD.scala:1019) at org.apache.spark.SparkContext.$anonfun$runJob$5(SparkContext.scala:2303) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:92) at org.apache.spark.TaskContext.runTaskWithListeners(TaskContext.scala:161) at org.apache.spark.scheduler.Task.run(Task.scala:139) at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:554) at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1529) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:557) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) at java.lang.Thread.run(Thread.java:745) 23/08/08 18:51:24 WARN TaskSetManager: Lost task 0.1 in stage 142.0 (TID 9733) (ac3iax2079.bdp.bdata.ai executor 2): org.apache.spark.api.python.PythonException: Traceback (most recent call last): File "<MASKED>/application_1682476586273_25865777/container_e143_1682476586273_25865777_01_000005/pyspark.zip/pyspark/worker.py", line 830, in main process() File "<MASKED>/application_1682476586273_25865777/container_e143_1682476586273_25865777_01_000005/pyspark.zip/pyspark/worker.py", line 820, in process out_iter = func(split_index, iterator) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/spark/python/pyspark/rdd.py", line 5405, in pipeline_func File "/root/spark/python/pyspark/rdd.py", line 828, in func File "/opt/conda/lib/python3.11/site-packages/datasets/packaged_modules/spark/spark.py", line 130, in create_cache_and_write_probe open(probe_file, "a") File "/opt/conda/lib/python3.11/site-packages/datasets/streaming.py", line 74, in wrapper return function(*args, download_config=download_config, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/datasets/download/streaming_download_manager.py", line 496, in xopen file_obj = fsspec.open(file, mode=mode, *args, **kwargs).open() ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/fsspec/core.py", line 439, in open out = open_files( ^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/fsspec/core.py", line 282, in open_files fs, fs_token, paths = get_fs_token_paths( ^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/fsspec/core.py", line 609, in get_fs_token_paths fs = filesystem(protocol, **inkwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/fsspec/registry.py", line 267, in filesystem return cls(**storage_options) ^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/fsspec/spec.py", line 79, in __call__ obj = super().__call__(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/fsspec/implementations/arrow.py", line 278, in __init__ fs = HadoopFileSystem( ^^^^^^^^^^^^^^^^^ File "pyarrow/_hdfs.pyx", line 96, in pyarrow._hdfs.HadoopFileSystem.__init__ File "pyarrow/error.pxi", line 144, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 115, in pyarrow.lib.check_status OSError: HDFS connection failed at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.handlePythonException(PythonRunner.scala:561) at org.apache.spark.api.python.PythonRunner$$anon$3.read(PythonRunner.scala:767) at org.apache.spark.api.python.PythonRunner$$anon$3.read(PythonRunner.scala:749) at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:514) at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37) at scala.collection.Iterator.foreach(Iterator.scala:943) at scala.collection.Iterator.foreach$(Iterator.scala:943) at org.apache.spark.InterruptibleIterator.foreach(InterruptibleIterator.scala:28) at scala.collection.generic.Growable.$plus$plus$eq(Growable.scala:62) at scala.collection.generic.Growable.$plus$plus$eq$(Growable.scala:53) at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:105) at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:49) at scala.collection.TraversableOnce.to(TraversableOnce.scala:366) at scala.collection.TraversableOnce.to$(TraversableOnce.scala:364) at org.apache.spark.InterruptibleIterator.to(InterruptibleIterator.scala:28) at scala.collection.TraversableOnce.toBuffer(TraversableOnce.scala:358) at scala.collection.TraversableOnce.toBuffer$(TraversableOnce.scala:358) at org.apache.spark.InterruptibleIterator.toBuffer(InterruptibleIterator.scala:28) at scala.collection.TraversableOnce.toArray(TraversableOnce.scala:345) at scala.collection.TraversableOnce.toArray$(TraversableOnce.scala:339) at org.apache.spark.InterruptibleIterator.toArray(InterruptibleIterator.scala:28) at org.apache.spark.rdd.RDD.$anonfun$collect$2(RDD.scala:1019) at org.apache.spark.SparkContext.$anonfun$runJob$5(SparkContext.scala:2303) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:92) at org.apache.spark.TaskContext.runTaskWithListeners(TaskContext.scala:161) at org.apache.spark.scheduler.Task.run(Task.scala:139) at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:554) at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1529) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:557) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) at java.lang.Thread.run(Thread.java:745) 23/08/08 18:51:38 WARN TaskSetManager: Lost task 0.2 in stage 142.0 (TID 9734) (<MASKED> executor 4): org.apache.spark.api.python.PythonException: Traceback (most recent call last): File "<MASKED>/application_1682476586273_25865777/container_e143_1682476586273_25865777_01_000008/pyspark.zip/pyspark/worker.py", line 830, in main process() File "<MASKED>/application_1682476586273_25865777/container_e143_1682476586273_25865777_01_000008/pyspark.zip/pyspark/worker.py", line 820, in process out_iter = func(split_index, iterator) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/spark/python/pyspark/rdd.py", line 5405, in pipeline_func File "/root/spark/python/pyspark/rdd.py", line 828, in func File "/opt/conda/lib/python3.11/site-packages/datasets/packaged_modules/spark/spark.py", line 130, in create_cache_and_write_probe open(probe_file, "a") File "/opt/conda/lib/python3.11/site-packages/datasets/streaming.py", line 74, in wrapper return function(*args, download_config=download_config, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/datasets/download/streaming_download_manager.py", line 496, in xopen file_obj = fsspec.open(file, mode=mode, *args, **kwargs).open() ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/fsspec/core.py", line 439, in open out = open_files( ^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/fsspec/core.py", line 282, in open_files fs, fs_token, paths = get_fs_token_paths( ^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/fsspec/core.py", line 609, in get_fs_token_paths fs = filesystem(protocol, **inkwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/fsspec/registry.py", line 267, in filesystem return cls(**storage_options) ^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/fsspec/spec.py", line 79, in __call__ obj = super().__call__(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/fsspec/implementations/arrow.py", line 278, in __init__ fs = HadoopFileSystem( ^^^^^^^^^^^^^^^^^ File "pyarrow/_hdfs.pyx", line 96, in pyarrow._hdfs.HadoopFileSystem.__init__ File "pyarrow/error.pxi", line 144, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 115, in pyarrow.lib.check_status OSError: HDFS connection failed at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.handlePythonException(PythonRunner.scala:561) at org.apache.spark.api.python.PythonRunner$$anon$3.read(PythonRunner.scala:767) at org.apache.spark.api.python.PythonRunner$$anon$3.read(PythonRunner.scala:749) at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:514) at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37) at scala.collection.Iterator.foreach(Iterator.scala:943) at scala.collection.Iterator.foreach$(Iterator.scala:943) at org.apache.spark.InterruptibleIterator.foreach(InterruptibleIterator.scala:28) at scala.collection.generic.Growable.$plus$plus$eq(Growable.scala:62) at scala.collection.generic.Growable.$plus$plus$eq$(Growable.scala:53) at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:105) at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:49) at scala.collection.TraversableOnce.to(TraversableOnce.scala:366) at scala.collection.TraversableOnce.to$(TraversableOnce.scala:364) at org.apache.spark.InterruptibleIterator.to(InterruptibleIterator.scala:28) at scala.collection.TraversableOnce.toBuffer(TraversableOnce.scala:358) at scala.collection.TraversableOnce.toBuffer$(TraversableOnce.scala:358) at org.apache.spark.InterruptibleIterator.toBuffer(InterruptibleIterator.scala:28) at scala.collection.TraversableOnce.toArray(TraversableOnce.scala:345) at scala.collection.TraversableOnce.toArray$(TraversableOnce.scala:339) at org.apache.spark.InterruptibleIterator.toArray(InterruptibleIterator.scala:28) at org.apache.spark.rdd.RDD.$anonfun$collect$2(RDD.scala:1019) at org.apache.spark.SparkContext.$anonfun$runJob$5(SparkContext.scala:2303) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:92) at org.apache.spark.TaskContext.runTaskWithListeners(TaskContext.scala:161) at org.apache.spark.scheduler.Task.run(Task.scala:139) at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:554) at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1529) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:557) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) at java.lang.Thread.run(Thread.java:745) ``` ### Steps to reproduce the bug Use `from_spark()` function in pyspark YARN setting. I set `cache_dir` to HDFS path. ### Expected behavior Work as described in document ### Environment info - `datasets` version: 2.14.4 - Platform: Linux-4.18.0-425.19.2.el8_7.x86_64-x86_64-with-glibc2.17 - Python version: 3.11.4 - Huggingface_hub version: 0.16.4 - PyArrow version: 10.0.1 - Pandas version: 1.5.3
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6137/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6137/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6136
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6136/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6136/comments
https://api.github.com/repos/huggingface/datasets/issues/6136/events
https://github.com/huggingface/datasets/issues/6136
1,844,887,866
I_kwDODunzps5t9sE6
6,136
CI check_code_quality error: E721 Do not compare types, use `isinstance()`
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "id": 4296013012, "node_id": "LA_kwDODunzps8AAAABAA_01A", "url": "https://api.github.com/repos/huggingface/datasets/labels/maintenance", "name": "maintenance", "color": "d4c5f9", "default": false, "description": "Maintenance tasks" } ]
open
false
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false } ]
null
[]
2023-08-10T10:19:50
2023-08-10T10:19:50
null
MEMBER
null
null
null
After latest release of `ruff` (https://pypi.org/project/ruff/0.0.284/), we get the following CI error: ``` src/datasets/utils/py_utils.py:689:12: E721 Do not compare types, use `isinstance()` ```
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6136/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6136/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6135
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6135/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6135/comments
https://api.github.com/repos/huggingface/datasets/issues/6135/events
https://github.com/huggingface/datasets/pull/6135
1,844,870,943
PR_kwDODunzps5Xn2AT
6,135
Remove unused allowed_extensions param
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6135). All of your documentation changes will be reflected on that endpoint.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009055 / 0.011353 (-0.002298) | 0.008835 / 0.011008 (-0.002173) | 0.117048 / 0.038508 (0.078540) | 0.096268 / 0.023109 (0.073159) | 0.474678 / 0.275898 (0.198780) | 0.550509 / 0.323480 (0.227029) | 0.005552 / 0.007986 (-0.002434) | 0.004315 / 0.004328 (-0.000013) | 0.094336 / 0.004250 (0.090086) | 0.061945 / 0.037052 (0.024892) | 0.461422 / 0.258489 (0.202933) | 0.521271 / 0.293841 (0.227430) | 0.049116 / 0.128546 (-0.079430) | 0.015007 / 0.075646 (-0.060639) | 0.414351 / 0.419271 (-0.004920) | 0.137520 / 0.043533 (0.093987) | 0.465627 / 0.255139 (0.210488) | 0.537244 / 0.283200 (0.254044) | 0.068577 / 0.141683 (-0.073106) | 1.921373 / 1.452155 (0.469219) | 2.506653 / 1.492716 (1.013937) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.273970 / 0.018006 (0.255963) | 0.750295 / 0.000490 (0.749805) | 0.004241 / 0.000200 (0.004041) | 0.000128 / 0.000054 (0.000073) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033793 / 0.037411 (-0.003618) | 0.105562 / 0.014526 (0.091037) | 0.131771 / 0.176557 (-0.044786) | 0.196890 / 0.737135 (-0.540245) | 0.119842 / 0.296338 (-0.176496) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.634881 / 0.215209 (0.419672) | 6.069221 / 2.077655 (3.991566) | 2.678765 / 1.504120 (1.174646) | 2.460309 / 1.541195 (0.919114) | 2.517579 / 1.468490 (1.049089) | 0.869558 / 4.584777 (-3.715219) | 5.407686 / 3.745712 (1.661974) | 4.920687 / 5.269862 (-0.349175) | 3.130066 / 4.565676 (-1.435611) | 0.100337 / 0.424275 (-0.323938) | 0.009615 / 0.007607 (0.002008) | 0.745275 / 0.226044 (0.519231) | 7.577890 / 2.268929 (5.308962) | 3.607887 / 55.444624 (-51.836738) | 2.922211 / 6.876477 (-3.954266) | 3.205592 / 2.142072 (1.063519) | 1.052298 / 4.805227 (-3.752929) | 0.218798 / 6.500664 (-6.281866) | 0.082137 / 0.075469 (0.006667) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.696551 / 1.841788 (-0.145237) | 24.946074 / 8.074308 (16.871766) | 23.114202 / 10.191392 (12.922810) | 0.220498 / 0.680424 (-0.459925) | 0.029388 / 0.534201 (-0.504813) | 0.494721 / 0.579283 (-0.084562) | 0.603085 / 0.434364 (0.168722) | 0.573093 / 0.540337 (0.032756) | 0.784937 / 1.386936 (-0.601999) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009642 / 0.011353 (-0.001711) | 0.007551 / 0.011008 (-0.003457) | 0.085224 / 0.038508 (0.046716) | 0.099493 / 0.023109 (0.076384) | 0.503824 / 0.275898 (0.227926) | 0.546583 / 0.323480 (0.223103) | 0.006385 / 0.007986 (-0.001601) | 0.004751 / 0.004328 (0.000423) | 0.084699 / 0.004250 (0.080449) | 0.067875 / 0.037052 (0.030823) | 0.485313 / 0.258489 (0.226824) | 0.535808 / 0.293841 (0.241967) | 0.049935 / 0.128546 (-0.078611) | 0.014427 / 0.075646 (-0.061219) | 0.095531 / 0.419271 (-0.323741) | 0.068487 / 0.043533 (0.024954) | 0.502204 / 0.255139 (0.247065) | 0.514393 / 0.283200 (0.231193) | 0.037350 / 0.141683 (-0.104333) | 1.849380 / 1.452155 (0.397226) | 1.920151 / 1.492716 (0.427434) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.298363 / 0.018006 (0.280357) | 0.651555 / 0.000490 (0.651065) | 0.005910 / 0.000200 (0.005710) | 0.000103 / 0.000054 (0.000048) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.039170 / 0.037411 (0.001758) | 0.106436 / 0.014526 (0.091910) | 0.129880 / 0.176557 (-0.046677) | 0.185401 / 0.737135 (-0.551734) | 0.125732 / 0.296338 (-0.170607) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.643248 / 0.215209 (0.428039) | 6.374807 / 2.077655 (4.297152) | 3.057296 / 1.504120 (1.553176) | 2.779534 / 1.541195 (1.238340) | 2.790165 / 1.468490 (1.321675) | 0.841580 / 4.584777 (-3.743197) | 5.371478 / 3.745712 (1.625766) | 4.973251 / 5.269862 (-0.296610) | 3.235817 / 4.565676 (-1.329860) | 0.097276 / 0.424275 (-0.326999) | 0.008840 / 0.007607 (0.001233) | 0.728678 / 0.226044 (0.502634) | 7.526382 / 2.268929 (5.257454) | 3.792550 / 55.444624 (-51.652074) | 3.439134 / 6.876477 (-3.437342) | 3.466626 / 2.142072 (1.324553) | 1.035894 / 4.805227 (-3.769333) | 0.211670 / 6.500664 (-6.288994) | 0.087596 / 0.075469 (0.012127) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.782755 / 1.841788 (-0.059033) | 25.704407 / 8.074308 (17.630099) | 23.799672 / 10.191392 (13.608280) | 0.233952 / 0.680424 (-0.446472) | 0.030810 / 0.534201 (-0.503391) | 0.505857 / 0.579283 (-0.073426) | 0.629331 / 0.434364 (0.194967) | 0.608530 / 0.540337 (0.068192) | 0.813688 / 1.386936 (-0.573248) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#ed4d6bb5f1331576c41b04acd9872a5349a0915c \"CML watermark\")\n" ]
2023-08-10T10:09:54
2023-08-10T10:22:54
null
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6135", "html_url": "https://github.com/huggingface/datasets/pull/6135", "diff_url": "https://github.com/huggingface/datasets/pull/6135.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6135.patch", "merged_at": null }
This PR removes unused `allowed_extensions` parameter from `create_builder_configs_from_metadata_configs`.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6135/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6135/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6134
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6134/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6134/comments
https://api.github.com/repos/huggingface/datasets/issues/6134/events
https://github.com/huggingface/datasets/issues/6134
1,844,535,142
I_kwDODunzps5t8V9m
6,134
`datasets` cannot be installed alongside `apache-beam`
{ "login": "boyleconnor", "id": 6520892, "node_id": "MDQ6VXNlcjY1MjA4OTI=", "avatar_url": "https://avatars.githubusercontent.com/u/6520892?v=4", "gravatar_id": "", "url": "https://api.github.com/users/boyleconnor", "html_url": "https://github.com/boyleconnor", "followers_url": "https://api.github.com/users/boyleconnor/followers", "following_url": "https://api.github.com/users/boyleconnor/following{/other_user}", "gists_url": "https://api.github.com/users/boyleconnor/gists{/gist_id}", "starred_url": "https://api.github.com/users/boyleconnor/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/boyleconnor/subscriptions", "organizations_url": "https://api.github.com/users/boyleconnor/orgs", "repos_url": "https://api.github.com/users/boyleconnor/repos", "events_url": "https://api.github.com/users/boyleconnor/events{/privacy}", "received_events_url": "https://api.github.com/users/boyleconnor/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[]
2023-08-10T06:54:32
2023-08-10T06:55:46
null
NONE
null
null
null
### Describe the bug If one installs `apache-beam` alongside `datasets` (which is required for the [wikipedia](https://huggingface.co./datasets/wikipedia#dataset-summary) dataset) in certain environments (such as a Google Colab notebook), they appear to install successfully, however, actually trying to something such as importing the `load_dataset` method from `datasets` results in a crashing error. I think the problem is that `apache-beam` version 2.49.0 requires `dill>=0.3.1.1,<0.3.2`, but the latest version of `multiprocess` (0.70.15) (on which `datasets` depends) requires `dill>=0.3.7,`, so this is causing the dependency resolver to use an older version of `multiprocess` which leads to the `datasets` crashing since it doesn't actually appear to be compatible with older versions. ### Steps to reproduce the bug See this [Google Colab notebook](https://colab.research.google.com/drive/1PTeGlshamFcJZix_GiS3vMXX_YzAhGv0?usp=sharing) to easily reproduce the bug. In some environments, I have been able to reproduce the bug by running the following in Bash: ```bash $ pip install datasets apache-beam ``` then the following in a Python shell: ```python from datasets import load_dataset ``` Here is my stacktrace from running on Google Colab: <details> <summary>stacktrace</summary> ``` [/usr/local/lib/python3.10/dist-packages/datasets/__init__.py](https://localhost:8080/#) in <module> 20 __version__ = "2.14.4" 21 ---> 22 from .arrow_dataset import Dataset 23 from .arrow_reader import ReadInstruction 24 from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder [/usr/local/lib/python3.10/dist-packages/datasets/arrow_dataset.py](https://localhost:8080/#) in <module> 64 65 from . import config ---> 66 from .arrow_reader import ArrowReader 67 from .arrow_writer import ArrowWriter, OptimizedTypedSequence 68 from .data_files import sanitize_patterns [/usr/local/lib/python3.10/dist-packages/datasets/arrow_reader.py](https://localhost:8080/#) in <module> 28 import pyarrow.parquet as pq 29 ---> 30 from .download.download_config import DownloadConfig 31 from .naming import _split_re, filenames_for_dataset_split 32 from .table import InMemoryTable, MemoryMappedTable, Table, concat_tables [/usr/local/lib/python3.10/dist-packages/datasets/download/__init__.py](https://localhost:8080/#) in <module> 7 8 from .download_config import DownloadConfig ----> 9 from .download_manager import DownloadManager, DownloadMode 10 from .streaming_download_manager import StreamingDownloadManager [/usr/local/lib/python3.10/dist-packages/datasets/download/download_manager.py](https://localhost:8080/#) in <module> 33 from ..utils.info_utils import get_size_checksum_dict 34 from ..utils.logging import get_logger, is_progress_bar_enabled, tqdm ---> 35 from ..utils.py_utils import NestedDataStructure, map_nested, size_str 36 from .download_config import DownloadConfig 37 [/usr/local/lib/python3.10/dist-packages/datasets/utils/py_utils.py](https://localhost:8080/#) in <module> 38 import dill 39 import multiprocess ---> 40 import multiprocess.pool 41 import numpy as np 42 from packaging import version [/usr/local/lib/python3.10/dist-packages/multiprocess/pool.py](https://localhost:8080/#) in <module> 607 # 608 --> 609 class ThreadPool(Pool): 610 611 from .dummy import Process [/usr/local/lib/python3.10/dist-packages/multiprocess/pool.py](https://localhost:8080/#) in ThreadPool() 609 class ThreadPool(Pool): 610 --> 611 from .dummy import Process 612 613 def __init__(self, processes=None, initializer=None, initargs=()): [/usr/local/lib/python3.10/dist-packages/multiprocess/dummy/__init__.py](https://localhost:8080/#) in <module> 85 # 86 ---> 87 class Condition(threading._Condition): 88 # XXX 89 if sys.version_info < (3, 0): AttributeError: module 'threading' has no attribute '_Condition' ``` </details> I've also found that attempting to install these `datasets` and `apache-beam` in certain environments (e.g. via pip inside a conda env) simply causes the installer to hang indefinitely. ### Expected behavior I would expect to be able to import methods from `datasets` without crashing. I have tested that this is possible as long as I do not attempt to install `apache-beam`. ### Environment info Google Colab
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6134/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6134/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6133
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6133/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6133/comments
https://api.github.com/repos/huggingface/datasets/issues/6133/events
https://github.com/huggingface/datasets/issues/6133
1,844,511,519
I_kwDODunzps5t8QMf
6,133
Dataset is slower after calling `to_iterable_dataset`
{ "login": "npuichigo", "id": 11533479, "node_id": "MDQ6VXNlcjExNTMzNDc5", "avatar_url": "https://avatars.githubusercontent.com/u/11533479?v=4", "gravatar_id": "", "url": "https://api.github.com/users/npuichigo", "html_url": "https://github.com/npuichigo", "followers_url": "https://api.github.com/users/npuichigo/followers", "following_url": "https://api.github.com/users/npuichigo/following{/other_user}", "gists_url": "https://api.github.com/users/npuichigo/gists{/gist_id}", "starred_url": "https://api.github.com/users/npuichigo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/npuichigo/subscriptions", "organizations_url": "https://api.github.com/users/npuichigo/orgs", "repos_url": "https://api.github.com/users/npuichigo/repos", "events_url": "https://api.github.com/users/npuichigo/events{/privacy}", "received_events_url": "https://api.github.com/users/npuichigo/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[]
2023-08-10T06:36:23
2023-08-10T06:36:23
null
NONE
null
null
null
### Describe the bug Can anyone explain why looping over a dataset becomes slower after calling `to_iterable_dataset` to convert to `IterableDataset` ### Steps to reproduce the bug Any dataset after converting to `IterableDataset` ### Expected behavior Maybe it should be faster on big dataset? I only test on small dataset ### Environment info - `datasets` version: 2.14.4 - Platform: Linux-5.15.0-76-generic-x86_64-with-glibc2.17 - Python version: 3.8.15 - Huggingface_hub version: 0.16.4 - PyArrow version: 12.0.1 - Pandas version: 1.5.3
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6133/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6133/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6132
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6132/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6132/comments
https://api.github.com/repos/huggingface/datasets/issues/6132/events
https://github.com/huggingface/datasets/issues/6132
1,843,491,020
I_kwDODunzps5t4XDM
6,132
to_iterable_dataset is missing in document
{ "login": "npuichigo", "id": 11533479, "node_id": "MDQ6VXNlcjExNTMzNDc5", "avatar_url": "https://avatars.githubusercontent.com/u/11533479?v=4", "gravatar_id": "", "url": "https://api.github.com/users/npuichigo", "html_url": "https://github.com/npuichigo", "followers_url": "https://api.github.com/users/npuichigo/followers", "following_url": "https://api.github.com/users/npuichigo/following{/other_user}", "gists_url": "https://api.github.com/users/npuichigo/gists{/gist_id}", "starred_url": "https://api.github.com/users/npuichigo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/npuichigo/subscriptions", "organizations_url": "https://api.github.com/users/npuichigo/orgs", "repos_url": "https://api.github.com/users/npuichigo/repos", "events_url": "https://api.github.com/users/npuichigo/events{/privacy}", "received_events_url": "https://api.github.com/users/npuichigo/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[]
2023-08-09T15:15:03
2023-08-09T15:15:03
null
NONE
null
null
null
### Describe the bug to_iterable_dataset is missing in document ### Steps to reproduce the bug to_iterable_dataset is missing in document ### Expected behavior document enhancement ### Environment info unrelated
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6132/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6132/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6131
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6131/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6131/comments
https://api.github.com/repos/huggingface/datasets/issues/6131/events
https://github.com/huggingface/datasets/issues/6131
1,843,448,643
I_kwDODunzps5t4MtD
6,131
AttributeError: type object 'tqdm' has no attribute '_lock'
{ "login": "NielsRogge", "id": 48327001, "node_id": "MDQ6VXNlcjQ4MzI3MDAx", "avatar_url": "https://avatars.githubusercontent.com/u/48327001?v=4", "gravatar_id": "", "url": "https://api.github.com/users/NielsRogge", "html_url": "https://github.com/NielsRogge", "followers_url": "https://api.github.com/users/NielsRogge/followers", "following_url": "https://api.github.com/users/NielsRogge/following{/other_user}", "gists_url": "https://api.github.com/users/NielsRogge/gists{/gist_id}", "starred_url": "https://api.github.com/users/NielsRogge/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/NielsRogge/subscriptions", "organizations_url": "https://api.github.com/users/NielsRogge/orgs", "repos_url": "https://api.github.com/users/NielsRogge/repos", "events_url": "https://api.github.com/users/NielsRogge/events{/privacy}", "received_events_url": "https://api.github.com/users/NielsRogge/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[]
2023-08-09T14:53:31
2023-08-09T14:54:36
null
CONTRIBUTOR
null
null
null
### Describe the bug Getting a tqdm issue when writing a Dask dataframe to the hub. Similar to #6066. Using latest Datasets version doesn't seem to resolve it ### Steps to reproduce the bug This is a minimal reproducer: ``` import dask.dataframe as dd import pandas as pd import random import huggingface_hub data = {"number": [random.randint(0,10) for _ in range(1000)]} df = pd.DataFrame.from_dict(data) dataframe = dd.from_pandas(df, npartitions=1) dataframe = dataframe.repartition(npartitions=2) repo_id = "nielsr/test-dask" repo_path = f"hf://datasets/{repo_id}" huggingface_hub.create_repo(repo_id=repo_id, repo_type="dataset", exist_ok=True) dd.to_parquet(dataframe, path=f"{repo_path}/data") ``` Note: I'm intentionally repartioning the Dask dataframe to 2 partitions, as it does work when only having one partition. ### Expected behavior Would expect to write to the hub without any problem. ### Environment info Datasets version 2.14.4
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6131/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6131/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6130
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6130/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6130/comments
https://api.github.com/repos/huggingface/datasets/issues/6130/events
https://github.com/huggingface/datasets/issues/6130
1,843,158,846
I_kwDODunzps5t3F8-
6,130
default config name doesn't work when config kwargs are specified.
{ "login": "npuichigo", "id": 11533479, "node_id": "MDQ6VXNlcjExNTMzNDc5", "avatar_url": "https://avatars.githubusercontent.com/u/11533479?v=4", "gravatar_id": "", "url": "https://api.github.com/users/npuichigo", "html_url": "https://github.com/npuichigo", "followers_url": "https://api.github.com/users/npuichigo/followers", "following_url": "https://api.github.com/users/npuichigo/following{/other_user}", "gists_url": "https://api.github.com/users/npuichigo/gists{/gist_id}", "starred_url": "https://api.github.com/users/npuichigo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/npuichigo/subscriptions", "organizations_url": "https://api.github.com/users/npuichigo/orgs", "repos_url": "https://api.github.com/users/npuichigo/repos", "events_url": "https://api.github.com/users/npuichigo/events{/privacy}", "received_events_url": "https://api.github.com/users/npuichigo/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[]
2023-08-09T12:43:15
2023-08-09T12:43:15
null
NONE
null
null
null
### Describe the bug https://github.com/huggingface/datasets/blob/12cfc1196e62847e2e8239fbd727a02cbc86ddec/src/datasets/builder.py#L518-L522 If `config_name` is `None`, `DEFAULT_CONFIG_NAME` should be select. But once users pass `config_kwargs` to their customized `BuilderConfig`, the logic is ignored, and dataset cannot select the default config from multiple configs. ### Steps to reproduce the bug ```python import datasets datasets.load_dataset('/dataset/with/multiple/config'') # Ok datasets.load_dataset('/dataset/with/multiple/config', some_field_in_config='some') # Err ``` ### Expected behavior Default config behavior should be consistent. ### Environment info - `datasets` version: 2.14.3 - Platform: Linux-5.15.0-76-generic-x86_64-with-glibc2.17 - Python version: 3.8.15 - Huggingface_hub version: 0.16.4 - PyArrow version: 12.0.1 - Pandas version: 1.5.3
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6130/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6130/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6129
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6129/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6129/comments
https://api.github.com/repos/huggingface/datasets/issues/6129/events
https://github.com/huggingface/datasets/pull/6129
1,841,563,517
PR_kwDODunzps5Xcmuw
6,129
Release 2.14.4
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006053 / 0.011353 (-0.005299) | 0.003532 / 0.011008 (-0.007476) | 0.081930 / 0.038508 (0.043422) | 0.059043 / 0.023109 (0.035934) | 0.322785 / 0.275898 (0.046887) | 0.378158 / 0.323480 (0.054678) | 0.004709 / 0.007986 (-0.003277) | 0.002907 / 0.004328 (-0.001421) | 0.061516 / 0.004250 (0.057266) | 0.047209 / 0.037052 (0.010157) | 0.346885 / 0.258489 (0.088396) | 0.381011 / 0.293841 (0.087170) | 0.027491 / 0.128546 (-0.101055) | 0.008014 / 0.075646 (-0.067632) | 0.260663 / 0.419271 (-0.158608) | 0.045427 / 0.043533 (0.001894) | 0.315277 / 0.255139 (0.060138) | 0.377902 / 0.283200 (0.094703) | 0.021371 / 0.141683 (-0.120311) | 1.416350 / 1.452155 (-0.035804) | 1.483345 / 1.492716 (-0.009372) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.203660 / 0.018006 (0.185654) | 0.569081 / 0.000490 (0.568591) | 0.002742 / 0.000200 (0.002542) | 0.000074 / 0.000054 (0.000019) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023456 / 0.037411 (-0.013955) | 0.073954 / 0.014526 (0.059428) | 0.082991 / 0.176557 (-0.093566) | 0.144781 / 0.737135 (-0.592354) | 0.083346 / 0.296338 (-0.212992) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.391542 / 0.215209 (0.176333) | 3.909505 / 2.077655 (1.831850) | 1.862234 / 1.504120 (0.358114) | 1.676076 / 1.541195 (0.134881) | 1.727595 / 1.468490 (0.259105) | 0.501769 / 4.584777 (-4.083008) | 3.083697 / 3.745712 (-0.662016) | 2.819751 / 5.269862 (-2.450111) | 1.867265 / 4.565676 (-2.698411) | 0.057575 / 0.424275 (-0.366700) | 0.006478 / 0.007607 (-0.001129) | 0.466684 / 0.226044 (0.240640) | 4.657982 / 2.268929 (2.389054) | 2.347052 / 55.444624 (-53.097573) | 1.964688 / 6.876477 (-4.911789) | 2.077821 / 2.142072 (-0.064252) | 0.590591 / 4.805227 (-4.214636) | 0.124585 / 6.500664 (-6.376079) | 0.059468 / 0.075469 (-0.016001) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.223484 / 1.841788 (-0.618304) | 18.104638 / 8.074308 (10.030330) | 13.755126 / 10.191392 (3.563734) | 0.143158 / 0.680424 (-0.537266) | 0.017147 / 0.534201 (-0.517054) | 0.337427 / 0.579283 (-0.241856) | 0.352270 / 0.434364 (-0.082094) | 0.383718 / 0.540337 (-0.156619) | 0.534973 / 1.386936 (-0.851963) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006039 / 0.011353 (-0.005314) | 0.003735 / 0.011008 (-0.007274) | 0.061954 / 0.038508 (0.023446) | 0.061786 / 0.023109 (0.038677) | 0.429420 / 0.275898 (0.153522) | 0.457629 / 0.323480 (0.134149) | 0.004748 / 0.007986 (-0.003237) | 0.002843 / 0.004328 (-0.001485) | 0.061811 / 0.004250 (0.057560) | 0.048740 / 0.037052 (0.011687) | 0.430066 / 0.258489 (0.171577) | 0.465971 / 0.293841 (0.172130) | 0.027577 / 0.128546 (-0.100969) | 0.007981 / 0.075646 (-0.067665) | 0.067580 / 0.419271 (-0.351692) | 0.042058 / 0.043533 (-0.001475) | 0.428412 / 0.255139 (0.173273) | 0.451054 / 0.283200 (0.167855) | 0.020850 / 0.141683 (-0.120833) | 1.453907 / 1.452155 (0.001752) | 1.509914 / 1.492716 (0.017197) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.237713 / 0.018006 (0.219707) | 0.418064 / 0.000490 (0.417575) | 0.006411 / 0.000200 (0.006211) | 0.000078 / 0.000054 (0.000024) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024950 / 0.037411 (-0.012462) | 0.076806 / 0.014526 (0.062281) | 0.085237 / 0.176557 (-0.091320) | 0.137940 / 0.737135 (-0.599196) | 0.086266 / 0.296338 (-0.210072) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.418666 / 0.215209 (0.203457) | 4.160547 / 2.077655 (2.082893) | 2.135671 / 1.504120 (0.631551) | 1.964985 / 1.541195 (0.423790) | 2.009447 / 1.468490 (0.540957) | 0.501377 / 4.584777 (-4.083400) | 3.064293 / 3.745712 (-0.681419) | 2.827153 / 5.269862 (-2.442709) | 1.854698 / 4.565676 (-2.710978) | 0.057662 / 0.424275 (-0.366613) | 0.006829 / 0.007607 (-0.000778) | 0.496730 / 0.226044 (0.270686) | 4.964663 / 2.268929 (2.695735) | 2.583133 / 55.444624 (-52.861491) | 2.329700 / 6.876477 (-4.546776) | 2.415521 / 2.142072 (0.273449) | 0.591973 / 4.805227 (-4.213255) | 0.126801 / 6.500664 (-6.373863) | 0.062811 / 0.075469 (-0.012659) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.348575 / 1.841788 (-0.493212) | 18.282861 / 8.074308 (10.208553) | 13.734056 / 10.191392 (3.542664) | 0.154987 / 0.680424 (-0.525437) | 0.016996 / 0.534201 (-0.517205) | 0.335264 / 0.579283 (-0.244019) | 0.356907 / 0.434364 (-0.077456) | 0.399185 / 0.540337 (-0.141152) | 0.540209 / 1.386936 (-0.846727) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#887bef1217e0f4441d57bf0f4d1e806df12f2c50 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006768 / 0.011353 (-0.004585) | 0.004250 / 0.011008 (-0.006758) | 0.086780 / 0.038508 (0.048272) | 0.080872 / 0.023109 (0.057762) | 0.309281 / 0.275898 (0.033383) | 0.352293 / 0.323480 (0.028814) | 0.005604 / 0.007986 (-0.002382) | 0.003544 / 0.004328 (-0.000784) | 0.066910 / 0.004250 (0.062659) | 0.055568 / 0.037052 (0.018516) | 0.314931 / 0.258489 (0.056442) | 0.366026 / 0.293841 (0.072185) | 0.031247 / 0.128546 (-0.097300) | 0.008860 / 0.075646 (-0.066786) | 0.293210 / 0.419271 (-0.126061) | 0.052868 / 0.043533 (0.009335) | 0.316769 / 0.255139 (0.061630) | 0.352128 / 0.283200 (0.068929) | 0.025492 / 0.141683 (-0.116190) | 1.478379 / 1.452155 (0.026224) | 1.573652 / 1.492716 (0.080936) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.294975 / 0.018006 (0.276968) | 0.615093 / 0.000490 (0.614603) | 0.004279 / 0.000200 (0.004079) | 0.000102 / 0.000054 (0.000047) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031557 / 0.037411 (-0.005855) | 0.085026 / 0.014526 (0.070500) | 0.101221 / 0.176557 (-0.075336) | 0.157432 / 0.737135 (-0.579703) | 0.102350 / 0.296338 (-0.193988) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.384158 / 0.215209 (0.168949) | 3.826656 / 2.077655 (1.749001) | 1.873510 / 1.504120 (0.369390) | 1.721913 / 1.541195 (0.180718) | 1.848779 / 1.468490 (0.380289) | 0.485128 / 4.584777 (-4.099649) | 3.656660 / 3.745712 (-0.089052) | 3.441964 / 5.269862 (-1.827898) | 2.150611 / 4.565676 (-2.415066) | 0.056869 / 0.424275 (-0.367406) | 0.007382 / 0.007607 (-0.000225) | 0.458751 / 0.226044 (0.232707) | 4.585028 / 2.268929 (2.316099) | 2.439538 / 55.444624 (-53.005086) | 2.116959 / 6.876477 (-4.759518) | 2.459220 / 2.142072 (0.317147) | 0.580907 / 4.805227 (-4.224321) | 0.134502 / 6.500664 (-6.366162) | 0.062528 / 0.075469 (-0.012941) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.251006 / 1.841788 (-0.590782) | 20.755849 / 8.074308 (12.681541) | 14.456950 / 10.191392 (4.265558) | 0.167074 / 0.680424 (-0.513350) | 0.018482 / 0.534201 (-0.515719) | 0.395867 / 0.579283 (-0.183416) | 0.415620 / 0.434364 (-0.018744) | 0.462247 / 0.540337 (-0.078090) | 0.645762 / 1.386936 (-0.741174) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007050 / 0.011353 (-0.004303) | 0.004421 / 0.011008 (-0.006587) | 0.065312 / 0.038508 (0.026804) | 0.089790 / 0.023109 (0.066681) | 0.366318 / 0.275898 (0.090420) | 0.403542 / 0.323480 (0.080062) | 0.005695 / 0.007986 (-0.002290) | 0.003642 / 0.004328 (-0.000687) | 0.064540 / 0.004250 (0.060289) | 0.060933 / 0.037052 (0.023881) | 0.369004 / 0.258489 (0.110515) | 0.408056 / 0.293841 (0.114215) | 0.032124 / 0.128546 (-0.096422) | 0.008960 / 0.075646 (-0.066686) | 0.071267 / 0.419271 (-0.348005) | 0.049745 / 0.043533 (0.006212) | 0.367203 / 0.255139 (0.112064) | 0.383009 / 0.283200 (0.099809) | 0.025330 / 0.141683 (-0.116353) | 1.518290 / 1.452155 (0.066135) | 1.581738 / 1.492716 (0.089022) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.338281 / 0.018006 (0.320275) | 0.538195 / 0.000490 (0.537706) | 0.008498 / 0.000200 (0.008298) | 0.000121 / 0.000054 (0.000067) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033279 / 0.037411 (-0.004133) | 0.093233 / 0.014526 (0.078707) | 0.106019 / 0.176557 (-0.070538) | 0.161262 / 0.737135 (-0.575874) | 0.109935 / 0.296338 (-0.186404) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.411563 / 0.215209 (0.196354) | 4.102149 / 2.077655 (2.024495) | 2.108513 / 1.504120 (0.604393) | 1.945344 / 1.541195 (0.404150) | 2.066964 / 1.468490 (0.598474) | 0.482771 / 4.584777 (-4.102006) | 3.659160 / 3.745712 (-0.086552) | 3.420833 / 5.269862 (-1.849029) | 2.147276 / 4.565676 (-2.418400) | 0.056957 / 0.424275 (-0.367318) | 0.007898 / 0.007607 (0.000290) | 0.482401 / 0.226044 (0.256357) | 4.821044 / 2.268929 (2.552115) | 2.567993 / 55.444624 (-52.876631) | 2.336165 / 6.876477 (-4.540312) | 2.545066 / 2.142072 (0.402994) | 0.580888 / 4.805227 (-4.224339) | 0.134092 / 6.500664 (-6.366572) | 0.062681 / 0.075469 (-0.012788) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.379124 / 1.841788 (-0.462664) | 21.627949 / 8.074308 (13.553641) | 15.064818 / 10.191392 (4.873426) | 0.169707 / 0.680424 (-0.510716) | 0.018671 / 0.534201 (-0.515530) | 0.400496 / 0.579283 (-0.178787) | 0.415542 / 0.434364 (-0.018822) | 0.484351 / 0.540337 (-0.055986) | 0.646046 / 1.386936 (-0.740890) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#53d55f33bfac9febb0c355e136f2847e5f3e3b53 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007113 / 0.011353 (-0.004240) | 0.004436 / 0.011008 (-0.006572) | 0.087422 / 0.038508 (0.048914) | 0.085996 / 0.023109 (0.062887) | 0.311772 / 0.275898 (0.035873) | 0.353281 / 0.323480 (0.029801) | 0.004562 / 0.007986 (-0.003423) | 0.003840 / 0.004328 (-0.000488) | 0.066500 / 0.004250 (0.062250) | 0.061293 / 0.037052 (0.024241) | 0.328840 / 0.258489 (0.070351) | 0.365587 / 0.293841 (0.071746) | 0.031802 / 0.128546 (-0.096744) | 0.008881 / 0.075646 (-0.066765) | 0.289671 / 0.419271 (-0.129601) | 0.053348 / 0.043533 (0.009816) | 0.307822 / 0.255139 (0.052683) | 0.342559 / 0.283200 (0.059360) | 0.025760 / 0.141683 (-0.115923) | 1.509944 / 1.452155 (0.057789) | 1.556634 / 1.492716 (0.063918) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.282036 / 0.018006 (0.264029) | 0.608350 / 0.000490 (0.607860) | 0.004843 / 0.000200 (0.004643) | 0.000108 / 0.000054 (0.000054) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029810 / 0.037411 (-0.007601) | 0.086215 / 0.014526 (0.071689) | 0.102200 / 0.176557 (-0.074356) | 0.158051 / 0.737135 (-0.579084) | 0.103083 / 0.296338 (-0.193255) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.392119 / 0.215209 (0.176910) | 3.895796 / 2.077655 (1.818141) | 1.921118 / 1.504120 (0.416998) | 1.754271 / 1.541195 (0.213076) | 1.880991 / 1.468490 (0.412501) | 0.481158 / 4.584777 (-4.103618) | 3.609210 / 3.745712 (-0.136502) | 3.412018 / 5.269862 (-1.857843) | 2.131710 / 4.565676 (-2.433967) | 0.057122 / 0.424275 (-0.367153) | 0.007444 / 0.007607 (-0.000163) | 0.468880 / 0.226044 (0.242835) | 4.682441 / 2.268929 (2.413512) | 2.505613 / 55.444624 (-52.939012) | 2.149655 / 6.876477 (-4.726822) | 2.465904 / 2.142072 (0.323832) | 0.578877 / 4.805227 (-4.226350) | 0.133504 / 6.500664 (-6.367160) | 0.061422 / 0.075469 (-0.014047) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.269395 / 1.841788 (-0.572393) | 21.107558 / 8.074308 (13.033250) | 15.318502 / 10.191392 (5.127110) | 0.165273 / 0.680424 (-0.515151) | 0.018783 / 0.534201 (-0.515418) | 0.396259 / 0.579283 (-0.183024) | 0.412907 / 0.434364 (-0.021457) | 0.465723 / 0.540337 (-0.074615) | 0.638414 / 1.386936 (-0.748522) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007083 / 0.011353 (-0.004270) | 0.004216 / 0.011008 (-0.006793) | 0.065362 / 0.038508 (0.026854) | 0.095454 / 0.023109 (0.072345) | 0.364220 / 0.275898 (0.088322) | 0.417650 / 0.323480 (0.094170) | 0.006114 / 0.007986 (-0.001872) | 0.003577 / 0.004328 (-0.000751) | 0.064830 / 0.004250 (0.060579) | 0.062535 / 0.037052 (0.025483) | 0.381844 / 0.258489 (0.123355) | 0.418996 / 0.293841 (0.125155) | 0.031386 / 0.128546 (-0.097160) | 0.008913 / 0.075646 (-0.066733) | 0.070860 / 0.419271 (-0.348411) | 0.049132 / 0.043533 (0.005599) | 0.360406 / 0.255139 (0.105267) | 0.392407 / 0.283200 (0.109207) | 0.024611 / 0.141683 (-0.117072) | 1.509051 / 1.452155 (0.056896) | 1.570288 / 1.492716 (0.077572) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.368611 / 0.018006 (0.350605) | 0.537587 / 0.000490 (0.537098) | 0.028056 / 0.000200 (0.027856) | 0.000317 / 0.000054 (0.000262) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031570 / 0.037411 (-0.005841) | 0.088985 / 0.014526 (0.074460) | 0.105268 / 0.176557 (-0.071288) | 0.156724 / 0.737135 (-0.580412) | 0.105266 / 0.296338 (-0.191073) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.413861 / 0.215209 (0.198652) | 4.127001 / 2.077655 (2.049347) | 2.112114 / 1.504120 (0.607994) | 1.945200 / 1.541195 (0.404005) | 2.083031 / 1.468490 (0.614540) | 0.488086 / 4.584777 (-4.096691) | 3.565584 / 3.745712 (-0.180128) | 3.380782 / 5.269862 (-1.889079) | 2.103481 / 4.565676 (-2.462195) | 0.058203 / 0.424275 (-0.366072) | 0.007996 / 0.007607 (0.000389) | 0.487986 / 0.226044 (0.261941) | 4.871023 / 2.268929 (2.602095) | 2.584632 / 55.444624 (-52.859992) | 2.240103 / 6.876477 (-4.636374) | 2.555165 / 2.142072 (0.413092) | 0.591950 / 4.805227 (-4.213278) | 0.134919 / 6.500664 (-6.365745) | 0.062868 / 0.075469 (-0.012601) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.369731 / 1.841788 (-0.472057) | 21.497888 / 8.074308 (13.423580) | 14.555054 / 10.191392 (4.363662) | 0.168768 / 0.680424 (-0.511656) | 0.018837 / 0.534201 (-0.515364) | 0.394512 / 0.579283 (-0.184771) | 0.405459 / 0.434364 (-0.028905) | 0.475479 / 0.540337 (-0.064858) | 0.631994 / 1.386936 (-0.754942) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#53d55f33bfac9febb0c355e136f2847e5f3e3b53 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009072 / 0.011353 (-0.002280) | 0.004894 / 0.011008 (-0.006114) | 0.108790 / 0.038508 (0.070282) | 0.081783 / 0.023109 (0.058674) | 0.381963 / 0.275898 (0.106064) | 0.450700 / 0.323480 (0.127220) | 0.006961 / 0.007986 (-0.001025) | 0.004035 / 0.004328 (-0.000293) | 0.081420 / 0.004250 (0.077169) | 0.058029 / 0.037052 (0.020976) | 0.437453 / 0.258489 (0.178964) | 0.472607 / 0.293841 (0.178766) | 0.048663 / 0.128546 (-0.079884) | 0.013512 / 0.075646 (-0.062134) | 0.406009 / 0.419271 (-0.013262) | 0.067616 / 0.043533 (0.024084) | 0.383641 / 0.255139 (0.128502) | 0.456734 / 0.283200 (0.173534) | 0.033391 / 0.141683 (-0.108292) | 1.753529 / 1.452155 (0.301375) | 1.859831 / 1.492716 (0.367115) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.215128 / 0.018006 (0.197122) | 0.538261 / 0.000490 (0.537771) | 0.005430 / 0.000200 (0.005230) | 0.000124 / 0.000054 (0.000069) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032664 / 0.037411 (-0.004748) | 0.093465 / 0.014526 (0.078939) | 0.106637 / 0.176557 (-0.069919) | 0.173642 / 0.737135 (-0.563494) | 0.113944 / 0.296338 (-0.182394) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.629212 / 0.215209 (0.414003) | 6.116729 / 2.077655 (4.039075) | 2.818000 / 1.504120 (1.313880) | 2.515317 / 1.541195 (0.974122) | 2.466588 / 1.468490 (0.998098) | 0.850815 / 4.584777 (-3.733962) | 5.051292 / 3.745712 (1.305579) | 4.472138 / 5.269862 (-0.797724) | 2.968317 / 4.565676 (-1.597360) | 0.100173 / 0.424275 (-0.324102) | 0.008407 / 0.007607 (0.000800) | 0.743972 / 0.226044 (0.517928) | 7.397619 / 2.268929 (5.128690) | 3.596681 / 55.444624 (-51.847943) | 2.854674 / 6.876477 (-4.021803) | 3.114274 / 2.142072 (0.972201) | 1.064879 / 4.805227 (-3.740348) | 0.215981 / 6.500664 (-6.284683) | 0.078159 / 0.075469 (0.002690) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.543291 / 1.841788 (-0.298497) | 23.244641 / 8.074308 (15.170333) | 20.784610 / 10.191392 (10.593218) | 0.222002 / 0.680424 (-0.458422) | 0.028584 / 0.534201 (-0.505617) | 0.478563 / 0.579283 (-0.100720) | 0.556101 / 0.434364 (0.121737) | 0.547446 / 0.540337 (0.007109) | 0.764318 / 1.386936 (-0.622618) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008651 / 0.011353 (-0.002702) | 0.004925 / 0.011008 (-0.006083) | 0.078995 / 0.038508 (0.040487) | 0.092878 / 0.023109 (0.069769) | 0.485615 / 0.275898 (0.209717) | 0.532157 / 0.323480 (0.208677) | 0.008228 / 0.007986 (0.000243) | 0.004777 / 0.004328 (0.000449) | 0.076892 / 0.004250 (0.072642) | 0.066905 / 0.037052 (0.029853) | 0.465497 / 0.258489 (0.207008) | 0.520153 / 0.293841 (0.226312) | 0.047357 / 0.128546 (-0.081189) | 0.016870 / 0.075646 (-0.058776) | 0.090481 / 0.419271 (-0.328791) | 0.060774 / 0.043533 (0.017241) | 0.474368 / 0.255139 (0.219229) | 0.503981 / 0.283200 (0.220781) | 0.036025 / 0.141683 (-0.105658) | 1.769939 / 1.452155 (0.317784) | 1.851518 / 1.492716 (0.358802) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.265947 / 0.018006 (0.247941) | 0.532317 / 0.000490 (0.531828) | 0.004997 / 0.000200 (0.004797) | 0.000130 / 0.000054 (0.000076) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034112 / 0.037411 (-0.003299) | 0.102290 / 0.014526 (0.087764) | 0.109989 / 0.176557 (-0.066567) | 0.182813 / 0.737135 (-0.554323) | 0.111774 / 0.296338 (-0.184565) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.584893 / 0.215209 (0.369684) | 6.138505 / 2.077655 (4.060850) | 2.925761 / 1.504120 (1.421641) | 2.607320 / 1.541195 (1.066125) | 2.655827 / 1.468490 (1.187337) | 0.871140 / 4.584777 (-3.713637) | 5.051171 / 3.745712 (1.305459) | 4.708008 / 5.269862 (-0.561854) | 3.027485 / 4.565676 (-1.538191) | 0.100970 / 0.424275 (-0.323305) | 0.009640 / 0.007607 (0.002033) | 0.747818 / 0.226044 (0.521774) | 7.539930 / 2.268929 (5.271001) | 3.611693 / 55.444624 (-51.832931) | 2.924087 / 6.876477 (-3.952390) | 3.141993 / 2.142072 (0.999920) | 1.062921 / 4.805227 (-3.742306) | 0.213185 / 6.500664 (-6.287479) | 0.077146 / 0.075469 (0.001677) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.669182 / 1.841788 (-0.172606) | 23.810242 / 8.074308 (15.735934) | 21.220649 / 10.191392 (11.029257) | 0.212639 / 0.680424 (-0.467785) | 0.026705 / 0.534201 (-0.507496) | 0.469231 / 0.579283 (-0.110053) | 0.551672 / 0.434364 (0.117308) | 0.575043 / 0.540337 (0.034706) | 0.767511 / 1.386936 (-0.619425) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#53d55f33bfac9febb0c355e136f2847e5f3e3b53 \"CML watermark\")\n" ]
2023-08-08T15:43:56
2023-08-08T16:08:22
2023-08-08T15:49:06
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6129", "html_url": "https://github.com/huggingface/datasets/pull/6129", "diff_url": "https://github.com/huggingface/datasets/pull/6129.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6129.patch", "merged_at": "2023-08-08T15:49:06" }
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6129/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6129/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6128
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6128/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6128/comments
https://api.github.com/repos/huggingface/datasets/issues/6128/events
https://github.com/huggingface/datasets/issues/6128
1,841,545,493
I_kwDODunzps5tw8EV
6,128
IndexError: Invalid key: 88 is out of bounds for size 0
{ "login": "TomasAndersonFang", "id": 38727343, "node_id": "MDQ6VXNlcjM4NzI3MzQz", "avatar_url": "https://avatars.githubusercontent.com/u/38727343?v=4", "gravatar_id": "", "url": "https://api.github.com/users/TomasAndersonFang", "html_url": "https://github.com/TomasAndersonFang", "followers_url": "https://api.github.com/users/TomasAndersonFang/followers", "following_url": "https://api.github.com/users/TomasAndersonFang/following{/other_user}", "gists_url": "https://api.github.com/users/TomasAndersonFang/gists{/gist_id}", "starred_url": "https://api.github.com/users/TomasAndersonFang/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/TomasAndersonFang/subscriptions", "organizations_url": "https://api.github.com/users/TomasAndersonFang/orgs", "repos_url": "https://api.github.com/users/TomasAndersonFang/repos", "events_url": "https://api.github.com/users/TomasAndersonFang/events{/privacy}", "received_events_url": "https://api.github.com/users/TomasAndersonFang/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "Hi @TomasAndersonFang,\r\n\r\nHave you tried instead to use `torch_compile` in `transformers.TrainingArguments`? https://huggingface.co./docs/transformers/v4.31.0/en/main_classes/trainer#transformers.TrainingArguments.torch_compile", "> \r\n\r\nI tried this and got the following error:\r\n\r\n```\r\nTraceback (most recent call last):\r\n File \"/cephyr/NOBACKUP/groups/snic2021-23-24/LLM4-CodeOpt/env/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py\", line 324, in _compile\r\n out_code = transform_code_object(code, transform)\r\n File \"/cephyr/NOBACKUP/groups/snic2021-23-24/LLM4-CodeOpt/env/lib/python3.10/site-packages/torch/_dynamo/bytecode_transformation.py\", line 445, in transform_code_object\r\n transformations(instructions, code_options)\r\n File \"/cephyr/NOBACKUP/groups/snic2021-23-24/LLM4-CodeOpt/env/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py\", line 311, in transform\r\n tracer.run()\r\n File \"/cephyr/NOBACKUP/groups/snic2021-23-24/LLM4-CodeOpt/env/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py\", line 1726, in run\r\n super().run()\r\n File \"/cephyr/NOBACKUP/groups/snic2021-23-24/LLM4-CodeOpt/env/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py\", line 576, in run\r\n and self.step()\r\n File \"/cephyr/NOBACKUP/groups/snic2021-23-24/LLM4-CodeOpt/env/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py\", line 540, in step\r\n getattr(self, inst.opname)(inst)\r\n File \"/cephyr/NOBACKUP/groups/snic2021-23-24/LLM4-CodeOpt/env/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py\", line 1030, in LOAD_ATTR\r\n result = BuiltinVariable(getattr).call_function(\r\n File \"/cephyr/NOBACKUP/groups/snic2021-23-24/LLM4-CodeOpt/env/lib/python3.10/site-packages/torch/_dynamo/variables/builtin.py\", line 566, in call_function\r\n result = handler(tx, *args, **kwargs)\r\n File \"/cephyr/NOBACKUP/groups/snic2021-23-24/LLM4-CodeOpt/env/lib/python3.10/site-packages/torch/_dynamo/variables/builtin.py\", line 931, in call_getattr\r\n return obj.var_getattr(tx, name).add_options(options)\r\n File \"/cephyr/NOBACKUP/groups/snic2021-23-24/LLM4-CodeOpt/env/lib/python3.10/site-packages/torch/_dynamo/variables/nn_module.py\", line 124, in var_getattr\r\n subobj = inspect.getattr_static(base, name)\r\n File \"/apps/Arch/software/Python/3.10.8-GCCcore-12.2.0/lib/python3.10/inspect.py\", line 1777, in getattr_static\r\n raise AttributeError(attr)\r\nAttributeError: config\r\n\r\nfrom user code:\r\n File \"/cephyr/NOBACKUP/groups/snic2021-23-24/LLM4-CodeOpt/env/lib/python3.10/site-packages/peft/peft_model.py\", line 909, in forward\r\n if self.base_model.config.model_type == \"mpt\":\r\n\r\nSet torch._dynamo.config.verbose=True for more information\r\n\r\n\r\nYou can suppress this exception and fall back to eager by setting:\r\n torch._dynamo.config.suppress_errors = True\r\n\r\n\r\nThe above exception was the direct cause of the following exception:\r\n\r\nTraceback (most recent call last):\r\n File \"/cephyr/NOBACKUP/groups/snic2021-23-24/LLM4-CodeOpt/llm-copt/fine-tune/falcon/falcon_sft.py\", line 228, in <module>\r\n main()\r\n File \"/cephyr/NOBACKUP/groups/snic2021-23-24/LLM4-CodeOpt/llm-copt/fine-tune/falcon/falcon_sft.py\", line 221, in main\r\n trainer.train()\r\n File \"/cephyr/NOBACKUP/groups/snic2021-23-24/LLM4-CodeOpt/env/lib/python3.10/site-packages/transformers/trainer.py\", line 1539, in train\r\n return inner_training_loop(\r\n File \"/cephyr/NOBACKUP/groups/snic2021-23-24/LLM4-CodeOpt/env/lib/python3.10/site-packages/transformers/trainer.py\", line 1809, in _inner_training_loop\r\n tr_loss_step = self.training_step(model, inputs)\r\n File \"/cephyr/NOBACKUP/groups/snic2021-23-24/LLM4-CodeOpt/env/lib/python3.10/site-packages/transformers/trainer.py\", line 2654, in training_step\r\n loss = self.compute_loss(model, inputs)\r\n File \"/cephyr/NOBACKUP/groups/snic2021-23-24/LLM4-CodeOpt/env/lib/python3.10/site-packages/transformers/trainer.py\", line 2679, in compute_loss\r\n outputs = model(**inputs)\r\n File \"/cephyr/NOBACKUP/groups/snic2021-23-24/LLM4-CodeOpt/env/lib/python3.10/site-packages/torch/nn/modules/module.py\", line 1501, in _call_impl\r\n return forward_call(*args, **kwargs)\r\n File \"/cephyr/NOBACKUP/groups/snic2021-23-24/LLM4-CodeOpt/env/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py\", line 82, in forward\r\n return self.dynamo_ctx(self._orig_mod.forward)(*args, **kwargs)\r\n File \"/cephyr/NOBACKUP/groups/snic2021-23-24/LLM4-CodeOpt/env/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py\", line 209, in _fn\r\n return fn(*args, **kwargs)\r\n File \"/cephyr/NOBACKUP/groups/snic2021-23-24/LLM4-CodeOpt/env/lib/python3.10/site-packages/accelerate/utils/operations.py\", line 581, in forward\r\n return model_forward(*args, **kwargs)\r\n File \"/cephyr/NOBACKUP/groups/snic2021-23-24/LLM4-CodeOpt/env/lib/python3.10/site-packages/accelerate/utils/operations.py\", line 569, in __call__\r\n return convert_to_fp32(self.model_forward(*args, **kwargs))\r\n File \"/cephyr/NOBACKUP/groups/snic2021-23-24/LLM4-CodeOpt/env/lib/python3.10/site-packages/torch/amp/autocast_mode.py\", line 14, in decorate_autocast\r\n return func(*args, **kwargs)\r\n File \"/cephyr/NOBACKUP/groups/snic2021-23-24/LLM4-CodeOpt/env/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py\", line 337, in catch_errors\r\n return callback(frame, cache_size, hooks)\r\n File \"/cephyr/NOBACKUP/groups/snic2021-23-24/LLM4-CodeOpt/env/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py\", line 404, in _convert_frame\r\n result = inner_convert(frame, cache_size, hooks)\r\n File \"/cephyr/NOBACKUP/groups/snic2021-23-24/LLM4-CodeOpt/env/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py\", line 104, in _fn\r\n return fn(*args, **kwargs)\r\n File \"/cephyr/NOBACKUP/groups/snic2021-23-24/LLM4-CodeOpt/env/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py\", line 262, in _convert_frame_assert\r\n return _compile(\r\n File \"/cephyr/NOBACKUP/groups/snic2021-23-24/LLM4-CodeOpt/env/lib/python3.10/site-packages/torch/_dynamo/utils.py\", line 163, in time_wrapper\r\n r = func(*args, **kwargs)\r\n File \"/cephyr/NOBACKUP/groups/snic2021-23-24/LLM4-CodeOpt/env/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py\", line 394, in _compile\r\n raise InternalTorchDynamoError() from e\r\ntorch._dynamo.exc.InternalTorchDynamoError\r\n```", "Hi @TomasAndersonFang,\r\n\r\nI guess in this case it may be an issue with `transformers` (or `PyTorch`). I would recommend you open an issue on their repo." ]
2023-08-08T15:32:08
2023-08-10T09:31:12
null
NONE
null
null
null
### Describe the bug This bug generates when I use torch.compile(model) in my code, which seems to raise an error in datasets lib. ### Steps to reproduce the bug I use the following code to fine-tune Falcon on my private dataset. ```python import transformers from transformers import ( AutoModelForCausalLM, AutoTokenizer, AutoConfig, DataCollatorForSeq2Seq, Trainer, Seq2SeqTrainer, HfArgumentParser, Seq2SeqTrainingArguments, BitsAndBytesConfig, ) from peft import ( LoraConfig, get_peft_model, get_peft_model_state_dict, prepare_model_for_int8_training, set_peft_model_state_dict, ) import torch import os import evaluate import functools from datasets import load_dataset import bitsandbytes as bnb import logging import json import copy from typing import Dict, Optional, Sequence from dataclasses import dataclass, field # Lora settings LORA_R = 8 LORA_ALPHA = 16 LORA_DROPOUT= 0.05 LORA_TARGET_MODULES = ["query_key_value"] @dataclass class ModelArguments: model_name_or_path: Optional[str] = field(default="Salesforce/codegen2-7B") @dataclass class DataArguments: data_path: str = field(default=None, metadata={"help": "Path to the training data."}) train_file: str = field(default=None, metadata={"help": "Path to the evaluation data."}) eval_file: str = field(default=None, metadata={"help": "Path to the evaluation data."}) cache_path: str = field(default=None, metadata={"help": "Path to the cache directory."}) num_proc: int = field(default=4, metadata={"help": "Number of processes to use for data preprocessing."}) @dataclass class TrainingArguments(transformers.TrainingArguments): # cache_dir: Optional[str] = field(default=None) optim: str = field(default="adamw_torch") model_max_length: int = field( default=512, metadata={"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."}, ) is_lora: bool = field(default=True, metadata={"help": "Whether to use LORA."}) def tokenize(text, tokenizer, max_seq_len=512, add_eos_token=True): result = tokenizer( text, truncation=True, max_length=max_seq_len, padding=False, return_tensors=None, ) if ( result["input_ids"][-1] != tokenizer.eos_token_id and len(result["input_ids"]) < max_seq_len and add_eos_token ): result["input_ids"].append(tokenizer.eos_token_id) result["attention_mask"].append(1) if add_eos_token and len(result["input_ids"]) >= max_seq_len: result["input_ids"][max_seq_len - 1] = tokenizer.eos_token_id result["attention_mask"][max_seq_len - 1] = 1 result["labels"] = result["input_ids"].copy() return result def main(): parser = HfArgumentParser((ModelArguments, DataArguments, TrainingArguments)) model_args, data_args, training_args = parser.parse_args_into_dataclasses() config = AutoConfig.from_pretrained( model_args.model_name_or_path, cache_dir=data_args.cache_path, trust_remote_code=True, ) if training_args.is_lora: model = AutoModelForCausalLM.from_pretrained( model_args.model_name_or_path, cache_dir=data_args.cache_path, torch_dtype=torch.float16, trust_remote_code=True, load_in_8bit=True, quantization_config=BitsAndBytesConfig( load_in_8bit=True, llm_int8_threshold=6.0 ), ) model = prepare_model_for_int8_training(model) config = LoraConfig( r=LORA_R, lora_alpha=LORA_ALPHA, target_modules=LORA_TARGET_MODULES, lora_dropout=LORA_DROPOUT, bias="none", task_type="CAUSAL_LM", ) model = get_peft_model(model, config) else: model = AutoModelForCausalLM.from_pretrained( model_args.model_name_or_path, torch_dtype=torch.float16, cache_dir=data_args.cache_path, trust_remote_code=True, ) model.config.use_cache = False def print_trainable_parameters(model): """ Prints the number of trainable parameters in the model. """ trainable_params = 0 all_param = 0 for _, param in model.named_parameters(): all_param += param.numel() if param.requires_grad: trainable_params += param.numel() print( f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}" ) print_trainable_parameters(model) tokenizer = AutoTokenizer.from_pretrained( model_args.model_name_or_path, cache_dir=data_args.cache_path, model_max_length=training_args.model_max_length, padding_side="left", use_fast=True, trust_remote_code=True, ) tokenizer.pad_token = tokenizer.eos_token # Load dataset def generate_and_tokenize_prompt(sample): input_text = sample["input"] target_text = sample["output"] + tokenizer.eos_token full_text = input_text + target_text tokenized_full_text = tokenize(full_text, tokenizer, max_seq_len=512) tokenized_input_text = tokenize(input_text, tokenizer, max_seq_len=512) input_len = len(tokenized_input_text["input_ids"]) - 1 # -1 for eos token tokenized_full_text["labels"] = [-100] * input_len + tokenized_full_text["labels"][input_len:] return tokenized_full_text data_files = {} if data_args.train_file is not None: data_files["train"] = data_args.train_file if data_args.eval_file is not None: data_files["eval"] = data_args.eval_file dataset = load_dataset(data_args.data_path, data_files=data_files) train_dataset = dataset["train"] eval_dataset = dataset["eval"] train_dataset = train_dataset.map(generate_and_tokenize_prompt, num_proc=data_args.num_proc) eval_dataset = eval_dataset.map(generate_and_tokenize_prompt, num_proc=data_args.num_proc) data_collator = DataCollatorForSeq2Seq(tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True) # Evaluation metrics def compute_metrics(eval_preds, tokenizer): metric = evaluate.load('exact_match') preds, labels = eval_preds # In case the model returns more than the prediction logits if isinstance(preds, tuple): preds = preds[0] decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True, clean_up_tokenization_spaces=False) # Replace -100s in the labels as we can't decode them labels[labels == -100] = tokenizer.pad_token_id decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True, clean_up_tokenization_spaces=False) # Some simple post-processing decoded_preds = [pred.strip() for pred in decoded_preds] decoded_labels = [label.strip() for label in decoded_labels] result = metric.compute(predictions=decoded_preds, references=decoded_labels) return {'exact_match': result['exact_match']} compute_metrics_fn = functools.partial(compute_metrics, tokenizer=tokenizer) model = torch.compile(model) # Training trainer = Trainer( model=model, train_dataset=train_dataset, eval_dataset=eval_dataset, args=training_args, data_collator=data_collator, compute_metrics=compute_metrics_fn, ) trainer.train() trainer.save_state() trainer.save_model(output_dir=training_args.output_dir) tokenizer.save_pretrained(save_directory=training_args.output_dir) if __name__ == "__main__": main() ``` When I didn't use `torch.cpmpile(model)`, my code worked well. But when I added this line to my code, It produced the following error: ``` Traceback (most recent call last): File "falcon_sft.py", line 230, in <module> main() File "falcon_sft.py", line 223, in main trainer.train() File "python3.10/site-packages/transformers/trainer.py", line 1539, in train return inner_training_loop( File "python3.10/site-packages/transformers/trainer.py", line 1787, in _inner_training_loop for step, inputs in enumerate(epoch_iterator): File "python3.10/site-packages/accelerate/data_loader.py", line 384, in __iter__ current_batch = next(dataloader_iter) File "python3.10/site-packages/torch/utils/data/dataloader.py", line 633, in __next__ data = self._next_data() File "python3.10/site-packages/torch/utils/data/dataloader.py", line 677, in _next_data data = self._dataset_fetcher.fetch(index) # may raise StopIteration File "python3.10/site-packages/torch/utils/data/_utils/fetch.py", line 49, in fetch data = self.dataset.__getitems__(possibly_batched_index) File "python3.10/site-packages/datasets/arrow_dataset.py", line 2807, in __getitems__ batch = self.__getitem__(keys) File "python3.10/site-packages/datasets/arrow_dataset.py", line 2803, in __getitem__ return self._getitem(key) File "python3.10/site-packages/datasets/arrow_dataset.py", line 2787, in _getitem pa_subtable = query_table(self._data, key, indices=self._indices if self._indices is not None else None) File "python3.10/site-packages/datasets/formatting/formatting.py", line 583, in query_table _check_valid_index_key(key, size) File "python3.10/site-packages/datasets/formatting/formatting.py", line 536, in _check_valid_index_key _check_valid_index_key(int(max(key)), size=size) File "python3.10/site-packages/datasets/formatting/formatting.py", line 526, in _check_valid_index_key raise IndexError(f"Invalid key: {key} is out of bounds for size {size}") IndexError: Invalid key: 88 is out of bounds for size 0 ``` So I'm confused about why this error was generated, and how to fix it. Is this error produced by datasets or `torch.compile`? ### Expected behavior I want to use `torch.compile` in my code. ### Environment info - `datasets` version: 2.14.3 - Platform: Linux-4.18.0-425.19.2.el8_7.x86_64-x86_64-with-glibc2.28 - Python version: 3.10.8 - Huggingface_hub version: 0.16.4 - PyArrow version: 12.0.1 - Pandas version: 2.0.3
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6128/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6128/timeline
null
null
false

Dataset Card for "github-issues"

More Information needed

Downloads last month
37
Edit dataset card