datasetId
stringlengths
5
121
author
stringlengths
2
42
last_modified
unknown
downloads
int64
0
4.88M
likes
int64
0
7.61k
tags
sequencelengths
1
7.92k
task_categories
sequencelengths
0
47
βŒ€
createdAt
unknown
card
stringlengths
15
1.02M
DanteTemplar/pdf-extraction-agenda
DanteTemplar
"2025-03-08T21:15:44Z"
0
0
[ "license:mit", "region:us" ]
null
"2025-03-08T20:45:48Z"
--- license: mit ---
JosephBHodes/4chan-pol-2014-2024
JosephBHodes
"2025-03-09T00:38:40Z"
0
0
[ "license:cc-by-nc-nd-4.0", "region:us" ]
null
"2025-03-08T20:48:36Z"
--- license: cc-by-nc-nd-4.0 ---
Asap7772/hendrcyks_math_qwen__0_125
Asap7772
"2025-03-08T21:10:16Z"
0
0
[ "region:us" ]
null
"2025-03-08T20:49:36Z"
--- dataset_info: features: - name: problem dtype: string - name: solution dtype: string - name: answer dtype: string - name: subject dtype: string - name: level dtype: int64 - name: unique_id dtype: string - name: messages list: - name: content dtype: string - name: role dtype: string - name: ground_truth dtype: string - name: completion sequence: string - name: completion_answer sequence: string - name: completion_correct sequence: bool - name: completions_succ_rate dtype: float64 splits: - name: train num_bytes: 12252388 num_examples: 125 download_size: 3778123 dataset_size: 12252388 configs: - config_name: default data_files: - split: train path: data/train-* ---
Asap7772/hendrcyks_math_qwen__375_500
Asap7772
"2025-03-08T21:11:34Z"
0
0
[ "region:us" ]
null
"2025-03-08T20:49:37Z"
--- dataset_info: features: - name: problem dtype: string - name: solution dtype: string - name: answer dtype: string - name: subject dtype: string - name: level dtype: int64 - name: unique_id dtype: string - name: messages list: - name: content dtype: string - name: role dtype: string - name: ground_truth dtype: string - name: completion sequence: string - name: completion_answer sequence: string - name: completion_correct sequence: bool - name: completions_succ_rate dtype: float64 splits: - name: train num_bytes: 13192737 num_examples: 125 download_size: 4174996 dataset_size: 13192737 configs: - config_name: default data_files: - split: train path: data/train-* ---
Asap7772/hendrcyks_math_qwen__250_375
Asap7772
"2025-03-08T21:10:49Z"
0
0
[ "region:us" ]
null
"2025-03-08T20:49:37Z"
--- dataset_info: features: - name: problem dtype: string - name: solution dtype: string - name: answer dtype: string - name: subject dtype: string - name: level dtype: int64 - name: unique_id dtype: string - name: messages list: - name: content dtype: string - name: role dtype: string - name: ground_truth dtype: string - name: completion sequence: string - name: completion_answer sequence: string - name: completion_correct sequence: bool - name: completions_succ_rate dtype: float64 splits: - name: train num_bytes: 12659415 num_examples: 125 download_size: 3970467 dataset_size: 12659415 configs: - config_name: default data_files: - split: train path: data/train-* ---
Asap7772/hendrcyks_math_qwen__125_250
Asap7772
"2025-03-08T21:11:29Z"
0
0
[ "region:us" ]
null
"2025-03-08T20:49:41Z"
--- dataset_info: features: - name: problem dtype: string - name: solution dtype: string - name: answer dtype: string - name: subject dtype: string - name: level dtype: int64 - name: unique_id dtype: string - name: messages list: - name: content dtype: string - name: role dtype: string - name: ground_truth dtype: string - name: completion sequence: string - name: completion_answer sequence: string - name: completion_correct sequence: bool - name: completions_succ_rate dtype: float64 splits: - name: train num_bytes: 13031386 num_examples: 125 download_size: 4133919 dataset_size: 13031386 configs: - config_name: default data_files: - split: train path: data/train-* ---
mint89/air_dialogue
mint89
"2025-03-08T20:50:21Z"
0
0
[ "region:us" ]
null
"2025-03-08T20:49:43Z"
--- dataset_info: features: - name: action struct: - name: flight sequence: int64 - name: name dtype: string - name: status dtype: string - name: intent struct: - name: departure_airport dtype: string - name: departure_day dtype: string - name: departure_month dtype: string - name: goal dtype: string - name: max_connections dtype: int64 - name: max_price dtype: int64 - name: name dtype: string - name: return_airport dtype: string - name: return_day dtype: string - name: return_month dtype: string - name: timestamps sequence: int64 - name: dialogue sequence: string - name: expected_action struct: - name: flight sequence: int64 - name: name dtype: string - name: status dtype: string - name: search_info list: - name: button_name dtype: string - name: field_name dtype: string - name: field_value dtype: string - name: timestmamp dtype: int64 - name: correct_sample dtype: bool splits: - name: train num_bytes: 357952385 num_examples: 321459 download_size: 125170307 dataset_size: 357952385 configs: - config_name: default data_files: - split: train path: data/train-* ---
mint89/financial_phrasebank
mint89
"2025-03-08T20:50:28Z"
0
0
[ "region:us" ]
null
"2025-03-08T20:50:25Z"
--- dataset_info: features: - name: sentence dtype: string - name: label dtype: int64 splits: - name: train num_bytes: 303371 num_examples: 2264 download_size: 168687 dataset_size: 303371 configs: - config_name: default data_files: - split: train path: data/train-* ---
aiPhone13/aiPhone651
aiPhone13
"2025-03-08T21:12:45Z"
0
0
[ "license:creativeml-openrail-m", "region:us" ]
null
"2025-03-08T20:52:07Z"
--- license: creativeml-openrail-m ---
Kelvin878/sft_dataset
Kelvin878
"2025-03-08T22:49:00Z"
0
0
[ "region:us" ]
null
"2025-03-08T20:52:53Z"
--- dataset_info: features: - name: conversations list: - name: from dtype: string - name: value dtype: string splits: - name: train num_bytes: 657593 num_examples: 65 download_size: 258802 dataset_size: 657593 configs: - config_name: default data_files: - split: train path: data/train-* ---
omniomni/omniscience
omniomni
"2025-03-08T20:59:40Z"
0
0
[ "region:us" ]
null
"2025-03-08T20:56:17Z"
--- dataset_info: features: - name: text dtype: string splits: - name: train num_bytes: 1071195740 num_examples: 391986 download_size: 626312874 dataset_size: 1071195740 configs: - config_name: default data_files: - split: train path: data/train-* ---
mertaylin/arc-agi-transduction100k-direct-ft
mertaylin
"2025-03-08T21:00:58Z"
0
0
[ "region:us" ]
null
"2025-03-08T20:59:14Z"
--- dataset_info: features: - name: id dtype: string - name: messages list: - name: content dtype: string - name: role dtype: string - name: images dtype: image - name: answer dtype: string - name: cot_problem dtype: string splits: - name: train num_bytes: 625694622.875 num_examples: 94897 - name: test num_bytes: 33156300.63 num_examples: 4995 download_size: 260266460 dataset_size: 658850923.505 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
aniket01saraf/HGPT
aniket01saraf
"2025-03-08T21:07:02Z"
0
0
[ "license:apache-2.0", "region:us" ]
null
"2025-03-08T21:05:26Z"
--- license: apache-2.0 ---
mint89/air_dialogue-tokenized
mint89
"2025-03-08T21:12:29Z"
0
0
[ "region:us" ]
null
"2025-03-08T21:11:31Z"
--- dataset_info: features: - name: action struct: - name: flight sequence: int64 - name: name dtype: string - name: status dtype: string - name: intent struct: - name: departure_airport dtype: string - name: departure_day dtype: string - name: departure_month dtype: string - name: goal dtype: string - name: max_connections dtype: int64 - name: max_price dtype: int64 - name: name dtype: string - name: return_airport dtype: string - name: return_day dtype: string - name: return_month dtype: string - name: timestamps sequence: int64 - name: dialogue sequence: string - name: expected_action struct: - name: flight sequence: int64 - name: name dtype: string - name: status dtype: string - name: search_info list: - name: button_name dtype: string - name: field_name dtype: string - name: field_value dtype: string - name: timestmamp dtype: int64 - name: correct_sample dtype: bool - name: input_ids sequence: int32 - name: attention_mask sequence: int8 splits: - name: train num_bytes: 1183459097 num_examples: 321459 download_size: 191511485 dataset_size: 1183459097 configs: - config_name: default data_files: - split: train path: data/train-* ---
Daemontatox/Arabic_captioned_Images
Daemontatox
"2025-03-08T21:12:36Z"
0
0
[ "task_categories:question-answering", "task_categories:text-generation", "language:ar", "license:apache-2.0", "size_categories:1M<n<10M", "arxiv:2402.11684", "region:us", "GPT-4V", "LVLM", "Vision", "Language" ]
[ "question-answering", "text-generation" ]
"2025-03-08T21:12:35Z"
--- license: apache-2.0 task_categories: - question-answering - text-generation language: - ar tags: - GPT-4V - LVLM - Vision - Language size_categories: - 1M<n<10M configs: - config_name: allava_laion data_files: - split: caption path: "allava_laion/ALLaVA-Caption-LAION-4V_Arabic.json" # - split: instruct # path: "allava_laion/ALLaVA-Instruct-LAION-4V_Chinese.json" - config_name: allava_vflan data_files: - split: caption path: "allava_vflan/ALLaVA-Caption-VFLAN-4V_Arabic.json" # - split: instruct # path: "allava_vflan/ALLaVA-Instruct-VFLAN-4V_Chinese.json" # - config_name: allava_laion_instruction # data_files: "allava_laion/ALLaVA-Instruct-LAION-4V.json" # configs: # - config_name: default # data_files: # - split: allava_laion_caption # path: "allava_laion/ALLaVA-Caption-LAION-4V.json" # - split: allava_laion_instruction # path: "allava_laion/ALLaVA-Instruction-LAION-4V.json" # configs: # - config_name: default # - data_files: # - split: allava_laion_caption # - path: # - "allava_laion/ALLaVA-Caption-LAION-4V.json" # - split: allava_laion_instruction # - path: # - "allava_laion/ALLaVA-Instruction-LAION-4V.json" --- ## ALLaVA-4V for Arabic This is the Arabic version of the ALLaVA-4V data. We have translated the ALLaVA-4V data into Arabic through ChatGPT and instructed ChatGPT not to translate content related to OCR. The original dataset can be found [here](https://huggingface.co./datasets/FreedomIntelligence/ALLaVA-4V), and the image data can be downloaded from [ALLaVA-4V](https://huggingface.co./datasets/FreedomIntelligence/ALLaVA-4V). #### Citation If you find our data useful, please consider citing our work! We are FreedomIntelligence from Shenzhen Research Institute of Big Data and The Chinese University of Hong Kong, Shenzhen. ``` @misc{chen2024allava, title={ALLaVA: Harnessing GPT4V-synthesized Data for A Lite Vision-Language Model}, author={Guiming Hardy Chen and Shunian Chen and Ruifei Zhang and Junying Chen and Xiangbo Wu and Zhiyi Zhang and Zhihong Chen and Jianquan Li and Xiang Wan and Benyou Wang}, year={2024}, eprint={2402.11684}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
Turgayy54/tugi
Turgayy54
"2025-03-08T21:19:19Z"
0
0
[ "region:us" ]
null
"2025-03-08T21:15:31Z"
--- dataset_info: features: - name: instruction dtype: string - name: input dtype: string - name: response dtype: string splits: - name: train num_bytes: 669.3333333333334 num_examples: 2 - name: test num_bytes: 352 num_examples: 1 download_size: 6241 dataset_size: 1021.3333333333334 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
kaangml/t2i_tiny_nasa
kaangml
"2025-03-08T22:20:41Z"
0
0
[ "task_categories:text-to-image", "task_categories:image-to-text", "language:en", "license:apache-2.0", "region:us" ]
[ "text-to-image", "image-to-text" ]
"2025-03-08T21:22:01Z"
--- license: apache-2.0 dataset_info: features: - name: image dtype: image - name: prompt dtype: string splits: - name: train num_bytes: 1327071156.556 num_examples: 1069 download_size: 1220407709 dataset_size: 1327071156.556 configs: - config_name: default data_files: - split: train path: data/train-* language: - en task_categories: - text-to-image - image-to-text --- # Dataset Card for t2i_tiny_nasa # NASA Image Dataset This dataset is created using images obtained from [NASA's official image library](https://images.nasa.gov). The dataset contains a collection of images along with their corresponding textual descriptions (prompts). This dataset can be used for various applications, including image-to-text tasks, text-to-image generation, and other AI-based image analysis studies. ## Dataset Information - **Source:** [NASA Image Library](https://images.nasa.gov) - **Content:** Images and corresponding textual descriptions - **License:** Please refer to NASA's official terms of use ## Usage Example You can load and visualize an example from the dataset using the following code: ```python from datasets import load_dataset # Load dataset dataset = load_dataset("kaangml/t2i_tiny_nasa") # Get an example from the dataset example = dataset['train'][0] from PIL import Image import matplotlib.pyplot as plt # Load and display the image image_path = example['image']['path'] image = Image.open(image_path) plt.imshow(image) plt.title(f"Prompt: {example['prompt']}") plt.axis('off') plt.show() ``` ## Citation If you use this dataset in your research or project, please give credit to NASA for the images and include a reference to this dataset. ## Acknowledgment This dataset is built using publicly available images from NASA's official repository. NASA does not endorse or officially support this dataset.
eugrug-60/medical-o1-reasoning-SFT-it_f10_incremental
eugrug-60
"2025-03-08T23:50:06Z"
0
0
[ "task_categories:question-answering", "task_categories:text-generation", "language:it", "license:apache-2.0", "region:us", "medical", "biology" ]
[ "question-answering", "text-generation" ]
"2025-03-08T21:24:07Z"
--- dataset_info: features: - name: Question_IT dtype: string - name: Complex_CoT_IT dtype: string - name: Response_IT dtype: string splits: - name: train num_bytes: 1579399 num_examples: 750 download_size: 955580 dataset_size: 1579399 configs: - config_name: default data_files: - split: train path: data/train-* license: apache-2.0 task_categories: - question-answering - text-generation language: - it tags: - medical - biology pretty_name: medical-o1-reasoning-SFT-it_f10_incremental --- ## News [2025/03/08] We open sourced the medical reasoning dataset for SFT translated into italian language. ## Dataset Description This dataset is used to fine-tune DeepSeek-R1-Distill-Llama-8B in order to generate a medical LLM designed for advanced medical reasoning. We used the "facebook/nllb-200-distilled-600M" model to translate from the "FreedomIntelligence/medical-o1-reasoning-SFT" dataset # Citation We would like to thank the authors of the original dataset, and cite their work below. # Contacts For comments discussions or questions about this dataset, please write me at: [email protected]
pltops/A-OKVQA
pltops
"2025-03-08T21:26:41Z"
0
0
[ "region:us" ]
null
"2025-03-08T21:25:44Z"
--- dataset_info: features: - name: image dtype: image - name: question_id dtype: string - name: question dtype: string - name: choices list: string - name: correct_choice_idx dtype: int8 - name: direct_answers dtype: string - name: difficult_direct_answer dtype: bool - name: rationales list: string splits: - name: chunk_0 num_bytes: 30925736.0 num_examples: 568 - name: chunk_1 num_bytes: 30501119.0 num_examples: 568 - name: chunk_2 num_bytes: 30764094.0 num_examples: 568 - name: chunk_3 num_bytes: 30728016.0 num_examples: 568 - name: chunk_4 num_bytes: 30946528.0 num_examples: 568 - name: chunk_5 num_bytes: 30583089.0 num_examples: 568 - name: chunk_6 num_bytes: 31038309.0 num_examples: 568 - name: chunk_7 num_bytes: 31299940.0 num_examples: 568 - name: chunk_8 num_bytes: 31301375.0 num_examples: 568 - name: chunk_9 num_bytes: 31398844.0 num_examples: 568 - name: chunk_10 num_bytes: 29711492.0 num_examples: 568 - name: chunk_11 num_bytes: 30872264.0 num_examples: 568 - name: chunk_12 num_bytes: 31141639.0 num_examples: 568 - name: chunk_13 num_bytes: 31169855.0 num_examples: 568 - name: chunk_14 num_bytes: 30766808.0 num_examples: 568 - name: chunk_15 num_bytes: 30802699.0 num_examples: 568 - name: chunk_16 num_bytes: 31070898.0 num_examples: 568 - name: chunk_17 num_bytes: 31141353.0 num_examples: 568 - name: chunk_18 num_bytes: 31128070.0 num_examples: 568 - name: chunk_19 num_bytes: 31650030.0 num_examples: 568 - name: chunk_20 num_bytes: 30868463.0 num_examples: 568 - name: chunk_21 num_bytes: 30897342.0 num_examples: 568 - name: chunk_22 num_bytes: 31100625.0 num_examples: 568 - name: chunk_23 num_bytes: 31349987.0 num_examples: 568 - name: chunk_24 num_bytes: 31913412.0 num_examples: 568 - name: chunk_25 num_bytes: 30722971.0 num_examples: 568 - name: chunk_26 num_bytes: 31089925.0 num_examples: 568 - name: chunk_27 num_bytes: 30036032.0 num_examples: 568 - name: chunk_28 num_bytes: 31139406.0 num_examples: 568 - name: chunk_29 num_bytes: 435343854.192 num_examples: 7968 download_size: 1328727737 dataset_size: 1333404175.192 configs: - config_name: default data_files: - split: chunk_0 path: data/chunk_0-* - split: chunk_1 path: data/chunk_1-* - split: chunk_2 path: data/chunk_2-* - split: chunk_3 path: data/chunk_3-* - split: chunk_4 path: data/chunk_4-* - split: chunk_5 path: data/chunk_5-* - split: chunk_6 path: data/chunk_6-* - split: chunk_7 path: data/chunk_7-* - split: chunk_8 path: data/chunk_8-* - split: chunk_9 path: data/chunk_9-* - split: chunk_10 path: data/chunk_10-* - split: chunk_11 path: data/chunk_11-* - split: chunk_12 path: data/chunk_12-* - split: chunk_13 path: data/chunk_13-* - split: chunk_14 path: data/chunk_14-* - split: chunk_15 path: data/chunk_15-* - split: chunk_16 path: data/chunk_16-* - split: chunk_17 path: data/chunk_17-* - split: chunk_18 path: data/chunk_18-* - split: chunk_19 path: data/chunk_19-* - split: chunk_20 path: data/chunk_20-* - split: chunk_21 path: data/chunk_21-* - split: chunk_22 path: data/chunk_22-* - split: chunk_23 path: data/chunk_23-* - split: chunk_24 path: data/chunk_24-* - split: chunk_25 path: data/chunk_25-* - split: chunk_26 path: data/chunk_26-* - split: chunk_27 path: data/chunk_27-* - split: chunk_28 path: data/chunk_28-* - split: chunk_29 path: data/chunk_29-* ---
amuvarma/emilia-snac-merged-18m-mod7-delay
amuvarma
"2025-03-08T22:01:55Z"
0
0
[ "region:us" ]
null
"2025-03-08T21:27:48Z"
--- dataset_info: features: - name: codes_list sequence: int64 - name: text dtype: string splits: - name: train num_bytes: 111442415676 num_examples: 17114684 download_size: 29034463150 dataset_size: 111442415676 configs: - config_name: default data_files: - split: train path: data/train-* ---
Daemontatox/image_captions
Daemontatox
"2025-03-08T21:28:10Z"
0
0
[ "task_categories:text-to-image", "task_categories:image-to-text", "language:en", "region:us", "synthetic" ]
[ "text-to-image", "image-to-text" ]
"2025-03-08T21:28:10Z"
--- dataset_info: features: - name: image dtype: image - name: caption dtype: string splits: - name: train num_bytes: 316862569250.04 num_examples: 1074164 download_size: 310695026221 dataset_size: 316862569250.04 configs: - config_name: default data_files: - split: train path: data/train-* task_categories: - text-to-image - image-to-text language: - en tags: - synthetic --- <img src="https://takara.ai/images/logo-24/TakaraAi.svg" width="200" alt="Takara.ai Logo" /> From the Frontier Research Team at takara.ai we present over 1 million curated captioned images for multimodal text and image tasks. --- ## Usage ```python from datasets import load_dataset ds = load_dataset("takara-ai/image_captions") print(ds) ``` --- ## Example <figure> <img src="https://huggingface.co./datasets/takara-ai/image_captions/resolve/main/media/image_grid_compressed.jpg" alt="Alternative text"> <figcaption>10,000 images from the dataset.</figcaption> </figure> ## Methodology We consolidated multiple open source datasets through an intensive 96-hour computational process across three nodes. This involved standardizing and validating the data through extensive cleaning and normalization. The resulting dataset features embedded PIL images rather than URLs, improving accessibility while reducing dependency on source websites. --- For research inquiries and press, please reach out to [email protected] > δΊΊι‘žγ‚’ε€‰ι©γ™γ‚‹
wilgomoreira/dataset_vineyardLogits_sigmoid
wilgomoreira
"2025-03-08T21:42:06Z"
0
0
[ "task_categories:image-segmentation", "license:mit", "region:us", "deep-learning", "agriculture", "vineyards", "segmentation", "logits" ]
[ "image-segmentation" ]
"2025-03-08T21:31:33Z"
--- tags: - deep-learning - agriculture - vineyards - segmentation - logits license: mit datasets: - dataset_vineyardLogits_sigmoid task_categories: - image-segmentation --- # Vineyard Logits Sigmoid Dataset πŸ‡ ## πŸ“Œ Overview The **dataset_vineyardLogits_sigmoid** is a collection of **logits and labels** used for training and testing deep learning models in **precision agriculture**. πŸ’‘ **Key Details**: - **Binary classification task** with **one class**. - **Sigmoid activation function** used to output probabilities. - **Optimized for distinguishing vine plants from background elements**. This dataset provides valuable logits from models trained on vineyard segmentation tasks, enabling further research and development in precision agriculture. --- ## πŸ“Š Hyperparameters The dataset consists of **three distinct datasets** used for **binary classification**. Below are the key hyperparameters used during training and testing: 1. **Split Ratio** - The dataset is split **80:20** (80% training, 20% testing). 2. **Learning Rate** - Initial **learning rate: 0.001**. 3. **Batch Sizes** - **Training batch size**: **30** - **Testing batch size**: **3** - This ensures efficient model training and evaluation. --- ## πŸ“‚ Dataset Structure ```plaintext dataset_vineyardLogits_sigmoid β”œβ”€β”€ deeplab_EARLY_FUSION_t1 β”œβ”€β”€ deeplab_EARLY_FUSION_t2 β”œβ”€β”€ deeplab_EARLY_FUSION_t3 β”œβ”€β”€ deeplab_GNDVI_t1 β”œβ”€β”€ deeplab_GNDVI_t2 β”œβ”€β”€ deeplab_GNDVI_t3 β”œβ”€β”€ deeplab_NDVI_t1 β”œβ”€β”€ deeplab_NDVI_t2 β”œβ”€β”€ deeplab_NDVI_t3 β”œβ”€β”€ deeplab_RGB_t1 β”œβ”€β”€ deeplab_RGB_t2 β”œβ”€β”€ deeplab_RGB_t3 β”œβ”€β”€ segnet_EARLY_FUSION_t1 β”œβ”€β”€ segnet_EARLY_FUSION_t2 β”œβ”€β”€ segnet_EARLY_FUSION_t3 β”œβ”€β”€ segnet_GNDVI_t1 β”œβ”€β”€ segnet_GNDVI_t2 β”œβ”€β”€ segnet_GNDVI_t3 β”œβ”€β”€ segnet_NDVI_t1 β”œβ”€β”€ segnet_NDVI_t2 β”œβ”€β”€ segnet_NDVI_t3 β”œβ”€β”€ segnet_RGB_t1 β”œβ”€β”€ segnet_RGB_t2 β”œβ”€β”€ segnet_RGB_t3 └── README.md ``` --- ## πŸ“‘ Contents - **model_modality_fold_n/pred_masks_train**: Logits from the training set. - **model_modality_fold_n/pred_masks_test**: Logits from the test set. --- ## πŸ“Έ Data Description - **Model Logits** The dataset consists of logits generated by **DeepLabV3** and **SegNet** during training and testing. These logits are **unnormalized raw scores** before applying the **sigmoid activation function**. - **Original Images** The images originate from aerial multispectral imagery collected from **three vineyards in central Portugal**: - **Quinta de Baixo (QTA)** - **ESAC** - **Valdoeiro (VAL)** βœ… **Captured at 240x240 resolution** using: - **X7 RGB camera** - **MicaSense Altum multispectral sensor** βœ… Includes **RGB and Near-Infrared (NIR) bands**, enabling vegetation indices like **NDVI** and **GNDVI**. βœ… **Ground-truth annotations available** for vineyard segmentation. πŸ“Œ **For more details**, refer to the dataset: [Cybonic, "DL Vineyard Segmentation Study," v1.0, GitHub, 2024](https://github.com/Cybonic/DL_vineyard_segmentation_study) --- ## πŸ“₯ How to Use ### **1️⃣ Load in Python** To load the dataset directly from Hugging Face: ```python from datasets import load_dataset dataset = load_dataset("wilgomoreira/dataset_vineyardLogits_sigmoid") print(dataset) ``` ### **2️⃣ Download Specific Files** To download a specific file: ```bash wget https://huggingface.co./datasets/seu-usuario/dataset_vineyardLogits_sigmoid/resolve/main/logits_train.npz ``` --- ## πŸ›  License This dataset is released under the **MIT License**. Please make sure to comply with the license terms when using this dataset. --- ## πŸ™Œ Acknowledgments This dataset was created by **Wilgo Cardoso** for research in **precision agriculture and deep learning segmentation**. --- ## πŸ“§ Contact For any questions or collaborations, please contact: βœ‰οΈ **[email protected]**
nberkowitz/mini_grass_text
nberkowitz
"2025-03-08T21:32:51Z"
0
0
[ "region:us" ]
null
"2025-03-08T21:32:22Z"
--- dataset_info: features: - name: assembly dtype: string - name: chrom dtype: string - name: start dtype: int64 - name: end dtype: int64 - name: strand dtype: string - name: text dtype: string splits: - name: train num_bytes: 833899997 num_examples: 1472295 - name: validation num_bytes: 104809024 num_examples: 185100 - name: test num_bytes: 246571007 num_examples: 435487 download_size: 537837994 dataset_size: 1185280028 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* ---
Atomic-Ai/AtomicGPT2-data
Atomic-Ai
"2025-03-08T21:43:27Z"
0
1
[ "task_categories:question-answering", "language:de", "license:mit", "size_categories:10K<n<100K", "region:us", "legal", "QA", "GPT", "ai", "dataset", "Atomic", "2" ]
[ "question-answering" ]
"2025-03-08T21:36:47Z"
--- license: mit task_categories: - question-answering language: - de tags: - legal - QA - GPT - ai - dataset - Atomic - '2' size_categories: - 10K<n<100K ---
tshasan/CC-Meta25-1M
tshasan
"2025-03-08T23:29:09Z"
0
0
[ "license:cc-by-4.0", "region:us", "common-crawl", "web-metadata", "nlp", "2025" ]
null
"2025-03-08T21:38:27Z"
--- dataset_info: features: - name: url dtype: string - name: title dtype: string - name: snippet dtype: string - name: language dtype: string splits: num_examples: 1000000 license: cc-by-4.0 tags: - "common-crawl" - "web-metadata" - "nlp" - "2025" version: 1.0.0 --- # CC-Meta25-1M [![License: CC BY 4.0](https://img.shields.io/badge/License-CC_BY_4.0-blue.svg)](https://creativecommons.org/licenses/by/4.0/) [![Hugging Face Dataset](https://img.shields.io/badge/Hugging_Face-Dataset-blue)](https://huggingface.co./datasets/tshasan/cc-meta25-1m) ## Overview The **CC-Meta25-1M** dataset comprises 1,000,341 tuples of web metadata (URL, title, snippet, language) extracted via uniform random sampling from the Common Crawl February 2025 dataset (CC-MAIN-2025-08. Released under version 1.0.0, it captures a representative snapshot of web content from early 2025, retaining original snippet text including boilerplate such as cookie notices and navigation elements for authenticity. This dataset is intended for researchers and practitioners exploring web metadata, linguistic distributions, or temporal web trends. ## Dataset Specifications - **Source**: [Common Crawl CC-MAIN-2025-08](https://commoncrawl.org) - **Size**: 1,000,341 records, [323.3 MB] (Parquet format) - **Sampling**: Uniform random selection from the February 2025 crawl - **Features**: - `url`: Web page URL (string; "N/A" if invalid or missing) - `title`: Page title (string; "N/A" if missing) - `snippet`: Text excerpt from the page (string; includes boilerplate, "N/A" if missing) - `language`: ISO 639-1 language code (string; e.g., "en", "N/A" if missing) - **Processing**: - Missing values in all fields replaced with "N/A". - Duplicates preserved to mirror the raw crawl (0.01% duplicated). ## Accessing the Dataset Hosted on Hugging Face, the dataset can be accessed as follows: ```python from datasets import load_dataset dataset = load_dataset("tshasan/cc-meta25-1m") print(dataset[0])
Asap7772/cog_behav_all_strategies
Asap7772
"2025-03-08T22:02:22Z"
0
0
[ "region:us" ]
null
"2025-03-08T22:02:20Z"
--- dataset_info: features: - name: query dtype: string - name: completion dtype: string splits: - name: train num_bytes: 1466458 num_examples: 1000 - name: test num_bytes: 305543 num_examples: 200 download_size: 580991 dataset_size: 1772001 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
InfiniAILab/gsm8k
InfiniAILab
"2025-03-08T22:09:17Z"
0
0
[ "task_categories:question-answering", "language:en", "size_categories:1K<n<10K", "region:us" ]
[ "question-answering" ]
"2025-03-08T22:06:31Z"
--- dataset_info: features: - name: question dtype: string - name: answer dtype: string - name: solution dtype: string splits: - name: test num_bytes: 721975 num_examples: 1319 download_size: 420637 dataset_size: 721975 configs: - config_name: default data_files: - split: test path: data/test-* task_categories: - question-answering language: - en size_categories: - 1K<n<10K ---
mlfoundations-dev/SCP-116k_r1_annotation__training_subset
mlfoundations-dev
"2025-03-08T22:09:04Z"
0
0
[ "language:en", "license:mit", "region:us" ]
null
"2025-03-08T22:08:57Z"
--- language: en license: mit tag: curator --- <a href="https://github.com/bespokelabsai/curator/"> <img src="https://huggingface.co./datasets/bespokelabs/Bespoke-Stratos-17k/resolve/main/made_with_curator.png" alt="Made with Curator" width=200px> </a> ## Dataset card for SCP-116k_r1_annotation__training_subset This dataset was made with [Curator](https://github.com/bespokelabsai/curator/). ## Dataset details A sample from the dataset: ```python { "id": "books_416_problem_0", "source": "SCP-116K", "text": [ "You are an advanced AI language model specializing in solving scientific problems step by step. Carefully analyze each part of the problem, verify the accuracy of your reasoning with relevant facts and data, and provide clear, logical solutions. Reflect on and review your approach throughout the problem-solving process to ensure precision and thoroughness. Always think through the problem step by step and provide your answers accordingly.", "An electron is confined in a three-dimensional infinite potential well. The sides parallel to the $x$-, $y$-, and $z$-axes are of length $L$ each.\\n\\n(a) Write the appropriate Schr\u00f6dinger equation.\\n\\n(b) Write the time-independent wave function corresponding to the state of the lowest possible energy.\\n\\n(c) Give an expression for the number of states, $N$, having energy less than some given $E$. Assume $N \\gg 1.\\n\\n(Wisconsin)", "So I've got this problem here about an electron in a three-dimensional infinite potential well, and all the sides are of length L. It's got three parts: writing the Schr\u00f6dinger equation, finding the lowest energy wave function, and then figuring out how many states have energy less than some given value E, assuming N is much greater than one. It's from the University of Wisconsin.\n\nAlright, let's start with part (a): writing the appropriate Schr\u00f6dinger equation. Since it's a three-dimensional infinite potential well, I know that the potential V is zero inside the well and infinite outside. So, inside the well, the time-independent Schr\u00f6dinger equation should be:\n\n\\[-\\frac{\\hbar^2}{2m} \\nabla^2 \\psi(x,y,z) = E \\psi(x,y,z)\\]\n\nWhere \\(\\nabla^2\\) is the Laplacian operator in three dimensions, which is:\n\n\\[\\nabla^2 = \\frac{\\partial^2}{\\partial x^2} + \\frac{\\partial^2}{\\partial y^2} + \\frac{\\partial^2}{\\partial z^2}\\]\n\nSo, plugging that in, the equation becomes:\n\n\\[-\\frac{\\hbar^2}{2m} \\left( \\frac{\\partial^2 \\psi}{\\partial x^2} + \\frac{\\partial^2 \\psi}{\\partial y^2} + \\frac{\\partial^2 \\psi}{\\partial z^2} \\right) = E \\psi(x,y,z)\\]\n\nThat should be the appropriate Schr\u00f6dinger equation for this system.\n\nMoving on to part (b): writing the time-independent wave function for the state of lowest possible energy.\n\nIn a three-dimensional infinite potential well, the energy levels are given by:\n\n\\[E_{n_x,n_y,n_z} = \\frac{\\hbar^2 \\pi^2}{2m L^2} (n_x^2 + n_y^2 + n_z^2)\\]\n\nWhere \\(n_x\\), \\(n_y\\), and \\(n_z\\) are positive integers (1,2,3,...). The lowest energy state corresponds to the smallest possible values of \\(n_x\\), \\(n_y\\), and \\(n_z\\), which are all 1.\n\nSo, the lowest energy is:\n\n\\[E_{1,1,1} = \\frac{\\hbar^2 \\pi^2}{2m L^2} (1^2 + 1^2 + 1^2) = \\frac{3 \\hbar^2 \\pi^2}{2m L^2}\\]\n\nThe wave function for this state is the product of the one-dimensional wave functions for each direction:\n\n\\[\\psi_{1,1,1}(x,y,z) = \\psi_{1x}(x) \\psi_{1y}(y) \\psi_{1z}(z)\\]\n\nWhere each one-dimensional wave function is:\n\n\\[\\psi_{1x}(x) = \\sqrt{\\frac{2}{L}} \\sin\\left(\\frac{\\pi x}{L}\\right)\\]\\[\\psi_{1y}(y) = \\sqrt{\\frac{2}{L}} \\sin\\left(\\frac{\\pi y}{L}\\right)\\]\\[\\psi_{1z}(z) = \\sqrt{\\frac{2}{L}} \\sin\\left(\\frac{\\pi z}{L}\\right)\\]\n\nSo, the overall wave function is:\n\n\\[\\psi_{1,1,1}(x,y,z) = \\left( \\frac{2}{L} \\right)^{3/2} \\sin\\left(\\frac{\\pi x}{L}\\right) \\sin\\left(\\frac{\\pi y}{L}\\right) \\sin\\left(\\frac{\\pi z}{L}\\right)\\]\n\nThat should be the wave function for the lowest energy state.\n\nNow, part (c): giving an expression for the number of states N having energy less than some given E, assuming N is much greater than one.\n\nThis sounds like it's asking for the density of states in energy. For a three-dimensional infinite potential well, the energy levels are determined by the quantum numbers \\(n_x\\), \\(n_y\\), and \\(n_z\\), all positive integers.\n\nThe energy for a given set of quantum numbers is:\n\n\\[E_{n_x,n_y,n_z} = \\frac{\\hbar^2 \\pi^2}{2m L^2} (n_x^2 + n_y^2 + n_z^2)\\]\n\nLet's define a variable to simplify this expression:\n\nLet \\(\\gamma = \\frac{2m E L^2}{\\hbar^2 \\pi^2}\\)\n\nThen, the condition \\(E_{n_x,n_y,n_z} < E\\) becomes:\n\n\\[n_x^2 + n_y^2 + n_z^2 < \\gamma\\]\n\nSo, N is the number of integer triplets (n_x, n_y, n_z) with positive integers such that \\(n_x^2 + n_y^2 + n_z^2 < \\gamma\\).\n\nWhen N is much greater than one, we can approximate this number using the volume of a sphere in three dimensions, since \\(n_x^2 + n_y^2 + n_z^2 < \\gamma\\) describes a sphere of radius \\(\\sqrt{\\gamma}\\) in n-space.\n\nThe volume of a sphere in three dimensions is \\(\\frac{4}{3} \\pi r^3\\), but since \\(n_x\\), \\(n_y\\), and \\(n_z\\) are positive integers, we're only considering the first octant. So, the number of states N should be approximately:\n\n\\[N \\approx \\frac{1}{8} \\cdot \\frac{4}{3} \\pi (\\sqrt{\\gamma})^3 = \\frac{1}{6} \\pi \\gamma^{3/2}\\]\n\nSubstituting back for \\(\\gamma\\):\n\n\\[N \\approx \\frac{1}{6} \\pi \\left( \\frac{2m E L^2}{\\hbar^2 \\pi^2} \\right)^{3/2}\\]\n\nSimplifying:\n\n\\[N \\approx \\frac{1}{6} \\pi \\cdot \\frac{(2m E L^2)^{3/2}}{(\\hbar^2 \\pi^2)^{3/2}} = \\frac{1}{6} \\pi \\cdot \\frac{(2m E L^2)^{3/2}}{\\hbar^3 \\pi^3} = \\frac{1}{6} \\cdot \\frac{(2m E L^2)^{3/2}}{\\hbar^3 \\pi^{2}}\\]\n\nFurther simplifying:\n\n\\[N \\approx \\frac{1}{6 \\pi^2} \\cdot \\frac{(2m E L^2)^{3/2}}{\\hbar^3}\\]\n\nThat should be the expression for the number of states with energy less than E, assuming N is much greater than one.\n\nLet me just double-check that. The approximation makes sense because when N is large, the number of states inside the sphere is well-approximated by the volume of the sphere. The factor of \\(\\frac{1}{8}\\) comes from considering only the first octant since all n's are positive integers.\n\nI think that's the correct expression.\n\n**Final Answer**\n\n\\[\\boxed{N \\approx \\frac{1}{6 \\pi^2} \\cdot \\frac{(2m E L^2)^{3/2}}{\\hbar^3}}\\]" ], "tag": [ "S", "Q", "A" ], "r1_reasoning": "Okay, so I need to solve this problem about an electron in a three-dimensional infinite potential well. Let me start by recalling what I know about infinite potential wells, also known as infinite square wells. In one dimension, the potential is zero inside a region of length L and infinite outside, which confines the particle to that region. The solutions to the Schr\u00f6dinger equation in that case are sine or cosine functions, depending on the boundary conditions, and the energy levels are quantized.\n\nSince this is a three-dimensional problem, the potential is zero inside a cube of side length L and infinite outside. That means the electron is completely free to move inside the cube but cannot escape it. The Schr\u00f6dinger equation for this system should be separable into x, y, and z components because the potential is zero inside the cube and the infinite potential outside makes the boundary conditions separable as well.\n\nStarting with part (a), which asks to write the appropriate Schr\u00f6dinger equation. The time-independent Schr\u00f6dinger equation (TISE) in three dimensions is generally given by:\n\n$$\n-\\frac{\\hbar^2}{2m} \\nabla^2 \\psi(x, y, z) + V(x, y, z) \\psi(x, y, z) = E \\psi(x, y, z)\n$$\n\nIn this case, the potential V(x, y, z) is zero inside the cube (0 \u2264 x, y, z \u2264 L) and infinite outside. So, inside the cube, the equation simplifies to:\n\n$$\n-\\frac{\\hbar^2}{2m} \\left( \\frac{\\partial^2 \\psi}{\\partial x^2} + \\frac{\\partial^2 \\psi}{\\partial y^2} + \\frac{\\partial^2 \\psi}{\\partial z^2} \\right) = E \\psi\n$$\n\nThat's the appropriate Schr\u00f6dinger equation for the region where the electron is confined. Outside the cube, the wave function must be zero because the potential is infinite, so the probability of finding the electron there is zero.\n\nFor part (b), the time-independent wave function corresponding to the lowest possible energy. The lowest energy state in a quantum system is the ground state, which in the case of a particle in a box corresponds to the lowest quantum numbers in each direction. Since the potential is three-dimensional and separable, the wave function will be a product of the wave functions in each direction.\n\nIn one dimension, the ground state wave function is:\n\n$$\n\\psi_n(x) = \\sqrt{\\frac{2}{L}} \\sin\\left( \\frac{n \\pi x}{L} \\right)\n$$\n\nwhere n = 1 for the ground state. Extending this to three dimensions, the quantum numbers for each direction (n_x, n_y, n_z) will all be 1 for the lowest energy state. Therefore, the wave function should be:\n\n$$\n\\psi_{1,1,1}(x, y, z) = \\left( \\frac{2}{L} \\right)^{3/2} \\sin\\left( \\frac{\\pi x}{L} \\right) \\sin\\left( \\frac{\\pi y}{L} \\right) \\sin\\left( \\frac{\\pi z}{L} \\right)\n$$\n\nThat's the ground state wave function. The energy associated with this state can be calculated using the formula for the energy levels in a 3D box:\n\n$$\nE_{n_x, n_y, n_z} = \\frac{\\hbar^2 \\pi^2}{2mL^2} (n_x^2 + n_y^2 + n_z^2)\n$$\n\nFor the ground state, n_x = n_y = n_z = 1, so the energy is:\n\n$$\nE_{1,1,1} = \\frac{3 \\hbar^2 \\pi^2}{2mL^2}\n$$\n\nBut part (b) only asks for the wave function, so that should be sufficient.\n\nMoving on to part (c), which asks for an expression for the number of states N with energy less than some given E, assuming N is much greater than 1. This is essentially asking for the density of states in a 3D infinite potential well. \n\nIn a 3D box, the energy levels are given by:\n\n$$\nE = \\frac{\\hbar^2 \\pi^2}{2mL^2} (n_x^2 + n_y^2 + n_z^2)\n$$\n\nLet me denote the constant factor as E_0 = \\frac{\\hbar^2 \\pi^2}{2mL^2}, so that E = E_0 (n_x^2 + n_y^2 + n_z^2). But actually, E_0 here would correspond to the coefficient multiplied by the sum of squares. Wait, let me check:\n\nWait, the energy is:\n\n$$\nE = \\frac{\\hbar^2}{2m} \\left( \\left(\\frac{\\pi}{L}\\right)^2 n_x^2 + \\left(\\frac{\\pi}{L}\\right)^2 n_y^2 + \\left(\\frac{\\pi}{L}\\right)^2 n_z^2 \\right) = \\frac{\\hbar^2 \\pi^2}{2mL^2} (n_x^2 + n_y^2 + n_z^2)\n$$\n\nYes, so if we let k^2 = (n_x^2 + n_y^2 + n_z^2)(\u03c0/L)^2, then E = (\u0127\u00b2k\u00b2)/(2m). But perhaps another way to think about this is in terms of the quantum numbers. Each state is defined by a triplet (n_x, n_y, n_z) where each n is a positive integer. The number of states with energy less than E is the number of triplets such that n_x^2 + n_y^2 + n_z^2 \u2264 (E 2mL\u00b2)/(\u0127\u00b2 \u03c0\u00b2).\n\nLet me define R^2 = (E 2mL\u00b2)/(\u0127\u00b2 \u03c0\u00b2), so the problem reduces to finding the number of positive integer triplets (n_x, n_y, n_z) such that n_x^2 + n_y^2 + n_z^2 \u2264 R^2. Since N is large, we can approximate this sum by the volume of an octant (since n_x, n_y, n_z are positive integers) of a sphere with radius R. \n\nIn three dimensions, the volume of a sphere is (4/3)\u03c0R\u00b3, and since we are dealing with positive integers (i.e., the first octant), the volume would be (1/8)(4/3)\u03c0R\u00b3) = \u03c0R\u00b3/6. However, each point (n_x, n_y, n_z) corresponds to a unit cube in the 3D space of quantum numbers, so the number of states N is approximately equal to the volume of the octant of the sphere with radius R. Therefore,\n\nN \u2248 (1/8) * (4/3)\u03c0R\u00b3) = \u03c0R\u00b3/6\n\nBut R is sqrt(E 2mL\u00b2/(\u0127\u00b2 \u03c0\u00b2)) = sqrt(2mL\u00b2E/(\u0127\u00b2 \u03c0\u00b2)) = (L/\u03c0\u0127) sqrt(2mE)\n\nWait, let's compute R:\n\nFrom above, R\u00b2 = (2mL\u00b2E)/(\u0127\u00b2 \u03c0\u00b2), so R = (L/\u03c0\u0127) sqrt(2mE)\n\nTherefore, substituting back into N:\n\nN \u2248 (\u03c0/6) * [ (L/\u03c0\u0127) sqrt(2mE) ]\u00b3\n\nSimplify this expression:\n\nFirst, cube the term inside:\n\n[ (L/\u03c0\u0127) sqrt(2mE) ]\u00b3 = (L\u00b3)/(\u03c0\u00b3 \u0127\u00b3) * (2mE)^(3/2)\n\nMultiply by \u03c0/6:\n\nN \u2248 (\u03c0/6) * (L\u00b3)/(\u03c0\u00b3 \u0127\u00b3) * (2mE)^(3/2) = (1/(6 \u03c0\u00b2 \u0127\u00b3)) * L\u00b3 (2mE)^(3/2)\n\nSimplify constants:\n\n(2mE)^(3/2) = 2^(3/2) m^(3/2) E^(3/2) = 2*sqrt(2) m^(3/2) E^(3/2)\n\nSo,\n\nN \u2248 (1/(6 \u03c0\u00b2 \u0127\u00b3)) * L\u00b3 * 2*sqrt(2) m^(3/2) E^(3/2)\n\nCombine constants:\n\n2*sqrt(2) = 2^(3/2), so:\n\nN \u2248 (2^(3/2) m^(3/2) L\u00b3 E^(3/2)) / (6 \u03c0\u00b2 \u0127\u00b3)\n\nSimplify the denominator and numerator:\n\nDivide numerator and denominator by 2:\n\n= (2^(1/2) m^(3/2) L\u00b3 E^(3/2)) / (3 \u03c0\u00b2 \u0127\u00b3)\n\nBut 2^(1/2) is sqrt(2), so:\n\nN \u2248 (sqrt(2) m^(3/2) L\u00b3 E^(3/2)) / (3 \u03c0\u00b2 \u0127\u00b3)\n\nAlternatively, we can write this as:\n\nN \u2248 \\frac{L^3 (2mE)^{3/2}}{6 \\pi^2 \\hbar^3}\n\nWait, let me check that. Let's see:\n\nOriginal expression after substitution:\n\nN \u2248 (\u03c0/6) * [ (L/\u03c0\u0127) sqrt(2mE) ]\u00b3\n\nLet me compute this step by step:\n\nFirst, expand [ (L/\u03c0\u0127) sqrt(2mE) ]\u00b3:\n\n= (L^3)/(\u03c0^3 \u0127^3) * (2mE)^(3/2)\n\nMultiply by \u03c0/6:\n\n= (L^3)/(\u03c0^3 \u0127^3) * (2mE)^(3/2) * \u03c0/6\n\n= (L^3)/(\u03c0^2 \u0127^3) * (2mE)^(3/2) /6\n\n= (L^3 (2mE)^(3/2)) / (6 \u03c0^2 \u0127^3 )\n\nYes, that's correct. So,\n\nN \u2248 \\frac{L^3 (2mE)^{3/2}}{6 \\pi^2 \\hbar^3}\n\nBut wait, the standard formula for the density of states in 3D is:\n\nN(E) = \\frac{V (2m)^{3/2}}{6 \\pi^2 \\hbar^3} E^{3/2}\n\nWhere V is the volume, which in this case is L\u00b3. So this matches. Therefore, the number of states with energy less than E is approximately this expression. Since the problem states N >> 1, the approximation using the volume of the sphere is valid, as the discrete nature of the states can be ignored when N is large.\n\nTherefore, the expression for N is:\n\nN \u2248 \\frac{L\u00b3 (2m)^{3/2}}{6 \\pi\u00b2 \\hbar\u00b3} E^{3/2}\n\nAlternatively, written as:\n\nN = \\frac{V (2mE)^{3/2}}{6 \\pi\u00b2 \\hbar\u00b3}\n\nWhere V = L\u00b3. So that's the expression.\n\nBut let me verify once more. The key idea is that in the 3D box, each quantum state corresponds to a point (n_x, n_y, n_z) in the 3D space of positive integers. The equation n_x\u00b2 + n_y\u00b2 + n_z\u00b2 \u2264 R\u00b2 (with R defined as before) defines a sphere octant. The number of such points is approximately the volume of that octant. Since each state occupies a unit volume in this space, the number of states is roughly the volume. Therefore, the volume is (1/8) * (4/3) \u03c0 R\u00b3) = \u03c0 R\u00b3 /6. Then substituting R in terms of E gives the expression. So yes, that seems correct.\n\nTherefore, part (c)'s answer is N = (V (2m)^{3/2})/(6 \u03c0\u00b2 \u210f\u00b3) * E^{3/2} = (L\u00b3 (2mE)^{3/2})/(6 \u03c0\u00b2 \u210f\u00b3)\n\nSo summarizing:\n\n(a) The Schr\u00f6dinger equation is the three-dimensional TISE with V=0 inside the cube.\n\n(b) The ground state wave function is the product of the lowest energy wave functions in each direction.\n\n(c) The number of states N with energy less than E is proportional to E^{3/2}, derived from the volume of a sphere in quantum number space.\n\nI think that covers all parts. Let me just check if I missed any constants or made any algebraic errors in part (c). Let's re-express R again:\n\nStarting from E = (\u0127\u00b2 \u03c0\u00b2)/(2mL\u00b2)(n_x\u00b2 + n_y\u00b2 + n_z\u00b2)\n\nSo n_x\u00b2 + n_y\u00b2 + n_z\u00b2 = (2mL\u00b2E)/(\u0127\u00b2 \u03c0\u00b2) = R\u00b2\n\nTherefore, R = sqrt(2mL\u00b2E)/(\u0127 \u03c0)\n\nWait, sqrt(2mL\u00b2E) divided by \u0127 \u03c0. So R = (L sqrt(2mE)) / (\u0127 \u03c0)\n\nTherefore, the radius in the n_x, n_y, n_z space is R = (L sqrt(2mE)) / (\u0127 \u03c0)\n\nThen the volume of the octant is (1/8) * (4/3) \u03c0 R\u00b3 = \u03c0 R\u00b3 /6\n\nSo substituting R:\n\nN \u2248 \u03c0 /6 * [ (L sqrt(2mE))/( \u0127 \u03c0 ) ]\u00b3\n\n= \u03c0 /6 * (L\u00b3 (2mE)^(3/2)) / ( \u0127\u00b3 \u03c0\u00b3 )\n\n= (L\u00b3 (2mE)^(3/2)) / (6 \u03c0\u00b2 \u0127\u00b3 )\n\nYes, exactly as before. So that's correct.\n\nTherefore, all parts are answered.\n\n**Final Answer**\n\n(a) The appropriate Schr\u00f6dinger equation is \\boxed{-\\frac{\\hbar^2}{2m} \\left( \\frac{\\partial^2 \\psi}{\\partial x^2} + \\frac{\\partial^2 \\psi}{\\partial y^2} + \\frac{\\partial^2 \\psi}{\\partial z^2} \\right) = E \\psi}.\n\n(b) The time-independent wave function for the lowest energy state is \\boxed{\\psi_{1,1,1}(x, y, z) = \\left( \\frac{2}{L} \\right)^{3/2} \\sin\\left( \\frac{\\pi x}{L} \\right) \\sin\\left( \\frac{\\pi y}{L} \\right) \\sin\\left( \\frac{\\pi z}{L} \\right)}.\n\n(c) The number of states with energy less than \\( E \\) is \\boxed{N = \\frac{L^3 (2mE)^{3/2}}{6 \\pi^2 \\hbar^3}}.", "r1_solution": "(a) The appropriate Schr\u00f6dinger equation for an electron confined in a three-dimensional infinite potential well is the time-independent Schr\u00f6dinger equation with the potential \\( V(x, y, z) = 0 \\) inside the cube and infinite outside. Inside the cube, the equation simplifies to:\n\n$$\n\\boxed{-\\frac{\\hbar^2}{2m} \\left( \\frac{\\partial^2 \\psi}{\\partial x^2} + \\frac{\\partial^2 \\psi}{\\partial y^2} + \\frac{\\partial^2 \\psi}{\\partial z^2} \\right) = E \\psi}\n$$\n\n(b) The time-independent wave function corresponding to the lowest possible energy state (ground state) is given by the product of the lowest energy wave functions in each direction. The quantum numbers \\( n_x \\), \\( n_y \\), and \\( n_z \\) are all 1 for the ground state:\n\n$$\n\\boxed{\\psi_{1,1,1}(x, y, z) = \\left( \\frac{2}{L} \\right)^{3/2} \\sin\\left( \\frac{\\pi x}{L} \\right) \\sin\\left( \\frac{\\pi y}{L} \\right) \\sin\\left( \\frac{\\pi z}{L} \\right)}\n$$\n\n(c) The number of states \\( N \\) with energy less than \\( E \\) is approximated by considering the volume of an octant of a sphere in the quantum number space. This volume is proportional to \\( E^{3/2} \\) and results in the expression:\n\n$$\n\\boxed{N = \\frac{L^3 (2mE)^{3/2}}{6 \\pi^2 \\hbar^3}}\n$$", "claude_judge_correct": false, "claude_judge_reasoning": "", "judge_correct": false, "judge_reasoning": "" } ``` ## Loading the dataset You can load this dataset using the following code: ```python from datasets import load_dataset dataset = load_dataset("mlfoundations-dev/SCP-116k_r1_annotation__training_subset", split="default") ```
intelsense/natural-instruction-bangla
intelsense
"2025-03-08T22:22:16Z"
0
0
[ "license:mit", "region:us" ]
null
"2025-03-08T22:22:16Z"
--- license: mit ---
ArsParadox/Viel_Dataset_Lite
ArsParadox
"2025-03-08T22:22:43Z"
0
0
[ "license:mit", "region:us" ]
null
"2025-03-08T22:22:17Z"
--- license: mit ---
amuvarma/emilia-snac-merged-18m-mod7-delay-TTS
amuvarma
"2025-03-08T22:43:03Z"
0
0
[ "region:us" ]
null
"2025-03-08T22:23:56Z"
--- dataset_info: features: - name: input_ids sequence: int32 splits: - name: train num_bytes: 57331641372.0 num_examples: 17114684 download_size: 31098383737 dataset_size: 57331641372.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
mlfoundations-dev/sci_question_exp__scp_116k__training_2k_for_GPQA
mlfoundations-dev
"2025-03-08T22:28:01Z"
0
0
[ "region:us" ]
null
"2025-03-08T22:26:01Z"
--- dataset_info: features: - name: conversations list: - name: from dtype: string - name: value dtype: string splits: - name: train num_bytes: 2562135966 num_examples: 117685 download_size: 1108660992 dataset_size: 2562135966 configs: - config_name: default data_files: - split: train path: data/train-* ---
dleemiller/lm25
dleemiller
"2025-03-08T23:05:52Z"
0
0
[ "language:en", "license:mit", "size_categories:n<1K", "region:us", "retrieval", "bm25" ]
null
"2025-03-08T22:26:50Z"
--- license: mit language: - en tags: - retrieval - bm25 pretty_name: LM25 size_categories: - n<1K configs: - config_name: raw data_files: - split: train path: raw/* - config_name: sft data_files: - split: train path: sft/* --- # LM25 Dataset This dataset contains augmented queries from the [NanoBEIR](https://huggingface.co./collections/zeta-alpha-ai/nanobeir-66e1a0af21dfd93e620cd9f6) dataset. ## Dataset Details
mceballost/Userstory
mceballost
"2025-03-08T22:31:58Z"
0
0
[ "license:apache-2.0", "region:us" ]
null
"2025-03-08T22:30:14Z"
--- license: apache-2.0 ---
fracapuano/eeg2meg-medium
fracapuano
"2025-03-09T00:44:46Z"
0
0
[ "region:us" ]
null
"2025-03-08T22:31:12Z"
--- dataset_info: features: - name: fif_file dtype: string - name: events dtype: string - name: eeg_data sequence: sequence: float32 - name: meg_data sequence: sequence: float32 splits: - name: train num_bytes: 1244836723 num_examples: 2351 download_size: 1239979338 dataset_size: 1244836723 configs: - config_name: default data_files: - split: train path: data/train-* ---
sap-ai/rgm-ai-1-nummerical
sap-ai
"2025-03-08T22:34:54Z"
0
0
[ "license:mit", "region:us" ]
null
"2025-03-08T22:33:17Z"
--- license: mit --- This is example training data to train this ai I built.
vsahil/tulu3_math_datasets_combined_and_sampled_5000
vsahil
"2025-03-08T22:39:12Z"
0
0
[ "region:us" ]
null
"2025-03-08T22:39:10Z"
--- dataset_info: features: - name: id dtype: string - name: prompt dtype: string - name: messages list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 22301148.608711466 num_examples: 5000 download_size: 10414437 dataset_size: 22301148.608711466 configs: - config_name: default data_files: - split: train path: data/train-* ---
vsahil/tulu3_math_datasets_combined_and_sampled_10000
vsahil
"2025-03-08T22:39:16Z"
0
0
[ "region:us" ]
null
"2025-03-08T22:39:13Z"
--- dataset_info: features: - name: id dtype: string - name: prompt dtype: string - name: messages list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 44602297.21742293 num_examples: 10000 download_size: 20689937 dataset_size: 44602297.21742293 configs: - config_name: default data_files: - split: train path: data/train-* ---
vsahil/tulu3_math_datasets_combined_and_sampled_20000
vsahil
"2025-03-08T22:39:20Z"
0
0
[ "region:us" ]
null
"2025-03-08T22:39:16Z"
--- dataset_info: features: - name: id dtype: string - name: prompt dtype: string - name: messages list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 89204594.43484586 num_examples: 20000 download_size: 41362895 dataset_size: 89204594.43484586 configs: - config_name: default data_files: - split: train path: data/train-* ---
vsahil/tulu3_math_datasets_combined_and_sampled_50000
vsahil
"2025-03-08T22:39:26Z"
0
0
[ "region:us" ]
null
"2025-03-08T22:39:20Z"
--- dataset_info: features: - name: id dtype: string - name: prompt dtype: string - name: messages list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 223011486.08711466 num_examples: 50000 download_size: 103598203 dataset_size: 223011486.08711466 configs: - config_name: default data_files: - split: train path: data/train-* ---
vsahil/tulu3_math_datasets_combined_and_sampled_100000
vsahil
"2025-03-08T22:39:36Z"
0
0
[ "region:us" ]
null
"2025-03-08T22:39:27Z"
--- dataset_info: features: - name: id dtype: string - name: prompt dtype: string - name: messages list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 446022972.1742293 num_examples: 100000 download_size: 207394206 dataset_size: 446022972.1742293 configs: - config_name: default data_files: - split: train path: data/train-* ---
refine-ai/test
refine-ai
"2025-03-08T22:46:29Z"
0
0
[ "size_categories:n<1K", "region:us", "datadreamer", "datadreamer-0.28.0", "synthetic", "gpt-4" ]
null
"2025-03-08T22:42:35Z"
--- dataset_info: features: - name: reviews dtype: string splits: - name: train num_bytes: 611 num_examples: 1 download_size: 3709 dataset_size: 611 configs: - config_name: default data_files: - split: train path: data/train-* library_name: datadreamer size_categories: - n<1K tags: - datadreamer - datadreamer-0.28.0 - synthetic - gpt-4 --- # Dataset Card [Add more information here](https://huggingface.co./datasets/templates/dataset-card-example) --- This dataset was produced with [DataDreamer πŸ€–πŸ’€](https://datadreamer.dev). The synthetic dataset card can be found [here](datadreamer.json).
LightFury9/eval-250
LightFury9
"2025-03-08T23:32:23Z"
0
0
[ "region:us" ]
null
"2025-03-08T22:43:09Z"
--- dataset_info: features: - name: question dtype: string - name: answer dtype: string - name: prompt dtype: string - name: output dtype: string splits: - name: llama321 num_bytes: 1834224 num_examples: 1319 download_size: 770751 dataset_size: 1834224 configs: - config_name: default data_files: - split: llama321 path: data/llama321-* ---
ltnhut/FasImg1
ltnhut
"2025-03-08T23:30:34Z"
0
0
[ "license:unknown", "region:us" ]
null
"2025-03-08T22:44:02Z"
--- license: unknown ---
NamburiSrinath/databricks-dolly-15k-modernbert-split-kmeans-dim768-20250308
NamburiSrinath
"2025-03-08T22:47:39Z"
0
0
[ "region:us" ]
null
"2025-03-08T22:47:34Z"
--- dataset_info: features: - name: instruction dtype: string - name: context dtype: string - name: response dtype: string - name: category dtype: string - name: cluster_1 dtype: int32 - name: cluster_2 dtype: int32 - name: cluster_3 dtype: int32 - name: cluster_4 dtype: int32 - name: cluster_5 dtype: int32 - name: cluster_6 dtype: int32 - name: cluster_7 dtype: int32 - name: cluster_8 dtype: int32 - name: cluster_9 dtype: int32 - name: cluster_10 dtype: int32 - name: cluster_11 dtype: int32 - name: cluster_12 dtype: int32 - name: cluster_13 dtype: int32 - name: cluster_14 dtype: int32 - name: cluster_15 dtype: int32 - name: cluster_16 dtype: int32 - name: cluster_17 dtype: int32 - name: cluster_18 dtype: int32 - name: cluster_19 dtype: int32 - name: cluster_20 dtype: int32 - name: cluster_21 dtype: int32 - name: cluster_22 dtype: int32 - name: cluster_23 dtype: int32 - name: cluster_24 dtype: int32 - name: cluster_25 dtype: int32 - name: cluster_26 dtype: int32 - name: cluster_27 dtype: int32 - name: cluster_28 dtype: int32 - name: cluster_29 dtype: int32 - name: cluster_30 dtype: int32 splits: - name: train num_bytes: 13996909 num_examples: 15011 download_size: 8133830 dataset_size: 13996909 configs: - config_name: default data_files: - split: train path: data/train-* ---
LorenaYannnnn/how_lms_answer_one_to_many_factual_queries
LorenaYannnnn
"2025-03-08T23:32:48Z"
0
0
[ "task_categories:question-answering", "task_categories:text-generation", "language:en", "license:apache-2.0", "arxiv:2502.20475", "region:us" ]
[ "question-answering", "text-generation" ]
"2025-03-08T23:12:43Z"
--- license: apache-2.0 task_categories: - question-answering - text-generation language: - en dataset_info: - config_name: country_cities features: - name: query dtype: string - name: query_input_ids sequence: int64 - name: target_answer_idx dtype: int64 - name: target_answer_name dtype: string - name: target_answer_tokens sequence: int64 - name: three_answers_label_list sequence: string - name: three_answers_token_list sequence: sequence: int64 - name: three_answers_start_end_idx sequence: sequence: int64 - name: subject dtype: string - name: subject_token_list sequence: int64 - name: subject_start_end_idx sequence: int64 - name: relation_start_end_idx sequence: int64 splits: - name: llama_step_1 num_examples: 122 - name: llama_step_2 num_examples: 122 - name: llama_step_3 num_examples: 122 - name: mistral_step_1 num_examples: 116 - name: mistral_step_2 num_examples: 116 - name: mistral_step_3 num_examples: 116 - config_name: artist_songs features: - name: query dtype: string - name: query_input_ids sequence: int64 - name: target_answer_idx dtype: int64 - name: target_answer_name dtype: string - name: target_answer_tokens sequence: int64 - name: three_answers_label_list sequence: string - name: three_answers_token_list sequence: sequence: int64 - name: three_answers_start_end_idx sequence: sequence: int64 - name: subject dtype: string - name: subject_token_list sequence: int64 - name: subject_start_end_idx sequence: int64 - name: relation_start_end_idx sequence: int64 splits: - name: llama_step_1 num_examples: 261 - name: llama_step_2 num_examples: 261 - name: llama_step_3 num_examples: 261 - name: mistral_step_1 num_examples: 206 - name: mistral_step_2 num_examples: 206 - name: mistral_step_3 num_examples: 206 - config_name: actor_movies features: - name: query dtype: string - name: query_input_ids sequence: int64 - name: target_answer_idx dtype: int64 - name: target_answer_name dtype: string - name: target_answer_tokens sequence: int64 - name: three_answers_label_list sequence: string - name: three_answers_token_list sequence: sequence: int64 - name: three_answers_start_end_idx sequence: sequence: int64 - name: subject dtype: string - name: subject_token_list sequence: int64 - name: subject_start_end_idx sequence: int64 - name: relation_start_end_idx sequence: int64 splits: - name: llama_step_1 num_examples: 1285 - name: llama_step_2 num_examples: 1285 - name: llama_step_3 num_examples: 1285 - name: mistral_step_1 num_examples: 965 - name: mistral_step_2 num_examples: 965 - name: mistral_step_3 num_examples: 965 configs: - config_name: country_cities data_files: - split: llama_step_1 path: country_cities/meta-llama/Meta-Llama-3-8B-Instruct/country_cities_1.jsonl - split: llama_step_2 path: country_cities/meta-llama/Meta-Llama-3-8B-Instruct/country_cities_2.jsonl - split: llama_step_3 path: country_cities/meta-llama/Meta-Llama-3-8B-Instruct/country_cities_3.jsonl - split: mistral_step_1 path: country_cities/mistralai/Mistral-7B-Instruct-v0.2/country_cities_1.jsonl - split: mistral_step_2 path: country_cities/mistralai/Mistral-7B-Instruct-v0.2/country_cities_2.jsonl - split: mistral_step_3 path: country_cities/mistralai/Mistral-7B-Instruct-v0.2/country_cities_3.jsonl - config_name: artist_songs data_files: - split: llama_step_1 path: artist_songs/meta-llama/Meta-Llama-3-8B-Instruct/artist_songs_1.jsonl - split: llama_step_2 path: artist_songs/meta-llama/Meta-Llama-3-8B-Instruct/artist_songs_2.jsonl - split: llama_step_3 path: artist_songs/meta-llama/Meta-Llama-3-8B-Instruct/artist_songs_3.jsonl - split: mistral_step_1 path: artist_songs/mistralai/Mistral-7B-Instruct-v0.2/artist_songs_1.jsonl - split: mistral_step_2 path: artist_songs/mistralai/Mistral-7B-Instruct-v0.2/artist_songs_2.jsonl - split: mistral_step_3 path: artist_songs/mistralai/Mistral-7B-Instruct-v0.2/artist_songs_3.jsonl - config_name: actor_movies data_files: - split: llama_step_1 path: actor_movies/meta-llama/Meta-Llama-3-8B-Instruct/actor_movies_1.jsonl - split: llama_step_2 path: actor_movies/meta-llama/Meta-Llama-3-8B-Instruct/actor_movies_2.jsonl - split: llama_step_3 path: actor_movies/meta-llama/Meta-Llama-3-8B-Instruct/actor_movies_3.jsonl - split: mistral_step_1 path: actor_movies/mistralai/Mistral-7B-Instruct-v0.2/actor_movies_1.jsonl - split: mistral_step_2 path: actor_movies/mistralai/Mistral-7B-Instruct-v0.2/actor_movies_2.jsonl - split: mistral_step_3 path: actor_movies/mistralai/Mistral-7B-Instruct-v0.2/actor_movies_3.jsonl --- # One-to-Many Factual Queries Datasets This is the official dataset used in our paper [Promote, Suppress, Iterate: How Language Models Answer One-to-Many Factual Queries](https://www.arxiv.org/abs/2502.20475). - The dataset includes three subsets: ```country_cities```, ```artist_songs```, ```actor_movies```. - The ```{model_name}_step_{i}``` split in each subset contains the data used for analyzing ```model_name```'s behavior at answer step ```i``` where ```model_name``` can be ```llama``` or ```mistral``` and ```i = 1, 2, 3```. ## Load Datasets Run: ``` raw_datasets = load_dataset( "LorenaYannnnn/how_lms_answer_one_to_many_factual_queries", dataset_name, f"{model_name}_step_{target_answer_idx}" ) ``` where ```dataset_name``` is ```country_cities```, ```artist_songs```, or ```actor_movies```. ```model_name``` is ```llama``` or ```mistral```, and ```target_answer_idx``` is the answer step. ## Data Structure Following is an example entry: ``` { "query": "List only the name of three cities from Switzerland: 1.", # Input query "query_input_ids": [3231, 865, 272, 1141, 302, 1712, 9245, 477, 22491, 28747, 28705, 28740, 28723], # Input query token ids "target_answer_idx": 1, # answer step under examination "target_answer_name": "Zurich", # string of current step's answer "target_answer_tokens": [25571, 539], # token ids of the current step's answer "three_answers_label_list": ["Zurich", "Geneva", "Bern"], # list of all three answers "three_answers_token_list": [[25571, 539], [6242, 13237], [7562]], # token ids of all three answers "three_answers_start_end_idx": [[13, 15], [18, 20], [23, 24]], # start and end index of all three answers "subject": "Switzerland", # subject of the query "subject_token_list": [22491], # token ids of the subject "subject_start_end_idx": [8, 9] # start and end index of the subject "relation_start_end_idx": [6, 8] # start and end index of the relation (e.g.: cities, songs, movies) } ``` Refer to section 3.2 of the paper for the data sources and details for data curation. ## Github Code is available at [here](https://github.com/Lorenayannnnn/how-lms-answer-one-to-many-factual-queries). ## Citation ``` @article{yan2025promote, title={Promote, Suppress, Iterate: How Language Models Answer One-to-Many Factual Queries}, author={Yan, Tianyi Lorena and Jia, Robin}, journal={arXiv preprint arXiv:2502.20475}, year={2025} } ```
florian-morel22/deepfake-test
florian-morel22
"2025-03-08T23:15:05Z"
0
0
[ "region:us" ]
null
"2025-03-08T23:13:04Z"
--- dataset_info: features: - name: id dtype: int64 - name: image dtype: image - name: fake dtype: int64 - name: model dtype: string - name: id_source dtype: int64 - name: id_target dtype: int64 splits: - name: train num_bytes: 2719.0 num_examples: 4 download_size: 5211 dataset_size: 2719.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
eaalghamdi/chatrt_test_new
eaalghamdi
"2025-03-08T23:22:11Z"
0
0
[ "size_categories:n<1K", "region:us", "datadreamer", "datadreamer-0.28.0", "synthetic", "gpt-4o" ]
null
"2025-03-08T23:22:04Z"
--- dataset_info: features: - name: metadata dtype: string - name: topic dtype: string - name: data dtype: string - name: code dtype: string - name: image dtype: image - name: qa dtype: string splits: - name: train num_bytes: 87588.0 num_examples: 1 download_size: 105487 dataset_size: 87588.0 configs: - config_name: default data_files: - split: train path: data/train-* library_name: datadreamer size_categories: - n<1K tags: - datadreamer - datadreamer-0.28.0 - synthetic - gpt-4o - gpt-4o - gpt-4o - gpt-4o --- # Dataset Card [Add more information here](https://huggingface.co./datasets/templates/dataset-card-example) --- This dataset was produced with [DataDreamer πŸ€–πŸ’€](https://datadreamer.dev). The synthetic dataset card can be found [here](datadreamer.json).
intelsense/healix_360
intelsense
"2025-03-09T01:14:21Z"
0
0
[ "license:mit", "region:us" ]
null
"2025-03-08T23:33:35Z"
--- license: mit configs: - config_name: default data_files: - split: train path: data/train-* dataset_info: features: - name: processed_text dtype: string splits: - name: train num_bytes: 1176825 num_examples: 1600 download_size: 586577 dataset_size: 1176825 ---
ktiyab/cooking-knowledge-basics
ktiyab
"2025-03-08T23:41:20Z"
0
0
[ "task_categories:question-answering", "task_categories:text-generation", "task_categories:text2text-generation", "language:en", "license:cc-by-4.0", "size_categories:1K<n<10K", "region:us", "chemistry", "food", "cooking", "synthetic", "allergy", "flavors", "spices" ]
[ "question-answering", "text-generation", "text2text-generation" ]
"2025-03-08T23:38:17Z"
--- license: cc-by-4.0 task_categories: - question-answering - text-generation - text2text-generation language: - en tags: - chemistry - food - cooking - synthetic - allergy - flavors - spices pretty_name: ' cooking-knowledge-basics' size_categories: - 1K<n<10K --- # Comprehensive Cooking Knowledge Q&A Dataset This dataset (cooking_knowledge.csv) contains a rich collection of **synthetically generated** Question-Answer (Q&A) pairs covering diverse aspects of cooking knowledge, with particular emphasis on **food chemistry**, **flavor pairing**, **cooking techniques**, **dietary accommodations**, and **culinary traditions**. The data was **created using a large language model** with advanced reasoning capabilities, prompted with various grounded contexts and real-world culinary principles. It can be used to train or evaluate models that specialize in **cooking assistance**, **culinary education**, **dietary guidance**, or **instruction-following** tasks. ### Examples: - Which grains must I avoid for guests on a gluten-free diet? - What are fruit nectars? - Why use nitrite in cured meats? - What is a bouquet garni? - How can I flavor roasted goat? - What distinguishes spices from herbs? ### Core Criteria 1. **Accuracy & Scientific Grounding** - Provides scientifically accurate explanations for culinary processes and chemical reactions in food preparation. 2. **Adaptability Across Cuisines** - Offers guidance applicable across different culinary traditions and cooking methods. 3. **Dietary Inclusivity** - Addresses diverse dietary needs including allergies, religious restrictions, and health considerations. 4. **Practical Application** - Balances theoretical knowledge with actionable cooking advice that can be implemented in home kitchens. 5. **Flavor Intelligence** - Demonstrates sophisticated understanding of flavor combinations, ingredient pairings, and seasoning principles. 6. **Technical Clarity** - Explains complex culinary techniques and food science concepts in accessible language. --- ## Overview - **Context:** The data covers a comprehensive range of cooking knowledge spanning five key domains: allergies and dietary restrictions, food chemistry, cooking and conservation techniques, flavor combinations, and spice applications. - **Structure:** Each entry is formatted, containing three primary fields: - `type` – The category of culinary knowledge (allergies, chemistry, cooking, flavors, spices) - `question` – The user's specific culinary query - `response` – The corresponding answer or guidance - **Example Entry (Truncated for Clarity):** ```csv type,question,response "chemistry","What are fruit nectars?","Fruit nectars are beverages made from fruit pulp or puree, water, and sweeteners. Unlike fruit juices which are 100% fruit, nectars typically contain 25-50% fruit content. They're often made from fruits too pulpy for clear juices (like peaches or mangoes). Nectars have a thicker consistency than juices and may include acids like citric acid to balance sweetness and extend shelf life." ``` --- ## Data Generation - **Synthetic Creation:** This dataset is **synthetic**β€”the questions and answers were generated by a large language model with a focus on culinary knowledge. The prompts used in creation were developed to cover a broad spectrum of cooking-related topics, ensuring comprehensive coverage of the culinary domain. - **Advanced Reasoning:** The large language model employed sophisticated reasoning to create detailed and nuanced cooking advice, making each Q&A pair scientifically accurate yet practical. Despite the synthetic nature, the reasoning incorporates established food science principles and professional culinary best practices. --- ## Dataset Contents The dataset contains 5,647 Q&A pairs distributed across five core categories: | Category | Count | Description | |----------|-------|-------------| | **Allergies & Dietary Restrictions** | 93 | Questions about accommodating food allergies, health-related dietary requirements, and religious food practices | | **Food Chemistry** | 2,142 | Queries about chemical processes in cooking, food composition, and scientific explanations for culinary phenomena | | **Cooking & Conservation** | 569 | Questions about cooking techniques, food preservation methods, and culinary terminology | | **Flavors & Ingredients** | 2,168 | Inquiries about flavor pairings, ingredient combinations, and enhancing taste profiles | | **Spices** | 675 | Specific questions about spice selection, application techniques, and flavor contributions | | Column Name | Description | |-------------|-------------| | **type** | The category of culinary knowledge (allergies, chemistry, cooking, flavors, spices) | | **question** | A specific query related to cooking techniques, ingredient properties, or culinary science | | **response** | A detailed answer providing culinary guidance based on established food science and cooking principles | --- ## Potential Use Cases 1. **Culinary Assistant Chatbot:** - Train a model to provide on-demand cooking advice, recipe adjustments, or scientific explanations for kitchen phenomena. 2. **Cooking Education Platforms:** - Enhance educational content with accurate, science-based explanations for culinary processes. 3. **Dietary Accommodation Tools:** - Develop applications to help users navigate allergies, religious restrictions, or health-related dietary requirements. 4. **Instruction-Following Evaluation:** - Use as a benchmark dataset to assess a model's ability to provide accurate culinary information. 5. **Recipe Development Systems:** - Train models to understand flavor pairing principles and ingredient substitutions for creative recipe generation. 6. **Food Science Research:** - Provide a corpus of culinary knowledge to support text mining and analysis in food science research. --- ## Getting Started 1. **Download the Dataset** - The data is provided as a CSV file where each line is a single record with the keys `type`, `question` and `response`. 2. **Data Preprocessing** - Many Q&A or instruction-based fine-tuning frameworks allow direct ingestion of CSV files. - Alternatively, convert the data into your preferred format (Pandas DataFrame, etc.) for custom processing. 3. **Sample Use** ```python import pandas as pd # Load the data df = pd.read_csv('cooking_knowledge.csv') # View distribution of question types print(df['type'].value_counts()) # Example: Find all questions about gluten-free cooking gluten_free_qs = df[df['question'].str.contains('gluten', case=False)] # Example: View flavor pairing recommendations flavor_pairings = df[(df['type'] == 'flavors') & (df['question'].str.contains('pair', case=False))] ``` 4. **Model Fine-Tuning** - For a cooking assistant model, you can structure each entry with a prompt and desired response. - Incorporate additional context like a system message: ``` You are a culinary expert. Provide accurate, scientific cooking guidance. ``` --- ## Tips for Best Results - **Category-Specific Training:** - Consider training separate specialized models for each knowledge category (chemistry, techniques, etc.) if your application requires deep expertise in a particular domain. - **Food Safety Verification:** - When using this dataset to train models providing cooking advice, implement additional verification for food safety recommendations. - **Cultural Context:** - Be aware that culinary advice may vary across cultural contexts. Consider augmenting the dataset with culture-specific cooking knowledge if needed. - **Visual Enhancement:** - For multimodal applications, consider pairing this text dataset with relevant culinary images or process diagrams to enhance understanding. - **Scientific Validation:** - For chemistry-related explanations, consider having food scientists verify the model's outputs when using it in production environments. --- ## Applications in AI Research 1. **Cross-Domain Knowledge Transfer:** - Study how models trained on cooking data transfer knowledge to other domains involving chemical processes or procedural instructions. 2. **Instruction-Following Benchmarks:** - Use this dataset as a domain-specific benchmark for evaluating instruction-following capabilities in large language models. 3. **Information Retrieval Research:** - Leverage the dataset to develop and evaluate retrieval systems for specialized knowledge domains. 4. **Explainable AI in Practical Domains:** - Study how models explain complex chemical and physical processes in accessible language. ---
nthakur/bge-retrieval-data
nthakur
"2025-03-08T23:59:51Z"
0
0
[ "region:us" ]
null
"2025-03-08T23:54:50Z"
--- dataset_info: features: - name: query_id dtype: string - name: query dtype: string - name: positive_passages list: - name: docid dtype: string - name: text dtype: string - name: title dtype: string - name: negative_passages list: - name: docid dtype: string - name: text dtype: string - name: title dtype: string - name: subset dtype: string splits: - name: train num_bytes: 43144012642.700035 num_examples: 680223 download_size: 6653360727 dataset_size: 43144012642.700035 configs: - config_name: default data_files: - split: train path: data/train-* ---
Shiran-Yuan/ArchonView
Shiran-Yuan
"2025-03-08T23:56:18Z"
0
0
[ "license:mit", "region:us" ]
null
"2025-03-08T23:56:17Z"
--- license: mit ---
KathCYM/open-thoughts-code-r1-merged
KathCYM
"2025-03-09T00:03:56Z"
0
0
[ "region:us" ]
null
"2025-03-09T00:03:51Z"
--- dataset_info: features: - name: problem_id dtype: string - name: name dtype: string - name: problem dtype: string - name: test_cases dtype: string - name: difficulty dtype: string - name: language sequence: string - name: source dtype: string - name: num_solutions dtype: int64 - name: starter_code dtype: 'null' - name: subset dtype: string - name: test_cases_file dtype: string - name: reasoning dtype: string - name: deepseek_solution dtype: string - name: formatted_prompt dtype: string - name: domain dtype: string splits: - name: train num_bytes: 96275925 num_examples: 2083 download_size: 40083012 dataset_size: 96275925 configs: - config_name: default data_files: - split: train path: data/train-* ---
amuvarma/emilia-snac-merged-all-TTS-grouped-8192-sample-1000
amuvarma
"2025-03-09T00:07:02Z"
0
0
[ "region:us" ]
null
"2025-03-09T00:07:00Z"
--- dataset_info: features: - name: input_ids sequence: int32 splits: - name: train num_bytes: 32772000.0 num_examples: 1000 download_size: 16530610 dataset_size: 32772000.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
refine-ai/Arabic
refine-ai
"2025-03-09T00:17:30Z"
0
0
[ "size_categories:n<1K", "region:us", "datadreamer", "datadreamer-0.28.0", "synthetic", "gpt-4o" ]
null
"2025-03-09T00:10:07Z"
--- size_categories: - n<1K dataset_info: features: - name: metadata dtype: string - name: topic dtype: string - name: data dtype: string - name: code dtype: string - name: image dtype: image - name: qa dtype: string splits: - name: train num_bytes: 279394.0 num_examples: 1 download_size: 279114 dataset_size: 279394.0 configs: - config_name: default data_files: - split: train path: data/train-* library_name: datadreamer tags: - datadreamer - datadreamer-0.28.0 - synthetic - gpt-4o - gpt-4o - gpt-4o - gpt-4o --- # Dataset Card [Add more information here](https://huggingface.co./datasets/templates/dataset-card-example) --- This dataset was produced with [DataDreamer πŸ€–πŸ’€](https://datadreamer.dev). The synthetic dataset card can be found [here](datadreamer.json).
openminderai/forward_backward_beta_tokenized
openminderai
"2025-03-09T00:11:58Z"
0
0
[ "region:us" ]
null
"2025-03-09T00:11:57Z"
--- dataset_info: features: - name: text dtype: string splits: - name: train num_bytes: 1517251.8094772839 num_examples: 1726 download_size: 621753 dataset_size: 1517251.8094772839 configs: - config_name: default data_files: - split: train path: data/train-* ---
xgemstarx/blackshirt
xgemstarx
"2025-03-09T00:18:29Z"
0
0
[ "license:mit", "region:us" ]
null
"2025-03-09T00:17:56Z"
--- license: mit ---
Themira/opensub_en_si_score
Themira
"2025-03-09T00:26:08Z"
0
0
[ "region:us" ]
null
"2025-03-09T00:25:58Z"
--- dataset_info: features: - name: english dtype: string - name: non_english dtype: string - name: score dtype: float64 splits: - name: train num_bytes: 122150693 num_examples: 1000000 download_size: 72248928 dataset_size: 122150693 configs: - config_name: default data_files: - split: train path: data/train-* ---
anyspeech/IPAPack_plus_pseudo_labels_2
anyspeech
"2025-03-09T00:29:05Z"
0
0
[ "license:cc-by-nc-4.0", "region:us" ]
null
"2025-03-09T00:29:05Z"
--- license: cc-by-nc-4.0 ---
anyspeech/IPAPack_plus_pseudo_labels_1
anyspeech
"2025-03-09T01:29:38Z"
0
0
[ "license:cc-by-nc-4.0", "region:us" ]
null
"2025-03-09T00:30:16Z"
--- license: cc-by-nc-4.0 ---
anyspeech/IPAPack_plus_pseudo_labels_3
anyspeech
"2025-03-09T00:30:42Z"
0
0
[ "license:cc-by-nc-4.0", "region:us" ]
null
"2025-03-09T00:30:42Z"
--- license: cc-by-nc-4.0 ---
Rocking-Mat/counterfactual_babylm_aann_dtanns
Rocking-Mat
"2025-03-09T01:26:13Z"
0
0
[ "region:us" ]
null
"2025-03-09T00:30:42Z"
--- dataset_info: features: - name: text dtype: string splits: - name: train num_bytes: 581821673 num_examples: 11646435 - name: validation num_bytes: 56316589 num_examples: 1127500 download_size: 398794957 dataset_size: 638138262 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* ---
amuvarma/emilia-snac-merged-all-TTS-grouped-8192-sample-1000-masked-row-1
amuvarma
"2025-03-09T00:48:22Z"
0
0
[ "region:us" ]
null
"2025-03-09T00:34:13Z"
--- dataset_info: features: - name: input_ids sequence: int32 - name: labels sequence: int64 - name: attention_mask sequence: int8 splits: - name: train num_bytes: 106508000 num_examples: 1000 download_size: 22012864 dataset_size: 106508000 configs: - config_name: default data_files: - split: train path: data/train-* ---
SamChen888/treino_novo_pt
SamChen888
"2025-03-09T00:37:44Z"
0
0
[ "region:us" ]
null
"2025-03-09T00:37:43Z"
--- dataset_info: features: - name: instruction dtype: string - name: input dtype: string - name: output dtype: string splits: - name: train num_bytes: 4332143 num_examples: 3716 download_size: 444343 dataset_size: 4332143 configs: - config_name: default data_files: - split: train path: data/train-* ---
lichangh20/openai_math_sampled_1of5
lichangh20
"2025-03-09T00:40:09Z"
0
0
[ "region:us" ]
null
"2025-03-09T00:40:08Z"
--- dataset_info: features: - name: problem dtype: string - name: solution dtype: string - name: answer dtype: string - name: subject dtype: string - name: level dtype: int64 - name: unique_id dtype: string splits: - name: test num_bytes: 80054.8 num_examples: 100 download_size: 51339 dataset_size: 80054.8 configs: - config_name: default data_files: - split: test path: data/test-* ---
lichangh20/gpqa_sampled_1of3
lichangh20
"2025-03-09T00:40:12Z"
0
0
[ "region:us" ]
null
"2025-03-09T00:40:10Z"
--- dataset_info: features: - name: Pre-Revision Question dtype: string - name: Pre-Revision Correct Answer dtype: string - name: Pre-Revision Incorrect Answer 1 dtype: string - name: Pre-Revision Incorrect Answer 2 dtype: string - name: Pre-Revision Incorrect Answer 3 dtype: string - name: Pre-Revision Explanation dtype: string - name: Self-reported question-writing time (minutes) dtype: float64 - name: Question dtype: string - name: Correct Answer dtype: string - name: Incorrect Answer 1 dtype: string - name: Incorrect Answer 2 dtype: string - name: Incorrect Answer 3 dtype: string - name: Explanation dtype: string - name: Revision Comments (from Question Writer) dtype: string - name: Subdomain dtype: string - name: Writer's Difficulty Estimate dtype: string - name: Extra Revised Question dtype: string - name: Extra Revised Explanation dtype: string - name: Extra Revised Correct Answer dtype: string - name: Extra Revised Incorrect Answer 1 dtype: string - name: Extra Revised Incorrect Answer 2 dtype: string - name: Extra Revised Incorrect Answer 3 dtype: string - name: Non-Expert Validator Accuracy dtype: float64 - name: Majority Non-Expert Vals Incorrect dtype: float64 - name: Expert Validator Accuracy dtype: float64 - name: Record ID dtype: string - name: High-level domain dtype: string - name: Question Writer dtype: string - name: Feedback_EV_1 dtype: string - name: Validator Revision Suggestion_EV_1 dtype: string - name: Is First Validation_EV_1 dtype: bool - name: Post hoc agreement_EV_1 dtype: string - name: Sufficient Expertise?_EV_1 dtype: string - name: Understand the question?_EV_1 dtype: string - name: Question Difficulty_EV_1 dtype: string - name: Validator Answered Correctly_EV_1 dtype: int64 - name: Self-reported time (minutes)_EV_1 dtype: float64 - name: Probability Correct_EV_1 dtype: string - name: Manual Correctness Adjustment_EV_1 dtype: string - name: Expert Validator_EV_1 dtype: string - name: Feedback_EV_2 dtype: string - name: Validator Revision Suggestion_EV_2 dtype: string - name: Is First Validation_EV_2 dtype: bool - name: Post hoc agreement_EV_2 dtype: string - name: Sufficient Expertise?_EV_2 dtype: string - name: Understand the question?_EV_2 dtype: string - name: Question Difficulty_EV_2 dtype: string - name: Validator Answered Correctly_EV_2 dtype: int64 - name: Self-reported time (minutes)_EV_2 dtype: float64 - name: Probability Correct_EV_2 dtype: string - name: Manual Correctness Adjustment_EV_2 dtype: string - name: Expert Validator_EV_2 dtype: string - name: Feedback_NEV_1 dtype: string - name: Validator Answered Correctly_NEV_1 dtype: int64 - name: Explanation_NEV_1 dtype: string - name: Self-reported time (minutes)_NEV_1 dtype: float64 - name: Websites visited_NEV_1 dtype: string - name: Probability Correct_NEV_1 dtype: string - name: Manual Correctness Adjustment_NEV_1 dtype: float64 - name: Non-Expert Validator_NEV_1 dtype: string - name: Feedback_NEV_2 dtype: string - name: Validator Answered Correctly_NEV_2 dtype: int64 - name: Explanation_NEV_2 dtype: string - name: Self-reported time (minutes)_NEV_2 dtype: float64 - name: Websites visited_NEV_2 dtype: string - name: Probability Correct_NEV_2 dtype: string - name: Manual Correctness Adjustment_NEV_2 dtype: float64 - name: Non-Expert Validator_NEV_2 dtype: string - name: Feedback_NEV_3 dtype: string - name: Validator Answered Correctly_NEV_3 dtype: float64 - name: Explanation_NEV_3 dtype: string - name: Self-reported time (minutes)_NEV_3 dtype: float64 - name: Websites visited_NEV_3 dtype: string - name: Probability Correct_NEV_3 dtype: string - name: Manual Correctness Adjustment_NEV_3 dtype: float64 - name: Non-Expert Validator_NEV_3 dtype: string - name: Expert Validator Disagreement Category dtype: float64 - name: Canary String dtype: string splits: - name: train num_bytes: 470472.3333333333 num_examples: 66 download_size: 319667 dataset_size: 470472.3333333333 configs: - config_name: default data_files: - split: train path: data/train-* ---
lichangh20/s1k_train_sampled_1of12
lichangh20
"2025-03-09T00:40:14Z"
0
0
[ "region:us" ]
null
"2025-03-09T00:40:13Z"
--- dataset_info: features: - name: solution dtype: string - name: question dtype: string - name: cot_type dtype: string - name: source_type dtype: string - name: metadata dtype: string - name: cot dtype: 'null' - name: thinking_trajectories sequence: string - name: attempt dtype: string - name: text dtype: string - name: filtered_text dtype: string - name: answer dtype: string splits: - name: train num_bytes: 3386926.227125942 num_examples: 77 download_size: 1360963 dataset_size: 3386926.227125942 configs: - config_name: default data_files: - split: train path: data/train-* ---
lichangh20/s1k_eval_sampled_1of12
lichangh20
"2025-03-09T00:40:16Z"
0
0
[ "region:us" ]
null
"2025-03-09T00:40:15Z"
--- dataset_info: features: - name: solution dtype: string - name: question dtype: string - name: cot_type dtype: string - name: source_type dtype: string - name: metadata dtype: string - name: cot dtype: 'null' - name: thinking_trajectories sequence: string - name: attempt dtype: string - name: answer dtype: string splits: - name: train num_bytes: 1123855.613562971 num_examples: 77 download_size: 514137 dataset_size: 1123855.613562971 configs: - config_name: default data_files: - split: train path: data/train-* ---
jncraton/anf01qa
jncraton
"2025-03-09T01:29:46Z"
0
0
[ "region:us" ]
null
"2025-03-09T00:41:30Z"
--- language: - en configs: - config_name: corpus data_files: "corpus.tsv" sep: "\t" - config_name: queries data_files: "queries.tsv" sep: "\t" - config_name: qrels data_files: "qrels.tsv" sep: "\t" ---
mlfoundations-dev/hero_run_2
mlfoundations-dev
"2025-03-09T00:51:30Z"
0
0
[ "region:us" ]
null
"2025-03-09T00:46:35Z"
--- dataset_info: features: - name: conversations list: - name: from dtype: string - name: value dtype: string - name: question dtype: string - name: source dtype: string - name: id dtype: int64 splits: - name: train num_bytes: 18986223337.0 num_examples: 1143205 download_size: 8328411205 dataset_size: 18986223337.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
gluebag/PornhubDataset
gluebag
"2025-03-09T01:00:59Z"
0
0
[ "license:mit", "region:us" ]
null
"2025-03-09T00:52:21Z"
--- license: mit ---
amuvarma/podcast-all
amuvarma
"2025-03-09T00:55:44Z"
0
0
[ "region:us" ]
null
"2025-03-09T00:55:16Z"
--- dataset_info: features: - name: episode_number dtype: int64 - name: title dtype: string - name: mostActiveSpeaker dtype: string - name: text dtype: string - name: speaker dtype: string - name: podcast_id dtype: string - name: isMostActiveSpeaker dtype: bool - name: codes_list sequence: int64 splits: - name: train num_bytes: 2858590413 num_examples: 380847 download_size: 732108378 dataset_size: 2858590413 configs: - config_name: default data_files: - split: train path: data/train-* ---
amuvarma/podcast-all-TTS
amuvarma
"2025-03-09T00:59:57Z"
0
0
[ "region:us" ]
null
"2025-03-09T00:59:27Z"
--- dataset_info: features: - name: input_ids sequence: int32 splits: - name: train num_bytes: 1480561416.0 num_examples: 380839 download_size: 796080661 dataset_size: 1480561416.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
celsowm/jurisprudencias_tjmg
celsowm
"2025-03-09T01:09:53Z"
0
0
[ "language:pt", "region:us", "legal" ]
null
"2025-03-09T01:02:57Z"
--- language: - pt tags: - legal ---
amuvarma/podcast-all-TTS-8192
amuvarma
"2025-03-09T01:05:55Z"
0
0
[ "region:us" ]
null
"2025-03-09T01:05:23Z"
--- dataset_info: features: - name: input_ids sequence: int32 splits: - name: train num_bytes: 1479196992 num_examples: 45136 download_size: 749115370 dataset_size: 1479196992 configs: - config_name: default data_files: - split: train path: data/train-* ---
Slyracoon23/rrvideo-element-highlights
Slyracoon23
"2025-03-09T01:20:44Z"
0
0
[ "task_categories:image-classification", "task_categories:image-to-text", "language:en", "license:cc-by-4.0", "region:us" ]
[ "image-classification", "image-to-text" ]
"2025-03-09T01:05:50Z"
--- language: - en license: cc-by-4.0 task_categories: - image-classification - image-to-text --- # Dataset Card for rrvideo-element-highlights ## Dataset Description This dataset contains UI element images extracted from web snapshots, along with captions describing each element. ### Dataset Summary The dataset contains 118 unique UI elements from 3 different snapshots. Each element is associated with a caption describing its basic properties. ### Dataset Statistics - Total elements: 118 - Unique snapshots: 3 - Average element width: 1280.00 pixels - Average element height: 720.00 pixels - Average aspect ratio: 1.78 ## Dataset Structure ### Data Fields - **image**: The UI element image - **caption**: A description of the element - **snapshot_id**: The snapshot identifier - **timestamp**: When the snapshot was taken - **element_id**: Identifier for the specific element - **width**: The width of the element in pixels - **height**: The height of the element in pixels - **aspect_ratio**: The aspect ratio of the element ### Data Splits - Train: 94 examples (80%) - Validation: 12 examples (10%) - Test: 12 examples (10%)
amuvarma/podcast-all-TTS-8192-masked-row-1
amuvarma
"2025-03-09T01:09:33Z"
0
0
[ "region:us" ]
null
"2025-03-09T01:08:40Z"
--- dataset_info: features: - name: input_ids sequence: int32 - name: labels sequence: int64 - name: attention_mask sequence: int8 splits: - name: train num_bytes: 4701369628 num_examples: 44141 download_size: 1216288827 dataset_size: 4701369628 configs: - config_name: default data_files: - split: train path: data/train-* ---
oliveirabruno01/almirante-seed
oliveirabruno01
"2025-03-09T01:16:15Z"
0
0
[ "region:us" ]
null
"2025-03-09T01:16:14Z"
--- dataset_info: features: - name: moves dtype: int64 - name: replay dtype: string splits: - name: train num_bytes: 770712 num_examples: 1024 download_size: 218329 dataset_size: 770712 configs: - config_name: default data_files: - split: train path: data/train-* ---
Abdelkareem/image_denoise_sci
Abdelkareem
"2025-03-09T01:27:52Z"
0
0
[ "region:us" ]
null
"2025-03-09T01:17:04Z"
--- dataset_info: features: - name: image dtype: image - name: label dtype: class_label: names: '0': Gaussian&salt '1': Gaussian&speckle '2': Salt&pepper '3': possion '4': speckle '5': speckle&salt splits: - name: train num_bytes: 263472814.0 num_examples: 881 download_size: 215565543 dataset_size: 263472814.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
hiudevdut/currency-dataset
hiudevdut
"2025-03-09T01:22:37Z"
0
0
[ "task_categories:text-classification", "size_categories:n<1K", "library:distilabel", "region:us", "synthetic", "distilabel", "rlaif", "datacraft" ]
[ "text-classification" ]
"2025-03-09T01:18:36Z"
--- size_categories: n<1K task_categories: - text-classification dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': transfer '1': debit '2': credit splits: - name: train num_bytes: 61563 num_examples: 344 download_size: 32887 dataset_size: 61563 configs: - config_name: default data_files: - split: train path: data/train-* tags: - synthetic - distilabel - rlaif - datacraft --- <p align="left"> <a href="https://github.com/argilla-io/distilabel"> <img src="https://raw.githubusercontent.com/argilla-io/distilabel/main/docs/assets/distilabel-badge-light.png" alt="Built with Distilabel" width="200" height="32"/> </a> </p> # Dataset Card for currency-dataset This dataset has been created with [distilabel](https://distilabel.argilla.io/). ## Dataset Summary This dataset contains a `pipeline.yaml` which can be used to reproduce the pipeline that generated it in distilabel using the `distilabel` CLI: ```console distilabel pipeline run --config "https://huggingface.co./datasets/hiudevdut/currency-dataset/raw/main/pipeline.yaml" ``` or explore the configuration: ```console distilabel pipeline info --config "https://huggingface.co./datasets/hiudevdut/currency-dataset/raw/main/pipeline.yaml" ``` ## Dataset structure The examples have the following structure per configuration: <details><summary> Configuration: default </summary><hr> ```json { "label": 0, "text": "The Southeast Asian region has a rich cultural heritage, with diverse languages, traditions, and customs. ASEAN countries have distinct categorizations, such as: (1) economic, (2) environmental, (3) social, and (4) political needs. For example, when categorizing responses, it\u0027s essential to consider the unique characteristics of each country. For instance, Singapore\u0027s responses would primarily focus on (1) economic needs, while Indonesia\u0027s responses would prioritize (3) social needs." } ``` This subset can be loaded as: ```python from datasets import load_dataset ds = load_dataset("hiudevdut/currency-dataset", "default") ``` Or simply as it follows, since there's only one configuration and is named `default`: ```python from datasets import load_dataset ds = load_dataset("hiudevdut/currency-dataset") ``` </details>
adaadig/DSMeval
adaadig
"2025-03-09T01:22:34Z"
0
0
[ "region:us" ]
null
"2025-03-09T01:22:14Z"
--- dataset_info: features: - name: audio dtype: audio - name: audio_downsampled dtype: audio: sampling_rate: 16000 - name: audio_filepaths dtype: string - name: avg_log_prob dtype: float64 - name: whisperbase_transcript_list dtype: string - name: confidence_score dtype: float64 - name: turn_id dtype: string - name: speaker_id dtype: string - name: file_id dtype: string - name: folderpart dtype: string - name: dialogueid dtype: string - name: adhoc_description dtype: string - name: crisper_transcript dtype: string - name: repetition_score dtype: float64 - name: fillers_score dtype: float64 splits: - name: train num_bytes: 177475923.0 num_examples: 241 download_size: 169970406 dataset_size: 177475923.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
vlinhd11/viVoice-v1-p2-proccessed
vlinhd11
"2025-03-09T01:27:16Z"
0
0
[ "region:us" ]
null
"2025-03-09T01:25:48Z"
--- dataset_info: features: - name: channel dtype: string - name: text dtype: string - name: id dtype: string - name: description dtype: string - name: audio_tokens sequence: int64 - name: speaker_tokens sequence: int64 - name: gender dtype: string - name: snr dtype: float64 - name: pesq dtype: float64 - name: stoi dtype: float64 - name: c50 dtype: float64 - name: speech_duration dtype: float64 - name: speaking_rate dtype: float64 - name: utterance_pitch_mean dtype: float64 - name: utterance_pitch_std dtype: float64 - name: utterance_pitch_min dtype: float64 - name: utterance_pitch_max dtype: float64 - name: description_en dtype: string - name: description_vi dtype: string splits: - name: train num_bytes: 500513065 num_examples: 120000 download_size: 103660239 dataset_size: 500513065 configs: - config_name: default data_files: - split: train path: data/train-* ---
adaadig/DSMevalB
adaadig
"2025-03-09T01:27:37Z"
0
0
[ "region:us" ]
null
"2025-03-09T01:27:21Z"
--- dataset_info: features: - name: audio dtype: audio - name: audio_downsampled dtype: audio: sampling_rate: 16000 - name: audio_filepaths dtype: string - name: avg_log_prob dtype: float64 - name: whisperbase_transcript_list dtype: string - name: confidence_score dtype: float64 - name: turn_id dtype: string - name: speaker_id dtype: string - name: file_id dtype: string - name: folderpart dtype: string - name: dialogueid dtype: string - name: adhoc_description dtype: string - name: crisper_transcript dtype: string - name: repetition_score dtype: float64 - name: fillers_score dtype: float64 splits: - name: train num_bytes: 223471193.0 num_examples: 281 download_size: 216154554 dataset_size: 223471193.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
vsahil/tulu3_math_datasets_combined_and_sampled_100
vsahil
"2025-03-09T01:28:49Z"
0
0
[ "region:us" ]
null
"2025-03-09T01:28:48Z"
--- dataset_info: features: - name: id dtype: string - name: prompt dtype: string - name: messages list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 446022.97217422933 num_examples: 100 download_size: 220940 dataset_size: 446022.97217422933 configs: - config_name: default data_files: - split: train path: data/train-* ---