Sakanaai / data /svd_reinforce_hydra.py
introvoyz041's picture
Migrated from GitHub
f8c7642 verified
import gc
import json
import os
from datetime import datetime
from typing import Dict
import hydra
import numpy as np
import torch
from omegaconf import OmegaConf
from transformers import AutoModelForCausalLM, AutoTokenizer
from base_model import BaseModel
from logging_utils import Metrics, get_mean_std_max_min_dict
from optim_modules import OptimizationAlgorithm
from policy import Policy
from tasks import Task
from utils import (eval_model, eval_model_experts_prompt_based, forward,
load_hf_params_to_vllm)
def wandb_init(cfg, run_name: str, group_name: str, log_dir: str):
import wandb
config_dict = OmegaConf.to_container(
cfg,
resolve=True,
throw_on_missing=False,
)
config_dict["log_dir"] = log_dir
config_dict["wandb_run_name"] = run_name
config_dict["wandb_group_name"] = group_name
# wandb has a 128-size character limit on the group name
wandb.init(
project=cfg.wandb_project,
group=group_name[:127],
name=run_name[:127],
config=config_dict,
)
return wandb
@hydra.main(version_base=None, config_path="cfgs", config_name="config")
def main(cfg):
"""Main function."""
num_iters = cfg.num_iters
test_interval = cfg.test_interval
batch_size = cfg.batch_size
seed = cfg.seed
policy_name = cfg.policy_name
test_only = cfg.test_only
save_legacy_params = cfg.save_legacy_params
exp_name = cfg.exp_name
run_name = cfg.run_name
task_name = cfg.task_name
load_ckpt = cfg.load_ckpt
use_lora = cfg.use_lora
prompt_based_eval = cfg.prompt_based_eval
experts_path_dict = cfg.experts_path_dict
resuming_from_ckpt = False
if load_ckpt is not None:
if load_ckpt == "scratch" or load_ckpt == "base":
resuming_from_ckpt = False
else:
resuming_from_ckpt = True
# Create task
task_loader: Task = hydra.utils.instantiate(cfg.task_loader)
base_model: BaseModel = hydra.utils.instantiate(cfg.base_model)
model_id = base_model.get_model_id()
decomposed_param_file = base_model.get_param_file(param_folder_path="")
extract_svd = cfg.extract_svd or (not os.path.exists(decomposed_param_file))
has_training_split = task_loader.has_training_split
has_transfer_split = task_loader.has_transfer_split
if not has_training_split:
assert test_only, "Cannot train on a task with no training split"
if exp_name is None:
exp_name = "temp"
metrics_to_log = Metrics()
# Create log dir.
if run_name is None:
now = datetime.now()
run_name = now.strftime("%Y%m%d-%H%M%S")
if test_only and (not resuming_from_ckpt):
log_dir = f"{cfg.out_dir}/{task_name}/{cfg.base_model_name}_base"
group_name = cfg.base_model_name
else:
log_dir = f"{cfg.out_dir}/{task_name}/{policy_name}/{exp_name}/{run_name}"
group_name = cfg.wandb_group_name
os.makedirs(log_dir, exist_ok=True)
vllm_model = task_loader.get_vllm_model(model_id=model_id)
train_eval, *test_evals = task_loader.get_evaluator()
if task_loader.has_transfer_split:
test_eval, transfer_eval = test_evals
else:
test_eval = test_evals[0]
train_data, train_ix, valid_ix = task_loader.get_train_data()
gpu = torch.device("cuda:1")
np_random = np.random.RandomState(seed)
# cpu + float32 for initial SVD decomposition
if extract_svd:
model = AutoModelForCausalLM.from_pretrained(
model_id, device_map="cpu", torch_dtype=torch.float32
)
else:
# Load model and tokenizer.
model = AutoModelForCausalLM.from_pretrained(
model_id, device_map="cuda:1", torch_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
base_params = model.state_dict()
original_model_params = {
k: v.clone().detach().cpu() for k, v in base_params.items() if "mlp" in k
}
# Load decomposed parameters.
if not os.path.exists(decomposed_param_file):
print("Decomposed params not found. Decomposing...")
decomposed_params = {}
for k, v in base_params.items():
if "norm" not in k:
print(k)
U, S, V = torch.svd(v)
decomposed_params[f"{k}.U"] = U
decomposed_params[f"{k}.S"] = S
decomposed_params[f"{k}.V"] = V
torch.save(decomposed_params, decomposed_param_file)
print("successfully decomposed model - returning")
return
elif extract_svd:
print(f"ERROR: SVD file already exists at {decomposed_param_file}")
else:
print("Decomposed params found. Loading...")
assert not extract_svd
decomposed_params = torch.load(decomposed_param_file)
for k, v in decomposed_params.items():
decomposed_params[k] = v.to(torch.bfloat16).to(gpu)
if cfg.wandb_log:
wandb = wandb_init(
cfg=cfg, group_name=group_name, run_name=run_name, log_dir=log_dir
)
policy: Policy = hydra.utils.instantiate(
cfg.shakeoff_policy,
base_params=base_params,
decomposed_params=decomposed_params,
gpu=gpu,
)
optimization_algorithm: OptimizationAlgorithm = hydra.utils.instantiate(
cfg.optimization_algorithm,
policy=policy,
gpu=gpu,
)
if resuming_from_ckpt and os.path.exists(load_ckpt):
print(f"Starting from checkpoint at: {load_ckpt}")
# load the lora weight
if use_lora:
assert os.path.isdir(load_ckpt), "ckpt for lora must be dir to lora adapter"
from peft import PeftModel
lora_model = PeftModel.from_pretrained(model, load_ckpt)
merged_model = lora_model.merge_and_unload()
new_params = merged_model.state_dict()
# load svd expert
elif "learnable_params" in load_ckpt:
learnable_params = torch.load(load_ckpt)
for k, v in learnable_params.items():
learnable_params[k] = v.to(gpu)
assert test_only
new_params = forward(
policy, model, base_params, decomposed_params, learnable_params
)
else:
state_dict = torch.load(load_ckpt, weights_only=True)
policy.load_state_dict(state_dict=state_dict)
if test_only:
learnable_params = policy.get_learnable_params()
new_params = forward(
policy, model, base_params, decomposed_params, learnable_params
)
load_hf_params_to_vllm(new_params, vllm_model.llm)
else:
print(f"Starting from the base model as load_ckpt=={load_ckpt}")
model.eval()
# Prompt-based and cls dispatcher evaluation.
if test_only and prompt_based_eval:
test_data_dict = eval_model_experts_prompt_based(
vllm_model,
test_eval,
experts_path_dict,
policy,
model,
base_params,
decomposed_params,
task_loader.target_metric_test,
)
test_data_dict["type"] = "test"
# Log the results.
if cfg.wandb_log:
wandb.log(test_data_dict)
with open(f"{log_dir}/eval_results.json", "w") as f:
json.dump(test_data_dict, f, indent=4)
print(f"Test evaluation results: {test_data_dict}")
# Eval the transfer set if available
if has_transfer_split:
transfer_data_dict = eval_model_experts_prompt_based(
vllm_model,
transfer_eval,
experts_path_dict,
policy,
model,
base_params,
decomposed_params,
task_loader.target_metric_transfer,
)
transfer_data_dict["type"] = "transfer"
# Log the results.
if cfg.wandb_log:
wandb.log(transfer_data_dict)
with open(f"{log_dir}/eval_results.json", "w") as f:
json.dump(transfer_data_dict, f, indent=4)
print(f"Transfer evaluation results: {transfer_data_dict}")
return
# Non-adaptive evaluation on train, val, test set.
if test_only and not prompt_based_eval:
data_dict = {}
details_dict = {}
if has_training_split:
train_res = eval_model(vllm_model, train_eval, train_ix)
valid_res = eval_model(vllm_model, train_eval, valid_ix)
data_dict["train_acc"] = train_res.aggregate_metrics[
task_loader.target_metric_train
]
data_dict["valid_acc"] = valid_res.aggregate_metrics[
task_loader.target_metric_valid
]
details_dict["train"] = train_res.sample_details
details_dict["valid"] = valid_res.sample_details
test_res = eval_model(vllm_model, test_eval)
data_dict["test_acc"] = test_res.aggregate_metrics[
task_loader.target_metric_test
]
details_dict["test"] = test_res.sample_details
if has_transfer_split:
transfer_res = eval_model(vllm_model, transfer_eval)
data_dict["transfer_acc"] = transfer_res.aggregate_metrics[
task_loader.target_metric_transfer
]
details_dict["transfer"] = transfer_res.sample_details
if cfg.wandb_log:
wandb.log(data_dict)
with open(f"{log_dir}/eval_results.json", "w") as f:
json.dump(data_dict, f, indent=4)
print(f"Evaluation results: {data_dict}")
return
learnable_params = policy.get_learnable_params()
for k in learnable_params:
model.get_parameter(k).requires_grad_(True)
# Training loop.
if batch_size is None:
clipped_batch_size = len(list(train_ix))
else:
clipped_batch_size = min(batch_size, len(list(train_ix)))
best_val_acc = 0.0
test_at_best = 0.0
transfer_at_best = 0.0
for i in range(num_iters):
batch_ix = np_random.choice(train_ix, size=clipped_batch_size, replace=False)
optimization_algorithm.step_optimization(
model_id=model_id,
model=model,
tokenizer=tokenizer,
policy=policy,
task_loader=task_loader,
batch_ix=batch_ix,
train_data=train_data,
train_eval=train_eval,
base_params=base_params,
decomposed_params=decomposed_params,
original_model_params=original_model_params,
metrics_to_log=metrics_to_log,
vllm_model=vllm_model,
)
with torch.no_grad():
lists_to_log = {}
grads = [p.grad for p in policy.trainable_params]
if grads[0] is not None:
grad_mean = [g.mean().item() for g in grads]
grad_mags = [torch.linalg.vector_norm(g).item() for g in grads]
lists_to_log["grad_mean"] = grad_mean
lists_to_log["grad_mags"] = grad_mags
param_mags = [
torch.linalg.vector_norm(p).item() for p in policy.trainable_params
]
lists_to_log["policy_param_mag"] = param_mags
generated_params_list = list(learnable_params.values())
generated_param_mean = [p.mean().item() for p in generated_params_list]
generated_param_mags = [
torch.linalg.vector_norm(p).item() for p in generated_params_list
]
lists_to_log["generated_param_mean"] = generated_param_mean
lists_to_log["generated_param_mags"] = generated_param_mags
list_stats = {}
for k, v in lists_to_log.items():
list_stats.update(get_mean_std_max_min_dict(array=v, prefix=k))
metrics_to_log.update(**list_stats)
optimization_algorithm.update(policy=policy)
# Make sure old params are deleted and garbage-collected
gc.collect()
torch.cuda.empty_cache()
model.zero_grad()
# More accurate logging.
value_mean = list_stats.get("generated_param_mean/mean", None)
grad_mean_mag = list_stats.get("grad_mags/mean", None)
print(
f"Iter {i}: "
+ f"param_mean={value_mean}, "
+ f"grad_mean_mag={grad_mean_mag}"
)
optimization_algorithm.log_optim(metrics_to_log=metrics_to_log)
# Test and save.
if i % test_interval == 0:
learnable_params = policy.get_learnable_params()
forward(policy, model, base_params, decomposed_params, learnable_params)
load_hf_params_to_vllm(model.state_dict(), vllm_model.llm)
train_res = eval_model(vllm_model, train_eval, train_ix)
valid_res = eval_model(vllm_model, train_eval, valid_ix)
test_res = eval_model(vllm_model, test_eval)
if has_transfer_split:
transfer_res = eval_model(vllm_model, transfer_eval)
if (
valid_res.aggregate_metrics[task_loader.target_metric_valid]
> best_val_acc
):
best_val_acc = valid_res.aggregate_metrics[
task_loader.target_metric_valid
]
test_at_best = test_res.aggregate_metrics[
task_loader.target_metric_test
]
if has_transfer_split:
transfer_at_best = transfer_res.aggregate_metrics[
task_loader.target_metric_transfer
]
print("best_val_acc updated")
path = f"{log_dir}/policy_params.pt"
torch.save(policy.state_dict(), path)
if save_legacy_params:
torch.save(learnable_params, f"{log_dir}/learnable_params.pt")
path = f"{log_dir}/policy_params_latest.pt"
torch.save(policy.state_dict(), path)
if save_legacy_params:
torch.save(learnable_params, f"{log_dir}/learnable_params_latest.pt")
policy.record_state(metrics_to_log=metrics_to_log)
data_dict = {
"iter": i,
"best_val_acc": best_val_acc,
"test_at_best_val": test_at_best,
"train_acc": train_res.aggregate_metrics[
task_loader.target_metric_train
],
"valid_acc": valid_res.aggregate_metrics[
task_loader.target_metric_valid
],
"test_acc": test_res.aggregate_metrics[task_loader.target_metric_test],
**metrics_to_log.get(),
}
if has_transfer_split:
data_dict["transfer_acc"] = transfer_res.aggregate_metrics[
task_loader.target_metric_transfer
]
data_dict["transfer_at_best_val"] = transfer_at_best
if cfg.wandb_log:
wandb.log(data_dict)
with open(f"{log_dir}/reinforce_log.json", "a") as f:
json_data = json.dumps(data_dict, indent=4)
f.write(json_data)
f.write("\n")
metrics_to_log.reset()
if __name__ == "__main__":
main()