introvoyz041
commited on
Migrated from GitHub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- data/LICENSE +201 -0
- data/assets/cover.gif +3 -0
- data/assets/cover.mp4 +3 -0
- data/base_model/__init__.py +3 -0
- data/base_model/base.py +18 -0
- data/base_model/llama3instruct.py +18 -0
- data/base_model/mistral03instruct.py +18 -0
- data/cfgs/base_model/llama3i8b.yaml +15 -0
- data/cfgs/base_model/mistral03i7b.yaml +10 -0
- data/cfgs/config.yaml +38 -0
- data/cfgs/mode/eval.yaml +16 -0
- data/cfgs/mode/training.yaml +0 -0
- data/cfgs/optimization/cem.yaml +20 -0
- data/cfgs/optimization/reinforce.yaml +21 -0
- data/cfgs/optimization/rsm.yaml +20 -0
- data/cfgs/policy/default.yaml +9 -0
- data/cfgs/policy/wcomb.yaml +15 -0
- data/cfgs/task/ablation_tasks/few_shot_arc_challenge_20.yaml +15 -0
- data/cfgs/task/ablation_tasks/few_shot_arc_challenge_3.yaml +15 -0
- data/cfgs/task/ablation_tasks/few_shot_arc_challenge_5.yaml +15 -0
- data/cfgs/task/ai2_arc.yaml +6 -0
- data/cfgs/task/cls.yaml +6 -0
- data/cfgs/task/few_shot_arc_challenge.yaml +15 -0
- data/cfgs/task/few_shot_humaneval.yaml +14 -0
- data/cfgs/task/few_shot_math.yaml +15 -0
- data/cfgs/task/gsm8k.yaml +6 -0
- data/cfgs/task/math.yaml +6 -0
- data/cfgs/task/mbpp2.yaml +6 -0
- data/evaluation/fishfarm/fishfarm/__init__.py +14 -0
- data/evaluation/fishfarm/fishfarm/chat_templates.py +13 -0
- data/evaluation/fishfarm/fishfarm/imports.py +94 -0
- data/evaluation/fishfarm/fishfarm/logging.py +190 -0
- data/evaluation/fishfarm/fishfarm/models/__init__.py +12 -0
- data/evaluation/fishfarm/fishfarm/models/base.py +54 -0
- data/evaluation/fishfarm/fishfarm/models/tokenization_utils.py +62 -0
- data/evaluation/fishfarm/fishfarm/models/vllm_model.py +145 -0
- data/evaluation/fishfarm/fishfarm/tasks/__init__.py +8 -0
- data/evaluation/fishfarm/fishfarm/tasks/ai2_arc.py +118 -0
- data/evaluation/fishfarm/fishfarm/tasks/base.py +28 -0
- data/evaluation/fishfarm/fishfarm/tasks/competation_math.py +391 -0
- data/evaluation/fishfarm/fishfarm/tasks/evalplus/__init__.py +4 -0
- data/evaluation/fishfarm/fishfarm/tasks/evalplus/data.py +94 -0
- data/evaluation/fishfarm/fishfarm/tasks/evalplus/evaluation.py +257 -0
- data/evaluation/fishfarm/fishfarm/tasks/evalplus/generation.py +77 -0
- data/evaluation/fishfarm/fishfarm/tasks/evalplus/sanitization.py +195 -0
- data/evaluation/fishfarm/fishfarm/tasks/evalplus/task.py +54 -0
- data/evaluation/fishfarm/fishfarm/tasks/language_restricted_math.py +106 -0
- data/evaluation/fishfarm/fishfarm/version.py +1 -0
- data/evaluation/fishfarm/pyproject.toml +109 -0
- data/evaluation/fishfarm/tox.ini +8 -0
data/LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright [yyyy] [name of copyright owner]
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
data/assets/cover.gif
ADDED
Git LFS Details
|
data/assets/cover.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ea293fa4363abed1ef51d27525a430942d273a4138e7968c23e03df07215cad3
|
3 |
+
size 522068
|
data/base_model/__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
from .base import BaseModel
|
2 |
+
from .llama3instruct import Llama3Instruct8B
|
3 |
+
from .mistral03instruct import MistralV03Instruct7B
|
data/base_model/base.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import ABC, abstractmethod
|
2 |
+
|
3 |
+
|
4 |
+
class BaseModel(ABC):
|
5 |
+
def __init__(self):
|
6 |
+
pass
|
7 |
+
|
8 |
+
@abstractmethod
|
9 |
+
def get_model_id(self):
|
10 |
+
raise NotImplementedError
|
11 |
+
|
12 |
+
@abstractmethod
|
13 |
+
def get_model_name(self):
|
14 |
+
raise NotImplementedError
|
15 |
+
|
16 |
+
@abstractmethod
|
17 |
+
def get_param_file(self, param_folder_path=""):
|
18 |
+
raise NotImplementedError
|
data/base_model/llama3instruct.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
from .base import BaseModel
|
4 |
+
|
5 |
+
|
6 |
+
class Llama3Instruct8B(BaseModel):
|
7 |
+
def __init__(self):
|
8 |
+
self.model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
|
9 |
+
self.dec_param_file_n = "llama3_decomposed_params.pt"
|
10 |
+
|
11 |
+
def get_model_id(self):
|
12 |
+
return self.model_id
|
13 |
+
|
14 |
+
def get_model_name(self):
|
15 |
+
return self.model_id.split("/")[1]
|
16 |
+
|
17 |
+
def get_param_file(self, param_folder_path=""):
|
18 |
+
return os.path.join(param_folder_path, self.dec_param_file_n)
|
data/base_model/mistral03instruct.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
from .base import BaseModel
|
4 |
+
|
5 |
+
|
6 |
+
class MistralV03Instruct7B(BaseModel):
|
7 |
+
def __init__(self):
|
8 |
+
self.model_id = "mistralai/Mistral-7B-Instruct-v0.3"
|
9 |
+
self.dec_param_file_n = "mistral_decomposed_params.pt"
|
10 |
+
|
11 |
+
def get_model_id(self):
|
12 |
+
return self.model_id
|
13 |
+
|
14 |
+
def get_model_name(self):
|
15 |
+
return self.model_id.split("/")[1]
|
16 |
+
|
17 |
+
def get_param_file(self, param_folder_path=""):
|
18 |
+
return os.path.join(param_folder_path, self.dec_param_file_n)
|
data/cfgs/base_model/llama3i8b.yaml
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
base_model:
|
2 |
+
_target_: base_model.Llama3Instruct8B
|
3 |
+
|
4 |
+
|
5 |
+
base_model_name: llama3i8b
|
6 |
+
|
7 |
+
# reference_params_results:
|
8 |
+
# - 'saved_models/llama3i8b/gsm8k/learnable_params.pt'
|
9 |
+
# - 'saved_models/llama3i8b/mbpp/learnable_params.pt'
|
10 |
+
# - 'saved_models/llama3i8b/ai2arc/learnable_params.pt'
|
11 |
+
|
12 |
+
reference_params_results:
|
13 |
+
- "ckpts/learnable_params/llama3_8b_instruct_gsm8k_svd_pg_mlp.pt"
|
14 |
+
- "ckpts/learnable_params/llama3_8b_instruct_mbpp_pro_svd_pg_mlp.pt"
|
15 |
+
- "ckpts/learnable_params/llama3_8b_instruct_gsm8k_svd_pg_mlp.pt"
|
data/cfgs/base_model/mistral03i7b.yaml
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
base_model:
|
2 |
+
_target_: base_model.MistralV03Instruct7B
|
3 |
+
|
4 |
+
|
5 |
+
base_model_name: mistral03i7b
|
6 |
+
|
7 |
+
reference_params_results:
|
8 |
+
- 'saved_models/mistral03i7b/gsm8k/policy_params.pt'
|
9 |
+
- 'saved_models/mistral03i7b/mbpp/policy_params.pt'
|
10 |
+
- 'saved_models/mistral03i7b/ai2arc/policy_params.pt'
|
data/cfgs/config.yaml
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
defaults:
|
2 |
+
- _self_
|
3 |
+
- policy@_global_: default
|
4 |
+
- task@_global_: gsm8k
|
5 |
+
- base_model@_global_: llama3i8b
|
6 |
+
- optimization@_global_: reinforce
|
7 |
+
- mode@_global_: training
|
8 |
+
|
9 |
+
num_iters: 2000
|
10 |
+
test_interval: 10
|
11 |
+
lr: 2e-3
|
12 |
+
batch_size: 256
|
13 |
+
seed: 42
|
14 |
+
init_val: 0.1
|
15 |
+
test_only: false
|
16 |
+
model_dir: null
|
17 |
+
save_legacy_params: false
|
18 |
+
use_lora: false
|
19 |
+
prompt_based_eval: false
|
20 |
+
experts_path_dict: null
|
21 |
+
|
22 |
+
run_name: null
|
23 |
+
|
24 |
+
load_ckpt: null
|
25 |
+
exp_suffix: 'st'
|
26 |
+
|
27 |
+
exp_name: ${base_model_name}/${optim_name}-${exp_suffix}
|
28 |
+
|
29 |
+
wandb_log: true # enabled by default
|
30 |
+
wandb_project: shakeoff
|
31 |
+
wandb_group_name: ${exp_name}
|
32 |
+
extract_svd: false
|
33 |
+
|
34 |
+
out_dir: results
|
35 |
+
|
36 |
+
hydra:
|
37 |
+
run:
|
38 |
+
dir: ${out_dir}/
|
data/cfgs/mode/eval.yaml
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
exp_name: eval_${base_model_name}/temp-lr${lr}-mGN${max_grad_norm}-klC${kl_ref_coeff}-r${rw_strategy}-${exp_suffix}-r
|
2 |
+
|
3 |
+
test_only: true
|
4 |
+
load_ckpt: null
|
5 |
+
use_lora: false
|
6 |
+
|
7 |
+
prompt_based_eval: false
|
8 |
+
experts_path_dict:
|
9 |
+
code: null
|
10 |
+
math: null
|
11 |
+
reasoning: null
|
12 |
+
other: null
|
13 |
+
|
14 |
+
wandb_project: T^2_eval
|
15 |
+
wandb_group_name: ${exp_name}
|
16 |
+
out_dir: results_eval
|
data/cfgs/mode/training.yaml
ADDED
File without changes
|
data/cfgs/optimization/cem.yaml
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
optimization_algorithm:
|
3 |
+
_target_: optim_modules.CEM
|
4 |
+
elite_ratio: ${elite_ratio}
|
5 |
+
pop_size: ${pop_size}
|
6 |
+
min_trainable_param: ${min_trainable_param}
|
7 |
+
max_trainable_param: ${max_trainable_param}
|
8 |
+
optim_ema: ${optim_ema}
|
9 |
+
re_eval_best: ${re_eval_best}
|
10 |
+
use_loglikelihood_for_ties: ${use_loglikelihood_for_ties}
|
11 |
+
|
12 |
+
|
13 |
+
pop_size: 32
|
14 |
+
elite_ratio: 0.2
|
15 |
+
min_trainable_param: 0
|
16 |
+
max_trainable_param: 1
|
17 |
+
optim_ema: 0
|
18 |
+
re_eval_best: True
|
19 |
+
use_loglikelihood_for_ties: true
|
20 |
+
optim_name: CEM-pop${pop_size}e${elite_ratio}-[${min_trainable_param}-${max_trainable_param}]-tieswLL${use_loglikelihood_for_ties}
|
data/cfgs/optimization/reinforce.yaml
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
optimization_algorithm:
|
3 |
+
_target_: optim_modules.Reinforce
|
4 |
+
# policy: ${policy}
|
5 |
+
# gpu: ${gpu}
|
6 |
+
max_grad_norm: ${max_grad_norm}
|
7 |
+
lr: ${lr}
|
8 |
+
rw_norm: ${rw_norm}
|
9 |
+
rw_clip: ${rw_clip}
|
10 |
+
kl_ref_coeff: ${kl_ref_coeff}
|
11 |
+
|
12 |
+
|
13 |
+
# policy:
|
14 |
+
# gpu:
|
15 |
+
max_grad_norm: 1e-3
|
16 |
+
lr: 2e-3
|
17 |
+
rw_norm: 0
|
18 |
+
rw_clip: null
|
19 |
+
kl_ref_coeff: 0
|
20 |
+
rw_strategy: rN${rw_norm}C${rw_clip}
|
21 |
+
optim_name: RL-lr${lr}-mGN${max_grad_norm}-klC${kl_ref_coeff}-r${rw_strategy}
|
data/cfgs/optimization/rsm.yaml
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
optimization_algorithm:
|
3 |
+
_target_: optim_modules.RandomShooting
|
4 |
+
# policy: ${policy}
|
5 |
+
# gpu: ${gpu}
|
6 |
+
pop_size: ${pop_size}
|
7 |
+
min_trainable_param: ${min_trainable_param}
|
8 |
+
max_trainable_param: ${max_trainable_param}
|
9 |
+
optim_ema: ${optim_ema}
|
10 |
+
re_eval_best: ${re_eval_best}
|
11 |
+
use_loglikelihood_for_ties: ${use_loglikelihood_for_ties}
|
12 |
+
|
13 |
+
|
14 |
+
pop_size: 32
|
15 |
+
min_trainable_param: 0
|
16 |
+
max_trainable_param: 1
|
17 |
+
optim_ema: 0
|
18 |
+
re_eval_best: True
|
19 |
+
use_loglikelihood_for_ties: false
|
20 |
+
optim_name: RSML-pop${pop_size}-[${min_trainable_param}-${max_trainable_param}]-tieswLL${use_loglikelihood_for_ties}
|
data/cfgs/policy/default.yaml
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
shakeoff_policy:
|
2 |
+
_target_: policy.Policy
|
3 |
+
init_val: ${init_val}
|
4 |
+
mode: ${policy_mode}
|
5 |
+
max_mult: ${max_mult}
|
6 |
+
|
7 |
+
policy_mode: 1
|
8 |
+
max_mult: 1
|
9 |
+
policy_name: ${policy_mode}_mm${max_mult}
|
data/cfgs/policy/wcomb.yaml
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
shakeoff_policy:
|
4 |
+
_target_: policy.WeightedCombination
|
5 |
+
base_policy_cfg: null
|
6 |
+
params_paths: ${reference_params_results}
|
7 |
+
norm_coeffs: ${norm_coeffs}
|
8 |
+
per_layer: ${per_layer}
|
9 |
+
init_values: ${init_values}
|
10 |
+
|
11 |
+
norm_coeffs: true
|
12 |
+
per_layer: false
|
13 |
+
init_values: null
|
14 |
+
|
15 |
+
policy_name: Wcomb_n${norm_coeffs}_p${per_layer}
|
data/cfgs/task/ablation_tasks/few_shot_arc_challenge_20.yaml
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
task_loader:
|
2 |
+
_target_: tasks.FewShotTask
|
3 |
+
wrapped_task:
|
4 |
+
_target_: tasks.AI2ArcTask
|
5 |
+
wrapped_split: ${wrapped_split}
|
6 |
+
shots: ${task_shots}
|
7 |
+
seed: ${task_loader_seed}
|
8 |
+
|
9 |
+
|
10 |
+
wrapped_split: transfer
|
11 |
+
task_shots: 20
|
12 |
+
task_loader_seed: 38
|
13 |
+
|
14 |
+
task_name: arc_chal_${task_shots}shots
|
15 |
+
|
data/cfgs/task/ablation_tasks/few_shot_arc_challenge_3.yaml
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
task_loader:
|
2 |
+
_target_: tasks.FewShotTask
|
3 |
+
wrapped_task:
|
4 |
+
_target_: tasks.AI2ArcTask
|
5 |
+
wrapped_split: ${wrapped_split}
|
6 |
+
shots: ${task_shots}
|
7 |
+
seed: ${task_loader_seed}
|
8 |
+
|
9 |
+
|
10 |
+
wrapped_split: transfer
|
11 |
+
task_shots: 3
|
12 |
+
task_loader_seed: 38
|
13 |
+
|
14 |
+
task_name: arc_chal_${task_shots}shots
|
15 |
+
|
data/cfgs/task/ablation_tasks/few_shot_arc_challenge_5.yaml
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
task_loader:
|
2 |
+
_target_: tasks.FewShotTask
|
3 |
+
wrapped_task:
|
4 |
+
_target_: tasks.AI2ArcTask
|
5 |
+
wrapped_split: ${wrapped_split}
|
6 |
+
shots: ${task_shots}
|
7 |
+
seed: ${task_loader_seed}
|
8 |
+
|
9 |
+
|
10 |
+
wrapped_split: transfer
|
11 |
+
task_shots: 5
|
12 |
+
task_loader_seed: 38
|
13 |
+
|
14 |
+
task_name: arc_chal_${task_shots}shots
|
15 |
+
|
data/cfgs/task/ai2_arc.yaml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
task_loader:
|
2 |
+
_target_: tasks.AI2ArcTask
|
3 |
+
|
4 |
+
|
5 |
+
task_name: ai2_arc
|
6 |
+
|
data/cfgs/task/cls.yaml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
task_loader:
|
2 |
+
_target_: tasks.ClsTask
|
3 |
+
|
4 |
+
|
5 |
+
task_name: Cls
|
6 |
+
|
data/cfgs/task/few_shot_arc_challenge.yaml
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
task_loader:
|
2 |
+
_target_: tasks.FewShotTask
|
3 |
+
wrapped_task:
|
4 |
+
_target_: tasks.AI2ArcTask
|
5 |
+
wrapped_split: ${wrapped_split}
|
6 |
+
shots: ${task_shots}
|
7 |
+
seed: ${task_loader_seed}
|
8 |
+
|
9 |
+
|
10 |
+
wrapped_split: transfer
|
11 |
+
task_shots: 10
|
12 |
+
task_loader_seed: 38
|
13 |
+
|
14 |
+
task_name: arc_chal_${task_shots}shots
|
15 |
+
|
data/cfgs/task/few_shot_humaneval.yaml
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
task_loader:
|
2 |
+
_target_: tasks.FewShotTask
|
3 |
+
wrapped_task:
|
4 |
+
_target_: tasks.Mbpp2Task2
|
5 |
+
wrapped_split: ${wrapped_split}
|
6 |
+
shots: ${task_shots}
|
7 |
+
seed: ${task_loader_seed}
|
8 |
+
|
9 |
+
|
10 |
+
wrapped_split: transfer
|
11 |
+
task_shots: 10
|
12 |
+
task_loader_seed: 16
|
13 |
+
|
14 |
+
task_name: humaneval_${task_shots}shots
|
data/cfgs/task/few_shot_math.yaml
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
task_loader:
|
2 |
+
_target_: tasks.FewShotTask
|
3 |
+
wrapped_task:
|
4 |
+
_target_: tasks.MathTask
|
5 |
+
wrapped_split: ${wrapped_split}
|
6 |
+
shots: ${task_shots}
|
7 |
+
seed: ${task_loader_seed}
|
8 |
+
|
9 |
+
|
10 |
+
wrapped_split: test
|
11 |
+
task_shots: 10
|
12 |
+
task_loader_seed: 27
|
13 |
+
|
14 |
+
task_name: math_${task_shots}shots
|
15 |
+
|
data/cfgs/task/gsm8k.yaml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
task_loader:
|
2 |
+
_target_: tasks.Gsm8kTask
|
3 |
+
|
4 |
+
|
5 |
+
task_name: gsm8k
|
6 |
+
|
data/cfgs/task/math.yaml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
task_loader:
|
2 |
+
_target_: tasks.MathTask
|
3 |
+
|
4 |
+
|
5 |
+
task_name: math
|
6 |
+
|
data/cfgs/task/mbpp2.yaml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
task_loader:
|
2 |
+
_target_: tasks.Mbpp2Task
|
3 |
+
|
4 |
+
|
5 |
+
task_name: mbpp
|
6 |
+
|
data/evaluation/fishfarm/fishfarm/__init__.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from . import chat_templates, models, tasks
|
2 |
+
from .models import Message, Model, Role
|
3 |
+
from .tasks import Task, TaskResult
|
4 |
+
|
5 |
+
__all__ = [
|
6 |
+
"chat_templates",
|
7 |
+
"tasks",
|
8 |
+
"models",
|
9 |
+
"Task",
|
10 |
+
"TaskResult",
|
11 |
+
"Model",
|
12 |
+
"Message",
|
13 |
+
"Role",
|
14 |
+
]
|
data/evaluation/fishfarm/fishfarm/chat_templates.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
LLAMA3 = (
|
2 |
+
"{% set loop_messages = messages %}"
|
3 |
+
"{% for message in loop_messages %}"
|
4 |
+
"{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>"
|
5 |
+
"\n\n'+ message['content'] | trim + '<|eot_id|>' %}"
|
6 |
+
"{% if loop.index0 == 0 %}{% set content = bos_token + content %}"
|
7 |
+
"{% endif %}"
|
8 |
+
"{{ content }}"
|
9 |
+
"{% endfor %}"
|
10 |
+
"{% if add_generation_prompt %}"
|
11 |
+
"{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}"
|
12 |
+
"{% endif %}"
|
13 |
+
)
|
data/evaluation/fishfarm/fishfarm/imports.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from types import TracebackType
|
2 |
+
from typing import Optional, Tuple, Type
|
3 |
+
|
4 |
+
|
5 |
+
class _DeferredImportExceptionContextManager:
|
6 |
+
"""Context manager to defer exceptions from imports.
|
7 |
+
|
8 |
+
Catches :exc:`ImportError` and :exc:`SyntaxError`.
|
9 |
+
If any exception is caught, this class raises an :exc:`ImportError` when being checked.
|
10 |
+
|
11 |
+
"""
|
12 |
+
|
13 |
+
def __init__(self) -> None:
|
14 |
+
self._deferred: Optional[Tuple[Exception, str]] = None
|
15 |
+
|
16 |
+
def __enter__(self) -> "_DeferredImportExceptionContextManager":
|
17 |
+
"""Enter the context manager.
|
18 |
+
|
19 |
+
Returns:
|
20 |
+
Itself.
|
21 |
+
|
22 |
+
"""
|
23 |
+
return self
|
24 |
+
|
25 |
+
def __exit__(
|
26 |
+
self,
|
27 |
+
exc_type: Optional[Type[Exception]],
|
28 |
+
exc_value: Optional[Exception],
|
29 |
+
traceback: Optional[TracebackType],
|
30 |
+
) -> Optional[bool]:
|
31 |
+
"""Exit the context manager.
|
32 |
+
|
33 |
+
Args:
|
34 |
+
exc_type:
|
35 |
+
Raised exception type. :obj:`None` if nothing is raised.
|
36 |
+
exc_value:
|
37 |
+
Raised exception object. :obj:`None` if nothing is raised.
|
38 |
+
traceback:
|
39 |
+
Associated traceback. :obj:`None` if nothing is raised.
|
40 |
+
|
41 |
+
Returns:
|
42 |
+
:obj:`None` if nothing is deferred, otherwise :obj:`True`.
|
43 |
+
:obj:`True` will suppress any exceptions avoiding them from propagating.
|
44 |
+
|
45 |
+
"""
|
46 |
+
if isinstance(exc_value, (ImportError, SyntaxError)):
|
47 |
+
if isinstance(exc_value, ImportError):
|
48 |
+
message = (
|
49 |
+
"Tried to import '{}' but failed. Please make sure that the package is "
|
50 |
+
"installed correctly to use this feature. Actual error: {}."
|
51 |
+
).format(exc_value.name, exc_value)
|
52 |
+
elif isinstance(exc_value, SyntaxError):
|
53 |
+
message = (
|
54 |
+
"Tried to import a package but failed due to a syntax error in {}. Please "
|
55 |
+
"make sure that the Python version is correct to use this feature. Actual "
|
56 |
+
"error: {}."
|
57 |
+
).format(exc_value.filename, exc_value)
|
58 |
+
else:
|
59 |
+
assert False
|
60 |
+
|
61 |
+
self._deferred = (exc_value, message)
|
62 |
+
return True
|
63 |
+
return None
|
64 |
+
|
65 |
+
def is_successful(self) -> bool:
|
66 |
+
"""Return whether the context manager has caught any exceptions.
|
67 |
+
|
68 |
+
Returns:
|
69 |
+
:obj:`True` if no exceptions are caught, :obj:`False` otherwise.
|
70 |
+
|
71 |
+
"""
|
72 |
+
return self._deferred is None
|
73 |
+
|
74 |
+
def check(self) -> None:
|
75 |
+
"""Check whether the context manager has caught any exceptions.
|
76 |
+
|
77 |
+
Raises:
|
78 |
+
:exc:`ImportError`:
|
79 |
+
If any exception was caught from the caught exception.
|
80 |
+
|
81 |
+
"""
|
82 |
+
if self._deferred is not None:
|
83 |
+
exc_value, message = self._deferred
|
84 |
+
raise ImportError(message) from exc_value
|
85 |
+
|
86 |
+
|
87 |
+
def try_import() -> _DeferredImportExceptionContextManager:
|
88 |
+
"""Create a context manager that can wrap imports of optional packages to defer exceptions.
|
89 |
+
|
90 |
+
Returns:
|
91 |
+
Deferred import context manager.
|
92 |
+
|
93 |
+
"""
|
94 |
+
return _DeferredImportExceptionContextManager()
|
data/evaluation/fishfarm/fishfarm/logging.py
ADDED
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Copied from Optuna repo:
|
3 |
+
https://github.com/optuna/optuna/blob/2595653638506e1b7e025a966a220984a59ab936/optuna/logging.py
|
4 |
+
Removed some comments for less verbosity.
|
5 |
+
|
6 |
+
In general, `logger.info` is preferred over `print` since it contains module name and timestamp;
|
7 |
+
We recommend the use of logger object for the fishfarm developers.
|
8 |
+
|
9 |
+
Inside fishfarm, we can call `get_logger(__name__)` from each python file.
|
10 |
+
Then the root logger format and level are applied to that logger object.
|
11 |
+
"""
|
12 |
+
|
13 |
+
from __future__ import annotations
|
14 |
+
|
15 |
+
import logging
|
16 |
+
import os
|
17 |
+
import sys
|
18 |
+
import threading
|
19 |
+
from logging import CRITICAL, DEBUG, ERROR, FATAL, INFO, WARN, WARNING
|
20 |
+
|
21 |
+
import colorlog
|
22 |
+
|
23 |
+
__all__ = [
|
24 |
+
"CRITICAL",
|
25 |
+
"DEBUG",
|
26 |
+
"ERROR",
|
27 |
+
"FATAL",
|
28 |
+
"INFO",
|
29 |
+
"WARN",
|
30 |
+
"WARNING",
|
31 |
+
]
|
32 |
+
|
33 |
+
_lock: threading.Lock = threading.Lock()
|
34 |
+
_default_handler: logging.Handler | None = None
|
35 |
+
|
36 |
+
|
37 |
+
def create_default_formatter() -> logging.Formatter:
|
38 |
+
"""Create a default formatter of log messages.
|
39 |
+
|
40 |
+
This function is not supposed to be directly accessed by library users.
|
41 |
+
"""
|
42 |
+
header = "[%(levelname)1.1s %(asctime)s %(name)s]"
|
43 |
+
message = "%(message)s"
|
44 |
+
if _color_supported():
|
45 |
+
return colorlog.ColoredFormatter(
|
46 |
+
f"%(log_color)s{header}%(reset)s {message}",
|
47 |
+
)
|
48 |
+
return logging.Formatter(f"{header} {message}")
|
49 |
+
|
50 |
+
|
51 |
+
def _color_supported() -> bool:
|
52 |
+
"""Detection of color support."""
|
53 |
+
# NO_COLOR environment variable:
|
54 |
+
if os.environ.get("NO_COLOR", None):
|
55 |
+
return False
|
56 |
+
|
57 |
+
if not hasattr(sys.stderr, "isatty") or not sys.stderr.isatty():
|
58 |
+
return False
|
59 |
+
else:
|
60 |
+
return True
|
61 |
+
|
62 |
+
|
63 |
+
def _get_library_name() -> str:
|
64 |
+
return __name__.split(".")[0]
|
65 |
+
|
66 |
+
|
67 |
+
def _get_library_root_logger() -> logging.Logger:
|
68 |
+
return logging.getLogger(_get_library_name())
|
69 |
+
|
70 |
+
|
71 |
+
def _configure_library_root_logger() -> None:
|
72 |
+
global _default_handler
|
73 |
+
|
74 |
+
with _lock:
|
75 |
+
if _default_handler:
|
76 |
+
# This library has already configured the library root logger.
|
77 |
+
return
|
78 |
+
_default_handler = logging.StreamHandler() # Set sys.stderr as stream.
|
79 |
+
_default_handler.setFormatter(create_default_formatter())
|
80 |
+
|
81 |
+
# Apply our default configuration to the library root logger.
|
82 |
+
library_root_logger: logging.Logger = _get_library_root_logger()
|
83 |
+
library_root_logger.addHandler(_default_handler)
|
84 |
+
library_root_logger.setLevel(logging.INFO)
|
85 |
+
library_root_logger.propagate = False
|
86 |
+
|
87 |
+
|
88 |
+
def _reset_library_root_logger() -> None:
|
89 |
+
global _default_handler
|
90 |
+
|
91 |
+
with _lock:
|
92 |
+
if not _default_handler:
|
93 |
+
return
|
94 |
+
|
95 |
+
library_root_logger: logging.Logger = _get_library_root_logger()
|
96 |
+
library_root_logger.removeHandler(_default_handler)
|
97 |
+
library_root_logger.setLevel(logging.NOTSET)
|
98 |
+
_default_handler = None
|
99 |
+
|
100 |
+
|
101 |
+
def get_logger(name: str) -> logging.Logger:
|
102 |
+
"""Return a logger with the specified name.
|
103 |
+
name's prefix should be `fishfarm.` (just like __name__ variable),
|
104 |
+
otherwise root logger settings will be not reflected.
|
105 |
+
This function is not supposed to be directly accessed by library users.
|
106 |
+
"""
|
107 |
+
|
108 |
+
_configure_library_root_logger()
|
109 |
+
return logging.getLogger(name)
|
110 |
+
|
111 |
+
|
112 |
+
def get_verbosity() -> int:
|
113 |
+
"""Return the current level for the fishfarm's root logger.
|
114 |
+
|
115 |
+
Returns:
|
116 |
+
Logging level, e.g., ``fishfarm.logging.DEBUG`` and ``fishfarm.logging.INFO``.
|
117 |
+
|
118 |
+
.. note::
|
119 |
+
fishfarm has following logging levels:
|
120 |
+
|
121 |
+
- ``fishfarm.logging.CRITICAL``, ``fishfarm.logging.FATAL``
|
122 |
+
- ``fishfarm.logging.ERROR``
|
123 |
+
- ``fishfarm.logging.WARNING``, ``fishfarm.logging.WARN``
|
124 |
+
- ``fishfarm.logging.INFO``
|
125 |
+
- ``fishfarm.logging.DEBUG``
|
126 |
+
"""
|
127 |
+
|
128 |
+
_configure_library_root_logger()
|
129 |
+
return _get_library_root_logger().getEffectiveLevel()
|
130 |
+
|
131 |
+
|
132 |
+
def set_verbosity(verbosity: int) -> None:
|
133 |
+
"""Set the level for the fishfarm's root logger.
|
134 |
+
|
135 |
+
Args:
|
136 |
+
verbosity:
|
137 |
+
Logging level, e.g., ``fishfarm.logging.DEBUG`` and ``fishfarm.logging.INFO``.
|
138 |
+
|
139 |
+
.. note::
|
140 |
+
fishfarm has following logging levels:
|
141 |
+
|
142 |
+
- ``fishfarm.logging.CRITICAL``, ``fishfarm.logging.FATAL``
|
143 |
+
- ``fishfarm.logging.ERROR``
|
144 |
+
- ``fishfarm.logging.WARNING``, ``fishfarm.logging.WARN``
|
145 |
+
- ``fishfarm.logging.INFO``
|
146 |
+
- ``fishfarm.logging.DEBUG``
|
147 |
+
"""
|
148 |
+
|
149 |
+
_configure_library_root_logger()
|
150 |
+
_get_library_root_logger().setLevel(verbosity)
|
151 |
+
|
152 |
+
|
153 |
+
def disable_default_handler() -> None:
|
154 |
+
"""Disable the default handler of the fishfarm's root logger."""
|
155 |
+
|
156 |
+
_configure_library_root_logger()
|
157 |
+
|
158 |
+
assert _default_handler is not None
|
159 |
+
_get_library_root_logger().removeHandler(_default_handler)
|
160 |
+
|
161 |
+
|
162 |
+
def enable_default_handler() -> None:
|
163 |
+
"""Enable the default handler of the fishfarm's root logger."""
|
164 |
+
|
165 |
+
_configure_library_root_logger()
|
166 |
+
|
167 |
+
assert _default_handler is not None
|
168 |
+
_get_library_root_logger().addHandler(_default_handler)
|
169 |
+
|
170 |
+
|
171 |
+
def disable_propagation() -> None:
|
172 |
+
"""Disable propagation of the library log outputs.
|
173 |
+
|
174 |
+
Note that log propagation is disabled by default. You only need to use this function
|
175 |
+
to stop log propagation when you use :func:`~fishfarm.logging.enable_propagation()`.
|
176 |
+
"""
|
177 |
+
|
178 |
+
_configure_library_root_logger()
|
179 |
+
_get_library_root_logger().propagate = False
|
180 |
+
|
181 |
+
|
182 |
+
def enable_propagation() -> None:
|
183 |
+
"""Enable propagation of the library log outputs.
|
184 |
+
|
185 |
+
Please disable the fishfarm's default handler to prevent double logging if the root logger has
|
186 |
+
been configured.
|
187 |
+
"""
|
188 |
+
|
189 |
+
_configure_library_root_logger()
|
190 |
+
_get_library_root_logger().propagate = True
|
data/evaluation/fishfarm/fishfarm/models/__init__.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .base import (GenerationRequest, GenerationResult, Message, Model,
|
2 |
+
NLLRequest, NLLResult, Role)
|
3 |
+
|
4 |
+
__all__ = [
|
5 |
+
"GenerationRequest",
|
6 |
+
"GenerationResult",
|
7 |
+
"NLLRequest",
|
8 |
+
"NLLResult",
|
9 |
+
"Model",
|
10 |
+
"Role",
|
11 |
+
"Message",
|
12 |
+
]
|
data/evaluation/fishfarm/fishfarm/models/base.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
from dataclasses import dataclass
|
4 |
+
from typing import Iterable, Literal, Optional, Sequence
|
5 |
+
|
6 |
+
Role = Literal["system", "user", "assistant", "assistant_prefill"]
|
7 |
+
|
8 |
+
|
9 |
+
@dataclass
|
10 |
+
class Message:
|
11 |
+
|
12 |
+
role: Role
|
13 |
+
content: str
|
14 |
+
|
15 |
+
|
16 |
+
@dataclass
|
17 |
+
class GenerationRequest:
|
18 |
+
|
19 |
+
messages: list[Message]
|
20 |
+
|
21 |
+
max_tokens: Optional[int] = None
|
22 |
+
stop: Sequence[str] = ()
|
23 |
+
|
24 |
+
|
25 |
+
@dataclass
|
26 |
+
class GenerationResult:
|
27 |
+
|
28 |
+
request: GenerationRequest
|
29 |
+
generation: str
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class NLLRequest:
|
34 |
+
|
35 |
+
messages: list[Message]
|
36 |
+
|
37 |
+
|
38 |
+
@dataclass
|
39 |
+
class NLLResult:
|
40 |
+
|
41 |
+
request: NLLRequest
|
42 |
+
sum_nll: float
|
43 |
+
num_considered_tokens: int
|
44 |
+
|
45 |
+
|
46 |
+
class Model:
|
47 |
+
|
48 |
+
def generate(
|
49 |
+
self, requests: Sequence[GenerationRequest]
|
50 |
+
) -> Iterable[GenerationResult]:
|
51 |
+
raise NotImplementedError()
|
52 |
+
|
53 |
+
def nll(self, requests: Sequence[NLLRequest]) -> Iterable[NLLResult]:
|
54 |
+
raise NotImplementedError()
|
data/evaluation/fishfarm/fishfarm/models/tokenization_utils.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import dataclasses
|
2 |
+
from typing import Optional
|
3 |
+
|
4 |
+
from transformers import PreTrainedTokenizerBase
|
5 |
+
|
6 |
+
from .base import Message
|
7 |
+
|
8 |
+
|
9 |
+
class MaskedTokens:
|
10 |
+
|
11 |
+
text: str
|
12 |
+
token_ids: list[int]
|
13 |
+
mask: list[bool]
|
14 |
+
|
15 |
+
def __init__(self) -> None:
|
16 |
+
self.text = ""
|
17 |
+
self.token_ids = []
|
18 |
+
self.mask = []
|
19 |
+
|
20 |
+
def extend(
|
21 |
+
self,
|
22 |
+
messages: list[Message],
|
23 |
+
mask_value: bool,
|
24 |
+
tokenizer: PreTrainedTokenizerBase,
|
25 |
+
chat_template: Optional[str],
|
26 |
+
add_generation_prompt: bool,
|
27 |
+
) -> None:
|
28 |
+
if len(messages) == 0:
|
29 |
+
# `tokenizer.apply_chat_template` does not accept an empty list.
|
30 |
+
raise ValueError("At least one message is required.")
|
31 |
+
|
32 |
+
all_text: str = tokenizer.apply_chat_template(
|
33 |
+
conversation=[dataclasses.asdict(message) for message in messages],
|
34 |
+
chat_template=chat_template,
|
35 |
+
tokenize=False,
|
36 |
+
add_generation_prompt=add_generation_prompt,
|
37 |
+
)
|
38 |
+
assert all_text.startswith(self.text)
|
39 |
+
new_text = all_text[len(self.text) :]
|
40 |
+
new_token_ids: list[int] = tokenizer.encode(new_text, add_special_tokens=False)
|
41 |
+
|
42 |
+
self.token_ids.extend(new_token_ids)
|
43 |
+
self.mask.extend([mask_value] * len(new_token_ids))
|
44 |
+
self.text = all_text
|
45 |
+
|
46 |
+
|
47 |
+
def tokenize_messages(
|
48 |
+
messages: list[Message],
|
49 |
+
tokenizer: PreTrainedTokenizerBase,
|
50 |
+
chat_template: Optional[str],
|
51 |
+
) -> MaskedTokens:
|
52 |
+
masked_tokens = MaskedTokens()
|
53 |
+
|
54 |
+
for i, message in enumerate(messages):
|
55 |
+
if message.role != "assistant":
|
56 |
+
continue
|
57 |
+
|
58 |
+
masked_tokens.extend(messages[:i], False, tokenizer, chat_template, True)
|
59 |
+
masked_tokens.extend(messages[: i + 1], True, tokenizer, chat_template, False)
|
60 |
+
|
61 |
+
masked_tokens.extend(messages, False, tokenizer, chat_template, True)
|
62 |
+
return masked_tokens
|
data/evaluation/fishfarm/fishfarm/models/vllm_model.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import dataclasses
|
3 |
+
from typing import Any, Iterable, Optional, Sequence
|
4 |
+
|
5 |
+
from fishfarm.models.base import NLLRequest, NLLResult
|
6 |
+
from transformers import PreTrainedTokenizerBase
|
7 |
+
|
8 |
+
from ..imports import try_import
|
9 |
+
from .base import GenerationRequest, GenerationResult, Message, Model
|
10 |
+
from .tokenization_utils import tokenize_messages
|
11 |
+
|
12 |
+
with try_import() as _imports:
|
13 |
+
import vllm
|
14 |
+
|
15 |
+
_imports.check()
|
16 |
+
|
17 |
+
|
18 |
+
class VLLMModel(Model):
|
19 |
+
|
20 |
+
def __init__(
|
21 |
+
self,
|
22 |
+
llm: vllm.LLM,
|
23 |
+
sampling_params: vllm.SamplingParams,
|
24 |
+
chat_template: Optional[str],
|
25 |
+
) -> None:
|
26 |
+
self.llm = llm
|
27 |
+
self.chat_template = chat_template
|
28 |
+
self.sampling_params = sampling_params
|
29 |
+
|
30 |
+
def get_tokenizer(self) -> PreTrainedTokenizerBase:
|
31 |
+
tokenizer = self.llm.get_tokenizer()
|
32 |
+
|
33 |
+
if not hasattr(tokenizer, "apply_chat_template"):
|
34 |
+
if hasattr(tokenizer, "tokenizer"):
|
35 |
+
tokenizer = tokenizer.tokenizer
|
36 |
+
else:
|
37 |
+
raise ValueError(
|
38 |
+
"The tokenizer does not have the 'apply_chat_template' method. "
|
39 |
+
"This is likely because of the versions of vLLM or transformers."
|
40 |
+
)
|
41 |
+
|
42 |
+
return tokenizer
|
43 |
+
|
44 |
+
def _into_prompt(self, messages: Sequence[Message]) -> str:
|
45 |
+
tokenizer = self.get_tokenizer()
|
46 |
+
prefill_text = ""
|
47 |
+
n_assistant_prefill = sum([m.role == "assistant_prefill" for m in messages])
|
48 |
+
if n_assistant_prefill > 1:
|
49 |
+
raise ValueError(
|
50 |
+
f"There must be at most one assistant_prefill role, but got {n_assistant_prefill}",
|
51 |
+
)
|
52 |
+
if n_assistant_prefill:
|
53 |
+
assert (
|
54 |
+
messages[-1].role == "assistant_prefill"
|
55 |
+
), "assistant_prefill role must be the last message"
|
56 |
+
prefill_text = messages[-1].content
|
57 |
+
messages = messages[:-1]
|
58 |
+
prompt: str = tokenizer.apply_chat_template(
|
59 |
+
conversation=[dataclasses.asdict(message) for message in messages],
|
60 |
+
chat_template=self.chat_template,
|
61 |
+
tokenize=False,
|
62 |
+
add_generation_prompt=True,
|
63 |
+
)
|
64 |
+
prompt += prefill_text
|
65 |
+
return prompt
|
66 |
+
|
67 |
+
def _predict_log_probs(self, token_ids_list: list[list[int]]) -> list[list[float]]:
|
68 |
+
sampling_params = copy.copy(self.sampling_params)
|
69 |
+
sampling_params.prompt_logprobs = 1
|
70 |
+
sampling_params.max_tokens = 1
|
71 |
+
|
72 |
+
completions = self.llm.generate(
|
73 |
+
prompt_token_ids=token_ids_list,
|
74 |
+
sampling_params=sampling_params,
|
75 |
+
)
|
76 |
+
|
77 |
+
log_probs_list = []
|
78 |
+
for token_ids, completion in zip(token_ids_list, completions):
|
79 |
+
log_probs = []
|
80 |
+
assert completion.prompt_logprobs is not None
|
81 |
+
assert token_ids == completion.prompt_token_ids
|
82 |
+
assert len(token_ids) == len(completion.prompt_logprobs)
|
83 |
+
for token_id, logprob_dict in zip(token_ids, completion.prompt_logprobs):
|
84 |
+
if logprob_dict is None:
|
85 |
+
log_probs.append(0.0)
|
86 |
+
else:
|
87 |
+
logprob_entry: Any = logprob_dict[token_id]
|
88 |
+
|
89 |
+
if isinstance(logprob_entry, float):
|
90 |
+
log_probs.append(logprob_entry)
|
91 |
+
else:
|
92 |
+
log_probs.append(logprob_entry.logprob)
|
93 |
+
|
94 |
+
log_probs_list.append(log_probs)
|
95 |
+
|
96 |
+
return log_probs_list
|
97 |
+
|
98 |
+
def generate(
|
99 |
+
self, requests: Sequence[GenerationRequest]
|
100 |
+
) -> Iterable[GenerationResult]:
|
101 |
+
|
102 |
+
prompts = [self._into_prompt(request.messages) for request in requests]
|
103 |
+
completions = self.llm.generate(
|
104 |
+
prompts=prompts,
|
105 |
+
sampling_params=self.sampling_params,
|
106 |
+
)
|
107 |
+
|
108 |
+
for request, completion in zip(requests, completions):
|
109 |
+
yield GenerationResult(
|
110 |
+
request=request, generation=completion.outputs[0].text
|
111 |
+
)
|
112 |
+
|
113 |
+
def nll(self, requests: Sequence[NLLRequest]) -> Iterable[NLLResult]:
|
114 |
+
masked_tokens_list = [
|
115 |
+
tokenize_messages(
|
116 |
+
request.messages, self.get_tokenizer(), self.chat_template
|
117 |
+
)
|
118 |
+
for request in requests
|
119 |
+
]
|
120 |
+
log_probs_list = self._predict_log_probs(
|
121 |
+
[masked_tokens.token_ids for masked_tokens in masked_tokens_list]
|
122 |
+
)
|
123 |
+
|
124 |
+
results = []
|
125 |
+
for log_probs, masked_tokens, request in zip(
|
126 |
+
log_probs_list, masked_tokens_list, requests
|
127 |
+
):
|
128 |
+
assert len(log_probs) == len(masked_tokens.mask)
|
129 |
+
|
130 |
+
sum_nll = 0.0
|
131 |
+
num_considered_tokens = 0
|
132 |
+
for log_prob, mask_value in zip(log_probs, masked_tokens.mask):
|
133 |
+
if mask_value:
|
134 |
+
sum_nll += -log_prob
|
135 |
+
num_considered_tokens += 1
|
136 |
+
|
137 |
+
results.append(
|
138 |
+
NLLResult(
|
139 |
+
request=request,
|
140 |
+
sum_nll=sum_nll,
|
141 |
+
num_considered_tokens=num_considered_tokens,
|
142 |
+
)
|
143 |
+
)
|
144 |
+
|
145 |
+
return results
|
data/evaluation/fishfarm/fishfarm/tasks/__init__.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from . import base
|
2 |
+
from .base import Task, TaskResult
|
3 |
+
|
4 |
+
__all__ = [
|
5 |
+
"base",
|
6 |
+
"TaskResult",
|
7 |
+
"Task",
|
8 |
+
]
|
data/evaluation/fishfarm/fishfarm/tasks/ai2_arc.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import re
|
3 |
+
from dataclasses import dataclass
|
4 |
+
from typing import Iterable, Optional, Sequence
|
5 |
+
|
6 |
+
from ..models import GenerationRequest, Message, Model
|
7 |
+
from .base import Task, TaskResult
|
8 |
+
|
9 |
+
|
10 |
+
def extract_answer(text: str) -> Optional[str]:
|
11 |
+
pattern = r"answer is \(?([A-J])\)?"
|
12 |
+
match = re.search(pattern, text)
|
13 |
+
if match:
|
14 |
+
return match.group(1)
|
15 |
+
else:
|
16 |
+
return extract_again(text)
|
17 |
+
|
18 |
+
|
19 |
+
def extract_again(text: str) -> Optional[str]:
|
20 |
+
match = re.search(r".*[aA]nswer:\s*([A-J])", text)
|
21 |
+
if match:
|
22 |
+
return match.group(1)
|
23 |
+
else:
|
24 |
+
return extract_final(text)
|
25 |
+
|
26 |
+
|
27 |
+
def extract_final(text: str) -> Optional[str]:
|
28 |
+
pattern = r"\b[A-J]\b(?!.*\b[A-J]\b)"
|
29 |
+
match = re.search(pattern, text, re.DOTALL)
|
30 |
+
if match:
|
31 |
+
return match.group(0)
|
32 |
+
else:
|
33 |
+
return None
|
34 |
+
|
35 |
+
|
36 |
+
def is_correct(pred: Optional[str], answer: str, options: list[str]) -> bool:
|
37 |
+
if not pred:
|
38 |
+
random.seed(42)
|
39 |
+
x = random.randint(0, len(options) - 1)
|
40 |
+
if ["A", "B", "C", "D", "E"][x] == answer:
|
41 |
+
return True
|
42 |
+
else:
|
43 |
+
return False
|
44 |
+
elif pred == answer:
|
45 |
+
return True
|
46 |
+
else:
|
47 |
+
return False
|
48 |
+
|
49 |
+
|
50 |
+
@dataclass
|
51 |
+
class Ai2ArcSample:
|
52 |
+
|
53 |
+
question: str
|
54 |
+
question_id: str
|
55 |
+
options: list[str]
|
56 |
+
answer: str
|
57 |
+
|
58 |
+
|
59 |
+
def mean(iterable: Iterable[float]) -> float:
|
60 |
+
total, count = 0.0, 0
|
61 |
+
for x in iterable:
|
62 |
+
total += x
|
63 |
+
count += 1
|
64 |
+
return total / count
|
65 |
+
|
66 |
+
|
67 |
+
class Ai2ArcTask(Task):
|
68 |
+
def __init__(
|
69 |
+
self,
|
70 |
+
samples: Sequence[Ai2ArcSample],
|
71 |
+
context_messages: Sequence[Message] = (),
|
72 |
+
):
|
73 |
+
self.samples = list(samples)
|
74 |
+
self.context_messages = context_messages
|
75 |
+
|
76 |
+
@property
|
77 |
+
def num_samples(self) -> int:
|
78 |
+
return len(self.samples)
|
79 |
+
|
80 |
+
def evaluate(
|
81 |
+
self,
|
82 |
+
model: Model,
|
83 |
+
sample_ids: Optional[Sequence[int]] = None,
|
84 |
+
) -> TaskResult:
|
85 |
+
if sample_ids is None:
|
86 |
+
sample_ids = range(len(self.samples))
|
87 |
+
samples = [self.samples[sample_id] for sample_id in sample_ids]
|
88 |
+
|
89 |
+
requests = []
|
90 |
+
for sample in samples:
|
91 |
+
messages = list(self.context_messages)
|
92 |
+
messages.append(Message(role="user", content=sample.question))
|
93 |
+
requests.append(GenerationRequest(messages=messages))
|
94 |
+
|
95 |
+
sample_details = []
|
96 |
+
for sample, result in zip(samples, model.generate(requests)):
|
97 |
+
output = result.generation
|
98 |
+
prediction = extract_answer(result.generation)
|
99 |
+
|
100 |
+
sample_details.append(
|
101 |
+
dict(
|
102 |
+
problem=sample.question,
|
103 |
+
output=output,
|
104 |
+
answer=sample.answer,
|
105 |
+
prediction=prediction,
|
106 |
+
correct=is_correct(prediction, sample.answer, sample.options),
|
107 |
+
)
|
108 |
+
)
|
109 |
+
|
110 |
+
aggregate_metrics = {
|
111 |
+
"acc": mean(
|
112 |
+
float(sd["correct"]) if isinstance(sd["correct"], (bool)) else 0.0
|
113 |
+
for sd in sample_details
|
114 |
+
)
|
115 |
+
}
|
116 |
+
return TaskResult(
|
117 |
+
aggregate_metrics=aggregate_metrics, sample_details=sample_details
|
118 |
+
)
|
data/evaluation/fishfarm/fishfarm/tasks/base.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import abc
|
2 |
+
from dataclasses import dataclass
|
3 |
+
from typing import Any, Optional, Sequence
|
4 |
+
|
5 |
+
from ..models import Model
|
6 |
+
|
7 |
+
|
8 |
+
@dataclass
|
9 |
+
class TaskResult:
|
10 |
+
|
11 |
+
aggregate_metrics: dict[str, float]
|
12 |
+
sample_details: list[dict[str, Any]]
|
13 |
+
|
14 |
+
|
15 |
+
class Task(abc.ABC):
|
16 |
+
|
17 |
+
@property
|
18 |
+
@abc.abstractmethod
|
19 |
+
def num_samples(self) -> int:
|
20 |
+
raise NotImplementedError()
|
21 |
+
|
22 |
+
@abc.abstractmethod
|
23 |
+
def evaluate(
|
24 |
+
self,
|
25 |
+
model: Model,
|
26 |
+
sample_ids: Optional[Sequence[int]] = None,
|
27 |
+
) -> TaskResult:
|
28 |
+
raise NotImplementedError()
|
data/evaluation/fishfarm/fishfarm/tasks/competation_math.py
ADDED
@@ -0,0 +1,391 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from math import isclose
|
3 |
+
from typing import Any, Iterable, Optional, Sequence, Union
|
4 |
+
|
5 |
+
from sympy import N, simplify
|
6 |
+
from sympy.parsing.latex import parse_latex
|
7 |
+
from sympy.parsing.sympy_parser import parse_expr
|
8 |
+
|
9 |
+
from ..models import GenerationRequest, Message, Model
|
10 |
+
from .base import Task, TaskResult
|
11 |
+
|
12 |
+
|
13 |
+
def _fix_fracs(string: str) -> str:
|
14 |
+
substrs = string.split("\\frac")
|
15 |
+
new_str = substrs[0]
|
16 |
+
if len(substrs) > 1:
|
17 |
+
substrs = substrs[1:]
|
18 |
+
for substr in substrs:
|
19 |
+
new_str += "\\frac"
|
20 |
+
if substr[0] == "{":
|
21 |
+
new_str += substr
|
22 |
+
else:
|
23 |
+
try:
|
24 |
+
assert len(substr) >= 2
|
25 |
+
except AssertionError:
|
26 |
+
return string
|
27 |
+
a = substr[0]
|
28 |
+
b = substr[1]
|
29 |
+
if b != "{":
|
30 |
+
if len(substr) > 2:
|
31 |
+
post_substr = substr[2:]
|
32 |
+
new_str += "{" + a + "}{" + b + "}" + post_substr
|
33 |
+
else:
|
34 |
+
new_str += "{" + a + "}{" + b + "}"
|
35 |
+
else:
|
36 |
+
if len(substr) > 2:
|
37 |
+
post_substr = substr[2:]
|
38 |
+
new_str += "{" + a + "}" + b + post_substr
|
39 |
+
else:
|
40 |
+
new_str += "{" + a + "}" + b
|
41 |
+
string = new_str
|
42 |
+
return string
|
43 |
+
|
44 |
+
|
45 |
+
def _fix_a_slash_b(string: str) -> str:
|
46 |
+
if len(string.split("/")) != 2:
|
47 |
+
return string
|
48 |
+
a: str = string.split("/")[0]
|
49 |
+
b: str = string.split("/")[1]
|
50 |
+
try:
|
51 |
+
a_int: int = int(a)
|
52 |
+
b_int: int = int(b)
|
53 |
+
assert string == "{}/{}".format(a_int, b_int)
|
54 |
+
new_string = "\\frac{" + str(a) + "}{" + str(b) + "}"
|
55 |
+
return new_string
|
56 |
+
except (AssertionError, ValueError):
|
57 |
+
return string
|
58 |
+
|
59 |
+
|
60 |
+
def _remove_right_units(string: str) -> str:
|
61 |
+
if "\\text{ " in string:
|
62 |
+
splits = string.split("\\text{ ")
|
63 |
+
assert len(splits) == 2
|
64 |
+
return splits[0]
|
65 |
+
else:
|
66 |
+
return string
|
67 |
+
|
68 |
+
|
69 |
+
def _fix_sqrt(string: str) -> str:
|
70 |
+
if "\\sqrt" not in string:
|
71 |
+
return string
|
72 |
+
splits = string.split("\\sqrt")
|
73 |
+
new_string = splits[0]
|
74 |
+
for split in splits[1:]:
|
75 |
+
if split[0] != "{":
|
76 |
+
a = split[0]
|
77 |
+
new_substr = "\\sqrt{" + a + "}" + split[1:]
|
78 |
+
else:
|
79 |
+
new_substr = "\\sqrt" + split
|
80 |
+
new_string += new_substr
|
81 |
+
return new_string
|
82 |
+
|
83 |
+
|
84 |
+
def _strip_string(string: str) -> str:
|
85 |
+
string = string.replace("\n", "")
|
86 |
+
|
87 |
+
string = string.replace("\\!", "")
|
88 |
+
|
89 |
+
string = string.replace("\\\\", "\\")
|
90 |
+
|
91 |
+
string = string.replace("tfrac", "frac")
|
92 |
+
string = string.replace("dfrac", "frac")
|
93 |
+
|
94 |
+
string = string.replace("\\left", "")
|
95 |
+
string = string.replace("\\right", "")
|
96 |
+
|
97 |
+
string = string.replace("^{\\circ}", "")
|
98 |
+
string = string.replace("^\\circ", "")
|
99 |
+
|
100 |
+
string = string.replace("\\$", "")
|
101 |
+
|
102 |
+
string = _remove_right_units(string)
|
103 |
+
|
104 |
+
string = string.replace(r"\\%", "")
|
105 |
+
string = string.replace(r"\%", "")
|
106 |
+
|
107 |
+
string = string.replace(" .", " 0.")
|
108 |
+
string = string.replace("{.", "{0.")
|
109 |
+
if len(string) == 0:
|
110 |
+
return string
|
111 |
+
if string[0] == ".":
|
112 |
+
string = "0" + string
|
113 |
+
|
114 |
+
if len(string.split("=")) == 2:
|
115 |
+
if len(string.split("=")[0]) <= 2:
|
116 |
+
string = string.split("=")[1]
|
117 |
+
|
118 |
+
string = _fix_sqrt(string)
|
119 |
+
|
120 |
+
string = string.replace(" ", "")
|
121 |
+
|
122 |
+
string = _fix_fracs(string)
|
123 |
+
|
124 |
+
if string == "0.5":
|
125 |
+
string = "\\frac{1}{2}"
|
126 |
+
|
127 |
+
string = _fix_a_slash_b(string)
|
128 |
+
|
129 |
+
return string
|
130 |
+
|
131 |
+
|
132 |
+
def is_digit(s: Union[bool, float, str]) -> bool:
|
133 |
+
try:
|
134 |
+
float(str(s).replace(",", ""))
|
135 |
+
return True
|
136 |
+
except ValueError:
|
137 |
+
return False
|
138 |
+
|
139 |
+
|
140 |
+
def symbolic_equal(a: str, b: str) -> bool:
|
141 |
+
def _parse(s: str) -> Any:
|
142 |
+
for f in [parse_latex, parse_expr]:
|
143 |
+
try:
|
144 |
+
return f(s)
|
145 |
+
except Exception:
|
146 |
+
pass
|
147 |
+
return s
|
148 |
+
|
149 |
+
a = _parse(a)
|
150 |
+
b = _parse(b)
|
151 |
+
|
152 |
+
try:
|
153 |
+
if simplify(a - b) == 0:
|
154 |
+
return True
|
155 |
+
except Exception:
|
156 |
+
pass
|
157 |
+
|
158 |
+
try:
|
159 |
+
if isclose(N(a), N(b), rel_tol=1e-3):
|
160 |
+
return True
|
161 |
+
except Exception:
|
162 |
+
pass
|
163 |
+
return False
|
164 |
+
|
165 |
+
|
166 |
+
def math_equal(
|
167 |
+
prediction: Union[bool, float, str],
|
168 |
+
reference: Union[float, str],
|
169 |
+
include_percentage: bool = True,
|
170 |
+
is_close: bool = True,
|
171 |
+
) -> bool:
|
172 |
+
"""
|
173 |
+
Exact match of math if and only if:
|
174 |
+
1. numerical equal: both can convert to float and are equal
|
175 |
+
2. symbolic equal: both can convert to sympy expression and are equal
|
176 |
+
"""
|
177 |
+
try:
|
178 |
+
if is_digit(prediction) and is_digit(reference):
|
179 |
+
prediction = float(str(prediction).replace(",", ""))
|
180 |
+
reference = float(str(reference).replace(",", ""))
|
181 |
+
if include_percentage:
|
182 |
+
gt_result = [reference / 100, reference, reference * 100]
|
183 |
+
else:
|
184 |
+
gt_result = [reference]
|
185 |
+
for item in gt_result:
|
186 |
+
try:
|
187 |
+
if is_close:
|
188 |
+
if isclose(item, prediction, rel_tol=1e-4):
|
189 |
+
return True
|
190 |
+
else:
|
191 |
+
if item == prediction:
|
192 |
+
return True
|
193 |
+
except Exception:
|
194 |
+
continue
|
195 |
+
return False
|
196 |
+
except Exception:
|
197 |
+
pass
|
198 |
+
|
199 |
+
if not prediction and prediction not in [0, False]:
|
200 |
+
return False
|
201 |
+
|
202 |
+
reference = str(reference).strip()
|
203 |
+
prediction = str(prediction).strip()
|
204 |
+
|
205 |
+
pred_str, ref_str = prediction, reference
|
206 |
+
if (
|
207 |
+
prediction.startswith("[")
|
208 |
+
and prediction.endswith("]")
|
209 |
+
and not reference.startswith("(")
|
210 |
+
) or (
|
211 |
+
prediction.startswith("(")
|
212 |
+
and prediction.endswith(")")
|
213 |
+
and not reference.startswith("[")
|
214 |
+
):
|
215 |
+
pred_str = pred_str.strip("[]()")
|
216 |
+
ref_str = ref_str.strip("[]()")
|
217 |
+
for s in ["{", "}", "(", ")"]:
|
218 |
+
ref_str = ref_str.replace(s, "")
|
219 |
+
pred_str = pred_str.replace(s, "")
|
220 |
+
if pred_str == ref_str:
|
221 |
+
return True
|
222 |
+
|
223 |
+
if (
|
224 |
+
(prediction.startswith("[") and prediction.endswith("]"))
|
225 |
+
and (reference.startswith("[") and reference.endswith("]"))
|
226 |
+
or (prediction.startswith("(") and prediction.endswith(")"))
|
227 |
+
and (reference.startswith("(") and reference.endswith(")"))
|
228 |
+
):
|
229 |
+
pred_parts = prediction[1:-1].split(",")
|
230 |
+
ref_parts = reference[1:-1].split(",")
|
231 |
+
if len(pred_parts) == len(ref_parts):
|
232 |
+
if all(
|
233 |
+
[
|
234 |
+
math_equal(
|
235 |
+
pred_parts[i], ref_parts[i], include_percentage, is_close
|
236 |
+
)
|
237 |
+
for i in range(len(pred_parts))
|
238 |
+
]
|
239 |
+
):
|
240 |
+
return True
|
241 |
+
|
242 |
+
if symbolic_equal(prediction, reference):
|
243 |
+
return True
|
244 |
+
|
245 |
+
return False
|
246 |
+
|
247 |
+
|
248 |
+
def is_equiv(str1: Optional[str], str2: Optional[str]) -> bool:
|
249 |
+
if str1 is None and str2 is None:
|
250 |
+
return True
|
251 |
+
if str1 is None or str2 is None:
|
252 |
+
return False
|
253 |
+
|
254 |
+
try:
|
255 |
+
ss1 = _strip_string(str1)
|
256 |
+
ss2 = _strip_string(str2)
|
257 |
+
return math_equal(ss1, ss2) or ss1 == ss2
|
258 |
+
except (AssertionError, TypeError, ValueError):
|
259 |
+
return math_equal(str1, str2) or str1 == str2
|
260 |
+
|
261 |
+
|
262 |
+
def last_boxed_only_string(string: str) -> Optional[str]:
|
263 |
+
idx = string.rfind("\\boxed")
|
264 |
+
if idx < 0:
|
265 |
+
idx = string.rfind("\\fbox")
|
266 |
+
if idx < 0:
|
267 |
+
return None
|
268 |
+
|
269 |
+
i = idx
|
270 |
+
right_brace_idx: Optional[int] = None
|
271 |
+
|
272 |
+
num_left_braces_open = 0
|
273 |
+
while i < len(string):
|
274 |
+
if string[i] == "{":
|
275 |
+
num_left_braces_open += 1
|
276 |
+
if string[i] == "}":
|
277 |
+
num_left_braces_open -= 1
|
278 |
+
if num_left_braces_open == 0:
|
279 |
+
right_brace_idx = i
|
280 |
+
break
|
281 |
+
i += 1
|
282 |
+
|
283 |
+
if right_brace_idx is None:
|
284 |
+
retval = None
|
285 |
+
else:
|
286 |
+
assert right_brace_idx is not None
|
287 |
+
retval = string[idx : right_brace_idx + 1]
|
288 |
+
|
289 |
+
return retval
|
290 |
+
|
291 |
+
|
292 |
+
def remove_boxed(s: Optional[str]) -> Optional[str]:
|
293 |
+
left = "\\boxed{"
|
294 |
+
if s is None:
|
295 |
+
return None
|
296 |
+
else:
|
297 |
+
try:
|
298 |
+
assert s[: len(left)] == left
|
299 |
+
assert s[-1] == "}"
|
300 |
+
return s[len(left) : -1]
|
301 |
+
except (AssertionError, TypeError, ValueError):
|
302 |
+
return None
|
303 |
+
|
304 |
+
|
305 |
+
@dataclass
|
306 |
+
class MathSample:
|
307 |
+
|
308 |
+
problem: str
|
309 |
+
answer: Optional[str] = None
|
310 |
+
type: Optional[str] = None
|
311 |
+
|
312 |
+
|
313 |
+
def mean(iterable: Iterable[float]) -> float:
|
314 |
+
total, count = 0.0, 0
|
315 |
+
for x in iterable:
|
316 |
+
total += x
|
317 |
+
count += 1
|
318 |
+
return total / count
|
319 |
+
|
320 |
+
|
321 |
+
def extract_ans(completion: str) -> Optional[str]:
|
322 |
+
|
323 |
+
split_ans = completion.split("The answer is: ")
|
324 |
+
if len(split_ans) > 1:
|
325 |
+
ans = split_ans[-1]
|
326 |
+
extract_ans_temp = ans.split(".\n")[0]
|
327 |
+
extract_ans_temp = extract_ans_temp.strip()
|
328 |
+
if len(extract_ans_temp) > 0 and extract_ans_temp[-1] == ".":
|
329 |
+
extract_ans = extract_ans_temp[0:-1]
|
330 |
+
else:
|
331 |
+
extract_ans = extract_ans_temp
|
332 |
+
extract_ans = extract_ans.strip()
|
333 |
+
return extract_ans
|
334 |
+
else:
|
335 |
+
return remove_boxed(last_boxed_only_string(completion))
|
336 |
+
|
337 |
+
|
338 |
+
class LatexFormatMathTask(Task):
|
339 |
+
def __init__(
|
340 |
+
self,
|
341 |
+
samples: Sequence[MathSample],
|
342 |
+
context_messages: Sequence[Message] = (),
|
343 |
+
):
|
344 |
+
self.samples = list(samples)
|
345 |
+
self.context_messages = context_messages
|
346 |
+
|
347 |
+
@property
|
348 |
+
def num_samples(self) -> int:
|
349 |
+
return len(self.samples)
|
350 |
+
|
351 |
+
def evaluate(
|
352 |
+
self,
|
353 |
+
model: Model,
|
354 |
+
sample_ids: Optional[Sequence[int]] = None,
|
355 |
+
) -> TaskResult:
|
356 |
+
if sample_ids is None:
|
357 |
+
sample_ids = range(len(self.samples))
|
358 |
+
samples = [self.samples[sample_id] for sample_id in sample_ids]
|
359 |
+
|
360 |
+
requests = []
|
361 |
+
for sample in samples:
|
362 |
+
messages = list(self.context_messages)
|
363 |
+
messages.append(Message(role="user", content=sample.problem))
|
364 |
+
requests.append(GenerationRequest(messages=messages))
|
365 |
+
|
366 |
+
sample_details = []
|
367 |
+
for sample, result in zip(samples, model.generate(requests)):
|
368 |
+
output = result.generation
|
369 |
+
prediction = extract_ans(output)
|
370 |
+
|
371 |
+
sample_details.append(
|
372 |
+
dict(
|
373 |
+
problem=sample.problem,
|
374 |
+
output=output,
|
375 |
+
answer=sample.answer,
|
376 |
+
type=sample.type,
|
377 |
+
prediction=prediction,
|
378 |
+
correct=is_equiv(sample.answer, prediction),
|
379 |
+
)
|
380 |
+
)
|
381 |
+
|
382 |
+
aggregate_metrics = {
|
383 |
+
"acc": mean(
|
384 |
+
float(sd["correct"]) if isinstance(sd["correct"], (bool)) else 0.0
|
385 |
+
for sd in sample_details
|
386 |
+
)
|
387 |
+
}
|
388 |
+
|
389 |
+
return TaskResult(
|
390 |
+
aggregate_metrics=aggregate_metrics, sample_details=sample_details
|
391 |
+
)
|
data/evaluation/fishfarm/fishfarm/tasks/evalplus/__init__.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .data import load_dataset
|
2 |
+
from .task import EvalplusTask
|
3 |
+
|
4 |
+
__all__ = ["EvalplusTask", "load_dataset"]
|
data/evaluation/fishfarm/fishfarm/tasks/evalplus/data.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
|
3 |
+
from evalplus.data import get_human_eval_plus, get_mbpp_plus
|
4 |
+
|
5 |
+
|
6 |
+
@dataclass
|
7 |
+
class TextToCodeProblem:
|
8 |
+
id: str
|
9 |
+
instruction: str
|
10 |
+
response_prefix: str
|
11 |
+
|
12 |
+
|
13 |
+
def get_mbpp_raw_problems() -> list[dict]:
|
14 |
+
problems = get_mbpp_plus()
|
15 |
+
return list(problems.values())
|
16 |
+
|
17 |
+
|
18 |
+
def get_humaneval_raw_problems() -> list[dict]:
|
19 |
+
problems = get_human_eval_plus()
|
20 |
+
return list(problems.values())
|
21 |
+
|
22 |
+
|
23 |
+
def read_mbpp_plus(
|
24 |
+
plus_path: str, err_incomplete: bool = True, mini: bool = False
|
25 |
+
) -> dict[str, dict]:
|
26 |
+
from evalplus.data.mbpp import (completeness_check,
|
27 |
+
mbpp_deserialize_inputs, stream_jsonl)
|
28 |
+
|
29 |
+
plus = {task["task_id"]: task for task in stream_jsonl(plus_path)}
|
30 |
+
for task_id, task in plus.items():
|
31 |
+
task["base_input"] = mbpp_deserialize_inputs(task_id, task["base_input"])
|
32 |
+
task["plus_input"] = mbpp_deserialize_inputs(task_id, task["plus_input"])
|
33 |
+
|
34 |
+
if err_incomplete:
|
35 |
+
completeness_check("MBPP+", plus)
|
36 |
+
return plus
|
37 |
+
|
38 |
+
|
39 |
+
def map_mbpp_problem(p: dict) -> TextToCodeProblem:
|
40 |
+
id = p["task_id"]
|
41 |
+
prompt = p["prompt"]
|
42 |
+
start_index = prompt.index('"""')
|
43 |
+
end_index = prompt.rindex('"""')
|
44 |
+
prompt = prompt[start_index + 3 : end_index]
|
45 |
+
assert_index = prompt.index("assert")
|
46 |
+
instruction = prompt[:assert_index].strip()
|
47 |
+
if not instruction.endswith("."):
|
48 |
+
instruction += "."
|
49 |
+
assertion = prompt[assert_index:].strip()
|
50 |
+
instruction = f"""{instruction} Your code should satisfy the following assertion:
|
51 |
+
```python
|
52 |
+
{assertion}
|
53 |
+
```"""
|
54 |
+
response_prefix = """```python"""
|
55 |
+
return TextToCodeProblem(
|
56 |
+
id=str(id), instruction=instruction, response_prefix=response_prefix
|
57 |
+
)
|
58 |
+
|
59 |
+
|
60 |
+
def map_humaneval_problem(p: dict) -> TextToCodeProblem:
|
61 |
+
id = p["task_id"]
|
62 |
+
prompt = p["prompt"]
|
63 |
+
prompt = prompt.strip()
|
64 |
+
instruction = f"""Write a solution to the following problem:
|
65 |
+
```python
|
66 |
+
{prompt}
|
67 |
+
```"""
|
68 |
+
response_prefix = f"""```python
|
69 |
+
{prompt}"""
|
70 |
+
return TextToCodeProblem(
|
71 |
+
id=id, instruction=instruction, response_prefix=response_prefix
|
72 |
+
)
|
73 |
+
|
74 |
+
|
75 |
+
def load_dataset(source_dataset: str) -> list[TextToCodeProblem]:
|
76 |
+
if source_dataset not in ("humaneval", "mbpp"):
|
77 |
+
raise ValueError(f"Unknown source_dataset: {source_dataset}")
|
78 |
+
|
79 |
+
raw_problem_fn = {
|
80 |
+
"humaneval": get_humaneval_raw_problems,
|
81 |
+
"mbpp": get_mbpp_raw_problems,
|
82 |
+
}[source_dataset]
|
83 |
+
|
84 |
+
if source_dataset.startswith("humaneval"):
|
85 |
+
map_problem_fn = map_humaneval_problem
|
86 |
+
elif source_dataset.startswith("mbpp"):
|
87 |
+
map_problem_fn = map_mbpp_problem
|
88 |
+
else:
|
89 |
+
raise ValueError(f"Unknown source_dataset: {source_dataset}")
|
90 |
+
|
91 |
+
raw_problems = raw_problem_fn()
|
92 |
+
problems = list(map(map_problem_fn, raw_problems))
|
93 |
+
|
94 |
+
return problems
|
data/evaluation/fishfarm/fishfarm/tasks/evalplus/evaluation.py
ADDED
@@ -0,0 +1,257 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import multiprocessing
|
3 |
+
import os
|
4 |
+
import threading
|
5 |
+
import time
|
6 |
+
from collections import Counter, defaultdict
|
7 |
+
from concurrent.futures import ProcessPoolExecutor, as_completed
|
8 |
+
from datetime import datetime
|
9 |
+
from typing import Any
|
10 |
+
from warnings import warn
|
11 |
+
|
12 |
+
import numpy as np
|
13 |
+
from evalplus.data import (get_human_eval_plus, get_human_eval_plus_hash,
|
14 |
+
get_mbpp_plus, get_mbpp_plus_hash, load_solutions)
|
15 |
+
from evalplus.eval import SUCCESS, estimate_pass_at_k, untrusted_check
|
16 |
+
from evalplus.eval._special_oracle import MBPP_OUTPUT_NOT_NONE_TASKS
|
17 |
+
from evalplus.evaluate import Result, get_groundtruth
|
18 |
+
from termcolor import cprint
|
19 |
+
from tqdm.auto import tqdm
|
20 |
+
|
21 |
+
from ...logging import get_logger
|
22 |
+
|
23 |
+
logger = get_logger(__name__)
|
24 |
+
|
25 |
+
|
26 |
+
def check_correctness(
|
27 |
+
dataset: str,
|
28 |
+
completion_id: int,
|
29 |
+
problem: dict[str, Any],
|
30 |
+
solution: str,
|
31 |
+
expected_output: dict[str, list],
|
32 |
+
base_only: bool = False,
|
33 |
+
fast_check: bool = False,
|
34 |
+
identifier: str = "HumanEval/0_0",
|
35 |
+
min_time_limit: float = 0.1,
|
36 |
+
gt_time_limit_factor: float = 2.0,
|
37 |
+
) -> dict[str, Result]:
|
38 |
+
ret = {
|
39 |
+
"completion_id": completion_id,
|
40 |
+
"task_id": problem["task_id"],
|
41 |
+
"_identifier": identifier,
|
42 |
+
"solution": solution,
|
43 |
+
}
|
44 |
+
ret["base"] = untrusted_check(
|
45 |
+
dataset,
|
46 |
+
solution,
|
47 |
+
problem["base_input"],
|
48 |
+
problem["entry_point"],
|
49 |
+
expected=expected_output["base"],
|
50 |
+
atol=problem["atol"],
|
51 |
+
ref_time=expected_output["base_time"],
|
52 |
+
fast_check=fast_check,
|
53 |
+
min_time_limit=min_time_limit,
|
54 |
+
gt_time_limit_factor=gt_time_limit_factor,
|
55 |
+
)
|
56 |
+
|
57 |
+
if not base_only:
|
58 |
+
ret["plus"] = untrusted_check(
|
59 |
+
dataset,
|
60 |
+
solution,
|
61 |
+
problem["plus_input"],
|
62 |
+
problem["entry_point"],
|
63 |
+
expected=expected_output["plus"],
|
64 |
+
atol=problem["atol"],
|
65 |
+
ref_time=expected_output["plus_time"],
|
66 |
+
fast_check=fast_check,
|
67 |
+
min_time_limit=min_time_limit,
|
68 |
+
gt_time_limit_factor=gt_time_limit_factor,
|
69 |
+
)
|
70 |
+
return ret
|
71 |
+
|
72 |
+
|
73 |
+
def evaluate(
|
74 |
+
source_dataset: str,
|
75 |
+
output_path: str,
|
76 |
+
base_only: bool = False,
|
77 |
+
parallel: int = 0,
|
78 |
+
i_just_wanna_run: bool = False,
|
79 |
+
test_details: bool = False,
|
80 |
+
min_time_limit: float = 0.2,
|
81 |
+
gt_time_limit_factor: float = 4.0,
|
82 |
+
mini: bool = False,
|
83 |
+
) -> tuple[Any, list[dict[str, Any]]]:
|
84 |
+
if parallel == 0:
|
85 |
+
n_workers = max(1, multiprocessing.cpu_count() // 2)
|
86 |
+
else:
|
87 |
+
n_workers = parallel
|
88 |
+
|
89 |
+
if os.path.isdir(output_path):
|
90 |
+
result_path = os.path.join(output_path, "eval_results.json")
|
91 |
+
else:
|
92 |
+
assert output_path.endswith(".jsonl")
|
93 |
+
result_path = output_path.replace(".jsonl", "_eval_results.json")
|
94 |
+
|
95 |
+
if source_dataset == "humaneval":
|
96 |
+
problems = get_human_eval_plus(mini=mini)
|
97 |
+
dataset_hash = get_human_eval_plus_hash()
|
98 |
+
expected_output = get_groundtruth(problems, dataset_hash, [])
|
99 |
+
elif source_dataset == "mbpp":
|
100 |
+
problems = get_mbpp_plus(mini=mini)
|
101 |
+
dataset_hash = get_mbpp_plus_hash()
|
102 |
+
expected_output = get_groundtruth(
|
103 |
+
problems,
|
104 |
+
dataset_hash,
|
105 |
+
MBPP_OUTPUT_NOT_NONE_TASKS,
|
106 |
+
)
|
107 |
+
|
108 |
+
results = {
|
109 |
+
"date": datetime.now().strftime("%Y-%m-%d %H:%M"),
|
110 |
+
"hash": dataset_hash,
|
111 |
+
"eval": {},
|
112 |
+
}
|
113 |
+
|
114 |
+
with ProcessPoolExecutor(max_workers=n_workers) as executor:
|
115 |
+
futures = []
|
116 |
+
completion_id: Counter[str] = Counter()
|
117 |
+
n_samples = 0
|
118 |
+
eval_results = defaultdict(list)
|
119 |
+
remainings = set()
|
120 |
+
sample_details = []
|
121 |
+
|
122 |
+
logger.info("Reading samples...")
|
123 |
+
for sample in tqdm(load_solutions(output_path)):
|
124 |
+
task_id = sample["task_id"]
|
125 |
+
explanation = sample.get("explanation", "")
|
126 |
+
solution = (
|
127 |
+
sample["solution"]
|
128 |
+
if "solution" in sample
|
129 |
+
else problems[task_id]["prompt"] + sample["completion"]
|
130 |
+
)
|
131 |
+
remainings.add(sample["_identifier"])
|
132 |
+
|
133 |
+
args = (
|
134 |
+
source_dataset,
|
135 |
+
completion_id[task_id],
|
136 |
+
problems[task_id],
|
137 |
+
solution,
|
138 |
+
expected_output[task_id],
|
139 |
+
base_only,
|
140 |
+
not test_details,
|
141 |
+
sample["_identifier"],
|
142 |
+
min_time_limit,
|
143 |
+
gt_time_limit_factor,
|
144 |
+
)
|
145 |
+
|
146 |
+
futures.append(executor.submit(check_correctness, *args))
|
147 |
+
completion_id[task_id] += 1
|
148 |
+
n_samples += 1
|
149 |
+
|
150 |
+
sample_details.append(
|
151 |
+
dict(
|
152 |
+
task_id=task_id,
|
153 |
+
solution=solution,
|
154 |
+
explanation=explanation,
|
155 |
+
problems=problems[task_id],
|
156 |
+
expected_output=expected_output[task_id],
|
157 |
+
)
|
158 |
+
)
|
159 |
+
|
160 |
+
assert n_samples == len(remainings), "Missing problems in unfinished"
|
161 |
+
if len(completion_id) != len(problems):
|
162 |
+
logger.warning("Warning: Missing problems in samples")
|
163 |
+
|
164 |
+
def stucking_checker() -> None:
|
165 |
+
while remainings:
|
166 |
+
last_size = len(remainings)
|
167 |
+
time.sleep(20)
|
168 |
+
if last_size != len(remainings) or len(remainings) == 0:
|
169 |
+
continue
|
170 |
+
warn("No samples had finished testing in the last 20s")
|
171 |
+
warn(f"{len(remainings)} samples to be tested: {remainings}")
|
172 |
+
|
173 |
+
threading.Thread(target=stucking_checker).start()
|
174 |
+
|
175 |
+
for future in tqdm(as_completed(futures), total=n_samples):
|
176 |
+
result = future.result()
|
177 |
+
remainings.remove(result["_identifier"])
|
178 |
+
eval_results[result["task_id"]].append(result)
|
179 |
+
|
180 |
+
for task_id, task_results in eval_results.items():
|
181 |
+
task_results.sort(key=lambda x: x["completion_id"])
|
182 |
+
results["eval"][task_id] = {
|
183 |
+
"nfiles": len(task_results),
|
184 |
+
"base": [x["base"] for x in task_results],
|
185 |
+
"plus": ([x["plus"] for x in task_results] if not base_only else []),
|
186 |
+
}
|
187 |
+
|
188 |
+
if os.path.isfile(result_path) and i_just_wanna_run:
|
189 |
+
decision = ""
|
190 |
+
while decision.lower() not in ["y", "n"]:
|
191 |
+
logger.info(
|
192 |
+
f"{result_path} already exists. Press [Y/N] to overwrite or exit..."
|
193 |
+
)
|
194 |
+
decision = input()
|
195 |
+
|
196 |
+
if decision.lower() == "y":
|
197 |
+
new_path = result_path + ".bak"
|
198 |
+
while os.path.isfile(new_path):
|
199 |
+
new_path += ".bak"
|
200 |
+
os.rename(result_path, new_path)
|
201 |
+
logger.info(f"Backup {result_path} to {new_path}")
|
202 |
+
|
203 |
+
if not os.path.isfile(result_path):
|
204 |
+
with open(result_path, "w") as f:
|
205 |
+
json.dump(results, f)
|
206 |
+
|
207 |
+
total = np.array([r["nfiles"] for r in results["eval"].values()])
|
208 |
+
base_correct = []
|
209 |
+
new_correct = []
|
210 |
+
|
211 |
+
for key, res in results["eval"].items():
|
212 |
+
elements = [element for element in sample_details if element["task_id"] == key]
|
213 |
+
assert (
|
214 |
+
len(elements) == 1
|
215 |
+
), f"Expected an element with task_id {key}, found {len(elements)}"
|
216 |
+
element = elements[0]
|
217 |
+
|
218 |
+
bc = sum([r[0] == SUCCESS for r in res["base"]])
|
219 |
+
base_correct.append(bc)
|
220 |
+
element["base_correct"] = bc
|
221 |
+
if res["plus"]:
|
222 |
+
new_bc = sum(
|
223 |
+
[
|
224 |
+
res["plus"][i][0] == res["base"][i][0] == SUCCESS
|
225 |
+
for i in range(len(res["plus"]))
|
226 |
+
]
|
227 |
+
)
|
228 |
+
new_correct.append(new_bc)
|
229 |
+
element["plus_correct"] = new_bc
|
230 |
+
|
231 |
+
base_correct_array = np.array(base_correct)
|
232 |
+
|
233 |
+
pass_at_k = {
|
234 |
+
f"pass@{k}": estimate_pass_at_k(total, base_correct_array, k).mean()
|
235 |
+
for k in [1, 10, 100]
|
236 |
+
if total.min() >= k
|
237 |
+
}
|
238 |
+
|
239 |
+
result = {f"{source_dataset}_base_{key}": value for key, value in pass_at_k.items()}
|
240 |
+
cprint(f"{source_dataset} (base tests)", "red")
|
241 |
+
for k, v in pass_at_k.items():
|
242 |
+
cprint(f"{k}:\t{v:.3f}", "red")
|
243 |
+
|
244 |
+
if new_correct:
|
245 |
+
cprint(f"{source_dataset}+ (base + extra tests)", "green")
|
246 |
+
pass_at_k = {
|
247 |
+
f"pass@{k}": estimate_pass_at_k(total, np.array(new_correct), k).mean()
|
248 |
+
for k in [1, 10, 100]
|
249 |
+
if (total >= k).all()
|
250 |
+
}
|
251 |
+
result.update(
|
252 |
+
{f"{source_dataset}_plus_{key}": value for key, value in pass_at_k.items()}
|
253 |
+
)
|
254 |
+
for k, v in pass_at_k.items():
|
255 |
+
cprint(f"{k}:\t{v:.3f}", "green")
|
256 |
+
|
257 |
+
return result, sample_details
|
data/evaluation/fishfarm/fishfarm/tasks/evalplus/generation.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import itertools
|
2 |
+
from pathlib import Path
|
3 |
+
from typing import Iterable, List, Sequence, TypeVar
|
4 |
+
|
5 |
+
from evalplus.data import write_jsonl
|
6 |
+
from tqdm.auto import tqdm
|
7 |
+
|
8 |
+
from ...models import GenerationRequest, Message, Model
|
9 |
+
from .data import TextToCodeProblem
|
10 |
+
|
11 |
+
_T = TypeVar("_T")
|
12 |
+
|
13 |
+
|
14 |
+
def chunked(seq: Sequence[_T], n: int) -> Iterable[Sequence[_T]]:
|
15 |
+
"""Yield successive n-sized chunks from seq."""
|
16 |
+
return (seq[i : i + n] for i in range(0, len(seq), n))
|
17 |
+
|
18 |
+
|
19 |
+
def generate(
|
20 |
+
model: Model,
|
21 |
+
problems: list[TextToCodeProblem],
|
22 |
+
context_messages: Sequence[Message],
|
23 |
+
output_path: str,
|
24 |
+
n_batches: int = 1,
|
25 |
+
n_problems_per_batch: int = 1_000_000_000,
|
26 |
+
n_samples_per_problem: int = 1,
|
27 |
+
) -> List[str]:
|
28 |
+
problems_chunked = list(chunked(list(problems), n_problems_per_batch))
|
29 |
+
iter = itertools.product(problems_chunked, range(n_batches))
|
30 |
+
n_total = len(problems_chunked) * n_batches
|
31 |
+
|
32 |
+
Path(output_path).write_text("")
|
33 |
+
for problems, batch_idx in tqdm(iter, total=n_total):
|
34 |
+
task_ids = [problem.id for problem in problems]
|
35 |
+
all_task_ids = task_ids * n_samples_per_problem
|
36 |
+
|
37 |
+
requests = []
|
38 |
+
for problem in problems:
|
39 |
+
messages = list(context_messages)
|
40 |
+
messages.append(Message(role="user", content=problem.instruction))
|
41 |
+
messages.append(
|
42 |
+
Message(role="assistant_prefill", content=problem.response_prefix)
|
43 |
+
)
|
44 |
+
requests.append(GenerationRequest(messages=messages))
|
45 |
+
completes = model.generate(requests)
|
46 |
+
completions = [c.generation for c in completes]
|
47 |
+
|
48 |
+
assert len(problems) <= n_problems_per_batch
|
49 |
+
assert len(completions) == len(problems) * n_samples_per_problem
|
50 |
+
|
51 |
+
samples = []
|
52 |
+
for task_id, completion in zip(all_task_ids, completions):
|
53 |
+
completion_body = completion[
|
54 |
+
: (
|
55 |
+
index
|
56 |
+
if (index := completion.find("```")) != -1
|
57 |
+
else len(completion)
|
58 |
+
)
|
59 |
+
]
|
60 |
+
explanation = completion[
|
61 |
+
(
|
62 |
+
index
|
63 |
+
if (index := completion.find("```") + 3) != -1
|
64 |
+
else len(completion)
|
65 |
+
) :
|
66 |
+
].strip()
|
67 |
+
|
68 |
+
samples.append(
|
69 |
+
dict(
|
70 |
+
task_id=task_id,
|
71 |
+
completion=completion_body,
|
72 |
+
explanation=explanation,
|
73 |
+
)
|
74 |
+
)
|
75 |
+
|
76 |
+
write_jsonl(output_path, samples, append=True)
|
77 |
+
return completions
|
data/evaluation/fishfarm/fishfarm/tasks/evalplus/sanitization.py
ADDED
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import ast
|
2 |
+
import os
|
3 |
+
import pathlib
|
4 |
+
import re
|
5 |
+
import traceback
|
6 |
+
from typing import Optional
|
7 |
+
|
8 |
+
from evalplus.data import (get_human_eval_plus, get_mbpp_plus, load_solutions,
|
9 |
+
write_directory, write_jsonl)
|
10 |
+
from tqdm.auto import tqdm
|
11 |
+
|
12 |
+
from ...logging import get_logger
|
13 |
+
|
14 |
+
logger = get_logger(__name__)
|
15 |
+
|
16 |
+
|
17 |
+
def syntax_check(code: str, verbose: bool = False) -> bool:
|
18 |
+
try:
|
19 |
+
ast.parse(code)
|
20 |
+
return True
|
21 |
+
except (SyntaxError, MemoryError):
|
22 |
+
if verbose:
|
23 |
+
traceback.print_exc()
|
24 |
+
return False
|
25 |
+
|
26 |
+
|
27 |
+
def remove_unindented_lines(
|
28 |
+
code: str, protect_before: str, execeptions: list[str], trim_tails: list[str]
|
29 |
+
) -> str:
|
30 |
+
lines = code.splitlines()
|
31 |
+
cut_idx = []
|
32 |
+
cut_enabled = False
|
33 |
+
for i, line in enumerate(lines):
|
34 |
+
if not cut_enabled and line.startswith(protect_before):
|
35 |
+
cut_enabled = True
|
36 |
+
continue
|
37 |
+
if line.strip() == "":
|
38 |
+
continue
|
39 |
+
if any(line.startswith(e) for e in execeptions):
|
40 |
+
continue
|
41 |
+
|
42 |
+
lspace = len(line) - len(line.lstrip())
|
43 |
+
if lspace == 0:
|
44 |
+
cut_idx.append(i)
|
45 |
+
|
46 |
+
if any(line.rstrip().startswith(t) for t in trim_tails):
|
47 |
+
cut_idx.extend(list(range(i, len(lines))))
|
48 |
+
break
|
49 |
+
|
50 |
+
return "\n".join([line for i, line in enumerate(lines) if i not in cut_idx])
|
51 |
+
|
52 |
+
|
53 |
+
def to_four_space_indents(old_code: str) -> str:
|
54 |
+
new_code = ""
|
55 |
+
for line in old_code.splitlines():
|
56 |
+
lspace = len(line) - len(line.lstrip())
|
57 |
+
if lspace == 3:
|
58 |
+
new_code += " "
|
59 |
+
new_code += line + "\n"
|
60 |
+
return new_code
|
61 |
+
|
62 |
+
|
63 |
+
def sanitize_code(
|
64 |
+
old_code: str,
|
65 |
+
entry_point: str,
|
66 |
+
rm_prefix_lines: Optional[str] = None,
|
67 |
+
eofs: list = [],
|
68 |
+
) -> str:
|
69 |
+
new_code = old_code
|
70 |
+
if rm_prefix_lines is not None:
|
71 |
+
new_code = "\n".join(
|
72 |
+
[
|
73 |
+
line
|
74 |
+
for line in old_code.splitlines()
|
75 |
+
if not line.startswith(rm_prefix_lines)
|
76 |
+
]
|
77 |
+
)
|
78 |
+
|
79 |
+
new_code = "\n" + new_code
|
80 |
+
def_left = "def " + entry_point
|
81 |
+
|
82 |
+
new_code = new_code.replace("\n```python\n", "\n```\n")
|
83 |
+
for chunk in new_code.split("\n```\n"):
|
84 |
+
if def_left in chunk:
|
85 |
+
new_code = chunk
|
86 |
+
break
|
87 |
+
|
88 |
+
chunks = [chunk for chunk in re.split(rf"{def_left}\s*\(", new_code)]
|
89 |
+
bodies = [chunk for chunk in chunks[1:] if " return " in chunk.split("\ndef")[0]]
|
90 |
+
def_left = def_left + "("
|
91 |
+
new_code = def_left + def_left.join(bodies) if len(bodies) > 0 else ""
|
92 |
+
new_code = to_four_space_indents(new_code)
|
93 |
+
|
94 |
+
for eof in eofs or []:
|
95 |
+
new_code = new_code.split(eof)[0]
|
96 |
+
|
97 |
+
new_code = remove_unindented_lines(
|
98 |
+
new_code,
|
99 |
+
protect_before=def_left,
|
100 |
+
execeptions=["def ", "import ", "from "],
|
101 |
+
trim_tails=['"""', "if", "print"],
|
102 |
+
)
|
103 |
+
new_code = chunks[0] + new_code
|
104 |
+
|
105 |
+
parts = new_code.split("\ndef ")
|
106 |
+
includes = [parts[0]]
|
107 |
+
for fn in new_code.split("\ndef ")[1:]:
|
108 |
+
if (
|
109 |
+
fn.strip().startswith(entry_point + " ")
|
110 |
+
or fn.strip().startswith(entry_point + "(")
|
111 |
+
or syntax_check("\ndef " + fn)
|
112 |
+
):
|
113 |
+
includes.append(fn)
|
114 |
+
new_code = "\ndef ".join(includes)
|
115 |
+
return new_code.strip()
|
116 |
+
|
117 |
+
|
118 |
+
def sanitize(
|
119 |
+
source_dataset: str,
|
120 |
+
input_path: str,
|
121 |
+
eofs: list = [],
|
122 |
+
inplace: bool = False,
|
123 |
+
rm_prefix_lines: Optional[str] = None,
|
124 |
+
debug_task: Optional[str] = None,
|
125 |
+
) -> str:
|
126 |
+
entry_point = {}
|
127 |
+
|
128 |
+
if source_dataset == "humaneval":
|
129 |
+
dataset = get_human_eval_plus()
|
130 |
+
elif source_dataset == "mbpp":
|
131 |
+
dataset = get_mbpp_plus()
|
132 |
+
|
133 |
+
for task_id, problem in dataset.items():
|
134 |
+
entry_point[task_id] = problem["entry_point"]
|
135 |
+
|
136 |
+
is_folder = os.path.isdir(input_path)
|
137 |
+
target_path = pathlib.Path(input_path)
|
138 |
+
if not inplace:
|
139 |
+
if is_folder:
|
140 |
+
new_name = target_path.name + "-sanitized"
|
141 |
+
else:
|
142 |
+
new_name = target_path.name.replace(".jsonl", "-sanitized.jsonl")
|
143 |
+
target_path = target_path.parent / new_name
|
144 |
+
output_path = str(target_path)
|
145 |
+
|
146 |
+
nsan = 0
|
147 |
+
ntotal = 0
|
148 |
+
|
149 |
+
new_solutions = []
|
150 |
+
|
151 |
+
for solution in tqdm(load_solutions(input_path)):
|
152 |
+
task_id = solution["task_id"]
|
153 |
+
dbg_identifier = solution["_identifier"]
|
154 |
+
if debug_task is not None and task_id != debug_task:
|
155 |
+
continue
|
156 |
+
|
157 |
+
ntotal += 1
|
158 |
+
if "solution" in solution:
|
159 |
+
old_code = solution["solution"]
|
160 |
+
else:
|
161 |
+
assert "completion" in solution
|
162 |
+
old_code = dataset[task_id]["prompt"] + "\n" + solution["completion"]
|
163 |
+
|
164 |
+
old_code = old_code.strip()
|
165 |
+
|
166 |
+
new_code = sanitize_code(
|
167 |
+
old_code=old_code,
|
168 |
+
entry_point=entry_point[task_id],
|
169 |
+
rm_prefix_lines=rm_prefix_lines,
|
170 |
+
eofs=eofs,
|
171 |
+
).strip()
|
172 |
+
|
173 |
+
if new_code != old_code:
|
174 |
+
msg = "Sanitized: " + dbg_identifier
|
175 |
+
if is_folder:
|
176 |
+
msg += " -> " + dbg_identifier.replace(input_path, output_path)
|
177 |
+
logger.info(msg)
|
178 |
+
nsan += 1
|
179 |
+
|
180 |
+
new_solutions.append(
|
181 |
+
{
|
182 |
+
"task_id": task_id,
|
183 |
+
"solution": new_code,
|
184 |
+
"explanation": solution["explanation"],
|
185 |
+
}
|
186 |
+
)
|
187 |
+
|
188 |
+
if is_folder:
|
189 |
+
write_directory(output_path, new_solutions)
|
190 |
+
else:
|
191 |
+
write_jsonl(output_path, new_solutions)
|
192 |
+
|
193 |
+
logger.info(f"Sanitized {nsan} out of {ntotal} files.")
|
194 |
+
|
195 |
+
return output_path
|
data/evaluation/fishfarm/fishfarm/tasks/evalplus/task.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tempfile
|
2 |
+
from typing import Literal, Optional, Sequence
|
3 |
+
|
4 |
+
from ...models import Message, Model
|
5 |
+
from ..base import Task, TaskResult
|
6 |
+
from . import evaluation, generation, sanitization
|
7 |
+
from .data import TextToCodeProblem
|
8 |
+
|
9 |
+
|
10 |
+
class EvalplusTask(Task):
|
11 |
+
|
12 |
+
def __init__(
|
13 |
+
self,
|
14 |
+
samples: Sequence[TextToCodeProblem],
|
15 |
+
context_messages: Sequence[Message] = (),
|
16 |
+
source_dataset: Literal["humaneval", "mbpp"] = "humaneval",
|
17 |
+
):
|
18 |
+
self.samples = list(samples)
|
19 |
+
self.context_messages = context_messages
|
20 |
+
self.source_dataset = source_dataset
|
21 |
+
if source_dataset not in ("humaneval", "mbpp"):
|
22 |
+
raise ValueError(f"Unknown source_dataset: {source_dataset}")
|
23 |
+
|
24 |
+
@property
|
25 |
+
def num_samples(self) -> int:
|
26 |
+
return len(self.samples)
|
27 |
+
|
28 |
+
def evaluate(
|
29 |
+
self,
|
30 |
+
model: Model,
|
31 |
+
sample_ids: Optional[Sequence[int]] = None,
|
32 |
+
) -> TaskResult:
|
33 |
+
if sample_ids is None:
|
34 |
+
sample_ids = range(len(self.samples))
|
35 |
+
samples = [self.samples[sample_id] for sample_id in sample_ids]
|
36 |
+
|
37 |
+
with tempfile.TemporaryDirectory() as save_dir:
|
38 |
+
output_path = f"{save_dir}/outputs.jsonl"
|
39 |
+
|
40 |
+
completions = generation.generate(
|
41 |
+
model, samples, self.context_messages, output_path
|
42 |
+
)
|
43 |
+
|
44 |
+
if self.source_dataset == "mbpp":
|
45 |
+
output_path = sanitization.sanitize(self.source_dataset, output_path)
|
46 |
+
|
47 |
+
result, sample_details = evaluation.evaluate(
|
48 |
+
self.source_dataset, output_path
|
49 |
+
)
|
50 |
+
|
51 |
+
for i, completion in enumerate(completions):
|
52 |
+
sample_details[i]["output"] = completion
|
53 |
+
|
54 |
+
return TaskResult(aggregate_metrics=result, sample_details=sample_details)
|
data/evaluation/fishfarm/fishfarm/tasks/language_restricted_math.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
from dataclasses import dataclass
|
3 |
+
from typing import Iterable, Optional, Sequence
|
4 |
+
|
5 |
+
import huggingface_hub
|
6 |
+
|
7 |
+
from ..imports import try_import
|
8 |
+
from ..models import GenerationRequest, Message, Model
|
9 |
+
from .base import Task, TaskResult
|
10 |
+
|
11 |
+
with try_import() as _imports:
|
12 |
+
import fasttext
|
13 |
+
|
14 |
+
_imports.check()
|
15 |
+
|
16 |
+
|
17 |
+
@dataclass
|
18 |
+
class MathSample:
|
19 |
+
|
20 |
+
problem: str
|
21 |
+
answer: int
|
22 |
+
|
23 |
+
|
24 |
+
def mean(iterable: Iterable[float]) -> float:
|
25 |
+
total, count = 0.0, 0
|
26 |
+
for x in iterable:
|
27 |
+
total += x
|
28 |
+
count += 1
|
29 |
+
return total / count
|
30 |
+
|
31 |
+
|
32 |
+
def extract_answer_number(completion: str) -> Optional[float]:
|
33 |
+
matches = re.findall(r"\d*\.?\d+", completion)
|
34 |
+
if not matches:
|
35 |
+
return None
|
36 |
+
text = matches[-1]
|
37 |
+
return float(text.replace(",", ""))
|
38 |
+
|
39 |
+
|
40 |
+
class LanguageRestrictedMathTask(Task):
|
41 |
+
def __init__(
|
42 |
+
self,
|
43 |
+
samples: Sequence[MathSample],
|
44 |
+
context_messages: Sequence[Message] = (),
|
45 |
+
languages: Sequence[str] = ("ja", "en"),
|
46 |
+
):
|
47 |
+
self.samples = list(samples)
|
48 |
+
self.languages = languages
|
49 |
+
self.context_messages = context_messages
|
50 |
+
if len(self.languages) != 0:
|
51 |
+
lid176ftz_path = huggingface_hub.hf_hub_download(
|
52 |
+
"julien-c/fasttext-language-id", "lid.176.ftz"
|
53 |
+
)
|
54 |
+
self.lid_model = fasttext.load_model(lid176ftz_path)
|
55 |
+
|
56 |
+
@property
|
57 |
+
def num_samples(self) -> int:
|
58 |
+
return len(self.samples)
|
59 |
+
|
60 |
+
def evaluate(
|
61 |
+
self,
|
62 |
+
model: Model,
|
63 |
+
sample_ids: Optional[Sequence[int]] = None,
|
64 |
+
) -> TaskResult:
|
65 |
+
if sample_ids is None:
|
66 |
+
sample_ids = range(len(self.samples))
|
67 |
+
samples = [self.samples[sample_id] for sample_id in sample_ids]
|
68 |
+
|
69 |
+
requests = []
|
70 |
+
for sample in samples:
|
71 |
+
messages = list(self.context_messages)
|
72 |
+
messages.append(Message(role="user", content=sample.problem))
|
73 |
+
requests.append(GenerationRequest(messages=messages))
|
74 |
+
|
75 |
+
sample_details = []
|
76 |
+
for sample, result in zip(samples, model.generate(requests)):
|
77 |
+
output = result.generation
|
78 |
+
prediction = extract_answer_number(result.generation)
|
79 |
+
if len(self.languages) != 0:
|
80 |
+
lid_probs = dict(
|
81 |
+
zip(*self.lid_model.predict(output.replace("\n", ""), k=-1))
|
82 |
+
)
|
83 |
+
|
84 |
+
sample_details.append(
|
85 |
+
dict(
|
86 |
+
problem=sample.problem,
|
87 |
+
output=output,
|
88 |
+
answer=sample.answer,
|
89 |
+
prediction=prediction,
|
90 |
+
correct=sample.answer == prediction,
|
91 |
+
**{
|
92 |
+
f"lang_{lang}": lid_probs.get(f"__label__{lang}", 0.0)
|
93 |
+
for lang in self.languages
|
94 |
+
},
|
95 |
+
)
|
96 |
+
)
|
97 |
+
|
98 |
+
aggregate_metrics = {"acc": mean(sd["correct"] for sd in sample_details)}
|
99 |
+
for lang in self.languages:
|
100 |
+
aggregate_metrics[f"acc_{lang}"] = mean(
|
101 |
+
(sd["correct"] and sd[f"lang_{lang}"] > 0.5) for sd in sample_details
|
102 |
+
)
|
103 |
+
|
104 |
+
return TaskResult(
|
105 |
+
aggregate_metrics=aggregate_metrics, sample_details=sample_details
|
106 |
+
)
|
data/evaluation/fishfarm/fishfarm/version.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
__version__ = "0.1.0dev"
|
data/evaluation/fishfarm/pyproject.toml
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[project]
|
2 |
+
name = "fishfarm"
|
3 |
+
description = ""
|
4 |
+
readme = "README.md"
|
5 |
+
license = {file = "LICENSE"}
|
6 |
+
authors = [
|
7 |
+
{name = "Takuya Akiba"},
|
8 |
+
{email = "[email protected]"}
|
9 |
+
]
|
10 |
+
classifiers = [
|
11 |
+
"Development Status :: 2 - Pre-Alpha",
|
12 |
+
"Intended Audience :: Science/Research",
|
13 |
+
"Intended Audience :: Developers",
|
14 |
+
"License :: OSI Approved :: MIT License",
|
15 |
+
"Programming Language :: Python :: 3",
|
16 |
+
"Programming Language :: Python :: 3.8",
|
17 |
+
"Programming Language :: Python :: 3.9",
|
18 |
+
"Programming Language :: Python :: 3.10",
|
19 |
+
"Programming Language :: Python :: 3.11",
|
20 |
+
"Programming Language :: Python :: 3 :: Only",
|
21 |
+
"Topic :: Scientific/Engineering",
|
22 |
+
"Topic :: Scientific/Engineering :: Mathematics",
|
23 |
+
"Topic :: Scientific/Engineering :: Artificial Intelligence",
|
24 |
+
"Topic :: Software Development",
|
25 |
+
"Topic :: Software Development :: Libraries",
|
26 |
+
"Topic :: Software Development :: Libraries :: Python Modules",
|
27 |
+
]
|
28 |
+
requires-python = ">=3.10"
|
29 |
+
dependencies = [
|
30 |
+
"huggingface_hub",
|
31 |
+
"transformers",
|
32 |
+
"pydantic",
|
33 |
+
"colorlog"
|
34 |
+
]
|
35 |
+
dynamic = ["version"]
|
36 |
+
|
37 |
+
[project.optional-dependencies]
|
38 |
+
development = [
|
39 |
+
"black",
|
40 |
+
"blackdoc",
|
41 |
+
"flake8",
|
42 |
+
"isort",
|
43 |
+
"mypy",
|
44 |
+
"pytest",
|
45 |
+
"pytest-mock",
|
46 |
+
"types-PyYAML",
|
47 |
+
]
|
48 |
+
|
49 |
+
full = [
|
50 |
+
"vllm",
|
51 |
+
"langchain",
|
52 |
+
"langchain-openai",
|
53 |
+
"fasttext-wheel",
|
54 |
+
"datasets",
|
55 |
+
"mysql-connector-python==8.0.32",
|
56 |
+
"docker==6.1.2",
|
57 |
+
"evalplus @ git+https://github.com/evalplus/evalplus@1895d2f6aa8895044a7cf69defc24bd57695e885",
|
58 |
+
"rouge-score"
|
59 |
+
]
|
60 |
+
|
61 |
+
[project.urls]
|
62 |
+
repository = "https://github.com/SakanaAI/fishfarm"
|
63 |
+
|
64 |
+
[tool.setuptools.packages.find]
|
65 |
+
include = ["fishfarm*"]
|
66 |
+
|
67 |
+
[tool.setuptools.dynamic]
|
68 |
+
version = {attr = "fishfarm.version.__version__"}
|
69 |
+
|
70 |
+
[tool.black]
|
71 |
+
line-length = 99
|
72 |
+
target-version = ['py310']
|
73 |
+
exclude = '''
|
74 |
+
/(
|
75 |
+
\.eggs
|
76 |
+
| \.git
|
77 |
+
| \.hg
|
78 |
+
| \.mypy_cache
|
79 |
+
| \.venv
|
80 |
+
| venv
|
81 |
+
| _build
|
82 |
+
| buck-out
|
83 |
+
| build
|
84 |
+
| dist
|
85 |
+
| docs
|
86 |
+
| data
|
87 |
+
)/
|
88 |
+
'''
|
89 |
+
|
90 |
+
[tool.isort]
|
91 |
+
profile = 'black'
|
92 |
+
src_paths = ['fishfarm', 'tests']
|
93 |
+
line_length = 99
|
94 |
+
lines_after_imports = 2
|
95 |
+
|
96 |
+
[tool.mypy]
|
97 |
+
python_version = "3.10"
|
98 |
+
strict = true
|
99 |
+
ignore_missing_imports = true
|
100 |
+
warn_unused_configs = true
|
101 |
+
disallow_untyped_defs = true
|
102 |
+
warn_redundant_casts = true
|
103 |
+
warn_unused_ignores = true
|
104 |
+
warn_unreachable = true
|
105 |
+
disallow_any_generics = false
|
106 |
+
exclude = ".venv|venv|build|docs|tutorial|data"
|
107 |
+
|
108 |
+
[tool.pytest]
|
109 |
+
mock_use_standalone_module = true
|
data/evaluation/fishfarm/tox.ini
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[flake8]
|
2 |
+
max-line-length = 99
|
3 |
+
statistics = True
|
4 |
+
exclude = .venv,venv,build,notebooks,.asv,data
|
5 |
+
ignore =
|
6 |
+
E203,
|
7 |
+
W503,
|
8 |
+
E704
|