|
import numpy as np |
|
|
|
|
|
def get_mean_std_max_min_dict(array, prefix): |
|
res = {} |
|
res[prefix + "/mean"] = np.mean(array) |
|
res[prefix + "/std"] = np.std(array) |
|
res[prefix + "/min"] = np.amin(array) |
|
res[prefix + "/max"] = np.amax(array) |
|
return res |
|
|
|
|
|
class Metrics: |
|
"""Object keeping running average/latest of relevant metrics to log.""" |
|
|
|
def __init__(self, *args): |
|
self.metrics = {arg: 0 for arg in args} |
|
self.latest_metrics = {arg: 0 for arg in args} |
|
self.samples = {arg: 1e-8 for arg in args} |
|
self.logged_metrics = [arg for arg in args] |
|
|
|
def reset(self): |
|
for arg in self.metrics: |
|
self.metrics[arg] = 0 |
|
self.samples[arg] = 1e-8 |
|
|
|
def add(self, *args): |
|
for arg in args: |
|
if arg not in self.metrics: |
|
self.logged_metrics.append(arg) |
|
self.metrics[arg] = 0 |
|
self.latest_metrics[arg] = 0 |
|
self.samples[arg] = 1e-8 |
|
|
|
def update(self, **kwargs): |
|
for arg, val in kwargs.items(): |
|
if arg not in self.metrics: |
|
self.logged_metrics += arg |
|
self.metrics[arg] = 0 |
|
self.latest_metrics[arg] = 0 |
|
self.samples[arg] = 1e-8 |
|
self.metrics[arg] += val |
|
self.samples[arg] += 1 |
|
|
|
def set(self, **kwargs): |
|
for arg, val in kwargs.items(): |
|
if arg not in self.metrics: |
|
self.logged_metrics += arg |
|
self.metrics[arg] = val |
|
self.samples[arg] = 1 |
|
self.metrics[arg] = val |
|
self.samples[arg] = 1 |
|
|
|
def get(self): |
|
for arg, metric_agg in self.metrics.items(): |
|
samples = self.samples[arg] |
|
if samples >= 1: |
|
self.latest_metrics[arg] = metric_agg / samples |
|
return self.latest_metrics |
|
|