id
int64 3
39.4k
| title
stringlengths 1
80
| text
stringlengths 2
313k
| paragraphs
listlengths 1
6.47k
| abstract
stringlengths 1
52k
â | wikitext
stringlengths 10
330k
â | date_created
stringlengths 20
20
â | date_modified
stringlengths 20
20
| templates
sequencelengths 0
20
| url
stringlengths 32
653
|
---|---|---|---|---|---|---|---|---|---|
1,473 | çç©åŠã®ç 究æè¡ | çç©åŠã«ã¯ã现ååãããè€æ°ã®åŠååéã«ãŸããã£ãç 究æè¡ãããã€ãååšããã
äŸãã°ãåç©åŠã§ããæ€ç©åŠã§ãããçç©çµç¹ã®æ§é ã調ã¹ãããã®ãã¬ãã©ãŒããäœæããã«éããŠãåºæ¬çã«å
±éããæè¡ã§åçãäœæããããŸããçºçåŠãšç³»çµ±åé¡åŠã§ãDNAãåãæ±ãæè¡ã«å€§å·®ãããããã§ã¯ãªããå®éšçšã®ã¢ãã«çç©ã®é£Œè²å¹é€æè¡ãããã®ã¢ãã«çç©ãã©ã®åéã§çšããã®ã§ãã£ãŠãã现éšã®èª¿æŽæ³ãªã©ã«å·®ç°ãããã«ããã極端ã«ç°ãªãããã§ã¯ãªãã
ãã®ãããæ¬é
ç®ã§ã¯çç©åŠã®ååéã®æç§æžãšã¯å¥ã«ãçç©åŠã®ç 究ã«çšããããåçš®ç 究æè¡ãåãæ±ãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "çç©åŠã«ã¯ã现ååãããè€æ°ã®åŠååéã«ãŸããã£ãç 究æè¡ãããã€ãååšããã",
"title": "åºè«"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "äŸãã°ãåç©åŠã§ããæ€ç©åŠã§ãããçç©çµç¹ã®æ§é ã調ã¹ãããã®ãã¬ãã©ãŒããäœæããã«éããŠãåºæ¬çã«å
±éããæè¡ã§åçãäœæããããŸããçºçåŠãšç³»çµ±åé¡åŠã§ãDNAãåãæ±ãæè¡ã«å€§å·®ãããããã§ã¯ãªããå®éšçšã®ã¢ãã«çç©ã®é£Œè²å¹é€æè¡ãããã®ã¢ãã«çç©ãã©ã®åéã§çšããã®ã§ãã£ãŠãã现éšã®èª¿æŽæ³ãªã©ã«å·®ç°ãããã«ããã極端ã«ç°ãªãããã§ã¯ãªãã",
"title": "åºè«"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ãã®ãããæ¬é
ç®ã§ã¯çç©åŠã®ååéã®æç§æžãšã¯å¥ã«ãçç©åŠã®ç 究ã«çšããããåçš®ç 究æè¡ãåãæ±ãã",
"title": "åºè«"
}
] | çç©åŠ > çç©åŠã®ç 究æè¡ | *[[çç©åŠ]] > '''çç©åŠã®ç 究æè¡'''
==åºè«==
[[w:çç©åŠ|çç©åŠ]]ã«ã¯ã现ååãããè€æ°ã®åŠååéã«ãŸããã£ãç 究æè¡ãããã€ãååšããã
äŸãã°ã[[w:åç©åŠ|åç©åŠ]]ã§ãã[[w:æ€ç©åŠ|æ€ç©åŠ]]ã§ãããçç©[[w:çµç¹ (çç©åŠ)|çµç¹]]ã®æ§é ã調ã¹ãããã®[[w:ãã¬ãã©ãŒã|ãã¬ãã©ãŒã]]ãäœæããã«éããŠãåºæ¬çã«å
±éããæè¡ã§åçãäœæããããŸãã[[w:çºççç©åŠ|çºçåŠ]]ãš[[w:åé¡åŠ|系統åé¡åŠ]]ã§ã[[w:DNA|DNA]]ãåãæ±ãæè¡ã«å€§å·®ãããããã§ã¯ãªããå®éšçšã®[[w:ã¢ãã«çç©|ã¢ãã«çç©]]ã®é£Œè²å¹é€æè¡ãããã®ã¢ãã«çç©ãã©ã®åéã§çšããã®ã§ãã£ãŠãã现éšã®èª¿æŽæ³ãªã©ã«å·®ç°ãããã«ããã極端ã«ç°ãªãããã§ã¯ãªãã
ãã®ãããæ¬é
ç®ã§ã¯çç©åŠã®ååéã®æç§æžãšã¯å¥ã«ãçç©åŠã®ç 究ã«çšããããåçš®ç 究æè¡ãåãæ±ãã
==åè«==
===éå€ç 究ã«ãããæè¡===
#[[ç 究ææã®æ¡éãšæšæ¬äœè£œ]]
#[[çæ
åŠã«ãããç°å¢å åã®æž¬å®æ³]]
#[[åäœçŸ€ã®èª¿æ»æ¹æ³]]
#[[çç©çŸ€éã®èª¿æ»æ¹æ³]]
===å®éšå®€ã«ãããæè¡===
#[[ç 究ææã®é£Œè²ã»å¹é€]]
#[[å
åŠé¡åŸ®é¡ã®é¢é£æè¡]]
#[[é»åé¡åŸ®é¡ã®é¢é£æè¡]]
#[[çç©çµç¹ã®ç 究æ³]]
#[[çäœååã®ç 究æ³]]
[[Category:çç©åŠ|ããããããããã€]]
[[ã«ããŽãª:æè¡]]
[[en:Biology Laboratory Techniques]] | null | 2022-12-27T15:17:19Z | [] | https://ja.wikibooks.org/wiki/%E7%94%9F%E7%89%A9%E5%AD%A6%E3%81%AE%E7%A0%94%E7%A9%B6%E6%8A%80%E8%A1%93 |
1,474 | ç 究ææã®æ¡éãšæšæ¬äœè£œ | ãã®é
ç®ãç 究ææã®æ¡éãšæšæ¬äœè£œãã¯ãã¿ã€ãã«åãšå
容ã«é¢ãè°è«ãæ祚ãããŠããŸãã詳现㯠ãã®é
ç®ã®ããŒã¯ããŒãž ãåç
§ããŠãã ããã
ç 究ææã®æ¡éãšæšæ¬äœè£œ
系統åé¡åŠã«ãããŠçç©å€æ§æ§ã®å®æ
ã調ã¹ããšããéå€ã«çæ¯ããç 究ææãæ¢çŽ¢ãæ¡éããæšæ¬ãäœè£œããããšã¯ç 究ã®å¿
é äºé
ã§ããããŸããçæ
åŠã«ãããŠä»é
ç®ã§è©³è¿°ããåäœçŸ€ãçç©çŸ€éã®èª¿æ»ããããšããç 究察象ã®çç©ã®ããŒã¿ããšãããããçš®ãç¹å®ããããã«åç
§æšæ¬ãåŸãããã«ããã®æè¡ãå¿
èŠã«ãªãã
ãŸããååçç©åŠç³»ã®åéã§ãã£ãŠããç 究ã«é©ããã¢ãã«çç©ãæ¢çŽ¢ããåå®ããå¿
èŠãçããããšããããå¿
ãããç¡çžãªæè¡ã§ã¯ãªãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ãã®é
ç®ãç 究ææã®æ¡éãšæšæ¬äœè£œãã¯ãã¿ã€ãã«åãšå
容ã«é¢ãè°è«ãæ祚ãããŠããŸãã詳现㯠ãã®é
ç®ã®ããŒã¯ããŒãž ãåç
§ããŠãã ããã",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ç 究ææã®æ¡éãšæšæ¬äœè£œ",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "系統åé¡åŠã«ãããŠçç©å€æ§æ§ã®å®æ
ã調ã¹ããšããéå€ã«çæ¯ããç 究ææãæ¢çŽ¢ãæ¡éããæšæ¬ãäœè£œããããšã¯ç 究ã®å¿
é äºé
ã§ããããŸããçæ
åŠã«ãããŠä»é
ç®ã§è©³è¿°ããåäœçŸ€ãçç©çŸ€éã®èª¿æ»ããããšããç 究察象ã®çç©ã®ããŒã¿ããšãããããçš®ãç¹å®ããããã«åç
§æšæ¬ãåŸãããã«ããã®æè¡ãå¿
èŠã«ãªãã",
"title": ""
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ãŸããååçç©åŠç³»ã®åéã§ãã£ãŠããç 究ã«é©ããã¢ãã«çç©ãæ¢çŽ¢ããåå®ããå¿
èŠãçããããšããããå¿
ãããç¡çžãªæè¡ã§ã¯ãªãã",
"title": ""
}
] | ç 究ææã®æ¡éãšæšæ¬äœè£œ 系統åé¡åŠã«ãããŠçç©å€æ§æ§ã®å®æ
ã調ã¹ããšããéå€ã«çæ¯ããç 究ææãæ¢çŽ¢ãæ¡éããæšæ¬ãäœè£œããããšã¯ç 究ã®å¿
é äºé
ã§ããããŸããçæ
åŠã«ãããŠä»é
ç®ã§è©³è¿°ããåäœçŸ€ãçç©çŸ€éã®èª¿æ»ããããšããç 究察象ã®çç©ã®ããŒã¿ããšãããããçš®ãç¹å®ããããã«åç
§æšæ¬ãåŸãããã«ããã®æè¡ãå¿
èŠã«ãªãã ãŸããååçç©åŠç³»ã®åéã§ãã£ãŠããç 究ã«é©ããã¢ãã«çç©ãæ¢çŽ¢ããåå®ããå¿
èŠãçããããšããããå¿
ãããç¡çžãªæè¡ã§ã¯ãªãã | {{Kaimei}}
'''ç 究ææã®æ¡éãšæšæ¬äœè£œ'''
系統åé¡åŠã«ãããŠçç©å€æ§æ§ã®å®æ
ã調ã¹ããšããéå€ã«çæ¯ããç 究ææãæ¢çŽ¢ãæ¡éããæšæ¬ãäœè£œããããšã¯ç 究ã®å¿
é äºé
ã§ããããŸããçæ
åŠã«ãããŠä»é
ç®ã§è©³è¿°ããåäœçŸ€ãçç©çŸ€éã®èª¿æ»ããããšããç 究察象ã®çç©ã®ããŒã¿ããšãããããçš®ãç¹å®ããããã«åç
§æšæ¬ãåŸãããã«ããã®æè¡ãå¿
èŠã«ãªãã
ãŸããååçç©åŠç³»ã®åéã§ãã£ãŠããç 究ã«é©ããã¢ãã«çç©ãæ¢çŽ¢ããåå®ããå¿
èŠãçããããšããããå¿
ãããç¡çžãªæè¡ã§ã¯ãªãã
==埮çç©ã®æ¡éã»å¹é€ã»æšæ¬äœè£œ==
#[[现èã®æ¡éã»å¹é€ã»æšæ¬äœæ]]
#[[åçåç©ã®æ¡éã»å¹é€ã»æšæ¬äœè£œ]]
#[[å€åœ¢èã®æ¡éã»æšæ¬äœè£œ]]
#[[èé¡ã®æ¡éã»å¹é€ã»æšæ¬äœè£œ]]
#[[è»é¡ã®æ¡éã»å¹é€ã»æšæ¬äœè£œ]]
==æ€ç©ã®æ¡éãšæšæ¬äœè£œ==
#[[ã³ã±æ€ç©ã®æ¡éãšæšæ¬äœè£œ]]
#[[ç¶ç®¡ææ€ç©ã®æ¡éãšæšæ¬äœè£œ]]
==åç©ã®æ¡éãšæšæ¬äœæ==
#[[æ°Žçç¡èæ€åç©ã®æ¡éãšæšæ¬äœæ]]
#[[å¯çè«ã®æ¡éãšæšæ¬äœè£œ]]
#[[åå£åç©ã®æ¡éãšæšæ¬äœæ]]
#[[è»äœåç©ã®æ¡éãšæšæ¬äœæ]]
#[[ç²æ®»é¡ã®æ¡éãšæšæ¬äœè£œ]]
#[[ã¯ã¢ã®æ¡éãšæšæ¬äœè£œ]]
#[[æè«ã®æ¡éãšæšæ¬äœè£œ]]
#[[éé¡ã®æ¡éãšæšæ¬äœæ]]
#[[äž¡çé¡ã®æ¡éãšæšæ¬äœè£œ]]
#[[ç¬è«é¡ã®æ¡éãšæšæ¬äœè£œ]]
#[[åºä¹³é¡ã®æ¡éãšæšæ¬äœè£œ]]
[[Category:çç©åŠ|ããããããããããã®ããããããšã²ããã»ããããã]] | null | 2006-12-08T15:47:26Z | [
"ãã³ãã¬ãŒã:Kaimei"
] | https://ja.wikibooks.org/wiki/%E7%A0%94%E7%A9%B6%E6%9D%90%E6%96%99%E3%81%AE%E6%8E%A1%E9%9B%86%E3%81%A8%E6%A8%99%E6%9C%AC%E4%BD%9C%E8%A3%BD |
1,475 | å€åœ¢èã®æ¡éã»æšæ¬äœè£œ | çŸåšã®ãšãããå€åœ¢èã®åå®ã¯åå®äœã«ãããªããã°å°é£ã§ããããã®ãããå€åœ¢èãæ¡éããåå®ãåé¡åŠã®ç 究ã«äŸããæšæ¬ãäœè£œããããšã¯ãã»ãŒåå®äœãæ¡éãããã®æšæ¬ãäœè£œããããšãšå矩ã§ããããŸããååçç©åŠçç 究ã«äŸããå¹é€æ ªãæ°ãã«éå€ããåŸãå Žåããéåžžã¯åå®äœãæ¡éããããããåãåºããèåãå¹é€ããããšã«ãªãããŸãã埮å°ãªåå®äœãäœãå€åœ¢èã®åå®äœãåŸãæ¹æ³ãšããŠãåŸè¿°ã®æ¹¿å®€å¹é€æ³ãçšãããã
å€ãã®çš®é¡ã¯ãé«æž©å€æ¹¿ã®æ¢
éšã®ææã«å€åœ¢äœãæé·ããæ¢
éšæãã®æŽãéãå¢ããŠããé ã«åå®äœãã€ããã¯ãããããŸããéªè§£ããç§ã®ææã«åå®äœãã€ããçš®ãååšããã äž»ã«èœã¡èã®è¡šãäœæšã®æçã«çºçããããããã§ã¯éåžžã®äŸãå«ããåå®äœã®çºçå Žæãæããã
ã»æ€ç©ã®èã®è£è¡š
ã»åãæ ª
ã»éªã解ãã€ã€ããå Žæã®æ¯ãæç(äž»ã«ã«ãªãã³ãªãªã©)
ã»ã·ã€ã¿ã±ã®æŠŸæš
ã»åºèæš¹ãéèæš¹ã®èœã¡è
ã»åæš
ã»ã¯ãªã®"ãã"(äž»ã«ã·ã©ã¿ããŠãããã³ãª)
ã»éèã®å®
ã»ããã³ã®è¡šé¢äž
ãã以å€ã«ãå€ãã®å Žæã«åå®äœãã€ãããèŠã€ãããšãã®ã³ãã¯ãªããããã©ã³ããåå¿è
ã®æ¹ãå€ããæ©ãèŠã€ãããšããããšããã°ãã°ããã å
å
¥èŠ³ã«ãšããããã«ãåºãèŠãŠãããšèŠã€ãããããããããªãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "çŸåšã®ãšãããå€åœ¢èã®åå®ã¯åå®äœã«ãããªããã°å°é£ã§ããããã®ãããå€åœ¢èãæ¡éããåå®ãåé¡åŠã®ç 究ã«äŸããæšæ¬ãäœè£œããããšã¯ãã»ãŒåå®äœãæ¡éãããã®æšæ¬ãäœè£œããããšãšå矩ã§ããããŸããååçç©åŠçç 究ã«äŸããå¹é€æ ªãæ°ãã«éå€ããåŸãå Žåããéåžžã¯åå®äœãæ¡éããããããåãåºããèåãå¹é€ããããšã«ãªãããŸãã埮å°ãªåå®äœãäœãå€åœ¢èã®åå®äœãåŸãæ¹æ³ãšããŠãåŸè¿°ã®æ¹¿å®€å¹é€æ³ãçšãããã",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "å€ãã®çš®é¡ã¯ãé«æž©å€æ¹¿ã®æ¢
éšã®ææã«å€åœ¢äœãæé·ããæ¢
éšæãã®æŽãéãå¢ããŠããé ã«åå®äœãã€ããã¯ãããããŸããéªè§£ããç§ã®ææã«åå®äœãã€ããçš®ãååšããã äž»ã«èœã¡èã®è¡šãäœæšã®æçã«çºçããããããã§ã¯éåžžã®äŸãå«ããåå®äœã®çºçå Žæãæããã",
"title": "æ¡é"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ã»æ€ç©ã®èã®è£è¡š",
"title": "æ¡é"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ã»åãæ ª",
"title": "æ¡é"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ã»éªã解ãã€ã€ããå Žæã®æ¯ãæç(äž»ã«ã«ãªãã³ãªãªã©)",
"title": "æ¡é"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ã»ã·ã€ã¿ã±ã®æŠŸæš",
"title": "æ¡é"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ã»åºèæš¹ãéèæš¹ã®èœã¡è",
"title": "æ¡é"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ã»åæš",
"title": "æ¡é"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "ã»ã¯ãªã®\"ãã\"(äž»ã«ã·ã©ã¿ããŠãããã³ãª)",
"title": "æ¡é"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "ã»éèã®å®",
"title": "æ¡é"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "ã»ããã³ã®è¡šé¢äž",
"title": "æ¡é"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "ãã以å€ã«ãå€ãã®å Žæã«åå®äœãã€ãããèŠã€ãããšãã®ã³ãã¯ãªããããã©ã³ããåå¿è
ã®æ¹ãå€ããæ©ãèŠã€ãããšããããšããã°ãã°ããã å
å
¥èŠ³ã«ãšããããã«ãåºãèŠãŠãããšèŠã€ãããããããããªãã",
"title": "æ¡é"
}
] | çŸåšã®ãšãããå€åœ¢èã®åå®ã¯åå®äœã«ãããªããã°å°é£ã§ããããã®ãããå€åœ¢èãæ¡éããåå®ãåé¡åŠã®ç 究ã«äŸããæšæ¬ãäœè£œããããšã¯ãã»ãŒåå®äœãæ¡éãããã®æšæ¬ãäœè£œããããšãšå矩ã§ããããŸããååçç©åŠçç 究ã«äŸããå¹é€æ ªãæ°ãã«éå€ããåŸãå Žåããéåžžã¯åå®äœãæ¡éããããããåãåºããèåãå¹é€ããããšã«ãªãããŸãã埮å°ãªåå®äœãäœãå€åœ¢èã®åå®äœãåŸãæ¹æ³ãšããŠãåŸè¿°ã®æ¹¿å®€å¹é€æ³ãçšãããã | çŸåšã®ãšããã[[w:å€åœ¢è|å€åœ¢è]]ã®åå®ã¯åå®äœã«ãããªããã°å°é£ã§ããããã®ãããå€åœ¢èãæ¡éããåå®ãåé¡åŠã®ç 究ã«äŸããæšæ¬ãäœè£œããããšã¯ãã»ãŒåå®äœãæ¡éãããã®æšæ¬ãäœè£œããããšãšå矩ã§ããããŸããååçç©åŠçç 究ã«äŸããå¹é€æ ªãæ°ãã«éå€ããåŸãå Žåããéåžžã¯åå®äœãæ¡éããããããåãåºããèåãå¹é€ããããšã«ãªãããŸãã埮å°ãªåå®äœãäœãå€åœ¢èã®åå®äœãåŸãæ¹æ³ãšããŠãåŸè¿°ã®æ¹¿å®€å¹é€æ³ãçšãããã
==æ¡é==
===åšå
·===
*éå
·ç®±
*:åã£æããã£ãŠæã§æããããéå
·ç®±ãçšæããããã«ä»¥äžã®åšå
·ãåçŽãããå
éšããã¬ãŒã§äºæ®µåŒã«ãªã£ãŠãããã®ã¯äžã®æ®µãæ¡éåã®äžæåçŽã«äœ¿ããã®ã§äŸ¿å©ã§ããã
*æšæ¬ç®±
*:[http://henkeikin.org/ æ¥æ¬å€åœ¢èç 究äŒ]ãç¹æ³šå¶äœãã1å40åã§è²©å£²ããŠãããããç®±ç¶ã®æšæ¬ç®±ã䟿å©ã§ãããçœããŒã«çŽè£œã§å€ç®±ãå
ç®±ãå°çŽã®3éšåããã§ããŠãããçŸå°ã§æã£ãŠçµã¿ç«ãŠãããããã«ãªã£ãŠãããç®±ã«ã¯æ¡éå°ãæ¡éæ¥æãæ¡éè
æåãèšå
¥ããŠããããšã
*:åžè²©ã®ãã©ã¹ããã¯ã±ãŒã¹ãçšããããåçŽã§èªäœããå Žåã¯ãå¹
5cmãé·ã10cmãé«ã2ãçšåºŠã®å€§ãããŸã§ãç®å®ã«ãããšè¯ãããŸããå
éšã«ã³ã®åã«æã£ã貌ãä»ãå°çŽãã¯ã蟌ãã§ãããšãåŸã®èŠ³å¯ã«äŸ¿å©ã§ããã
*:éå€ã§ã®äžæåçŽçšã«èåæãããã©ã¹ããã¯è£œã®åŒåœç®±ãçšæããŠãããã
*ã«ãŒã
*:埮å°ãªåå®äœãæ¢ããããèŠã€ãããã®ãééããªãå€åœ¢èã®åå®äœãã©ããã確èªããããã20åçšåºŠã®ãã®ã奜ãŸããã
*ãã³ã»ãã
*:ã§ããã°30ãçšã®å€§åã®ãã®ã䜿ãããã
*ãã€ã
*:åå®äœãä»çããè
æœæšãæš¹ç®ãåãåãã®ã«çšãããéãã€ããæç©ãã€ãã䜿ããããã
*ã¯ãã¿
*:åå®äœãä»çããæ¯èãå°æãåæããã®ã«çšãããåªå®é身ã䜿ããããã
*æ¥çå€
*:å°çŽã«æšæ¬ã貌ãä»ããã®ã«çšããã
**é
¢é
žããã«æš¹èãšãã«ãžã§ã³ç³»æ¥çå€ - ããããæšå·¥ãã³ã
**:也ç¥ã¯é
ãã湿ã£ãåºè³ªã§ãã£ãŠãåºå®ã§ããä»äžãããçŸããã
**åæãŽã ç³»æ¥çå€
**:é也æ§ã«åªããããã«å°çŽã«åºå®ã§ãããã湿ã£ããã®ã®åºå®ã«ã¯é©ããªãã
*ç²çããŒã
*:çŽè£œã®çµåµèããã©ããã£ã³ã°ããŒãã®ãããªãã®ãä»®åçŽã±ãŒã¹ã®åºã«æšæ¬ã貌ãä»ããã®ã«æã¡ããã
*çèšçšå
·ïŒéçïŒãšéåž³ïŒãã£ãŒã«ãããŒã)
*:æ¡éããŒã¿ã®èšé²
===åå®äœã®çºçå Žæ===
å€ãã®çš®é¡ã¯ãé«æž©å€æ¹¿ã®æ¢
éšã®ææã«å€åœ¢äœãæé·ããæ¢
éšæãã®æŽãéãå¢ããŠããé ã«åå®äœãã€ããã¯ãããããŸããéªè§£ããç§ã®ææã«åå®äœãã€ããçš®ãååšããã
äž»ã«èœã¡èã®è¡šãäœæšã®æçã«çºçããããããã§ã¯éåžžã®äŸãå«ããåå®äœã®çºçå Žæãæããã
ã»æ€ç©ã®èã®è£è¡š
ã»åãæ ª
ã»éªã解ãã€ã€ããå Žæã®æ¯ãæç(äž»ã«ã«ãªãã³ãªãªã©)
ã»ã·ã€ã¿ã±ã®æŠŸæš
ã»åºèæš¹ãéèæš¹ã®èœã¡è
ã»åæš
ã»ã¯ãªã®"ãã"(äž»ã«ã·ã©ã¿ããŠãããã³ãª)
ã»éèã®å®
ã»ããã³ã®è¡šé¢äž
ãã以å€ã«ãå€ãã®å Žæã«åå®äœãã€ãããèŠã€ãããšãã®ã³ãã¯ãªããããã©ã³ããåå¿è
ã®æ¹ãå€ããæ©ãèŠã€ãããšããããšããã°ãã°ããã
å
å
¥èŠ³ã«ãšããããã«ãåºãèŠãŠãããšèŠã€ãããããããããªãã
===湿宀å¹é€æ³===
==æšæ¬äœè£œ==
===也ç¥æšæ¬===
===ãã¬ãã©ãŒãæšæ¬===
{{stub}} | null | 2023-02-09T08:26:05Z | [
"ãã³ãã¬ãŒã:Stub"
] | https://ja.wikibooks.org/wiki/%E5%A4%89%E5%BD%A2%E8%8F%8C%E3%81%AE%E6%8E%A1%E9%9B%86%E3%83%BB%E6%A8%99%E6%9C%AC%E4%BD%9C%E8%A3%BD |
1,482 | æ
å ±æè¡ | æ
å ±æè¡ã«é¢ããææžã»è³æã»æç§æžãåããããæžåº«ã
2022幎床ããæœè¡ãããåŠç¿æå°èŠé ã§ã¯ãå¿
履修ç§ç®ããæ
å ± Iãã«äžæ¬åãããããã«ãçºå±ç§ç®ãšããŠãæ
å ± IIããèšå®ãããã
é«çåŠæ ¡æ
å ±ã®æç§æžãå·¥æ¥ãåæ¥ã®æç§æžãåç
§ã®ããšã
åçš®ãœããã®äœ¿ãæ¹ã
åçš®OSã«ã€ããŠã
OSäžè¬
ãããã¯ãŒã¯ã®ä»çµã¿ãšã€ã³ã¿ãŒãããã®äœ¿ãæ¹ã
æ
å ±åŠçæè¡è
è©Šéšã®çš®é¡ãšå
容ã
å¹³æ21幎床 -
- å¹³æ20幎床 | [
{
"paragraph_id": 0,
"tag": "p",
"text": "æ
å ±æè¡ã«é¢ããææžã»è³æã»æç§æžãåããããæžåº«ã",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "2022幎床ããæœè¡ãããåŠç¿æå°èŠé ã§ã¯ãå¿
履修ç§ç®ããæ
å ± Iãã«äžæ¬åãããããã«ãçºå±ç§ç®ãšããŠãæ
å ± IIããèšå®ãããã",
"title": "é«çåŠæ ¡ïŒé«æ ¡ïŒ"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "é«çåŠæ ¡æ
å ±ã®æç§æžãå·¥æ¥ãåæ¥ã®æç§æžãåç
§ã®ããšã",
"title": "é«çåŠæ ¡ïŒé«æ ¡ïŒ"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "åçš®ãœããã®äœ¿ãæ¹ã",
"title": "ãœãããŠã§ã¢"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "åçš®OSã«ã€ããŠã",
"title": "ãœãããŠã§ã¢"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "OSäžè¬",
"title": "ãœãããŠã§ã¢"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ãããã¯ãŒã¯ã®ä»çµã¿ãšã€ã³ã¿ãŒãããã®äœ¿ãæ¹ã",
"title": "ãããã¯ãŒã¯ãšã€ã³ã¿ãŒããã"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "æ
å ±åŠçæè¡è
è©Šéšã®çš®é¡ãšå
容ã",
"title": "åçš®æ€å®"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "å¹³æ21幎床 -",
"title": "åçš®æ€å®"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "- å¹³æ20幎床",
"title": "åçš®æ€å®"
}
] | æ
å ±æè¡ã«é¢ããææžã»è³æã»æç§æžãåããããæžåº«ã | {{Pathnav|ã¡ã€ã³ããŒãž|frame=1|small=1}}
[[w:æ
å ±æè¡|æ
å ±æè¡]]ã«é¢ããææžã»è³æã»æç§æžãåããããæžåº«ã
== é«çåŠæ ¡ïŒé«æ ¡ïŒ ==
=== é«çåŠæ ¡æ
å ± ===
2022幎床ããæœè¡ãããåŠç¿æå°èŠé ã§ã¯ãå¿
履修ç§ç®ããæ
å ± Iãã«äžæ¬åãããããã«ãçºå±ç§ç®ãšããŠãæ
å ± IIããèšå®ããã<ref>{{Cite web
|url=https://www.mext.go.jp/component/a_menu/education/micro_detail/__icsFiles/afieldfile/2019/05/21/1416331_001.pdf
|title=æ°åŠç¿æå°èŠé ã®ãã€ã³ãïŒæ
å ±æŽ»çšèœåã®è²æã»ïŒ©ïŒ£ïŒŽæŽ»çšïŒ
|date=2019/05/21 16:15:21
|accessdate=2021/10/25
}}</ref>ã
[[é«çåŠæ ¡æ
å ±]]ã®æç§æžã[[é«çåŠæ ¡å·¥æ¥|å·¥æ¥]]ã[[é«çåŠæ ¡åæ¥|åæ¥]]ã®æç§æžãåç
§ã®ããšã
* [[é«çåŠæ ¡æ
å ±/瀟äŒãšæ
å ±]] 2åäœ {{é²æ|25%|2016-06-10}}
* [[é«çåŠæ ¡æ
å ±/瀟äŒãšæ
å ±|é«çåŠæ ¡æ
å ± æ
å ±ã®ç§åŠ]] 2åäœïŒâ» ãªã³ã¯å
ã¯ã瀟äŒãšæ
å ±ããäž¡ç§ç®ããŸãšããŠèª¬æãïŒ
=== é«çåŠæ ¡å·¥æ¥ ===
* [[é«çåŠæ ¡å·¥æ¥/ãœãããŠã§ã¢æè¡]]
=== æ§èª²çš ===
* [[é«çåŠæ ¡æ
å ±A]] 2åäœ
* [[é«çåŠæ ¡æ
å ±B]] 2åäœ
* [[é«çåŠæ ¡æ
å ±C]] 2åäœ
== ã³ã³ãã¥ãŒã¿åºç€ ==
* [[ã³ã³ãã¥ãŒã¿æè¡æŠèŠ]]
== ããŒããŠã§ã¢ ==
* [[LinuxããŒããŠã§ã¢]]
== ãœãããŠã§ã¢ ==
* [[ITã¹ãã«ãšã¢ããªã±ãŒã·ã§ã³]]
* [[CAD/CAMå
¥é]]
* [[ç»åæ åã»é³æ¥œå
¥é]]
=== äžè¬çãªãœãããŠã§ã¢ ===
åçš®ãœããã®äœ¿ãæ¹ã
* [[Adobe]]
* [[Blender]]
* [[iMovie]]
* [[Microsoft Office]]
* [[OpenOffice.org]]
* [[VMWare]]
* [[ãã€ã³ã]]
=== ãŠã§ãã¢ããªã±ãŒã·ã§ã³ ===
* [[Google ããã¥ã¡ã³ã ãšãã£ã¿]]
=== ãªãŒãã³ãœãŒã¹ãœãããŠã§ã¢ ===
==== ã¯ã©ã€ã¢ã³ãã¢ããªã±ãŒã·ã§ã³ ====
* [[Emacs]]
* [[Freenet]]
* [[GIMP]]
* [[gnuplot]] ([[:en:gnuplot|en]])
* [[Inkscape]]
* [[Linuxã·ã¹ãã 管ç]]
* [[OpenOffice.org]]
* [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž]]
* [[TeX/LaTeXå
¥é]]
* [[Ubuntu]] ([[:en:Ubuntu|en]])
* [[UNIX/Linuxå
¥é]]
* [[vi]]
* [[VirtualBox]]
==== ãµãŒããŒã¢ããªã±ãŒã·ã§ã³ ====
* [[Apache]]ïŒWebãµãŒãïŒ
* [[BIND]]ïŒDNSãµãŒãïŒ
* [[Squid]] (Proxy)
* [[OpenVPN]] (VPN)
* [[MySQL]]
* [[PostgreSQL]] (DBMS)
* ã¡ãŒã«è»¢éãšãŒãžã§ã³ã
** [[Dovecot]]
** [[Postfix]]
** [[qmail]]
** [[Sendmail]]
=== OSïŒãªãã¬ãŒãã£ã³ã°ã·ã¹ãã ïŒ ===
åçš®OSã«ã€ããŠã
* [[Windowså
¥é]]
** [[MS-DOS/PC DOSå
¥é]]
* [[MacOSå
¥é]]
* [[UNIX/Linuxå
¥é]]
**[[Cent OS]]
**[[Debian GNU/Linux]]
**[[Linux Mint]]
**[[RHEL]]
**[[Ubuntu]] ([[:en:Ubuntu|en]])
* [[Chrome OSå
¥é]]
OSäžè¬
* [[ãªãã¬ãŒãã£ã³ã°ã·ã¹ãã ]]
===ããã°ã©ãã³ã°===
* [[ããã°ã©ãã³ã°]]
=== ãã¡ã€ã³ç¹åèšèª ===
* ããŒã¯ã¢ããèšèª
** [[HTML]] {{é²æ|75%|2014-02-09}}
** [[CSS]]
** [[SVG]]
* [[Apache]]
=== æ°åŒåŠçã·ã¹ãã ===
* [[Mizar]]
* [[GNU Octave]]
* [[Maxima]]
== ãããã¯ãŒã¯ãšã€ã³ã¿ãŒããã ==
ãããã¯ãŒã¯ã®ä»çµã¿ãšã€ã³ã¿ãŒãããã®äœ¿ãæ¹ã
* [[LANãšã€ã³ã¿ãŒããã]]
* [[TCP/IPå
¥é]]
* [[æ
å ±ã»ãã¥ãªãã£å
¥é]] ([[:en:Basic Computer Security|en]])
* [[LDAPå
¥é]]
* [[NTPå
¥é]]
* [[ãªã³ã©ã€ã³ã»ãã©ã€ãã·ãŒã»ã¬ã€ã]]
== åçš®æ€å® ==
=== æ
å ±åŠçæè¡è
è©Šéš ===
[[æ
å ±åŠçæè¡è
è©Šéš]]ã®çš®é¡ãšå
容ã
* [[æ
å ±åŠçæè¡è
è©Šéšã®æŠèŠ]]
å¹³æ21幎床 -
* [[ITãã¹ããŒãè©Šéš]]
* [[æ
å ±ã»ãã¥ãªãã£ãããžã¡ã³ãè©Šéš]]
* [[åºæ¬æ
å ±æè¡è
è©Šéš]]
* [[å¿çšæ
å ±æè¡è
è©Šéš]]
* ITã¹ãã©ããžã¹ãè©Šéš
* ã·ã¹ãã ã¢ãŒããã¯ãè©Šéš
* ãããžã§ã¯ããããŒãžã£è©Šéš
* ãããã¯ãŒã¯ã¹ãã·ã£ãªã¹ãè©Šéš
* ããŒã¿ããŒã¹ã¹ãã·ã£ãªã¹ãè©Šéš
* ãšã³ããããã·ã¹ãã ã¹ãã·ã£ãªã¹ãè©Šéš
* [[æ
å ±ã»ãã¥ãªãã£ã¹ãã·ã£ãªã¹ãè©Šéš]]
* ITãµãŒãã¹ãããŒãžã£è©Šéš
* ã·ã¹ãã ç£æ»æè¡è
è©Šéš
- å¹³æ20幎床
* [[åçŽã·ã¹ãã ã¢ãããã¹ãã¬ãŒã¿]]<!--
* åºæ¬æ
å ±æè¡è
-->
* [[ãœãããŠã§ã¢éçºæè¡è
]]<!--
* äžçŽã·ã¹ãã ã¢ãããã¹ãã¬ãŒã¿
* æ
å ±ã»ãã¥ãªãã£ã¢ãããã¹ãã¬ãŒã¿
* ãã¯ãã«ã«ãšã³ãžãã¢
** æ
å ±ã»ãã¥ãªãã£
** ãšã³ããããã·ã¹ãã
** ã·ã¹ãã 管ç
** ãããã¯ãŒã¯
** ããŒã¿ããŒã¹
* ã¢ããªã±ãŒã·ã§ã³ãšã³ãžãã¢
* ãããžã§ã¯ããããŒãžã£
* ã·ã¹ãã ã¢ããªã¹ã
* ã·ã¹ãã ç£æ»æè¡è
-->
=== ETEC ===
* [[JASAçµèŸŒã¿ãœãããŠã§ã¢æè¡è
è©Šéšã¯ã©ã¹2]]
=== LPIèªå®è©Šéš ===
* [[LPIC(level1)]]
=== æ
å ±æ€å® ===
*[[æ
å ±æŽ»çšè©Šéš]]
*[[æ
å ±ã·ã¹ãã è©Šéš]]
*[[æ
å ±ãã¶ã€ã³è©Šéš]]
=== ãµãŒãã£ãã¡ã€ ===
*[[æ
å ±åŠçæè¡è
èœåèªå®è©Šéš]]
== æ
å ±ç§åŠ ==
* [[笊å·çè«]]
== ãã®ä» ==
* [[æ¡åŒµåãã³ãããã¯]]
* [[æ
å ±åŠççšèª]]
* [[ç©çåŠã®ããã®èšç®æ©ãšãªãŒãã³ãœãŒã¹]]
* [[ãŠã§ããŠãããŒãµã«ãã¶ã€ã³]]
* [[åçš®ãŠã§ããµã€ãã»ã¢ããªã®äœ¿çšæ³]]
== è泚 ==
<references/>
[[Category:æ
å ±æè¡|*]]
[[Category:æžåº«|ãããã»ããããã€]]
{{NDC|007|ãããã»ããããã€}} | 2005-01-15T08:51:19Z | 2023-12-20T06:12:35Z | [
"ãã³ãã¬ãŒã:Cite web",
"ãã³ãã¬ãŒã:NDC",
"ãã³ãã¬ãŒã:Pathnav",
"ãã³ãã¬ãŒã:é²æ"
] | https://ja.wikibooks.org/wiki/%E6%83%85%E5%A0%B1%E6%8A%80%E8%A1%93 |
1,488 | 竹åç©èª ç®æ¬¡ | å€å
žæåŠ > 竹åç©èª | [
{
"paragraph_id": 0,
"tag": "p",
"text": "å€å
žæåŠ > 竹åç©èª",
"title": ""
}
] | å€å
žæåŠ > 竹åç©èª | [[å€å
žæåŠ]] > [[竹åç©èª_ç®æ¬¡|竹åç©èª]]
----
== ã¯ããã« ==
# [[竹åç©èª ã¯ããã«|ã¯ããã«]]
== åæ ==
# [[s:竹åç©èª|竹åç©èª]]
== 察蚳ã»èš»è§£ ==
# [[竹åç©èª ããã姫ã®ãã²ãã¡|ããã姫ã®ãã²ãã¡]]
# [[竹åç©èª ã€ãŸã©ã²|ã€ãŸã©ã²]]
# [[竹åç©èª ä»ã®åŸ¡ç³ã®é¢|ä»ã®åŸ¡ç³ã®é¢]]
# [[竹åç©èª è¬è±ã®çã®æ|è¬è±ã®çã®æ]]
# [[竹åç©èª ç«éŒ ã®ç®è¡£|ç«éŒ ã®ç®è¡£]]
# [[竹åç©èª éŸã®éŠã®ç|éŸã®éŠã®ç]]
# [[竹åç©èª éã®åå®è²|éã®åå®è²]]
# [[竹åç©èª 埡éã®æ±å©|埡éã®æ±å©]]
# [[竹åç©èª ããã姫ã®æ倩|ããã姫ã®æ倩]]
[[ã«ããŽãª:竹åç©èª|*]]
[[eo:La Rakonto de la Bambua Hakisto]] | null | 2023-02-02T14:23:38Z | [] | https://ja.wikibooks.org/wiki/%E7%AB%B9%E5%8F%96%E7%89%A9%E8%AA%9E_%E7%9B%AE%E6%AC%A1 |
1,491 | å€å
žååŠ | å€å
žååŠ/ã€ã³ãããã¯ã·ã§ã³ (2023-11-05)
å€å
žç©çåŠã§æ±ããããããªç©äœãæã€æ§è³ªãšããŠã¯ã質éã»é»è·ã»åœ¢ç¶ãããããã®ãã¡é»è·ã«ã€ããŠã¯é»ç£æ°åŠã§æ±ããæ¬é
ç®ã®å€å
žååŠã§ã¯è³ªéãšåœ¢ç¶ã®ã¿ãæ±ãããã®ãããªãååŠçãªç©äœã®ãã¡è³ªéã®ã¿ãæã¡ã倧ãããæããªãç©äœã質ç¹ãšãããå®éã®ç©äœã¯å€§ãããæã€ããéåã®å€§ããã«å¯ŸããŠç©äœã®å€§ãããç¡èŠã§ããã»ã©å°ãããã°è³ªç¹ãšèŠãªããã倧ãããæã€ç©äœã§ããã°åãå ãããšå€åœ¢ããããããªã©ããŠãç©äœã®éåã«å
šãŠã®åã䜿ãããªãäºãå€ãããããã®ãããªèŠå ãæé€ããŠäœçœ®ã®å€åã«ããéåã®ã¿ãèããããã«çæ³åãããç©äœã§ããããã¡ããã質ç¹ãã®ãããªç©äœã¯çŸå®ã«ã¯ãªããããããåçŽåããã¢ãã«ã«ã€ããŠãŸãèããããšã¯ååŠã®æ¬è³ªã®ç解ã«åœ¹ç«ã€ã
è€æ°ã®è³ªç¹ã®éãŸãã質ç¹ç³»ãšããã質ç¹ç³»ã®å
ã質ç¹å士ã®çžå¯Ÿçãªäœçœ®é¢ä¿ãåãå ããŠãå€ããã¬ç©äœãåäœãšãããå®éã®ç©äœã¯åãå ãããšå€å°ãªããšãå€åœ¢ããããåãå ããŠãå€åœ¢ãç¡èŠã§ããã»ã©ç¡¬ããã°åäœãšèŠãªããŠããã
倧ãããæã¡ãåãå ãããšå€åœ¢ããããåãå ããã®ãæ¢ãããšå
ã®ç¶æ
ã«æ»ãç©äœã匟æ§äœãšããã
æ°äœã液äœã®ããã«æ±ºãŸã£ã圢ãæãããæµããç©äœãæµäœãšãããæµäœã«ã€ããŠã¯å€å
žååŠã§ã¯ãªãæµäœååŠã§æ±ãã
æ§ã
ãªéãè¡šçŸããããã«ãæ°åŠã§ã¯ãã®éãèšå·ãçšããŠè¡šãã以äžã«ä»£è¡šçãªéãšãã®èšå·ã®äŸã以äžã«æããããããã¯åãªãäŸã§ãããæ¬æžã«éããå
šãŠã®éããã®è¡šã«åŸã£ãŠæžãè¡šãããŠããããã§ã¯ãªãã t {\displaystyle t} ã m {\displaystyle m} ã®ãããªèšå·ãçšããŠéãè¡šçŸããã®ã¯åé·ãªè¡šçŸãçããŸãšããç®çã§è¡ãããã
ç©çé (physical quantity) ãšã¯ãçŽæ¥çãªããéæ¥çãªæž¬å®ãéããŠåççã«æ±ºå®å¯èœãããããªç³» (system) ã®ç¹åŸŽéã§ãããååŠã«ãããç³»ãšã¯ãæãäžè¬çã«ã¯éåããç©äœ(ã®éãŸã)ãšç©äœãéåãã空éã®ããšã§ãããç³»ãç¹åŸŽã¥ããç©çéã¯ç©äœãç©äœã®éå£ã«ä»éããéã§ãã£ããã空éã«ä»éãããã®ã§ãã£ããããããã¯ç©äœãšç©ºéã®é¢ä¿æ§ãæã瀺ããã®ã§ãã£ããæ§ã
ã§ãããæãåºæ¬çãªç©çéãšããŠã¯ãããææšãšãªãç©äœãšç©ºéäžã®äžç¹ãçµã¶è·é¢ãæããããã
ç©äœãéåããå Žåããã®ç©äœãæãè»è·¡ãšãã®æã
ã®æå»ãçµã³ã€ããŠèããããšãã§ãããç©äœã®éåã«å¯Ÿããæå»ãšããŠã©ã®ãããªãã®ãéžã¶ãã¯å
šãæããã§ã¯ãªãããå·®ãåœãã£ãŠããåçŽãªéåãåºæºã«ããããšã«ãã£ãŠæå»ãå®ãããããšããããšãèªããããåçŽãªéåãã¯ããšãã°å€ªéœãæãæ²ãåšæãæã®æºã¡æ¬ ãã ã£ãããå£ç¯ã®ç§»ãå€ãããããããã¯æèšã®ç§éã®åãã ã£ããæ§ã
ã§ããããã®ãããªæå»ãç¥ãæéã枬ãããã®è£
眮ãªããä»çµã¿ã¯ãå°ããæèšããšåŒã°ãããæã
ãæèšãèŠãŠæå»ãç¥ãããšã«ã€ããŠã¯å·®ãåœãã£ãŠäœã®å¶çŽãäžããããªããåŸã£ãŠãçæ³çãªæèšãšããŠä»»æã®é£ç¶çãªæå»ãæ£ç¢ºã«ç€ºããã®ãèããããšãã§ããããã®ãããªä»®æ³çãªæèšã¯å¯äžã€ã«æ±ºãŸã£ãŠããããã§ã¯ãªãæéã®æž¬ãæ¹ã«ãã£ãŠç¡æ°ã®æèšãååšããããããããã®æèšãæãæå»ã«ã€ããŠã®å¯Ÿå¿é¢ä¿ãã¯ã£ãããšããŠãããªããã®å
ã®ã©ããäžã€ã䜿ãã°ããããšã«ãªããå®éã«ã¯ãçŸå®ã«ååšããæèšãšåã枬ãæ¹ã®ãã®ãéžã¶ããšã«ãªãã ããã ãã®ãããªçæ³çãªæèšã«ãã£ãŠç¹åŸŽã¥ããããæéãã®ãã®ã¯ãåã«ç©äœã®éåã幟äœåŠçãªèå°ã«ç«ãããããã®éå
·ç«ãŠä»¥äžã®æå³ãæããªãã
æèšã«ãã£ãŠæéã枬ãããšãã§ããã°ãåæå»ã«ãããç©äœã®äœçœ®ããç©äœã®é床ãå®ããããšãã§ãããé床ã¯ãåç¯ã§çŽ¹ä»ããããã«ã2 ã€ã®æå»ã«ãããäœçœ®ã®å€åéããã®éã«çµéããæéã§å²ã£ããã®ãšããŠå°å
¥ããããç©äœã®é床 v ( t ) {\displaystyle v(t)} ã¯ç©äœã®äœçœ® x ( t ) {\displaystyle x(t)} ãæå» t {\displaystyle t} ã«ã€ããŠåŸ®åãããã®ãšããŠå®çŸ©ããããç©äœã®äœçœ® x ( t ) {\displaystyle x(t)} ããã³é床 v ( t ) {\displaystyle v(t)} ã®å
šäœåã¯æå» t {\displaystyle t} ã®é¢æ°ãšããŠå®çŸ©ãããã
ãã®å®çŸ©ã¯ç©äœã®äœçœ®ããã³é床ããã¯ãã«ã§ãã£ãŠãå€ãããªãããã¯ãã«ã倪åã§è¡šãã°æ¬¡ã®ããã«ãªãã
åæ§ã«ããŠãé床 v ( t ) {\displaystyle {\boldsymbol {v}}(t)} ã®å€åã®å²åãšããŠå é床 a ( t ) {\displaystyle {\boldsymbol {a}}(t)} ãã
å é床 a ( t ) {\displaystyle {\boldsymbol {a}}(t)} ã®å€åã®å²åãšããŠèºåºŠ (jerk)
ãå®çŸ©ã§ãããé«éã®æé埮åã«ãã£ãŠå®çŸ©ãããéãæšå®ããããã«ã¯ãçŽæ¥çã«ã¯äœçœ®ãšæå»ã®æž¬å®ãæ°å€ãè¡ãå¿
èŠããããããšãã°é床ã枬å®ããããã«ã¯ãçŽæ¥çã«ã¯ 2 ã€ã®äœçœ®ãšæå»ã®çµãå®ããããšãå¿
èŠãšãªããåæ§ã«å é床ã枬ãããã«ã¯ 2 ã€ã®æå»ã«ãããé床ãç¥ãå¿
èŠããããããäœçœ®ãšæå»ã®çµã 3 ç¹æž¬å®ããªããã°ãªããªãã
ååŠã«ãããŠã©ã®çšåºŠãŸã§é«éã®åŸ®åãæ±ããå¿
èŠãããã ããããå
èµ°ã£ãŠèšãã°ããã¥ãŒãã³ååŠã«ãããŠã¯ããæå»ã«ãããç©äœã®äœçœ®ãšé床ã決å®ããããšã§ããã®ç©äœã®æªæ¥ãšéå»ã«ãããéåãå®å
šã«äºæž¬ããããšãã§ããåŸã£ãŠéåãèšè¿°ããã«ã¯ç©äœã®å é床ãåãã£ãŠããã°å
åãšããããšã«ãªãããã®ãã¥ãŒãã³ååŠã®æ§è³ªã¯ãã¥ãŒãã³ã®æ±ºå®æ§åçãšåŒã°ãããå€ãã®ç©äœã®éåã«ã€ããŠããã¥ãŒãã³ååŠã«ãã£ãŠæ£ç¢ºãªäºæž¬ãåŸãããäºå®ã¯ããããã®çŸè±¡ã®èåŸã«ãã決å®æ§åçã®ååšãæã«ç€ºããŠãããšèšããã ããã
ååŠã«ãããŠåºæ¬ãšãªãéã¯ãäœçœ®ãæéãé床ãå é床ã®ãããªç©äœã®éåãšããŠçŽæ¥æããããéã®ä»ã«ãåã質éãéåéããšãã«ã®ãŒãšãã£ããã®ãããããããã«ã€ããŠã¯ãŸãå¥ã®ç¯ãèšããŠè©³ããè¿°ã¹ãããšã«ããããæ»ãæãã§ããããã©ã®ãããªéã§ããããè¿°ã¹ããã 質éã¯ç©äœã®äºã€ã®ç°ãªãæ§è³ªã決å®ãããäžã€ã¯ç©äœã®åããã«ãããšæ¢ãã«ããã§ãããããäžã€ã¯ç©äœã®éãã§ããã質éã倧ããªç©äœã»ã©åããã¥ãããŸãæ¢ãã¥ãããç©äœã®éãã¯è³ªéã«æ¯äŸãã質éã倧ããã»ã©ç©äœã¯éããªããæèŠçã«ã¯è³ªéã®ãããã®æ§è³ªãç©äœã®ãéãããšããŠæããšãããã
åã¯ç©äœã®éåãå€åãããèŠå ã§ãããåã®çºçæºã¯æ§ã
ã§ãããååŠã«ãããŠç¹ã«åã®çºçæºãç¹å®ããããšã¯ãªãããã¥ãŒãã³ååŠã§ã¯ããã¹ãŠã®åã¯ç©äœå士ãçµã¶çžäºäœçšãšããŠèšè¿°ããããæãçŽæçãªäŸã¯ç©äœå士ãè¡çªãããããããšãã«åãæ¥è§Šåã ãããç©ãæã¡éã¶éã«æããéã¿ã¯ãéã°ããè·ç©ã«ãã£ãŠåãŒãããåãåå ãšããŠçããæèŠã§ãããšç解ã§ãããä»ã«ä»£è¡šçãªãã®ã¯äžæåŒåãšéé»æ°åãããã³ç£åã§ããããããã¯ç©äœãæ¥è§ŠããŠããªããŠãåããããéæ¥è§ŠåãšãåŒã°ãã(é éåãšãé éäœçšãšåŒã¶ããšãããããç©çåŠã§ã¯é éãšããèšèã¯ç¹å¥ã®æå³ãæã€ã®ã§ããããã®èªãçšããéã«ã¯æ··åãããªããã泚æãã¹ãã ãã)ã åãã®ãã®ã¯åŠäœã«ãã®æ¯ãèããçŽæçã§ããããšãæŠå¿µçãªãã®ã§ãããçŽæ¥çã«åãç¥ããã¹ã¯ãªããããããªãããåãåãŒãããã§ãããç©äœã¯ããã®éåã«å€åãçãããããç©äœã®å é床ãšçµã³ã€ããŠèããããšãã§ãããããã§è³ªéã¯ç©äœã«å ããããåã«å¯ŸããŠã©ãã ãã®å é床ãçãããã®ææšãšããŠçšããããã
éåéã¯ç©äœã®å¢ãã瀺ãéã§ãããç©äœã®å¢ãã¯ç©äœã®æ¢ãã«ãããç©äœã®éãã«çµã³ä»ããããéåéã¯ç©äœã®è³ªéãšé床ã«é¢ä¿ããéãšããŠå®çŸ©ããããç©äœã®é床ã倧ããã»ã©ããŸããã®è³ªéã倧ããã»ã©ç©äœã®éåéã¯å€§ãããªãããšãã«ã®ãŒã¯ç©äœãåããéã«ç©äœãšããåããããéã§ãããããããŸãç©äœã®éåã®å¢ããç¹åŸŽä»ãããéåéãšãšãã«ã®ãŒã¯ãŸããç¹å®ã®æ¡ä»¶ã®äžã§ãã®ç·éãäžå®ã«ä¿ãããããšãç¥ãããã
ãã®ç¯ã¯æžãããã§ãããã®ç¯ãç·šéããŠãããæ¹ãå¿ãããåŸ
ã¡ããŠããŸãã
éåã®äžæ³åãšã¯æ¬¡ã®3ã€ã®æ³åã®ããšã§ããã
第1æ³åã¯éåãšãããã®ãç©äœãšèŠ³æž¬è
ã®çžå¯Ÿçãªé¢ä¿ã§ããããå¿
èŠãšãªããã€ãŸãç©äœããšãŸã£ãŠããŠãã芳枬è
ãè€éãªéåãããŠããã°ç©äœã¯(芳枬è
ããèŠãŠ)è€éãªéåãããããã®ãããªèŠããäžã®éåãŸã§å«ãããšååŠã¯äžå¿
èŠã«è€éã«ãªã(å°ãªããšãå
¥éã¬ãã«ã§ã¯)ããããé€ãã«ã¯èŠ³æž¬è
ã«ãå¶éãã€ããªããã°ãªããªãã第1æ³åããã®å¶éãšãªããã€ãŸããéåã®ç¬¬2第3æ³åãæãç«ã€ã®ã¯ã第1æ³åãæãç«ã€ãããªèŠ³æž¬è
ã§ããããšãåæã«ããå Žåã«éãããšã«ãªãããã®ãããªèŠ³æž¬è
ãçšãã座æšç³»ãæ
£æ§ç³»ãšãã¶ãæ
£æ§ç³»ã¯éåããã£ãšãç°¡åã«(ãããã¯ãçŽ çŽãã«)èšè¿°ã§ãã座æšç³»ãšèããŠããã
ãã®ç¬¬1æ³åã«è¿°ã¹ãããŠããå
容ã¯ãç©çæ³åã¯å
šãŠã®æ
£æ§ç³»ã«ãããŠçãããæ
£æ§ç³»ã«å¯ŸããŠçéçŽç·éåãããŠããç³»ã¯å
šãŠæ
£æ§ç³»ã§ãããšããã¬ãªã¬ã€ã®çžå¯Ÿæ§åçã«åºã¥ãããã®ã§ããã
éåã®ç¬¬2æ³åãåŒã§è¡šããšãéåæ¹çšåŒ F=maãšãªããããã§ãFã¯ç©äœã«å ããããåã§ããã次å
ã®é«ãéåã§ãããäœçœ®rããã¯ãã«ã§æžãããå Žåããã®åŒã¯
ãšãã圢ã«ãªãã質émã¯ã¹ã«ã©ãŒã§ãããäœçœ®rãšåFã¯ãã¯ãã«ã§ããã
埮åæ¹çšåŒè«ã«ãããåæå€åé¡ã®ããç¥ãããçµæãããããæç¹ã§ã® r â {\displaystyle {\vec {r}}} ãš v â {\displaystyle {\vec {v}}} ãäžããã°ããã®åŸ®åæ¹çšåŒã®è§£ã¯äžæã«ååšãããšããããšãåããããã質ç¹ã®äœçœ®ãšé床ã«ãããã®åŸã®è³ªç¹ã®éåã¯å
šãŠæ±ºå®ãããã
ããã¯ãã¥ãŒãã³ã®æ±ºå®æ§åçã®äž»åŒµãããšãããšåãã§ããã
æ°åŠçã«ã¯ã r â {\displaystyle {\vec {r}}} ã®äžé以äžã®æé埮åãå«ãæ¹çšåŒãèããäºãã§ãããããã¥ãŒãã³ã®æ±ºå®æ§åçã«ããå€å
žååŠã®èšè¿°ã«ã¯ãã®ãããªé«éã®åŸ®åãäžèŠã§ããããšãåãã£ãŠããã®ã§ããã
第3æ³åã¯ãåã®é£ãåãã«é¢ãããã®ã§ã¯ãªãã2äœéã®åã®åãŒãåãã«é¢ããæ³åã§ãããæã
ãå°é¢ã«ç«ã€ãšããèªãã®éãã«ãã£ãŠå°é¢ãæŒããŠããããšã«ãªãããéã«åãã ãã®åã«ãã£ãŠå°é¢ã«æŒãè¿ããŠè²°ã£ãŠããããã«å°é¢ã®äžã§éæ¢ã§ããã®ã§ãããå°é¢ããé¢ããŠè·³ã³äžããããšæãã°ãæ®æ®µãã匷ãåã§å°é¢ã蹎ãããšã«ãããåãã ãã®åãå°é¢ããäžããããè·³ã³äžããããšãã§ããããã«ãªãããã ãã®å Žåã¯ãåäœçšã®åãåããã®ã¯å°é¢ã蹎ã£ãæã ãã§ãããããå°é¢ãé¢ããåŸã¯ãåŒåãšå察æ¹åã®åãåŸããããåã³å°é¢ã«åŒãå¯ããããŠããŸãããšã«ãªãã
ååŠã®äž»èŠãªç®çã¯æ³åã䜿ã£ãŠç©äœã®éåãå®éçãããã¯å®æ§çã«äºæž¬ããããšããéåãã¯ç©äœã®äœçœ®ãã¯ãã« r â {\displaystyle {\vec {r}}} ãæéãšãšãã«ã©ãå€åããããèšãæãããš r â {\displaystyle {\vec {r}}} ãæéã®ã©ã®ãããªé¢æ° r â ( t ) {\displaystyle {\vec {r}}(t)} ã«ãªããã§è¡šããããããã§äœæ¥ã¯ r â ( t ) {\displaystyle {\vec {r}}(t)} ãæºãããéåæ¹çšåŒããæ±ãã次ã«ããã解ããšããäºæ®µéã«åãããã:
1.(éåæ¹çšåŒã®å°åº)åé¡ãšããç¶æ³ã«ãããŠç©äœãåããåãæ±ãããéåãé»ç£æ°åã®æ³åã䜿ãããè€æ°ã®ç©äœããããåé¡ã§ã¯ç¬¬3æ³åãéèŠãªåãããããç©äœãåããåã¯äžè¬ã«ã¯ãã®äœçœ® r â {\displaystyle {\vec {r}}} ããã³æå» t {\displaystyle t} ã«äŸåããã®ã§ F â = F â ( t , r â ) {\displaystyle {\vec {F}}={\vec {F}}(t,{\vec {r}})} ãšãªãããç¹ã«äœçœ®ãžã®äŸåæ§ãéèŠãªåé¡ãå€ãããã®çµæã第2æ³åã«ä»£å
¥ãããš
ãšãªãããããéåæ¹çšåŒãæ°åŠçã«ã¯ r â {\displaystyle {\vec {r}}} ãæºãã2é埮åæ¹çšåŒã«ä»ãªããªãã
2.(éåæ¹çšåŒã解ã)éåæ¹çšåŒã解ããŠéåãæ±ãããåççã«ã¯é©åãªåææ¡ä»¶ãäžããäžã§ããã解ãã°ãããäºéãªã®ã§åææ¡ä»¶ã¯åææå»tiã§ã®äœçœ® r â ( t = t i ) {\displaystyle {\vec {r}}(t=t_{i})} ãšé床 d r â / d t ( t = t i ) {\displaystyle d{\vec {r}}/dt(t=t_{i})} ãå¿
èŠãç©ççã«ã¯ããæå»ã®äœçœ®ãšé床ã決ãããšããã以éã®éåãå®å
šã«æ±ºãŸãããšãæå³ãã(ããŒã«ãæããå Žåãæããããã°ãããããŒã«ãæããé¢ããç¬éã®äœçœ®ãšé床ã§ãã®åŸã®ã³ãŒã¹ã決ãŸãããã§ãã)ã
ãšã¯ãããäºé埮åæ¹çšåŒã¯äºæ¬¡æ¹çšåŒã®ããã«äžè¬çãªè§£ã®å
¬åŒãããããã§ã¯ãªããããã©ãããåãå°ã
è€éã«ãªããšã解ãæ¢ç¥ã®é¢æ°ã®çµåãã§è¡šããªãããšãæ®éããããã©ãããããååŠã®åé¡ãšãªãã幞ã"good news"ããã:
ãããã®å Žåãããä¿åéããã«ã®ã«ãªããä¿åéãšã¯äœçœ®ãšé床ããã圢ã§çµåããåŒã§ããã®å€ãéåã®åãããçµãããŸã§å€ããã¬äžå®å€ããšããã®ãåãããæ¡ä»¶ãæºããå Žåã«ååšãããããããããšéåã®èªç±åºŠãæžãã®ã§è§£ãããããªã(ä¿åéã®åæ°ãååãªãã2éã®æ¹çšåŒãäžéã«çŽããŠç©åã§è§£ãããšãå¯èœã«ãªã)ãããŸã倧ããªå¶éãšãªãã®ã§å®æ§çæ§è³ªãåããããããªãã代衚çãªä¿åéã®åè£ã¯ãšãã«ã®ãŒãéåéãè§éåéã
äžæ¹ãä¿åéãååšããªãéåããããã¯èªç±åºŠã«æ¯ã¹ä¿åéã®æ°ãå°ãªãéåã¯ãããŠãè€éã§ã解ãããšãå®æ§çæ§è³ªãæããããšãé£ããããã®ãããªéåã調ã¹ãã«ã¯èšç®æ©äžã®æ°å€èšç®ãªã©ãå¿
èŠãšãªããå®ã¯ãã®ãããªéåãç¬èªã®èå³ãšéèŠæ§ãæã€ããšãããã代衚çãªã®ã¯ã«ãªã¹çãªéåãšåŒã°ãããã®ã§ãå€ãã®ç 究ããããŠããŠããã
以äžã®ãããªäºæ
ãããååŠã§ã¯ãŸãä¿åéã®ãããªåºæ¬çãªæŠå¿µãšå³å¯ã«è§£ããåºæ¬çãªéåãæ±ãããã®äžã§å€ãã®éåã«éããæ£ããçŽèŠ³ã身ã«ä»ãããåºæ¬çãªéåã«ã¯çå é床éåãæŸç©éåãåéåãæ¥åéåãåæ¯åãªã©ããããå€ãã®çŸè±¡ããããã®éåããè€éåããããã®ãšããŠç解ã§ããããã®ç¯çããå€ããã«ãªã¹çãªéåã®ãããªãã®ã¯ãããã®åºç€ãåå身ã«ä»ããåŸã§ãããã°ç¹è«ãšããŠåãçµãã®ãããããŸãéåã®æ³åãããæ°åŠçã«æŽçãã解æååŠãšãããããã®ããããããã¯ä¿åéã系統çã«æ±ããæ¹æ³ã座æšç³»ãæããæ¹æ³ãªã©åçš®ã®é«çŽãªæè¡ãæäŸããããã«éåååŠãªã©ããé²ãã ç©çã«é²ãã«ã¯å¿
èŠäžå¯æ¬ ãªã®ã§ããããæœè±¡çã§ãããã¥ããé¢ãããããã¯ãããçšåºŠçŽèŠ³ã身ã«ä»ããŠããåŠã¶ã®ãããã
ç©çã§ã¯ãšãã«ã®ãŒãéåéãªã©ã®ä¿åéãéèŠãªåãããããååŠã«ãããŠãããã¯åæ§ã§ããããç¹ã«èªç±åºŠã®å°ããç³»ã§ã®éåãæ±ãå Žåã«ã¯ãä¿åéã®å©çšã«ããéåãã»ãšãã©æ±ºå®ãããŠããŸãã ãã£ãšãç°¡å(ã§ãããéèŠ)ãªäŸã¯çŽç·äžã®ç²åã®éåã§ããšãã«ã®ãŒãä¿åãããå Žåãç²åã®åº§æšãxãšãããããxã ãã«äŸåããåF(x)ãåãããšãããäŸãã°ã°ãã«ã€ãªãããç²åã§ã¯ãF(x)=âkxã«ãªãããã®ãšãéåæ¹çšåŒã¯
ãããxã«ã€ããŠã®åŸ®åæ¹çšåŒãšã¿ãŠåææ¡ä»¶ ãt=tiã§(x,dx/dt)=(xi,vi)ãã§è§£ãã°ããããããäºéã ãšé¢åãªã®ã§ã䞡蟺ã«dx/dtãæããŠã¿ãããããš
ããã§åæé¢æ°ã®åŸ®ååŽã䜿ããšã巊蟺ã¯
ãšãªãã
ããã§F(x)ã®åå§é¢æ°ã f(x)ãšãããš(åå§é¢æ°ãšã¯df/dx=F(x)ãæºããé¢æ°f(x)ãäŸãã°f(x)=(k/2)xã¯F(x)=kxã®åå§é¢æ°ã§ããã)
ãšãªãã®ã§
巊蟺ãå³èŸºäž¡æ¹ãšãããé¢æ°ã®åŸ®åãªã®ã§ãå³èŸºã巊蟺ã«ç§»è¡ããŠãŸãšãããš
ããã§ã{}ã®äžèº«ã¯æéã«äŸåããªãå®æ°ãå³ã¡ä¿åéã«ãªããäžèº«ã足ãç®ã§æžãããU(x):=âf(x)ãšãããš
ãšãªãã以äžã®çµæããŸãšããããç©äœããã®äœçœ®ã ãã«äŸåããåF(x)ã ããåããŠçŽç·éåãããå Žåã«ãU(x) ã dU/dx=âF(x) ãæºããé¢æ°ãšããŠå®çŸ©ããããã«äœçœ®ãšé床ãåŒæ°ãšããé¢æ°E(x,dx/dt)ã次ã§å®çŸ©ããã
ãããšãE ã®å€ã¯éåã®éãå€ãå€ãããªãå®æ°ã«ãªããã€ãŸãE(x,dx/dt)ã¯ä¿åéã§ãããããã¯ãšãã«ã®ãŒãšåŒã°ããã ãšãã«ã®ãŒã®å€ã¯åææ¡ä»¶ã§æ±ºãŸããã€ãŸãt=tiã®æã®å€ãšåããªã®ã§ã
ãšãã«ã®ãŒã¯äºã€ã®é
ã®åã«ãªã£ãŠãããæåã®é
(m/2)vã¯é床ã§æ±ºãŸãã®ã§éåãšãã«ã®ãŒã äºçªç®ã®é
Uã¯äœçœ®ã§æ±ºãŸãã®ã§äœçœ®ãšãã«ã®ãŒãŸãã¯ããã³ã·ã£ã«ãšãã«ã®ãŒãšåŒã°ãããéåãšãã«ã®ãŒãšäœçœ®ãšãã«ã®ãŒã¯ãããããåå¥ã«èŠããšéåã®éå€åããã ããããããã®åã¯å€åããªããå®æ°ã«ãªãã®ã§ããã
ãšãã«ã®ãŒãä¿åããããšããäºå®ã ããããéåã®æ§åãããªãåããããšãã«ã®ãŒã®å€ãEiãšãããšãéåã®éãåžžã«
ãæãç«ã€ãæžãæãããš
åŸã£ãŠéåã§xãåãã®ã¯ E i ⥠U ( x ) {\displaystyle E_{i}\geq U(x)} ãæãç«ã€ç¯å²ã«éããããã€ãŸã暪軞ã«xã瞊軞ã«y=U(x)ã®ã°ã©ããæžããå Žåã æ°Žå¹³ç· y = E i {\displaystyle y=E_{i}} ã®äžã«æ²ç· y = U ( x ) {\displaystyle y=U(x)} ãããé åãéåã®ç¯å²ãšãªãããã®äºã€ã®ç·ãé¢ããŠããé åã»ã©éåã®é床ã¯éãã éåã®éãvãšxã®éã«ã¯
ãæãç«ã€ãè€å·ã®ã©ã¡ãããšããã¯åææ¡ä»¶ãšæå»ã§æ±ºãŸããäŸãã° v i > 0 {\displaystyle v_{i}>0} ã®å Žåãvã¯é£ç¶ã«ããå€ãããªãã®ã§ãããªã笊åãå€ããããšã¯ããããã ãã°ããã¯v>0ã®ãŸãŸåãæ¹å(xå¢å ã®æ¹å)ã«åãã笊å·ãå€ããããã®ã¯v=0ãå³ã¡ y = E i {\displaystyle y=E_{i}} ãš y = U ( x ) {\displaystyle y=U(x)} 㮠亀ç¹ã倧éæã«ã¯äº€ç¹ã«éãããŸã§ã¯åãæ¹åã«åãã€ã¥ãã亀ç¹ã«éãããšäžç¬v=0ã«ãªããããããé床ã®ç¬Šå·ãå€ãã£ãŠéåãã«åãã äœãããã¯äº€ç¹ã§äº€ããè§åºŠã0ããã倧ããããšãåæãè§åºŠã0ãã€ãŸã y = E i {\displaystyle y=E_{i}} ãš y = U ( x ) {\displaystyle y=U(x)} ã æ¥ããå Žåã«ã¯ãã现ãã解æãå¿
èŠã§ã亀ç¹ã«æ°žé ã«éããªãæãããããéãããšããã§éæ¢ããããšãããããã ãã®äº€ç¹åšå²ã®æ¯ãèãã調ã¹ãã«ã¯éåæ¹çšåŒã«æ»ãã
以äžã®ããšãçŽèŠ³çã«æããã«ã¯ãžã§ããã³ãŒã¹ã¿ãŒã®è»éã®ããã«äžäžããè»éã®äžã«ãããããŒã«ã®éåãã€ã¡ãŒãžããã°ããã
ãšãã«ã®ãŒä¿ååããéåæ¹çšåŒã®è§£ãç©åã®åœ¢ã§åŸããããç°¡åã®ãããåææå»ã§ v i = d x / d t > 0 {\displaystyle v_{i}=dx/dt>0} ãšããäžã®åŒã§å³èŸºãæ£ã®éã®éåãèãã(è² ã®å Žåãåæ§ã®èãæ¹ã§åãã)ã v = d x / d t {\displaystyle v=dx/dt} ãå
¥ãããš d x / d t = 2 m ( E i â U ( x ) ) {\displaystyle dx/dt={\sqrt {{\frac {2}{m}}(E_{i}-U(x))}}} å³èŸºã¯æ£ãªã®ã§xãštã®å¯Ÿå¿ã¯äžå¯Ÿäžãšãªããéã«tãxã®é¢æ°ãšã¿ãªããããããš d t / d x = 1 / ( 2 / m ) ( E i â U ( x ) ) {\displaystyle dt/dx=1/{\sqrt {(2/m)(E_{i}-U(x))}}} ãšãªãã®ã§ã䞡蟺ãxã§ç©åããŠåææ¡ä»¶(t=tiã§x=xi)ã䜿ããš
t = t i + m 2 â« x i x d x â² E i â U ( x â² ) {\displaystyle t=t_{i}+{\sqrt {\frac {m}{2}}}\int _{x_{i}}^{x}{\frac {dx'}{\sqrt {E_{i}-U(x')}}}}
ããã§äžè¬è§£ãåŸããããå F ( x ) {\displaystyle F(x)} ãäžããããã°ãããããUãæ±ããäžã®å³èŸºã®ç©åãå®è¡ããå¿
èŠãªãx=h(t)ãšãã圢ã«çŽãã°éåãåŸããããç©åãé¢åãããšããæåã«x=h(t)ã§ã¯ãªãt=g(x)ãšãã圢ã«ãªãã®ãããŸãã¡ãšæãããç¥ããªãããããã§ãå³å¯è§£ãå®ç©åãšããéãã圢ã§åŸãããããšã¯å€§ããªæå³ããã€ã
äžã®å³èŸºã®ç©åãåççã«ã§ããç¹ã«éèŠãªäŸã¯ãã°ãã«ã€ãªãããç©äœ( f ( x ) = â k x , U ( x ) = k x 2 / 2 {\displaystyle f(x)=-kx,U(x)=kx^{2}/2} ãããäžã§è©³ããæ±ã)ããŸã倪éœã®åšãã®ææã®éåãåŸã§è¿°ã¹ãè§éåéä¿ååŽã䜿ããš1次å
ã®åé¡ã«éå
ã§ãã倪éœããã®è·é¢rãštã®é¢ä¿ãäžãšåã圢ã®ç©åã§è¡šããã(q,kãå®æ°ãšã㊠U ( r ) = q r 2 â k r {\displaystyle U(r)={\frac {q}{r^{2}}}-{\frac {k}{r}}} ã第äžé
ãé å¿åã次ãéåãè¡šã)ããããéåžžã«å¹žããªããšã«ãç©åãåçé¢æ°ã§è¡šãããšãã§ããã
ãªããã«ãŒãããããã U ( x ) {\displaystyle U(x)} ã®é¢æ°åœ¢ãå°ãè€éã«ãªã£ãã ãã§ç©åã¯é£ãããªããããã§ãåç¯ã®å®æ§çãªè§£æ㯠U ( x ) {\displaystyle U(x)} ã®ã°ã©ããçšãã ãã§ã§ããããšã«æ³šæããŠã»ãããäŸãã°U(x)ãäžæ¬¡é¢æ°ã®ããã«å±±ãšè°·ãæã€ãããªå Žåã«ã¯éåãå±±ãè¶ããããããšãè°·ã«éã蟌ãããããŸãŸæ¯åããããéèŠãªãã€ã³ãã«ãªãããããã¯åææ¡ä»¶ã® E i {\displaystyle E_{i}} ãå±±ããé«ããã©ãããèŠãã°åããã®ã§ããããŸãå®æ§çãªæ§è³ªãã°ã©ãã§èª¿ã¹ãŠããç©åã«åãçµãããšã§ãåŒããŸãšããæ¹éãèŠããŠããã
äŸãšããŠã°ãã«ã€ãªããã質ç¹ã®éåãæ±ããããåã¯F(x)=-kxã§äžããããã®ã§ã
U ( x ) = k 2 x 2 {\displaystyle U(x)={\frac {k}{2}}x^{2}}
ãã®å Žåãšãã«ã®ãŒã¯0以äžã§ãã( E i = m v i 2 / 2 + k x i 2 / 2 ⥠0 {\displaystyle E_{i}=mv_{i}^{2}/2+kx_{i}^{2}/2\geq 0} )ãå³å¯è§£ã®å
¬åŒã«ä»£å
¥ãããš
t = t i + m 2 â« x i x d x â² E i â k 2 x â² 2 {\displaystyle t=t_{i}+{\sqrt {\frac {m}{2}}}\int _{x_{i}}^{x}{\frac {dx'}{\sqrt {E_{i}-{\frac {k}{2}}x'^{2}}}}}
ããšã¯æ°åŠã®åé¡ãšããŠç©åãèšç®ããã°ããã®ã§ã¯ããããèšç®ãç©ççãªèå¯ãå ããªããè¡ãããšã§ãããããã«ã§ããããŸãéåã®ã¹ã±ãŒã«ãç¹åŸŽã¥ããéãèãããå®æ§çãªè§£æããåããããã«ãéåã®ç¯å²ã¯ E i â k 2 x â² 2 ⥠0 {\displaystyle E_{i}-{\frac {k}{2}}x'^{2}\geq 0} ãæºããé åãå³ã¡ â 2 E i / k †x †2 E i / k {\displaystyle -{\sqrt {2E_{i}/k}}\leq x\leq {\sqrt {2E_{i}/k}}} ãã£ãŠ L := 2 E i / k {\displaystyle L:={\sqrt {2E_{i}/k}}} ãšãããšããã® L {\displaystyle L} ãéåã®(é·ãã®)ã¹ã±ãŒã«ã«ãªãã座æšxããããã®Lã®äœåã(äœå²ã)ããšè¡šãã®ããããããã§
X = x / L {\displaystyle X=x/L}
ãšãããŠå
¬åŒã«ä»£å
¥ãæŽçãããšãäžçªé¢åãªç©åã®éšåããããã«ãªãã被ç©åé¢æ°ããkã E i {\displaystyle E_{i}} ãªã©ã®ãã©ã¡ãŒã¿ãåãé€ããã®ã§ããã
t = t i + m 2 â« X i X L d X â² E i â k 2 ( 2 E i / k X â² ) 2 = t i + m 2 E i L â« X i X d X â² 1 â X â² 2 = t i + m 2 E i L ( sin â 1 X â sin â 1 X i ) {\displaystyle t=t_{i}+{\sqrt {\frac {m}{2}}}\int _{X_{i}}^{X}{\frac {LdX'}{\sqrt {E_{i}-{\frac {k}{2}}({\sqrt {2E_{i}/k}}X')^{2}}}}=t_{i}+{\sqrt {\frac {m}{2E_{i}}}}L\int _{X_{i}}^{X}{\frac {dX'}{\sqrt {1-X'^{2}}}}=t_{i}+{\sqrt {\frac {m}{2E_{i}}}}L(\sin ^{-1}X-\sin ^{-1}X_{i})}
åŒã®äžã«çŸãã m 2 E i L {\displaystyle {\sqrt {\frac {m}{2E_{i}}}}L} ãšããä¿æ°ã¯æéã®åäœãæã€ã®ã§ãæéã®ã¹ã±ãŒã«ã«ãªã£ãŠããã¯ããããã T 2 Ï {\displaystyle {\frac {T}{2\pi }}} ãšãã( 2 Ï {\displaystyle 2\pi } ãå
¥ããã®ã¯ãsinã®åšæã 2 Ï {\displaystyle 2\pi } ã§ããããšãçšãã§)ããŸã sin â 1 X i {\displaystyle \sin ^{-1}X_{i}} ã Ï i {\displaystyle \phi _{i}} ãšæžã:
T 2 Ï := m 2 E i L = m 2 E i 2 E i / k = m k , Ï i := sin â 1 X i {\displaystyle {\frac {T}{2\pi }}:={\sqrt {\frac {m}{2E_{i}}}}L={\sqrt {\frac {m}{2E_{i}}}}{\sqrt {2E_{i}/k}}={\sqrt {\frac {m}{k}}},\phi _{i}:=\sin ^{-1}X_{i}}
ãããš t = t i + T 2 Ï ( sin â 1 X â Ï i ) {\displaystyle t=t_{i}+{\frac {T}{2\pi }}(\sin ^{-1}X-\phi _{i})} ãåŸããããããX=ã®åœ¢ã«çŽããš
X = sin ( 2 Ï t â t i T + Ï i ) {\displaystyle X=\sin(2\pi {\frac {t-t_{i}}{T}}+\phi _{i})}
ãšããç°¡åãªåŒã«ãªããã€ãŸã質ç¹ã¯sinã®åœ¢ã®æ¯åãããã®ã§ãããããã«Xãxã«çŽããŠãŸãšãããš
x = L sin ( 2 Ï t â t i T + Ï i ) , T = 2 Ï m k , L := 2 E i k = m v i 2 + 2 k x i 2 k , Ï i := sin â 1 X i = sin â 1 x i L {\displaystyle x=L\sin(2\pi {\frac {t-t_{i}}{T}}+\phi _{i}),T=2\pi {\sqrt {\frac {m}{k}}},L:={\sqrt {\frac {2E_{i}}{k}}}={\sqrt {\frac {mv_{i}^{2}+2kx_{i}^{2}}{k}}},\phi _{i}:=\sin ^{-1}X_{i}=\sin ^{-1}{\frac {x_{i}}{L}}}
ãã®åŒã¯æ¯åçãªéåã®åºæ¬ã§ãããæ¯å¹
L {\displaystyle L} ãåšæ T {\displaystyle T} ãåæäœçž Ï i {\displaystyle \phi _{i}} ã®åæ¯åãšåŒã°ããã
ãªãåºç€ã«ããå
¬åŒã¯å
ã®ãã®(è€å·ãæã€)ã®+ã®æ¹ã®ãã®ã ããªã®ã§ãäžã®å°åºããåŸãããåŒã¯è«ççã«ã¯dx/dt>0ã®ç¯å²ã§ããä¿èšŒãããªãããããçµæçã«ã¯ãããããããšã«ãã®å¶çŽããšã£ã±ãã£ãé åã§ã解ã«ãªã£ãŠããããã®ããšãææ©ã確ãããã«ã¯äžã®è§£ãéåæ¹çšåŒ d 2 x / d t 2 = â k x {\displaystyle d^{2}x/dt^{2}=-kx} ã«ä»£å
¥ããä»»æã®t㧠æ¹çšåŒãæãç«ã£ãŠããããšã確èªããã°ããããŸãåææ¡ä»¶ã«çŽæ¥çµã³ä»ããã«ã¯ä»¥äžã®ããã«å æ³å®çã䜿ãsinãå±éããã»ãããããããã
x = L cos Ï i sin ( 2 Ï t â t i T ) + L sin Ï i cos ( 2 Ï t â t i T ) , v = d x d t = 2 Ï L T cos Ï i cos ( 2 Ï t â t i T i ) â 2 Ï L T sin Ï i sin ( 2 Ï t â t i T i ) {\displaystyle x=L\cos \phi _{i}\sin(2\pi {\frac {t-t_{i}}{T}})+L\sin \phi _{i}\cos(2\pi {\frac {t-t_{i}}{T}}),v={\frac {dx}{dt}}=2\pi {\frac {L}{T}}\cos \phi _{i}\cos(2\pi {\frac {t-t_{i}}{T}}i)-2\pi {\frac {L}{T}}\sin \phi _{i}\sin(2\pi {\frac {t-t_{i}}{T}}i)}
ãã㧠t = t i {\displaystyle t=t_{i}} ã§ã®åææ¡ä»¶ x = x i , v = v i {\displaystyle x=x_{i},v=v_{i}} ã䜿ã£ãŠäžã«åºãŠãã L , Ï i {\displaystyle L,\phi _{i}} ã®çµåããè¡šããäžã®åŒã« t = t i {\displaystyle t=t_{i}} ã代å
¥ãããš
x i = L sin Ï i , v i = 2 Ï L T cos Ï i {\displaystyle x_{i}=L\sin \phi _{i},v_{i}=2\pi {\frac {L}{T}}\cos \phi _{i}}
ããããã L sin Ï i = x i , L cos Ï i = v i T 2 Ï {\displaystyle L\sin \phi _{i}=x_{i},L\cos \phi _{i}={\frac {v_{i}T}{2\pi }}} ãšãªãã®ã§ããããxã®åŒã«å
¥ãããš
x = v i T 2 Ï sin ( 2 Ï t â t i T ) + x i cos ( 2 Ï t â t i T ) {\displaystyle x={\frac {v_{i}T}{2\pi }}\sin(2\pi {\frac {t-t_{i}}{T}})+x_{i}\cos(2\pi {\frac {t-t_{i}}{T}})}
ããããæå®ããåæå€ãã決ãŸãéåã®åŒãšãªãããããŸã§ã§ã°ãã«ã€ãªããã質ç¹ã®éåã¯å®å
šã«è§£ãããããšèšã£ãŠããã
éåéã
ã§å®çŸ©ãããããã§mã¯ç©äœã®è³ªéã
ã¯ç©äœã®é床ã§ããã ãã®ãšãéåæ¹çšåŒãçšãããšãç©äœã«åãåããŠããªããšãã
ãšãªããç©äœã®æã€éåéããæéçã«ä¿åããããšãåããããããéåéä¿ååãšåŒã¶ã
éåéãä¿åããŠããç³»ã§ã¯ç³»ã«ã€ããŠç©äœã®é床ãå€ããã«äœçœ®ã ãããããããšãç©äœã®éåãå€åããªãããšãç¥ãããŠãããäŸãã°ãå
šãåãåããŠããªãç³»ã§ã¯äœçœ®ãå€åããããšããŠãç©äœã®éåã¯å€åãããç©äœã¯éæ¢ãç¶ãããããšããšéåããŠããæ¹åã«çéçŽç·éåãç¶ããããŸãããã1æ¹åã«ã ãäžæ§ãªåãåããŠããç³»ã§ã¯åãåããŠããæ¹åã«ã¯ç©äœã®éåéã¯ä¿åããªããããã以å€ã®æ¹åã«ã€ããŠã¯ç©äœã®éåæ¹çšåŒã¯ç©äœã«äœã®åãåããŠããªããšããšåäžã§ããã®ã§ããã¡ãã®æ¹åã®éåéã¯ä¿åãããããã¯ãã1æ¹åã«åãåããŠããæã«ããã以å€ã®æ¹åã®ç§»åã«å¯ŸããŠã¯ãã®ç©äœã®éåã¯å€åããªãããšãšå¯Ÿå¿ããŠãããç©äœãããæ¹åã«çŽç·çã«ç§»åããããšã䞊é²ãšåŒã³ã䞊é²ã«ãã£ãŠç©äœã®éåãå€åããªãããšãç³»ã®äžŠé²å¯Ÿç§°æ§ãšåŒã¶ãåŸã«è§£æååŠã§ããŒã¿ãŒã®å®çãšåŒã°ããå®çãåŠã¶ãããã®å®çã¯ç³»ã®å¯Ÿç§°æ§ã¯å¿
ããã®å¯Ÿç§°æ§ã«å¯Ÿå¿ããä¿åéãããããšã䞻匵ãããå®éç³»ã®äžŠé²å¯Ÿç§°æ§ã«å¯Ÿå¿ããä¿åéããŸãããéåéã«å¯Ÿå¿ããŠããããšãåŸã«ç€ºãããã
ãŸããç³»ã®éåéã¯ç©äœãæã€éåéã ãã§ãªãé»ç£å Žãªã©ãæã€éåéãååšãããç³»å
šäœã®éåéä¿åãèãããšãã«ã¯ç©äœã®å Žã®äž¡æ¹ãæã€éåéã®ä¿åãèããªããŠã¯ãªããªããããã¯ãé»ç£æ°åŠãé»ç£æ°åŠIIã§å°å
¥ãããã
è€æ°ã®ç©äœã«å¯ŸããŠåã
ã®éã«å
å(ããããã®ç©äœã®éã«åãåã®ããšã)ã ããååšããå€çããåãåããŠããªããšãç©äœã®éãŸããæã€å
šéåéã¯ä¿åãããå
šéåéãšã¯ç©äœç³»ã®ããããã®ç²åãæã€éåéãå
šãŠè¶³ãåããããã®ã§ãããããã¯ãããããã®ç©äœã®éåéã«ã€ããŠéåæ¹çšåŒãã
ãæãç«ã€äžã§ã( f i {\displaystyle f_{i}} ã¯ããããã®ç©äœã«ãããå
åãæããiã¯intrinsicã®ç¥ã) ããããã®ç©äœã«ã€ããŠã®éåæ¹çšåŒãå
šãŠè¶³ãåããããšã 巊蟺ã«ã€ããŠã¯
(Pã¯å
šéåé)ãæãç«ã¡ã å³èŸºã«ã€ããŠã¯ããããã®åã¯0ãšãªãã ããã¯äœçšåäœçšã®æ³åãããç©äœã«ãããåã¯ãããã倧ãããåãã§å察æ¹åããããŠãã察å¿ããåãæã£ãŠãããç©äœç³»å
šäœã«ã€ããŠè¶³ãåããããšãã«ããããã®å¯äžãæã¡æ¶ããããçµæãšããŠåã0ã«çãããªãããã§ããã
ãã質ç¹ã«å¯Ÿã㊠ãã1ç¹ãåãããã®äžç¹ããã®ãã¯ãã«ã r â {\displaystyle {\vec {r}}} ãšãã ãã®è³ªç¹ãæã€éåéã p â {\displaystyle {\vec {p}}} ãšãããšãã L â = r â à p â {\displaystyle {\vec {L}}={\vec {r}}\times {\vec {p}}} ãè§éåéãšåŒã¶ã
ç©äœãäžå¿å以å€ã®åãåããªããšããè§éåéã¯æéçã«ä¿åããã
(å°åº) â â t L â = â â t r â à p â + r â à â â t p â {\displaystyle {\frac {\partial {}}{\partial t}}{\vec {L}}={\frac {\partial {}}{\partial t}}{\vec {r}}\times {\vec {p}}+{\vec {r}}\times {\frac {\partial {}}{\partial t}}{\vec {p}}} = 1 m p â à p â + r â à f ( r ) r â {\displaystyle ={\frac {1}{m}}{\vec {p}}\times {\vec {p}}+{\vec {r}}\times f(r){\vec {r}}} = 0 {\displaystyle =0} ( a â à a â = 0 {\displaystyle {\vec {a}}\times {\vec {a}}=0} ãçšããã)
ãã軞ãäžå¿ãšããè§éåéãä¿åããç³»ã§ã¯ãäžè¬ã«ãã®è»žã«å¯Ÿããå転ã«é¢ããŠç³»ã®ç¶æ
ã¯å€åããªããäŸãã°ã倪éœã®ãŸããã®å°çã®éåãå®å
šãªåéåã§ãã£ããšãããšãããã®éåã¯å°çãå«ãŸããå¹³é¢ã«çŽäº€ããŠå€ªéœãééãã軞ãäžå¿ãšããå転ã«ã€ããŠäžå€ã§ãããããã¯ã倪éœããå°çã«ãããåŒåããå°çãšå€ªéœã®è·é¢ã®ã¿ã«ãã£ãŠãããäžã§è¿°ã¹ããããªè»žãäžå¿ãšããå転ã§ã¯å°çãšå€ªéœã®è·é¢ã¯å€åããªãããã§ããããã®ããšã¯ç³»ã®äžã«å転察称æ§ãããããšã«å¯Ÿå¿ããŠããã解æååŠã§è¿°ã¹ãããããŒã¿ãŒã®å®çãçšãããšããã®ç³»ã¯å転察称æ§ã«å¯Ÿå¿ããä¿åéãæã€ããšãåãããå®éã«ã¯ãã®ä¿åéãæ£ã«è§éåéã«å¯Ÿå¿ããŠããã®ã§ããã
å¹³é¢äžãååŸrã®åäžãè§é床 Ï {\displaystyle \omega } ã§éåããŠããç©äœããããšããã ãã®ãšãããã®ç©äœãåã®äžå¿ã«å¯ŸããŠæã€è§éåéãå®çŸ©ã«ãããã£ãŠæ±ããã ãã ããç©äœã®è³ªéã¯mã§ãããšããã
ãã®ãšãç©äœã®åº§æšã¯æéã®åç¹ãé©åœã«éžã¶ããšã§ã
ãšãããããã ããç©äœãéåããå¹³é¢ãxyå¹³é¢ãšããããã®ãšããç©äœã® é床ã¯
ã§äžããããããã£ãŠãç©äœã®æã€è§éåé L {\displaystyle L} ã¯
ãšãªãããããã¯ãè§é床ã
ã®é¢ä¿ãçšããŠéãã§æžãçŽããš
ãåŸããããããã¯ç©äœã®äœçœ®ãšç©äœã®é床ãçŽäº€ããŠããããšãããã®2ã€ã®ãã¯ãã«ã®å€§ããã¯2ã€ã®ãã¯ãã«ã®çµ¶å¯Ÿå€ã«çãããªãã®ã§ããã ãŸããç©äœã®äœçœ®ãšé床ãå«ããã¯ãã«ã¯xyå¹³é¢ã«å«ãŸããã®ã§ããã2ã€ã«çŽäº€ãããã¯ãã«ã§ããè§éåéãã¯ãã«ã¯å¿
ãxyå¹³é¢ã«çŽäº€ããããã®ããããã®ãã¯ãã«ã¯zæ¹åãåãã®ã§ããã
以äžã¯å®¹æã«å°ãããã以äžã§ã¯ãã®æ°åŠçæŒç®(æ°åŠIIãŸãã¯æ°åŠIIIã®åæ©çšåºŠ)ã詳ããè¿°ã¹ãã
æŸç©éåã¯çé床éåãšçå é床éåãåæãããã®ãšèããããšãã§ããã
åé床 v 0 {\displaystyle v_{0}}
åé床ã®æ°Žå¹³æå v x = v 0 cos Ξ {\displaystyle v_{x}=v_{0}\cos \theta }
åé床ã®éçŽæå v y = v 0 sin Ξ {\displaystyle v_{y}=v_{0}\sin \theta }
æé«ç¹ã«å°éãããŸã§ã®æé T = v sin Ξ g {\displaystyle T={\frac {v\sin \theta }{g}}}
æé«ç¹ã®é«ã
以äžãäžã蚌æããã
ã®åŒã§ã (äžã§ãã m a r = f r {\displaystyle ma_{r}=f_{r}} ã«å¯Ÿå¿ããã)
ãšãããšã r Ì {\displaystyle {\ddot {r}}} ãããŸãã§
ã®åãåããŠéåããŠããããã«èŠããããšãåãã äžåŒã®ç¬¬1é
ãé å¿åãšåŒã¶ãé å¿åã«ã€ããŠã¯çžå¯Ÿéåã® ãšããã§ãã詳ããæ±ãããŸãã第2é
ã¯éåãè¡šããåã§ããã
ããã§ãé¢ç©é床ãhãšãããšã
ã®é¢ä¿ããäžã®åã¯
ãšãªãããã®åã¯rã ããå€æ°ãšããŠã¿ããšãã«ãã®ç©äœã«ãããå®å¹çãªåãš èããããšãåºæ¥ããä»®ã«ãã®åãããã³ã·ã£ã«ãçšããŠè§£æãããšãããš ãã®ç©äœã®éåãã©ã®ãããªç¯å²ã§è¡ãªãããããç¥ãããšãåºæ¥ãã äŸãã°ãåæ¯åã«ãããŠã¯ããã³ã·ã£ã«ã¯æ¯å¹
ã倧ãããªããšããç¡é㫠倧ãããªãã®ã§éåã¯ç¡éã«å€§ãããªãããšã¯åºæ¥ãªãããã®æ§ãªææ³ãçšã㊠ãã®éåã解æããã®ã§ããããã1次å
ã®éåã§ã¯ããåf(x)ãäžãããããšã ãã®äœçœ®ãšãã«ã®ãŒU(x)ã¯
ã§äžãããããããã§ã x 0 {\displaystyle x_{0}} ã¯èªç±ã«éžãã§ããå®æ°ã§ããããå®éã«ã¯å€ãã®å Žåã« æ
£çšçãªå€ã決ãŸã£ãŠããéã§ãããäœçœ®ãšãã«ã®ãŒã®äŸãšããŠãxæ¹åã«äžæ§ãªå-fã åãããšãã®ãã®åã«å¯Ÿããäœçœ®ãšãã«ã®ãŒãèšç®ãããå®éã«åŒã«ä»£å
¥ãããš
ãäžããããããã ãã x 0 = 0 {\displaystyle x_{0}=0} ãšãããããã®äœçœ®ãšãã«ã®ãŒã¯è³ªémãæ〠ç©äœã«äžæ§ãªéåãããããšãã®äœçœ®ãšãã«ã®ãŒã«å¯Ÿå¿ããã
ããã§ã
ã®å Žåã«ã€ããŠãäœçœ®ãšãã«ã®ãŒãèšç®ããããšãåºæ¥ãã å®éã«èšç®ãããš
ãšãªãã
ãš
ã®åã§æžãããé¢æ°ãšãªãããã®é¢æ°ã¯å
žåçã«å³ã®ãããªåœ¢ãããŠããã
ããã§æšªè»žã¯åéåã®äžå¿ããã®è·é¢ã§ããã瞊軞ã¯ç©äœã®äœçœ®ãšãã«ã®ãŒã§ããã ããç©äœã¯éåã®éåžžã«çãããšãã«ã®ãŒãæã£ãŠããã®ã§ããã®å³åœ¢äžã§ã¯ åžžã«çãããšãã«ã®ãŒãæã£ãŠå·Šå³ã«ç§»åããããããŠãããã³ã·ã£ã«ãšãã«ã®ãŒã® å³åœ¢ã«è¡çªãããšãã以äžã«é²ãããšãåºæ¥ãªããªãã¯ãããããããã¯ã ãããšãã«ã®ãŒãæã£ãç©äœã¯èªèº«ãæã£ãŠãããšãã«ã®ãŒãããé«ãäœçœ®ãšãã«ã®ãŒ ããã€ç¹ã«ã¯å
¥ã蟌ããªãããšã«ãã£ãŠãããããã§ãäžã®å³åœ¢ã®äžã§ ãšãã«ã®ãŒçã«èš±ãããéåããšãã«ã®ãŒãäœãé ã«èŠãŠããã ãã ããé¢ç©é床ã0ã«çãããšãã«ã¯äžã§æžããå³ãšã¯ç°ãªã£ãå³åœ¢ã 解æã®å¯Ÿè±¡ãšãªãã
ãã®å Žåã解æã¯éåžžã«åçŽã§ãããç©äœã¯å¿
ãäžå¿ã®ç©äœã®éåã«åŒãã€ããã㊠æçµçã«ã¯äžå¿ã®ç©äœãšè¡çªããã
å
ã®å³åœ¢ã«æ»ããšã å³åœ¢äžã§äœçœ®ãšãã«ã®ãŒãæãäœãç¹ã¯çªªã¿ç¶ã«ãªã£ãŠããããã®ç¹ã®é«ãããã æŽã«äœãå
šãšãã«ã®ãŒãæã£ãç©äœã¯ååšãåŸãªããããã¯å
šãšãã«ã®ãŒã éåãšãã«ã®ãŒãšäœçœ®ãšãã«ã®ãŒã®åã§ããéåãšãã«ã®ãŒãæ£ã§ããããšãã å
šãšãã«ã®ãŒã¯å¿
ãäžããããç¹ã§ã®äœçœ®ãšãã«ã®ãŒããã倧ãããªã£ãŠããªããŠã¯ ãªããªãããã§ãããæãäœã窪ã¿ã«ãããšãã«ã®ãŒãšçãããšãã«ã®ãŒã æã£ãŠããç©äœã¯äœçœ®ãšãã«ã®ãŒã«æãŸããŠå³åœ¢äžã§åãããšãåºæ¥ãªãããã åžžã«çããååŸæ¹åæåãæã£ãŠéåããããã®éåã¯ãŸãã«åéåã«å¯Ÿå¿ããŠããã äžæ¹ã窪ã¿ãšãšãã«ã®ãŒ0ã®ç·ã®éã«äœçœ®ãããšãã«ã®ãŒãæã€ç©äœã¯ååŸæ¹åã® æåãå€åãããªããããäžå¿ã®ç©äœããã¯ãªããããšç¡ãããã®ãŸããã äœããã®ä»æ¹ã§å転ããããšãäºæ³ããããåŸã«åããã®ã ããããã¯ãŸãã« äžå¿ã®ãŸãããæ¥åéåããããšã«å¯Ÿå¿ãããããã¯ãå°çãå«ãå
šãŠã®ææã 倪éœã®ãŸãããéåããè»éãè¡šããæ
åµã§ãããææã®æ§è³ªãæ±ãäžã§ éåžžã«éèŠãªéåã§ããã æŽã«ããšãã«ã®ãŒ0ããã倧ããå
šãšãã«ã®ãŒãæã€ç©äœã¯ãrã0ã«è¿ã¥ãæ¹åã§ã¯ äœçœ®ãšãã«ã®ãŒãç¡é倧ãŸã§ååšãããããr=0ãšãªãããšã¯åºæ¥ããé©åœãª äœçœ®ã§ã¯ããããããããã
ãšãªãæ¹åã«ã¯äœçœ®ãšãã«ã®ãŒã®å£ãååšããªããããã®ç©äœã¯ç¡éé ãŸã§ é£ãã§ãã£ãŠããŸãããšãåããããããåŸã«åããããšã ããã®ç©äœã¯ åæ²ç·è»éãæãããšãç¥ãããŠãããäŸãã°ã倪éœç³»å€ãã倩äœãé£æ¥ããŠæ¥ãŠ 倪éœã®éåã§è»éãæ²ããããŠãã®ãŸãŸé£ã³å»ã£ãŠè¡ããšãã«ã¯ãã®ç©äœã® è»éã¯åæ²ç·ãæãã®ã§ããããŸãããšãã«ã®ãŒ0ã®ãšãã§ã
ãšãªãæ¹åã§ã®äœçœ®ãšãã«ã®ãŒã®å£ãååšããªããããç¡éé ãŸã§é£ãã§è¡ãããšã ãããããã®è»éã¯æŸç©ç·ã«å¯Ÿå¿ããããšãåŸã«åããã
äŸãšããŠãr = a = const. ãšããæ
åµã«ã€ããŠèããŠã¿ãã ãã®ãšãã é¢ç©é床ãäžå®ã§ããããšãã
ãåãã ãã®ãšã åŒ
ã解ããšã
ãšãªããåéåã®æ¡ä»¶ãæºãã解ãååšããããšãåãã ãŸããäžã®åŒã¯ãã©ã®ãããªaã«å¯ŸããŠãããäžå®ã® Ï {\displaystyle \omega } ã察å¿ããããšã瀺ããŠããã ããã¯æ£ã«äžã§ãããåéåã®å Žåã«å¯Ÿå¿ããŠããã
以äžãåæ¯åã®äŸã瀺ãã
åã«ã¯æ§ã
ãªçš®é¡ãååšããããé éå(å Žã®å)ãšçŽæ¥åãåã®2ã€ã«å€§ããåããããã
ç¹ã«åäœã«å¯ŸããŠè§éåéãèãããšããæ
£æ§ã¢ãŒã¡ã³ããšããéãå®çŸ©ãããšéœåããããæ
£æ§ã¢ãŒã¡ã³ãã¯æ°åŠçã«ã¯2éã®ãã³ãœã«ã§ããããã¯ãã«ã«ããã£ããšãã«ãã¯ãã«ãåŸããšããåããæã€ãç¹ã«ãã®éã«ã€ããŠã¯ L â = I â Ï â {\displaystyle {\vec {L}}={\vec {I}}{\vec {\omega }}} ãŸãã¯ã L i = I i j Ï j {\displaystyle L_{i}=I_{ij}\omega _{j}} ãæãç«ã€ã ããã§ãLã¯è§éåéãIã¯æ
£æ§ã¢ãŒã¡ã³ãã Ï {\displaystyle \omega } ã¯ãè§é床ã§ããã
åäœã質ç¹ãå¯ã«çµåãããã®ãšèãããšã è§éåéã¯ããããã®è³ªç¹ã®åã§äžããããã ããå転軞ãåã£ãŠãã®åãã®è§éåéãèãããšã L = â m i r i 2 Ï {\displaystyle L=\sum m_{i}r_{i}^{2}\omega } ( r i {\displaystyle r_{i}} ã¯è³ªç¹iã®å転軞ããã®è·é¢ã m i {\displaystyle m_{i}} ã¯ã質ç¹iã®è³ªéã) (å
šãŠã®è³ªç¹ã¯å¯ã«çµåããŠããã®ã§ãããããåäžã®è§é床ãæã€ããšã«æ³šæã (å°åº?)) ç¹ã«ãx軞ãy軞ãz軞æ¹åã«ã€ããŠèãããšãã®å€ã¯ I k l = â i m i ( x i k x i l â ÎŽ k l r i 2 ) {\displaystyle I_{kl}=\sum _{i}m_{i}(x_{ik}x_{il}-\delta _{kl}r_{i}^{2})} ãåŸãããã ããã¯ãã³ãœã«ã®åœ¢ãããŠããã®ã§ããããæ£ããæ
£æ§ã¢ãŒã¡ã³ãã®è¡šåŒã§ ããããšãåãã
èšç®äŸ1
ããå¹³é¢äžã®å(é¢å¯åºŠ Ï {\displaystyle \sigma } ,ååŸa)ã«ã€ããŠæ
£æ§ã¢ãŒã¡ã³ããèšç®ããã åç¹ãåã®äžå¿ãz軞ãåã«åçŽãªæ¹åã«åããš I z = â« S Ï ( x 2 + y 2 ) d x d y {\displaystyle I_{z}=\int _{S}\sigma (x^{2}+y^{2})dxdy}
( â« S {\displaystyle \int _{S}} ã¯åã®é¢ç©å
šäœã§ã®é¢ç©åãè¡šããã ) = Ï â« 0 a r d r â« 0 2 Ï d Ï r 2 {\displaystyle =\sigma \int _{0}^{a}rdr\int _{0}^{2\pi }d\phi r^{2}}
(z軞ã®æ¹åãä¿ã£ãŠåæ±åº§æšãåãã) = Ï 2 Ï â« 0 a r 3 d r {\displaystyle =\sigma 2\pi \int _{0}^{a}r^{3}dr} = Ï Ï 2 a 4 {\displaystyle =\sigma {\frac {\pi }{2}}a^{4}} ãšãªãã ( Ï {\displaystyle \sigma } ã¯ã Ï a 2 {\displaystyle \sigma a^{2}} ã§è³ªéãšãªãããšããããã®çµæãæ£ãã次å
ãæã£ãŠããããšããããã)
ããã«ã y軞æ¹åã®å転ã«å¯Ÿããæ
£æ§ã¢ãŒã¡ã³ããèšç®ããã ãã®ãšãã«ã¯ã I y = 4 â« 0 a x 2 a 2 â x 2 Ï d x {\displaystyle I_{y}=4\int _{0}^{a}x^{2}{\sqrt {a^{2}-x^{2}}}\sigma dx} (1/4 åã«ã€ããŠèšç®ããŠããã4åããã)
= 4 a 4 Ï â« 0 1 u 2 1 â u 2 d u {\displaystyle =4a^{4}\sigma \int _{0}^{1}u^{2}{\sqrt {1-u^{2}}}du} (u = x/a ãšçœ®ãæãããç©åå
ã®æ°å€ã¯ç¡æ¬¡å
ã§ããããšã«æ³šæã)
= 4 a 4 Ï â« 0 Ï / 2 sin 2 t cos t cos t d t {\displaystyle =4a^{4}\sigma \int _{0}^{\pi /2}\sin ^{2}t\cos t\cos tdt} ( u = sin t {\displaystyle u=\sin t} ãšçœ®ãæããã )
ãã®èšç®ãè¡ãªããšã ç©åã®å€ã Ï / 16 {\displaystyle \pi /16} ã§äžããããããšãåãã ãã£ãŠ I y = Ï 4 Ï a 4 {\displaystyle I_{y}={\frac {\pi }{4}}\sigma a^{4}} ãšãªãã ããã§å転ã«å¯Ÿãã察称æ§ãã I x = I y = Ï 4 Ï a 4 {\displaystyle I_{x}=I_{y}={\frac {\pi }{4}}\sigma a^{4}} ãšãªãããšã«æ³šæã ããã§ã I z = I x + I y {\displaystyle I_{z}=I_{x}+I_{y}} ãšãªã£ãŠãããããã®çåŒã¯åã¿ããªãåäœã«å¯Ÿã㊠äžè¬ã«æãç«ã€ã
(å°åº)
I z = â i m i ( x i 2 + y i 2 ) {\displaystyle I_{z}=\sum _{i}m_{i}(x_{i}^{2}+y_{i}^{2})} , I x = â i m i ( y i 2 + z i 2 ) {\displaystyle I_{x}=\sum _{i}m_{i}(y_{i}^{2}+z_{i}^{2})} , I y = â i m i ( z i 2 + x i 2 ) {\displaystyle I_{y}=\sum _{i}m_{i}(z_{i}^{2}+x_{i}^{2})} ã§ããããåã¿ããªãç©äœã«å¯ŸããŠåã¿ããªãé¢ãšåçŽãªæ¹åã« z軞ãåããšã I x {\displaystyle I_{x}} , I y {\displaystyle I_{y}} ã«ã€ã㊠I x = â i m i y i 2 {\displaystyle I_{x}=\sum _{i}m_{i}y_{i}^{2}} , I y = â i m i x i 2 {\displaystyle I_{y}=\sum _{i}m_{i}x_{i}^{2}} ãæãç«ã€ã(åã¿ããªãã®ã§ z i = 0 {\displaystyle z_{i}=0} ãšãªãã)ãã®ããšãã I z = I x + I y {\displaystyle I_{z}=I_{x}+I_{y}} ãåŸãããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "å€å
žååŠ/ã€ã³ãããã¯ã·ã§ã³ (2023-11-05)",
"title": "ã€ã³ãããã¯ã·ã§ã³"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "å€å
žç©çåŠã§æ±ããããããªç©äœãæã€æ§è³ªãšããŠã¯ã質éã»é»è·ã»åœ¢ç¶ãããããã®ãã¡é»è·ã«ã€ããŠã¯é»ç£æ°åŠã§æ±ããæ¬é
ç®ã®å€å
žååŠã§ã¯è³ªéãšåœ¢ç¶ã®ã¿ãæ±ãããã®ãããªãååŠçãªç©äœã®ãã¡è³ªéã®ã¿ãæã¡ã倧ãããæããªãç©äœã質ç¹ãšãããå®éã®ç©äœã¯å€§ãããæã€ããéåã®å€§ããã«å¯ŸããŠç©äœã®å€§ãããç¡èŠã§ããã»ã©å°ãããã°è³ªç¹ãšèŠãªããã倧ãããæã€ç©äœã§ããã°åãå ãããšå€åœ¢ããããããªã©ããŠãç©äœã®éåã«å
šãŠã®åã䜿ãããªãäºãå€ãããããã®ãããªèŠå ãæé€ããŠäœçœ®ã®å€åã«ããéåã®ã¿ãèããããã«çæ³åãããç©äœã§ããããã¡ããã質ç¹ãã®ãããªç©äœã¯çŸå®ã«ã¯ãªããããããåçŽåããã¢ãã«ã«ã€ããŠãŸãèããããšã¯ååŠã®æ¬è³ªã®ç解ã«åœ¹ç«ã€ã",
"title": "ç©äœ"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "è€æ°ã®è³ªç¹ã®éãŸãã質ç¹ç³»ãšããã質ç¹ç³»ã®å
ã質ç¹å士ã®çžå¯Ÿçãªäœçœ®é¢ä¿ãåãå ããŠãå€ããã¬ç©äœãåäœãšãããå®éã®ç©äœã¯åãå ãããšå€å°ãªããšãå€åœ¢ããããåãå ããŠãå€åœ¢ãç¡èŠã§ããã»ã©ç¡¬ããã°åäœãšèŠãªããŠããã",
"title": "ç©äœ"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "倧ãããæã¡ãåãå ãããšå€åœ¢ããããåãå ããã®ãæ¢ãããšå
ã®ç¶æ
ã«æ»ãç©äœã匟æ§äœãšããã",
"title": "ç©äœ"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "æ°äœã液äœã®ããã«æ±ºãŸã£ã圢ãæãããæµããç©äœãæµäœãšãããæµäœã«ã€ããŠã¯å€å
žååŠã§ã¯ãªãæµäœååŠã§æ±ãã",
"title": "ç©äœ"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "æ§ã
ãªéãè¡šçŸããããã«ãæ°åŠã§ã¯ãã®éãèšå·ãçšããŠè¡šãã以äžã«ä»£è¡šçãªéãšãã®èšå·ã®äŸã以äžã«æããããããã¯åãªãäŸã§ãããæ¬æžã«éããå
šãŠã®éããã®è¡šã«åŸã£ãŠæžãè¡šãããŠããããã§ã¯ãªãã t {\\displaystyle t} ã m {\\displaystyle m} ã®ãããªèšå·ãçšããŠéãè¡šçŸããã®ã¯åé·ãªè¡šçŸãçããŸãšããç®çã§è¡ãããã",
"title": "èšå·"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ç©çé (physical quantity) ãšã¯ãçŽæ¥çãªããéæ¥çãªæž¬å®ãéããŠåççã«æ±ºå®å¯èœãããããªç³» (system) ã®ç¹åŸŽéã§ãããååŠã«ãããç³»ãšã¯ãæãäžè¬çã«ã¯éåããç©äœ(ã®éãŸã)ãšç©äœãéåãã空éã®ããšã§ãããç³»ãç¹åŸŽã¥ããç©çéã¯ç©äœãç©äœã®éå£ã«ä»éããéã§ãã£ããã空éã«ä»éãããã®ã§ãã£ããããããã¯ç©äœãšç©ºéã®é¢ä¿æ§ãæã瀺ããã®ã§ãã£ããæ§ã
ã§ãããæãåºæ¬çãªç©çéãšããŠã¯ãããææšãšãªãç©äœãšç©ºéäžã®äžç¹ãçµã¶è·é¢ãæããããã",
"title": "ç©çé"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ç©äœãéåããå Žåããã®ç©äœãæãè»è·¡ãšãã®æã
ã®æå»ãçµã³ã€ããŠèããããšãã§ãããç©äœã®éåã«å¯Ÿããæå»ãšããŠã©ã®ãããªãã®ãéžã¶ãã¯å
šãæããã§ã¯ãªãããå·®ãåœãã£ãŠããåçŽãªéåãåºæºã«ããããšã«ãã£ãŠæå»ãå®ãããããšããããšãèªããããåçŽãªéåãã¯ããšãã°å€ªéœãæãæ²ãåšæãæã®æºã¡æ¬ ãã ã£ãããå£ç¯ã®ç§»ãå€ãããããããã¯æèšã®ç§éã®åãã ã£ããæ§ã
ã§ããããã®ãããªæå»ãç¥ãæéã枬ãããã®è£
眮ãªããä»çµã¿ã¯ãå°ããæèšããšåŒã°ãããæã
ãæèšãèŠãŠæå»ãç¥ãããšã«ã€ããŠã¯å·®ãåœãã£ãŠäœã®å¶çŽãäžããããªããåŸã£ãŠãçæ³çãªæèšãšããŠä»»æã®é£ç¶çãªæå»ãæ£ç¢ºã«ç€ºããã®ãèããããšãã§ããããã®ãããªä»®æ³çãªæèšã¯å¯äžã€ã«æ±ºãŸã£ãŠããããã§ã¯ãªãæéã®æž¬ãæ¹ã«ãã£ãŠç¡æ°ã®æèšãååšããããããããã®æèšãæãæå»ã«ã€ããŠã®å¯Ÿå¿é¢ä¿ãã¯ã£ãããšããŠãããªããã®å
ã®ã©ããäžã€ã䜿ãã°ããããšã«ãªããå®éã«ã¯ãçŸå®ã«ååšããæèšãšåã枬ãæ¹ã®ãã®ãéžã¶ããšã«ãªãã ããã ãã®ãããªçæ³çãªæèšã«ãã£ãŠç¹åŸŽã¥ããããæéãã®ãã®ã¯ãåã«ç©äœã®éåã幟äœåŠçãªèå°ã«ç«ãããããã®éå
·ç«ãŠä»¥äžã®æå³ãæããªãã",
"title": "ç©çé"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "æèšã«ãã£ãŠæéã枬ãããšãã§ããã°ãåæå»ã«ãããç©äœã®äœçœ®ããç©äœã®é床ãå®ããããšãã§ãããé床ã¯ãåç¯ã§çŽ¹ä»ããããã«ã2 ã€ã®æå»ã«ãããäœçœ®ã®å€åéããã®éã«çµéããæéã§å²ã£ããã®ãšããŠå°å
¥ããããç©äœã®é床 v ( t ) {\\displaystyle v(t)} ã¯ç©äœã®äœçœ® x ( t ) {\\displaystyle x(t)} ãæå» t {\\displaystyle t} ã«ã€ããŠåŸ®åãããã®ãšããŠå®çŸ©ããããç©äœã®äœçœ® x ( t ) {\\displaystyle x(t)} ããã³é床 v ( t ) {\\displaystyle v(t)} ã®å
šäœåã¯æå» t {\\displaystyle t} ã®é¢æ°ãšããŠå®çŸ©ãããã",
"title": "ç©çé"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "ãã®å®çŸ©ã¯ç©äœã®äœçœ®ããã³é床ããã¯ãã«ã§ãã£ãŠãå€ãããªãããã¯ãã«ã倪åã§è¡šãã°æ¬¡ã®ããã«ãªãã",
"title": "ç©çé"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "åæ§ã«ããŠãé床 v ( t ) {\\displaystyle {\\boldsymbol {v}}(t)} ã®å€åã®å²åãšããŠå é床 a ( t ) {\\displaystyle {\\boldsymbol {a}}(t)} ãã",
"title": "ç©çé"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "å é床 a ( t ) {\\displaystyle {\\boldsymbol {a}}(t)} ã®å€åã®å²åãšããŠèºåºŠ (jerk)",
"title": "ç©çé"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "ãå®çŸ©ã§ãããé«éã®æé埮åã«ãã£ãŠå®çŸ©ãããéãæšå®ããããã«ã¯ãçŽæ¥çã«ã¯äœçœ®ãšæå»ã®æž¬å®ãæ°å€ãè¡ãå¿
èŠããããããšãã°é床ã枬å®ããããã«ã¯ãçŽæ¥çã«ã¯ 2 ã€ã®äœçœ®ãšæå»ã®çµãå®ããããšãå¿
èŠãšãªããåæ§ã«å é床ã枬ãããã«ã¯ 2 ã€ã®æå»ã«ãããé床ãç¥ãå¿
èŠããããããäœçœ®ãšæå»ã®çµã 3 ç¹æž¬å®ããªããã°ãªããªãã",
"title": "ç©çé"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "ååŠã«ãããŠã©ã®çšåºŠãŸã§é«éã®åŸ®åãæ±ããå¿
èŠãããã ããããå
èµ°ã£ãŠèšãã°ããã¥ãŒãã³ååŠã«ãããŠã¯ããæå»ã«ãããç©äœã®äœçœ®ãšé床ã決å®ããããšã§ããã®ç©äœã®æªæ¥ãšéå»ã«ãããéåãå®å
šã«äºæž¬ããããšãã§ããåŸã£ãŠéåãèšè¿°ããã«ã¯ç©äœã®å é床ãåãã£ãŠããã°å
åãšããããšã«ãªãããã®ãã¥ãŒãã³ååŠã®æ§è³ªã¯ãã¥ãŒãã³ã®æ±ºå®æ§åçãšåŒã°ãããå€ãã®ç©äœã®éåã«ã€ããŠããã¥ãŒãã³ååŠã«ãã£ãŠæ£ç¢ºãªäºæž¬ãåŸãããäºå®ã¯ããããã®çŸè±¡ã®èåŸã«ãã決å®æ§åçã®ååšãæã«ç€ºããŠãããšèšããã ããã",
"title": "ç©çé"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "ååŠã«ãããŠåºæ¬ãšãªãéã¯ãäœçœ®ãæéãé床ãå é床ã®ãããªç©äœã®éåãšããŠçŽæ¥æããããéã®ä»ã«ãåã質éãéåéããšãã«ã®ãŒãšãã£ããã®ãããããããã«ã€ããŠã¯ãŸãå¥ã®ç¯ãèšããŠè©³ããè¿°ã¹ãããšã«ããããæ»ãæãã§ããããã©ã®ãããªéã§ããããè¿°ã¹ããã 質éã¯ç©äœã®äºã€ã®ç°ãªãæ§è³ªã決å®ãããäžã€ã¯ç©äœã®åããã«ãããšæ¢ãã«ããã§ãããããäžã€ã¯ç©äœã®éãã§ããã質éã倧ããªç©äœã»ã©åããã¥ãããŸãæ¢ãã¥ãããç©äœã®éãã¯è³ªéã«æ¯äŸãã質éã倧ããã»ã©ç©äœã¯éããªããæèŠçã«ã¯è³ªéã®ãããã®æ§è³ªãç©äœã®ãéãããšããŠæããšãããã",
"title": "ç©çé"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "åã¯ç©äœã®éåãå€åãããèŠå ã§ãããåã®çºçæºã¯æ§ã
ã§ãããååŠã«ãããŠç¹ã«åã®çºçæºãç¹å®ããããšã¯ãªãããã¥ãŒãã³ååŠã§ã¯ããã¹ãŠã®åã¯ç©äœå士ãçµã¶çžäºäœçšãšããŠèšè¿°ããããæãçŽæçãªäŸã¯ç©äœå士ãè¡çªãããããããšãã«åãæ¥è§Šåã ãããç©ãæã¡éã¶éã«æããéã¿ã¯ãéã°ããè·ç©ã«ãã£ãŠåãŒãããåãåå ãšããŠçããæèŠã§ãããšç解ã§ãããä»ã«ä»£è¡šçãªãã®ã¯äžæåŒåãšéé»æ°åãããã³ç£åã§ããããããã¯ç©äœãæ¥è§ŠããŠããªããŠãåããããéæ¥è§ŠåãšãåŒã°ãã(é éåãšãé éäœçšãšåŒã¶ããšãããããç©çåŠã§ã¯é éãšããèšèã¯ç¹å¥ã®æå³ãæã€ã®ã§ããããã®èªãçšããéã«ã¯æ··åãããªããã泚æãã¹ãã ãã)ã åãã®ãã®ã¯åŠäœã«ãã®æ¯ãèããçŽæçã§ããããšãæŠå¿µçãªãã®ã§ãããçŽæ¥çã«åãç¥ããã¹ã¯ãªããããããªãããåãåãŒãããã§ãããç©äœã¯ããã®éåã«å€åãçãããããç©äœã®å é床ãšçµã³ã€ããŠèããããšãã§ãããããã§è³ªéã¯ç©äœã«å ããããåã«å¯ŸããŠã©ãã ãã®å é床ãçãããã®ææšãšããŠçšããããã",
"title": "ç©çé"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "éåéã¯ç©äœã®å¢ãã瀺ãéã§ãããç©äœã®å¢ãã¯ç©äœã®æ¢ãã«ãããç©äœã®éãã«çµã³ä»ããããéåéã¯ç©äœã®è³ªéãšé床ã«é¢ä¿ããéãšããŠå®çŸ©ããããç©äœã®é床ã倧ããã»ã©ããŸããã®è³ªéã倧ããã»ã©ç©äœã®éåéã¯å€§ãããªãããšãã«ã®ãŒã¯ç©äœãåããéã«ç©äœãšããåããããéã§ãããããããŸãç©äœã®éåã®å¢ããç¹åŸŽä»ãããéåéãšãšãã«ã®ãŒã¯ãŸããç¹å®ã®æ¡ä»¶ã®äžã§ãã®ç·éãäžå®ã«ä¿ãããããšãç¥ãããã",
"title": "ç©çé"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "ãã®ç¯ã¯æžãããã§ãããã®ç¯ãç·šéããŠãããæ¹ãå¿ãããåŸ
ã¡ããŠããŸãã",
"title": "ç©çé"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "éåã®äžæ³åãšã¯æ¬¡ã®3ã€ã®æ³åã®ããšã§ããã",
"title": "éåã®äžæ³å"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "第1æ³åã¯éåãšãããã®ãç©äœãšèŠ³æž¬è
ã®çžå¯Ÿçãªé¢ä¿ã§ããããå¿
èŠãšãªããã€ãŸãç©äœããšãŸã£ãŠããŠãã芳枬è
ãè€éãªéåãããŠããã°ç©äœã¯(芳枬è
ããèŠãŠ)è€éãªéåãããããã®ãããªèŠããäžã®éåãŸã§å«ãããšååŠã¯äžå¿
èŠã«è€éã«ãªã(å°ãªããšãå
¥éã¬ãã«ã§ã¯)ããããé€ãã«ã¯èŠ³æž¬è
ã«ãå¶éãã€ããªããã°ãªããªãã第1æ³åããã®å¶éãšãªããã€ãŸããéåã®ç¬¬2第3æ³åãæãç«ã€ã®ã¯ã第1æ³åãæãç«ã€ãããªèŠ³æž¬è
ã§ããããšãåæã«ããå Žåã«éãããšã«ãªãããã®ãããªèŠ³æž¬è
ãçšãã座æšç³»ãæ
£æ§ç³»ãšãã¶ãæ
£æ§ç³»ã¯éåããã£ãšãç°¡åã«(ãããã¯ãçŽ çŽãã«)èšè¿°ã§ãã座æšç³»ãšèããŠããã",
"title": "éåã®äžæ³å"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "ãã®ç¬¬1æ³åã«è¿°ã¹ãããŠããå
容ã¯ãç©çæ³åã¯å
šãŠã®æ
£æ§ç³»ã«ãããŠçãããæ
£æ§ç³»ã«å¯ŸããŠçéçŽç·éåãããŠããç³»ã¯å
šãŠæ
£æ§ç³»ã§ãããšããã¬ãªã¬ã€ã®çžå¯Ÿæ§åçã«åºã¥ãããã®ã§ããã",
"title": "éåã®äžæ³å"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "éåã®ç¬¬2æ³åãåŒã§è¡šããšãéåæ¹çšåŒ F=maãšãªããããã§ãFã¯ç©äœã«å ããããåã§ããã次å
ã®é«ãéåã§ãããäœçœ®rããã¯ãã«ã§æžãããå Žåããã®åŒã¯",
"title": "éåã®äžæ³å"
},
{
"paragraph_id": 22,
"tag": "p",
"text": "ãšãã圢ã«ãªãã質émã¯ã¹ã«ã©ãŒã§ãããäœçœ®rãšåFã¯ãã¯ãã«ã§ããã",
"title": "éåã®äžæ³å"
},
{
"paragraph_id": 23,
"tag": "p",
"text": "埮åæ¹çšåŒè«ã«ãããåæå€åé¡ã®ããç¥ãããçµæãããããæç¹ã§ã® r â {\\displaystyle {\\vec {r}}} ãš v â {\\displaystyle {\\vec {v}}} ãäžããã°ããã®åŸ®åæ¹çšåŒã®è§£ã¯äžæã«ååšãããšããããšãåããããã質ç¹ã®äœçœ®ãšé床ã«ãããã®åŸã®è³ªç¹ã®éåã¯å
šãŠæ±ºå®ãããã",
"title": "éåã®äžæ³å"
},
{
"paragraph_id": 24,
"tag": "p",
"text": "ããã¯ãã¥ãŒãã³ã®æ±ºå®æ§åçã®äž»åŒµãããšãããšåãã§ããã",
"title": "éåã®äžæ³å"
},
{
"paragraph_id": 25,
"tag": "p",
"text": "æ°åŠçã«ã¯ã r â {\\displaystyle {\\vec {r}}} ã®äžé以äžã®æé埮åãå«ãæ¹çšåŒãèããäºãã§ãããããã¥ãŒãã³ã®æ±ºå®æ§åçã«ããå€å
žååŠã®èšè¿°ã«ã¯ãã®ãããªé«éã®åŸ®åãäžèŠã§ããããšãåãã£ãŠããã®ã§ããã",
"title": "éåã®äžæ³å"
},
{
"paragraph_id": 26,
"tag": "p",
"text": "第3æ³åã¯ãåã®é£ãåãã«é¢ãããã®ã§ã¯ãªãã2äœéã®åã®åãŒãåãã«é¢ããæ³åã§ãããæã
ãå°é¢ã«ç«ã€ãšããèªãã®éãã«ãã£ãŠå°é¢ãæŒããŠããããšã«ãªãããéã«åãã ãã®åã«ãã£ãŠå°é¢ã«æŒãè¿ããŠè²°ã£ãŠããããã«å°é¢ã®äžã§éæ¢ã§ããã®ã§ãããå°é¢ããé¢ããŠè·³ã³äžããããšæãã°ãæ®æ®µãã匷ãåã§å°é¢ã蹎ãããšã«ãããåãã ãã®åãå°é¢ããäžããããè·³ã³äžããããšãã§ããããã«ãªãããã ãã®å Žåã¯ãåäœçšã®åãåããã®ã¯å°é¢ã蹎ã£ãæã ãã§ãããããå°é¢ãé¢ããåŸã¯ãåŒåãšå察æ¹åã®åãåŸããããåã³å°é¢ã«åŒãå¯ããããŠããŸãããšã«ãªãã",
"title": "éåã®äžæ³å"
},
{
"paragraph_id": 27,
"tag": "p",
"text": "ååŠã®äž»èŠãªç®çã¯æ³åã䜿ã£ãŠç©äœã®éåãå®éçãããã¯å®æ§çã«äºæž¬ããããšããéåãã¯ç©äœã®äœçœ®ãã¯ãã« r â {\\displaystyle {\\vec {r}}} ãæéãšãšãã«ã©ãå€åããããèšãæãããš r â {\\displaystyle {\\vec {r}}} ãæéã®ã©ã®ãããªé¢æ° r â ( t ) {\\displaystyle {\\vec {r}}(t)} ã«ãªããã§è¡šããããããã§äœæ¥ã¯ r â ( t ) {\\displaystyle {\\vec {r}}(t)} ãæºãããéåæ¹çšåŒããæ±ãã次ã«ããã解ããšããäºæ®µéã«åãããã:",
"title": "éåã®äžæ³åãã©ã䜿ãã"
},
{
"paragraph_id": 28,
"tag": "p",
"text": "1.(éåæ¹çšåŒã®å°åº)åé¡ãšããç¶æ³ã«ãããŠç©äœãåããåãæ±ãããéåãé»ç£æ°åã®æ³åã䜿ãããè€æ°ã®ç©äœããããåé¡ã§ã¯ç¬¬3æ³åãéèŠãªåãããããç©äœãåããåã¯äžè¬ã«ã¯ãã®äœçœ® r â {\\displaystyle {\\vec {r}}} ããã³æå» t {\\displaystyle t} ã«äŸåããã®ã§ F â = F â ( t , r â ) {\\displaystyle {\\vec {F}}={\\vec {F}}(t,{\\vec {r}})} ãšãªãããç¹ã«äœçœ®ãžã®äŸåæ§ãéèŠãªåé¡ãå€ãããã®çµæã第2æ³åã«ä»£å
¥ãããš",
"title": "éåã®äžæ³åãã©ã䜿ãã"
},
{
"paragraph_id": 29,
"tag": "p",
"text": "ãšãªãããããéåæ¹çšåŒãæ°åŠçã«ã¯ r â {\\displaystyle {\\vec {r}}} ãæºãã2é埮åæ¹çšåŒã«ä»ãªããªãã",
"title": "éåã®äžæ³åãã©ã䜿ãã"
},
{
"paragraph_id": 30,
"tag": "p",
"text": "2.(éåæ¹çšåŒã解ã)éåæ¹çšåŒã解ããŠéåãæ±ãããåççã«ã¯é©åãªåææ¡ä»¶ãäžããäžã§ããã解ãã°ãããäºéãªã®ã§åææ¡ä»¶ã¯åææå»tiã§ã®äœçœ® r â ( t = t i ) {\\displaystyle {\\vec {r}}(t=t_{i})} ãšé床 d r â / d t ( t = t i ) {\\displaystyle d{\\vec {r}}/dt(t=t_{i})} ãå¿
èŠãç©ççã«ã¯ããæå»ã®äœçœ®ãšé床ã決ãããšããã以éã®éåãå®å
šã«æ±ºãŸãããšãæå³ãã(ããŒã«ãæããå Žåãæããããã°ãããããŒã«ãæããé¢ããç¬éã®äœçœ®ãšé床ã§ãã®åŸã®ã³ãŒã¹ã決ãŸãããã§ãã)ã",
"title": "éåã®äžæ³åãã©ã䜿ãã"
},
{
"paragraph_id": 31,
"tag": "p",
"text": "ãšã¯ãããäºé埮åæ¹çšåŒã¯äºæ¬¡æ¹çšåŒã®ããã«äžè¬çãªè§£ã®å
¬åŒãããããã§ã¯ãªããããã©ãããåãå°ã
è€éã«ãªããšã解ãæ¢ç¥ã®é¢æ°ã®çµåãã§è¡šããªãããšãæ®éããããã©ãããããååŠã®åé¡ãšãªãã幞ã\"good news\"ããã:",
"title": "éåã®äžæ³åãã©ã䜿ãã"
},
{
"paragraph_id": 32,
"tag": "p",
"text": "ãããã®å Žåãããä¿åéããã«ã®ã«ãªããä¿åéãšã¯äœçœ®ãšé床ããã圢ã§çµåããåŒã§ããã®å€ãéåã®åãããçµãããŸã§å€ããã¬äžå®å€ããšããã®ãåãããæ¡ä»¶ãæºããå Žåã«ååšãããããããããšéåã®èªç±åºŠãæžãã®ã§è§£ãããããªã(ä¿åéã®åæ°ãååãªãã2éã®æ¹çšåŒãäžéã«çŽããŠç©åã§è§£ãããšãå¯èœã«ãªã)ãããŸã倧ããªå¶éãšãªãã®ã§å®æ§çæ§è³ªãåããããããªãã代衚çãªä¿åéã®åè£ã¯ãšãã«ã®ãŒãéåéãè§éåéã",
"title": "éåã®äžæ³åãã©ã䜿ãã"
},
{
"paragraph_id": 33,
"tag": "p",
"text": "äžæ¹ãä¿åéãååšããªãéåããããã¯èªç±åºŠã«æ¯ã¹ä¿åéã®æ°ãå°ãªãéåã¯ãããŠãè€éã§ã解ãããšãå®æ§çæ§è³ªãæããããšãé£ããããã®ãããªéåã調ã¹ãã«ã¯èšç®æ©äžã®æ°å€èšç®ãªã©ãå¿
èŠãšãªããå®ã¯ãã®ãããªéåãç¬èªã®èå³ãšéèŠæ§ãæã€ããšãããã代衚çãªã®ã¯ã«ãªã¹çãªéåãšåŒã°ãããã®ã§ãå€ãã®ç 究ããããŠããŠããã",
"title": "éåã®äžæ³åãã©ã䜿ãã"
},
{
"paragraph_id": 34,
"tag": "p",
"text": "以äžã®ãããªäºæ
ãããååŠã§ã¯ãŸãä¿åéã®ãããªåºæ¬çãªæŠå¿µãšå³å¯ã«è§£ããåºæ¬çãªéåãæ±ãããã®äžã§å€ãã®éåã«éããæ£ããçŽèŠ³ã身ã«ä»ãããåºæ¬çãªéåã«ã¯çå é床éåãæŸç©éåãåéåãæ¥åéåãåæ¯åãªã©ããããå€ãã®çŸè±¡ããããã®éåããè€éåããããã®ãšããŠç解ã§ããããã®ç¯çããå€ããã«ãªã¹çãªéåã®ãããªãã®ã¯ãããã®åºç€ãåå身ã«ä»ããåŸã§ãããã°ç¹è«ãšããŠåãçµãã®ãããããŸãéåã®æ³åãããæ°åŠçã«æŽçãã解æååŠãšãããããã®ããããããã¯ä¿åéã系統çã«æ±ããæ¹æ³ã座æšç³»ãæããæ¹æ³ãªã©åçš®ã®é«çŽãªæè¡ãæäŸããããã«éåååŠãªã©ããé²ãã ç©çã«é²ãã«ã¯å¿
èŠäžå¯æ¬ ãªã®ã§ããããæœè±¡çã§ãããã¥ããé¢ãããããã¯ãããçšåºŠçŽèŠ³ã身ã«ä»ããŠããåŠã¶ã®ãããã",
"title": "éåã®äžæ³åãã©ã䜿ãã"
},
{
"paragraph_id": 35,
"tag": "p",
"text": "ç©çã§ã¯ãšãã«ã®ãŒãéåéãªã©ã®ä¿åéãéèŠãªåãããããååŠã«ãããŠãããã¯åæ§ã§ããããç¹ã«èªç±åºŠã®å°ããç³»ã§ã®éåãæ±ãå Žåã«ã¯ãä¿åéã®å©çšã«ããéåãã»ãšãã©æ±ºå®ãããŠããŸãã ãã£ãšãç°¡å(ã§ãããéèŠ)ãªäŸã¯çŽç·äžã®ç²åã®éåã§ããšãã«ã®ãŒãä¿åãããå Žåãç²åã®åº§æšãxãšãããããxã ãã«äŸåããåF(x)ãåãããšãããäŸãã°ã°ãã«ã€ãªãããç²åã§ã¯ãF(x)=âkxã«ãªãããã®ãšãéåæ¹çšåŒã¯",
"title": "éåã®ä¿åéã®äŸïŒãšãã«ã®ãŒ"
},
{
"paragraph_id": 36,
"tag": "p",
"text": "ãããxã«ã€ããŠã®åŸ®åæ¹çšåŒãšã¿ãŠåææ¡ä»¶ ãt=tiã§(x,dx/dt)=(xi,vi)ãã§è§£ãã°ããããããäºéã ãšé¢åãªã®ã§ã䞡蟺ã«dx/dtãæããŠã¿ãããããš",
"title": "éåã®ä¿åéã®äŸïŒãšãã«ã®ãŒ"
},
{
"paragraph_id": 37,
"tag": "p",
"text": "ããã§åæé¢æ°ã®åŸ®ååŽã䜿ããšã巊蟺ã¯",
"title": "éåã®ä¿åéã®äŸïŒãšãã«ã®ãŒ"
},
{
"paragraph_id": 38,
"tag": "p",
"text": "ãšãªãã",
"title": "éåã®ä¿åéã®äŸïŒãšãã«ã®ãŒ"
},
{
"paragraph_id": 39,
"tag": "p",
"text": "ããã§F(x)ã®åå§é¢æ°ã f(x)ãšãããš(åå§é¢æ°ãšã¯df/dx=F(x)ãæºããé¢æ°f(x)ãäŸãã°f(x)=(k/2)xã¯F(x)=kxã®åå§é¢æ°ã§ããã)",
"title": "éåã®ä¿åéã®äŸïŒãšãã«ã®ãŒ"
},
{
"paragraph_id": 40,
"tag": "p",
"text": "ãšãªãã®ã§",
"title": "éåã®ä¿åéã®äŸïŒãšãã«ã®ãŒ"
},
{
"paragraph_id": 41,
"tag": "p",
"text": "巊蟺ãå³èŸºäž¡æ¹ãšãããé¢æ°ã®åŸ®åãªã®ã§ãå³èŸºã巊蟺ã«ç§»è¡ããŠãŸãšãããš",
"title": "éåã®ä¿åéã®äŸïŒãšãã«ã®ãŒ"
},
{
"paragraph_id": 42,
"tag": "p",
"text": "ããã§ã{}ã®äžèº«ã¯æéã«äŸåããªãå®æ°ãå³ã¡ä¿åéã«ãªããäžèº«ã足ãç®ã§æžãããU(x):=âf(x)ãšãããš",
"title": "éåã®ä¿åéã®äŸïŒãšãã«ã®ãŒ"
},
{
"paragraph_id": 43,
"tag": "p",
"text": "ãšãªãã以äžã®çµæããŸãšããããç©äœããã®äœçœ®ã ãã«äŸåããåF(x)ã ããåããŠçŽç·éåãããå Žåã«ãU(x) ã dU/dx=âF(x) ãæºããé¢æ°ãšããŠå®çŸ©ããããã«äœçœ®ãšé床ãåŒæ°ãšããé¢æ°E(x,dx/dt)ã次ã§å®çŸ©ããã",
"title": "éåã®ä¿åéã®äŸïŒãšãã«ã®ãŒ"
},
{
"paragraph_id": 44,
"tag": "p",
"text": "ãããšãE ã®å€ã¯éåã®éãå€ãå€ãããªãå®æ°ã«ãªããã€ãŸãE(x,dx/dt)ã¯ä¿åéã§ãããããã¯ãšãã«ã®ãŒãšåŒã°ããã ãšãã«ã®ãŒã®å€ã¯åææ¡ä»¶ã§æ±ºãŸããã€ãŸãt=tiã®æã®å€ãšåããªã®ã§ã",
"title": "éåã®ä¿åéã®äŸïŒãšãã«ã®ãŒ"
},
{
"paragraph_id": 45,
"tag": "p",
"text": "ãšãã«ã®ãŒã¯äºã€ã®é
ã®åã«ãªã£ãŠãããæåã®é
(m/2)vã¯é床ã§æ±ºãŸãã®ã§éåãšãã«ã®ãŒã äºçªç®ã®é
Uã¯äœçœ®ã§æ±ºãŸãã®ã§äœçœ®ãšãã«ã®ãŒãŸãã¯ããã³ã·ã£ã«ãšãã«ã®ãŒãšåŒã°ãããéåãšãã«ã®ãŒãšäœçœ®ãšãã«ã®ãŒã¯ãããããåå¥ã«èŠããšéåã®éå€åããã ããããããã®åã¯å€åããªããå®æ°ã«ãªãã®ã§ããã",
"title": "éåã®ä¿åéã®äŸïŒãšãã«ã®ãŒ"
},
{
"paragraph_id": 46,
"tag": "p",
"text": "ãšãã«ã®ãŒãä¿åããããšããäºå®ã ããããéåã®æ§åãããªãåããããšãã«ã®ãŒã®å€ãEiãšãããšãéåã®éãåžžã«",
"title": "éåã®ä¿åéã®äŸïŒãšãã«ã®ãŒ"
},
{
"paragraph_id": 47,
"tag": "p",
"text": "ãæãç«ã€ãæžãæãããš",
"title": "éåã®ä¿åéã®äŸïŒãšãã«ã®ãŒ"
},
{
"paragraph_id": 48,
"tag": "p",
"text": "åŸã£ãŠéåã§xãåãã®ã¯ E i ⥠U ( x ) {\\displaystyle E_{i}\\geq U(x)} ãæãç«ã€ç¯å²ã«éããããã€ãŸã暪軞ã«xã瞊軞ã«y=U(x)ã®ã°ã©ããæžããå Žåã æ°Žå¹³ç· y = E i {\\displaystyle y=E_{i}} ã®äžã«æ²ç· y = U ( x ) {\\displaystyle y=U(x)} ãããé åãéåã®ç¯å²ãšãªãããã®äºã€ã®ç·ãé¢ããŠããé åã»ã©éåã®é床ã¯éãã éåã®éãvãšxã®éã«ã¯",
"title": "éåã®ä¿åéã®äŸïŒãšãã«ã®ãŒ"
},
{
"paragraph_id": 49,
"tag": "p",
"text": "ãæãç«ã€ãè€å·ã®ã©ã¡ãããšããã¯åææ¡ä»¶ãšæå»ã§æ±ºãŸããäŸãã° v i > 0 {\\displaystyle v_{i}>0} ã®å Žåãvã¯é£ç¶ã«ããå€ãããªãã®ã§ãããªã笊åãå€ããããšã¯ããããã ãã°ããã¯v>0ã®ãŸãŸåãæ¹å(xå¢å ã®æ¹å)ã«åãã笊å·ãå€ããããã®ã¯v=0ãå³ã¡ y = E i {\\displaystyle y=E_{i}} ãš y = U ( x ) {\\displaystyle y=U(x)} 㮠亀ç¹ã倧éæã«ã¯äº€ç¹ã«éãããŸã§ã¯åãæ¹åã«åãã€ã¥ãã亀ç¹ã«éãããšäžç¬v=0ã«ãªããããããé床ã®ç¬Šå·ãå€ãã£ãŠéåãã«åãã äœãããã¯äº€ç¹ã§äº€ããè§åºŠã0ããã倧ããããšãåæãè§åºŠã0ãã€ãŸã y = E i {\\displaystyle y=E_{i}} ãš y = U ( x ) {\\displaystyle y=U(x)} ã æ¥ããå Žåã«ã¯ãã现ãã解æãå¿
èŠã§ã亀ç¹ã«æ°žé ã«éããªãæãããããéãããšããã§éæ¢ããããšãããããã ãã®äº€ç¹åšå²ã®æ¯ãèãã調ã¹ãã«ã¯éåæ¹çšåŒã«æ»ãã",
"title": "éåã®ä¿åéã®äŸïŒãšãã«ã®ãŒ"
},
{
"paragraph_id": 50,
"tag": "p",
"text": "以äžã®ããšãçŽèŠ³çã«æããã«ã¯ãžã§ããã³ãŒã¹ã¿ãŒã®è»éã®ããã«äžäžããè»éã®äžã«ãããããŒã«ã®éåãã€ã¡ãŒãžããã°ããã",
"title": "éåã®ä¿åéã®äŸïŒãšãã«ã®ãŒ"
},
{
"paragraph_id": 51,
"tag": "p",
"text": "ãšãã«ã®ãŒä¿ååããéåæ¹çšåŒã®è§£ãç©åã®åœ¢ã§åŸããããç°¡åã®ãããåææå»ã§ v i = d x / d t > 0 {\\displaystyle v_{i}=dx/dt>0} ãšããäžã®åŒã§å³èŸºãæ£ã®éã®éåãèãã(è² ã®å Žåãåæ§ã®èãæ¹ã§åãã)ã v = d x / d t {\\displaystyle v=dx/dt} ãå
¥ãããš d x / d t = 2 m ( E i â U ( x ) ) {\\displaystyle dx/dt={\\sqrt {{\\frac {2}{m}}(E_{i}-U(x))}}} å³èŸºã¯æ£ãªã®ã§xãštã®å¯Ÿå¿ã¯äžå¯Ÿäžãšãªããéã«tãxã®é¢æ°ãšã¿ãªããããããš d t / d x = 1 / ( 2 / m ) ( E i â U ( x ) ) {\\displaystyle dt/dx=1/{\\sqrt {(2/m)(E_{i}-U(x))}}} ãšãªãã®ã§ã䞡蟺ãxã§ç©åããŠåææ¡ä»¶(t=tiã§x=xi)ã䜿ããš",
"title": "éåã®ä¿åéã®äŸïŒãšãã«ã®ãŒ"
},
{
"paragraph_id": 52,
"tag": "p",
"text": "t = t i + m 2 â« x i x d x â² E i â U ( x â² ) {\\displaystyle t=t_{i}+{\\sqrt {\\frac {m}{2}}}\\int _{x_{i}}^{x}{\\frac {dx'}{\\sqrt {E_{i}-U(x')}}}}",
"title": "éåã®ä¿åéã®äŸïŒãšãã«ã®ãŒ"
},
{
"paragraph_id": 53,
"tag": "p",
"text": "ããã§äžè¬è§£ãåŸããããå F ( x ) {\\displaystyle F(x)} ãäžããããã°ãããããUãæ±ããäžã®å³èŸºã®ç©åãå®è¡ããå¿
èŠãªãx=h(t)ãšãã圢ã«çŽãã°éåãåŸããããç©åãé¢åãããšããæåã«x=h(t)ã§ã¯ãªãt=g(x)ãšãã圢ã«ãªãã®ãããŸãã¡ãšæãããç¥ããªãããããã§ãå³å¯è§£ãå®ç©åãšããéãã圢ã§åŸãããããšã¯å€§ããªæå³ããã€ã",
"title": "éåã®ä¿åéã®äŸïŒãšãã«ã®ãŒ"
},
{
"paragraph_id": 54,
"tag": "p",
"text": "äžã®å³èŸºã®ç©åãåççã«ã§ããç¹ã«éèŠãªäŸã¯ãã°ãã«ã€ãªãããç©äœ( f ( x ) = â k x , U ( x ) = k x 2 / 2 {\\displaystyle f(x)=-kx,U(x)=kx^{2}/2} ãããäžã§è©³ããæ±ã)ããŸã倪éœã®åšãã®ææã®éåãåŸã§è¿°ã¹ãè§éåéä¿ååŽã䜿ããš1次å
ã®åé¡ã«éå
ã§ãã倪éœããã®è·é¢rãštã®é¢ä¿ãäžãšåã圢ã®ç©åã§è¡šããã(q,kãå®æ°ãšã㊠U ( r ) = q r 2 â k r {\\displaystyle U(r)={\\frac {q}{r^{2}}}-{\\frac {k}{r}}} ã第äžé
ãé å¿åã次ãéåãè¡šã)ããããéåžžã«å¹žããªããšã«ãç©åãåçé¢æ°ã§è¡šãããšãã§ããã",
"title": "éåã®ä¿åéã®äŸïŒãšãã«ã®ãŒ"
},
{
"paragraph_id": 55,
"tag": "p",
"text": "ãªããã«ãŒãããããã U ( x ) {\\displaystyle U(x)} ã®é¢æ°åœ¢ãå°ãè€éã«ãªã£ãã ãã§ç©åã¯é£ãããªããããã§ãåç¯ã®å®æ§çãªè§£æ㯠U ( x ) {\\displaystyle U(x)} ã®ã°ã©ããçšãã ãã§ã§ããããšã«æ³šæããŠã»ãããäŸãã°U(x)ãäžæ¬¡é¢æ°ã®ããã«å±±ãšè°·ãæã€ãããªå Žåã«ã¯éåãå±±ãè¶ããããããšãè°·ã«éã蟌ãããããŸãŸæ¯åããããéèŠãªãã€ã³ãã«ãªãããããã¯åææ¡ä»¶ã® E i {\\displaystyle E_{i}} ãå±±ããé«ããã©ãããèŠãã°åããã®ã§ããããŸãå®æ§çãªæ§è³ªãã°ã©ãã§èª¿ã¹ãŠããç©åã«åãçµãããšã§ãåŒããŸãšããæ¹éãèŠããŠããã",
"title": "éåã®ä¿åéã®äŸïŒãšãã«ã®ãŒ"
},
{
"paragraph_id": 56,
"tag": "p",
"text": "äŸãšããŠã°ãã«ã€ãªããã質ç¹ã®éåãæ±ããããåã¯F(x)=-kxã§äžããããã®ã§ã",
"title": "éåã®ä¿åéã®äŸïŒãšãã«ã®ãŒ"
},
{
"paragraph_id": 57,
"tag": "p",
"text": "U ( x ) = k 2 x 2 {\\displaystyle U(x)={\\frac {k}{2}}x^{2}}",
"title": "éåã®ä¿åéã®äŸïŒãšãã«ã®ãŒ"
},
{
"paragraph_id": 58,
"tag": "p",
"text": "ãã®å Žåãšãã«ã®ãŒã¯0以äžã§ãã( E i = m v i 2 / 2 + k x i 2 / 2 ⥠0 {\\displaystyle E_{i}=mv_{i}^{2}/2+kx_{i}^{2}/2\\geq 0} )ãå³å¯è§£ã®å
¬åŒã«ä»£å
¥ãããš",
"title": "éåã®ä¿åéã®äŸïŒãšãã«ã®ãŒ"
},
{
"paragraph_id": 59,
"tag": "p",
"text": "t = t i + m 2 â« x i x d x â² E i â k 2 x â² 2 {\\displaystyle t=t_{i}+{\\sqrt {\\frac {m}{2}}}\\int _{x_{i}}^{x}{\\frac {dx'}{\\sqrt {E_{i}-{\\frac {k}{2}}x'^{2}}}}}",
"title": "éåã®ä¿åéã®äŸïŒãšãã«ã®ãŒ"
},
{
"paragraph_id": 60,
"tag": "p",
"text": "ããšã¯æ°åŠã®åé¡ãšããŠç©åãèšç®ããã°ããã®ã§ã¯ããããèšç®ãç©ççãªèå¯ãå ããªããè¡ãããšã§ãããããã«ã§ããããŸãéåã®ã¹ã±ãŒã«ãç¹åŸŽã¥ããéãèãããå®æ§çãªè§£æããåããããã«ãéåã®ç¯å²ã¯ E i â k 2 x â² 2 ⥠0 {\\displaystyle E_{i}-{\\frac {k}{2}}x'^{2}\\geq 0} ãæºããé åãå³ã¡ â 2 E i / k †x †2 E i / k {\\displaystyle -{\\sqrt {2E_{i}/k}}\\leq x\\leq {\\sqrt {2E_{i}/k}}} ãã£ãŠ L := 2 E i / k {\\displaystyle L:={\\sqrt {2E_{i}/k}}} ãšãããšããã® L {\\displaystyle L} ãéåã®(é·ãã®)ã¹ã±ãŒã«ã«ãªãã座æšxããããã®Lã®äœåã(äœå²ã)ããšè¡šãã®ããããããã§",
"title": "éåã®ä¿åéã®äŸïŒãšãã«ã®ãŒ"
},
{
"paragraph_id": 61,
"tag": "p",
"text": "X = x / L {\\displaystyle X=x/L}",
"title": "éåã®ä¿åéã®äŸïŒãšãã«ã®ãŒ"
},
{
"paragraph_id": 62,
"tag": "p",
"text": "ãšãããŠå
¬åŒã«ä»£å
¥ãæŽçãããšãäžçªé¢åãªç©åã®éšåããããã«ãªãã被ç©åé¢æ°ããkã E i {\\displaystyle E_{i}} ãªã©ã®ãã©ã¡ãŒã¿ãåãé€ããã®ã§ããã",
"title": "éåã®ä¿åéã®äŸïŒãšãã«ã®ãŒ"
},
{
"paragraph_id": 63,
"tag": "p",
"text": "t = t i + m 2 â« X i X L d X â² E i â k 2 ( 2 E i / k X â² ) 2 = t i + m 2 E i L â« X i X d X â² 1 â X â² 2 = t i + m 2 E i L ( sin â 1 X â sin â 1 X i ) {\\displaystyle t=t_{i}+{\\sqrt {\\frac {m}{2}}}\\int _{X_{i}}^{X}{\\frac {LdX'}{\\sqrt {E_{i}-{\\frac {k}{2}}({\\sqrt {2E_{i}/k}}X')^{2}}}}=t_{i}+{\\sqrt {\\frac {m}{2E_{i}}}}L\\int _{X_{i}}^{X}{\\frac {dX'}{\\sqrt {1-X'^{2}}}}=t_{i}+{\\sqrt {\\frac {m}{2E_{i}}}}L(\\sin ^{-1}X-\\sin ^{-1}X_{i})}",
"title": "éåã®ä¿åéã®äŸïŒãšãã«ã®ãŒ"
},
{
"paragraph_id": 64,
"tag": "p",
"text": "åŒã®äžã«çŸãã m 2 E i L {\\displaystyle {\\sqrt {\\frac {m}{2E_{i}}}}L} ãšããä¿æ°ã¯æéã®åäœãæã€ã®ã§ãæéã®ã¹ã±ãŒã«ã«ãªã£ãŠããã¯ããããã T 2 Ï {\\displaystyle {\\frac {T}{2\\pi }}} ãšãã( 2 Ï {\\displaystyle 2\\pi } ãå
¥ããã®ã¯ãsinã®åšæã 2 Ï {\\displaystyle 2\\pi } ã§ããããšãçšãã§)ããŸã sin â 1 X i {\\displaystyle \\sin ^{-1}X_{i}} ã Ï i {\\displaystyle \\phi _{i}} ãšæžã:",
"title": "éåã®ä¿åéã®äŸïŒãšãã«ã®ãŒ"
},
{
"paragraph_id": 65,
"tag": "p",
"text": "T 2 Ï := m 2 E i L = m 2 E i 2 E i / k = m k , Ï i := sin â 1 X i {\\displaystyle {\\frac {T}{2\\pi }}:={\\sqrt {\\frac {m}{2E_{i}}}}L={\\sqrt {\\frac {m}{2E_{i}}}}{\\sqrt {2E_{i}/k}}={\\sqrt {\\frac {m}{k}}},\\phi _{i}:=\\sin ^{-1}X_{i}}",
"title": "éåã®ä¿åéã®äŸïŒãšãã«ã®ãŒ"
},
{
"paragraph_id": 66,
"tag": "p",
"text": "ãããš t = t i + T 2 Ï ( sin â 1 X â Ï i ) {\\displaystyle t=t_{i}+{\\frac {T}{2\\pi }}(\\sin ^{-1}X-\\phi _{i})} ãåŸããããããX=ã®åœ¢ã«çŽããš",
"title": "éåã®ä¿åéã®äŸïŒãšãã«ã®ãŒ"
},
{
"paragraph_id": 67,
"tag": "p",
"text": "X = sin ( 2 Ï t â t i T + Ï i ) {\\displaystyle X=\\sin(2\\pi {\\frac {t-t_{i}}{T}}+\\phi _{i})}",
"title": "éåã®ä¿åéã®äŸïŒãšãã«ã®ãŒ"
},
{
"paragraph_id": 68,
"tag": "p",
"text": "ãšããç°¡åãªåŒã«ãªããã€ãŸã質ç¹ã¯sinã®åœ¢ã®æ¯åãããã®ã§ãããããã«Xãxã«çŽããŠãŸãšãããš",
"title": "éåã®ä¿åéã®äŸïŒãšãã«ã®ãŒ"
},
{
"paragraph_id": 69,
"tag": "p",
"text": "x = L sin ( 2 Ï t â t i T + Ï i ) , T = 2 Ï m k , L := 2 E i k = m v i 2 + 2 k x i 2 k , Ï i := sin â 1 X i = sin â 1 x i L {\\displaystyle x=L\\sin(2\\pi {\\frac {t-t_{i}}{T}}+\\phi _{i}),T=2\\pi {\\sqrt {\\frac {m}{k}}},L:={\\sqrt {\\frac {2E_{i}}{k}}}={\\sqrt {\\frac {mv_{i}^{2}+2kx_{i}^{2}}{k}}},\\phi _{i}:=\\sin ^{-1}X_{i}=\\sin ^{-1}{\\frac {x_{i}}{L}}}",
"title": "éåã®ä¿åéã®äŸïŒãšãã«ã®ãŒ"
},
{
"paragraph_id": 70,
"tag": "p",
"text": "ãã®åŒã¯æ¯åçãªéåã®åºæ¬ã§ãããæ¯å¹
L {\\displaystyle L} ãåšæ T {\\displaystyle T} ãåæäœçž Ï i {\\displaystyle \\phi _{i}} ã®åæ¯åãšåŒã°ããã",
"title": "éåã®ä¿åéã®äŸïŒãšãã«ã®ãŒ"
},
{
"paragraph_id": 71,
"tag": "p",
"text": "ãªãåºç€ã«ããå
¬åŒã¯å
ã®ãã®(è€å·ãæã€)ã®+ã®æ¹ã®ãã®ã ããªã®ã§ãäžã®å°åºããåŸãããåŒã¯è«ççã«ã¯dx/dt>0ã®ç¯å²ã§ããä¿èšŒãããªãããããçµæçã«ã¯ãããããããšã«ãã®å¶çŽããšã£ã±ãã£ãé åã§ã解ã«ãªã£ãŠããããã®ããšãææ©ã確ãããã«ã¯äžã®è§£ãéåæ¹çšåŒ d 2 x / d t 2 = â k x {\\displaystyle d^{2}x/dt^{2}=-kx} ã«ä»£å
¥ããä»»æã®t㧠æ¹çšåŒãæãç«ã£ãŠããããšã確èªããã°ããããŸãåææ¡ä»¶ã«çŽæ¥çµã³ä»ããã«ã¯ä»¥äžã®ããã«å æ³å®çã䜿ãsinãå±éããã»ãããããããã",
"title": "éåã®ä¿åéã®äŸïŒãšãã«ã®ãŒ"
},
{
"paragraph_id": 72,
"tag": "p",
"text": "x = L cos Ï i sin ( 2 Ï t â t i T ) + L sin Ï i cos ( 2 Ï t â t i T ) , v = d x d t = 2 Ï L T cos Ï i cos ( 2 Ï t â t i T i ) â 2 Ï L T sin Ï i sin ( 2 Ï t â t i T i ) {\\displaystyle x=L\\cos \\phi _{i}\\sin(2\\pi {\\frac {t-t_{i}}{T}})+L\\sin \\phi _{i}\\cos(2\\pi {\\frac {t-t_{i}}{T}}),v={\\frac {dx}{dt}}=2\\pi {\\frac {L}{T}}\\cos \\phi _{i}\\cos(2\\pi {\\frac {t-t_{i}}{T}}i)-2\\pi {\\frac {L}{T}}\\sin \\phi _{i}\\sin(2\\pi {\\frac {t-t_{i}}{T}}i)}",
"title": "éåã®ä¿åéã®äŸïŒãšãã«ã®ãŒ"
},
{
"paragraph_id": 73,
"tag": "p",
"text": "ãã㧠t = t i {\\displaystyle t=t_{i}} ã§ã®åææ¡ä»¶ x = x i , v = v i {\\displaystyle x=x_{i},v=v_{i}} ã䜿ã£ãŠäžã«åºãŠãã L , Ï i {\\displaystyle L,\\phi _{i}} ã®çµåããè¡šããäžã®åŒã« t = t i {\\displaystyle t=t_{i}} ã代å
¥ãããš",
"title": "éåã®ä¿åéã®äŸïŒãšãã«ã®ãŒ"
},
{
"paragraph_id": 74,
"tag": "p",
"text": "x i = L sin Ï i , v i = 2 Ï L T cos Ï i {\\displaystyle x_{i}=L\\sin \\phi _{i},v_{i}=2\\pi {\\frac {L}{T}}\\cos \\phi _{i}}",
"title": "éåã®ä¿åéã®äŸïŒãšãã«ã®ãŒ"
},
{
"paragraph_id": 75,
"tag": "p",
"text": "ããããã L sin Ï i = x i , L cos Ï i = v i T 2 Ï {\\displaystyle L\\sin \\phi _{i}=x_{i},L\\cos \\phi _{i}={\\frac {v_{i}T}{2\\pi }}} ãšãªãã®ã§ããããxã®åŒã«å
¥ãããš",
"title": "éåã®ä¿åéã®äŸïŒãšãã«ã®ãŒ"
},
{
"paragraph_id": 76,
"tag": "p",
"text": "x = v i T 2 Ï sin ( 2 Ï t â t i T ) + x i cos ( 2 Ï t â t i T ) {\\displaystyle x={\\frac {v_{i}T}{2\\pi }}\\sin(2\\pi {\\frac {t-t_{i}}{T}})+x_{i}\\cos(2\\pi {\\frac {t-t_{i}}{T}})}",
"title": "éåã®ä¿åéã®äŸïŒãšãã«ã®ãŒ"
},
{
"paragraph_id": 77,
"tag": "p",
"text": "ããããæå®ããåæå€ãã決ãŸãéåã®åŒãšãªãããããŸã§ã§ã°ãã«ã€ãªããã質ç¹ã®éåã¯å®å
šã«è§£ãããããšèšã£ãŠããã",
"title": "éåã®ä¿åéã®äŸïŒãšãã«ã®ãŒ"
},
{
"paragraph_id": 78,
"tag": "p",
"text": "éåéã",
"title": "éåã®ä¿åéã®äŸïŒéåé"
},
{
"paragraph_id": 79,
"tag": "p",
"text": "ã§å®çŸ©ãããããã§mã¯ç©äœã®è³ªéã",
"title": "éåã®ä¿åéã®äŸïŒéåé"
},
{
"paragraph_id": 80,
"tag": "p",
"text": "ã¯ç©äœã®é床ã§ããã ãã®ãšãéåæ¹çšåŒãçšãããšãç©äœã«åãåããŠããªããšãã",
"title": "éåã®ä¿åéã®äŸïŒéåé"
},
{
"paragraph_id": 81,
"tag": "p",
"text": "ãšãªããç©äœã®æã€éåéããæéçã«ä¿åããããšãåããããããéåéä¿ååãšåŒã¶ã",
"title": "éåã®ä¿åéã®äŸïŒéåé"
},
{
"paragraph_id": 82,
"tag": "p",
"text": "éåéãä¿åããŠããç³»ã§ã¯ç³»ã«ã€ããŠç©äœã®é床ãå€ããã«äœçœ®ã ãããããããšãç©äœã®éåãå€åããªãããšãç¥ãããŠãããäŸãã°ãå
šãåãåããŠããªãç³»ã§ã¯äœçœ®ãå€åããããšããŠãç©äœã®éåã¯å€åãããç©äœã¯éæ¢ãç¶ãããããšããšéåããŠããæ¹åã«çéçŽç·éåãç¶ããããŸãããã1æ¹åã«ã ãäžæ§ãªåãåããŠããç³»ã§ã¯åãåããŠããæ¹åã«ã¯ç©äœã®éåéã¯ä¿åããªããããã以å€ã®æ¹åã«ã€ããŠã¯ç©äœã®éåæ¹çšåŒã¯ç©äœã«äœã®åãåããŠããªããšããšåäžã§ããã®ã§ããã¡ãã®æ¹åã®éåéã¯ä¿åãããããã¯ãã1æ¹åã«åãåããŠããæã«ããã以å€ã®æ¹åã®ç§»åã«å¯ŸããŠã¯ãã®ç©äœã®éåã¯å€åããªãããšãšå¯Ÿå¿ããŠãããç©äœãããæ¹åã«çŽç·çã«ç§»åããããšã䞊é²ãšåŒã³ã䞊é²ã«ãã£ãŠç©äœã®éåãå€åããªãããšãç³»ã®äžŠé²å¯Ÿç§°æ§ãšåŒã¶ãåŸã«è§£æååŠã§ããŒã¿ãŒã®å®çãšåŒã°ããå®çãåŠã¶ãããã®å®çã¯ç³»ã®å¯Ÿç§°æ§ã¯å¿
ããã®å¯Ÿç§°æ§ã«å¯Ÿå¿ããä¿åéãããããšã䞻匵ãããå®éç³»ã®äžŠé²å¯Ÿç§°æ§ã«å¯Ÿå¿ããä¿åéããŸãããéåéã«å¯Ÿå¿ããŠããããšãåŸã«ç€ºãããã",
"title": "éåã®ä¿åéã®äŸïŒéåé"
},
{
"paragraph_id": 83,
"tag": "p",
"text": "ãŸããç³»ã®éåéã¯ç©äœãæã€éåéã ãã§ãªãé»ç£å Žãªã©ãæã€éåéãååšãããç³»å
šäœã®éåéä¿åãèãããšãã«ã¯ç©äœã®å Žã®äž¡æ¹ãæã€éåéã®ä¿åãèããªããŠã¯ãªããªããããã¯ãé»ç£æ°åŠãé»ç£æ°åŠIIã§å°å
¥ãããã",
"title": "éåã®ä¿åéã®äŸïŒéåé"
},
{
"paragraph_id": 84,
"tag": "p",
"text": "è€æ°ã®ç©äœã«å¯ŸããŠåã
ã®éã«å
å(ããããã®ç©äœã®éã«åãåã®ããšã)ã ããååšããå€çããåãåããŠããªããšãç©äœã®éãŸããæã€å
šéåéã¯ä¿åãããå
šéåéãšã¯ç©äœç³»ã®ããããã®ç²åãæã€éåéãå
šãŠè¶³ãåããããã®ã§ãããããã¯ãããããã®ç©äœã®éåéã«ã€ããŠéåæ¹çšåŒãã",
"title": "éåã®ä¿åéã®äŸïŒéåé"
},
{
"paragraph_id": 85,
"tag": "p",
"text": "ãæãç«ã€äžã§ã( f i {\\displaystyle f_{i}} ã¯ããããã®ç©äœã«ãããå
åãæããiã¯intrinsicã®ç¥ã) ããããã®ç©äœã«ã€ããŠã®éåæ¹çšåŒãå
šãŠè¶³ãåããããšã 巊蟺ã«ã€ããŠã¯",
"title": "éåã®ä¿åéã®äŸïŒéåé"
},
{
"paragraph_id": 86,
"tag": "p",
"text": "(Pã¯å
šéåé)ãæãç«ã¡ã å³èŸºã«ã€ããŠã¯ããããã®åã¯0ãšãªãã ããã¯äœçšåäœçšã®æ³åãããç©äœã«ãããåã¯ãããã倧ãããåãã§å察æ¹åããããŠãã察å¿ããåãæã£ãŠãããç©äœç³»å
šäœã«ã€ããŠè¶³ãåããããšãã«ããããã®å¯äžãæã¡æ¶ããããçµæãšããŠåã0ã«çãããªãããã§ããã",
"title": "éåã®ä¿åéã®äŸïŒéåé"
},
{
"paragraph_id": 87,
"tag": "p",
"text": "ãã質ç¹ã«å¯Ÿã㊠ãã1ç¹ãåãããã®äžç¹ããã®ãã¯ãã«ã r â {\\displaystyle {\\vec {r}}} ãšãã ãã®è³ªç¹ãæã€éåéã p â {\\displaystyle {\\vec {p}}} ãšãããšãã L â = r â à p â {\\displaystyle {\\vec {L}}={\\vec {r}}\\times {\\vec {p}}} ãè§éåéãšåŒã¶ã",
"title": "éåã®ä¿åéã®äŸïŒè§éåé"
},
{
"paragraph_id": 88,
"tag": "p",
"text": "ç©äœãäžå¿å以å€ã®åãåããªããšããè§éåéã¯æéçã«ä¿åããã",
"title": "éåã®ä¿åéã®äŸïŒè§éåé"
},
{
"paragraph_id": 89,
"tag": "p",
"text": "(å°åº) â â t L â = â â t r â à p â + r â à â â t p â {\\displaystyle {\\frac {\\partial {}}{\\partial t}}{\\vec {L}}={\\frac {\\partial {}}{\\partial t}}{\\vec {r}}\\times {\\vec {p}}+{\\vec {r}}\\times {\\frac {\\partial {}}{\\partial t}}{\\vec {p}}} = 1 m p â à p â + r â à f ( r ) r â {\\displaystyle ={\\frac {1}{m}}{\\vec {p}}\\times {\\vec {p}}+{\\vec {r}}\\times f(r){\\vec {r}}} = 0 {\\displaystyle =0} ( a â à a â = 0 {\\displaystyle {\\vec {a}}\\times {\\vec {a}}=0} ãçšããã)",
"title": "éåã®ä¿åéã®äŸïŒè§éåé"
},
{
"paragraph_id": 90,
"tag": "p",
"text": "ãã軞ãäžå¿ãšããè§éåéãä¿åããç³»ã§ã¯ãäžè¬ã«ãã®è»žã«å¯Ÿããå転ã«é¢ããŠç³»ã®ç¶æ
ã¯å€åããªããäŸãã°ã倪éœã®ãŸããã®å°çã®éåãå®å
šãªåéåã§ãã£ããšãããšãããã®éåã¯å°çãå«ãŸããå¹³é¢ã«çŽäº€ããŠå€ªéœãééãã軞ãäžå¿ãšããå転ã«ã€ããŠäžå€ã§ãããããã¯ã倪éœããå°çã«ãããåŒåããå°çãšå€ªéœã®è·é¢ã®ã¿ã«ãã£ãŠãããäžã§è¿°ã¹ããããªè»žãäžå¿ãšããå転ã§ã¯å°çãšå€ªéœã®è·é¢ã¯å€åããªãããã§ããããã®ããšã¯ç³»ã®äžã«å転察称æ§ãããããšã«å¯Ÿå¿ããŠããã解æååŠã§è¿°ã¹ãããããŒã¿ãŒã®å®çãçšãããšããã®ç³»ã¯å転察称æ§ã«å¯Ÿå¿ããä¿åéãæã€ããšãåãããå®éã«ã¯ãã®ä¿åéãæ£ã«è§éåéã«å¯Ÿå¿ããŠããã®ã§ããã",
"title": "éåã®ä¿åéã®äŸïŒè§éåé"
},
{
"paragraph_id": 91,
"tag": "p",
"text": "",
"title": "éåã®ä¿åéã®äŸïŒè§éåé"
},
{
"paragraph_id": 92,
"tag": "p",
"text": "å¹³é¢äžãååŸrã®åäžãè§é床 Ï {\\displaystyle \\omega } ã§éåããŠããç©äœããããšããã ãã®ãšãããã®ç©äœãåã®äžå¿ã«å¯ŸããŠæã€è§éåéãå®çŸ©ã«ãããã£ãŠæ±ããã ãã ããç©äœã®è³ªéã¯mã§ãããšããã",
"title": "éåã®ä¿åéã®äŸïŒè§éåé"
},
{
"paragraph_id": 93,
"tag": "p",
"text": "ãã®ãšãç©äœã®åº§æšã¯æéã®åç¹ãé©åœã«éžã¶ããšã§ã",
"title": "éåã®ä¿åéã®äŸïŒè§éåé"
},
{
"paragraph_id": 94,
"tag": "p",
"text": "ãšãããããã ããç©äœãéåããå¹³é¢ãxyå¹³é¢ãšããããã®ãšããç©äœã® é床ã¯",
"title": "éåã®ä¿åéã®äŸïŒè§éåé"
},
{
"paragraph_id": 95,
"tag": "p",
"text": "ã§äžããããããã£ãŠãç©äœã®æã€è§éåé L {\\displaystyle L} ã¯",
"title": "éåã®ä¿åéã®äŸïŒè§éåé"
},
{
"paragraph_id": 96,
"tag": "p",
"text": "ãšãªãããããã¯ãè§é床ã",
"title": "éåã®ä¿åéã®äŸïŒè§éåé"
},
{
"paragraph_id": 97,
"tag": "p",
"text": "ã®é¢ä¿ãçšããŠéãã§æžãçŽããš",
"title": "éåã®ä¿åéã®äŸïŒè§éåé"
},
{
"paragraph_id": 98,
"tag": "p",
"text": "ãåŸããããããã¯ç©äœã®äœçœ®ãšç©äœã®é床ãçŽäº€ããŠããããšãããã®2ã€ã®ãã¯ãã«ã®å€§ããã¯2ã€ã®ãã¯ãã«ã®çµ¶å¯Ÿå€ã«çãããªãã®ã§ããã ãŸããç©äœã®äœçœ®ãšé床ãå«ããã¯ãã«ã¯xyå¹³é¢ã«å«ãŸããã®ã§ããã2ã€ã«çŽäº€ãããã¯ãã«ã§ããè§éåéãã¯ãã«ã¯å¿
ãxyå¹³é¢ã«çŽäº€ããããã®ããããã®ãã¯ãã«ã¯zæ¹åãåãã®ã§ããã",
"title": "éåã®ä¿åéã®äŸïŒè§éåé"
},
{
"paragraph_id": 99,
"tag": "p",
"text": "以äžã¯å®¹æã«å°ãããã以äžã§ã¯ãã®æ°åŠçæŒç®(æ°åŠIIãŸãã¯æ°åŠIIIã®åæ©çšåºŠ)ã詳ããè¿°ã¹ãã",
"title": "çå é床çŽç·éå"
},
{
"paragraph_id": 100,
"tag": "p",
"text": "æŸç©éåã¯çé床éåãšçå é床éåãåæãããã®ãšèããããšãã§ããã",
"title": "æŸç©éå"
},
{
"paragraph_id": 101,
"tag": "p",
"text": "åé床 v 0 {\\displaystyle v_{0}}",
"title": "æŸç©éå"
},
{
"paragraph_id": 102,
"tag": "p",
"text": "åé床ã®æ°Žå¹³æå v x = v 0 cos Ξ {\\displaystyle v_{x}=v_{0}\\cos \\theta }",
"title": "æŸç©éå"
},
{
"paragraph_id": 103,
"tag": "p",
"text": "åé床ã®éçŽæå v y = v 0 sin Ξ {\\displaystyle v_{y}=v_{0}\\sin \\theta }",
"title": "æŸç©éå"
},
{
"paragraph_id": 104,
"tag": "p",
"text": "æé«ç¹ã«å°éãããŸã§ã®æé T = v sin Ξ g {\\displaystyle T={\\frac {v\\sin \\theta }{g}}}",
"title": "æŸç©éå"
},
{
"paragraph_id": 105,
"tag": "p",
"text": "æé«ç¹ã®é«ã",
"title": "æŸç©éå"
},
{
"paragraph_id": 106,
"tag": "p",
"text": "以äžãäžã蚌æããã",
"title": "åéå"
},
{
"paragraph_id": 107,
"tag": "p",
"text": "ã®åŒã§ã (äžã§ãã m a r = f r {\\displaystyle ma_{r}=f_{r}} ã«å¯Ÿå¿ããã)",
"title": "åéå"
},
{
"paragraph_id": 108,
"tag": "p",
"text": "ãšãããšã r Ì {\\displaystyle {\\ddot {r}}} ãããŸãã§",
"title": "åéå"
},
{
"paragraph_id": 109,
"tag": "p",
"text": "ã®åãåããŠéåããŠããããã«èŠããããšãåãã äžåŒã®ç¬¬1é
ãé å¿åãšåŒã¶ãé å¿åã«ã€ããŠã¯çžå¯Ÿéåã® ãšããã§ãã詳ããæ±ãããŸãã第2é
ã¯éåãè¡šããåã§ããã",
"title": "åéå"
},
{
"paragraph_id": 110,
"tag": "p",
"text": "ããã§ãé¢ç©é床ãhãšãããšã",
"title": "åéå"
},
{
"paragraph_id": 111,
"tag": "p",
"text": "ã®é¢ä¿ããäžã®åã¯",
"title": "åéå"
},
{
"paragraph_id": 112,
"tag": "p",
"text": "ãšãªãããã®åã¯rã ããå€æ°ãšããŠã¿ããšãã«ãã®ç©äœã«ãããå®å¹çãªåãš èããããšãåºæ¥ããä»®ã«ãã®åãããã³ã·ã£ã«ãçšããŠè§£æãããšãããš ãã®ç©äœã®éåãã©ã®ãããªç¯å²ã§è¡ãªãããããç¥ãããšãåºæ¥ãã äŸãã°ãåæ¯åã«ãããŠã¯ããã³ã·ã£ã«ã¯æ¯å¹
ã倧ãããªããšããç¡é㫠倧ãããªãã®ã§éåã¯ç¡éã«å€§ãããªãããšã¯åºæ¥ãªãããã®æ§ãªææ³ãçšã㊠ãã®éåã解æããã®ã§ããããã1次å
ã®éåã§ã¯ããåf(x)ãäžãããããšã ãã®äœçœ®ãšãã«ã®ãŒU(x)ã¯",
"title": "åéå"
},
{
"paragraph_id": 113,
"tag": "p",
"text": "ã§äžãããããããã§ã x 0 {\\displaystyle x_{0}} ã¯èªç±ã«éžãã§ããå®æ°ã§ããããå®éã«ã¯å€ãã®å Žåã« æ
£çšçãªå€ã決ãŸã£ãŠããéã§ãããäœçœ®ãšãã«ã®ãŒã®äŸãšããŠãxæ¹åã«äžæ§ãªå-fã åãããšãã®ãã®åã«å¯Ÿããäœçœ®ãšãã«ã®ãŒãèšç®ãããå®éã«åŒã«ä»£å
¥ãããš",
"title": "åéå"
},
{
"paragraph_id": 114,
"tag": "p",
"text": "ãäžããããããã ãã x 0 = 0 {\\displaystyle x_{0}=0} ãšãããããã®äœçœ®ãšãã«ã®ãŒã¯è³ªémãæ〠ç©äœã«äžæ§ãªéåãããããšãã®äœçœ®ãšãã«ã®ãŒã«å¯Ÿå¿ããã",
"title": "åéå"
},
{
"paragraph_id": 115,
"tag": "p",
"text": "ããã§ã",
"title": "åéå"
},
{
"paragraph_id": 116,
"tag": "p",
"text": "ã®å Žåã«ã€ããŠãäœçœ®ãšãã«ã®ãŒãèšç®ããããšãåºæ¥ãã å®éã«èšç®ãããš",
"title": "åéå"
},
{
"paragraph_id": 117,
"tag": "p",
"text": "ãšãªãã",
"title": "åéå"
},
{
"paragraph_id": 118,
"tag": "p",
"text": "ãš",
"title": "åéå"
},
{
"paragraph_id": 119,
"tag": "p",
"text": "ã®åã§æžãããé¢æ°ãšãªãããã®é¢æ°ã¯å
žåçã«å³ã®ãããªåœ¢ãããŠããã",
"title": "åéå"
},
{
"paragraph_id": 120,
"tag": "p",
"text": "ããã§æšªè»žã¯åéåã®äžå¿ããã®è·é¢ã§ããã瞊軞ã¯ç©äœã®äœçœ®ãšãã«ã®ãŒã§ããã ããç©äœã¯éåã®éåžžã«çãããšãã«ã®ãŒãæã£ãŠããã®ã§ããã®å³åœ¢äžã§ã¯ åžžã«çãããšãã«ã®ãŒãæã£ãŠå·Šå³ã«ç§»åããããããŠãããã³ã·ã£ã«ãšãã«ã®ãŒã® å³åœ¢ã«è¡çªãããšãã以äžã«é²ãããšãåºæ¥ãªããªãã¯ãããããããã¯ã ãããšãã«ã®ãŒãæã£ãç©äœã¯èªèº«ãæã£ãŠãããšãã«ã®ãŒãããé«ãäœçœ®ãšãã«ã®ãŒ ããã€ç¹ã«ã¯å
¥ã蟌ããªãããšã«ãã£ãŠãããããã§ãäžã®å³åœ¢ã®äžã§ ãšãã«ã®ãŒçã«èš±ãããéåããšãã«ã®ãŒãäœãé ã«èŠãŠããã ãã ããé¢ç©é床ã0ã«çãããšãã«ã¯äžã§æžããå³ãšã¯ç°ãªã£ãå³åœ¢ã 解æã®å¯Ÿè±¡ãšãªãã",
"title": "åéå"
},
{
"paragraph_id": 121,
"tag": "p",
"text": "ãã®å Žåã解æã¯éåžžã«åçŽã§ãããç©äœã¯å¿
ãäžå¿ã®ç©äœã®éåã«åŒãã€ããã㊠æçµçã«ã¯äžå¿ã®ç©äœãšè¡çªããã",
"title": "åéå"
},
{
"paragraph_id": 122,
"tag": "p",
"text": "å
ã®å³åœ¢ã«æ»ããšã å³åœ¢äžã§äœçœ®ãšãã«ã®ãŒãæãäœãç¹ã¯çªªã¿ç¶ã«ãªã£ãŠããããã®ç¹ã®é«ãããã æŽã«äœãå
šãšãã«ã®ãŒãæã£ãç©äœã¯ååšãåŸãªããããã¯å
šãšãã«ã®ãŒã éåãšãã«ã®ãŒãšäœçœ®ãšãã«ã®ãŒã®åã§ããéåãšãã«ã®ãŒãæ£ã§ããããšãã å
šãšãã«ã®ãŒã¯å¿
ãäžããããç¹ã§ã®äœçœ®ãšãã«ã®ãŒããã倧ãããªã£ãŠããªããŠã¯ ãªããªãããã§ãããæãäœã窪ã¿ã«ãããšãã«ã®ãŒãšçãããšãã«ã®ãŒã æã£ãŠããç©äœã¯äœçœ®ãšãã«ã®ãŒã«æãŸããŠå³åœ¢äžã§åãããšãåºæ¥ãªãããã åžžã«çããååŸæ¹åæåãæã£ãŠéåããããã®éåã¯ãŸãã«åéåã«å¯Ÿå¿ããŠããã äžæ¹ã窪ã¿ãšãšãã«ã®ãŒ0ã®ç·ã®éã«äœçœ®ãããšãã«ã®ãŒãæã€ç©äœã¯ååŸæ¹åã® æåãå€åãããªããããäžå¿ã®ç©äœããã¯ãªããããšç¡ãããã®ãŸããã äœããã®ä»æ¹ã§å転ããããšãäºæ³ããããåŸã«åããã®ã ããããã¯ãŸãã« äžå¿ã®ãŸãããæ¥åéåããããšã«å¯Ÿå¿ãããããã¯ãå°çãå«ãå
šãŠã®ææã 倪éœã®ãŸãããéåããè»éãè¡šããæ
åµã§ãããææã®æ§è³ªãæ±ãäžã§ éåžžã«éèŠãªéåã§ããã æŽã«ããšãã«ã®ãŒ0ããã倧ããå
šãšãã«ã®ãŒãæã€ç©äœã¯ãrã0ã«è¿ã¥ãæ¹åã§ã¯ äœçœ®ãšãã«ã®ãŒãç¡é倧ãŸã§ååšãããããr=0ãšãªãããšã¯åºæ¥ããé©åœãª äœçœ®ã§ã¯ããããããããã",
"title": "åéå"
},
{
"paragraph_id": 123,
"tag": "p",
"text": "ãšãªãæ¹åã«ã¯äœçœ®ãšãã«ã®ãŒã®å£ãååšããªããããã®ç©äœã¯ç¡éé ãŸã§ é£ãã§ãã£ãŠããŸãããšãåããããããåŸã«åããããšã ããã®ç©äœã¯ åæ²ç·è»éãæãããšãç¥ãããŠãããäŸãã°ã倪éœç³»å€ãã倩äœãé£æ¥ããŠæ¥ãŠ 倪éœã®éåã§è»éãæ²ããããŠãã®ãŸãŸé£ã³å»ã£ãŠè¡ããšãã«ã¯ãã®ç©äœã® è»éã¯åæ²ç·ãæãã®ã§ããããŸãããšãã«ã®ãŒ0ã®ãšãã§ã",
"title": "åéå"
},
{
"paragraph_id": 124,
"tag": "p",
"text": "ãšãªãæ¹åã§ã®äœçœ®ãšãã«ã®ãŒã®å£ãååšããªããããç¡éé ãŸã§é£ãã§è¡ãããšã ãããããã®è»éã¯æŸç©ç·ã«å¯Ÿå¿ããããšãåŸã«åããã",
"title": "åéå"
},
{
"paragraph_id": 125,
"tag": "p",
"text": "äŸãšããŠãr = a = const. ãšããæ
åµã«ã€ããŠèããŠã¿ãã ãã®ãšãã é¢ç©é床ãäžå®ã§ããããšãã",
"title": "åéå"
},
{
"paragraph_id": 126,
"tag": "p",
"text": "ãåãã ãã®ãšã åŒ",
"title": "åéå"
},
{
"paragraph_id": 127,
"tag": "p",
"text": "ã解ããšã",
"title": "åéå"
},
{
"paragraph_id": 128,
"tag": "p",
"text": "ãšãªããåéåã®æ¡ä»¶ãæºãã解ãååšããããšãåãã ãŸããäžã®åŒã¯ãã©ã®ãããªaã«å¯ŸããŠãããäžå®ã® Ï {\\displaystyle \\omega } ã察å¿ããããšã瀺ããŠããã ããã¯æ£ã«äžã§ãããåéåã®å Žåã«å¯Ÿå¿ããŠããã",
"title": "åéå"
},
{
"paragraph_id": 129,
"tag": "p",
"text": "以äžãåæ¯åã®äŸã瀺ãã",
"title": "åæ¯å"
},
{
"paragraph_id": 130,
"tag": "p",
"text": "åã«ã¯æ§ã
ãªçš®é¡ãååšããããé éå(å Žã®å)ãšçŽæ¥åãåã®2ã€ã«å€§ããåããããã",
"title": "å"
},
{
"paragraph_id": 131,
"tag": "p",
"text": "ç¹ã«åäœã«å¯ŸããŠè§éåéãèãããšããæ
£æ§ã¢ãŒã¡ã³ããšããéãå®çŸ©ãããšéœåããããæ
£æ§ã¢ãŒã¡ã³ãã¯æ°åŠçã«ã¯2éã®ãã³ãœã«ã§ããããã¯ãã«ã«ããã£ããšãã«ãã¯ãã«ãåŸããšããåããæã€ãç¹ã«ãã®éã«ã€ããŠã¯ L â = I â Ï â {\\displaystyle {\\vec {L}}={\\vec {I}}{\\vec {\\omega }}} ãŸãã¯ã L i = I i j Ï j {\\displaystyle L_{i}=I_{ij}\\omega _{j}} ãæãç«ã€ã ããã§ãLã¯è§éåéãIã¯æ
£æ§ã¢ãŒã¡ã³ãã Ï {\\displaystyle \\omega } ã¯ãè§é床ã§ããã",
"title": "åäœã®éå"
},
{
"paragraph_id": 132,
"tag": "p",
"text": "åäœã質ç¹ãå¯ã«çµåãããã®ãšèãããšã è§éåéã¯ããããã®è³ªç¹ã®åã§äžããããã ããå転軞ãåã£ãŠãã®åãã®è§éåéãèãããšã L = â m i r i 2 Ï {\\displaystyle L=\\sum m_{i}r_{i}^{2}\\omega } ( r i {\\displaystyle r_{i}} ã¯è³ªç¹iã®å転軞ããã®è·é¢ã m i {\\displaystyle m_{i}} ã¯ã質ç¹iã®è³ªéã) (å
šãŠã®è³ªç¹ã¯å¯ã«çµåããŠããã®ã§ãããããåäžã®è§é床ãæã€ããšã«æ³šæã (å°åº?)) ç¹ã«ãx軞ãy軞ãz軞æ¹åã«ã€ããŠèãããšãã®å€ã¯ I k l = â i m i ( x i k x i l â ÎŽ k l r i 2 ) {\\displaystyle I_{kl}=\\sum _{i}m_{i}(x_{ik}x_{il}-\\delta _{kl}r_{i}^{2})} ãåŸãããã ããã¯ãã³ãœã«ã®åœ¢ãããŠããã®ã§ããããæ£ããæ
£æ§ã¢ãŒã¡ã³ãã®è¡šåŒã§ ããããšãåãã",
"title": "åäœã®éå"
},
{
"paragraph_id": 133,
"tag": "p",
"text": "èšç®äŸ1",
"title": "åäœã®éå"
},
{
"paragraph_id": 134,
"tag": "p",
"text": "ããå¹³é¢äžã®å(é¢å¯åºŠ Ï {\\displaystyle \\sigma } ,ååŸa)ã«ã€ããŠæ
£æ§ã¢ãŒã¡ã³ããèšç®ããã åç¹ãåã®äžå¿ãz軞ãåã«åçŽãªæ¹åã«åããš I z = â« S Ï ( x 2 + y 2 ) d x d y {\\displaystyle I_{z}=\\int _{S}\\sigma (x^{2}+y^{2})dxdy}",
"title": "åäœã®éå"
},
{
"paragraph_id": 135,
"tag": "p",
"text": "( â« S {\\displaystyle \\int _{S}} ã¯åã®é¢ç©å
šäœã§ã®é¢ç©åãè¡šããã ) = Ï â« 0 a r d r â« 0 2 Ï d Ï r 2 {\\displaystyle =\\sigma \\int _{0}^{a}rdr\\int _{0}^{2\\pi }d\\phi r^{2}}",
"title": "åäœã®éå"
},
{
"paragraph_id": 136,
"tag": "p",
"text": "(z軞ã®æ¹åãä¿ã£ãŠåæ±åº§æšãåãã) = Ï 2 Ï â« 0 a r 3 d r {\\displaystyle =\\sigma 2\\pi \\int _{0}^{a}r^{3}dr} = Ï Ï 2 a 4 {\\displaystyle =\\sigma {\\frac {\\pi }{2}}a^{4}} ãšãªãã ( Ï {\\displaystyle \\sigma } ã¯ã Ï a 2 {\\displaystyle \\sigma a^{2}} ã§è³ªéãšãªãããšããããã®çµæãæ£ãã次å
ãæã£ãŠããããšããããã)",
"title": "åäœã®éå"
},
{
"paragraph_id": 137,
"tag": "p",
"text": "ããã«ã y軞æ¹åã®å転ã«å¯Ÿããæ
£æ§ã¢ãŒã¡ã³ããèšç®ããã ãã®ãšãã«ã¯ã I y = 4 â« 0 a x 2 a 2 â x 2 Ï d x {\\displaystyle I_{y}=4\\int _{0}^{a}x^{2}{\\sqrt {a^{2}-x^{2}}}\\sigma dx} (1/4 åã«ã€ããŠèšç®ããŠããã4åããã)",
"title": "åäœã®éå"
},
{
"paragraph_id": 138,
"tag": "p",
"text": "= 4 a 4 Ï â« 0 1 u 2 1 â u 2 d u {\\displaystyle =4a^{4}\\sigma \\int _{0}^{1}u^{2}{\\sqrt {1-u^{2}}}du} (u = x/a ãšçœ®ãæãããç©åå
ã®æ°å€ã¯ç¡æ¬¡å
ã§ããããšã«æ³šæã)",
"title": "åäœã®éå"
},
{
"paragraph_id": 139,
"tag": "p",
"text": "= 4 a 4 Ï â« 0 Ï / 2 sin 2 t cos t cos t d t {\\displaystyle =4a^{4}\\sigma \\int _{0}^{\\pi /2}\\sin ^{2}t\\cos t\\cos tdt} ( u = sin t {\\displaystyle u=\\sin t} ãšçœ®ãæããã )",
"title": "åäœã®éå"
},
{
"paragraph_id": 140,
"tag": "p",
"text": "ãã®èšç®ãè¡ãªããšã ç©åã®å€ã Ï / 16 {\\displaystyle \\pi /16} ã§äžããããããšãåãã ãã£ãŠ I y = Ï 4 Ï a 4 {\\displaystyle I_{y}={\\frac {\\pi }{4}}\\sigma a^{4}} ãšãªãã ããã§å転ã«å¯Ÿãã察称æ§ãã I x = I y = Ï 4 Ï a 4 {\\displaystyle I_{x}=I_{y}={\\frac {\\pi }{4}}\\sigma a^{4}} ãšãªãããšã«æ³šæã ããã§ã I z = I x + I y {\\displaystyle I_{z}=I_{x}+I_{y}} ãšãªã£ãŠãããããã®çåŒã¯åã¿ããªãåäœã«å¯Ÿã㊠äžè¬ã«æãç«ã€ã",
"title": "åäœã®éå"
},
{
"paragraph_id": 141,
"tag": "p",
"text": "(å°åº)",
"title": "åäœã®éå"
},
{
"paragraph_id": 142,
"tag": "p",
"text": "I z = â i m i ( x i 2 + y i 2 ) {\\displaystyle I_{z}=\\sum _{i}m_{i}(x_{i}^{2}+y_{i}^{2})} , I x = â i m i ( y i 2 + z i 2 ) {\\displaystyle I_{x}=\\sum _{i}m_{i}(y_{i}^{2}+z_{i}^{2})} , I y = â i m i ( z i 2 + x i 2 ) {\\displaystyle I_{y}=\\sum _{i}m_{i}(z_{i}^{2}+x_{i}^{2})} ã§ããããåã¿ããªãç©äœã«å¯ŸããŠåã¿ããªãé¢ãšåçŽãªæ¹åã« z軞ãåããšã I x {\\displaystyle I_{x}} , I y {\\displaystyle I_{y}} ã«ã€ã㊠I x = â i m i y i 2 {\\displaystyle I_{x}=\\sum _{i}m_{i}y_{i}^{2}} , I y = â i m i x i 2 {\\displaystyle I_{y}=\\sum _{i}m_{i}x_{i}^{2}} ãæãç«ã€ã(åã¿ããªãã®ã§ z i = 0 {\\displaystyle z_{i}=0} ãšãªãã)ãã®ããšãã I z = I x + I y {\\displaystyle I_{z}=I_{x}+I_{y}} ãåŸãããã",
"title": "åäœã®éå"
}
] | null | {{Pathnav|ã¡ã€ã³ããŒãž|èªç¶ç§åŠ|ç©çåŠ|frame=1|small=1}}
{{wikipedia}}
{{wikiversity|Topic:å€å
žååŠ|å€å
žååŠ}}
{{stub}}
== ã€ã³ãããã¯ã·ã§ã³ ==
[[å€å
žååŠ/ã€ã³ãããã¯ã·ã§ã³]]{{é²æ|75%|2023-11-05}}
== ç©äœ ==
å€å
žç©çåŠã§æ±ããããããªç©äœãæã€æ§è³ªãšããŠã¯ã質éã»é»è·ã»åœ¢ç¶ãããããã®ãã¡é»è·ã«ã€ããŠã¯é»ç£æ°åŠã§æ±ããæ¬é
ç®ã®å€å
žååŠã§ã¯è³ªéãšåœ¢ç¶ã®ã¿ãæ±ãããã®ãããªãååŠçãª'''ç©äœ'''ã®ãã¡è³ªéã®ã¿ãæã¡ã倧ãããæããªãç©äœã'''質ç¹'''ãšãããå®éã®ç©äœã¯å€§ãããæã€ããéåã®å€§ããã«å¯ŸããŠç©äœã®å€§ãããç¡èŠã§ããã»ã©å°ãããã°è³ªç¹ãšèŠãªããã倧ãããæã€ç©äœã§ããã°åãå ãããšå€åœ¢ããããããªã©ããŠãç©äœã®éåã«å
šãŠã®åã䜿ãããªãäºãå€ãããããã®ãããªèŠå ãæé€ããŠäœçœ®ã®å€åã«ããéåã®ã¿ãèããããã«çæ³åãããç©äœã§ããããã¡ããã質ç¹ãã®ãããªç©äœã¯çŸå®ã«ã¯ãªããããããåçŽåããã¢ãã«ã«ã€ããŠãŸãèããããšã¯ååŠã®æ¬è³ªã®ç解ã«åœ¹ç«ã€ã
<!-- éå¿ã質ç¹ãšã¿ãªããŠããå Žåã«ã€ããŠã®èšè¿°ãã©ããã«ã»ãã -->
è€æ°ã®è³ªç¹ã®éãŸãã'''質ç¹ç³»'''ãšããã質ç¹ç³»ã®å
ã質ç¹å士ã®çžå¯Ÿçãªäœçœ®é¢ä¿ãåãå ããŠãå€ããã¬ç©äœã'''åäœ'''ãšãããå®éã®ç©äœã¯åãå ãããšå€å°ãªããšãå€åœ¢ããããåãå ããŠãå€åœ¢ãç¡èŠã§ããã»ã©ç¡¬ããã°åäœãšèŠãªããŠããã
倧ãããæã¡ãåãå ãããšå€åœ¢ããããåãå ããã®ãæ¢ãããšå
ã®ç¶æ
ã«æ»ãç©äœã匟æ§äœãšããã
æ°äœã液äœã®ããã«æ±ºãŸã£ã圢ãæãããæµããç©äœãæµäœãšãããæµäœã«ã€ããŠã¯å€å
žååŠã§ã¯ãªã[[æµäœååŠ]]ã§æ±ãã
== èšå· ==
æ§ã
ãªéãè¡šçŸããããã«ãæ°åŠã§ã¯ãã®éãèšå·ãçšããŠè¡šãã以äžã«ä»£è¡šçãªéãšãã®èšå·ã®äŸã以äžã«æããããããã¯åãªãäŸã§ãããæ¬æžã«éããå
šãŠã®éããã®è¡šã«åŸã£ãŠæžãè¡šãããŠããããã§ã¯ãªãã<math>t</math> ã <math>m</math> ã®ãããªèšå·ãçšããŠéãè¡šçŸããã®ã¯åé·ãªè¡šçŸãçããŸãšããç®çã§è¡ãããã
{| class="wikitable" style="text-align:center"
|+ | ç©çéãšèšå·
|-
!| ç©çé || èšå· || ç©çé || èšå·
|-
|| äœçœ® || <math>x, r, q</math>
|| é·ã || <math>L, l, \lambda</math>
|-
|| é¢ç© || <math>S, A</math>
|| äœç© || <math>V, \Omega</math>
|-
|| ååŸ || <math>r, R, a</math>
|| è§åºŠ || <math>\theta, \phi, \psi, \alpha, \beta</math>
|-
|| è§é床 || <math>\omega</math>
|| æå»ããã³æé || <math>t, \tau</math>
|-
|| é床 || <math>v, V, u</math>
|| å é床 || <math>a, \alpha</math>
|-
|| èºåºŠ || <math>j</math>
|| 質é || <math>m, M, \mu</math>
|-
|| å¯åºŠ || <math>\rho, \sigma</math>
|| å || <math>F, f</math>
|-
|| éåé || <math>p, \pi</math>
|| åç© || <math>I</math>
|-
|| ä»äº || <math>W, w</math>
|| ãšãã«ã®ãŒ || <math>E, \varepsilon</math>
|-
|| éåãšãã«ã®ãŒ || <math>K, T</math>
|| ããã³ã·ã£ã«ãšãã«ã®ãŒ || <math>U, V, \phi, \Phi</math>
|-
|| ã°ãå®æ° || <math>k</math>
|| éåå é床 || <math>g</math>
|}
== ç©çé ==
'''[[w:ç©çé|ç©çé]]''' (physical quantity) ãšã¯ãçŽæ¥çãªããéæ¥çãª[[w:枬å®|枬å®]]ãéããŠåççã«æ±ºå®å¯èœãããããª'''[[w:ç³» (èªç¶ç§åŠ)|ç³»]]''' (system) ã®ç¹åŸŽéã§ãããååŠã«ãããç³»ãšã¯ãæãäžè¬çã«ã¯éåããç©äœïŒã®éãŸãïŒãšç©äœãéåãã空éã®ããšã§ãããç³»ãç¹åŸŽã¥ããç©çéã¯ç©äœãç©äœã®éå£ã«ä»éããéã§ãã£ããã空éã«ä»éãããã®ã§ãã£ããããããã¯ç©äœãšç©ºéã®é¢ä¿æ§ãæã瀺ããã®ã§ãã£ããæ§ã
ã§ãããæãåºæ¬çãªç©çéãšããŠã¯ãããææšãšãªãç©äœãšç©ºéäžã®äžç¹ãçµã¶è·é¢ãæããããã
ç©äœãéåããå Žåããã®ç©äœãæãè»è·¡ãšãã®æã
ã®æå»ãçµã³ã€ããŠèããããšãã§ãããç©äœã®éåã«å¯Ÿããæå»ãšããŠã©ã®ãããªãã®ãéžã¶ãã¯å
šãæããã§ã¯ãªãããå·®ãåœãã£ãŠããåçŽãªéåãåºæºã«ããããšã«ãã£ãŠæå»ãå®ãããããšããããšãèªããããåçŽãªéåãã¯ããšãã°å€ªéœãæãæ²ãåšæãæã®æºã¡æ¬ ãã ã£ãããå£ç¯ã®ç§»ãå€ãããããããã¯æèšã®ç§éã®åãã ã£ããæ§ã
ã§ããããã®ãããªæå»ãç¥ãæéã枬ãããã®è£
眮ãªããä»çµã¿ã¯ãå°ããæèšããšåŒã°ãããæã
ãæèšãèŠãŠæå»ãç¥ãããšã«ã€ããŠã¯å·®ãåœãã£ãŠäœã®å¶çŽãäžããããªããåŸã£ãŠãçæ³çãªæèšãšããŠä»»æã®é£ç¶çãªæå»ãæ£ç¢ºã«ç€ºããã®ãèããããšãã§ããããã®ãããªä»®æ³çãªæèšã¯å¯äžã€ã«æ±ºãŸã£ãŠããããã§ã¯ãªãæéã®æž¬ãæ¹ã«ãã£ãŠç¡æ°ã®æèšãååšããããããããã®æèšãæãæå»ã«ã€ããŠã®å¯Ÿå¿é¢ä¿ãã¯ã£ãããšããŠãããªããã®å
ã®ã©ããäžã€ã䜿ãã°ããããšã«ãªããå®éã«ã¯ãçŸå®ã«ååšããæèšãšåã枬ãæ¹ã®ãã®ãéžã¶ããšã«ãªãã ããã
ãã®ãããªçæ³çãªæèšã«ãã£ãŠç¹åŸŽã¥ãããã[[w:æé|æé]]ãã®ãã®ã¯ãåã«ç©äœã®éåã幟äœåŠçãªèå°ã«ç«ãããããã®éå
·ç«ãŠä»¥äžã®æå³ãæããªãã
æèšã«ãã£ãŠæéã枬ãããšãã§ããã°ãåæå»ã«ãããç©äœã®äœçœ®ããç©äœã®é床ãå®ããããšãã§ãããé床ã¯ã[[å€å
žååŠ/ã€ã³ãããã¯ã·ã§ã³|åç¯]]ã§çŽ¹ä»ããããã«ã2 ã€ã®æå»ã«ãããäœçœ®ã®å€åéããã®éã«çµéããæéã§å²ã£ããã®ãšããŠå°å
¥ããããç©äœã®é床 <math>v(t)</math> ã¯ç©äœã®äœçœ® <math>x(t)</math> ãæå» <math>t</math> ã«ã€ããŠåŸ®åãããã®ãšããŠå®çŸ©ããããç©äœã®äœçœ® <math>x(t)</math> ããã³é床 <math>v(t)</math> ã®å
šäœåã¯æå» <math>t</math> ã®é¢æ°ãšããŠå®çŸ©ãããã
:<math>
v(t) := \frac{dx(t)}{dt}
= \lim_{h \to 0} \frac{x(t+h) - x(t)}{h}.
</math>
ãã®å®çŸ©ã¯ç©äœã®äœçœ®ããã³é床ããã¯ãã«ã§ãã£ãŠãå€ãããªãããã¯ãã«ã倪åã§è¡šãã°æ¬¡ã®ããã«ãªãã
:<math>
\boldsymbol{v}(t) := \frac{d\boldsymbol{x}(t)}{dt}
= \lim_{h \to 0} \frac{\boldsymbol{x}(t+h) - \boldsymbol{x}(t)}{h}.
</math>
åæ§ã«ããŠãé床 <math>\boldsymbol{v}(t)</math> ã®å€åã®å²åãšããŠå é床 <math>\boldsymbol{a}(t)</math> ãã
:<math>
\boldsymbol{a}(t) := \frac{d\boldsymbol{v}(t)}{dt}
= \frac{d^2\boldsymbol{x}(t)}{dt^2}
</math>
å é床 <math>\boldsymbol{a}(t)</math> ã®å€åã®å²åãšããŠ[[w:èºåºŠ|èºåºŠ]] (jerk)
:<math>
\boldsymbol{j}(t) := \frac{d\boldsymbol{a}(t)}{dt}
= \frac{d^2\boldsymbol{v}(t)}{dt^2}
= \frac{d^3\boldsymbol{x}(t)}{dt^3}
</math>
ãå®çŸ©ã§ãããé«éã®æé埮åã«ãã£ãŠå®çŸ©ãããéãæšå®ããããã«ã¯ãçŽæ¥çã«ã¯äœçœ®ãšæå»ã®æž¬å®ãæ°å€ãè¡ãå¿
èŠããããããšãã°é床ã枬å®ããããã«ã¯ãçŽæ¥çã«ã¯ 2 ã€ã®äœçœ®ãšæå»ã®çµãå®ããããšãå¿
èŠãšãªããåæ§ã«å é床ã枬ãããã«ã¯ 2 ã€ã®æå»ã«ãããé床ãç¥ãå¿
èŠããããããäœçœ®ãšæå»ã®çµã 3 ç¹æž¬å®ããªããã°ãªããªãã
ååŠã«ãããŠã©ã®çšåºŠãŸã§é«éã®åŸ®åãæ±ããå¿
èŠãããã ããããå
èµ°ã£ãŠèšãã°ããã¥ãŒãã³ååŠã«ãããŠã¯ããæå»ã«ãããç©äœã®äœçœ®ãšé床ã決å®ããããšã§ããã®ç©äœã®æªæ¥ãšéå»ã«ãããéåãå®å
šã«äºæž¬ããããšãã§ããåŸã£ãŠéåãèšè¿°ããã«ã¯ç©äœã®å é床ãåãã£ãŠããã°å
åãšããããšã«ãªãããã®ãã¥ãŒãã³ååŠã®æ§è³ªã¯'''ãã¥ãŒãã³ã®æ±ºå®æ§åç'''ãšåŒã°ãããå€ãã®ç©äœã®éåã«ã€ããŠããã¥ãŒãã³ååŠã«ãã£ãŠæ£ç¢ºãªäºæž¬ãåŸãããäºå®ã¯ããããã®çŸè±¡ã®èåŸã«ãã決å®æ§åçã®ååšãæã«ç€ºããŠãããšèšããã ããã
ååŠã«ãããŠåºæ¬ãšãªãéã¯ãäœçœ®ãæéãé床ãå é床ã®ãããªç©äœã®éåãšããŠçŽæ¥æããããéã®ä»ã«ã[[w:å|å]]ã[[w:質é|質é]]ã[[w:éåé|éåé]]ã[[w:ãšãã«ã®ãŒ|ãšãã«ã®ãŒ]]ãšãã£ããã®ãããããããã«ã€ããŠã¯ãŸãå¥ã®ç¯ãèšããŠè©³ããè¿°ã¹ãããšã«ããããæ»ãæãã§ããããã©ã®ãããªéã§ããããè¿°ã¹ããã
質éã¯ç©äœã®äºã€ã®ç°ãªãæ§è³ªã決å®ãããäžã€ã¯ç©äœã®åããã«ãããšæ¢ãã«ããã§ãããããäžã€ã¯ç©äœã®éãã§ããã質éã倧ããªç©äœã»ã©åããã¥ãããŸãæ¢ãã¥ãããç©äœã®éãã¯è³ªéã«æ¯äŸãã質éã倧ããã»ã©ç©äœã¯éããªããæèŠçã«ã¯è³ªéã®ãããã®æ§è³ªãç©äœã®ãéãããšããŠæããšãããã
åã¯ç©äœã®éåãå€åãããèŠå ã§ãããåã®çºçæºã¯æ§ã
ã§ãããååŠã«ãããŠç¹ã«åã®çºçæºãç¹å®ããããšã¯ãªãããã¥ãŒãã³ååŠã§ã¯ããã¹ãŠã®åã¯ç©äœå士ãçµã¶çžäºäœçšãšããŠèšè¿°ããããæãçŽæçãªäŸã¯ç©äœå士ãè¡çªãããããããšãã«åãæ¥è§Šåã ãããç©ãæã¡éã¶éã«æããéã¿ã¯ãéã°ããè·ç©ã«ãã£ãŠåãŒãããåãåå ãšããŠçããæèŠã§ãããšç解ã§ãããä»ã«ä»£è¡šçãªãã®ã¯äžæåŒåãšéé»æ°åãããã³ç£åã§ããããããã¯ç©äœãæ¥è§ŠããŠããªããŠãåããããéæ¥è§ŠåãšãåŒã°ããïŒé éåãšãé éäœçšãšåŒã¶ããšãããããç©çåŠã§ã¯é éãšããèšèã¯ç¹å¥ã®æå³ãæã€ã®ã§ããããã®èªãçšããéã«ã¯æ··åãããªããã泚æãã¹ãã ããïŒã
åãã®ãã®ã¯åŠäœã«ãã®æ¯ãèããçŽæçã§ããããšãæŠå¿µçãªãã®ã§ãããçŽæ¥çã«åãç¥ããã¹ã¯ãªããããããªãããåãåãŒãããã§ãããç©äœã¯ããã®éåã«å€åãçãããããç©äœã®å é床ãšçµã³ã€ããŠèããããšãã§ãããããã§è³ªéã¯ç©äœã«å ããããåã«å¯ŸããŠã©ãã ãã®å é床ãçãããã®ææšãšããŠçšããããã
éåéã¯ç©äœã®å¢ãã瀺ãéã§ãããç©äœã®å¢ãã¯ç©äœã®æ¢ãã«ãããç©äœã®éãã«çµã³ä»ããããéåéã¯ç©äœã®è³ªéãšé床ã«é¢ä¿ããéãšããŠå®çŸ©ããããç©äœã®é床ã倧ããã»ã©ããŸããã®è³ªéã倧ããã»ã©ç©äœã®éåéã¯å€§ãããªãããšãã«ã®ãŒã¯ç©äœãåããéã«ç©äœãšããåããããéã§ãããããããŸãç©äœã®éåã®å¢ããç¹åŸŽä»ãããéåéãšãšãã«ã®ãŒã¯ãŸããç¹å®ã®æ¡ä»¶ã®äžã§ãã®ç·éãäžå®ã«ä¿ãããããšãç¥ãããã
{{ç¯stub}}
== éåã®äžæ³å ==
éåã®äžæ³åãšã¯æ¬¡ã®ïŒã€ã®æ³åã®ããšã§ããã
#éåã®ç¬¬ïŒæ³åïŒæ
£æ§ã®æ³åïŒ:
#:ç©äœã«åãåããªããšããç©äœã¯éæ¢ç¶æ
ãçé床éåãç¶ããã
#éåã®ç¬¬ïŒæ³åïŒéåã®æ³åïŒ:
#:å é床ã®å€§ããã¯åã®å€§ããã«æ¯äŸããç©äœã®è³ªéã«åæ¯äŸããã
#éåã®ç¬¬ïŒæ³åïŒäœçšåäœçšã®æ³åïŒ:
#:ããç©äœãä»ã®ç©äœã«åãäžãããšããããç©äœã¯ä»ã®ç©äœãã倧ãããçãããéåãã®åãåããã
第ïŒæ³åã¯éåãšãããã®ãç©äœãšèŠ³æž¬è
ã®çžå¯Ÿçãªé¢ä¿ã§ããããå¿
èŠãšãªããã€ãŸãç©äœããšãŸã£ãŠããŠãã芳枬è
ãè€éãªéåãããŠããã°ç©äœã¯ïŒèŠ³æž¬è
ããèŠãŠïŒè€éãªéåãããããã®ãããªèŠããäžã®éåãŸã§å«ãããšååŠã¯äžå¿
èŠã«è€éã«ãªãïŒå°ãªããšãå
¥éã¬ãã«ã§ã¯ïŒããããé€ãã«ã¯èŠ³æž¬è
ã«ãå¶éãã€ããªããã°ãªããªãã第ïŒæ³åããã®å¶éãšãªããã€ãŸããéåã®ç¬¬ïŒç¬¬ïŒæ³åãæãç«ã€ã®ã¯ã第ïŒæ³åãæãç«ã€ãããªèŠ³æž¬è
ã§ããããšãåæã«ããå Žåã«éãããšã«ãªãããã®ãããªèŠ³æž¬è
ãçšãã座æšç³»ã'''æ
£æ§ç³»'''ãšãã¶ãæ
£æ§ç³»ã¯éåããã£ãšãç°¡åã«ïŒãããã¯ãçŽ çŽãã«ïŒèšè¿°ã§ãã座æšç³»ãšèããŠããã
ãã®ç¬¬ïŒæ³åã«è¿°ã¹ãããŠããå
容ã¯ãç©çæ³åã¯å
šãŠã®æ
£æ§ç³»ã«ãããŠçãããæ
£æ§ç³»ã«å¯ŸããŠçéçŽç·éåãããŠããç³»ã¯å
šãŠæ
£æ§ç³»ã§ãããšãã'''ã¬ãªã¬ã€ã®çžå¯Ÿæ§åç'''ã«åºã¥ãããã®ã§ããã
éåã®ç¬¬ïŒæ³åãåŒã§è¡šããšã'''éåæ¹çšåŒ''' ''F''=''ma''ãšãªããããã§ã''F''ã¯ç©äœã«å ããããåã§ããã次å
ã®é«ãéåã§ãããäœçœ®''r''ããã¯ãã«ã§æžãããå Žåããã®åŒã¯
:<math> \vec{F} = m\vec{a} = m\frac{d^2\vec{r}}{dt^2} </math>
ãšãã圢ã«ãªãã質é''m''ã¯ã¹ã«ã©ãŒã§ãããäœçœ®''r''ãšå''F''ã¯ãã¯ãã«ã§ããã
埮åæ¹çšåŒè«ã«ãããåæå€åé¡ã®ããç¥ãããçµæãããããæç¹ã§ã®<math>\vec{r}</math>ãš<math>\vec{v}</math>ãäžããã°ããã®åŸ®åæ¹çšåŒã®è§£ã¯äžæã«ååšãããšããããšãåããããã質ç¹ã®äœçœ®ãšé床ã«ãããã®åŸã®è³ªç¹ã®éåã¯å
šãŠæ±ºå®ãããã
ããã¯ãã¥ãŒãã³ã®æ±ºå®æ§åçã®äž»åŒµãããšãããšåãã§ããã
æ°åŠçã«ã¯ã<math>\vec{r}</math>ã®äžé以äžã®æé埮åãå«ãæ¹çšåŒãèããäºãã§ãããããã¥ãŒãã³ã®æ±ºå®æ§åçã«ããå€å
žååŠã®èšè¿°ã«ã¯ãã®ãããªé«éã®åŸ®åãäžèŠã§ããããšãåãã£ãŠããã®ã§ããã
第ïŒæ³åã¯ãåã®é£ãåãã«é¢ãããã®ã§ã¯ãªãã2äœéã®åã®åãŒãåãã«é¢ããæ³åã§ãããæã
ãå°é¢ã«ç«ã€ãšããèªãã®éãã«ãã£ãŠå°é¢ãæŒããŠããããšã«ãªãããéã«åãã ãã®åã«ãã£ãŠå°é¢ã«æŒãè¿ããŠè²°ã£ãŠããããã«å°é¢ã®äžã§éæ¢ã§ããã®ã§ãããå°é¢ããé¢ããŠè·³ã³äžããããšæãã°ãæ®æ®µãã匷ãåã§å°é¢ã蹎ãããšã«ãããåãã ãã®åãå°é¢ããäžããããè·³ã³äžããããšãã§ããããã«ãªãããã ãã®å Žåã¯ãåäœçšã®åãåããã®ã¯å°é¢ã蹎ã£ãæã ãã§ãããããå°é¢ãé¢ããåŸã¯ãåŒåãšå察æ¹åã®åãåŸããããåã³å°é¢ã«åŒãå¯ããããŠããŸãããšã«ãªãã
== éåã®äžæ³åãã©ã䜿ãã ==
ååŠã®äž»èŠãªç®çã¯æ³åã䜿ã£ãŠç©äœã®éåãå®éçãããã¯å®æ§çã«äºæž¬ããããšããéåãã¯ç©äœã®äœçœ®ãã¯ãã«<math>\vec{r}</math>ãæéãšãšãã«ã©ãå€åããããèšãæãããš<math>\vec{r}</math>ãæéã®ã©ã®ãããªé¢æ°<math>\vec{r}(t)</math>ã«ãªããã§è¡šããããããã§äœæ¥ã¯<math>\vec{r}(t)</math>ãæºãããéåæ¹çšåŒããæ±ãã次ã«ããã解ããšããäºæ®µéã«åããããïŒ
ïŒ.ïŒéåæ¹çšåŒã®å°åºïŒåé¡ãšããç¶æ³ã«ãããŠç©äœãåããåãæ±ãããéåãé»ç£æ°åã®æ³åã䜿ãããè€æ°ã®ç©äœããããåé¡ã§ã¯ç¬¬ïŒæ³åãéèŠãªåãããããç©äœãåããåã¯äžè¬ã«ã¯ãã®äœçœ®<math>\vec{r}</math>ããã³æå»<math>t</math>ã«äŸåããã®ã§<math>\vec{F}=\vec{F}(t,\vec{r})</math>ãšãªãããç¹ã«äœçœ®ãžã®äŸåæ§ãéèŠãªåé¡ãå€ãããã®çµæã第ïŒæ³åã«ä»£å
¥ãããš
:<math>m\frac{d^2\vec{r}}{dt^2}=\vec{F}(t,\vec{r})</math>
ãšãªãããããéåæ¹çšåŒãæ°åŠçã«ã¯<math>\vec{r}</math>ãæºãã2é埮åæ¹çšåŒã«ä»ãªããªãã
ïŒ.ïŒéåæ¹çšåŒã解ãïŒéåæ¹çšåŒã解ããŠéåãæ±ãããåççã«ã¯é©åãªåææ¡ä»¶ãäžããäžã§ããã解ãã°ãããäºéãªã®ã§åææ¡ä»¶ã¯åææå»''t''<sub>''i''</sub>ã§ã®äœçœ®<math>\vec{r}(t=t_i)</math>ãšé床<math>d\vec{r}/dt(t=t_i)</math>ãå¿
èŠãç©ççã«ã¯ããæå»ã®äœçœ®ãšé床ã決ãããšããã以éã®éåãå®å
šã«æ±ºãŸãããšãæå³ããïŒããŒã«ãæããå Žåãæããããã°ãããããŒã«ãæããé¢ããç¬éã®äœçœ®ãšé床ã§ãã®åŸã®ã³ãŒã¹ã決ãŸãããã§ããïŒã
ãšã¯ãããäºé埮åæ¹çšåŒã¯äºæ¬¡æ¹çšåŒã®ããã«äžè¬çãªè§£ã®å
¬åŒãããããã§ã¯ãªããããã©ãããåãå°ã
è€éã«ãªããšã解ãæ¢ç¥ã®é¢æ°ã®çµåãã§è¡šããªãããšãæ®éããããã©ãããããååŠã®åé¡ãšãªãã幞ã"good news"ãããïŒ
# ç©çãšããŠéèŠãªåºæ¬çãªåé¡ã«ã¯ãå³å¯ã«è§£ãããã®ãå€ãã代衚çãªäŸã¯å°çè¡šé¢è¿ãïŒã€ãŸãéåãäžæ§äžå®ïŒã§ã®ããŒã«ã®éåã倪éœã®åšãã®ææã®åé¡ãã°ãã«ã€ãªãããç©ã®éåãªã©ã解ããªããã®ãããããå³å¯ã«è§£ãããã®ããããããè€éåããããã®ãšã¿ãªãããšã§ããçšåºŠç解ã§ããã
# å³å¯ãªè§£ãåŸãããªããŠããéèŠãªå®æ§çæ§è³ªãåŸãããããšããããäŸãã°ãã€ãŸã§ãåãã€ã¥ããã®ãåŠããæéãªç¯å²ãåãåãã®ããã©ããŸã§ãé ãã«å»ã£ãŠããŸãã®ãããªã©ã
ãããã®å Žåãããä¿åéããã«ã®ã«ãªããä¿åéãšã¯äœçœ®ãšé床ããã圢ã§çµåããåŒã§ããã®å€ãéåã®åãããçµãããŸã§å€ããã¬äžå®å€ããšããã®ãåãããæ¡ä»¶ãæºããå Žåã«ååšãããããããããšéåã®èªç±åºŠãæžãã®ã§è§£ãããããªãïŒä¿åéã®åæ°ãååãªãã2éã®æ¹çšåŒãäžéã«çŽããŠç©åã§è§£ãããšãå¯èœã«ãªãïŒãããŸã倧ããªå¶éãšãªãã®ã§å®æ§çæ§è³ªãåããããããªãã代衚çãªä¿åéã®åè£ã¯ãšãã«ã®ãŒãéåéãè§éåéã
äžæ¹ãä¿åéãååšããªãéåããããã¯èªç±åºŠã«æ¯ã¹ä¿åéã®æ°ãå°ãªãéåã¯ãããŠãè€éã§ã解ãããšãå®æ§çæ§è³ªãæããããšãé£ããããã®ãããªéåã調ã¹ãã«ã¯èšç®æ©äžã®æ°å€èšç®ãªã©ãå¿
èŠãšãªããå®ã¯ãã®ãããªéåãç¬èªã®èå³ãšéèŠæ§ãæã€ããšãããã代衚çãªã®ã¯ã«ãªã¹çãªéåãšåŒã°ãããã®ã§ãå€ãã®ç 究ããããŠããŠããã
以äžã®ãããªäºæ
ãããååŠã§ã¯ãŸãä¿åéã®ãããªåºæ¬çãªæŠå¿µãšå³å¯ã«è§£ããåºæ¬çãªéåãæ±ãããã®äžã§å€ãã®éåã«éããæ£ããçŽèŠ³ã身ã«ä»ãããåºæ¬çãªéåã«ã¯çå é床éåãæŸç©éåãåéåãæ¥åéåãåæ¯åãªã©ããããå€ãã®çŸè±¡ããããã®éåããè€éåããããã®ãšããŠç解ã§ããããã®ç¯çããå€ããã«ãªã¹çãªéåã®ãããªãã®ã¯ãããã®åºç€ãåå身ã«ä»ããåŸã§ãããã°ç¹è«ãšããŠåãçµãã®ãããããŸãéåã®æ³åãããæ°åŠçã«æŽçãã解æååŠãšãããããã®ããããããã¯ä¿åéã系統çã«æ±ããæ¹æ³ã座æšç³»ãæããæ¹æ³ãªã©åçš®ã®é«çŽãªæè¡ãæäŸããããã«éåååŠãªã©ããé²ãã ç©çã«é²ãã«ã¯å¿
èŠäžå¯æ¬ ãªã®ã§ããããæœè±¡çã§ãããã¥ããé¢ãããããã¯ãããçšåºŠçŽèŠ³ã身ã«ä»ããŠããåŠã¶ã®ãããã
== éåã®ä¿åéã®äŸïŒãšãã«ã®ãŒ ==
=== ãšãã«ã®ãŒã®çºèŠ ===
ç©çã§ã¯ãšãã«ã®ãŒãéåéãªã©ã®ä¿åéãéèŠãªåãããããååŠã«ãããŠãããã¯åæ§ã§ããããç¹ã«èªç±åºŠã®å°ããç³»ã§ã®éåãæ±ãå Žåã«ã¯ãä¿åéã®å©çšã«ããéåãã»ãšãã©æ±ºå®ãããŠããŸãã
ãã£ãšãç°¡åïŒã§ãããéèŠïŒãªäŸã¯çŽç·äžã®ç²åã®éåã§ããšãã«ã®ãŒãä¿åãããå Žåãç²åã®åº§æšã''x''ãšããããã''x''ã ãã«äŸåããå''F(x)''ãåãããšãããäŸãã°ã°ãã«ã€ãªãããç²åã§ã¯ã''F(x)=−kx''ã«ãªãããã®ãšãéåæ¹çšåŒã¯
:<math>m \frac{d^2x}{dt^2}=F(x)</math>
ããã''x''ã«ã€ããŠã®åŸ®åæ¹çšåŒãšã¿ãŠåææ¡ä»¶ ãt=t<sub>i</sub>ã§(x,dx/dt)=(x<sub>i</sub>,v<sub>i</sub>)ãã§è§£ãã°ããããããäºéã ãšé¢åãªã®ã§ã䞡蟺ã«dx/dtãæããŠã¿ãããããš
:<math>m \frac{dx}{dt}\frac{d^2x}{dt^2}=\frac{dx}{dt}F(x)</math>
ããã§åæé¢æ°ã®åŸ®ååŽã䜿ããšã巊蟺ã¯
:<math>m \frac{dx}{dt}\frac{d^2x}{dt^2}=\frac{d}{dt}\frac{m}{2}\left(\frac{dx}{dt}\right)^2</math>
ãšãªãã
ããã§''F(x)''ã®åå§é¢æ°ã ''f(x)''ãšãããšïŒ'''åå§é¢æ°'''ãšã¯''df/dx=F(x)''ãæºããé¢æ°''f(x)''ãäŸãã°''f(x)=(k/2)x<sup>2</sup>''ã¯''F(x)=kx''ã®åå§é¢æ°ã§ããã)
:<math>\frac{d}{dt}f(x)=\frac{dx}{dt}F(x)</math>
ãšãªãã®ã§
:<math>\frac{d}{dt}\frac{m}{2}\left(\frac{dx}{dt}\right)^2=\frac{d}{dt}f(x)</math>
巊蟺ãå³èŸºäž¡æ¹ãšãããé¢æ°ã®åŸ®åãªã®ã§ãå³èŸºã巊蟺ã«ç§»è¡ããŠãŸãšãããš
:<math>\frac{d}{dt}\left\{\frac{m}{2}\left(\frac{dx}{dt}\right)^2-f(x)\right\}=0</math>
ããã§ã{}ã®äžèº«ã¯æéã«äŸåããªãå®æ°ãå³ã¡ä¿åéã«ãªããäžèº«ã足ãç®ã§æžããã''U(x):=−f(x)''ãšãããš
:<math>\frac{d}{dt}\left\{\frac{m}{2}\left(\frac{dx}{dt}\right)^2+U(x)\right\}=0</math>
ãšãªãã以äžã®çµæããŸãšããããç©äœããã®äœçœ®ã ãã«äŸåããå''F(x)''ã ããåããŠçŽç·éåãããå Žåã«ã''U(x)'' ã ''dU/dx=−F(x)'' ãæºããé¢æ°ãšããŠå®çŸ©ããããã«äœçœ®ãšé床ãåŒæ°ãšããé¢æ°E(x,dx/dt)ã次ã§å®çŸ©ããã
:<math>E\left(x, \frac{dx}{dt}\right):=\frac{m}{2}\left(\frac{dx}{dt}\right)^2+U(x)</math>
ãããšã''E'' ã®å€ã¯éåã®éãå€ãå€ãããªãå®æ°ã«ãªããã€ãŸã''E(x,dx/dt)''ã¯ä¿åéã§ãããããã¯'''ãšãã«ã®ãŒ'''ãšåŒã°ããã
ãšãã«ã®ãŒã®å€ã¯åææ¡ä»¶ã§æ±ºãŸããã€ãŸãt=t<sub>i</sub>ã®æã®å€ãšåããªã®ã§ã
:<math>E\left(x(t),\frac{dx(t)}{dt}\right)=\frac{m}{2}v_i^2+U(x_i)</math>
ãšãã«ã®ãŒã¯äºã€ã®é
ã®åã«ãªã£ãŠãããæåã®é
(m/2)v<sup>2</sup>ã¯é床ã§æ±ºãŸãã®ã§'''éåãšãã«ã®ãŒ'''ã
äºçªç®ã®é
''U''ã¯äœçœ®ã§æ±ºãŸãã®ã§'''äœçœ®ãšãã«ã®ãŒ'''ãŸãã¯'''ããã³ã·ã£ã«ãšãã«ã®ãŒ'''ãšåŒã°ãããéåãšãã«ã®ãŒãšäœçœ®ãšãã«ã®ãŒã¯ãããããåå¥ã«èŠããšéåã®éå€åããã
ããããããã®åã¯å€åããªããå®æ°ã«ãªãã®ã§ããã
=== ãšãã«ã®ãŒä¿åã«åºã¥ãå®æ§çãªè§£æ ===
ãšãã«ã®ãŒãä¿åããããšããäºå®ã ããããéåã®æ§åãããªãåããããšãã«ã®ãŒã®å€ãE<sub>i</sub>ãšãããšãéåã®éãåžžã«
:<math>\frac{m}{2}v^2+U(x)=E_i</math>
ãæãç«ã€ãæžãæãããš
:<math>E_i-U(x)=\frac{m}{2}v^2\ge 0</math>
åŸã£ãŠéåã§xãåãã®ã¯ <math>E_i\ge U(x)</math> ãæãç«ã€ç¯å²ã«éããããã€ãŸã暪軞ã«xã瞊軞ã«y=U(x)ã®ã°ã©ããæžããå Žåã
æ°Žå¹³ç·<math>y=E_i</math>ã®äžã«æ²ç·<math>y=U(x)</math>ãããé åãéåã®ç¯å²ãšãªãããã®äºã€ã®ç·ãé¢ããŠããé åã»ã©éåã®é床ã¯éãã
éåã®éãvãšxã®éã«ã¯
:<math>v=\pm \sqrt{\frac{2}{m}(E_i-U(x))}</math>
ãæãç«ã€ãè€å·ã®ã©ã¡ãããšããã¯åææ¡ä»¶ãšæå»ã§æ±ºãŸããäŸãã°<math>v_i>0</math>ã®å Žåãvã¯é£ç¶ã«ããå€ãããªãã®ã§ãããªã笊åãå€ããããšã¯ããããã
ãã°ããã¯v>0ã®ãŸãŸåãæ¹åïŒxå¢å ã®æ¹åïŒã«åãã笊å·ãå€ããããã®ã¯v=0ãå³ã¡<math>y=E_i</math>ãš<math>y=U(x)</math>ã®
亀ç¹ã倧éæã«ã¯äº€ç¹ã«éãããŸã§ã¯åãæ¹åã«åãã€ã¥ãã亀ç¹ã«éãããšäžç¬v=0ã«ãªããããããé床ã®ç¬Šå·ãå€ãã£ãŠéåãã«åãã
äœãããã¯äº€ç¹ã§äº€ããè§åºŠã0ããã倧ããããšãåæãè§åºŠã0ãã€ãŸã<math>y=E_i</math>ãš<math>y=U(x)</math>ã
æ¥ããå Žåã«ã¯ãã现ãã解æãå¿
èŠã§ã亀ç¹ã«æ°žé ã«éããªãæãããããéãããšããã§éæ¢ããããšãããããã
ãã®äº€ç¹åšå²ã®æ¯ãèãã調ã¹ãã«ã¯éåæ¹çšåŒã«æ»ãã
以äžã®ããšãçŽèŠ³çã«æããã«ã¯ãžã§ããã³ãŒã¹ã¿ãŒã®è»éã®ããã«äžäžããè»éã®äžã«ãããããŒã«ã®éåãã€ã¡ãŒãžããã°ããã
=== ãšãã«ã®ãŒä¿åããåŸãããå³å¯è§£ ===
ãšãã«ã®ãŒä¿ååããéåæ¹çšåŒã®è§£ãç©åã®åœ¢ã§åŸããããç°¡åã®ãããåææå»ã§<math>v_i=dx/dt>0</math>ãšããäžã®åŒã§å³èŸºãæ£ã®éã®éåãèããïŒè² ã®å Žåãåæ§ã®èãæ¹ã§åããïŒã<math>v=dx/dt</math>ãå
¥ãããš
<math>dx/dt=\sqrt{\frac{2}{m}(E_i-U(x))}</math>
å³èŸºã¯æ£ãªã®ã§xãštã®å¯Ÿå¿ã¯äžå¯Ÿäžãšãªããéã«tãxã®é¢æ°ãšã¿ãªããããããš
<math>dt/dx=1/\sqrt{(2/m)(E_i-U(x))}</math>
ãšãªãã®ã§ã䞡蟺ãxã§ç©åããŠåææ¡ä»¶(t=tiã§x=xi)ã䜿ããš
<math>t=t_i+\sqrt{\frac{m}{2}}\int_{x_i}^x \frac{dx'}{\sqrt{E_i-U(x')}}</math>
ããã§äžè¬è§£ãåŸããããå<math>F(x)</math>ãäžããããã°ãããããUãæ±ããäžã®å³èŸºã®ç©åãå®è¡ããå¿
èŠãªãx=h(t)ãšãã圢ã«çŽãã°éåãåŸããããç©åãé¢åãããšããæåã«x=h(t)ã§ã¯ãªãt=g(x)ãšãã圢ã«ãªãã®ãããŸãã¡ãšæãããç¥ããªãããããã§ãå³å¯è§£ãå®ç©åãšããéãã圢ã§åŸãããããšã¯å€§ããªæå³ããã€ã
äžã®å³èŸºã®ç©åãåççã«ã§ããç¹ã«éèŠãªäŸã¯ãã°ãã«ã€ãªãããç©äœ(<math>f(x)=-kx, U(x)=kx^2/2</math>ãããäžã§è©³ããæ±ãïŒããŸã倪éœã®åšãã®ææã®éåãåŸã§è¿°ã¹ãè§éåéä¿ååŽã䜿ããšïŒæ¬¡å
ã®åé¡ã«éå
ã§ãã倪éœããã®è·é¢rãštã®é¢ä¿ãäžãšåã圢ã®ç©åã§è¡šããã(q,kãå®æ°ãšããŠ<math>U(r)=\frac{q}{r^2}-\frac{k}{r}</math>ã第äžé
ãé å¿åã次ãéåãè¡šã)ããããéåžžã«å¹žããªããšã«ãç©åãåçé¢æ°ã§è¡šãããšãã§ããã
ãªããã«ãŒãããããã<math>U(x)</math>ã®é¢æ°åœ¢ãå°ãè€éã«ãªã£ãã ãã§ç©åã¯é£ãããªããããã§ãåç¯ã®å®æ§çãªè§£æã¯<math>U(x)</math>ã®ã°ã©ããçšãã ãã§ã§ããããšã«æ³šæããŠã»ãããäŸãã°U(x)ãäžæ¬¡é¢æ°ã®ããã«å±±ãšè°·ãæã€ãããªå Žåã«ã¯éåãå±±ãè¶ããããããšãè°·ã«éã蟌ãããããŸãŸæ¯åããããéèŠãªãã€ã³ãã«ãªãããããã¯åææ¡ä»¶ã®<math>E_i</math>ãå±±ããé«ããã©ãããèŠãã°åããã®ã§ããããŸãå®æ§çãªæ§è³ªãã°ã©ãã§èª¿ã¹ãŠããç©åã«åãçµãããšã§ãåŒããŸãšããæ¹éãèŠããŠããã
äŸãšããŠã°ãã«ã€ãªããã質ç¹ã®éåãæ±ããããåã¯F(x)=-kxã§äžããããã®ã§ã
<math>U(x)=\frac{k}{2}x^2</math>
ãã®å Žåãšãã«ã®ãŒã¯0以äžã§ããïŒ<math>E_i=mv_i^2/2+kx_i^2/2 \ge 0</math>ïŒãå³å¯è§£ã®å
¬åŒã«ä»£å
¥ãããš
<math>t=t_i+\sqrt{\frac{m}{2}}\int_{x_i}^x \frac{dx'}{\sqrt{E_i-\frac{k}{2}x'^2}}</math>
ããšã¯æ°åŠã®åé¡ãšããŠç©åãèšç®ããã°ããã®ã§ã¯ããããèšç®ãç©ççãªèå¯ãå ããªããè¡ãããšã§ãããããã«ã§ããããŸãéåã®ã¹ã±ãŒã«ãç¹åŸŽã¥ããéãèãããå®æ§çãªè§£æããåããããã«ãéåã®ç¯å²ã¯<math>E_i-\frac{k}{2}x'^2\ge0</math>ãæºããé åãå³ã¡
<math>-\sqrt{2E_i/k}\le x \le \sqrt{2E_i/k}</math>
ãã£ãŠ<math>L:=\sqrt{2E_i/k}</math>ãšãããšããã®<math>L</math>ãéåã®ïŒé·ãã®ïŒã¹ã±ãŒã«ã«ãªãã座æšxããããã®Lã®äœåãïŒäœå²ãïŒããšè¡šãã®ããããããã§
<math>X=x/L</math>
ãšãããŠå
¬åŒã«ä»£å
¥ãæŽçãããšãäžçªé¢åãªç©åã®éšåããããã«ãªãã被ç©åé¢æ°ããkã<math>E_i</math>ãªã©ã®ãã©ã¡ãŒã¿ãåãé€ããã®ã§ããã
<math>t=t_i+\sqrt{\frac{m}{2}}\int_{X_i}^X \frac{LdX'}{\sqrt{E_i-\frac{k}{2}(\sqrt{2E_i/k}X')^2}}=t_i+\sqrt{\frac{m}{2E_i}}L\int_{X_i}^X \frac{dX'}{\sqrt{1-X'^2}}=t_i+\sqrt{\frac{m}{2E_i}}L(\sin^{-1}X-\sin^{-1}X_i)</math>
åŒã®äžã«çŸãã<math>\sqrt{\frac{m}{2E_i}}L</math>ãšããä¿æ°ã¯æéã®åäœãæã€ã®ã§ãæéã®ã¹ã±ãŒã«ã«ãªã£ãŠããã¯ããããã<math>\frac{T}{2\pi}</math>ãšãã(<math>2\pi</math>ãå
¥ããã®ã¯ãsinã®åšæã<math>2\pi</math>ã§ããããšãçšãã§)ããŸã<math>\sin^{-1}X_i</math>ã<math>\phi_i</math>ãšæžãïŒ
<math>\frac{T}{2\pi}:=\sqrt{\frac{m}{2E_i}}L=\sqrt{\frac{m}{2E_i}}\sqrt{2E_i/k}=\sqrt{\frac{m}{k}}, \phi_i:=\sin^{-1}X_i</math>
ãããš<math>t=t_i+\frac{T}{2\pi}(\sin^{-1}X-\phi_i)</math>ãåŸããããããX=ã®åœ¢ã«çŽããš
<math>X=\sin(2\pi\frac{t-t_i}{T}+\phi_i)</math>
ãšããç°¡åãªåŒã«ãªããã€ãŸã質ç¹ã¯sinã®åœ¢ã®æ¯åãããã®ã§ãããããã«Xãxã«çŽããŠãŸãšãããš
<math>x=L\sin(2\pi\frac{t-t_i}{T}+\phi_i), T=2\pi\sqrt{\frac{m}{k}},L:=\sqrt\frac{2E_i}{k}=\sqrt\frac{mv_i^2+2kx_i^2}{k}, \phi_i:=\sin^{-1}X_i=\sin^{-1}\frac{x_i}{L}</math>
ãã®åŒã¯æ¯åçãªéåã®åºæ¬ã§ãããæ¯å¹
<math>L</math>ãåšæ<math>T</math>ãåæäœçž<math>\phi_i</math>ã®åæ¯åãšåŒã°ããã
ãªãåºç€ã«ããå
¬åŒã¯å
ã®ãã®ïŒè€å·ãæã€ïŒã®+ã®æ¹ã®ãã®ã ããªã®ã§ãäžã®å°åºããåŸãããåŒã¯è«ççã«ã¯dx/dt>0ã®ç¯å²ã§ããä¿èšŒãããªãããããçµæçã«ã¯ãããããããšã«ãã®å¶çŽããšã£ã±ãã£ãé åã§ã解ã«ãªã£ãŠããããã®ããšãææ©ã確ãããã«ã¯äžã®è§£ãéåæ¹çšåŒ<math>d^2x/dt^2=-kx</math>ã«ä»£å
¥ããä»»æã®tã§
æ¹çšåŒãæãç«ã£ãŠããããšã確èªããã°ããããŸãåææ¡ä»¶ã«çŽæ¥çµã³ä»ããã«ã¯ä»¥äžã®ããã«å æ³å®çã䜿ãsinãå±éããã»ãããããããã
<math>x=L\cos\phi_i\sin(2\pi\frac{t-t_i}{T})+L\sin\phi_i\cos(2\pi\frac{t-t_i}{T}), v=\frac{dx}{dt}=2\pi\frac{L}{T}\cos\phi_i\cos(2\pi\frac{t-t_i}{T}i)-2\pi\frac{L}{T}\sin\phi_i\sin(2\pi\frac{t-t_i}{T}i)</math>
ããã§<math>t=t_i</math>ã§ã®åææ¡ä»¶<math>x=x_i,v=v_i</math>ã䜿ã£ãŠäžã«åºãŠãã<math>L,\phi_i</math>ã®çµåããè¡šããäžã®åŒã«<math>t=t_i</math>ã代å
¥ãããš
<math>x_i=L\sin\phi_i,v_i=2\pi\frac{L}{T}\cos\phi_i</math>
ããããã<math>L\sin\phi_i=x_i, L\cos\phi_i=\frac{v_i T}{2\pi}</math>ãšãªãã®ã§ããããxã®åŒã«å
¥ãããš
<math>x=\frac{v_i T}{2\pi}\sin(2\pi\frac{t-t_i}{T})+x_i\cos(2\pi\frac{t-t_i}{T})</math>
ããããæå®ããåæå€ãã決ãŸãéåã®åŒãšãªãããããŸã§ã§ã°ãã«ã€ãªããã質ç¹ã®éåã¯å®å
šã«è§£ãããããšèšã£ãŠããã
== éåã®ä¿åéã®äŸïŒéåé ==
éåéã
:<math>
\vec p = m \vec v
</math>
ã§å®çŸ©ãããããã§mã¯ç©äœã®è³ªéã
:<math>
\vec v
</math>
ã¯ç©äœã®é床ã§ããã
ãã®ãšãéåæ¹çšåŒãçšãããšãç©äœã«åãåããŠããªããšãã
:<math>
\frac{\partial{{}}}{\partial{t}} \vec p = m \frac{\partial{{}}}{\partial{t}} \vec v = 0
</math>
ãšãªããç©äœã®æã€éåéããæéçã«ä¿åããããšãåããããããéåéä¿ååãšåŒã¶ã
éåéãä¿åããŠããç³»ã§ã¯ç³»ã«ã€ããŠç©äœã®é床ãå€ããã«äœçœ®ã ãããããããšãç©äœã®éåãå€åããªãããšãç¥ãããŠãããäŸãã°ãå
šãåãåããŠããªãç³»ã§ã¯äœçœ®ãå€åããããšããŠãç©äœã®éåã¯å€åãããç©äœã¯éæ¢ãç¶ãããããšããšéåããŠããæ¹åã«çéçŽç·éåãç¶ããããŸãããã1æ¹åã«ã ãäžæ§ãªåãåããŠããç³»ã§ã¯åãåããŠããæ¹åã«ã¯ç©äœã®éåéã¯ä¿åããªããããã以å€ã®æ¹åã«ã€ããŠã¯ç©äœã®éåæ¹çšåŒã¯ç©äœã«äœã®åãåããŠããªããšããšåäžã§ããã®ã§ããã¡ãã®æ¹åã®éåéã¯ä¿åãããããã¯ãã1æ¹åã«åãåããŠããæã«ããã以å€ã®æ¹åã®ç§»åã«å¯ŸããŠã¯ãã®ç©äœã®éåã¯å€åããªãããšãšå¯Ÿå¿ããŠãããç©äœãããæ¹åã«çŽç·çã«ç§»åããããšã䞊é²ãšåŒã³ã䞊é²ã«ãã£ãŠç©äœã®éåãå€åããªãããšãç³»ã®äžŠé²å¯Ÿç§°æ§ãšåŒã¶ãåŸã«[[解æååŠ]]ã§ããŒã¿ãŒã®å®çãšåŒã°ããå®çãåŠã¶ãããã®å®çã¯ç³»ã®å¯Ÿç§°æ§ã¯å¿
ããã®å¯Ÿç§°æ§ã«å¯Ÿå¿ããä¿åéãããããšã䞻匵ãããå®éç³»ã®äžŠé²å¯Ÿç§°æ§ã«å¯Ÿå¿ããä¿åéããŸãããéåéã«å¯Ÿå¿ããŠããããšãåŸã«ç€ºãããã
ãŸããç³»ã®éåéã¯ç©äœãæã€éåéã ãã§ãªãé»ç£å Žãªã©ãæã€éåéãååšãããç³»å
šäœã®éåéä¿åãèãããšãã«ã¯ç©äœã®å Žã®äž¡æ¹ãæã€éåéã®ä¿åãèããªããŠã¯ãªããªããããã¯ã[[é»ç£æ°åŠ]]ã[[é»ç£æ°åŠII]]ã§å°å
¥ãããã
è€æ°ã®ç©äœã«å¯ŸããŠåã
ã®éã«å
åïŒããããã®ç©äœã®éã«åãåã®ããšãïŒã ããååšããå€çããåãåããŠããªããšãç©äœã®éãŸããæã€å
šéåéã¯ä¿åãããå
šéåéãšã¯ç©äœç³»ã®ããããã®ç²åãæã€éåéãå
šãŠè¶³ãåããããã®ã§ãããããã¯ãããããã®ç©äœã®éåéã«ã€ããŠéåæ¹çšåŒãã
:<math>
\frac{\partial{{}}}{\partial{t}} p = f _i
</math>
ãæãç«ã€äžã§ãïŒ<math>f_i</math>ã¯ããããã®ç©äœã«ãããå
åãæããiã¯intrinsicã®ç¥ãïŒ
ããããã®ç©äœã«ã€ããŠã®éåæ¹çšåŒãå
šãŠè¶³ãåããããšã
巊蟺ã«ã€ããŠã¯
:<math>
\frac{\partial{{}}}{\partial{t}} P
</math>
ïŒPã¯å
šéåéïŒãæãç«ã¡ã
å³èŸºã«ã€ããŠã¯ããããã®åã¯0ãšãªãã
ããã¯äœçšåäœçšã®æ³åãããç©äœã«ãããåã¯ãããã倧ãããåãã§å察æ¹åããããŠãã察å¿ããåãæã£ãŠãããç©äœç³»å
šäœã«ã€ããŠè¶³ãåããããšãã«ããããã®å¯äžãæã¡æ¶ããããçµæãšããŠåã0ã«çãããªãããã§ããã
== éåã®ä¿åéã®äŸïŒè§éåé ==
ãã質ç¹ã«å¯ŸããŠ
ãã1ç¹ãåãããã®äžç¹ããã®ãã¯ãã«ã<math>\vec r</math>ãšãã
ãã®è³ªç¹ãæã€éåéã<math>\vec p</math>ãšãããšãã
<math>
\vec L = \vec r \times \vec p
</math>
ãè§éåéãšåŒã¶ã
ç©äœãäžå¿å以å€ã®åãåããªããšããè§éåéã¯æéçã«ä¿åããã
(å°åº)
<math>
\frac {\partial {}}{\partial t } \vec L = \frac {\partial {}}{\partial t } \vec r \times \vec p + \vec r \times \frac {\partial {}}{\partial t }\vec p
</math>
<math>
= \frac 1 m \vec p \times \vec p + \vec r \times f(r) \vec r
</math>
<math>
= 0
</math>
(
<math>
\vec a \times \vec a = 0
</math>
ãçšããã)
ãã軞ãäžå¿ãšããè§éåéãä¿åããç³»ã§ã¯ãäžè¬ã«ãã®è»žã«å¯Ÿããå転ã«é¢ããŠç³»ã®ç¶æ
ã¯å€åããªããäŸãã°ã倪éœã®ãŸããã®å°çã®éåãå®å
šãªåéåã§ãã£ããšãããšãããã®éåã¯å°çãå«ãŸããå¹³é¢ã«çŽäº€ããŠå€ªéœãééãã軞ãäžå¿ãšããå転ã«ã€ããŠäžå€ã§ãããããã¯ã倪éœããå°çã«ãããåŒåããå°çãšå€ªéœã®è·é¢ã®ã¿ã«ãã£ãŠãããäžã§è¿°ã¹ããããªè»žãäžå¿ãšããå転ã§ã¯å°çãšå€ªéœã®è·é¢ã¯å€åããªãããã§ããããã®ããšã¯ç³»ã®äžã«å転察称æ§ãããããšã«å¯Ÿå¿ããŠããã解æååŠã§è¿°ã¹ãããããŒã¿ãŒã®å®çãçšãããšããã®ç³»ã¯å転察称æ§ã«å¯Ÿå¿ããä¿åéãæã€ããšãåãããå®éã«ã¯ãã®ä¿åéãæ£ã«è§éåéã«å¯Ÿå¿ããŠããã®ã§ããã
* åé¡äŸ
** åé¡
å¹³é¢äžãååŸrã®åäžãè§é床<math>\omega</math>ã§éåããŠããç©äœããããšããã
ãã®ãšãããã®ç©äœãåã®äžå¿ã«å¯ŸããŠæã€è§éåéãå®çŸ©ã«ãããã£ãŠæ±ããã
ãã ããç©äœã®è³ªéã¯mã§ãããšããã
* 解ç
ãã®ãšãç©äœã®åº§æšã¯æéã®åç¹ãé©åœã«éžã¶ããšã§ã
:<math>
\vec r = (x,y) = r(\cos \omega t ,\sin \omega t ,0)
</math>
ãšãããããã ããç©äœãéåããå¹³é¢ãxyå¹³é¢ãšããããã®ãšããç©äœã®
é床ã¯
:<math>
\vec v = \dot {\vec r }
=r\omega ( -\sin \omega t ,\cos \omega t ,0)
</math>
ã§äžããããããã£ãŠãç©äœã®æã€è§éåé<math>L</math>ã¯
:<math>
\vec L = r(\cos \omega t ,\sin \omega t ,0) \times m r\omega ( -\sin \omega t ,\cos \omega t ,0)
</math>
:<math>
= m r^2 \omega (0, 0, \cos^2 \omega t + \sin ^2 \omega t)
</math>
:<math>
= m r ^2 \omega (0,0,1)
</math>
ãšãªãããããã¯ãè§é床ã
:<math>
|\vec v| = | \vec r| \omega
</math>
ã®é¢ä¿ãçšããŠéãã§æžãçŽããš
:<math>
= m r v (0,0,1) = r p (0,0,1)
</math>
ãåŸããããããã¯ç©äœã®äœçœ®ãšç©äœã®é床ãçŽäº€ããŠããããšãããã®2ã€ã®ãã¯ãã«ã®å€§ããã¯2ã€ã®ãã¯ãã«ã®çµ¶å¯Ÿå€ã«çãããªãã®ã§ããã
ãŸããç©äœã®äœçœ®ãšé床ãå«ããã¯ãã«ã¯xyå¹³é¢ã«å«ãŸããã®ã§ããã2ã€ã«çŽäº€ãããã¯ãã«ã§ããè§éåéãã¯ãã«ã¯å¿
ãxyå¹³é¢ã«çŽäº€ããããã®ããããã®ãã¯ãã«ã¯zæ¹åãåãã®ã§ããã
== çå é床çŽç·éå ==
* '''éãã®å
¬åŒ''': <math>v=v_0+at</math>
* '''äœçœ®ã®å
¬åŒ''': <math>x=x_0+v_0t+\frac{1}{2}at^2</math>
* <math>v^2-{v_0}^2=2a(x-x_0)</math>
以äžã¯å®¹æã«å°ãããã以äžã§ã¯ãã®æ°åŠçæŒç®ïŒæ°åŠâ
¡ãŸãã¯æ°åŠâ
¢ã®åæ©çšåºŠïŒã詳ããè¿°ã¹ãã
* éåæ¹çšåŒ: <math>m\frac{d^2x}{dt^2}=f</math> (ãã ãã<math>\frac{d^2x}{dt^2}=a</math>âŠ(1))
* åŒ(1)ãæé<math>t</math>ã§ç©åããã°ã巊蟺ã¯<math>\int\frac{d^2x}{dt^2}dt=\frac{dx}{dt}</math>ã§ãããå³èŸºã¯<math>\int adt=at+C_0</math>(<math>C_0</math>ã¯ç©åå®æ°)ããã<math>\frac{dx}{dt}=at+C_0</math>ïŒããŸã<math>t=0</math>ã代å
¥ããã°<math>\frac{dx}{dt}|_{t=0}=C_0</math>ã§ããããã<math>C_0</math>ã¯<math>t=0</math>ã®ãšãã®é床ã§ãããåŸã£ãŠ<math>v=v_0+at</math>âŠ(2)ãå°ãããã
* åŒ(2)ãæé<math>t</math>ã§ç©åããã°ã巊蟺ã¯<math>\int\frac{dx}{dt}dt=x+C_1</math>ã§ãããå³èŸºã¯<math>\int (v_0+at)dt=v_0t+\frac{1}{2}at^2 + C_2</math>(<math>C_1, C_2</math>ã¯ç©åå®æ°)ããã<math>x=v_0t+\frac{1}{2}at^2 + C_2-C_1</math>ïŒããŸã<math>t=0</math>ã代å
¥ããã°<math>x_{t=0}=C_2-C_1</math>ã§ããããã<math>C_2-C_1</math>ã¯<math>t=0</math>ã®ãšãã®äœçœ®ã§ãããåŸã£ãŠ<math>x=v_0t+\frac{1}{2}at^2 + x_0</math>âŠ(3)ãå°ãããã
* åŒ(2)ã<math>t=\frac{v-v_0}{a}</math>ãšå€åœ¢ããåŒ(3)ã«ä»£å
¥ãããšã<math>x=v_0\frac{v-v_0}{a}+\frac{1}{2}a\frac{(v-v_0)^2}{a^2} + x_0</math>ïŒãã®åŒã«ãããŠã<math>x_0</math>ã巊蟺ã«ç§»é
ããå³èŸºãå±éãã䞡蟺ã«<math>2a</math>ãä¹ãããšã<math>2a(x-x_0)=v^2-{v_0}^2</math>ãåŸãã
== æŸç©éå ==
æŸç©éåã¯çé床éåãšçå é床éåãåæãããã®ãšèããããšãã§ããã
åé床<math>v_0</math>
åé床ã®æ°Žå¹³æå<math>v_x=v_0 \cos \theta</math>
åé床ã®éçŽæå<math>v_y=v_0 \sin \theta</math>
æé«ç¹ã«å°éãããŸã§ã®æé<math>T=\frac{v \sin \theta}{g}</math>
æé«ç¹ã®é«ã
== åéå ==
* '''éåæ¹çšåŒã®æ¥µåœ¢åŒè¡šç€º''': <math>ma_r=f_r, ma_\phi=f_\phi \left(a_r=\frac{d^2r}{dt^2}-r\frac{d\phi}{dt}^2, a_\phi=2\frac{dr}{dt}\frac{d\phi}{dt}+r\frac{d^2\phi}{dt^2}\right)</math>âŠ(A)
* '''åéåã®éåæ¹çšåŒ''': <math>mr\frac{d\phi}{dt}^2=-f_r, mr\frac{d^2\phi}{dt^2}=f_\phi</math>âŠ(B)
* '''çéåéåã®éåæ¹çšåŒ''': <math>mr\frac{d\phi}{dt}^2=-f_r</math> (<math>\phi</math>æåã¯0)âŠ(C)
以äžãäžã蚌æããã
** 蚌æ (A)ã®èšŒæ: <math>x=r\cos\phi, y=r\sin\phi</math>ã2éæé埮åãã<math>\frac{d^2x}{dt^2}=(\frac{d^2r}{dt^2}-r\frac{d\phi}{dt}^2)\cos\phi-(2\frac{dr}{dt}\frac{d\phi}{dt}+r\frac{d^2\phi}{dt^2})\sin\phi,\frac{d^2y}{dt^2}=(\frac{d^2r}{dt^2}-r\frac{d\phi}{dt}^2)\sin\phi+(2\frac{dr}{dt}\frac{d\phi}{dt}+r\frac{d^2\phi}{dt^2})\cos\phi</math>âŠ(1)ããŸãã<math>(f_x, f_y)</math>ãš<math>(f_r, f_\phi)</math>ã¯ã<math>f_x=f_r\cos\phi-f_\phi\sin\phi, f_y=f_r\sin\phi+f_\phi\cos\phi</math>âŠ(2)ã<math>(a_x, a_y)</math>ãš<math>(a_r, a_\phi)</math>ã¯ã<math>a_x=a_r\cos\phi-a_\phi\sin\phi, a_y=a_r\sin\phi+a_\phi\cos\phi</math>âŠ(3)ã®é¢ä¿ãããã(1), (2), (3)ããéåæ¹çšåŒ<math>m\frac{d^2x}{dt^2}=f_x, m\frac{d^2y}{dt^2}=f_y</math>ã«ä»£å
¥ãããšã(0)ãåŸãã
** ããã§ã<math>r</math>ãäžå®å€ã§ãã(ããªãã¡ã<math>\frac{dr}{dt}=0, \frac{d^2r}{dt^2}=0</math>)ããšãä»®å®ããã°ãåéåã®éåæ¹çšåŒ(B)ãåŸãããã
** ããã«ã<math>\frac{d\phi}{dt}</math>ãäžå®å€ã§ãã(ããªãã¡ã<math>\frac{d^2\phi}{dt^2}=0</math>)ããšãä»®å®ããã°ãçéåéåã®éåæ¹çšåŒ(C)ãåŸãããã
==== äžæåŒåã«ããéå ====
:<math>
m ( \ddot r - r \dot \theta^2) = f(r)
</math>
ã®åŒã§ã
ïŒäžã§ãã
<math>ma_r=f_r</math>
ã«å¯Ÿå¿ãããïŒ
:<math>
f(r) = -G \frac {m m _1} {r^2 }
</math>
ãšãããšã
<math>\ddot r</math>ãããŸãã§
:<math>
m r \dot \theta^2 -G \frac {m m _1} {r^2 }
</math>
ã®åãåããŠéåããŠããããã«èŠããããšãåãã
äžåŒã®ç¬¬1é
ãé å¿åãšåŒã¶ãé å¿åã«ã€ããŠã¯[[å€å
žååŠ#çžå¯Ÿéå|çžå¯Ÿéå]]ã®
ãšããã§ãã詳ããæ±ãããŸãã第2é
ã¯éåãè¡šããåã§ããã
ããã§ãé¢ç©é床ãhãšãããšã
:<math>
\frac 1 2 r^2 \dot \theta = h
</math>
ã®é¢ä¿ããäžã®åã¯
:<math>
m r (\frac {2h} {r^2} ) ^2 -G \frac {m m _1} {r^2 }
</math>
:<math>
= m \frac {4h^2} {r^3} -G \frac {m m _1} {r^2 }
</math>
ãšãªãããã®åã¯rã ããå€æ°ãšããŠã¿ããšãã«ãã®ç©äœã«ãããå®å¹çãªåãš
èããããšãåºæ¥ããä»®ã«ãã®åãããã³ã·ã£ã«ãçšããŠè§£æãããšãããš
ãã®ç©äœã®éåãã©ã®ãããªç¯å²ã§è¡ãªãããããç¥ãããšãåºæ¥ãã
äŸãã°ãåæ¯åã«ãããŠã¯ããã³ã·ã£ã«ã¯æ¯å¹
ã倧ãããªããšããç¡éã«
倧ãããªãã®ã§éåã¯ç¡éã«å€§ãããªãããšã¯åºæ¥ãªãããã®æ§ãªææ³ãçšããŠ
ãã®éåã解æããã®ã§ããããã1次å
ã®éåã§ã¯ããåf(x)ãäžãããããšã
ãã®äœçœ®ãšãã«ã®ãŒU(x)ã¯
:<math>
U(x) = -\int _{x _0} ^x f(x') dx'
</math>
ã§äžãããããããã§ã<math>x _0</math>ã¯èªç±ã«éžãã§ããå®æ°ã§ããããå®éã«ã¯å€ãã®å Žåã«
æ
£çšçãªå€ã決ãŸã£ãŠããéã§ãããäœçœ®ãšãã«ã®ãŒã®äŸãšããŠãxæ¹åã«äžæ§ãªå-fã
åãããšãã®ãã®åã«å¯Ÿããäœçœ®ãšãã«ã®ãŒãèšç®ãããå®éã«åŒã«ä»£å
¥ãããš
:<math>
U(x) = -\int _{x _0= 0} ^x (-f) dx'
</math>
:<math>
= fx
</math>
ãäžããããããã ãã<math>x_0=0</math>ãšãããããã®äœçœ®ãšãã«ã®ãŒã¯è³ªémãæã€
ç©äœã«äžæ§ãªéåãããããšãã®äœçœ®ãšãã«ã®ãŒã«å¯Ÿå¿ããã
ããã§ã
:<math>
f(r) = m \frac {4h^2} {r^3} -G \frac {m m _1} {r^2 }
</math>
ã®å Žåã«ã€ããŠãäœçœ®ãšãã«ã®ãŒãèšç®ããããšãåºæ¥ãã
å®éã«èšç®ãããš
:<math>
U(r) = - \int _\infty ^r
(m \frac {4h^2} {r'^3} -G \frac {m m _1} {r'^2 }) dr'
</math>
:<math>
= - (m \frac 1 {-2} \frac {4h^2} {r^2} -G(-1) \frac {m m _1} {r })
</math>
:<math>
= m \frac {2h^2} {r^2} -G \frac {m m _1} {r }
</math>
ãšãªãã
:<math>
\frac 1 {r^2}
</math>
ãš
:<math>
- \frac 1 r
</math>
ã®åã§æžãããé¢æ°ãšãªãããã®é¢æ°ã¯å
žåçã«å³ã®ãããªåœ¢ãããŠããã
*å³
ããã§æšªè»žã¯åéåã®äžå¿ããã®è·é¢ã§ããã瞊軞ã¯ç©äœã®äœçœ®ãšãã«ã®ãŒã§ããã
ããç©äœã¯éåã®éåžžã«çãããšãã«ã®ãŒãæã£ãŠããã®ã§ããã®å³åœ¢äžã§ã¯
åžžã«çãããšãã«ã®ãŒãæã£ãŠå·Šå³ã«ç§»åããããããŠãããã³ã·ã£ã«ãšãã«ã®ãŒã®
å³åœ¢ã«è¡çªãããšãã以äžã«é²ãããšãåºæ¥ãªããªãã¯ãããããããã¯ã
ãããšãã«ã®ãŒãæã£ãç©äœã¯èªèº«ãæã£ãŠãããšãã«ã®ãŒãããé«ãäœçœ®ãšãã«ã®ãŒ
ããã€ç¹ã«ã¯å
¥ã蟌ããªãããšã«ãã£ãŠãããããã§ãäžã®å³åœ¢ã®äžã§
ãšãã«ã®ãŒçã«èš±ãããéåããšãã«ã®ãŒãäœãé ã«èŠãŠããã
ãã ããé¢ç©é床ã0ã«çãããšãã«ã¯äžã§æžããå³ãšã¯ç°ãªã£ãå³åœ¢ã
解æã®å¯Ÿè±¡ãšãªãã
*å³
ãã®å Žåã解æã¯éåžžã«åçŽã§ãããç©äœã¯å¿
ãäžå¿ã®ç©äœã®éåã«åŒãã€ããããŠ
æçµçã«ã¯äžå¿ã®ç©äœãšè¡çªããã
å
ã®å³åœ¢ã«æ»ããšã
å³åœ¢äžã§äœçœ®ãšãã«ã®ãŒãæãäœãç¹ã¯çªªã¿ç¶ã«ãªã£ãŠããããã®ç¹ã®é«ãããã
æŽã«äœãå
šãšãã«ã®ãŒãæã£ãç©äœã¯ååšãåŸãªããããã¯å
šãšãã«ã®ãŒã
éåãšãã«ã®ãŒãšäœçœ®ãšãã«ã®ãŒã®åã§ããéåãšãã«ã®ãŒãæ£ã§ããããšãã
å
šãšãã«ã®ãŒã¯å¿
ãäžããããç¹ã§ã®äœçœ®ãšãã«ã®ãŒããã倧ãããªã£ãŠããªããŠã¯
ãªããªãããã§ãããæãäœã窪ã¿ã«ãããšãã«ã®ãŒãšçãããšãã«ã®ãŒã
æã£ãŠããç©äœã¯äœçœ®ãšãã«ã®ãŒã«æãŸããŠå³åœ¢äžã§åãããšãåºæ¥ãªãããã
åžžã«çããååŸæ¹åæåãæã£ãŠéåããããã®éåã¯ãŸãã«åéåã«å¯Ÿå¿ããŠããã
äžæ¹ã窪ã¿ãšãšãã«ã®ãŒ0ã®ç·ã®éã«äœçœ®ãããšãã«ã®ãŒãæã€ç©äœã¯ååŸæ¹åã®
æåãå€åãããªããããäžå¿ã®ç©äœããã¯ãªããããšç¡ãããã®ãŸããã
äœããã®ä»æ¹ã§å転ããããšãäºæ³ããããåŸã«åããã®ã ããããã¯ãŸãã«
äžå¿ã®ãŸãããæ¥åéåããããšã«å¯Ÿå¿ãããããã¯ãå°çãå«ãå
šãŠã®ææã
倪éœã®ãŸãããéåããè»éãè¡šããæ
åµã§ãããææã®æ§è³ªãæ±ãäžã§
éåžžã«éèŠãªéåã§ããã
æŽã«ããšãã«ã®ãŒ0ããã倧ããå
šãšãã«ã®ãŒãæã€ç©äœã¯ãrã0ã«è¿ã¥ãæ¹åã§ã¯
äœçœ®ãšãã«ã®ãŒãç¡é倧ãŸã§ååšãããããr=0ãšãªãããšã¯åºæ¥ããé©åœãª
äœçœ®ã§ã¯ããããããããã
:<math>
r \rightarrow \infty
</math>
ãšãªãæ¹åã«ã¯äœçœ®ãšãã«ã®ãŒã®å£ãååšããªããããã®ç©äœã¯ç¡éé ãŸã§
é£ãã§ãã£ãŠããŸãããšãåããããããåŸã«åããããšã ããã®ç©äœã¯
åæ²ç·è»éãæãããšãç¥ãããŠãããäŸãã°ã倪éœç³»å€ãã倩äœãé£æ¥ããŠæ¥ãŠ
倪éœã®éåã§è»éãæ²ããããŠãã®ãŸãŸé£ã³å»ã£ãŠè¡ããšãã«ã¯ãã®ç©äœã®
è»éã¯åæ²ç·ãæãã®ã§ããããŸãããšãã«ã®ãŒ0ã®ãšãã§ã
:<math>
r \rightarrow \infty
</math>
ãšãªãæ¹åã§ã®äœçœ®ãšãã«ã®ãŒã®å£ãååšããªããããç¡éé ãŸã§é£ãã§è¡ãããšã
ãããããã®è»éã¯æŸç©ç·ã«å¯Ÿå¿ããããšãåŸã«åããã
äŸãšããŠãr = a = const. ãšããæ
åµã«ã€ããŠèããŠã¿ãã
ãã®ãšãã
é¢ç©é床ãäžå®ã§ããããšãã
:<math>
\omega = \dot \theta = \textrm{const.}
</math>
ãåãã
ãã®ãšã åŒ
:<math>
m ( \ddot r - r \dot \theta^2) = f(r)
</math>
ã解ããšã
:<math>
m ( \ddot r - r \dot \theta^2) = -G \frac {m m _1} {r^2 }
</math>
:<math>
- a \omega^2 = -G \frac {m _1} {a^2 }
</math>
:<math>
a^3 \omega^2 = G m _1
</math>
:<math>
a^3 =\frac { G m _1 } { \omega^2}
</math>
:<math>
a =(\frac { G m _1 } { \omega^2}) ^{1/3}
</math>
ãšãªããåéåã®æ¡ä»¶ãæºãã解ãååšããããšãåãã
ãŸããäžã®åŒã¯ãã©ã®ãããªaã«å¯ŸããŠãããäžå®ã®<math>\omega</math>ã察å¿ããããšã瀺ããŠããã
ããã¯æ£ã«äžã§ãããåéåã®å Žåã«å¯Ÿå¿ããŠããã
== åæ¯å ==
* '''éåæ¹çšåŒ''': <math>m\frac{d^2x}{dt^2}=-kx</math>
* '''äžè¬è§£''': <math>x=x_\mathrm{C}+ A\sin(\omega t+\delta)</math> <math>\left(\omega=\sqrt\frac{k}{m}\right)</math> (<math>x_\mathrm{C}</math>ã¯æ¯åäžå¿ã<math>A</math>(æ¯å¹
), <math>\delta</math>(åæäœçž)ã¯åææ¡ä»¶ãã決ãŸã)
以äžãåæ¯åã®äŸã瀺ãã
* (äŸ1) ã°ãã<math>a</math>ã ã䌞ã°ãããããæŸãã
** åææ¡ä»¶ã¯<math> x_{t=0}= x_\mathrm{C}+a,\ \frac{dx}{dt}_{t=0}=0</math>ïŒãããäžè¬è§£ãšãã®1éæé埮åã«ä»£å
¥ãããšã<math>x_\mathrm{C}+ A\sin\delta = x_\mathrm{C}+ a,\ A\omega\cos\delta = 0 \quad \therefore A=a,\ \delta=\frac{\pi}{2}</math>.
* (äŸ2) èªç¶é·ã®äœçœ®ãããåé床<math>v_0</math>ãäžããã
** åææ¡ä»¶ã¯<math> x_{t=0}= x_\mathrm{C},\ \frac{dx}{dt}_{t=0}=v_0</math>ïŒãããäžè¬è§£ãšãã®1éæé埮åã«ä»£å
¥ãããšã<math>x_\mathrm{C}+ A\sin\delta = x_\mathrm{C},\ A\omega\cos\delta = v_0 \quad \therefore A=\frac{v_0}{\omega},\ \delta=0</math>.
== 匷å¶æ¯å ==
== å ==
åã«ã¯æ§ã
ãªçš®é¡ãååšããããé éåïŒå Žã®åïŒãšçŽæ¥åãåã®2ã€ã«å€§ããåããããã
:äžæåŒå 質éãæã€ç©äœå士ãåŒãåãåã§ãããäžæåŒåã¯äžæåŒåã®æ³å<math>F=G\frac{mM}{r^2}</math>ã«ãã£ãŠè¡šããããGã¯äžæåŒåå®æ°ãšåŒã°ããç©çå®æ°ã§ãçŽ<math>6.67\times 10^{-11} \frac{\rm{m}^3}{\rm{sec}^{2} \rm{kg}}</math>ãè·é¢ã®äºä¹ã«åæ¯äŸããããšãéèŠãªç¹åŸŽã§ããããããéäºä¹ã®æ³åãšåŒã¶ã
:éåãäžæåŒåãšèªè»¢ã®é å¿åã®ååã§ãããéåã¯''W''=''mg''ã«ãã£ãŠè¡šããããgã¯éåå é床ãšåŒã°ããç©çå®æ°ã§ããã
:ã¯ãŒãã³åãé»è·ãæã€ç©äœå士ãåŒãåã£ããæŒãåã£ããããåã§ãããã¯ãŒãã³åã¯ã¯ãŒãã³ã®æ³å<math>F=\frac{qQ}{r^2}=qE</math>ã«ãã£ãŠè¡šãããããã ãçšããåäœç³»ã«ãã£ãŠã¯<math>F=k\frac{qQ}{r^2}</math>ãšãªããkã®å€ã«çšããåäœç³»ã®æ§è³ªãåæ ããããäžã®ããã«k=1ãšãªãã®ã¯ã¬ãŠã¹åäœç³»ãšåŒã°ãããã®ããšã¯ãããååŠã§ã¯kã®å€ã«ã¯ããŸããã ãããªããããããã¯ãŒãã³åããã¯ãéäºä¹ã®æ³åãæãç«ã€ããšãéèŠã§ãããäžæåŒåã«ã¯åŒåãããªãããã¯ãŒãã³åã«ã¯åŒåãæ¥åãããããšãå¿ããŠã¯ãªããªãã
:ããŒã¬ã³ãåã<math>F=q(v \times B)</math>
:匟æ§åãã°ãããåããåã§ããã匟æ§åã¯ããã¯ã®æ³å<math>F=-kx</math>ã«ãã£ãŠè¡šãããã
:匵åãã²ãã糞ããåããåã§ãããéåžžã§Tã§è¡šãããã倧ããã¯æªç¥ã§ããã
:æåãæ¥ããŠããé¢ããåããåã§ãããåçŽæåãšæ©æŠåãããã
::åçŽæåãç©äœã眮ããããå£ãæŒãããšãã«åããé¢ã«åçŽãªåã§ãããéåžžNã§è¡šãããã倧ããã¯æªç¥ã§ããã
::æ©æŠåãæ¥ããŠããé¢ããæ°Žå¹³ã«åããåã§ãããéæ¢æ©æŠåãšåæ©æŠåãããã
:::éæ¢æ©æŠåãéæ¢ããŠããç©äœãæ»ãããšããŠããåããšå察æ¹åã«åããåã§ããã
:::åæ©æŠåãéåããŠããç©äœãæ»ã£ãŠããåããšå察æ¹åã«åããåã§ããã
:æµ®åãæµäœããåããåã§ãããéçŽäžåãã§ãããå§åã®ååã§ãããæµ®åã¯ã¢ã«ãã¡ãã¹ã®åç<math>F=Vdg</math>ã«ãã£ãŠè¡šãããã
== åäœã®éå ==
=== æ
£æ§ã¢ãŒã¡ã³ã ===
ç¹ã«åäœã«å¯ŸããŠè§éåéãèãããšããæ
£æ§ã¢ãŒã¡ã³ããšããéãå®çŸ©ãããšéœåããããæ
£æ§ã¢ãŒã¡ã³ãã¯æ°åŠçã«ã¯2éã®ãã³ãœã«ã§ããããã¯ãã«ã«ããã£ããšãã«ãã¯ãã«ãåŸããšããåããæã€ãç¹ã«ãã®éã«ã€ããŠã¯
<math>
\vec L = \vec I \vec \omega
</math>
ãŸãã¯ã
<math>
L _i = I _{ij} \omega _j
</math>
ãæãç«ã€ã
ããã§ãLã¯è§éåéãIã¯æ
£æ§ã¢ãŒã¡ã³ãã<math>\omega</math>ã¯ãè§é床ã§ããã
åäœã質ç¹ãå¯ã«çµåãããã®ãšèãããšã
è§éåéã¯ããããã®è³ªç¹ã®åã§äžããããã
ããå転軞ãåã£ãŠãã®åãã®è§éåéãèãããšã
<math>
L = \sum m _i r _i^2 \omega
</math>
(<math>r _i</math>ã¯è³ªç¹iã®å転軞ããã®è·é¢ã<math>m _i</math>ã¯ã質ç¹iã®è³ªéã)
(å
šãŠã®è³ªç¹ã¯å¯ã«çµåããŠããã®ã§ãããããåäžã®è§é床ãæã€ããšã«æ³šæã
(å°åº?))
ç¹ã«ãx軞ãy軞ãz軞æ¹åã«ã€ããŠèãããšãã®å€ã¯
<math>
I _{kl} = \sum _i m _i (x _{ik}x _{il} - \delta _{kl} r _i^{2})
</math>
ãåŸãããã
ããã¯ãã³ãœã«ã®åœ¢ãããŠããã®ã§ããããæ£ããæ
£æ§ã¢ãŒã¡ã³ãã®è¡šåŒã§
ããããšãåãã
èšç®äŸ1
ããå¹³é¢äžã®å(é¢å¯åºŠ<math>\sigma</math>,ååŸa)ã«ã€ããŠæ
£æ§ã¢ãŒã¡ã³ããèšç®ããã
åç¹ãåã®äžå¿ãz軞ãåã«åçŽãªæ¹åã«åããš
<math>
I _z = \int _S \sigma (x^2 + y^2 ) dxdy
</math>
(
<math>
\int _S
</math>
ã¯åã®é¢ç©å
šäœã§ã®é¢ç©åãè¡šããã
)
<math>
=\sigma \int _0 ^a r dr \int^{2\pi } _0 d\phi r^2
</math>
(z軞ã®æ¹åãä¿ã£ãŠåæ±åº§æšãåãã)
<math>
=\sigma 2\pi \int ^a _0 r^3 dr
</math>
<math>
=\sigma \frac \pi 2 a^4
</math>
ãšãªãã
(
<math>
\sigma
</math>
ã¯ã
<math>
\sigma a^2
</math>
ã§è³ªéãšãªãããšããããã®çµæãæ£ãã次å
ãæã£ãŠããããšããããã)
ããã«ã
y軞æ¹åã®å転ã«å¯Ÿããæ
£æ§ã¢ãŒã¡ã³ããèšç®ããã
ãã®ãšãã«ã¯ã
<math>
I _y = 4\int _0 ^a x^2 \sqrt{a^2-x^2} \sigma dx
</math>
(1/4 åã«ã€ããŠèšç®ããŠããã4åããã)
<math>
= 4 a^4\sigma \int _0 ^1 u^2 \sqrt{1-u^2} du
</math>
(u = x/a ãšçœ®ãæãããç©åå
ã®æ°å€ã¯ç¡æ¬¡å
ã§ããããšã«æ³šæã)
<!-- (For this integral, maxima gave \pi / 16. And it must be correct!) -->
<!-- integrate(u^2*sqrt(1-u^2),u,0,1 ); -->
<!-- could be omitted. -->
<math>
= 4 a^4\sigma \int _0 ^{\pi /2} \sin^2 t \cos t \cos t dt
</math>
(
<math>
u = \sin t
</math>
ãšçœ®ãæããã
)
<!--
MaximaãçšããŠ
-->
ãã®èšç®ãè¡ãªããšã
ç©åã®å€ã
<math>
\pi /16
</math>
ã§äžããããããšãåãã
ãã£ãŠ
<math>
I _y = \frac \pi 4 \sigma a^4
</math>
ãšãªãã
ããã§å転ã«å¯Ÿãã察称æ§ãã
<math>
I _x = I _y = \frac \pi 4 \sigma a^4
</math>
ãšãªãããšã«æ³šæã
ããã§ã
<math>
I _z = I _x + I _y
</math>
ãšãªã£ãŠãããããã®çåŒã¯åã¿ããªãåäœã«å¯ŸããŠ
äžè¬ã«æãç«ã€ã
(å°åº)
<math>
I _z = \sum _i m _i (x _i^2+y _i^2 )
</math>
,
<math>
I _x = \sum _i m _i (y _i^2+z _i^2 )
</math>
,
<math>
I _y = \sum _i m _i (z _i^2+x _i^2 )
</math>
ã§ããããåã¿ããªãç©äœã«å¯ŸããŠåã¿ããªãé¢ãšåçŽãªæ¹åã«
z軞ãåããšã
<math>I _x</math>,<math>I _y</math>ã«ã€ããŠ
<math>
I _x = \sum _i m _i y _i^2
</math>
,
<math>
I _y = \sum _i m _i x _i^2
</math>
ãæãç«ã€ã(åã¿ããªãã®ã§<math>z _i=0</math>ãšãªãã)ãã®ããšãã
<math>
I _z = I _x + I _y
</math>
ãåŸãããã
{{DEFAULTSORT:ããŠããããã}}
[[Category:å€å
žååŠ|*]]
{{NDC|423|ããŠããããã}} | 2005-01-19T07:36:07Z | 2024-03-17T10:28:39Z | [
"ãã³ãã¬ãŒã:Wikipedia",
"ãã³ãã¬ãŒã:Wikiversity",
"ãã³ãã¬ãŒã:Stub",
"ãã³ãã¬ãŒã:é²æ",
"ãã³ãã¬ãŒã:ç¯stub",
"ãã³ãã¬ãŒã:NDC",
"ãã³ãã¬ãŒã:Pathnav"
] | https://ja.wikibooks.org/wiki/%E5%8F%A4%E5%85%B8%E5%8A%9B%E5%AD%A6 |
1,493 | OsiriX ãªã³ã©ã€ã³è§£èª¬ææž | ã³_(Plugins)|ãã©ã°ã€ã³]] | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ã³_(Plugins)|ãã©ã°ã€ã³]]",
"title": ""
}
] | ã³_(Plugins)|ãã©ã°ã€ã³]] ãŠã€ã³ããŠ
ãã«ã | [[ç»å:OsiriXlogo.jpg|center|OsiriXããŽ]]
<br>
'''OsiriX''' ã¯ãAntoine Rosset, M.D. ã«ããéçºãããã¢ããã«ç€Ÿè£œãããã³ããã·ã¥ã³ã³ãã¥ãŒã¿ããå»çšç»å衚瀺ãç»ååŠççšDICOM PACS ã¯ãŒã¯ã¹ããŒã·ã§ã³ãšããŠäœ¿çšå¯èœã«ããããªãŒãã³ãœãŒã¹ããã°ã©ã ã§ãã
'''OsiriX''' ã¯ãGNU äžè¬å
¬è¡å©çšèš±è«Ÿå¥çŽæž (GPL) ã«åºã¥ããŠé
ä»ãããŠããããœãŒã¹ã³ãŒãã¯ã ãã§ãå©çšã§ããŸãã
----
== åºèª¬ ==
#[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriX ã«ã€ããŠ|OsiriX ã«ã€ããŠ]]
#[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriX ã®ä»æ§|OsiriX ã®ä»æ§]]
#[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriX ã®ã·ã¹ãã æ¡ä»¶|OsiriX ã®ã·ã¹ãã æ¡ä»¶]]
#[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriX ã®ããŠã³ããŒããšã€ã³ã¹ããŒã«|OsiriX ã®ããŠã³ããŒããšã€ã³ã¹ããŒã«]]
== OsiriX å
¥é ==
#[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_DICOMç»åãèªã¿èŸŒã|DICOMç»åãèªã¿èŸŒã]]
#[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_å€èŠ³ãã«ã¹ã¿ãã€ãºãã|å€èŠ³ãã«ã¹ã¿ãã€ãºãã]]
#[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_è€æ°ã·ãªãŒãºãåæã«éã|è€æ°ã·ãªãŒãºãåæã«éã]]
#[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_è€æ°ã·ãªãŒãºãåæã«é²èŠ§ãã|è€æ°ã·ãªãŒãºãåæã«é²èŠ§ãã]]
#[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_ããŒã«ã«ããŒã¿ããŒã¹ã管çãã|ããŒã«ã«ããŒã¿ããŒã¹ã管çãã]]
#[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_ãã¥ãŒãžã§ã³ç»åãäœæãã|ãã¥ãŒãžã§ã³ç»åãäœæãã]]
#[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_éDICOMç»åãã ãŒããŒãéã|éDICOMç»åãã ãŒããŒãéã]]
#[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_DICOMç»åã«æžãåºã|DICOMç»åã«æžãåºã]]
#[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_4Dãã¥ãŒã¢ã䜿çšãã|4Dãã¥ãŒã¢ã䜿çšãã]]
#[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_å€æé¢åæ§æåãäœæãã|å€æé¢åæ§æåãäœæãã]]
#[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_3Dåæ§æåãäœæãã|3Dåæ§æåãäœæãã]]
#[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_PACSã¯ãŒã¯ã¹ããŒã·ã§ã³ãšããŠäœ¿çšãã|PACSã¯ãŒã¯ã¹ããŒã·ã§ã³ãšããŠäœ¿çšãã]]
#[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_2Dã·ãã¯ã»ã¹ã©ãã䜿çšãã|2Dã·ãã¯ã»ã¹ã©ãã䜿çšãã]]
#[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_ã·ã§ãŒãã«ããã䜿çšãã|ã·ã§ãŒãã«ããã䜿çšãã]]
#[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_ãã£ãšæ©ãåäœããã|ãã£ãšæ©ãåäœããã]]
#[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_ãã©ã°ã€ã³ã䜿çšãã|ãã©ã°ã€ã³ã䜿çšãã]]
#[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_éçºè
ã«ã¯ã©ãã·ã¥ã¬ããŒããéä¿¡ãã|éçºè
ã«ã¯ã©ãã·ã¥ã¬ããŒããéä¿¡ãã]]
#[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_Macé察å¿ã®CDãOsiriXã§äœ¿çšãã|Macé察å¿ã®CDãOsiriXã§äœ¿çšãã]]
#[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_ã·ãªãŒãºå
ç»åãã3Dåæ§æåäœæã«å¿
èŠãªé åãæãåºã|ã·ãªãŒãºå
ç»åãã3Dåæ§æåäœæã«å¿
èŠãªé åãæãåºã]]
#[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_æ²é¢ä»»æå€æé¢åæ§æåãäœæãã|æ²é¢ä»»æå€æé¢åæ§æåãäœæãã]]
#[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_ã·ãã¯ã»ã¹ã©ãã®ã¢ãŒãèšå®å€ãå¢ãã|ã·ãã¯ã»ã¹ã©ãã®ã¢ãŒãèšå®å€ãå¢ãã]]
#[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_DSAç»åãäœæãã|DSAç»åãäœæãã]]
== OsiriX ã¡ãã¥ãŒé
ç®ãªãã¡ã¬ã³ã¹ ==
# [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXã¡ãã¥ãŒ_OsiriX|OsiriX]]
# [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXã¡ãã¥ãŒ_ãã¡ã€ã«_(File)|ãã¡ã€ã«]]
# [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXã¡ãã¥ãŒ_ç·šé_(Edit)|ç·šé]]
# [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXã¡ãã¥ãŒ_ãã©ãŒããã_(Format)|ãã©ãŒããã]]
# [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXã¡ãã¥ãŒ_2Dãã¥ãŒã¢_(2D Viewer)|2Dãã¥ãŒã¢]]
# [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXã¡ãã¥ãŒ_3Dãã¥ãŒã¢_(3D Viewer)|3Dãã¥ãŒã¢]]
# [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXã¡ãã¥ãŒ_é¢å¿é å_(ROI)|é¢å¿é å]]
# [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXã¡ãã¥ãŒ_ãã©ã°ã€ã³_(Plugins)|ãã©ã°ã€ã³]]
# [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXã¡ãã¥ãŒ_ãŠã€ã³ããŠ_(Window)|ãŠã€ã³ããŠ]]
# [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXã¡ãã¥ãŒ_ãã«ã_(Help)|ãã«ã]]
== OsiriX ãã£ãããããŒæ
å ± ==
#[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXãã£ãããããŒã®æŠèŠ|OsiriXãã£ãããããŒã®æŠèŠ]]
#[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXãã£ãããããŒ_éçºè
åã³å¿åãŠãŒã¶ã®SVNã«ããã¢ã¯ã»ã¹|éçºè
åã³å¿åãŠãŒã¶ã®SVNã«ããã¢ã¯ã»ã¹]]
#[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXãã£ãããããŒ_OsiriXããã«ããã|OsiriXããã«ããã]]
#[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXãã£ãããããŒ_getosirixCVS.plãå©çšãã|getosirixCVS.plãå©çšãã]]
== å€éšãªã³ã¯ ==
* [http://www.osirix-viewer.com/ OsiriX Homepage]
[[Category:OsiriX|*]]
[[Category:èªç¶ç§åŠ|OsiriXããããããããã€ã¶ããã]]
[[Category:ãœãããŠã§ã¢ã®ããã¥ã¢ã«|OsiriXããããããããã€ã¶ããã]] | 2005-01-20T12:32:47Z | 2024-02-05T14:17:09Z | [] | https://ja.wikibooks.org/wiki/OsiriX_%E3%82%AA%E3%83%B3%E3%83%A9%E3%82%A4%E3%83%B3%E8%A7%A3%E8%AA%AC%E6%96%87%E6%9B%B8 |
1,496 | OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriX ã«ã€ã㊠| | ^ >
OsiriX (ãªã¶ã€ãªã¯ã¹)ã¯ãå»çšæ€æ»æ©åš (MRI, CT, PET, PET-CT, ...) ãšå
±çŠç¹é¡åŸ®é¡ (LSM ãšBioRAD-PIC 圢åŒ) ããäœæãããDICOM ç»å (æ¡åŒµå ".dcm"/".DCM") åŠçã«ç¹åãããœãããŠãšã¢ã§ããä»ã«ãå€ãã®ãã¡ã€ã«åœ¢åŒã«å¯Ÿå¿ããŠãããTIFF (8, 16, 32 bits), JPEG, PDF, AVI, MPEG ãQuicktime 圢åŒããããŸããç»åã®éä¿¡ããã¡ã€ã«åœ¢åŒã¯ãDICOM standard ã«å®å
šæºæ ããŠããŸããOsiriX ã¯ãPACS ãå»çšç»åæ©åšããDICOM éä¿¡èŠæ Œ (STORE SCP -Service Class Provider, STORE SCU -Service Class User åã³Query/Retrieve) ã«ããç»åã®åä¿¡ãå¯èœã§ãã
OsiriX ã¯ãè€æ°ã¢ããªãã£ãå€æ¬¡å
ç»åã®éçšã衚瀺ãäžå¿ã«èšèšãããŠããŸããå€æ¬¡å
ç»åã«ã¯ã2D Viewer, 3D Viewer, 4D Viewer (æé軞ãæãã3D ã·ãªãŒãºãäŸãã°Cardiac-CT) ãš5D Viewer (æéãæ©èœè»žãæãã3D ã·ãªãŒãºãäŸãã°Cardiac-PET-CT) ããããŸãã3D Viewer ã¯ãå
šãŠã®ã¬ã³ããªã³ã°æ³ã«å¯Ÿå¿ããŠããŸããã¬ã³ããªã³ã°æ³ãšããŠãå€æé¢åæ§ææ³ (MPR), ãµãŒãã§ã¹ã¬ã³ããªã³ã°æ³, ããªã¥ãŒã ã¬ã³ããªã³ã°æ³ãšæ倧å€æåœ±æ³ (MIP) ããããŸãããããã¯ãã¹ãŠ4 次å
ããŒã¿ããµããŒãããŠãããç°ãªã2 ã·ãªãŒãº (äŸãã°PET-CT) ãããã¥ãŒãžã§ã³ç»åã®äœæãå¯èœã§ãã
OsiriX ã¯ãå»çšç»åçšDICOMã»PACS ã¯ãŒã¯ã¹ããŒã·ã§ã³ã§ãããšåæã«ãå»ç³»ãªãµãŒã (æŸå°ç·å»åŠãæ žå»åŠç»å)ãæ©èœç»åã3D ç»åãå
±çŠç¹é¡åŸ®é¡ãååã€ã¡ãŒãžã³ã°çšã®ç»ååŠçãœãããŠãšã¢ããã±ãŒãžã§ãã
OsiriX ã¯ãå©çšè
ã®å©äŸ¿æ§ã倧ããåºãããã©ã°ã€ã³ã«ããæ©èœæ¡åŒµã«å¯Ÿå¿ããŠããŸã!ããã®ãã©ã°ã€ã³æ©èœã«ããã簡䟿ãªãªããžã§ã¯ãæåèšèªã§ããObjective-C ã«ããã匷åãªã³ã³ã¢ãã¬ãŒã ã¯ãŒã¯ã®éçºç°å¢ãå©çšããããšãã§ããŸãã
æ¥æ¬ã§ã¯ãã¥ãŒãã³ã»ã°ã©ãã£ãã¯ã¹ç€Ÿãå¯äžã®å
¬åŒã¹ãã³ãµãŒäŒæ¥ãšãªã£ãŠããŸãã
[ãŠãŒã¶è©äŸ¡ (ãŠãŒã¶ããã®ã³ã¡ã³ããé»åã¡ãŒã«)]
OsiriX | ^ > | [
{
"paragraph_id": 0,
"tag": "p",
"text": "| ^ >",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "OsiriX (ãªã¶ã€ãªã¯ã¹)ã¯ãå»çšæ€æ»æ©åš (MRI, CT, PET, PET-CT, ...) ãšå
±çŠç¹é¡åŸ®é¡ (LSM ãšBioRAD-PIC 圢åŒ) ããäœæãããDICOM ç»å (æ¡åŒµå \".dcm\"/\".DCM\") åŠçã«ç¹åãããœãããŠãšã¢ã§ããä»ã«ãå€ãã®ãã¡ã€ã«åœ¢åŒã«å¯Ÿå¿ããŠãããTIFF (8, 16, 32 bits), JPEG, PDF, AVI, MPEG ãQuicktime 圢åŒããããŸããç»åã®éä¿¡ããã¡ã€ã«åœ¢åŒã¯ãDICOM standard ã«å®å
šæºæ ããŠããŸããOsiriX ã¯ãPACS ãå»çšç»åæ©åšããDICOM éä¿¡èŠæ Œ (STORE SCP -Service Class Provider, STORE SCU -Service Class User åã³Query/Retrieve) ã«ããç»åã®åä¿¡ãå¯èœã§ãã",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "OsiriX ã¯ãè€æ°ã¢ããªãã£ãå€æ¬¡å
ç»åã®éçšã衚瀺ãäžå¿ã«èšèšãããŠããŸããå€æ¬¡å
ç»åã«ã¯ã2D Viewer, 3D Viewer, 4D Viewer (æé軞ãæãã3D ã·ãªãŒãºãäŸãã°Cardiac-CT) ãš5D Viewer (æéãæ©èœè»žãæãã3D ã·ãªãŒãºãäŸãã°Cardiac-PET-CT) ããããŸãã3D Viewer ã¯ãå
šãŠã®ã¬ã³ããªã³ã°æ³ã«å¯Ÿå¿ããŠããŸããã¬ã³ããªã³ã°æ³ãšããŠãå€æé¢åæ§ææ³ (MPR), ãµãŒãã§ã¹ã¬ã³ããªã³ã°æ³, ããªã¥ãŒã ã¬ã³ããªã³ã°æ³ãšæ倧å€æåœ±æ³ (MIP) ããããŸãããããã¯ãã¹ãŠ4 次å
ããŒã¿ããµããŒãããŠãããç°ãªã2 ã·ãªãŒãº (äŸãã°PET-CT) ãããã¥ãŒãžã§ã³ç»åã®äœæãå¯èœã§ãã",
"title": ""
},
{
"paragraph_id": 3,
"tag": "p",
"text": "OsiriX ã¯ãå»çšç»åçšDICOMã»PACS ã¯ãŒã¯ã¹ããŒã·ã§ã³ã§ãããšåæã«ãå»ç³»ãªãµãŒã (æŸå°ç·å»åŠãæ žå»åŠç»å)ãæ©èœç»åã3D ç»åãå
±çŠç¹é¡åŸ®é¡ãååã€ã¡ãŒãžã³ã°çšã®ç»ååŠçãœãããŠãšã¢ããã±ãŒãžã§ãã",
"title": ""
},
{
"paragraph_id": 4,
"tag": "p",
"text": "OsiriX ã¯ãå©çšè
ã®å©äŸ¿æ§ã倧ããåºãããã©ã°ã€ã³ã«ããæ©èœæ¡åŒµã«å¯Ÿå¿ããŠããŸã!ããã®ãã©ã°ã€ã³æ©èœã«ããã簡䟿ãªãªããžã§ã¯ãæåèšèªã§ããObjective-C ã«ããã匷åãªã³ã³ã¢ãã¬ãŒã ã¯ãŒã¯ã®éçºç°å¢ãå©çšããããšãã§ããŸãã",
"title": ""
},
{
"paragraph_id": 5,
"tag": "p",
"text": "æ¥æ¬ã§ã¯ãã¥ãŒãã³ã»ã°ã©ãã£ãã¯ã¹ç€Ÿãå¯äžã®å
¬åŒã¹ãã³ãµãŒäŒæ¥ãšãªã£ãŠããŸãã",
"title": ""
},
{
"paragraph_id": 6,
"tag": "p",
"text": "[ãŠãŒã¶è©äŸ¡ (ãŠãŒã¶ããã®ã³ã¡ã³ããé»åã¡ãŒã«)]",
"title": "åèæžç±"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "OsiriX | ^ >",
"title": "åèæžç±"
}
] | | ^ > OsiriX (ãªã¶ã€ãªã¯ã¹)ã¯ãå»çšæ€æ»æ©åš ãšå
±çŠç¹é¡åŸ®é¡ ããäœæãããDICOM ç»å åŠçã«ç¹åãããœãããŠãšã¢ã§ããä»ã«ãå€ãã®ãã¡ã€ã«åœ¢åŒã«å¯Ÿå¿ããŠãããTIFF, JPEG, PDF, AVI, MPEG ãQuicktime 圢åŒããããŸããç»åã®éä¿¡ããã¡ã€ã«åœ¢åŒã¯ãDICOM standard ã«å®å
šæºæ ããŠããŸããOsiriX ã¯ãPACS ãå»çšç»åæ©åšããDICOM éä¿¡èŠæ Œ ã«ããç»åã®åä¿¡ãå¯èœã§ãã OsiriX ã¯ãè€æ°ã¢ããªãã£ãå€æ¬¡å
ç»åã®éçšã衚瀺ãäžå¿ã«èšèšãããŠããŸããå€æ¬¡å
ç»åã«ã¯ã2D Viewer, 3D Viewer, 4D Viewer ãš5D Viewer ããããŸãã3D Viewer ã¯ãå
šãŠã®ã¬ã³ããªã³ã°æ³ã«å¯Ÿå¿ããŠããŸããã¬ã³ããªã³ã°æ³ãšããŠãå€æé¢åæ§ææ³ (MPR), ãµãŒãã§ã¹ã¬ã³ããªã³ã°æ³, ããªã¥ãŒã ã¬ã³ããªã³ã°æ³ãšæ倧å€æåœ±æ³ (MIP) ããããŸãããããã¯ãã¹ãŠ4 次å
ããŒã¿ããµããŒãããŠãããç°ãªã2 ã·ãªãŒãº (äŸãã°PET-CT) ãããã¥ãŒãžã§ã³ç»åã®äœæãå¯èœã§ãã OsiriX ã¯ãå»çšç»åçšDICOMã»PACS ã¯ãŒã¯ã¹ããŒã·ã§ã³ã§ãããšåæã«ãå»ç³»ãªãµãŒã ïŒæŸå°ç·å»åŠãæ žå»åŠç»åïŒãæ©èœç»åã3D ç»åãå
±çŠç¹é¡åŸ®é¡ãååã€ã¡ãŒãžã³ã°çšã®ç»ååŠçãœãããŠãšã¢ããã±ãŒãžã§ãã OsiriX ã¯ãå©çšè
ã®å©äŸ¿æ§ã倧ããåºãããã©ã°ã€ã³ã«ããæ©èœæ¡åŒµã«å¯Ÿå¿ããŠããŸãïŒããã®ãã©ã°ã€ã³æ©èœã«ããã簡䟿ãªãªããžã§ã¯ãæåèšèªã§ããObjective-C ã«ããã匷åãªã³ã³ã¢ãã¬ãŒã ã¯ãŒã¯ã®éçºç°å¢ãå©çšããããšãã§ããŸãã æ¥æ¬ã§ã¯ãã¥ãŒãã³ã»ã°ã©ãã£ãã¯ã¹ç€Ÿãå¯äžã®å
¬åŒã¹ãã³ãµãŒäŒæ¥ãšãªã£ãŠããŸãã ãã¥ãŒãã³ã°ã©ãã£ãã¯ã¹ | | [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|^]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriX ã®ä»æ§|>]]
----
<center>[[ç»å:OsiriXlogo.jpg|OsiriXããŽ]]</center>
<br>
'''OsiriX''' (ãªã¶ã€ãªã¯ã¹)ã¯ãå»çšæ€æ»æ©åš (MRI, CT, PET, PET-CT, ...) ãšå
±çŠç¹é¡åŸ®é¡ (LSM ãšBioRAD-PIC 圢åŒ) ããäœæãããDICOM ç»å (æ¡åŒµå ".dcm"/".DCM") åŠçã«ç¹åãããœãããŠãšã¢ã§ããä»ã«ãå€ãã®ãã¡ã€ã«åœ¢åŒã«å¯Ÿå¿ããŠãããTIFF (8, 16, 32 bits), JPEG, PDF, AVI, MPEG ãQuicktime 圢åŒããããŸããç»åã®éä¿¡ããã¡ã€ã«åœ¢åŒã¯ãDICOM standard ã«å®å
šæºæ ããŠããŸããOsiriX ã¯ãPACS ãå»çšç»åæ©åšããDICOM éä¿¡èŠæ Œ (STORE SCP -Service Class Provider, STORE SCU -Service Class User åã³Query/Retrieve) ã«ããç»åã®åä¿¡ãå¯èœã§ãã
'''OsiriX''' ã¯ãè€æ°ã¢ããªãã£ãå€æ¬¡å
ç»åã®éçšã衚瀺ãäžå¿ã«èšèšãããŠããŸããå€æ¬¡å
ç»åã«ã¯ã2D Viewer, 3D Viewer, 4D Viewer (æé軞ãæãã3D ã·ãªãŒãºãäŸãã°Cardiac-CT) ãš5D Viewer (æéãæ©èœè»žãæãã3D ã·ãªãŒãºãäŸãã°Cardiac-PET-CT) ããããŸãã3D Viewer ã¯ãå
šãŠã®ã¬ã³ããªã³ã°æ³ã«å¯Ÿå¿ããŠããŸããã¬ã³ããªã³ã°æ³ãšããŠãå€æé¢åæ§ææ³ (MPR), ãµãŒãã§ã¹ã¬ã³ããªã³ã°æ³, ããªã¥ãŒã ã¬ã³ããªã³ã°æ³ãšæ倧å€æåœ±æ³ (MIP) ããããŸãããããã¯ãã¹ãŠ4 次å
ããŒã¿ããµããŒãããŠãããç°ãªã2 ã·ãªãŒãº (äŸãã°PET-CT) ãããã¥ãŒãžã§ã³ç»åã®äœæãå¯èœã§ãã
'''OsiriX''' ã¯ãå»çšç»åçšDICOMã»PACS ã¯ãŒã¯ã¹ããŒã·ã§ã³ã§ãããš'''åæ'''ã«ãå»ç³»ãªãµãŒã ïŒæŸå°ç·å»åŠãæ žå»åŠç»åïŒãæ©èœç»åã3D ç»åãå
±çŠç¹é¡åŸ®é¡ãååã€ã¡ãŒãžã³ã°çšã®ç»ååŠçãœãããŠãšã¢ããã±ãŒãžã§ãã
'''OsiriX''' ã¯ãå©çšè
ã®å©äŸ¿æ§ã倧ããåºãããã©ã°ã€ã³ã«ããæ©èœæ¡åŒµã«å¯Ÿå¿ããŠããŸãïŒããã®ãã©ã°ã€ã³æ©èœã«ããã簡䟿ãªãªããžã§ã¯ãæåèšèªã§ããObjective-C ã«ããã匷åãª[[ã³ã³ã¢ãã¬ãŒã ã¯ãŒã¯]]ã®éçºç°å¢ãå©çšããããšãã§ããŸãã
æ¥æ¬ã§ã¯ãã¥ãŒãã³ã»ã°ã©ãã£ãã¯ã¹ç€Ÿãå¯äžã®å
¬åŒã¹ãã³ãµãŒäŒæ¥ãšãªã£ãŠããŸãã
* [http://www.newton-graphics.co.jp/ ãã¥ãŒãã³ã°ã©ãã£ãã¯ã¹]
== åèæžç± ==
* {{Cite book|åæž|author = ææ¬çæš¹|year = 2009|title = æ¶å管ã»èèèµããããµã€ãã€ã¡ãŒãžã³ã°âããªãŒãœãããŠã§ã¢OsiriXã§ã€ãã3Dããã²ãŒã·ã§ã³ |publisher = ãžããåºç|isbn = 978-4892696886 }} http://www.herusu-shuppan.co.jp/book/650_699/688.html
=== æ¥æ¬èªè§£èª¬ã¢ã㪠(iPhone App) ===
* [http://itunes.apple.com/jp/app/osirix-navigator/id380437199?mt=8#/ OsiriX Navigator]
[[http://homepage.mac.com/rossetantoine/osirix/Index2.html ãŠãŒã¶è©äŸ¡ (ãŠãŒã¶ããã®ã³ã¡ã³ããé»åã¡ãŒã«)]]
----
[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|OsiriX]] <br>
| [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|^]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriX ã®ä»æ§|>]]
[[en:Online OsiriX Documentation/About OsiriX]]
[[es:Documentación en lÃnea de OsiriX/Acerca_de_OsiriX]]
[[fr:Documentation en ligne de OsiriX/A propos d'OsiriX]]
[[Category:OsiriX|About]] | null | 2021-02-05T07:22:15Z | [
"ãã³ãã¬ãŒã:Cite book"
] | https://ja.wikibooks.org/wiki/OsiriX_%E3%82%AA%E3%83%B3%E3%83%A9%E3%82%A4%E3%83%B3%E8%A7%A3%E8%AA%AC%E6%96%87%E6%9B%B8/OsiriX_%E3%81%AB%E3%81%A4%E3%81%84%E3%81%A6 |
1,500 | OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriX ã®ä»æ§ | < ^ >
OsiriX < ^ > | [
{
"paragraph_id": 0,
"tag": "p",
"text": "< ^ >",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "",
"title": "æ¬ããã°ã©ã ã®çŸæç¹ã«ãããç¹åŸŽ"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "OsiriX < ^ >",
"title": "æ¬ããã°ã©ã ã®çŸæç¹ã«ãããç¹åŸŽ"
}
] | < ^ > | [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriX ã«ã€ããŠ|<]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|^]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriX ã®ã·ã¹ãã æ¡ä»¶|>]]
----
<center>[[ç»å:OsiriXlogo.jpg|OsiriXããŽ]]</center>
== æ¬ããã°ã©ã ã®çŸæç¹ã«ãããç¹åŸŽ ==
===DICOM ãã¡ã€ã«ã®ãµããŒã===
* ããããDICOM ãã¡ã€ã« (ãã«ããã¬ãŒã ãŸã§) ã®èªã¿èŸŒã¿ãšè¡šç€º
* MRI/CT ã®æ°ãããã«ããã¬ãŒã åœ¢åŒ (5200 ã°ã«ãŒã) ã®èªã¿èŸŒã¿ãšè¡šç€º
* JPEG å§çž®ãJPEG éå§çž®ãJPEG 2000ãRLE
* Monochrome1, Monochrome2, RGB, YBR, Planar, Palettes, ...
* ä»»æã®éæ¹åœ¢ãã¯ã»ã«ã¢ã¹ãã¯ãæ¯ããµããŒã
* 8, 12, 16 ããã
* 2D/3D åæ§æããŒã¿ã 'SC' (Secondary Capture) DICOM ãã¡ã€ã«å
* ããããDICOM ã¡ã¿ããŒã¿ã®èªã¿èŸŒã¿ãšè¡šç€º
* DICOM CD/DVD (DICOMDIR 察å¿) èªã¿èŸŒã¿ãšæžãåºã
* DICOM ãã¡ã€ã«ãTIFF, JPEG, Quicktime, RAW, DICOM, PACS ãžæžãåºãã転é
===DICOM ãããã¯ãŒã¯ã®ãµããŒã===
* Store User (Store-SCU, DICOM Send)
* Store Provider (STORE-SCP, DICOM Listener)
* Query and Retrieve User (Query and Retrieve studies from a PACS server)
===éDICOM ãã¡ã€ã«ã®ãµããŒã===
* Zeiss (8, 16, 32 ããã) ã®LSM ãã¡ã€ã« (å
±çŠç¹é¡åŸ®é¡)
* BioRadPIC ãã¡ã€ã« (8, 16, 32 ããã) (å
±çŠç¹é¡åŸ®é¡)
* TIFF (8, 12, 16, 32ããã)
* ANALYZE (8, 12, 16, 32ããã)
* PNG, JPEG, PDF (è€æ°ããŒãž), Quicktime, AVI, MPEG, MPEG4
===2D ãã¥ãŒã¢===
* ããŒã«ããŒã®ã«ã¹ã¿ãã€ãº
* å3次è£é
* ãã«ãã¹ã©ã€ã¹CT ãMRI (Mean, MIP, ããªã¥ãŒã ã¬ã³ããªã³ã°) ã®Thick Slab
* ROIs: å€è§åœ¢ãåãéçãç©åœ¢ãç¢å°ã ...
* ãã«ããã¿ã³ãã¹ã¯ããŒã«ãã€ãŒã«ããŠã¹ããµãâã
* Custom CLUT (Color Look-Up Tables, ç䌌ã«ã©ãŒè¡šç€º)
* Custom 3x3 ã5x5 ã®ç³ã¿èŸŒã¿ãã£ã«ã¿åŠç (Bone filters, ...)
* Cardiac-CT ãä»ã®æé軞ã·ãªãŒãºã«4D Viewer
* PET-CTãã¥ãŒãžã§ã³ç»åã®éé床調ç¯
* XAã®ç»åãµããã©ã¯ã·ã§ã³
* ãã©ã°ã€ã³ã«ããå€éšæ©èœãµããŒã
===3D åŸåŠç===
* Thick Slab (Mean, MIP, ããªã¥ãŒã ã¬ã³ããªã³ã°) ã§å€æé¢åæ§æ (MPR)
* MIP (æ倧å€æ圱æ³)
* ããªã¥ãŒã ã¬ã³ããªã³ã°
* ãµãŒãã§ã¹ã¬ã³ããªã³ã°
* èµ€/é3D çŒé¡ã§ç«äœèŠ
* 3D ç»åã®Quicktime (http://www.apple.com/quicktime/), Quicktime VR (http://www.apple.com/quicktime/qtvr/), TIFF, JPEG ãžã®æžãåºã
* ãã¹ãŠã®3D Viewer ãPET-CT ã®'ãã¥ãŒãžã§ã³'ãšCardiac CT ã®'4D ã¢ãŒã'ããµããŒã
===æé©å===
* Altivec (Velocity Engine) ã«ããé«éå (8ã10åãŸã§é«éå)
* G5 (G5 ããã»ããµã§æé«ã®ããã©ãŒãã³ã¹)
* ãã«ãã¹ã¬ãã
* éåæå
¥å
* ãã«ãããã»ããµå¯Ÿå¿ã«ããé«éå
* Altivec ãšãã«ãã¹ã¬ãã察å¿ã®vImage ã©ã€ãã©ãª
* 2D Viewer ãšãã¹ãŠã®3D Viewer ãOpenGL 察å¿
* ã°ã©ãã£ãã¯ã«ãŒãã«ããé«éå
* [http://www.apple.com/acg/xgrid X-Grid] (ã°ãªããã³ã³ãã¥ãŒãã£ã³ã°)
===æ¡åŒµæ§ãšç³»çµ±çãªãµãŒã===
* OsiriX ã¯ãã€ãããã¯ãªãã©ã°ã€ã³æ§é ããµããŒã
* B&W ç»åãã«ã©ãŒç»åã®ARGB å€ã«å¯ŸããŠã32bit æµ®åå°æ°ç¹ã§çŽæ¥ãã¯ã»ã«ç»çŽ ã«ã¢ã¯ã»ã¹
* ãŠã€ã³ããŠã®äœæã管ç
* ã³ã³ã¢ãã¬ãŒã ã¯ãŒã¯ã®ãã¹ãŠã«ã¢ã¯ã»ã¹
* OpneGL ã«ããæç»ã®çæã管ç
* [http://idlastro.gsfc.nasa.gov/homepage.html IDL] ããé«éã[http://rsb.info.nih.gov/ij/ ImageJ] ãã䜿ããããïŒ
===ãªãŒãã³ãœãŒã¹ã³ã³ããŒãã³ããåºç€===
* [http://developer.apple.com/cocoa/ Cocoa Framework] (OpenStep, GNUStep, NextStep) -- GUI ç°å¢éçºã®ããã®ãªããžã§ã¯ãæåãšã¯ã©ã¹ãã©ããããŒã ã
* [http://theory.uwinnipeg.ca/gnu/libobjects/objective-c_toc.html Objective-C language] -- C++ ã®é·æãæãããã®è€éæ§ãæé€ãããªããžã§ã¯ãæåèšèªããªããžã§ã¯ãã£ãC èšèªã¯åŒ·åãªã¡ã¢ãªç®¡çæ©èœãæäŸããªãŒãã³ãœãŒã¹ãã¯ãã¹ãã©ãããã©ãŒã ã§ããã³ã³ãã€ã© [http://gcc.gnu.org/ ââGNU CompilerCollectionââ (GCC)] ã¯ããªããžã§ã¯ãã£ãC ãã¬ãŒã ã¯ãŒã¯ã®ã³ã³ãã€ã«ã«äœ¿çšãããŠããã
* [http://public.kitware.com/VTK/ VTK (Visualization Toolkit)] -- ç§åŠåéã«ãããŠåºãå©çšãããŠãã3D ç»ååŠçã»æç»ã®ããã®ãªããžã§ã¯ãæåããªãŒãã³ãœãŒã¹äžã€ã¯ã©ã¹ãã©ãããã©ãŒã ãªã©ã€ãã©ãªããã®ããŒã«ãããã¯3D ããŒã¿ã®æäœã衚瀺ã«èšå€§ãªæ©èœãæäŸã
* [http://itk.org ITK (Insight Toolkit)] -- å»çšç»ååŠçã®ã©ã€ãã©ãªæ¡åŒµã»ãããVTK ã©ã€ãã©ãªã®æ¡åŒµã§ãããåããã¬ãŒã ã¯ãŒã¯ã«åºã¥ããŠãããå»çšç»ååéã§èª²é¡ãšãªã£ãŠãããç»åã®åå²ãç°æ©çš®éã®ç»åç»é²ã解決ããããã«éçºããããããã®åŠçã«å¿
èŠãª2D, 3D åŠçã¢ã«ãŽãªãºã äžåŒãæäŸã
* [http://www.pixelmed.com/index.html#PixelMedJavaDICOMToolkit PixelMed] (David Clunie) -- DICOM ããŒã¿ã®èªã¿æžããDICOM ãããã¯ãŒã¯ãšãã¡ã€ã«ãµããŒããDICOM ããŒã¿ããŒã¹ããã£ã¬ã¯ããªæ§é ã»ç»åã»ã¬ããŒãã»ã¹ãã¯ãã«è¡šç€ºã®ãµããŒãåã³DICOM ãªããžã§ã¯ãèªèã®ããã«ãã³ãŒããå®è¡ããã¹ã¿ã³ãã¢ããŒã³ã®DICOM toolkitã
* [http://www.dim.hcuge.ch/papyrus/04_Papyrus_Links_EN.htm Papyrus 3.0] (Digital Imaging Unit) -- ãžã¥ããŒã倧åŠã§éçºãããå
¬éã©ã€ãã©ãªã§ãããã¡ã¿ããŒã¿ãå«ãDICOM ãã¡ã€ã«ã®èªã¿æžãã«å¿
èŠãªæ©èœãæäŸããã
* [http://dicom.offis.de DICOM Offis Toolkit] -- DICOM éä¿¡ãããã³ãŒã«ããµããŒãããã¯ã©ã¹ãã©ãããã©ãŒã ã©ã€ãã©ãªã§ãããPACS ãããã¯ãŒã¯ã«ãããDICOM ç»åã®query, send, retrieve ããåä¿¡ãŸã§ãå¯èœã«ããã
* [http://opengl.org OpenGL] -- 3D ç»åæç»æ©èœã®æ¥çæšæºã°ã©ãã£ãã¯ã©ã€ãã©ãªã3D ã²ãŒã åžå Žã®æé·ã«äŒŽããOpen GL ã¯PC åžå Žã®ã°ã©ãã£ãã¯ããŒãã¡ãŒã«ãŒã«æ¡çšããã3D ã°ã©ãã£ãã¯ã«ãŒããå©çšããããŒããŠãšã¢åŠçãé«éåãããããŒããŠãšã¢åŠçã®é«éåãå¯èœãšããå¯äžã®ã¯ã©ã¹ãã©ããããŒã ã©ã€ãã©ãªã
* [http://www.libexpat.org/ XML-Expat] -- C èšèªã§èšè¿°ãããXML ããŒãµã©ã€ãã©ãªãXML ææžå
ã®èªã¿èŸŒãŸããããŒã¿ãã¢ããªã±ãŒã·ã§ã³ããã°ã©ã ã«äŒéããã¹ããªãŒã åããŒãµã
* [http://www.libtiff.org/index2.html LibTIFF] -- ç»åããŒã¿ã®èšé²ã«åºãå©çšãããŠããTag Image File Format (TIFF) ããµããŒããããœãããŠãšã¢ã
* [http://www.ece.uvic.ca/~mdadams/jasper/ Jasper] -- JPEG-2000 Part-1 standard (ISO/IEC 15444-1) ã§æå®ãããã³ãŒããã¯ããœãããŠãšã¢ããŒã¹ã§å®è¡ãJasPer ãœãããŠãšã¢ã¯C èšèªã§èšè¿°ãããŠããã
* [http://www.ijg.org/ LibJPEG] -- åºãå©çšãããŠããJPEG å§çž®åœ¢åŒçšã®ããªâã©ã€ãã©ãªã
===OsiriX ãªãŒãã³ãœãŒã¹ã¢ãŒããã¯ãã£ã®å³è§£===
<center>[[ç»å:OsiriXArchitecture.gif|OsiriXã¢ãŒããã¯ãã£]]</center>
----
[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|OsiriX]] <br>
[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriX ã«ã€ããŠ|<]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|^]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriX ã®ã·ã¹ãã æ¡ä»¶|>]]
[[en:Online OsiriX Documentation/OsiriX Specifications]]
[[es:Documentación en lÃnea de OsiriX/Especificaciones_de_OsiriX]]
[[fr:Documentation en ligne de OsiriX/Spécifications d'OsiriX]]
[[Category:OsiriX|ããã]] | null | 2015-08-28T12:07:14Z | [] | https://ja.wikibooks.org/wiki/OsiriX_%E3%82%AA%E3%83%B3%E3%83%A9%E3%82%A4%E3%83%B3%E8%A7%A3%E8%AA%AC%E6%96%87%E6%9B%B8/OsiriX_%E3%81%AE%E4%BB%95%E6%A7%98 |
1,501 | OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriX ã®ã·ã¹ãã æ¡ä»¶ | < ^ >
æé«æ§èœãåŒãåºãã«ã¯:
OsiriX < ^ > | [
{
"paragraph_id": 0,
"tag": "p",
"text": "< ^ >",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "æé«æ§èœãåŒãåºãã«ã¯:",
"title": ""
},
{
"paragraph_id": 3,
"tag": "p",
"text": "OsiriX < ^ >",
"title": ""
}
] | < ^ > MacOS X 10.3 以äžã(vImage ã©ã€ãã©ãªã䜿çšããããã10.3 ãå¿
èŠ) PowerPC G3, G4,G5,ãŸãã¯Intel補ããã»ããµãŒæèŒãã·ã³ã æé«æ§èœãåŒãåºãã«ã¯: 300 ç»å 以äžãåŠçããã«ã¯ã512MB ã®ã¡ã¢ãªå®¹éã 800 ç»å 以äžãåŠçããã«ã¯ã1GB ã®ã¡ã¢ãªå®¹éã 1500 ç»å 以äžãåŠçããã«ã¯ã2GB ã®ã¡ã¢ãªå®¹éã 3000 ç»å 以äžãåŠçããã«ã¯ã4GB ã®ã¡ã¢ãªå®¹éã OsiriX < ^ > | [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriX ã®ä»æ§|<]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|^]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriX ã®ããŠã³ããŒããšã€ã³ã¹ããŒã«|>]]
----
<center>[[ç»å:OsiriXlogo.jpg|OsiriXããŽ]]</center>
* MacOS X 10.3 以äžã(vImage ã©ã€ãã©ãªã䜿çšããããã10.3 ãå¿
èŠ)
* PowerPC G3, G4,G5,ãŸãã¯Intel補ããã»ããµãŒæèŒãã·ã³ã (3Dã4D å©çšã«ã¯G5,Intelããã»ããµãŒãæšå¥šïŒ)
'''æé«æ§èœãåŒãåºãã«ã¯''':
* 300 ç»å (classical CT & MRI) 以äžãåŠçããã«ã¯ã512MB ã®ã¡ã¢ãªå®¹éã
* 800 ç»å (multi-slice CT, PET-CT) 以äžãåŠçããã«ã¯ã1GB ã®ã¡ã¢ãªå®¹éã
* 1500 ç»å (multi-slice CT, PET-CT) 以äžãåŠçããã«ã¯ã2GB ã®ã¡ã¢ãªå®¹éã
* 3000 ç»å (4D Viewer ã䜿çšããcardiac CT) 以äžãåŠçããã«ã¯ã4GB ã®ã¡ã¢ãªå®¹éã
----
[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|OsiriX]] <br>
[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriX ã®ä»æ§|<]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|^]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriX ã®ããŠã³ããŒããšã€ã³ã¹ããŒã«|>]]
[[en:Online OsiriX Documentation/OsiriX System Requirements]]
[[es:Documentación en lÃnea de OsiriX/Requerimientos_de_sistema_para_correr_OsiriX]]
[[fr:Documentation en ligne de OsiriX/SystÚme minimum nécessaire pour OsiriX]]
[[Category:OsiriX|æ¡]] | null | 2015-08-28T12:05:49Z | [] | https://ja.wikibooks.org/wiki/OsiriX_%E3%82%AA%E3%83%B3%E3%83%A9%E3%82%A4%E3%83%B3%E8%A7%A3%E8%AA%AC%E6%96%87%E6%9B%B8/OsiriX_%E3%81%AE%E3%82%B7%E3%82%B9%E3%83%86%E3%83%A0%E6%9D%A1%E4%BB%B6 |
1,502 | OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriX ã®ããŠã³ããŒããšã€ã³ã¹ããŒã« | < ^ |
OsiriX.pkg ãããã«ã¯ãªãã¯ããŠã衚瀺ãããæ瀺ã«åŸããŸãã
OsiriX < ^ | | [
{
"paragraph_id": 0,
"tag": "p",
"text": "< ^ |",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "OsiriX.pkg ãããã«ã¯ãªãã¯ããŠã衚瀺ãããæ瀺ã«åŸããŸãã",
"title": "ã€ã³ã¹ããŒã«"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "OsiriX < ^ |",
"title": "ã€ã³ã¹ããŒã«"
}
] | < ^ | | [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriX ã®ã·ã¹ãã æ¡ä»¶|<]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|^]] |
----
<center>[[ç»å:OsiriXlogo.jpg|OsiriXããŽ]]</center>
== ããŠã³ããŒã ==
===以äžã®ãµã€ãããããŠã³ããŒãã§ããŸã [http://www.osirix-viewer.com/Downloads.html]:===
* OsiriX ã€ã³ã¹ããŒã«ããã±âãž + ã¯ã€ãã¯ããã¥ã¢ã« ([http://web.archive.org/20060616103917/homepage.mac.com/rossetantoine/osirix/ContributionOsiriX.html OsiriX.pkg.sit])
* åçš®ãªãã·ã§ã³ [http://web.archive.org/20040731021031/homepage.mac.com/rossetantoine/osirix/Plugins.html OsiriX Plug-ins]
* ãããŒããã£ã¹ãã£ã³ã° [http://web.archive.org/20060616103752/homepage.mac.com/rossetantoine/osirix/OsiriXBroadcasting.sit OsiriXBroadcasting.sit]
* å
šãŠã®ãœãŒã¹ã³ãŒã [http://web.archive.org/20040706051002/homepage.mac.com/rossetantoine/osirix/SourceCode.html OsiriX source code]
* æç® [http://web.archive.org/20041220054959/homepage.mac.com/rossetantoine/osirix/JDI-OsiriX.pdf
Reprint of article on OsiriX from September 2004 issue of Journal of Digital Imaging]
===ä»ã®DICOM ãµã³ãã«ç»å===
* [http://149.142.216.30/DICOM_FILES/Index.html Additional DICOM sample image sets (28 - 932 MB)]
== ã€ã³ã¹ããŒã« ==
OsiriX.pkg ãããã«ã¯ãªãã¯ããŠã衚瀺ãããæ瀺ã«åŸããŸãã
----
[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|OsiriX]] <br>
[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriX ã®ã·ã¹ãã æ¡ä»¶|<]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|^]] |
[[en:Online OsiriX Documentation/Downloading and Installing OsiriX]]
[[es:Documentación en lÃnea de OsiriX/Bajar_e_instalar_OsiriX]]
[[fr:Documentation en ligne de OsiriX/Télécharger et installer OsiriX]]
[[Category:OsiriX|ããããããšãšããããšãã]] | null | 2015-08-28T12:06:16Z | [] | https://ja.wikibooks.org/wiki/OsiriX_%E3%82%AA%E3%83%B3%E3%83%A9%E3%82%A4%E3%83%B3%E8%A7%A3%E8%AA%AC%E6%96%87%E6%9B%B8/OsiriX_%E3%81%AE%E3%83%80%E3%82%A6%E3%83%B3%E3%83%AD%E3%83%BC%E3%83%89%E3%81%A8%E3%82%A4%E3%83%B3%E3%82%B9%E3%83%88%E3%83%BC%E3%83%AB |
1,511 | OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é DICOMç»åãèªã¿èŸŒã | | ^ >
OsiriX ã«DICOM ç»åãèªã¿èŸŒãã«ã¯2ã€ã®æ¹æ³ããããŸã:
PACS ããDICOM ã® "store" æ©èœãå©çšããŠç»åãéä¿¡ãããããããã¯OsiriX ã®DICOM query-retrieve æ©èœãå©çšã㊠"åä¿¡" ã§ããŸãã
PACS ç°å¢ãæ§ç¯ãããŠããã°ãOsiriX ã«DICOM ç»åãèªã¿èŸŒãæãç°¡åãªæ¹æ³ã¯ãOsiriX ã "DICOM Listener" ãšããŠæ©èœãããããšã§ãããã®ç¶æ³ã§ã¯ãDICOM ç»åã¯PACS ã¯ãŒã¯ã¹ããŒã·ã§ã³ããOsiriX ã®åäœããŠããMac ã³ã³ãã¥ãŒã¿ã«éä¿¡ãããŸããã€ãŸããDICOM ç»åãååçã«åä¿¡ãããšããããšã§ãã
æåã«OsiriX åã³PACS ã¯ãŒã¯ã¹ããŒã·ã§ã³ã®èšå®ãããªããã°ãããŸãã: OsiriX ã® "Preferences" ãŠã€ã³ã㊠ã«AETitle ããã³Port çªå·ãå²ãåœãŠãŸãã次㫠"芪æãªã" PACS 管çè
ã«PACS ã®èšå®ãããŠããããŸãããããã®æãOsiriX ã¯å¿
ãåäœããŠããªããšãããŸããã -- DICOM Listener ã¯ãOsiriX ãèµ·åããŠããªããšåäœããŸããã
è€æ°ã®ãŠâã¶ãèšå®ãã:
OsiriX ã¯ãŒã¯ã¹ããŒã·ã§ã³ã«ããã¡ãŒã¹ããŠãŒã¶ã¹ã€ããã䜿ã£ãŠãã°ã€ã³ã§ãããããªè€æ°ãŠãŒã¶ãç»é²ããŠããå ŽåãåãŠãŒã¶ããããã«ç°ãªãAETitle ããã³Port çªå·ãå²ãåœãŠãã¹ãã§ãã
(ããŒãžã§ã³ 1.7.1 ã® OsiriX ã¯ãä»ã®ã¯ãŒã¯ã¹ããŒã·ã§ã³ããã®ã¯ãšãªã«å¯Ÿå¿ããŠããŸããã)
OsiriX ã¯ã¯ãŒã¯ã¹ããŒã·ã§ã³ã CT, MRI è£
眮ã®ãã㪠DICOM æ©åšãšã¯ãšãªãå¯èœã§ããä»ã®æ©åšã« OsiriX ãžã®éä¿¡èšå®ããããŠããªããŠããã¯ãšãªã¯å¯èœã§ããã¯ãšãªãèšå®ããã«ã¯ãç°å¢èšå® (Preferences...) é
ç®ããå Žæ (Locations) ãéžæããŠãçžæåŽã® AETitleãPortçªå·ããã¹ãå (IP ã¢ãã¬ã¹) ãè¿œå ããŸãã次㫠Query/Retrieve(ãããã¯ããŒã«ããŒã® Query ã¢ã€ã³ã³) ãéžæããŸãã衚瀺ããããŠã€ã³ããŠã§æ¥ç¶ãããå Žæãéžæãå¿
èŠãããã°æ¥ç¶ç¶æ
ãæ€èšŒããŸããæ€çŽ¢æ¬ã«æ€çŽ¢ãããæ°å (ãããã¯æ°åã®äžéš) ãå
¥åããªã¿ãŒã³ããŒãæŒããŸããã¯ãšãªæ¬ã«ã¯ããã€ãã®ãªãã·ã§ã³ãããªããã«ããŠã³ã¡ãã¥ãŒããããŸãã
ãªããªãŒããå®è¡ããå Žåã«ã¯ãçžææ©åšã« OsiriX ãžã®éä¿¡èšå®ãå¿
èŠãšãªããŸããOsiriX åŽã® AETitleãPortçªå·ããã¹ãå (IP ã¢ãã¬ã¹) ã PACS è£
眮 (çžææ©åš) åŽã«èšå®ããŠäžããã
ããŒããã£ã¹ã¯ã«DICOM ãã¡ã€ã«ããã£ããããŸãã¯DICOM CD-ROM ãããã°ã "Local database" ãŠã€ã³ããŠã® "Import" ãã¿ã³ãã¯ãªãã¯ããŸãã次ã«ãã¡ã€ã«ãå«ãã§ãããã¡ã€ã«ããã©ã«ããéžæããŸããè€æ°ãã¡ã€ã«ããã©ã«ãã¯ã âshiftâ ããŒãæŒãããŸãŸã§ã¯ãªãã¯ããªããéžæããŸãããŸãããã¹ã¯ããããããã¡ã€ã«ã "Local database" ãŠã€ã³ããŠå
ãžãçŽæ¥ "ãã©ãã°ã»ã¢ã³ãã»ãããã" ããããšãã§ããŸãã
ViTAL Images 瀟ã®Vitrea ã¯ãŒã¯ã¹ããŒã·ã§ã³ã¯ãCD/DVD ã¡ãã£ã¢ã«DICOMDIR èšé²ããããªãç¹ã§ãDICOM standard ã«æºæ ããŠããŸããããã®ãããªç»åãâã¿ãèªã¿èŸŒãã«ã¯:
CD ã®èšé²æ¹åŒã«ã¯ãèšé²ãã¡ã€ã«ãMac ã§èªã¿åºããªããã®ãååšããŸãããã®ãããªã¡ãã£ã¢å
ãã¡ã€ã«ã¯ãOsiriX ã§çŽæ¥éãäºã¯äžå¯èœã§ãããã ãã OsiriX Discussion Group ã«ãããŠãããã€ãã®è§£æ±ºæ³ã玹ä»ãããŠããŸãã:
ã¡ã€ã³ãŠã€ã³ããŠã®ããŒã¿ããŒã¹ããããããæ
å ±ã調ã¹ããããŒã¿ãéžæããŸãã 2D-3D ãã¥ãŒã¢ ã¢ã€ã³ã³ãã¯ãªãã¯ããŠç»åã·ãªãŒãºãéããŸããéãããŠã€ã³ããŠã®ããŒã«ããŒãã«ã¹ã¿ãã€ãºããã°ã Meta-Data ãã¿ã³ãè¿œå ã§ããŸãã
ãã¿ã³ãè¿œå ããã«ã¯ : ã¡ãã¥ãŒããŒã® ãã©ãŒããã ããã㯠ããŠã¹å³ãã¿ã³ã¯ãªãã¯ã§è¡šç€ºããã ã³ã³ãã¯ã¹ãã¡ãã¥ãŒ ããã ããŒã«ããŒãã«ã¹ã¿ãã€ãº... ãéžæããŸãã衚瀺ããããŠã€ã³ããŠãã Meta-Data ã¢ã€ã³ã³ããã©ãã°ããŠãããŒã«ããŒå
ã«ããããããŸãã
å®äº ãã¿ã³ãã¯ãªãã¯ããŠãŠã€ã³ããŠãéããŸãã
ã¯ããåºæ¥äžããã Meta-Data ãã¿ã³ãã¯ãªãã¯ããã°ããããæ
å ±ã衚瀺ãããŠãããã¹ããXML 圢åŒã«æžãåºããŸãã
OsiriX | ^ > | [
{
"paragraph_id": 0,
"tag": "p",
"text": "| ^ >",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "OsiriX ã«DICOM ç»åãèªã¿èŸŒãã«ã¯2ã€ã®æ¹æ³ããããŸã:",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "PACS ããDICOM ã® \"store\" æ©èœãå©çšããŠç»åãéä¿¡ãããããããã¯OsiriX ã®DICOM query-retrieve æ©èœãå©çšã㊠\"åä¿¡\" ã§ããŸãã",
"title": "ãããã¯ãŒã¯çµç±ã§OsiriX ã«DICOM ç»åãèªã¿èŸŒã"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "PACS ç°å¢ãæ§ç¯ãããŠããã°ãOsiriX ã«DICOM ç»åãèªã¿èŸŒãæãç°¡åãªæ¹æ³ã¯ãOsiriX ã \"DICOM Listener\" ãšããŠæ©èœãããããšã§ãããã®ç¶æ³ã§ã¯ãDICOM ç»åã¯PACS ã¯ãŒã¯ã¹ããŒã·ã§ã³ããOsiriX ã®åäœããŠããMac ã³ã³ãã¥ãŒã¿ã«éä¿¡ãããŸããã€ãŸããDICOM ç»åãååçã«åä¿¡ãããšããããšã§ãã",
"title": "ãããã¯ãŒã¯çµç±ã§OsiriX ã«DICOM ç»åãèªã¿èŸŒã"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "æåã«OsiriX åã³PACS ã¯ãŒã¯ã¹ããŒã·ã§ã³ã®èšå®ãããªããã°ãããŸãã: OsiriX ã® \"Preferences\" ãŠã€ã³ã㊠ã«AETitle ããã³Port çªå·ãå²ãåœãŠãŸãã次㫠\"芪æãªã\" PACS 管çè
ã«PACS ã®èšå®ãããŠããããŸãããããã®æãOsiriX ã¯å¿
ãåäœããŠããªããšãããŸããã -- DICOM Listener ã¯ãOsiriX ãèµ·åããŠããªããšåäœããŸããã",
"title": "ãããã¯ãŒã¯çµç±ã§OsiriX ã«DICOM ç»åãèªã¿èŸŒã"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "",
"title": "ãããã¯ãŒã¯çµç±ã§OsiriX ã«DICOM ç»åãèªã¿èŸŒã"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "è€æ°ã®ãŠâã¶ãèšå®ãã:",
"title": "ãããã¯ãŒã¯çµç±ã§OsiriX ã«DICOM ç»åãèªã¿èŸŒã"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "OsiriX ã¯ãŒã¯ã¹ããŒã·ã§ã³ã«ããã¡ãŒã¹ããŠãŒã¶ã¹ã€ããã䜿ã£ãŠãã°ã€ã³ã§ãããããªè€æ°ãŠãŒã¶ãç»é²ããŠããå ŽåãåãŠãŒã¶ããããã«ç°ãªãAETitle ããã³Port çªå·ãå²ãåœãŠãã¹ãã§ãã",
"title": "ãããã¯ãŒã¯çµç±ã§OsiriX ã«DICOM ç»åãèªã¿èŸŒã"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "(ããŒãžã§ã³ 1.7.1 ã® OsiriX ã¯ãä»ã®ã¯ãŒã¯ã¹ããŒã·ã§ã³ããã®ã¯ãšãªã«å¯Ÿå¿ããŠããŸããã)",
"title": "ãããã¯ãŒã¯çµç±ã§OsiriX ã«DICOM ç»åãèªã¿èŸŒã"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "OsiriX ã¯ã¯ãŒã¯ã¹ããŒã·ã§ã³ã CT, MRI è£
眮ã®ãã㪠DICOM æ©åšãšã¯ãšãªãå¯èœã§ããä»ã®æ©åšã« OsiriX ãžã®éä¿¡èšå®ããããŠããªããŠããã¯ãšãªã¯å¯èœã§ããã¯ãšãªãèšå®ããã«ã¯ãç°å¢èšå® (Preferences...) é
ç®ããå Žæ (Locations) ãéžæããŠãçžæåŽã® AETitleãPortçªå·ããã¹ãå (IP ã¢ãã¬ã¹) ãè¿œå ããŸãã次㫠Query/Retrieve(ãããã¯ããŒã«ããŒã® Query ã¢ã€ã³ã³) ãéžæããŸãã衚瀺ããããŠã€ã³ããŠã§æ¥ç¶ãããå Žæãéžæãå¿
èŠãããã°æ¥ç¶ç¶æ
ãæ€èšŒããŸããæ€çŽ¢æ¬ã«æ€çŽ¢ãããæ°å (ãããã¯æ°åã®äžéš) ãå
¥åããªã¿ãŒã³ããŒãæŒããŸããã¯ãšãªæ¬ã«ã¯ããã€ãã®ãªãã·ã§ã³ãããªããã«ããŠã³ã¡ãã¥ãŒããããŸãã",
"title": "ãããã¯ãŒã¯çµç±ã§OsiriX ã«DICOM ç»åãèªã¿èŸŒã"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "ãªããªãŒããå®è¡ããå Žåã«ã¯ãçžææ©åšã« OsiriX ãžã®éä¿¡èšå®ãå¿
èŠãšãªããŸããOsiriX åŽã® AETitleãPortçªå·ããã¹ãå (IP ã¢ãã¬ã¹) ã PACS è£
眮 (çžææ©åš) åŽã«èšå®ããŠäžããã",
"title": "ãããã¯ãŒã¯çµç±ã§OsiriX ã«DICOM ç»åãèªã¿èŸŒã"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "ããŒããã£ã¹ã¯ã«DICOM ãã¡ã€ã«ããã£ããããŸãã¯DICOM CD-ROM ãããã°ã \"Local database\" ãŠã€ã³ããŠã® \"Import\" ãã¿ã³ãã¯ãªãã¯ããŸãã次ã«ãã¡ã€ã«ãå«ãã§ãããã¡ã€ã«ããã©ã«ããéžæããŸããè€æ°ãã¡ã€ã«ããã©ã«ãã¯ã âshiftâ ããŒãæŒãããŸãŸã§ã¯ãªãã¯ããªããéžæããŸãããŸãããã¹ã¯ããããããã¡ã€ã«ã \"Local database\" ãŠã€ã³ããŠå
ãžãçŽæ¥ \"ãã©ãã°ã»ã¢ã³ãã»ãããã\" ããããšãã§ããŸãã",
"title": "èšé²ã¡ãã£ã¢ããOsiriX ã«DICOM ç»åãèªã¿èŸŒã"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "",
"title": "èšé²ã¡ãã£ã¢ããOsiriX ã«DICOM ç»åãèªã¿èŸŒã"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "ViTAL Images 瀟ã®Vitrea ã¯ãŒã¯ã¹ããŒã·ã§ã³ã¯ãCD/DVD ã¡ãã£ã¢ã«DICOMDIR èšé²ããããªãç¹ã§ãDICOM standard ã«æºæ ããŠããŸããããã®ãããªç»åãâã¿ãèªã¿èŸŒãã«ã¯:",
"title": "èšé²ã¡ãã£ã¢ããOsiriX ã«DICOM ç»åãèªã¿èŸŒã"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "",
"title": "èšé²ã¡ãã£ã¢ããOsiriX ã«DICOM ç»åãèªã¿èŸŒã"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "CD ã®èšé²æ¹åŒã«ã¯ãèšé²ãã¡ã€ã«ãMac ã§èªã¿åºããªããã®ãååšããŸãããã®ãããªã¡ãã£ã¢å
ãã¡ã€ã«ã¯ãOsiriX ã§çŽæ¥éãäºã¯äžå¯èœã§ãããã ãã OsiriX Discussion Group ã«ãããŠãããã€ãã®è§£æ±ºæ³ã玹ä»ãããŠããŸãã:",
"title": "èšé²ã¡ãã£ã¢ããOsiriX ã«DICOM ç»åãèªã¿èŸŒã"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "ã¡ã€ã³ãŠã€ã³ããŠã®ããŒã¿ããŒã¹ããããããæ
å ±ã調ã¹ããããŒã¿ãéžæããŸãã 2D-3D ãã¥ãŒã¢ ã¢ã€ã³ã³ãã¯ãªãã¯ããŠç»åã·ãªãŒãºãéããŸããéãããŠã€ã³ããŠã®ããŒã«ããŒãã«ã¹ã¿ãã€ãºããã°ã Meta-Data ãã¿ã³ãè¿œå ã§ããŸãã",
"title": "DICOM ç»åã®ãããæ
å ±ã衚瀺ã»ç·šéããã«ã¯"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "ãã¿ã³ãè¿œå ããã«ã¯ : ã¡ãã¥ãŒããŒã® ãã©ãŒããã ããã㯠ããŠã¹å³ãã¿ã³ã¯ãªãã¯ã§è¡šç€ºããã ã³ã³ãã¯ã¹ãã¡ãã¥ãŒ ããã ããŒã«ããŒãã«ã¹ã¿ãã€ãº... ãéžæããŸãã衚瀺ããããŠã€ã³ããŠãã Meta-Data ã¢ã€ã³ã³ããã©ãã°ããŠãããŒã«ããŒå
ã«ããããããŸãã",
"title": "DICOM ç»åã®ãããæ
å ±ã衚瀺ã»ç·šéããã«ã¯"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "å®äº ãã¿ã³ãã¯ãªãã¯ããŠãŠã€ã³ããŠãéããŸãã",
"title": "DICOM ç»åã®ãããæ
å ±ã衚瀺ã»ç·šéããã«ã¯"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "ã¯ããåºæ¥äžããã Meta-Data ãã¿ã³ãã¯ãªãã¯ããã°ããããæ
å ±ã衚瀺ãããŠãããã¹ããXML 圢åŒã«æžãåºããŸãã",
"title": "DICOM ç»åã®ãããæ
å ±ã衚瀺ã»ç·šéããã«ã¯"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "",
"title": "DICOM ç»åã®ãããæ
å ±ã衚瀺ã»ç·šéããã«ã¯"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "OsiriX | ^ >",
"title": "DICOM ç»åã®ãããæ
å ±ã衚瀺ã»ç·šéããã«ã¯"
}
] | | ^ > OsiriX ã«DICOM ç»åãèªã¿èŸŒãã«ã¯2ã€ã®æ¹æ³ããããŸã: ãããã¯ãŒã¯çµç±ã§:
èšé²ã¡ãã£ã¢ãã: | | [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|^]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_å€èŠ³ãã«ã¹ã¿ãã€ãºãã|>]]
----
'''OsiriX ã«DICOM ç»åãèªã¿èŸŒãã«ã¯2ã€ã®æ¹æ³ããããŸã:'''
#'''ãããã¯ãŒã¯çµç±ã§:'''
#'''èšé²ã¡ãã£ã¢ãã:'''
==ãããã¯ãŒã¯çµç±ã§OsiriX ã«DICOM ç»åãèªã¿èŸŒã==
PACS ããDICOM ã® "store" æ©èœãå©çšããŠç»åãéä¿¡ãããããããã¯OsiriX ã®DICOM query-retrieve æ©èœãå©çšã㊠"åä¿¡" ã§ããŸãã
===OsiriX ãpassive DICOM Listner ãšããŠå©çšãã===
PACS ç°å¢ãæ§ç¯ãããŠããã°ãOsiriX ã«DICOM ç»åãèªã¿èŸŒãæãç°¡åãªæ¹æ³ã¯ãOsiriX ã "DICOM Listener" ãšããŠæ©èœãããããšã§ãããã®ç¶æ³ã§ã¯ãDICOM ç»åã¯PACS ã¯ãŒã¯ã¹ããŒã·ã§ã³ããOsiriX ã®åäœããŠããMac ã³ã³ãã¥ãŒã¿ã«éä¿¡ãããŸããã€ãŸããDICOM ç»åãååçã«åä¿¡ãããšããããšã§ãã
<p>
æåã«OsiriX åã³PACS ã¯ãŒã¯ã¹ããŒã·ã§ã³ã®èšå®ãããªããã°ãããŸãã: OsiriX ã® "Preferences" ãŠã€ã³ã㊠ã«AETitle ããã³Port çªå·ãå²ãåœãŠãŸãã次㫠"芪æãªã" PACS 管çè
ã«PACS ã®èšå®ãããŠããããŸãããããã®æãOsiriX ã¯å¿
ãåäœããŠããªããšãããŸããã -- DICOM Listener ã¯ãOsiriX ãèµ·åããŠããªããšåäœããŸããã
<p>
<div style="text-align: center;">[[ç»å:OsiriXListenerSetup2.jpg]]<br>''"DICOM Listener" ãèšå®ãã "Preference" ãŠã€ã³ããŠ''</div>
'''è€æ°ã®ãŠâã¶ãèšå®ãã:'''
OsiriX ã¯ãŒã¯ã¹ããŒã·ã§ã³ã«ããã¡ãŒã¹ããŠãŒã¶ã¹ã€ããã䜿ã£ãŠãã°ã€ã³ã§ãããããªè€æ°ãŠãŒã¶ãç»é²ããŠããå ŽåãåãŠãŒã¶ããããã«ç°ãªãAETitle ããã³Port çªå·ãå²ãåœãŠãã¹ãã§ãã
===OsiriX ãQuery-Retrieve PACS ã¯ãŒã¯ã¹ããŒã·ã§ã³ãšããŠå©çš===
(ããŒãžã§ã³ 1.7.1 ã® OsiriX ã¯ãä»ã®ã¯ãŒã¯ã¹ããŒã·ã§ã³ããã®ã¯ãšãªã«å¯Ÿå¿ããŠããŸããã)
<p>
OsiriX ã¯ã¯ãŒã¯ã¹ããŒã·ã§ã³ã CT, MRI è£
眮ã®ãã㪠DICOM æ©åšãšã¯ãšãªãå¯èœã§ããä»ã®æ©åšã« OsiriX ãžã®éä¿¡èšå®ããããŠããªããŠããã¯ãšãªã¯å¯èœã§ããã¯ãšãªãèšå®ããã«ã¯ã''ç°å¢èšå® (Preferences...)'' é
ç®ãã''å Žæ (Locations)'' ãéžæããŠãçžæåŽã® AETitleãPortçªå·ããã¹ãå (IP ã¢ãã¬ã¹) ãè¿œå ããŸãã次㫠''Query/RetrieveïŒãããã¯ããŒã«ããŒã® Query ã¢ã€ã³ã³)'' ãéžæããŸãã衚瀺ããããŠã€ã³ããŠã§æ¥ç¶ãããå Žæãéžæãå¿
èŠãããã°æ¥ç¶ç¶æ
ãæ€èšŒããŸããæ€çŽ¢æ¬ã«æ€çŽ¢ãããæ°å (ãããã¯æ°åã®äžéš) ãå
¥åããªã¿ãŒã³ããŒãæŒããŸããã¯ãšãªæ¬ã«ã¯ããã€ãã®ãªãã·ã§ã³ãããªããã«ããŠã³ã¡ãã¥ãŒããããŸãã
<p>
ãªããªãŒããå®è¡ããå Žåã«ã¯ãçžææ©åšã« OsiriX ãžã®éä¿¡èšå®ãå¿
èŠãšãªããŸããOsiriX åŽã® AETitleãPortçªå·ããã¹ãå (IP ã¢ãã¬ã¹) ã PACS è£
眮 (çžææ©åš) åŽã«èšå®ããŠäžããã
==èšé²ã¡ãã£ã¢ããOsiriX ã«DICOM ç»åãèªã¿èŸŒã==
ããŒããã£ã¹ã¯ã«DICOM ãã¡ã€ã«ããã£ããããŸãã¯DICOM CD-ROM ãããã°ã "Local database" ãŠã€ã³ããŠã® "Import" ãã¿ã³ãã¯ãªãã¯ããŸãã次ã«ãã¡ã€ã«ãå«ãã§ãããã¡ã€ã«ããã©ã«ããéžæããŸããè€æ°ãã¡ã€ã«ããã©ã«ãã¯ã âshiftâ ããŒãæŒãããŸãŸã§ã¯ãªãã¯ããªããéžæããŸãããŸãããã¹ã¯ããããããã¡ã€ã«ã "Local database" ãŠã€ã³ããŠå
ãžãçŽæ¥ "ãã©ãã°ã»ã¢ã³ãã»ãããã" ããããšãã§ããŸãã
=== ç¹èš Vitrea ã¯ãŒã¯ã¹ããŒã·ã§ã³ããç»åãèªã¿èŸŒã ===
ViTAL Images 瀟ã®Vitrea ã¯ãŒã¯ã¹ããŒã·ã§ã³ã¯ãCD/DVD ã¡ãã£ã¢ã«DICOMDIR èšé²ããããªãç¹ã§ãDICOM standard ã«æºæ ããŠããŸããããã®ãããªç»åãâã¿ãèªã¿èŸŒãã«ã¯:
# OsiriX ã®ç°å¢èšå®ãå€æŽ: ã¡ãã¥ãŒé
ç®ãã âOsiriXâ - âç°å¢èšå®...â - âCD/DVDâ ãéããŸãã
# äžã®ã¹ã¯ãªãŒã³ã·ã§ããã®æ§ã«ã"Load only files described in the DICOMDIR file" ãã "Load all DICOM files available on the CD/DVD ( this doesn't rely on the DICOMDIR file)" ã«ã©ãžãªãã¿ã³ã®ãã§ãã¯ãåãæ¿ããŸãã
# ãŸããVitrea ãœãããŠãšã¢ã¯ææ°çã«ã¢ããã°ã¬ãŒãããå¿
èŠããããŸãã 以åãVitrea ã¯ãããã³ããã·ã¥ã§ã¯èªã¿èŸŒããªãGEARWORKD CD Driver ã䜿çšãããŠããŸããã
<br>
<div style="text-align: center;">[[ç»å:OsiriXDICOMDIRPreferences.jpg]]<br>''Vitrea CD ã DVD ããç»åãèªã¿èŸŒãå Žåã®ç°å¢èšå®ã«ããCD/DVDé
ç®''</div>
=== Mac é察å¿ã®CD ãOsiriX ã§éãã«ã¯ ===
CD ã®èšé²æ¹åŒã«ã¯ãèšé²ãã¡ã€ã«ãMac ã§èªã¿åºããªããã®ãååšããŸãããã®ãããªã¡ãã£ã¢å
ãã¡ã€ã«ã¯ãOsiriX ã§çŽæ¥éãäºã¯äžå¯èœã§ãããã ãã [http://groups.yahoo.com/group/osirix/ OsiriX Discussion Group] ã«ãããŠãããã€ãã®è§£æ±ºæ³ã玹ä»ãããŠããŸãã:
* '''Virtual PC'''
# Virtual PC ãèµ·åã
# PC ãšåæ§ã«CD ãå©çšå¯èœãšãªãã
# Virtual PC ã®ç°å¢ããMac ã®ãã©ã«ãã«çŽæ¥ã³ããŒããã
# ã³ããŒããããŒã¿ãOsirix ã§å©çšã
* '''ãã©ãã·ã¥ã¡ã¢ãª''' (iPod Shuffleã§ã)
# USB ããŒãã®ããPC ã§CD ãèªèãããã
# PC ã«ãã©ãã·ã¥ã¡ã¢ãªãæ¥ç¶ã
# ãã©ãã·ã¥ã¡ã¢ãªã«CD ããŒã¿ãã³ããŒããã
# ãã®ãã©ãã·ã¥ã¡ã¢ãªãMac ã«æ¥ç¶ã
# OsiriX ã§ãã©ãã·ã¥ã¡ã¢ãªå
ã®ããŒã¿ãå©çšã
* '''èªèãããªãCD ã¡ãã£ã¢ãåãåºã'''
# æ¿å
¥ããCD ã¡ãã£ã¢ããã¡ã€ã³ãããã¹ã¯ãããã«è¡šç€ºãããªãå Žå :
# CD ã¡ãã£ã¢ãåãåºãã«ã¯ãF12 ããŒãæŒããŸãã
# ããã§ãåãåºããªãå Žåã«ã¯ãMac ãåèµ·åããŠãèµ·åäžã«ããŠã¹å·Šãã¿ã³ãæŒãããŸãŸã§ããŸãã
* '''PC ã§Mac ãšèŠªåæ§ã®é«ã CD ãäœæãã'''
# CD ã«çŒãå Žåã''æãäºææ§ã®é«ã'' ãªãã·ã§ã³ãéžæããã
# Drive Letter Access (DLA) ãœãããŠãšã¢ããã©ãã° & ããããã«ããäœæããããªããªãã
# ã·ã³ã°ã«ã»ãã·ã§ã³ã§çŒãã
# ãã£ã¹ã¯ãã¯ããŒãºããã
# CD-R ã䜿çšããCD-RW ã®äœ¿çšã¯é¿ããã
== DICOM ç»åã®ãããæ
å ±ã衚瀺ã»ç·šéããã«ã¯ ==
ã¡ã€ã³ãŠã€ã³ããŠã®ããŒã¿ããŒã¹ããããããæ
å ±ã調ã¹ããããŒã¿ãéžæããŸãã ''2D-3D ãã¥ãŒã¢'' ã¢ã€ã³ã³ãã¯ãªãã¯ããŠç»åã·ãªãŒãºãéããŸããéãããŠã€ã³ããŠã®ããŒã«ããŒãã«ã¹ã¿ãã€ãºããã°ã ''Meta-Data'' ãã¿ã³ãè¿œå ã§ããŸãã
ãã¿ã³ãè¿œå ããã«ã¯ : ã¡ãã¥ãŒããŒã® ''ãã©ãŒããã'' ããã㯠ããŠã¹å³ãã¿ã³ã¯ãªãã¯ã§è¡šç€ºããã ''ã³ã³ãã¯ã¹ãã¡ãã¥ãŒ'' ããã ''ããŒã«ããŒãã«ã¹ã¿ãã€ãº...'' ãéžæããŸãã衚瀺ããããŠã€ã³ããŠãã ''Meta-Data'' ã¢ã€ã³ã³ããã©ãã°ããŠãããŒã«ããŒå
ã«ããããããŸãã
''å®äº'' ãã¿ã³ãã¯ãªãã¯ããŠãŠã€ã³ããŠãéããŸãã
ã¯ããåºæ¥äžããã ''Meta-Data'' ãã¿ã³ãã¯ãªãã¯ããã°ããããæ
å ±ã衚瀺ãããŠãããã¹ããXML 圢åŒã«æžãåºããŸãã
----
[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|OsiriX]] <br>
| [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|^]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_å€èŠ³ãã«ã¹ã¿ãã€ãºãã|>]]
[[en:Online OsiriX Documentation/Importing DICOM images into OsiriX and Viewing DICOM headers]]
[[es:Documentación en lÃnea de OsiriX/Importar_imágenes_DICOM_adentro_de_OsiriX]]
[[fr:Documentation en ligne de OsiriX/Importer des images DICOM dans OsiriX]]
[[Category:OsiriX|DICOMãããããã¿ãã]] | null | 2022-05-20T13:02:51Z | [] | https://ja.wikibooks.org/wiki/OsiriX_%E3%82%AA%E3%83%B3%E3%83%A9%E3%82%A4%E3%83%B3%E8%A7%A3%E8%AA%AC%E6%96%87%E6%9B%B8/OsiriX%E5%85%A5%E9%96%80_DICOM%E7%94%BB%E5%83%8F%E3%82%92%E8%AA%AD%E3%81%BF%E8%BE%BC%E3%82%80 |
1,512 | OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é å€èŠ³ãã«ã¹ã¿ãã€ãºãã | < ^ >
OsiriX ã«ã¯å€ãã®æ©èœããããã°ã©ãã£ã«ã«ãŠãŒã¶ã€ã³ã¿ãŒãã§ã€ã¹ (GUI) ãèªåã®å¥œã¿ã«å€æŽã§ããŸããOsiriX ã®ãŠã€ã³ããŠã¯ããã¹ãŠã«ã¹ã¿ãã€ãºããããšãã§ããŸããããŒã«ããŒã«è¡šç€ºãããããŒã«ãå€æŽããã«ã¯ã "ãã©ãŒããã" ã¡ãã¥ãŒãã"ããŒã«ããŒãã«ã¹ã¿ãã€ãº..." ãéžæããŸãããŸããããŒã«ããŒå
㧠âCtrlâ ããŒãæŒããç¶æ
ã§ãããŠã¹ã¯ãªãã¯ããŠãå¯èœã§ãã"Customize" ãŠã€ã³ããŠãéãããããã®ãŠã€ã³ããŠå
ã®ããŒã«ããããŒã«ããŒãžãã©ãã°ã»ã¢ã³ãã»ããããããŸãã
OsiriX < ^ > | [
{
"paragraph_id": 0,
"tag": "p",
"text": "< ^ >",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "OsiriX ã«ã¯å€ãã®æ©èœããããã°ã©ãã£ã«ã«ãŠãŒã¶ã€ã³ã¿ãŒãã§ã€ã¹ (GUI) ãèªåã®å¥œã¿ã«å€æŽã§ããŸããOsiriX ã®ãŠã€ã³ããŠã¯ããã¹ãŠã«ã¹ã¿ãã€ãºããããšãã§ããŸããããŒã«ããŒã«è¡šç€ºãããããŒã«ãå€æŽããã«ã¯ã \"ãã©ãŒããã\" ã¡ãã¥ãŒãã\"ããŒã«ããŒãã«ã¹ã¿ãã€ãº...\" ãéžæããŸãããŸããããŒã«ããŒå
㧠âCtrlâ ããŒãæŒããç¶æ
ã§ãããŠã¹ã¯ãªãã¯ããŠãå¯èœã§ãã\"Customize\" ãŠã€ã³ããŠãéãããããã®ãŠã€ã³ããŠå
ã®ããŒã«ããããŒã«ããŒãžãã©ãã°ã»ã¢ã³ãã»ããããããŸãã",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "OsiriX < ^ >",
"title": ""
}
] | < ^ > OsiriX ã«ã¯å€ãã®æ©èœããããã°ã©ãã£ã«ã«ãŠãŒã¶ã€ã³ã¿ãŒãã§ã€ã¹ (GUI) ãèªåã®å¥œã¿ã«å€æŽã§ããŸããOsiriX ã®ãŠã€ã³ããŠã¯ããã¹ãŠã«ã¹ã¿ãã€ãºããããšãã§ããŸããããŒã«ããŒã«è¡šç€ºãããããŒã«ãå€æŽããã«ã¯ã "ãã©ãŒããã" ã¡ãã¥ãŒãã"ããŒã«ããŒãã«ã¹ã¿ãã€ãº..." ãéžæããŸãããŸããããŒã«ããŒå
㧠âCtrlâ ããŒãæŒããç¶æ
ã§ãããŠã¹ã¯ãªãã¯ããŠãå¯èœã§ãã"Customize" ãŠã€ã³ããŠãéãããããã®ãŠã€ã³ããŠå
ã®ããŒã«ããããŒã«ããŒãžãã©ãã°ã»ã¢ã³ãã»ããããããŸãã OsiriX < ^ > | [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_DICOMç»åãèªã¿èŸŒã|<]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|^]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_è€æ°ã·ãªãŒãºãåæã«éã|>]]
----
OsiriX ã«ã¯å€ãã®æ©èœããããã°ã©ãã£ã«ã«ãŠãŒã¶ã€ã³ã¿ãŒãã§ã€ã¹ (GUI) ãèªåã®å¥œã¿ã«å€æŽã§ããŸããOsiriX ã®ãŠã€ã³ããŠã¯ããã¹ãŠã«ã¹ã¿ãã€ãºããããšãã§ããŸããããŒã«ããŒã«è¡šç€ºãããããŒã«ãå€æŽããã«ã¯ã "ãã©ãŒããã" ã¡ãã¥ãŒãã"ããŒã«ããŒãã«ã¹ã¿ãã€ãº..." ãéžæããŸãããŸããããŒã«ããŒå
㧠âCtrlâ ããŒãæŒããç¶æ
ã§ãããŠã¹ã¯ãªãã¯ããŠãå¯èœã§ãã"Customize" ãŠã€ã³ããŠãéãããããã®ãŠã€ã³ããŠå
ã®ããŒã«ããããŒã«ããŒãžãã©ãã°ã»ã¢ã³ãã»ããããããŸãã
<center>[[ç»å:OsiriX_4.1.jpg]]<br>''"Customize" ãŠã€ã³ããŠã衚瀺ãããŒã«ããã©ãã°ã»ã¢ã³ãã»ããããããŠã«ã¹ã¿ãã€ãºã''</center>
----
[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|OsiriX]] <br>
[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_DICOMç»åãèªã¿èŸŒã|<]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|^]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_è€æ°ã·ãªãŒãºãåæã«éã|>]]
[[en:Online OsiriX Documentation/Customizing OsiriX windows]]
[[es:Documentación en lÃnea de OsiriX/Configurar_ventanas_OsiriX]]
[[fr:Documentation en ligne de OsiriX/Modifier les fenêtres d'OsiriX]]
[[Category:OsiriX|ãããããããããŸããã]] | null | 2015-08-29T00:59:38Z | [] | https://ja.wikibooks.org/wiki/OsiriX_%E3%82%AA%E3%83%B3%E3%83%A9%E3%82%A4%E3%83%B3%E8%A7%A3%E8%AA%AC%E6%96%87%E6%9B%B8/OsiriX%E5%85%A5%E9%96%80_%E5%A4%96%E8%A6%B3%E3%82%92%E3%82%AB%E3%82%B9%E3%82%BF%E3%83%9E%E3%82%A4%E3%82%BA%E3%81%99%E3%82%8B |
1,513 | OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é è€æ°ã·ãªãŒãºãåæã«éã | < ^ >
è€æ°ã·ãªãŒãºç»åãåæã«éãæ¹æ³ã¯?ã1 件ã®è¢«éšè
ãã¡ã€ã«ãéããé£ç¶ããã·ãªãŒãºã®éžæã«ã¯ âshiftâ ããŒããé£ç¶ããªãã·ãªãŒãºã®éžæã«ã¯ âAppleâ (Command) ããŒãæŒããç¶æ
ã§ãè€æ°ã·ãªãŒãºã®ãµã ãã€ã«ç»åãéžæããŠãããŸãã次ã«ãããŒã«ããŒã«ãã "2D Viewer" ã¢ã€ã³ã³ãã¯ãªãã¯ããã°ãéžæããã·ãªãŒãºããã¹ãŠéããŸãã
ãã€ã§ãæ°ããã·ãªãŒãºãéãããšãã§ããŸããããŒã¿ããŒã¹ãŠã€ã³ããŠãéãã«ã¯ããã¡ã€ã«ã¡ãã¥ãŒãã "Local Database" ãéžæããã ãã§ãã
OsiriX < ^ > | [
{
"paragraph_id": 0,
"tag": "p",
"text": "< ^ >",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "è€æ°ã·ãªãŒãºç»åãåæã«éãæ¹æ³ã¯?ã1 件ã®è¢«éšè
ãã¡ã€ã«ãéããé£ç¶ããã·ãªãŒãºã®éžæã«ã¯ âshiftâ ããŒããé£ç¶ããªãã·ãªãŒãºã®éžæã«ã¯ âAppleâ (Command) ããŒãæŒããç¶æ
ã§ãè€æ°ã·ãªãŒãºã®ãµã ãã€ã«ç»åãéžæããŠãããŸãã次ã«ãããŒã«ããŒã«ãã \"2D Viewer\" ã¢ã€ã³ã³ãã¯ãªãã¯ããã°ãéžæããã·ãªãŒãºããã¹ãŠéããŸãã",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ãã€ã§ãæ°ããã·ãªãŒãºãéãããšãã§ããŸããããŒã¿ããŒã¹ãŠã€ã³ããŠãéãã«ã¯ããã¡ã€ã«ã¡ãã¥ãŒãã \"Local Database\" ãéžæããã ãã§ãã",
"title": ""
},
{
"paragraph_id": 3,
"tag": "p",
"text": "OsiriX < ^ >",
"title": ""
}
] | < ^ > è€æ°ã·ãªãŒãºç»åãåæã«éãæ¹æ³ã¯ïŒã1 件ã®è¢«éšè
ãã¡ã€ã«ãéããé£ç¶ããã·ãªãŒãºã®éžæã«ã¯ âshiftâ ããŒããé£ç¶ããªãã·ãªãŒãºã®éžæã«ã¯ âAppleâ (Command) ããŒãæŒããç¶æ
ã§ãè€æ°ã·ãªãŒãºã®ãµã ãã€ã«ç»åãéžæããŠãããŸãã次ã«ãããŒã«ããŒã«ãã "2D Viewer" ã¢ã€ã³ã³ãã¯ãªãã¯ããã°ãéžæããã·ãªãŒãºããã¹ãŠéããŸãã ãã€ã§ãæ°ããã·ãªãŒãºãéãããšãã§ããŸããããŒã¿ããŒã¹ãŠã€ã³ããŠãéãã«ã¯ããã¡ã€ã«ã¡ãã¥ãŒãã "Local Database" ãéžæããã ãã§ãã OsiriX < ^ > | [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_å€èŠ³ãã«ã¹ã¿ãã€ãºãã|<]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|^]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_è€æ°ã·ãªãŒãºãåæã«é²èŠ§ãã|>]]
----
è€æ°ã·ãªãŒãºç»åãåæã«éãæ¹æ³ã¯ïŒã1 件ã®è¢«éšè
ãã¡ã€ã«ãéããé£ç¶ããã·ãªãŒãºã®éžæã«ã¯ âshiftâ ããŒããé£ç¶ããªãã·ãªãŒãºã®éžæã«ã¯ âAppleâ (Command) ããŒãæŒããç¶æ
ã§ãè€æ°ã·ãªãŒãºã®ãµã ãã€ã«ç»åãéžæããŠãããŸãã次ã«ãããŒã«ããŒã«ãã "2D Viewer" ã¢ã€ã³ã³ãã¯ãªãã¯ããã°ãéžæããã·ãªãŒãºããã¹ãŠéããŸãã
<center>[[ç»å:OsiriX_5.1.jpg]]<br>''"Local Database" ãŠã€ã³ããŠ''</center>
ãã€ã§ãæ°ããã·ãªãŒãºãéãããšãã§ããŸããããŒã¿ããŒã¹ãŠã€ã³ããŠãéãã«ã¯ããã¡ã€ã«ã¡ãã¥ãŒãã "Local Database" ãéžæããã ãã§ãã
----
[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|OsiriX]] <br>
[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_å€èŠ³ãã«ã¹ã¿ãã€ãºãã|<]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|^]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_è€æ°ã·ãªãŒãºãåæã«é²èŠ§ãã|>]]
[[en:Online OsiriX Documentation/Opening multiple series simultaneously]]
[[es:Documentación en lÃnea de OsiriX/Abrir varios series a la vez]]
[[fr:Documentation en ligne de OsiriX/Ouvrir plusieurs séries simultanément]]
[[Category:OsiriX|ãµãããããããããšããã«ã²ãã]] | null | 2015-08-29T00:59:42Z | [] | https://ja.wikibooks.org/wiki/OsiriX_%E3%82%AA%E3%83%B3%E3%83%A9%E3%82%A4%E3%83%B3%E8%A7%A3%E8%AA%AC%E6%96%87%E6%9B%B8/OsiriX%E5%85%A5%E9%96%80_%E8%A4%87%E6%95%B0%E3%82%B7%E3%83%AA%E3%83%BC%E3%82%BA%E3%82%92%E5%90%8C%E6%99%82%E3%81%AB%E9%96%8B%E3%81%8F |
1,514 | OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é è€æ°ã·ãªãŒãºãåæã«é²èŠ§ãã | < ^ >
è€æ°ã·ãªãŒãºãåæã«é²èŠ§ããæ¹æ³ã¯?ã"2D Viewer" ãã "Tile Windows" ãéžæããŸãããã®æ©èœã¯ãéããã·ãªãŒãºãã¹ãŠã®ãŠã€ã³ããŠãã¿ã€ã«ç¶ã«æŽåãããè€æ°ã·ãªãŒãºãåæã«é²èŠ§ã§ããŸãã
åæã«4ã·ãªãŒãºãéããŠããç¶æ
ãã·ãªãŒãºããã¹ãŠåäžçäŸã§ããã°ã察象ãšããŠããã·ãªãŒãºã®ã¹ã©ã€ã¹é¢ããä»ã®ã·ãªãŒãºã§è¡šç€ºãããŸãã
OsiriX < ^ > | [
{
"paragraph_id": 0,
"tag": "p",
"text": "< ^ >",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "è€æ°ã·ãªãŒãºãåæã«é²èŠ§ããæ¹æ³ã¯?ã\"2D Viewer\" ãã \"Tile Windows\" ãéžæããŸãããã®æ©èœã¯ãéããã·ãªãŒãºãã¹ãŠã®ãŠã€ã³ããŠãã¿ã€ã«ç¶ã«æŽåãããè€æ°ã·ãªãŒãºãåæã«é²èŠ§ã§ããŸãã",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "åæã«4ã·ãªãŒãºãéããŠããç¶æ
ãã·ãªãŒãºããã¹ãŠåäžçäŸã§ããã°ã察象ãšããŠããã·ãªãŒãºã®ã¹ã©ã€ã¹é¢ããä»ã®ã·ãªãŒãºã§è¡šç€ºãããŸãã",
"title": ""
},
{
"paragraph_id": 3,
"tag": "p",
"text": "OsiriX < ^ >",
"title": ""
}
] | < ^ > è€æ°ã·ãªãŒãºãåæã«é²èŠ§ããæ¹æ³ã¯ïŒã"2D Viewer" ãã "Tile Windows" ãéžæããŸãããã®æ©èœã¯ãéããã·ãªãŒãºãã¹ãŠã®ãŠã€ã³ããŠãã¿ã€ã«ç¶ã«æŽåãããè€æ°ã·ãªãŒãºãåæã«é²èŠ§ã§ããŸãã åæã«4ã·ãªãŒãºãéããŠããç¶æ
ãã·ãªãŒãºããã¹ãŠåäžçäŸã§ããã°ã察象ãšããŠããã·ãªãŒãºã®ã¹ã©ã€ã¹é¢ããä»ã®ã·ãªãŒãºã§è¡šç€ºãããŸãã OsiriX < ^ > | [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_è€æ°ã·ãªãŒãºãåæã«éã|<]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|^]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_ããŒã«ã«ããŒã¿ããŒã¹ã管çãã|>]]
----
è€æ°ã·ãªãŒãºãåæã«é²èŠ§ããæ¹æ³ã¯ïŒã"2D Viewer" ãã "Tile Windows" ãéžæããŸãããã®æ©èœã¯ãéããã·ãªãŒãºãã¹ãŠã®ãŠã€ã³ããŠãã¿ã€ã«ç¶ã«æŽåãããè€æ°ã·ãªãŒãºãåæã«é²èŠ§ã§ããŸãã
<center>[[ç»å:OsiriX_6.1.jpg|OsiriX è€æ°ã·ãªãŒãºé²èŠ§]]</center><br>''åæã«4ã·ãªãŒãºãéããŠããç¶æ
ãã·ãªãŒãºããã¹ãŠåäžçäŸã§ããã°ã察象ãšããŠããã·ãªãŒãºã®ã¹ã©ã€ã¹é¢ããä»ã®ã·ãªãŒãºã§è¡šç€ºãããŸãã''
----
[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|OsiriX]] <br>
[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_è€æ°ã·ãªãŒãºãåæã«éã|<]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|^]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_ããŒã«ã«ããŒã¿ããŒã¹ã管çãã|>]]
[[en:Online OsiriX Documentation/Viewing multiple series simultaneously]]
[[es:Documentación en lÃnea de OsiriX/Ver varios series a la vez]]
[[fr:Documentation en ligne de OsiriX/Examiner plusieurs séries simultanément]]
[[Category:OsiriX|ãµãããããããããšããã«ãã€ãããã]] | null | 2015-08-29T00:59:44Z | [] | https://ja.wikibooks.org/wiki/OsiriX_%E3%82%AA%E3%83%B3%E3%83%A9%E3%82%A4%E3%83%B3%E8%A7%A3%E8%AA%AC%E6%96%87%E6%9B%B8/OsiriX%E5%85%A5%E9%96%80_%E8%A4%87%E6%95%B0%E3%82%B7%E3%83%AA%E3%83%BC%E3%82%BA%E3%82%92%E5%90%8C%E6%99%82%E3%81%AB%E9%96%B2%E8%A6%A7%E3%81%99%E3%82%8B |
1,521 | Java | ã¡ã€ã³ããŒãž > å·¥åŠ > æ
å ±æè¡ > ããã°ã©ãã³ã° > Java
æ¬æžã¯ãJavaã®æè¡ãå
šäœçã«èŠæž¡ãããšãã§ããããã«ãããã€ãã®ããŒãã«åããŠè§£èª¬ãé²ããŸãã ãªã®ã§èªè
ã¯ãæ¬æžã®è§£èª¬ã¯ç¥ãããéšåã ããéžãã§èªãã§ãæ§ããŸããã
Javaã®æŽå²ã¯1980幎代åŸåã«å§ãŸããŸããåœåããµã³ã»ãã€ã¯ãã·ã¹ãã ãº(åŸã®ãµã³ã»ãã€ã¯ãã·ã¹ãã ãºãçŸåšã®ãªã©ã¯ã«)ã¯ãçµã¿èŸŒã¿ã·ã¹ãã åãã®èšèªãšããŠãOakããšåŒã°ãããããžã§ã¯ããéå§ããŸããããã®åŸã1995幎ã«ãJavaããšããŠçºè¡šããããŠã§ãã¢ããªã±ãŒã·ã§ã³ãã€ã³ã¿ãŒãããäžã®åçãªã³ã³ãã³ããå¯èœã«ããç®çã§èšèšãããŸããã
Javaã¯åãã¯ãã©ãŠã¶äžã§ã¢ãã¬ãããšããŠå®è¡ãããã¯ãã¹ãã©ãããã©ãŒã 察å¿ãšã»ãã¥ãªãã£ã«çŠç¹ãåœãŠãŠããŸããããã®åŸãJavaã¯ãµãŒããŒãµã€ãã¢ããªã±ãŒã·ã§ã³ãäŒæ¥ã·ã¹ãã ã®éçºã«ãåºãæ¡çšãããŸããã1998幎ã«ã¯Javaã®æåã®å€§èŠæš¡ãªã¢ããããŒãã§ããJava 2ããªãªãŒã¹ãããŸããã
2006幎ã«ã¯ãµã³ã»ãã€ã¯ãã·ã¹ãã ãºãJavaããªãŒãã³ãœãŒã¹åããJava Community Process(JCP)ãéããŠéçºè
ã³ãã¥ããã£ã«ããæšæºåããã»ã¹ãå°å
¥ããŸãããããã«ãããJavaã®é²åã¯ããåºç¯å²ã®éçºè
ã«ãã£ãŠä¿é²ãããŸããã
2010幎代ã«ã¯ãOracle Corporationããµã³ã»ãã€ã¯ãã·ã¹ãã ãºãè²·åããJavaã®éçºãšãµããŒããåŒãç¶ããŸãããJava 8ã§ã¯ãã©ã ãåŒãã¹ããªãŒã APIãªã©ã®æ°æ©èœãè¿œå ãããèšèªãšã©ã€ãã©ãªã®æ¹åãè¡ãããŸããã
ãã®åŸãJava 9以éã®ããŒãžã§ã³ã§ã¯ãã¢ãžã¥ãŒã«ã·ã¹ãã ããªã¢ã¯ãã£ãããã°ã©ãã³ã°ã®ãµããŒããªã©ãããŸããŸãªæ°æ©èœãå°å
¥ãããŸãããJavaã¯ãçŸåšãåºç¯å²ã«ãããã¢ããªã±ãŒã·ã§ã³éçºã«ãããŠéèŠãªåœ¹å²ãæããç¶ããŠããŸãã
ãã®Javaã®ã³ãŒãã¯ããšã©ãã¹ããã¹ã®ç¯©(Sieve of Eratosthenes)ã¢ã«ãŽãªãºã ã䜿ã£ãŠãäžããããç¯å²å
ã®çŽ æ°ãèŠã€ããŠåºåããŸãã
å
·äœçã«ã¯ãeratosthenesã¡ãœããã¯æ¬¡ã®æé ã§åäœããŸã:
äŸãã°ãeratosthenes(100) ãå®è¡ãããšã100 以äžã®çŽ æ°ãåºåãããŸãã
ãã®ã³ãŒãã¯ãæ倧å
¬çŽæ°(Greatest Common Divisor, GCD)ãšæå°å
¬åæ°(Least Common Multiple, LCM)ãèšç®ããããã®é¢æ°ãå®è£
ããŠããŸãã
gcdããã³lcmã¡ãœããå
ã®reduceã¡ãœãã:
äºåæ³
ãã®Javaã®ã³ãŒãã¯ãäºåæ³(Bisection Method)ã䜿ã£ãŠäžããããé¢æ°ã®æ ¹(解)ãæ±ããæ¹æ³ã瀺ããŠããŸãã
ãã®ã³ãŒãã¯ãJavaã®Functionã€ã³ã¿ãŒãã§ãŒã¹ãå©çšããŠãé¢æ°ãåŒæ°ãšããŠæž¡ããäºåæ³ã䜿ã£ãŠé¢æ°ã®æ ¹ãèŠã€ããæ¹æ³ãå®è£
ããŠããŸãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ã¡ã€ã³ããŒãž > å·¥åŠ > æ
å ±æè¡ > ããã°ã©ãã³ã° > Java",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "æ¬æžã¯ãJavaã®æè¡ãå
šäœçã«èŠæž¡ãããšãã§ããããã«ãããã€ãã®ããŒãã«åããŠè§£èª¬ãé²ããŸãã ãªã®ã§èªè
ã¯ãæ¬æžã®è§£èª¬ã¯ç¥ãããéšåã ããéžãã§èªãã§ãæ§ããŸããã",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "Javaã®æŽå²ã¯1980幎代åŸåã«å§ãŸããŸããåœåããµã³ã»ãã€ã¯ãã·ã¹ãã ãº(åŸã®ãµã³ã»ãã€ã¯ãã·ã¹ãã ãºãçŸåšã®ãªã©ã¯ã«)ã¯ãçµã¿èŸŒã¿ã·ã¹ãã åãã®èšèªãšããŠãOakããšåŒã°ãããããžã§ã¯ããéå§ããŸããããã®åŸã1995幎ã«ãJavaããšããŠçºè¡šããããŠã§ãã¢ããªã±ãŒã·ã§ã³ãã€ã³ã¿ãŒãããäžã®åçãªã³ã³ãã³ããå¯èœã«ããç®çã§èšèšãããŸããã",
"title": "æŽå²"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "Javaã¯åãã¯ãã©ãŠã¶äžã§ã¢ãã¬ãããšããŠå®è¡ãããã¯ãã¹ãã©ãããã©ãŒã 察å¿ãšã»ãã¥ãªãã£ã«çŠç¹ãåœãŠãŠããŸããããã®åŸãJavaã¯ãµãŒããŒãµã€ãã¢ããªã±ãŒã·ã§ã³ãäŒæ¥ã·ã¹ãã ã®éçºã«ãåºãæ¡çšãããŸããã1998幎ã«ã¯Javaã®æåã®å€§èŠæš¡ãªã¢ããããŒãã§ããJava 2ããªãªãŒã¹ãããŸããã",
"title": "æŽå²"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "2006幎ã«ã¯ãµã³ã»ãã€ã¯ãã·ã¹ãã ãºãJavaããªãŒãã³ãœãŒã¹åããJava Community Process(JCP)ãéããŠéçºè
ã³ãã¥ããã£ã«ããæšæºåããã»ã¹ãå°å
¥ããŸãããããã«ãããJavaã®é²åã¯ããåºç¯å²ã®éçºè
ã«ãã£ãŠä¿é²ãããŸããã",
"title": "æŽå²"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "2010幎代ã«ã¯ãOracle Corporationããµã³ã»ãã€ã¯ãã·ã¹ãã ãºãè²·åããJavaã®éçºãšãµããŒããåŒãç¶ããŸãããJava 8ã§ã¯ãã©ã ãåŒãã¹ããªãŒã APIãªã©ã®æ°æ©èœãè¿œå ãããèšèªãšã©ã€ãã©ãªã®æ¹åãè¡ãããŸããã",
"title": "æŽå²"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ãã®åŸãJava 9以éã®ããŒãžã§ã³ã§ã¯ãã¢ãžã¥ãŒã«ã·ã¹ãã ããªã¢ã¯ãã£ãããã°ã©ãã³ã°ã®ãµããŒããªã©ãããŸããŸãªæ°æ©èœãå°å
¥ãããŸãããJavaã¯ãçŸåšãåºç¯å²ã«ãããã¢ããªã±ãŒã·ã§ã³éçºã«ãããŠéèŠãªåœ¹å²ãæããç¶ããŠããŸãã",
"title": "æŽå²"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ãã®Javaã®ã³ãŒãã¯ããšã©ãã¹ããã¹ã®ç¯©(Sieve of Eratosthenes)ã¢ã«ãŽãªãºã ã䜿ã£ãŠãäžããããç¯å²å
ã®çŽ æ°ãèŠã€ããŠåºåããŸãã",
"title": "ã³ãŒãã®ã£ã©ãªãŒ"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "å
·äœçã«ã¯ãeratosthenesã¡ãœããã¯æ¬¡ã®æé ã§åäœããŸã:",
"title": "ã³ãŒãã®ã£ã©ãªãŒ"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "äŸãã°ãeratosthenes(100) ãå®è¡ãããšã100 以äžã®çŽ æ°ãåºåãããŸãã",
"title": "ã³ãŒãã®ã£ã©ãªãŒ"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "ãã®ã³ãŒãã¯ãæ倧å
¬çŽæ°(Greatest Common Divisor, GCD)ãšæå°å
¬åæ°(Least Common Multiple, LCM)ãèšç®ããããã®é¢æ°ãå®è£
ããŠããŸãã",
"title": "ã³ãŒãã®ã£ã©ãªãŒ"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "gcdããã³lcmã¡ãœããå
ã®reduceã¡ãœãã:",
"title": "ã³ãŒãã®ã£ã©ãªãŒ"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "äºåæ³",
"title": "ã³ãŒãã®ã£ã©ãªãŒ"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "ãã®Javaã®ã³ãŒãã¯ãäºåæ³(Bisection Method)ã䜿ã£ãŠäžããããé¢æ°ã®æ ¹(解)ãæ±ããæ¹æ³ã瀺ããŠããŸãã",
"title": "ã³ãŒãã®ã£ã©ãªãŒ"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "ãã®ã³ãŒãã¯ãJavaã®Functionã€ã³ã¿ãŒãã§ãŒã¹ãå©çšããŠãé¢æ°ãåŒæ°ãšããŠæž¡ããäºåæ³ã䜿ã£ãŠé¢æ°ã®æ ¹ãèŠã€ããæ¹æ³ãå®è£
ããŠããŸãã",
"title": "ã³ãŒãã®ã£ã©ãªãŒ"
}
] | ã¡ã€ã³ããŒãžÂ > å·¥åŠÂ > æ
å ±æè¡Â > ããã°ã©ãã³ã°Â > Java æ¬æžã¯ãJavaã®æè¡ãå
šäœçã«èŠæž¡ãããšãã§ããããã«ãããã€ãã®ããŒãã«åããŠè§£èª¬ãé²ããŸãã
ãªã®ã§èªè
ã¯ãæ¬æžã®è§£èª¬ã¯ç¥ãããéšåã ããéžãã§èªãã§ãæ§ããŸããã | {{Pathnav|ã¡ã€ã³ããŒãž|å·¥åŠ|æ
å ±æè¡|ããã°ã©ãã³ã°}}
----
{{Wikipedia|Javaèšèª|Javaèšèª}}
æ¬æžã¯åçŽããäžçŽãŸã§ã網çŸ
ããJavaã®åºç€ããå¿çšãŸã§ãã«ããŒããŸãã
åçŽç·šã§ã¯åºæ¬ææ³ãæŠå¿µãäžçŽç·šã§ã¯ãªããžã§ã¯ãæåãã¹ã¬ããåŠçãäžçŽç·šã§ã¯ãªãã¬ã¯ã·ã§ã³ãããŒã¿ããŒã¹é£æºãGUIãWebã¢ããªã±ãŒã·ã§ã³éçºãããã«ãã¬ãŒã ã¯ãŒã¯ã®å©çšæ¹æ³ãŸã§åŠã¹ãŸãã
æ¬æžã¯å¹
åºãèªè
ã«äŸ¡å€ãæäŸããJavaããã°ã©ãã³ã°ã®ã¹ãã«åäžãæ¯æŽããŸãã
== æ§æ ==
=== åçŽç·š ===
; Javaå
¥é
:# [[/ã¯ã€ãã¯ãã¢ãŒ|ã¯ã€ãã¯ãã¢ãŒ]]
:# [[/Hello world|Hello world]]
:# [[/ããã°ã©ãã³ã°ã®ããã®æºå|ããã°ã©ãã³ã°ã®ããã®æºå]]
; åºæ¬ææ³ãšæŠå¿µ
:# [[/åºç€/å€æ°ãšä»£å
¥æŒç®|å€æ°ãšä»£å
¥]]
:# [[/ææ³/ã³ã¡ã³ã|ã³ã¡ã³ã]]
:# [[/åºç€/ç®è¡æŒç®|åŒãšæŒç®å]]
:# [[/åºç€/æ¡ä»¶åå²|æ¡ä»¶åå²]]
:# [[/åºç€/å埩åŠç|å埩åŠç]]
:# [[/åºç€/å|å]]
:# [[/åºç€/ãªãã©ã«|ãªãã©ã«]]
:#: [[/ã¢ã³ããŒã¹ã³ã¢|ã¢ã³ããŒã¹ã³ã¢]]
:# [[/null|null]]
:# [[/Optional|Optional]]
:# [[/åºç€/æåå|æåå]]
:# [[/åºç€/é
å|é
å]]
:# [[/åºç€/ã³ã¬ã¯ã·ã§ã³|ã³ã¬ã¯ã·ã§ã³]]
:# [[/åºç€/ã¯ã©ã¹|ã¯ã©ã¹]]
:# [[/åºç€/äŸå€åŠç|äŸå€åŠç]]
=== äžçŽç·š ===
; ãªããžã§ã¯ãæåããã°ã©ãã³ã° (OOP)
:# [[/ææ³/ã¯ã©ã¹|ã¯ã©ã¹]]
:# [[/ææ³/ããã±ãŒãž|ããã±ãŒãž]]
:# [[/æœè±¡ã¯ã©ã¹|æœè±¡ã¯ã©ã¹]]
:# [[/ã©ãããŒã¯ã©ã¹|ã©ãããŒã¯ã©ã¹]]
:#: [[/ãªãŒããã¯ã·ã³ã°|ãªãŒããã¯ã·ã³ã°]]
:# [[/åæå (enum)|åæå (enum)]]
:# [[/ã¬ã³ãŒã|ã¬ã³ãŒã (record)]]
:# [[/ã€ã³ã¿ãŒãã§ãŒã¹|ã€ã³ã¿ãŒãã§ãŒã¹]]
:# [[/ãžã§ããªã¯ã¹|ãžã§ããªã¯ã¹]]
:# [[/ã¢ãããŒã·ã§ã³|ã¢ãããŒã·ã§ã³]]
; ã¹ã¬ãããšäžŠè¡åŠç
:# ã¹ã¬ããã®åºæ¬çãªç解
:# ã¹ã¬ããã®äœæãšå¶åŸ¡
:# ãã«ãã¹ã¬ããããã°ã©ãã³ã°ã®åºç€
;ã©ã ãåŒãšã¹ããªãŒã API
:# ã©ã ãåŒã®æ§æãšå©ç¹
:# ã¹ããªãŒã APIã®åºæ¬çãªæäœïŒmapãfilterãreduceãªã©ïŒ
;ãã¶ã€ã³ãã¿ãŒã³
:# ãœãããŠã§ã¢ãã¶ã€ã³ãã¿ãŒã³ã®åºæ¬æŠå¿µ
:# 代衚çãªãã¶ã€ã³ãã¿ãŒã³ã®ç解ãšå®è£
; ç¹æ®æ©èœãšæè¡
:# [[/æ¹å»ãããæè¡|æ¹å»ãããæè¡]]
=== äžçŽç·š ===
;ãªãã¬ã¯ã·ã§ã³
:#ãªãã¬ã¯ã·ã§ã³ã®åºæ¬çãªç解
:#ãªãã¬ã¯ã·ã§ã³ã䜿çšãããã€ãããã¯ããã°ã©ãã³ã°
;ãŠããããã¹ã
:#ãŠããããã¹ãã®éèŠæ§ãšåºæ¬çãªèãæ¹
:#JUnitãªã©ã®ãã¹ãã£ã³ã°ãã¬ãŒã ã¯ãŒã¯ã®äœ¿çšæ¹æ³
;ããŒã¿ããŒã¹é£æº
:#JDBCã䜿çšããããŒã¿ããŒã¹ã®æäœ
:#SQLã¯ãšãªã®äœæãšå®è¡
;GUIã¢ããªã±ãŒã·ã§ã³éçº
:#[[JavaFX]]
;Webã¢ããªã±ãŒã·ã§ã³éçº
:#ServletãšJSPã®åºç€
:#MVCã¢ãŒããã¯ãã£ã®ç解ãšå®è£
;ãã¬ãŒã ã¯ãŒã¯
:#Spring Frameworkã®åºæ¬çãªæŠå¿µãšå©çšæ¹æ³
:#Spring Bootã䜿çšããã¢ããªã±ãŒã·ã§ã³ã®éçº
:#* [[Spring Framework]] -- ç·åã¢ããªã±ãŒã·ã§ã³ãã¬ãŒã ã¯ãŒã¯ã
:#* [[Google Guice]] -- 軜éãªäŸåæ§æ³šå
¥ïŒDIïŒãã¬ãŒã ã¯ãŒã¯ã
:#* [[Google Guava]] -- ã³ã¬ã¯ã·ã§ã³ãã¬ãŒã ã¯ãŒã¯ãå«ãã ãŠãŒãã£ãªãã£ã©ã€ãã©ãªã
:#* ([[Apache Commons Lang]]) -- ç·ç§°åã«é察å¿ãå€ãã®æ©èœã¯ Java SE ãå®è£
ã
== ããŒãžã§ã³ããšã®äž»ãªæ°æ©èœ ==
; Java 17 (2021幎9æ):
:*SealedClass: <code>sealed</code>ããŒã¯ãŒãã䜿çšããŠå®çŸ©ãããç¹å®ã®ãµãã¯ã©ã¹ãèš±å¯ããããã«æå®ãããŸãããµãã¯ã©ã¹ã¯ã<code>permits</code>ããŒã¯ãŒãã䜿çšããŠå°å°ãããã¯ã©ã¹å
ã§æ瀺çã«æå®ãããªããã°ãªããŸããã
:*ã¹ã€ããåŒã®ãã¿ãŒã³ãããã³ã°ïŒ: switchæå
ã§æ¡ä»¶ã«åºã¥ããŠãã¿ãŒã³ãæå®ãåå²ãå®çŸããŸãããã¿ãŒã³ã«ã¯åãå€ãnullãã§ãã¯ãªã©ãå«ãŸããè€éãªæ¡ä»¶ãçŽæçã«è¡šçŸã§ããŸãã<!--
:* ã¢ãžã¥ãŒã«ããã: ã¢ãžã¥ãŒã«ãããæ©èœãå°å
¥ãããã¢ãžã¥ãŒã«ã·ã¹ãã ã«å¯Ÿããæè»æ§ãåäžããŸããã
:* ããã©ãŒãã³ã¹æ¹å: JVMã®ããã©ãŒãã³ã¹ãæ¹åãããã¡ã¢ãªå¹çãåäžããŸããã-->
:* ãã£ãŒãã£ãŒãµããŒã: é·æãµããŒããªãªãŒã¹ïŒLTSïŒãšããŠã®Java 17ã®ãµããŒããè¿œå ãããå°æ¥ã®å®å®æ§ãšäºææ§ãä¿èšŒãããŸããã
; Java 16 (2021幎3æ):
:* <code>record</code>: <code>record</code>ã¯äžå€æ§ãæã¡ãèªåçã«<code>equals()</code>ã<code>hashCode()</code>ã<code>toString()</code>ã¡ãœãããçæãããã£ãŒã«ããèªã¿åãå°çšã«ããããšãã§ããŸãã
:* instanceofã®ãã¿ãŒã³ãããã³ã°: æ°ããinstanceofæŒç®åãå°å
¥ãããåãã¿ãŒã³ã®ãã§ãã¯ãå¯èœã«ãªããŸããã
:* UNIXãã¡ã€ã³ãœã±ãã: UNIXãã¡ã€ã³ãœã±ããã®ãµããŒããè¿œå ãããããŒã«ã«éä¿¡ãå¯èœã«ããŸããã
:* OpenJDKããªã·ãŒã®å€æŽ: OpenJDKã®ã©ã€ã»ã³ã¹ããªã·ãŒãå€æŽãããå°æ¥ã®ããŒãžã§ã³ã«å¯ŸãããµããŒããæ¹åãããŸããã
; Java 15 (2020幎9æ):
:* ããã¹ããããã¯ã®æ¹å: ããã¹ããããã¯ãæ¹åããããšã¹ã±ãŒãã·ãŒã±ã³ã¹ã®åŠçãæ¹åãããŸããã<!--
:* G1ã¬ããŒãžã³ã¬ã¯ã¿ã®æ¹å: G1ã¬ããŒãžã³ã¬ã¯ã¿ã«å¯ŸããããŸããŸãªæ¹è¯ãè¡ãããããã©ãŒãã³ã¹ãåäžããŸããã
:* ZGCã¬ããŒãžã³ã¬ã¯ã¿ã®æ¹å: ZGCã¬ããŒãžã³ã¬ã¯ã¿ã«å¯Ÿããããã€ãã®æ¹è¯ãè¡ããã倧èŠæš¡ãªããŒããµã€ãºã®ã¢ããªã±ãŒã·ã§ã³ã®ããã©ãŒãã³ã¹ãåäžããŸããã-->
; Java 14 (2020幎3æ):
:* ãžã£ãŽã¡ãã©ã€ãã¬ã³ãŒã: Java Flight RecorderïŒJFRïŒããªãŒãã³ãœãŒã¹åãããåºç¯ãªãããã¡ã€ãªã³ã°ããŒã«ãæäŸãããŸããã
; Java 13 (2019幎9æ):
:* ããã¹ããããã¯: è€æ°è¡ã®æååãªãã©ã«ã®ããã®ããã¹ããããã¯æ©èœãå°å
¥ãããæååã®å¯èªæ§ãåäžããŸããã<!--
:* ãã€ãããã¯CDSã¢ãŒã«ã€ã: åçCDSã¢ãŒã«ã€ãæ©èœãå°å
¥ãããã¢ããªã±ãŒã·ã§ã³ã®èµ·åæéãæ¹åãããŸããã
:* ZGCã¬ããŒãžã³ã¬ã¯ã¿: Z Garbage CollectorïŒZGCïŒãå®éšçã«å°å
¥ããã倧èŠæš¡ãªããŒããµã€ãºãæã€ã¢ããªã±ãŒã·ã§ã³ã«æé©åãããã¬ããŒãžã³ã¬ã¯ã¿ãæäŸãããŸããã-->
; Java 12 (2019幎3æ):
:* switchåŒ: æ°ããswitchåŒãå°å
¥ãããããç°¡æœãªã³ãŒãèšè¿°ãå¯èœã«ãªããŸããã<!--
:* ãã€ã¯ããã³ãããŒã¯ã¹ã€ãŒã: ãã€ã¯ããã³ãããŒã¯ã¹ã€ãŒããå°å
¥ãããJavaã®ããã©ãŒãã³ã¹ãè©äŸ¡ããããã®ããŒã«ãæäŸãããŸããã
:* ã·ã§ãã«G1ã¬ããŒãžã³ã¬ã¯ã¿: G1ã¬ããŒãžã³ã¬ã¯ã¿ã«å¯Ÿããå®éšçãªæ¹è¯ãè¡ãããæ§èœãåäžããŸããã-->
; Java 11 (2018幎9æ):<!--
:* Epsilonã¬ããŒãžã³ã¬ã¯ã¿: ã¡ã¢ãªã®ã¢ãã±ãŒã·ã§ã³ãè¡ãããã¬ããŒãžã³ã¬ã¯ã·ã§ã³ãç¡å¹ã«ããå®éšçãªã¬ããŒãžã³ã¬ã¯ã¿ãè¿œå ãããŸããã
:* HTTPã¯ã©ã€ã¢ã³ã: æšæºã®HTTPã¯ã©ã€ã¢ã³ãAPIãè¿œå ãããHTTP/2ããã³WebSocketããµããŒãããŸãã-->
:* ããŒã«ã«å€æ°ã®æ§ææ¡åŒµ: <code>var</code>ããŒã¯ãŒããããŒã«ã«å€æ°ã®å®£èšã ãã§ãªããforeachã«ãŒãã®ã€ã³ããã¯ã¹å®£èšã§ã䜿çšã§ããããã«ãªããŸããã
; Java 10 (2018幎3æ):
:* varå: ããŒã«ã«å€æ°ã®åæšè«ãå°å
¥ãã<code>var</code>ããŒã¯ãŒãã䜿çšããŠå€æ°ã宣èšããããšãã§ããããã«ãªããŸããã
:* ããŒã«ã«å€æ°ã®åæšè«: ã¡ãœããã®ãã©ã¡ãŒã¿ãŒã«ãããŠãåã®æ瀺çãªå®£èšãçç¥ã§ããããã«ãªããŸããã<!--
:* G1ã¬ããŒãžã³ã¬ã¯ã¿ã®æ¹å: G1ã¬ããŒãžã³ã¬ã¯ã¿ãŒã«å€ãã®æ¹åãè¡ãããããå¹ççãªã¡ã¢ãªç®¡çãå¯èœã«ãªããŸããã-->
; Java 9 (2017幎9æ):
:* ã¢ãžã¥ã©ãŒã·ã¹ãã : ã¢ãžã¥ãŒã«ã·ã¹ãã ïŒProject JigsawïŒãè¿œå ãããã¢ããªã±ãŒã·ã§ã³ãã¢ãžã¥ãŒã«ã«åå²ããäŸåé¢ä¿ãæ瀺çã«å®çŸ©ã§ããããã«ãªããŸããã
:* JShell: 察話åã®Javaã·ã§ã«ïŒREPLïŒãè¿œå ãããJavaã®ã³ãŒãæçãå³åº§ã«è©Šè¡ã§ããããã«ãªããŸããã
:* ãã©ã€ããŒãã¡ãœããã€ã³ã¿ãŒãã§ãŒã¹: ã€ã³ã¿ãŒãã§ãŒã¹å
ã§ãã©ã€ããŒãã¡ãœãããšãã©ã€ããŒãã¹ã¿ãã£ãã¯ã¡ãœãããå®çŸ©ã§ããããã«ãªããŸããã
; Java 8 (2014幎3æ):
:* ã©ã ãåŒãšã¹ããªãŒã API: ã©ã ãåŒãå°å
¥ããã³ãŒãã®ç°¡æœåãšã¹ããªãŒã åŠçããµããŒãããStream APIãè¿œå ãããŸããã
:* Optional: nullãæ±ãããã®æ°ããã¯ã©ã¹Optionalãå°å
¥ãããnullãã€ã³ã¿äŸå€ã®åé¿ããµããŒãããŸãã
:* Date/Time API: Joda-Timeã«ã€ã³ã¹ãã€ã¢ãããæ°ããæ¥ä»ãšæéã®APIãå°å
¥ãããŸããã
;Java 7 (2011幎7æ):
:*æååã¹ã€ãã: switchæã§æååã®æ¯èŒããµããŒãããŸããã
:*ãã€ã€ã¢ã³ãæŒç®å: ãžã§ããªãã¯ã®ã€ã³ã¹ã¿ã³ã¹åæã«åãçç¥ã§ããããã«ãªããŸããã
:*Try-with-resources: tryæã§ã®ãªãœãŒã¹ã®èªåã¯ããŒãºããµããŒãããããã®æ°ããæ§æãå°å
¥ãããŸããã
:*[[/ã¢ã³ããŒã¹ã³ã¢|ã¢ã³ããŒã¹ã³ã¢]]: æ°å€ãªãã©ã«ã«ãããŠãèªã¿ããããåäžãããããã«ãæ¡åºåãã«äœ¿çšãããŸãã
:*ãžã§ããªãã¯äŸå€ã®åæšè«ïŒJava 7.0ã§ã¯ãcatchãããã¯ã§ãžã§ããªãã¯äŸå€ããã£ãããããšãã«ããžã§ããªãã¯åã®æšè«ãã§ããããã«ãªããŸããã
:*å¯å€é·åŒæ°ã®æ¹åïŒå¯å€é·åŒæ°ã䜿çšããŠãä»ã®åŒæ°ãšçµã¿åãããŠäœ¿çšã§ããããã«ãªããŸããã
:*ã€ã³ã¹ã¿ã³ã¹åããããžã§ããªãã¯åã®åŒæ°ã®åæšè«ïŒã³ã³ãã€ã©ãããžã§ããªãã¯åã®åŒæ°ã®åãèªåçã«æšè«ã§ããããã«ãªããŸããã
;Java 6 (2006幎12æ):<!--
ã¹ã¯ãªããã£ã³ã°ãµããŒã: ã¹ã¯ãªããèšèªïŒäŸãã°ãJavaScriptãRubyãªã©ïŒãJavaã¢ããªã±ãŒã·ã§ã³ã«çµ±åããããã®APIãè¿œå ãããŸããã
ãããã¡ã€ãªã³ã°ããŒã«: æ°ãããããã¡ã€ãªã³ã°ããŒã«ãè¿œå ãããããã©ãŒãã³ã¹ã®åæã容æã«ãªããŸããã
WebãµãŒãã¹ãµããŒã: çµã¿èŸŒã¿ã®WebãµãŒãã¹ã¹ã¿ãã¯ãè¿œå ãããWebãµãŒãã¹ã®éçºãç°¡ç¥åãããŸããã
;Java 6.0ã®äž»ãªæ°æ©èœã®äžèŠ§-->
:*ã³ã³ãã€ã«æå®æ°ïŒCompile-Time ConstantsïŒïŒJava 6.0ã§ã¯ãå®æ°åŒã宣èšãããå Žæã§è©äŸ¡ãããããã«ãªããŸãããããã«ãããå®è¡æã®ã³ã¹ããåæžãããã³ãŒãã®ç°¡æœæ§ãåäžããŸããã
:*ãªãã©ã«æååã®èªåçãªé£çµïŒAutomatic Concatenation of Literal StringsïŒïŒJava 6.0ã§ã¯ãè€æ°ã®ãªãã©ã«æååãé£æ¥ããŠããå Žåãèªåçã«é£çµãããããã«ãªããŸãããããã«ãããã³ãŒãã®å¯èªæ§ãåäžããèšè¿°ã®ç°¡ç¥åãå¯èœã«ãªããŸããã
;Java 5 (2004幎9æ):
:*[[/ãžã§ããªã¯ã¹|ãžã§ããªã¯ã¹]]: åå®å
šæ§ãåäžãããããã®ãžã§ããªãã¯ã¹ãå°å
¥ãããŸããã
:*[[/åºç€/å埩åŠç#æ¡åŒµforæ|æ¡åŒµforã«ãŒãïŒEnhanced For LoopïŒ]]: ã³ã¬ã¯ã·ã§ã³ãé
åãç°¡æœã«åŠçããããã®æ¡åŒµforã«ãŒããå°å
¥ãããŸããã
:*[[/ãªãŒããã¯ã·ã³ã°|ãªãŒããã¯ã·ã³ã°ãšã¢ã³ãã¯ã·ã³ã°]]: ããªããã£ãåãšããã«å¯Ÿå¿ããã©ãããŒã¯ã©ã¹ã®éã§èªåçã«å€æãè¡ãããããã«ãªããŸããã
:*[[/ã¢ãããŒã·ã§ã³|ã¢ãããŒã·ã§ã³]]: ã¯ã©ã¹ãã¡ãœãããå€æ°ãªã©ã«ä»äžããããšãã§ããã¡ã¿ããŒã¿ã§ãã³ã³ãã€ã«æãå®è¡æã«å©çšãããã
:*[[/åæå|åæå]]: åæåã¯ãå®æ°ã®éåãè¡šçŸããããã«äœ¿çšãããŸããåæåã¯ãã³ã³ãã€ã«æã®åæ€æ»ã«åœ¹ç«ã¡ãŸãã
:*[[/éçã€ã³ããŒã|éçã€ã³ããŒã]]: éçã¡ã³ããŒãã€ã³ããŒãããããšãã§ããŸãã
:*[[/å¯å€é·åŒæ°|å¯å€é·åŒæ°]]: ã¡ãœãããå¯å€æ°ã®åŒæ°ãåãããšãã§ããããã«ãªããŸãã
== æŽå² ==
Javaã®æŽå²ã¯1980幎代åŸåã«å§ãŸããŸããåœåããµã³ã»ãã€ã¯ãã·ã¹ãã ãºïŒåŸã®ãµã³ã»ãã€ã¯ãã·ã¹ãã ãºãçŸåšã®ãªã©ã¯ã«ïŒã¯ãçµã¿èŸŒã¿ã·ã¹ãã åãã®èšèªãšããŠãOakããšåŒã°ãããããžã§ã¯ããéå§ããŸããããã®åŸã1995幎ã«ãJavaããšããŠçºè¡šããããŠã§ãã¢ããªã±ãŒã·ã§ã³ãã€ã³ã¿ãŒãããäžã®åçãªã³ã³ãã³ããå¯èœã«ããç®çã§èšèšãããŸããã
Javaã¯åãã¯ãã©ãŠã¶äžã§ã¢ãã¬ãããšããŠå®è¡ãããã¯ãã¹ãã©ãããã©ãŒã 察å¿ãšã»ãã¥ãªãã£ã«çŠç¹ãåœãŠãŠããŸããããã®åŸãJavaã¯ãµãŒããŒãµã€ãã¢ããªã±ãŒã·ã§ã³ãäŒæ¥ã·ã¹ãã ã®éçºã«ãåºãæ¡çšãããŸããã1998幎ã«ã¯Javaã®æåã®å€§èŠæš¡ãªã¢ããããŒãã§ããJava 2ããªãªãŒã¹ãããŸããã
2006幎ã«ã¯ãµã³ã»ãã€ã¯ãã·ã¹ãã ãºãJavaããªãŒãã³ãœãŒã¹åããJava Community ProcessïŒJCPïŒãéããŠéçºè
ã³ãã¥ããã£ã«ããæšæºåããã»ã¹ãå°å
¥ããŸãããããã«ãããJavaã®é²åã¯ããåºç¯å²ã®éçºè
ã«ãã£ãŠä¿é²ãããŸããã
2010幎代ã«ã¯ãOracle Corporationããµã³ã»ãã€ã¯ãã·ã¹ãã ãºãè²·åããJavaã®éçºãšãµããŒããåŒãç¶ããŸãããJava 8ã§ã¯ãã©ã ãåŒãã¹ããªãŒã APIãªã©ã®æ°æ©èœãè¿œå ãããèšèªãšã©ã€ãã©ãªã®æ¹åãè¡ãããŸããã
ãã®åŸãJava 9以éã®ããŒãžã§ã³ã§ã¯ãã¢ãžã¥ãŒã«ã·ã¹ãã ããªã¢ã¯ãã£ãããã°ã©ãã³ã°ã®ãµããŒããªã©ãããŸããŸãªæ°æ©èœãå°å
¥ãããŸãããJavaã¯ãçŸåšãåºç¯å²ã«ãããã¢ããªã±ãŒã·ã§ã³éçºã«ãããŠéèŠãªåœ¹å²ãæããç¶ããŠããŸãã
== ã³ãŒãã®ã£ã©ãªãŒ ==
=== ãšã©ãã¹ããã¹ã®ç¯© ===
:<syntaxhighlight lang=java>
import java.util.*;
public class Main {
public static void eratosthenes(int n) {
boolean[] sieve = new boolean[n + 1];
sieve[0] = false;
sieve[1] = false;
for (int i = 2; i <= n; i++) {
sieve[i] = true;
}
for (int i = 2; i <= n; i++) {
if (sieve[i]) {
System.out.println(i);
for (int j = i * 2; j <= n; j += i) {
sieve[j] = false;
}
}
}
}
public static void main(String[] args) {
eratosthenes(100);
}
}
</syntaxhighlight>
ãã®Javaã®ã³ãŒãã¯ããšã©ãã¹ããã¹ã®ç¯©ïŒSieve of EratosthenesïŒã¢ã«ãŽãªãºã ã䜿ã£ãŠãäžããããç¯å²å
ã®çŽ æ°ãèŠã€ããŠåºåããŸãã
# <code>eratosthenes</code>ã¡ãœãã:
#* <code>n</code> 以äžã®çŽ æ°ãèŠã€ããããã«ã<code>boolean</code>é
å <code>sieve</code> ãçšæããŸãã<code>sieve[i]</code> ã <code>true</code> ã®å Žåã<code>i</code> ã¯çŽ æ°ã§ãã
#* åæåã®éã<code>sieve[0]</code> ãš <code>sieve[1]</code> ã <code>false</code> ã«èšå®ãããã以å€ã®èŠçŽ ã <code>true</code> ã«åæåããŸãã
#* 2ãã <code>n</code> ãŸã§ã®åæ°ã«å¯ŸããŠããã®æ°ãçŽ æ°ã§ããå Žåããã®æ°ãåºåãããã®åæ°ã <code>false</code> ã«ããŒã¯ããŸãã
# <code>main</code>ã¡ãœãã:
#* <code>main</code>ã¡ãœããã§ã¯ã<code>eratosthenes</code>ã¡ãœãããåŒã³åºããŠã<code>100</code> 以äžã®çŽ æ°ãèŠã€ããŠåºåããŸãã
å
·äœçã«ã¯ã<code>eratosthenes</code>ã¡ãœããã¯æ¬¡ã®æé ã§åäœããŸãïŒ
* <code>n</code> 以äžã®æ°ã <code>true</code> ã«åæåããŸãã
* 2ãã <code>n</code> ãŸã§ã®åæ°ã«ã€ããŠããã®æ°ãçŽ æ°ã§ããå Žåããã®æ°èªäœãåºåãããã®æ°ã®åæ°ã <code>false</code> ã«ããŸããããã«ãããæ®ã£ã <code>true</code> ã®æ°ã¯çŽ æ°ã«ãªããŸãã
äŸãã°ã<code>eratosthenes(100)</code> ãå®è¡ãããšã<code>100</code> 以äžã®çŽ æ°ãåºåãããŸãã
=== æ倧å
¬çŽæ°ãšæå°å
¬åæ° ===
:<syntaxhighlight lang=java>
import java.util.Arrays;
public class Main {
public static int gcd2(int m, int n) {
return n == 0 ? m : gcd2(n, m % n);
}
public static int gcd(int... ints) {
if (ints.length == 0) {
throw new IllegalArgumentException("At least one argument is required");
}
return Arrays.stream(ints).reduce(Main::gcd2).getAsInt();
}
public static int lcm2(int m, int n) {
return m * n / gcd2(m, n);
}
public static int lcm(int... ints) {
if (ints.length == 0) {
throw new IllegalArgumentException("At least one argument is required");
}
return Arrays.stream(ints).reduce(Main::lcm2).getAsInt();
}
public static void main(String[] args) {
System.out.println("gcd2(30, 45) => " + gcd2(30, 45));
System.out.println("gcd(30, 72, 12) => " + gcd(30, 72, 12));
System.out.println("lcm2(30, 72) => " + lcm2(30, 72));
System.out.println("lcm(30, 42, 72) => " + lcm(30, 42, 72));
}
}
</syntaxhighlight>
ãã®ã³ãŒãã¯ãæ倧å
¬çŽæ°ïŒGreatest Common Divisor, GCDïŒãšæå°å
¬åæ°ïŒLeast Common Multiple, LCMïŒãèšç®ããããã®é¢æ°ãå®è£
ããŠããŸãã
<code>gcd</code>ããã³<code>lcm</code>ã¡ãœããå
ã®reduceã¡ãœãã:
* <code>Arrays.stream(ints)</code>ã䜿çšããŠ<code>ints</code>ãã¹ããªãŒã ã«å€æãã<code>reduce</code>ã¡ãœããã䜿ã£ãŠ<code>Main::gcd2</code>ãŸãã¯<code>Main::lcm2</code>é¢æ°ã环ç©çã«é©çšããŸãã
* <code>getAsInt()</code>ã¡ãœããã䜿çšããŠçµæãååŸããŸããããã¯ã<code>OptionalInt</code>ã<code>int</code>ã«å€æããæäœã§ãã<code>getAsInt()</code>ã¯ã¹ããªãŒã ã空ã§ãªãããšãåæãšããŠããŸããããã®å Žåã¯åŒæ°ãå°ãªããšã1ã€ä»¥äžããããšãä¿èšŒãããŠããããåé¡ãããŸããã
=== äºåæ³ ===
[[W:äºåæ³|äºåæ³]]
:<syntaxhighlight lang=java>
import java.util.function.Function;
public class Main {
public static double bisection(double low, double high, Function<Double, Double> f) {
double x = (low + high) / 2;
double fx = f.apply(x);
final double epsilon = 1.0e-10;
if (Math.abs(fx) < epsilon) {
return x;
}
if (fx < 0.0) {
low = x;
} else {
high = x;
}
return bisection(low, high, f);
}
public static void main(String[] args) {
var result1 = bisection(0, 3, x -> x - 1);
System.out.println(result1);
var result2 = bisection(0, 3, x -> x * x - 1);
System.out.println(result2);
}
}
</syntaxhighlight>
: [[æ§èª²çš(-2012幎床)é«çåŠæ ¡æ°åŠB/æ°å€èšç®ãšã³ã³ãã¥ãŒã¿ãŒ#2åæ³]]ã®äŸã Java ã«ç§»æ€ããŸããã
ãã®Javaã®ã³ãŒãã¯ãäºåæ³ïŒBisection MethodïŒã䜿ã£ãŠäžããããé¢æ°ã®æ ¹ïŒè§£ïŒãæ±ããæ¹æ³ã瀺ããŠããŸãã
# <code>bisection</code>ã¡ãœãã:
#* äžããããç¯å² <code>low</code> ãã <code>high</code> ã®éã§é¢æ° <code>f</code> ã®æ ¹ãèŠã€ããã¡ãœããã§ãã
#* <code>low</code> ãš <code>high</code> ã®äžéç¹ã <code>x</code> ãšããŠèšç®ãããã®ç¹ã§ã®é¢æ°å€ <code>fx</code> ãååŸããŸãã
#* <code>fx</code> ã®çµ¶å¯Ÿå€ãéåžžã«å°ããïŒãã®å Žåã<code>1.0e-10</code>ããå°ããïŒå Žåã<code>x</code> ãèŠã€ãããšã¿ãªããŠè¿ããŸãã
#* ãã以å€ã®å Žåã<code>fx</code> ã®ç¬Šå·ããã§ãã¯ããŠã<code>x</code> ãæ°ããç¯å²ã®äžå¿ãšããŠã<code>low</code> ãŸã㯠<code>high</code> ãæŽæ°ããååž°çã« <code>bisection</code> ã¡ãœãããåŒã³åºããŸãã
# <code>main</code>ã¡ãœãã:
#* <code>main</code>ã¡ãœããã§ã¯ã<code>bisection</code>ã¡ãœããã䜿çšããŠãäžããããé¢æ°ã®æ ¹ãæ±ããŸãã
#* äŸãã°ã<code>x - 1</code> ã®é¢æ°ã®æ ¹ã <code>0</code> ãã <code>3</code> ã®ç¯å²ã§èŠã€ããŠåºåãã<code>x^2 - 1</code> ã®é¢æ°ã®æ ¹ãåæ§ã«èŠã€ããŠåºåããŸãã
ãã®ã³ãŒãã¯ãJavaã®<code>Function</code>ã€ã³ã¿ãŒãã§ãŒã¹ãå©çšããŠãé¢æ°ãåŒæ°ãšããŠæž¡ããäºåæ³ã䜿ã£ãŠé¢æ°ã®æ ¹ãèŠã€ããæ¹æ³ãå®è£
ããŠããŸãã
== çšèªé ==
; abstractïŒæœè±¡ïŒ: ã€ã³ã¹ã¿ã³ã¹ãäœæã§ããªãæœè±¡ã¯ã©ã¹ãæœè±¡ã¡ãœãããå®çŸ©ããããã®ä¿®é£Ÿåã
; annotationïŒã¢ãããŒã·ã§ã³ïŒ: ãœãŒã¹ã³ãŒãã«ã¡ã¿ããŒã¿ãè¿œå ããããã®æ©èœã
; ArrayïŒé
åïŒ: åãåã®è€æ°ã®èŠçŽ ãä¿æããããã®ããŒã¿æ§é ã
; ArrayListïŒåçé
åïŒ: å¯å€é·é
åãå®çŸããããã®ã¯ã©ã¹ã
; assertïŒã¢ãµãŒãïŒ: æ¡ä»¶ãæ£ããããšããã§ãã¯ããããã«äœ¿çšãããããŒã¯ãŒãã
; binary operatorïŒäºé
æŒç®åïŒ: 2ã€ã®ãªãã©ã³ããæã€æŒç®åã
; booleanïŒè«çå€ïŒ: 2ã€ã®å€ãtrueãŸãã¯falseããæã€ããŒã¿åã
; breakïŒãã¬ãŒã¯ïŒ: ã«ãŒããswitchæããæãåºãããã®ããŒã¯ãŒãã
; byteïŒãã€ãïŒ: 8ãããã®ç¬Šå·ä»æŽæ°åã®ããŒã¿åã
; caseïŒã±ãŒã¹ïŒ: switchæå
ã§ãè©äŸ¡åŒã®å€ãšäžèŽããå Žåã«å®è¡ããããããã¯ã
; catchïŒãã£ããïŒ: tryãããã¯å
ã§çºçããäŸå€ãåŠçããããã®ãããã¯ã
; charïŒæåïŒ: 16ãããUnicodeæåã®ããŒã¿åã
; classïŒã¯ã©ã¹ïŒ: ããŒã¿ãšãã®æäœãå®çŸ©ããããã®æ§é äœã
; class variableïŒã¯ã©ã¹å€æ°ïŒ: ã¯ã©ã¹ã®ãã¹ãŠã®ã€ã³ã¹ã¿ã³ã¹ã§å
±æãããå€æ°ã
; compilerïŒã³ã³ãã€ã©ïŒ: ãœãŒã¹ã³ãŒããæ©æ¢°èªã«å€æããããã°ã©ã ã
; constructorïŒã³ã³ã¹ãã©ã¯ã¿ïŒ: ãªããžã§ã¯ããäœæããéã«åŒã³åºãããã¡ãœããã
; continueïŒã³ã³ãã£ãã¥ãŒïŒ: ã«ãŒãå
ã§æ¬¡ã®å埩åŠçã«é²ãããã®ããŒã¯ãŒãã
; do-whileïŒdo-whileæïŒ: æ¡ä»¶åŒãfalseã§ãªãéãããããã¯ãå®è¡ãç¶ããã«ãŒãã
; doubleïŒå粟床浮åå°æ°ç¹æ°ïŒ: 64ãããã®æµ®åå°æ°ç¹æ°ã®ããŒã¿åã
; encapsulationïŒã«ãã»ã«åïŒ: ããŒã¿ãšããã«å¯ŸããæäœããŸãšããå€éšããã®ã¢ã¯ã»ã¹ãå¶éããæ©èœã
; enhanced for loopïŒæ¡åŒµforã«ãŒãïŒ: é
åãã³ã¬ã¯ã·ã§ã³ã®èŠçŽ ã«å¯ŸããŠç¹°ãè¿ãåŠçãè¡ãããã®ç°¡æœãªæ§æã
; enumïŒåæåïŒ: äžé£ã®å®æ°ãè¡šãããã®ç¹æ®ãªã¯ã©ã¹ã
; exceptionïŒäŸå€ïŒ: ããã°ã©ã ã®å®è¡äžã«çºçãããšã©ãŒãè¡šããªããžã§ã¯ãã
; extendsïŒç¶æ¿ïŒ:ã¯ã©ã¹ã®ç¶æ¿ã«äœ¿çšãããJavaã®ããŒã¯ãŒãã
; finalïŒæçµïŒ:ãã£ãŒã«ããã¡ãœããããŸãã¯ã¯ã©ã¹ã«ä¿®é£ŸåãšããŠä»ããããå€ã®å€æŽããªãŒããŒã©ã€ããçŠæ¢ããã
; finallyïŒæåŸã«ïŒ:äŸå€åŠçãããã¯ã®äžéšã§ãå¿
ãå®è¡ãããã³ãŒããæå®ããããã«äœ¿çšãããããŒã¯ãŒãã
; floatïŒæµ®åå°æ°ç¹æ°ïŒ:å粟床浮åå°æ°ç¹æ°ãè¡šãJavaã®ããªããã£ãåã
; forïŒforã«ãŒãïŒ:æå®ãããåæ°ãŸãã¯æ¡ä»¶ã«åºã¥ããŠãã³ãŒããããã¯ãå埩çã«å®è¡ããããã«äœ¿çšãããããŒã¯ãŒãã
; foreachïŒæ¡åŒµforã«ãŒãïŒ:é
åãŸãã¯ã³ã¬ã¯ã·ã§ã³ã«å¯ŸããŠãç°¡åãªå埩åŠçãè¡ãããã«äœ¿çšãããJavaã®æ§æã
; genericïŒãžã§ããªãã¯ïŒ:ã¯ã©ã¹ãã¡ãœããã«ãã©ã¡ãŒã¿ãŒãè¿œå ããç°ãªãããŒã¿åã®ãªããžã§ã¯ããæ±ãæ±çšçãªããã°ã©ãã³ã°ã®æ©èœã
; getterïŒã²ãã¿ãŒïŒ:ã¯ã©ã¹ã®ã€ã³ã¹ã¿ã³ã¹å€æ°ã®å€ãååŸããããã®ã¡ãœããã
; if-elseïŒæ¡ä»¶åå²ïŒ:æ¡ä»¶ãçã®å Žåã«1ã€ã®ã³ãŒããããã¯ãå®è¡ããããã§ãªãå Žåã«å¥ã®ã³ãŒããããã¯ãå®è¡ããããã«äœ¿çšãããJavaã®æ§æã
; implementsïŒå®è£
ïŒ:ã€ã³ã¿ãŒãã§ã€ã¹ãå®è£
ããã¯ã©ã¹ã«äœ¿çšãããããŒã¯ãŒãã
; importïŒã€ã³ããŒãïŒ:å¥ã®ããã±ãŒãžå
ã®ã¯ã©ã¹ã䜿çšããããã«ãJavaã«å€éšã¯ã©ã¹ãåã蟌ãããã®ããŒã¯ãŒãã
; instance variableïŒã€ã³ã¹ã¿ã³ã¹å€æ°ïŒ:ã¯ã©ã¹ã®ã€ã³ã¹ã¿ã³ã¹ã®äžéšã§ããããªããžã§ã¯ãã®ç¹å®ã®ç¶æ
ãä¿æããããã«äœ¿çšãããå€æ°ã
; intïŒæŽæ°ïŒ:32ãããã®æŽæ°ãè¡šãJavaã®ããªããã£ãåã
; interfaceïŒã€ã³ã¿ãŒãã§ã€ã¹ïŒ:ã¯ã©ã¹ã®ã¡ãœããã®éåã§ãããå®è£
ã¯ã©ã¹ã«ãã£ãŠå®è£
ãããããšãæ³å®ããŠããã
; jarïŒJARãã¡ã€ã«ïŒ:Javaã¢ããªã±ãŒã·ã§ã³ãããã±ãŒãžåããããã®æšæºçãªåœ¢åŒã®ã¢ãŒã«ã€ããã¡ã€ã«ã
; java keywordïŒJavaã®ããŒã¯ãŒãïŒ:Javaã®æ§æã§ç¹å¥ãªæå³ãæã€äºçŽèªã
; java runtime environment(JRE): Javaã¢ããªã±ãŒã·ã§ã³ãå®è¡ããããã®ã©ã³ã¿ã€ã ç°å¢ã
; JDK: JavaéçºããããJavaéçºã«å¿
èŠãªããŒã«ãã³ã³ãã€ã©ããããã¬ãAPIãããã¥ã¡ã³ããå«ãŸããã
; JRE: Javaã©ã³ã¿ã€ã ç°å¢ãJavaã¢ããªã±ãŒã·ã§ã³ãå®è¡ããããã®ç°å¢ã
; JVM: Javaä»®æ³ãã·ã³ãJavaã¢ããªã±ãŒã·ã§ã³ãå®è¡ããããã®ä»®æ³ã³ã³ãã¥ãŒã¿ã
; lambda expression: Java 8ã§å°å
¥ãããç¡åé¢æ°ã®äžçš®ã
; long: Javaã®ããŒã¿åã®äžã€ã§ã64ãããã®ç¬Šå·ä»ãæŽæ°ãè¡šãã
; method: ã¯ã©ã¹å
ã§å®è¡ãããã³ãŒããããã¯ã®ããšã
; modifier: ã¯ã©ã¹ãã¡ãœãããå€æ°ãªã©ã®å±æ§ãå€æŽããããã«äœ¿çšãããããŒã¯ãŒãã
; new: ãªããžã§ã¯ãã®ã€ã³ã¹ã¿ã³ã¹ãäœæããããã®ããŒã¯ãŒãã
; null: ãªããžã§ã¯ããååšããªãããšã瀺ãå€ã
; NumberFormatException: æååãæ°å€ã«å€æããããšããéã«ãæååãæ°å€ã«å€æã§ããªãå Žåã«ã¹ããŒãããäŸå€ã
; object: ããŒã¿ãã¡ãœãããæã€ã€ã³ã¹ã¿ã³ã¹ã
; Object-Oriented Programming: ãªããžã§ã¯ãæåããã°ã©ãã³ã°ãã¯ã©ã¹ããªããžã§ã¯ããç¶æ¿ãããªã¢ãŒãã£ãºã ãªã©ãå©çšããŠããã°ã©ã ãèšèšããæ¹æ³ã
; operator: æŒç®åãç®è¡æŒç®åãæ¯èŒæŒç®åãè«çæŒç®åãªã©ãããã
; package: ã¯ã©ã¹ãã€ã³ã¿ãŒãã§ãŒã¹ãã°ã«ãŒãåããããã®ä»çµã¿ã
; private: ã¯ã©ã¹ã®å€éšããã¢ã¯ã»ã¹ã§ããªãã¢ã¯ã»ã¹ä¿®é£Ÿåã
; protected: ãµãã¯ã©ã¹ããã®ã¿ã¢ã¯ã»ã¹å¯èœãªã¢ã¯ã»ã¹ä¿®é£Ÿåã
; public: å
šãŠã®ã¯ã©ã¹ããã¢ã¯ã»ã¹å¯èœãªã¢ã¯ã»ã¹ä¿®é£Ÿåã
; return: ã¡ãœããããå€ãè¿ãããã«äœ¿çšãããããŒã¯ãŒãã
; short: Javaã®ããŒã¿åã®äžã€ã§ã16ãããã®ç¬Šå·ä»ãæŽæ°ãè¡šãã
; static: ã¯ã©ã¹ã¬ãã«ã®å€æ°ãã¡ãœããã«äœ¿çšããã修食åã
; String: æååãè¡šãã¯ã©ã¹ã
; super: ã¹ãŒããŒã¯ã©ã¹ã®ã€ã³ã¹ã¿ã³ã¹ãåç
§ããããã®ããŒã¯ãŒãã
; switch: è€æ°ã®æ¡ä»¶åå²ããŸãšããŠè¡šçŸããããã®ããŒã¯ãŒãã
; synchronized: (åæå) ã¹ã¬ããéã§å
±æããããªããžã§ã¯ãã«å¯ŸããŠã1ã€ã®ã¹ã¬ãããå®è¡ããŠãããšãã¯ãä»ã®ã¹ã¬ãããåæã«ãã®ãªããžã§ã¯ãã«ã¢ã¯ã»ã¹ã§ããªãããã«ããããã®ããŒã¯ãŒãã§ãã
; this: (this) ãªããžã§ã¯ãèªèº«ãåç
§ããããã®ããŒã¯ãŒãã§ãã
; throw: (äŸå€ãæãã) ã¡ãœããå
ã§æ瀺çã«äŸå€ãæããããã«äœ¿çšãããããŒã¯ãŒãã§ãã
; throws: (äŸå€ãã¹ããŒãã) ã¡ãœãããäŸå€ãæããå¯èœæ§ãããããšã瀺ãããã«äœ¿çšãããããŒã¯ãŒãã§ãã
; transient: (äžæç) ã·ãªã¢ã«åããããªããžã§ã¯ãã®äžéšã§ãªãããšã瀺ãããã«äœ¿çšãããããŒã¯ãŒãã§ãã
; try-catch: (äŸå€åŠç) äŸå€ãçºçããå¯èœæ§ããããããã¯å
ã§ãäŸå€ãææããŠåŠçããããã®æ§æã§ãã
; void: (ç¡å¹) æ»ãå€ãè¿ããªãã¡ãœãããå®çŸ©ããããã®ããŒã¯ãŒãã§ãã
; volatile: (æ®çºæ§) å€æ°ã®å€ããè€æ°ã®ã¹ã¬ããããåæã«ã¢ã¯ã»ã¹ãããå¯èœæ§ãããããšã瀺ãããã«äœ¿çšãããããŒã¯ãŒãã§ãã
; while: (ã«ãŒã) æ¡ä»¶ã true ã®å Žåããããã¯ãç¹°ãè¿ãå®è¡ããããã®ã«ãŒãæ§æã§ãã
== èèš» ==
<references />
{{stub}}
[[Category:Java|*]]
[[Category:ããã°ã©ãã³ã°èšèª]]
{{NDC|007.64}} | 2005-01-24T10:19:46Z | 2024-02-09T06:19:25Z | [
"ãã³ãã¬ãŒã:Wikipedia",
"ãã³ãã¬ãŒã:Wiktionary",
"ãã³ãã¬ãŒã:Pathnav",
"ãã³ãã¬ãŒã:Stub",
"ãã³ãã¬ãŒã:NDC"
] | https://ja.wikibooks.org/wiki/Java |
1,524 | éåååŠ | çµæ¶ãæãç©è³ªã®å
éšãšãã«ã®ãŒããã³ç±å®¹éãæ±ããããè°è«ãç°¡åã«ãããããçµæ¶æ§é ã®åäœã§ããåäœè 1 ã€ããšããããã 1 ã€ã®ååãšèŠãªãããã®ãããªåãæ±ãã¯çµæ¶ã®å
·äœçæ§é ã«ãããªãæ®éçãªæ§è³ªãè°è«ããäžã§éèŠã§ãããçµæ¶ãæ§æããååã¯äºãã«çžäºäœçšããããæãäž»èŠãªå¹æãåãŒãã®ã¯æè¿æ¥æ Œåç¹äžã®ååã§ãããããé è·é¢ã«ããååå士ã®çžäºäœçšã¯ãããã®éã«ååšããååå士ã®çžäºäœçšãšããŠå«ããããšãã§ããããããŸã§ã§æ±ãã¹ãåé¡ã¯ããªãç°¡çŽ ã«ãªã£ãããçµæ¶ååã®éåãããã»ã©æ¿ãããã®ã§ãªãå Žåã«ã¯(æ°äœååéåè«ã®èããæŽçšããã°ããã®ç¶æ³ã¯çµæ¶å
éšã®æž©åºŠã極ããŠäœãããšã«çžåœãã)ãåååã¯åºå®ããã平衡ç¹è¿åãæ¯åããŠãããšèŠãªãããšãã§ããããã®å Žåãåå 1 〠1 ã€ã®éåã¯ç¬ç«ãªãã®ãšããŠåãæ±ãããšãã§ãã平衡ç¹è¿åã§éåããåå 1 åã®åšãã®ããã³ã·ã£ã«ãšãã«ã®ãŒã¯ U {\displaystyle U} ã¯ããã®å¹³è¡¡ç¹ãåç¹ãšããŠä»¥äžã®ããã«è¡šãããšãã§ããã
ååã®åšãã®ããã³ã·ã£ã«ã¯ x , y , z {\displaystyle x,y,z} ã® 3 æåã«å¯Ÿå¿ãã 3 ã€ã®èªç±åºŠãæã£ãŠããã ãŸãååã®éåãšãã«ã®ãŒ K {\displaystyle K} ã¯
ãšãªã£ãŠ v x , v y , v z {\displaystyle v_{x},v_{y},v_{z}} ã® 3 ã€ã®é床æåã«å¯Ÿå¿ãã 3 ã€ã®èªç±åºŠãæã£ãŠããããããã®éåãšãã«ã®ãŒãšããã³ã·ã£ã«ãšãã«ã®ãŒã®åã¯ä»ãç±æ¯åãããåå 1 åãæã€å
šãšãã«ã®ãŒã«å¯Ÿå¿ããååã®ãšãã«ã®ãŒã®èªç±åºŠã¯åãã㊠6 ãšæ°ããããšãã§ããããªããªããã®ãšãã«ã®ãŒã¯ 3 次å
空éäžãéåããç²åã®äœçœ®ãšé床㮠6 ã€ã®ç¬ç«å€æ° x , y , z , v x , v y , v z {\displaystyle x,y,z,v_{x},v_{y},v_{z}} ã«ãã£ãŠæ±ºå®ãããããã§ããã
å€å
žçãªçµ±èšååŠã«ãããŠã平衡ç¶æ
ã§ã¯ãšãã«ã®ãŒçåé
ã®æ³åãæãç«ã€ããšãããç¬ç«ã«æ¯åããçµæ¶ååãããªãç³»ã«ã€ããŠãèªç±åºŠ 1 ã€ã«ã€ã k T / 2 {\displaystyle kT/2} ã®ãšãã«ã®ãŒãåé
ãããç³»å
šäœã®ãšãã«ã®ãŒ E {\displaystyle E} ãšã®éã«
ãšããé¢ä¿ãæãç«ã€ããã㧠N {\displaystyle N} ã¯çµæ¶å
éšã«å«ãŸããçµæ¶ååã®æ°ã§ããããŸã k â 1.38 à 10 â 23 [ J / K ] {\displaystyle k\simeq 1.38\times 10^{-23}~\mathrm {[J/K]} } ã¯ãã«ããã³å®æ°ã T {\displaystyle T} ã¯ç±ååŠæž©åºŠã§ãã(以äžã枩床ãšã¯ç±ååŠæž©åºŠã®ããšãæããšãã)ããã«ããã³å®æ° k {\displaystyle k} ãšã¢ãŽã©ã¬ããå®æ° N A {\displaystyle N_{\mathrm {A} }} ã®ç©ã¯æ°äœå®æ° R {\displaystyle R} ãäžããã
çµæ¶ååã®åæ° N {\displaystyle N} ãã¢ãŽã©ã¬ããå®æ°ãçšããŠç©è³ªé n = N / N A {\displaystyle n=N/N_{\mathrm {A} }} ã«çœ®ãæããã°ãäžè¿°ã®é¢ä¿ã¯æ°äœå®æ°ã䜿ã£ãŠä»¥äžã®ããã«æžãçŽãããšãã§ããã
æ°äœå®æ°ãçšãã圢åŒã§ã¯ååæ°ãçŸããã代ããã«ç©è³ªéãšããéãå®çŸ©ãããããšã«æ³šæãããããã«ããã³å®æ°ãåºæ¬å®æ°ãšããç«å Žã§ã¯åãªã眮ãæãã«éããªãããæ°äœå®æ°ãåºæ¬å®æ°ãšããå Žåããã«ããã³å®æ°ãçšãã圢åŒãäžããã«ã¯ååã®ååšããããããŸã«èªããå¿
èŠãããã
çµæ¶ã®1ã¢ã«åœããã®ç±å®¹é C {\displaystyle C} ã¯ã枩床å€åã«å¯Ÿãããšãã«ã®ãŒã®å¢æžã®å²åãå
šäœã®ç©è³ªéã§å²ã£ããã®ã«çžåœããããã
ãšãªããããã¯åžžæž© ( T ⌠300 [ K ] {\displaystyle T\sim 300~\mathrm {[K]} } ) ã§ã®çµæ¶ã®æ¯ç±ã®æž¬å®å€ã«äžèŽããããã®æ¯ç±ã¯æž©åºŠäŸåæ§ããªããåžžæž©ã®åºäœã®ã¢ã«æ¯ç±ãã»ãšãã©äžå®ã§ããããšã瀺ããåºäœã®ã¢ã«æ¯ç±ãåžžæž©ã§äžå®ã®å€ãåããšããæ³åã¯ãã¥ãã³=ããã£ã®æ³å (Dulong-Petit law) ãšåŒã°ããããã¥ãã³ãšããã£ã¯ãã®æ³åãå€ãã®ç©è³ªã«ã€ããŠè¯ã粟床ã§æãç«ã€ããšãå®éšçã«çºèŠãã人ç©ã§ããã
ãã¥ãã³=ããã£ã®æ³åãæãç«ã€ãããªç³»ã«ã€ããŠãåžžæž©ããé¥ãã«äœæž©ã®é åã«ãããŠãæ¯ç±ãäžå®ã§ããããšãäºæ³ãããããå®éšã«ããäœæž©é åã§ã¯æ¯ç±ã¯ 0 ã«åæããããšã瀺åããçµæãåŸãããŠãããäœæž©é åã§ã®æ¯ç±ã®æž©åºŠäŸåæ§ããã³æ¯ç±ã®å€ã¯ãã¥ãã³=ããã£ã®æ³åããå€ããããšãç¥ãããŠããã
ä»®ã«æ¯åæ°ã Îœ {\displaystyle \nu } ã®èª¿åæ¯ååã®ãšãã«ã®ãŒã¯ h Îœ {\displaystyle h\nu } ã®æŽæ°å n h Îœ {\displaystyle nh\nu } ããåããªããšãã(ãã ã n {\displaystyle n} ã¯è² ã§ãªããšãã)ãçµæ¶å
éšã® N {\displaystyle N} åã®ååãããããæ¯åæ° Îœ {\displaystyle \nu } ã®èª¿åæ¯ååãšèŠãªããããšãä»®å®ããå
šéšã§ 3 N {\displaystyle 3N} ã®èªç±åºŠãæ〠1 次å
調åæ¯ååã®éãŸããšããã
ãããããšãæç±çæ³æ°äœã§ãåååã®ãšãã«ã®ãŒãè¡çªãªã©ã«ããå€åããããã«(æ°äœå
šäœã®å
šãšãã«ã®ãŒã¯äžå®)ãåºäœã®åæ¯ååã®ãšãã«ã®ãŒã 0 , h Îœ , 2 h Îœ , 3 h Îœ , ... {\displaystyle 0,h\nu ,2h\nu ,3h\nu ,\dots } ãšããé£ã³é£ã³ã®å€ã移ãå€ãã£ãŠãããšããã ãã㊠3 N {\displaystyle 3N} åã®æ¯ååã®ãšãã«ã®ãŒã®å¹³åå€ã¯ãä»®ã«äžèšã®ããã«ããã«ããã³å åã䜿ã£ãŠèšç®ã§ããã¯ããã ãšä»®å®ãã(â» ãã«ããã³å åã«ã€ããŠåãããªããã°ãèšäºãé«çåŠæ ¡ååŠII/ååŠåå¿ã®éããã®åå¿é床è«ã§ã®èª¬æ(é«æ ¡~倧åŠåçŽã¬ãã«)ããŸãã¯èšäºãçµ±èšååŠI ãã¯ãã«ããã«ã«éåãã®ã¹ã¿ãŒãªã³ã°ã®å
¬åŒãçšããçµ±èšååŠã¢ãã«ã«ãã説æ(倧åŠäžçŽ~)ãåç
§ãçµ±èšååŠçã«ã¯ä»ã«ããã©ã°ã©ã³ãžã¥ã®æªå®ä¹æ°æ³ãçšããŠãã«ããã³å åã®å°å
¥ãè¡ãæ¹æ³ããã)ã
1åã®æ¯ååããšãã«ã®ãŒ ε n = n h Îœ {\displaystyle \varepsilon _{n}=nh\nu } ããšã確çã Pr ( n ) {\displaystyle \operatorname {Pr} (n)} ãšãããã®ç¢ºçããã«ããã³å åã«æ¯äŸãããšããã
ãã®é¢æ°ãéåžžã®æå³ã®ç¢ºçã§ããããã«ã¯ããã¹ãŠã®ãšãã«ã®ãŒç¶æ
ã«ã€ããŠã®åã 1 ã«èŠæ ŒåãããŠããå¿
èŠããããããæ¯äŸä¿æ°ã® Z {\displaystyle Z} ã¯ã
ãšãªããªããã°ãªããªã(ãªãããã®Zã®ãããªéåçµ±èšèšç®ã®èŠæ Œåã®ããã®é¢æ°ã®ããšããåé
ä¿æ°ããŸãã¯ãç¶æ
åããšãã)ããã®ãšã確ç Pr ( n ) {\displaystyle \operatorname {Pr} (n)} ã¯
ãšãªã( exp ( â
) {\displaystyle \exp(\cdot )} ã¯ææ°é¢æ°)ããšãã«ã®ãŒã®æåŸ
å€ âš Îµ â© {\displaystyle \langle \varepsilon \rangle } ã¯ã
ãšè¡šãããšãã§ãããããã§ãã«ããã³å®æ°ãšæž©åºŠã®ç©ã®éæ°ã β = ( k T ) â 1 {\displaystyle \beta =(kT)^{-1}} ãšã(ããã¯é枩床ãšåŒã°ãã)ããšãã«ã®ãŒã®æåŸ
å€ãé枩床 β {\displaystyle \beta } ã«é¢ãã埮åãçšããŠè¡šãã°ã
ããã
ãåŸããããã§å
·äœçã«å³èŸºã®å¯Ÿæ°ãèšç®ããã°ãçæ¯çŽæ°ã®åã®å
¬åŒãçšããŠã
ãšæžãçŽãããããçµå±ãšãã«ã®ãŒã®æåŸ
å€ã¯
ãšè¡šãããšãã§ããã
åç¯ã§åŸã調åæ¯ååã®ãšãã«ã®ãŒã®æåŸ
å€ã«ã€ããŠã調åæ¯ååã®ãšãã«ã®ãŒéå h Îœ {\displaystyle h\nu } ã«æããé¢æ°
ããã©ã³ã¯ååžãšåŒã¶ã枩床ããšãã«ã®ãŒéåã®å€§ããã«æ¯ã¹ãŠå
åå°ããå Žåã k T ⪠h Îœ {\displaystyle kT\ll h\nu } ãã 1 ⪠β h Îœ {\displaystyle 1\ll \beta h\nu } ãšããé¢ä¿ãæãç«ã¡ããã©ã³ã¯ååžã¯ã
ãšãã圢ã«æŒžè¿ããã
ãã®ãã©ã³ã¯ååžãå©çšããŠãçµæ¶å
éšã®æ¯ç±ãåŸãããšãèãããçµæ¶ãç¬ç«ãªèª¿åæ¯ååã®éãŸããšèŠãªãæãç°¡åãªå Žåã«ã€ããŠãçµæ¶å
šäœã®å
éšãšãã«ã®ãŒãããããã®èª¿åæ¯ååã®ãšãã«ã®ãŒæåŸ
å€ã®åã«ã»ãšãã©çããããšããã
ãšè¡šãããšãã§ããããã®å Žåãçµæ¶ååã«å¯Ÿããæ¯ç±å®¹éã¯ã
ãšãªãããã®æ¯ç±ã®äœæž©é åã§ã®æ¯ãèãã¯ã
ã§ããã0 ãžåæãããšããç¹ã§äœæž©é åã«ãããåºäœæ¯ç±ã®æ¯ãèããšåèŽãããé«æž©é åã«ãããŠ(ããã§ããé«æž©ãšã¯èª¿åæ¯ååã®ãšãã«ã®ãŒéåã«å¯ŸããŠã§ãããåºäœã®èç¹æž©åºŠã«æ¯ã¹ãã°äŸç¶äœæž©ã§ãã)ãæ¯ç±ã¯
ãšãªããé«æž©é åã®æ¯ç±ã«ã€ããŠãååæ¯ç± c {\displaystyle c} ãå®ç©ã¢ã«æ¯ç± C {\displaystyle C} ã«çŽããšã
ãšãªããããã¯ãã¥ãã³=ããã£ã®æ³åã«äžèŽãããã€ãŸãããšãã«ã®ãŒã®éååãšããæé ãèžãããšã§äœæž©é åã®æž©åºŠäŸåæ§ãåçŸãã€ã€ãåžžæž©ã§ã¯ãã¥ãã³=ããã£ã®æ³åã«æŒžè¿ãããããªååžãåŸãããããšã«ãªãã
ããããã¯ããç©ççãªå®æ°ãæã€ããšãéåååŠçã«ã©ã®ãããªæå³ãæã€ãã«ã€ããŠèãããç©ççãªå®æ°ãšã¯äŸãã°ãããç©äœã®æã€äœçœ®ãéåéã®ããšã§ãããå€å
žååŠã§ã¯ããç©äœã®ç©ççãªç¶æ
ã¯äœçœ®ãéåéãªã©ãæå®ããããšã«ãã£ãŠåŸãããšãåºæ¥ããããã®éã«ç¹å¥ãªé¢ä¿ã¯ç¡ãã£ãããããã¯ããããã®å€ãé©åœã«åã£ãŠãããéã§ãã£ãã®ã§ããã
éåååŠçã«ãããç©äœã®ç©ççç¶æ
ãå®ããéã¯ååšããŠããããã®ãããªéãå®ããããšã§ç©äœãã©ã®ãããªç¶æ
ã«ããããæå®ããããšãåºæ¥ããåé¡ãªã®ã¯ãããå Žåã«ãããŠãããã®éã«ç¹æ®ãªé¢ä¿ãããããããããã®éãä»»æã«éžã¶ããšãåºæ¥ãªããªãããšã§ãããéèŠãªäŸãšããŠãããç©äœã®äœçœ®ãšéåéã¯åæã«å®ããããšãåºæ¥ãªãããã®ããšã¯ãå€å
žçã«ã¯äœçœ®ãšéåéã«ã€ããŠãéåéãç©äœã®äœçœ®ãåãã埮å°å€æã«é¢ããä¿åéã«ãªã£ãŠããããšã«ããããã®ããšã«ã€ããŠã¯è§£æååŠã®ããŒã¿ãŒã®å®çã詳ããã®ã§ã詳现ãç¥ããããã°åç
§ããããšããããéåååŠã«ãããŠã¯ãéåéã¯ãã£ããŠåãªã芳念äžã®éã§ã¯ãªããç©è³ªæ³¢ã®æ³¢é·ã«é¢ããå®åšçãªéã§ããããšããäºãéèŠã§ããã
ããã§ã解æååŠã®ç¥èãæŽçšããŠãããç©äœã®æã€ãšãã«ã®ãŒEãå€å
žçã«ããã«ããã¢ã³Hãšããéã§è¡šããããããšãçšããã
ããã§ãããç©ççãªç¶æ
ã®å
šãŠãæ°ãäžãããããšããŠãããã®ç¶æ
å
šäœã§åŒµããããã¯ãã«ãåããéåžžãããç©äœãæã€ç©ççãªç¶æ
ã¯ç¡æ°ã®ãšãã«ã®ãŒãæã¡ããã®ãããªæäœã¯äžå¯èœã«æãããå®éãã®ããšã¯éåååŠã®çºå±ã®åæã«å€§ããªæ°åŠçãªåé¡ãšãªã£ããããããçŸåšã§ã¯ãã¯ãã«ã®å
ç©ã®åãæ¹ãªã©ã工倫ããããšã§ããã®æ§ãªäœæ¥ãå®éå¯èœã§ããããšã瀺ãããŠããã詳ããã¯w:ãã«ãã«ã空éãªã©ãåç
§ã
ãã®ããã«å
šãŠã®ç©ççç¶æ
ãæ°ãäžãããããšãããšãããããã®ç¶æ
ã¯ãããšãã«ã®ãŒãæã£ãç¶æ
ãšããŠååšãããäŸãã°ãããç¶æ
Ï 1 {\displaystyle \psi _{1}} ããšãã«ã®ãŒ E 1 {\displaystyle E_{1}} ãæã£ãŠãããšãããæ°åŠçã«ã¯ãã®æ§ãªç¶æ
ã¯ããè¡å H ^ {\displaystyle {\hat {H}}} ãçšããŠ
ãšè¡šããããããã§ã H ^ {\displaystyle {\hat {H}}} ã¯ãå
šãŠã®æ°ãäžããããç©ççãªç¶æ
ã1ã€ã®åºåºãšããŠæã€ãããªè¡åãšããŠèããããŠãããæŽã« H ^ {\displaystyle {\hat {H}}} ã¯ãããããã®ç©ççç¶æ
ã«å¯ŸããŠå¯Ÿè§åãããŠããã
ãªã©ã®å
šãŠã®ç©ççç¶æ
ã«å¯ŸããŠå¯Ÿå¿ãããšãã«ã®ãŒ E 1 {\displaystyle E_{1}} , E 2 {\displaystyle E_{2}} , E 3 {\displaystyle E_{3}} ãªã©ãè¿ããã®ãšããã
ãã®ãããªè¡å H ^ {\displaystyle {\hat {H}}} ã¯ãå®éã«ãããšãã«ã®ãŒãæã€ç¶æ
ãšããŠã¯ãå€å
žçãªèãæ¹ãšå€åããããšã¯ç¡ãããªããªãã H ^ {\displaystyle {\hat {H}}} ã¯ãå€å
žçã«èããŠããååŠç³»ã®äžã«ååšããç©äœãæã€ãšèãããããšãã«ã®ãŒå€ãå
šãŠæã£ãŠãããã®ãšèããããšãåºæ¥ãããã§ããã
ãã®ãããä»®ã«å
šãŠã®éåçç¶æ
ããšãã«ã®ãŒãšããéã ãã§ç¹å®ãããã®ãªãã°ãããååŠç³»ãåãåŸããšãã«ã®ãŒãå
šãŠå®ããããšãéåçç¶æ
ãå
šãŠæ±ããããšã«ãªãããããŸã§ã®è°è«ãããæ°åŠçãªçšèªãçšããŠãŸãšãããšãåºãŠæ¥ãé㧠H ^ {\displaystyle {\hat {H}}} ã¯å
šãŠã®ç©ççãªç¶æ
ã«ãã£ãŠåŒµãããè¡åã§ããç©ççãªç¶æ
ãè¡šãã Ï {\displaystyle \psi } ã¯ã H ^ {\displaystyle {\hat {H}}} ããããããšã«ãã£ãŠEåããããããªãã¯ãã«ã§ããã®ã§ã H ^ {\displaystyle {\hat {H}}} ã®åºæãã¯ãã«ã§ãããšèããããããã®ãšããšãã«ã®ãŒEã¯ãåºæå€æ¹çšåŒ
ã®åºæå€ã§ããã
ãããŸã§ã®ããšã§ãããããã®éåçç¶æ
ã¯ãšãã«ã®ãŒãšãããã 1ã€ã®éã§å®å
šã«åºå¥ãããããšãä»®å®ããŠæ¥ããå®éã«ã¯ãã®ããšã¯å¿
ãããæ£ãããªãããã2ã€ã®éåçç¶æ
ãçãããšãã«ã®ãŒãæã£ãŠããããšãããããã®æã«ã¯ãåã
ã®éåçç¶æ
ã¯äºãã«åºå¥ããããšãåºæ¥ãªããããããããç¶æ
ãæã£ãŠããéåæ°ã¯éåžžãšãã«ã®ãŒã ãã¯ãªããäœçœ®ãéåéãè§éåéãªã©ãå«ãŸããŠããããã®ãããªéãçšããŠãããã®éãåºå¥ããããšãåºæ¥ãããã®ãšãããšãã«ã®ãŒã®å Žåãšåæ§äœçœ®xãéåépãªã©ãéåçç¶æ
ã«ãã£ãŠåŒµããããè¡åãã®ãããªç©ãšãªãããšãäºæ³ããã(ãäœçšçŽ ããšããã)ãããã§ã¯ãããããã®è¡åã«ã€ã㊠x ^ {\displaystyle {\hat {x}}} , p ^ {\displaystyle {\hat {p}}} ãªã©ãçšããŠè¡åãšããã§ãªãéãåºå¥ããã
(*泚æ è¡åã§ããããéãq-numberãè¡åã§ããããªãéãc-numberãšåŒã¶ããšããã)
ãããŸã§ã§äœçœ®xãšéåépãè¡åã§ããããããšãåãã£ãã
ããã§ã以åã®äž»åŒµã§ãããéåè«ã§ããç©äœã®äœçœ®ãšéåéãåæã«å®ããããšãåºæ¥ãªããšããããšãçšããããšãã«ã®ãŒã®æã«ã¯ãç©äœã®ç©çéãå®ããããšã¯å¯Ÿå¿ããç©çéãè¡šããè¡åã察è§åã§ããããšã«å¯Ÿå¿ããŠããããã®ããšãçšãããšãç©äœã®2ã€ã®ç©çéãåæã«å®ããããªããšãã䞻匵ã¯å¯Ÿå¿ãã2ã€ã®ç©çéãåæã«å¯Ÿè§åãããããªåºåºã®åŒµãæ¿ãæ¹ãååšããªãããšã«å¯Ÿå¿ãããå®éã«æ°åŠçãªèšç®ãããããšã§
ãæºãã2ã€ã®è¡åA,Bã«ã€ããŠã¯ããããåæã«å¯Ÿè§åãããããªåºåºãåããããšãç¥ãããããã®ããšã¯äœçœ®ãšéåéãè¡šããè¡åã«ã€ããŠ
ãæãç«ã€ããšã瀺ããŠãããããã§ããã®çµæããŸãšããããã«ããã2ã€ã®è¡åA,Bã«å¯ŸããŠãããã®äº€æå [ A , B ] {\displaystyle [A,B]} ãã
ã§å®çŸ©ãããæ§è³ª
ã«æ³šæããã®ãšãããã®èšå·ãçšãããšäœçœ®ãšéåéã«é¢ããŠ
ãæãç«ã€ãå®éã«ã¯å®éšçã«ã x ^ {\displaystyle {\hat {x}}} ãš p ^ {\displaystyle {\hat {p}}} ã®äº€æåã«é¢ããŠ
ãæãç«ã€ããšãç¥ãããŠãããããã§ã ħ {\displaystyle \hbar } ã¯ãw:ãã©ã³ã¯å®æ°ãšåŒã°ãåäœã¯ [ J â
s ] {\displaystyle [J\cdot s]} ã§äžãããããããã§ãã©ã³ã¯å®æ°ã¯ããããŠå°ããæ°ã§ãããxãpãããçšåºŠå€§ããéãæã€ãããªéåã«ã€ããŠã¯äžã®æ¹çšåŒã®å³èŸºã¯0ãšçãããã®ãšããŠæ±ã£ãŠããããã®ãšãã«ã¯xãšpã¯äº€æå¯èœã§ããã2ã€ã®éãåæã«å®ããããšãåºæ¥ãããã®ããšã¯å€å
žååŠã§ã¯2ã€ã®éãåæã«å®ããããšãå¯èœã§ããããšã«å¯Ÿå¿ããŠãããäžã®ãããªx,pã®äº€æé¢ä¿ãå€å
žååŠãšããé©åããŠããããšãåããã
ãããŸã§ã§éåçãªç¶æ
Ï {\displaystyle \psi } ã
ã®åºææ¹çšåŒã§äžããããããšãåãããxãšpã«ã¯
ã®äº€æé¢ä¿ãååšããããšãåãã£ããå®éã«ã¯xãšpã«ã€ããŠäžã®ãããªäº€æé¢ä¿ãæºãããããªè¡åãçšæããããšã¯ãã°ãã°å°é£ã§ããããã®å°é£ã«å¯Ÿå¿ãã
æ°åŠçææ³ãšããŠããã«ãã«ã空éã®1ã€ãšããŠw:é¢æ°ç©ºéãååšããããšãããããããé¢æ°ç©ºéãšã¯ããå€æ°ã«é¢ããé¢æ°ããã¯ãã«ãšããŠåãææ³ã§ããããã®ãšãããã¯ãã«ã®åã¯é¢æ°ã®åã§è¡šãããããã¯ãã«ã®å
ç©ã¯é©åœãªç¯å²ã§ã®é¢æ°ã®ç©åãçšããã詳ããã¯w:é¢æ°ç©ºéãåç
§ã
ãã®ãããªä»æ¹ã§è¡åãšãã¯ãã«ãåããšããåºæç¶æ
ã§ãã Ï {\displaystyle \psi } ã¯ããå€æ°ã®é¢æ°ãšãªããããã«ããã x ^ {\displaystyle {\hat {x}}} , p ^ {\displaystyle {\hat {p}}} , H ^ {\displaystyle {\hat {H}}} ãªã©ã®è¡åã¯ãã®é¢æ°ã«ããããªãã¬ãŒã¿ãŒãšããŠè¡šããããããªãã¬ãŒã¿ãŒã®åãæ¹ã¯å
ã®é¢æ°ã«ããé¢æ°ããããããå
ã®é¢æ°ã埮åããããšæ§ã
ã ããäžã®äº€æé¢ä¿ãæºãããããªæ¹æ³ã¯ãäŸãã°ãxã«ã€ããŠ
ã®ããç®ã察å¿ãããpã«å¯ŸããŠã
ã察å¿ãããããšãããããããäžæ¹ã pã«ã€ããŠ
ã®ããç®ã察å¿ãããxã«å¯ŸããŠã
ãšããŠãåæ§ã®çµæãåŸãããããšãç¥ãããŠãããxãšpãäºãã«å
¥ãæãå¯èœã§ãããšãã解æååŠã®çµæã«é©åããŠããã
ä»®ã«èªç±ã«åã質émã®ç²åãèãããšã
ã«å¯ŸããŠ
ã察å¿ããããšãåããããã®ãšãäžã®åºææ¹çšåŒã¯
ãšãªã Ï ( x ) {\displaystyle \psi (x)} ã«é¢ãã2é埮åæ¹çšåŒã«ãªããããã§ããEã®ããã«æªç¥æ°ãå«ãŸããŠãã圢ã®åŸ®åæ¹çšåŒãç¹ã«åºæé¢æ°æ¹çšåŒãšåŒã¶ããšãããã
ãããŸã§ã§ãéåçãªç¶æ
ãèšç®ããææ³ã1ã€åŸãããããŸããããå€å
žçãªããã«ããã¢ã³ãéžã³ãããã«å¯ŸããŠ
ã®çœ®ãæãããããããã«ã€ããŠ
ã®åŸ®åæ¹çšåŒã解ãã察å¿ãã埮åæ¹çšåŒã解ãããšã§ãéåçç¶æ
ãèšç®ãããã
ããã§ãæåŸã®åºæå€æ¹çšåŒãæéã«äŸåããªãã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒ (time-independent Schrödinger equation) ãšåŒã¶ãåŸã«éåååŠã«ãããæéçºå±ã®æ¹çšåŒãæ±ããããã®å称ã¯ãããšæ¯èŒããŠã®ããšã§ããã
1次å
ã®ç³»ã§è³ªémã®ç©äœãã 0 < x < a {\displaystyle 0<x<a} ã§ã
ãæºããã x < 0 {\displaystyle x<0} , a < x {\displaystyle a<x} ã§ã
ãæºãããšããããã®ãšãã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã解ããŠããã®ç³»ã«å¯Ÿããæ³¢åé¢æ°ãæ±ããã
åŸã«æ³¢åé¢æ°ã0ã§ç¡ãå°ç¹ã§ã¯ãç©äœãèŠã€ããå¯èœæ§ãããããšã解説ããã ããã§ã
ã®å°ç¹ã§ç²åãèŠã€ãã£ãŠããŸããšããã®å°ç¹ã§ç²åã¯ç¡éã«å€§ãããšãã«ã®ãŒãæã£ãŠããããšã«ãªã£ãŠããŸãããç¡éã®ãšãã«ã®ãŒãšãããããªããšã¯èãã¥ããã®ã§ãããã§ã¯ã x < 0 {\displaystyle x<0} , a < x {\displaystyle a<x} ã§æ³¢åé¢æ° Ï {\displaystyle \psi } ã¯ã0ãšãªãããšã«ããããŸããéåè«ã§ããçšããããé¢æ°ç©ºéã®èŠè«ã«ãããæ³¢åé¢æ°ã¯é£ç¶ã§ããããšãå¿
èŠãšãªãããã®ããã
ãå¿
èŠãšãªããããŠããã®ãšãã®ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã¯ 0 < x < a {\displaystyle 0<x<a} ã§ã V(x)=0ããã
ãšãªãããšãåãããããããæºãã Ï ( x ) {\displaystyle \psi (x)} ã¯
ã§äžããããããšãåããããã ããA,Bã¯ä»»æã®å®æ°ã§ããã
ãšãããæŽã«ã
ãçšãããšã
ããB = 0ãåããã
ãããnãä»»æã®æŽæ°ãšããŠã
ãåŸãããããã£ãŠãããããã®æŽæ°nã«å¯ŸããŠæ³¢åé¢æ° Ï n ( x ) {\displaystyle \psi _{n}(x)} ã¯
ã§äžããããããã ãã
ã§ããããŸããäžã§æ³¢åé¢æ°ã®åã®ä»»æå®æ°ããã®ãŸãŸã«ããããããã¯é¢æ°ç©ºéã§ã¯é¢æ°ãã®ãã®ããã¯ãã«ã§ãããããã®å®æ°åã¯ãã¯ãã«ã®æ§è³ªãå€ããªãããšãããã®ãŸãŸã«æ®ãããã®ã§ããããã ããåŸã«åããéããæ³¢åé¢æ°ã®èŠæ Œåãèãããšããã®å®æ°ã¯1éãã«æ±ºãŸãããšã瀺ãããã
æŽã«ããã®ç³»ã«ãããŠç²åãæã€ããšãåºæ¥ããšãã«ã®ãŒ E n {\displaystyle E_{n}} ãã
ã解ãããšã§åŸãããšãåºæ¥ããçãã¯ã
ãšãªããããæŽæ°nã«å¯ŸããŠ
ã«æ¯äŸãããšãã«ã®ãŒãæã€ããã«ãªãããã®ããã«éåçãªç³»ãåãåŸããšãã«ã®ãŒã®ããšããšãã«ã®ãŒæºäœãšåŒã¶ããšãããã
äžã§æ³¢åé¢æ°ãèšç®ããæ¹æ³ãåŸããããã§ã¯ãæ³¢åé¢æ°ã®æ§è³ªã«ã€ããŠèãããäžã§ã¯ããéåè«çãªç¶æ
ããã¯ãã«ãšèŠãŠãããéåååŠã®æŒç®åããããã«ãã£ãŠåŒµãããè¡åãšããŠæ±ã£ããããã§ã¯äžè¬çã«ããéåè«çãªç¶æ
ãããããã代衚ããéåè«çãªéiãçšããŠ
ãšæžããåŸã«è¿°ã¹ãããéãããã®èšæ³ã¯ãã©ã±ããèšæ³ãšåŒã°ããå
ã¯w:ãã£ã©ãã¯ã«ãããã®ã§ãããããã§ãéåè«çãªç¶æ
ãå®ããiã®ãããªéããã®ç¶æ
ã®éåæ°ãšåŒã¶ãäŸãã°ãç¡é倧ã®ããã³ã·ã£ã«ã«ãã£ãŠæçžãããŠããç²åã§ã¯æŽæ°nãéåæ° ãšãªã£ãŠãããäžè¬ã«ã¯éåæ°ã¯æŽæ°ã®ãããªé¢æ£çãªéã§ããå Žåãä»»æã®å®æ°ã§äžããããé£ç¶çãªéã§ããããšãããã
ããã§ãããç¶æ
| i > {\displaystyle |i>} ãšããããšç°ãªãç¶æ
| j > {\displaystyle |j>} ãåãããã ãããããã®ç¶æ
ã¯ããã«ããã¢ã³æŒç®åã®ãäºãã«ç°ãªã£ãåºæå€ãæã€åºæãã¯ãã«ã§ãããšãããããã§ãããã«ããã¢ã³ã®åºæå€ã¯å¿
ãå®æ°ã§ãªããã°ãªããªãããšãåããããªããªããããã§ãªããšãã«ã¯ãšãã«ã®ãŒãèæ°ã«ãªããããªéåè«çç¶æ
ãååšããããšã«ãªã£ãŠããŸãããã§ãããäžè¬ã«ãè€çŽ æ°ã®è¡åèŠçŽ ãæã£ãŠãããããããã®åºæå€ãå®æ°ã«ãªãè¡åã®çš®é¡ãšããŠããšã«ããŒãè¡åãããããã(ãšã«ããŒãè¡åã«ã€ããŠã¯ç©çæ°åŠIãåç
§)ãããã§ã¯ãããã«ããã¢ã³ã¯ãšã«ããŒãè¡åã§äžãããããã®ãšãããäžè¬ã«éåè«ã®æŒç®åã¯éåžžãšã«ããŒãæŒç®åã§ããã
æŽã«ããããšã«ããŒãè¡åã«å¯ŸããŠãã®è¡åã¯å¿
ã察è§åããããã®åºæãã¯ãã«ã¯äºãã«çŽäº€ããããšãç¥ãããŠããããã®çµæãçšãããšããšã«ããŒãæŒç®åã§ããããã«ããã¢ã³ã®åºæãã¯ãã«ã§ãã | i > {\displaystyle |i>} ãš | j > {\displaystyle |j>} ã¯ãäºãã«çŽäº€ããããšãç¥ããããæŽã«ãããããã®ç¶æ
ã®é·ããé©åã«å€æŽããããšã§ãä»»æã®ç¶æ
| i > {\displaystyle |i>} , | j > {\displaystyle |j>} ã«ã€ããŠãããã®å
ç©ã ÎŽ i j {\displaystyle \delta _{ij}} ãšããããšãåºæ¥ãã ÎŽ i j {\displaystyle \delta _{ij}} ã«ã€ããŠã¯ãç©çæ°åŠIãåç
§ãããã§ãç¶æ
ã®é·ãã調æŽããããšãéåç¶æ
ã®èŠæ ŒåãšåŒã¶ããã ããæ
£ç¿çã«ç¶æ
| i > {\displaystyle |i>} , | j > {\displaystyle |j>} ã®å
ç©ã¯ < i | j > {\displaystyle <i|j>} ã®ããã«æžãããšãå€ãããã®èšæ³ãçšãããšãä»»æã® | i > {\displaystyle |i>} , | j > {\displaystyle |j>} ã«å¯ŸããŠã
ãæãç«ã€ãããã§ãããç¶æ
| i > {\displaystyle |i>} ãšããã«å¯Ÿå¿ããæ³¢åé¢æ°f(x)ã®é¢ä¿ãã
ã§åããããã§ã | x > {\displaystyle |x>} ã¯å¯Ÿå¿ããç²åãã¡ããã©xã§è¡šããããç¹ã«ããç¶æ
ã§ããããã®èšæ³ã¯ãé¢æ°ç©ºéã®å
ç©ã®å®çŸ©ãšãäžã§è¿°ã¹ãéåè«çç¶æ
ã®å
ç©ã®å®çŸ©ãæŽåçã«ããããšãåããããã®ããšãè¿°ã¹ãããã«ãŸããé¢æ°ç©ºéã®å
ç©ã«ã€ããŠèª¬æãããããã§ã¯ãäžè¬çã«æ³¢åé¢æ°ãããè€çŽ é¢æ°ã§ãããšããŠèãããé¢æ°ç©ºéã®æ§è³ªã«ãããšããå
f(x),g(x)ãé¢æ°ç©ºéã®å
ãšãããšããããç©å â« {\displaystyle \int } ãååšããŠã
ãå
f(x),g(x)ã®å
ç©ãšåŒã¶ãããã§ãxã«ã€ããŠã®ç©åã®ç¯å²ã¯ã â â < x < â {\displaystyle -\infty <x<\infty } ãšããããã ããç¡é倧ã®ããã³ã·ã£ã«ãããå Žåã®ããã«ãæ³¢åé¢æ°ã0ãšãªãç¯å²ã«ã€ããŠã¯ç©åããªããŠãããããã®ãšãã«ã¯ç©åç¯å²ã¯ããçãç¯å²ã«ãªãã®ã§ãããããã§ãäžã®èšæ³ãçšãããš
ãšãªããããã§ã
ã«ã€ããŠã¯ãŸãã < i | x >< x | j > {\displaystyle <i|x><x|j>} ã¯ãä»»æã®xã«ã€ããŠããšããš | j > {\displaystyle |j>} ã®ç¶æ
ã«ãã£ãç²åããxã§è¡šããããç¹ãééã㊠| i > {\displaystyle |i>} ã®ç¶æ
ã«å€åããããšãè¡šãããŠãããããã§ãäžã§ã¯å
šãŠã®xã«ã€ããŠãã®çµæã足ãåãããŠããã®ã§ãçµå±ããã®çµæã¯ã | j > {\displaystyle |j>} ã®ç¶æ
ã«ãã£ãç²åãã | i > {\displaystyle |i>} ã®ç¶æ
ã«å€åããããšæ¹æ³ã®å
šãŠãã€ãããŠãããšèããã®ã§ãããäžã§åŸã
ã®ãããªè¡šåŒã¯ãã¯ãã«ã®å®å
šæ§ãšåŒã°ãããã®ããšé »ç¹ã«ã§ãŠããæ§è³ªã§ãããç¹ã«ããšã«ããŒãæŒç®åã«å¯ŸããŠã¯å¯Ÿå¿ããåºæãã¯ãã«ãå®å
šæ§ã®èŠè«ãæºããããšãç¥ãããŠããããããšã«ããŒãæŒç®åã®åºæãã¯ãã« | i > {\displaystyle |i>} ã«å¯ŸããŠã
ãç¥ãããŠãããããããç¹ã«å¯Ÿå¿ãããã¯ãã«ãç¡éåãããšãã«ã¯ãã®æ§è³ªã®æ°åŠçãªèšŒæã¯é£ããå Žåãå€ãã
ããŠãäžã®ããšããåããéãã
ãšãªã£ãŠãéåè«çãã¯ãã«ã®æ£èŠåãšå¯Ÿå¿ãããããã«ãæ³¢åé¢æ°ã®é·ããã1ã€ã«å®ããå¿
èŠãããããšãåããããã®æ¡ä»¶ã¯å
šãŠã®æ³¢åé¢æ° Ï ( x ) {\displaystyle \psi (x)} ã«å¯ŸããŠã
ãšããããšã§æºããããããã®ããšãæ³¢åé¢æ°ã®æ£èŠåãšåŒã¶ã
ãããŸã§ã§ç²åãã©ã®ç¶æ
ã«ããã®ããæå®ããæ¹æ³ãåãã£ããããããã®ãšãã«ã®ãŒã®åºæç¶æ
㯠| i > {\displaystyle |i>} ãªã©ã®è¡šç€ºã§è¡šãããããããã®éã¯ã©ãã察å¿ããæ³¢åé¢æ°ãæã€ã®ã§ããããã ãããããã®éã¯ã©ããæ£èŠåãããŠããªããã°ãªããªãã次ã«ç²åãããç¶æ
ã«ãããšãã«ãç²åãå®éã«ã©ã®äœçœ®ã«ããã®ããç¥ãæ¹æ³ãèãããããã§ããäœçœ®ãšã¯å€å
žçãªåº§æšã®æå³ã§ããã ãããšãã«ã®ãŒåºæå€ãæã£ãç¶æ
ã«ããç²åãå€å
žçã«èŠããšãã«ã¯ã©ã®äœçœ®ã§çºèŠãããã®ããšããæå³ã§ãããä»®ã«å¯Ÿå¿ãããšãã«ã®ãŒã®åºæç¶æ
ãå¶ç¶äœçœ®ã®æŒç®åã«å¯ŸããŠãåºæãã¯ãã«ãšãªã£ãŠãããšãããšããã®ç¶æ
ã¯äœçœ®ã®æŒç®åã«å¯ŸããŠãã 1ã€ã®å€ãæã€ããããã®ç¶æ
ã«ããç²åãçºèŠãããäœçœ®ã¯æ±ºå®ããŠãããäžæ¹ãä»®ã«å¯Ÿå¿ãããšãã«ã®ãŒã®åºæç¶æ
ãäœçœ®ã®æŒç®åã«å¯ŸããŠåºæãã¯ãã«ãšãªã£ãŠããªãã£ããšãããšããã®ãšãã«ãã®ç²åã¯æ§ã
ãªäœçœ®ã§çºèŠãããããã«æãããå®éå®éšçãªçµæã¯ãã®ãšããã§ãããããäœçœ®ã®åºæç¶æ
ã§ãªãç¶æ
ã«ãããšããã®ç©äœã¯äœçœ®ã®æŒç®åãå€ãåãåŸãäœçœ®å
šäœã§èŠã€ãã確çãããããããŠãå®éã«ã©ã®äœçœ®ã«ãããã¯å®éã«èŠ³æž¬ãããŠã¿ããŸã§ã¯ãç¥ãããšãåºæ¥ãªãã®ã§ããããã®ããšã¯å
šãäžæè°ãªçµæã§ããããäŸãã°éåè«çãªã€ã³ã°ã®å®éšãªã©ã«ãããŠãã®çµæã¯ç¢ºãã«ç¢ºèªãããŠããã®ã§ããã
ããã§ããããšãã«ã®ãŒã®åºæç¶æ
| i > {\displaystyle |i>} ããããäœçœ®ã«çºèŠãããŠãã®äœçœ®ã«ããããšã確å®ããŠããç¶æ
ã«ç§»è¡ããéçšã¯ã察å¿ããäœçœ®ãxãšãããšã
ã§äžããããããšãäºæ³ãããããããããã®å€ã¯ã¡ããã©ããåºæç¶æ
ã«å¯Ÿå¿ããæ³¢åé¢æ°f(x)ã§ãã£ãã
ãã®ããšãããæ³¢åé¢æ°f(x)ã¯å¯Ÿå¿ãããšãã«ã®ãŒã®åºæç¶æ
ã«ããç²åãããå Žæxã«çºèŠãããäœçœ®ã«èŠã€ããéçšã«ã€ããŠé¢ä¿ããŠããããšãããããå®éã«ã¯æŽã«ããã®éã®çµ¶å¯Ÿå€ã2ä¹ããéããã¡ããã©ãã®å¯Ÿå¿ããç¶æ
ã«ããç²åããã®äœçœ®ã«èŠã€ãã確çãšãªã£ãŠããã®ã§ããã
ãããããã®éã¯ã¡ããã©
ãšããŠãæ³¢åé¢æ°ã®æ£èŠåãè¡ãªã£ãéã«å¯Ÿå¿ãããããã®ããšã¯P(x)ã確çãè¡šããéãšããŠæ±ãããã®æ¡ä»¶ãšãé©åããŠããã®ã§ããã
æ³¢åé¢æ°f(x)ãã
ã§äžãããããšããããã®ãšããããç¹xã§ç²åãçºèŠããã確çãèšç®ããããŸãããã®æ³¢åé¢æ°ãæ£ããæ£èŠåãããŠããããšã瀺ãã
ããç¹xã§ç²åãçºèŠããã確çP(x)ã«ã€ããŠã
ãæãç«ã€ããšãçšããã°ããããã£ãŠã
ãåŸããããæŽã«ãã¬ãŠã¹ç©åãçšããŠ
ãçšãããšã
ãåŸãããæ£ããæ£èŠåããªãããŠããããšãåãããã¬ãŠã¹ç©åã«ã€ããŠã¯ ç©çæ°åŠIãåç
§ã
å®éã«ã¯ããç¶æ
| a > {\displaystyle |a>} ããããç¶æ
| b > {\displaystyle |b>} ã«ç§»è¡ãã確çã
ã§äžããããããšã¯ãããšãã«ã®ãŒã®åºæç¶æ
ãããäœçœ®ã«ç§»è¡ããå Žåã ãã«ãšã©ãŸãããããåºãå Žåã«ããŠã¯ãŸããç¹ã«äžã®å Žåã«ã€ããŠ
ãaããbãžã®ç¢ºçæ¯å¹
ãšåŒã¶ãæ³¢åé¢æ°ã¯å¯Ÿå¿ãããšãã«ã®ãŒã®åºæç¶æ
ããããäœçœ®ã§è¡šããããç¶æ
ãžã®ç¢ºçæ¯å¹
ãšãããã
äºãã«çŽäº€ããç¶æ
| 1 > {\displaystyle |1>} , | 2 > {\displaystyle |2>} , | 3 > {\displaystyle |3>} ãããã ãã®ãšãã (I) | 1 > {\displaystyle |1>} (II)
(III)
(IV) | 2 > {\displaystyle |2>} ã§äžããããéåç¶æ
ãšç¶æ
| 1 > {\displaystyle |1>} ãšã®ç¢ºçæ¯å¹
ãæ±ãããããããã®ç¶æ
ãæ£ããæ£èŠåãããŠããããšã瀺ãã
äžããããç¶æ
ãš | 1 > {\displaystyle |1>} ãšã®å
ç©ãåãã°ãããããããã®1,2,3ã§è¡šããããããããã®ç¶æ
ã¯äºãã«çŽäº€ããŠããããšã«æ³šæããã æ£èŠåãããŠããããšã調ã¹ãã«ã¯ããããã®ç¶æ
ã®å€§ããã1ãšãªã£ãŠããããšã調ã¹ãã°ããã
(I) 確çæ¯å¹
ã¯
ãšãªããæ£èŠåã
ãšãªãæ£ããããšãåããã (II)
ãšãªããæ£èŠåã«ã€ããŠã¯
ãšãªãæ£ããããšãåããã (III)
ãšãªããæ£èŠåã«ã€ããŠã¯
ãšãªãæ£ããããšãåããã (IV) 確çæ¯å¹
ã¯
ãšãªããæ£èŠåã¯
ãšãªã£ãŠæ£ããããšãåããã
ããã§ããããšãã«ã®ãŒã®åºæç¶æ
| i > {\displaystyle |i>} ãšã察å¿ããæ³¢åé¢æ°f(x)ã«å¯ŸããŠ
ãã©ã®ãããªæå³ãæã€ããèãããããã§ã | f ( x ) | 2 {\displaystyle |f(x)|^{2}} ãã察å¿ããç²åãxã§èŠã€ãã確çãè¡šãããŠããããšãèãããšãäžã®åŒã¯xã®æåŸ
å€ãè¡šããåŒãã®ãã®ã§ããããã®ããã < i | x | i > {\displaystyle <i|x|i>} ã®ãããªxæŒç®åã®å¯Ÿè§æåã¯ã察å¿ããç¶æ
ã«ç²åãååšãããšãã®ç²åãèŠã€ããäœçœ®ã®æåŸ
å€ãšãªãããšãåãããäžæ¹ãäœçœ®æŒç®åã®é察è§æåã¯ããã»ã©ç°¡åãªè§£éã¯æã£ãŠããªãããã ãããããã®éã¯éåååŠçãªæåãªã©ã§ãã䜿ãããã詳ããã¯éåååŠIIãåç
§ã
å®éã®ç©ççãªç³»ã¯åžžã«æéã«äŸåããŠå€åããããã®ãããéåçãªç¶æ
ãäœããã®ä»æ¹ã§æéäŸåæ§ãæã€å¿
èŠããããããã§ãéåè«çãªç³»ã®æéäŸåæ§ãèããåã«ãç¹æ®çžå¯Ÿè«ã«ãããŠãæéãšç©ºéãçµ±äžçã«æ±ãæ¹æ³ãåŸãããšãæãã ããäžã®è°è«ã§ç©ºéæ¹åã®æåã«å¯ŸããŠã¯
(ãã ããi=1,2,3ã) ã®ãããªçœ®ãæããããããšãèãããšãã«ã®ãŒãšæéæ¹åã«åãæ§ãªé¢ä¿ãããããšãèãããšãäžã®çœ®ãæãã«å¯Ÿå¿ããŠ
ã®ãããªçœ®ãæããåºæ¥ãããšãäºæ³ããããäžæ¹ãéåè«çãªç³»ã§ã¯ç¹æ®çžå¯Ÿè«çãªèãæ¹ãé©çšã§ããã®ããšããããšã¯çåãæ®ããäŸãã°ãéåè«ã§ã¯ããç©äœãååšããäœçœ®ã¯èŠ³æž¬ãããåã«åççã«ç¥ãããšãã§ããã芳枬ãããç¬éã«ç©äœã®äœçœ®ã決å®ããããšãç¥ãããŠãããããããããäžç¬ã§ç©äœã®äœçœ®ã決å®ãããã®ãªãããã®ç¬éã«ãã®ç©äœã¯ããšããšç©äœããã£ãå Žæããéåžžã«éãé床ã§ç§»åããŠããããã«æãããã®é床ã¯å
éãè¶
ããŠããŸãããã«æããããã®æ§ãªäºæ
ãèãããšãç¹æ®çžå¯Ÿè«ãšéåååŠããäºãã«é©åãããããšã¯éåžžã«å°é£ã«æããäžã®ãããªçœ®ãæããããçç±ã¯å®ãã§ãªãããã«æãããããããå®éã«ã¯ãã®æ§ãªå°é£ãä¹ãè¶ããŠäžã®2ã€ãé©åãããæ¹æ³ã¯æ¢ã«ç¥ãããŠããããã®çµæãçšãããªã確ãã«äžã®çœ®ãæãã¯æ£ããçµæãäžããããšãç¥ãããã®ã§ããã詳ããã¯å Žã®éåè«ãåç
§ã
äžã®çœ®ãæããå€å
žçãªæ¹çšåŒ
ã«å¯ŸããŠçšãããªããéåè«çãªæ¹çšåŒã¯
ã®ããã«ãªããããã§ã¯ãäžè¬ã«ç³»ã®éåç¶æ
ã匵ããã¯ãã«ã Κ {\displaystyle \Psi } ãšæžããŠã äžã®æ¹çšåŒãã
ãšæžãæããã仮㫠Κ {\displaystyle \Psi } ãããšãã«ã®ãŒEãæã€ããã«ããã¢ã³ã®åºæç¶æ
ã ã£ã ãšããããã®ãšããäžã®æ¹çšåŒã¯
ãšãªãããã®åŒã¯éåžžã®æ¹æ³ã§è§£ãããšãåºæ¥ããä»®ã«t=0ã§ã
ãæãç«ã€ãšãããšãäžã®åŒã®è§£ã¯
ãšãªãããã®ããšã«ãã£ãŠãããæå» t 0 {\displaystyle t_{0}} ã«ãããŠãããããã«ããã¢ã³ã®åºæç¶æ
ã§åŒµãããç¶æ
ã«ããç©äœãæéçã«ã©ã®ç¶æ
ã«å€åããããåãã£ãããšã«ãªããäžæ¹ãããã«ããã¢ã³ã®åºæç¶æ
ã¯æéã«äŸåããªãã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã«ãã£ãŠèšç®ãããããšãããã©ã®ç¶æ
ãã©ã®ãããªæéçºå±ããããã¯æéã«äŸåããªãã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã解ãããšã«ãã£ãŠæ±ããããããšãåããã
ãŸããæéã«äŸåããã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒãšãæéã«äŸåããªãã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã¯äºãã«é¢é£ããŠãããä»®ã«ãããç¶æ
Κ ( t ) {\displaystyle \Psi (t)} ã®æéçºå±ãããå®æ°EãçšããŠã
ã§æžããããšããããã®æã㮠Κ ( t ) {\displaystyle \Psi (t)} ãæéã«äŸåããã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã«ä»£å
¥ãããšãçµæã¯ã
ãšãªããæéã«äŸåããªãã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã«çãããªãã
å¢çæ¡ä»¶ã埮åæ¹çšåŒã解ãéã«å¿
èŠã«ãªã£ãŠãããç座æšã«å€æããã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã«ãè§åºŠã®åšæçå¢çæ¡ä»¶ãªã©ãå
¥ãããš(è§åºŠã¯äžåšãããšå
ã«æ»ããšããæ¡ä»¶)ãæ°ŽçŽ ååã®ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã解ããããã«ãªãããªããšå€§åŠååŠã§ç¿ããäž»éåæ°ãããæ¹äœéåæ°ããªã©ã®ãéåæ°ããªã©ãå°åºãããã
1次å
äºæžåããã³ã·ã£ã«
ãèããããã®ãšãã®ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã¯
ãšãªãããã®ãšã V ( x ) = â {\displaystyle V(x)=\infty } ã®é å ( â â < x < 0 , L < x < â ) {\displaystyle (-\infty <x<0,L<x<\infty )} ã§ã¯ç²å䟵å
¥äžå¯ãªã®ã§ããã®é åã«ãããæ³¢åé¢æ°ã¯ Ï ( x ) = 0 {\displaystyle \psi (x)=0} ãšãªããæ³¢åé¢æ° Ï ( x ) {\displaystyle \psi (x)} 㯠x = 0 , x = L {\displaystyle x=0,x=L} ã§ããããé£ç¶ãªã®ã§ã Ï ( 0 ) = Ï ( L ) = 0 {\displaystyle \psi (0)=\psi (L)=0} ãšãªãã 0 †x †L {\displaystyle 0\leq x\leq L} ã«ãããæ³¢åé¢æ°ãèãããš
Ï ( 0 ) = Ï ( L ) = 0 {\displaystyle \psi (0)=\psi (L)=0} ãã
ãšãªãããŸã â« 0 L ( Ï ( x ) ) 2 d x = 1 {\displaystyle \int _{0}^{L}(\psi (x))^{2}dx=1} ãšãªãããã«Bãæ±ãããš
ãšãªã
ãšãªãããŸããã®ãšãã®ãšãã«ã®ãŒEã¯
ãšãªãããšã³ãšã³ã®å€ããšãããšãåããã
1次å
é段åããã³ã·ã£ã«
ãèããã
é å x < 0 , x †0 {\displaystyle x<0,x\leq 0} ã«ãããæ³¢åé¢æ°ããããã Ï â ( x ) , Ï + ( x ) {\displaystyle \psi _{-}(x),\psi _{+}(x)} ãšãã.
ããããã®ã·ã¥ã¬ãã£ã³ã¬ãŒæ¹çšåŒã¯,
ãšãªã.
(1) E < V 0 {\displaystyle E<V_{0}} ã®å Žå
ãšãããš,ã·ã¥ã¬ãã£ã³ã¬ãŒæ¹çšåŒã¯,
解ã¯
( Ï + ( x ) {\displaystyle \psi _{+}(x)} ã® e k + x {\displaystyle e^{k_{+}x}} ã®é
ã¯çºæ£ã,èŠæ Œåæ¡ä»¶ãæºãããªãé€å€ãã.) æ³¢åé¢æ°ã x = 0 {\displaystyle x=0} ã§æ»ããã§ããæ¡ä»¶ããå®æ°ãå®ãã.
ãã,
éåžžã®æ£ç£ç³ããé»åã«è¿ã¥ããŠããé»åã®ç£æ°ã¢ãŒã¡ã³ããå°ããã®ã§ãããŒã¬ã³ãå以å€ã®åã¯é»åã¯ã»ãšãã©åããªãã®ã ããç£ç³ãéåžžã§ãªãå Žåã¯å¥ã§ããã
å³ã®ããã«ãç£ç³ã«ãã£ãŠãäžé£ç¶ã§æ¥å³»ãªç£å Žãçºçãããšããé»åã®äžåŽãšäžåŽãšã§ãç£å Žã®åŒ·ããç°ãªãããã®ãããé»åå
šäœãšããŠã¯ãåãåããããšã«ãªã(ãªããåæãšããŠãé»åã«ã¯ãã¹ãã³ããšããç£æ¥µã®ãããªæ§è³ªãããããšããäºãåæã«ããŠãã)ã
N極ã®å
端ã®ãšãã£ãããã¡ãããæ£ç£ç³ãšãS極ã®å
端ã®ããŒãã æ£ç£ç³ãçšæããŠããšãã£ããN極ãšãããŒãã S極ã®è»žãäžèŽããããã®2ã€ã®ç£æ¥µã®ééãããŸãããäžå¯Ÿç£æ¥µãã€ããããã®äžå¯Ÿç£æ¥µã®ãããŸã«ãéãç±ããŠèžçºãããŠçŽ°åãªã©ããé£ã³åºãããéã®ååç·ãæã¡èŸŒããšãå³ã®ããã«ãäžãŸãã¯äžã®ã©ã¡ããã®åãåããäžäžã®2ç®æã«åè£ããããã£ããŠããªãªãæ¹åã«ã¯ç§»åããªããããã¯ãååç·ãã®ãã®ãç£åããã£ãŠããããšã®å®éšç蚌æã§ããã
éã®ååã¯äžæ§ã§ããããŸããä»®ã«é»é¢ããŠããŠãããšããŠããŒã¬ã³ãåãåãããšãããšãããŒã¬ã³ãåã®æ¹åã¯ãå³äžã®æšªåãã«ãªãã
ãã®å®éšãã·ã¥ãã«ã³ã»ã²ã«ã©ããã®å®éšãšãããé以å€ã«ããæ°ŽçŽ ã®ååç·ããããªãŠã ååç·ã§ãåæ§ã®å®éšãè¡ãããååç·ãäžæ¹åãŸãã¯äžæ¹åã®ã©ã¡ããã®åãåããããšã確èªãããã
ãã®ããã«ååç·ãäžäžã«åè£ããçç±ã¯ãååç·ãç£åããã£ãŠããäºã®ããããã§ãããããã®ååã®ç£åã®ç±æ¥ã¯ãããããé»åãç©æ§ãšããŠç£æ°ããã£ãŠããããã§ããããããŠãé»åãã®ãã®ã®ç£æ°ã®ããšãã¹ãã³ãšããã
ååç·ã®æšçã«ãªã£ãŠããå ŽæãèŠããš(å³ã®ã5ãã®å Žæ)ãååç·ãäžãŸãã¯äžã®2éãã®äœçœ®ã«åè£ããŠåœãã£ãŠããããšãããé»åã®ãã¹ãã³ãã2éãã®å€ã§ããããšãäºæ³ãããä»ã®ç©ççè«ãããé»åã®ãã¹ãã³ããå®éã«2éãã§ããäºãåãã£ãŠããã
éåè«ã®åºç€æ³åã¯æ°åŠçã«ã¯ãããåçŽã§ãç·åœ¢ä»£æ°ã«ä»ãªããªããäœããæ±ãç³»ã«ãããã¯ãã«ç©ºéã®æ¬¡å
ãç¡é倧ã«ãªã£ããé¢æ°ç©ºéã«ãªã£ããããã®ã§ãããããããè€éãã倧ãããããã§ã¯æé次å
(2次å
!)ã®ç·åœ¢ä»£æ°ã§å®å
šã«æ±ãããšãã§ããç³»ããé»åã®ã¹ãã³ããäŸã«ãšããªãããåºç€æ³åãå°å
¥ããã
é»åã¯ç¹ç²åã§ããäœçœ®ãšããå±æ§ãæã€ããå®ã¯ããã ãã§ãªããèªè»¢ããæ£ç£ç³ããæã€ãããªå±æ§ãæã£ãŠãããæ£ç£ç³ãN極ãšS極ãçµã¶ç·ã軞ãšããŠèªè»¢ããŠãããšããããããã«ç£å Žãããããš(1)æ£ç£ç³ã¯ãã®åãã«å¿ãããšãã«ã®ãŒãæã¡ããŸã(2)ç£å Žã軞ãšããŠã³ãã®ããã«ããªã»ãã·ã§ã³(éŠæ¯éå)ãè¡ãã(1)ã¯ç£ç³ã§ããããšããèµ·ãã(2)ã¯((1)ã«å ããŠ)è§éåéãæã€ããšããèµ·ããã
é»åããåãããæã£ãŠãããç£å Žã®äžã«å
¥ãããš(1)ãã®åãã«å¿ãããšãã«ã®ãŒããã¡ããã€(2)ãã®åããæ£ç£ç³ã®åããšåæ§ã®ããªã»ãã·ã§ã³ãèµ·ããããã®ãããªäºå®ã称ããŠãé»åã¯ã¹ãã³ããã€ããšããããåããããã¹ãã³ã®åãããšåŒã¶ãã¹ãã³ã®èµ·æº(Diracã«ãã)ãç©æ§ãšã®é¢ä¿ã¯éèŠãªäž»é¡ãšãªãã®ã ããããã§ã¯éåååŠã®æ³åã説æããäŸãšããŠçšããã ããªã®ã§ãåã« ãé»åã¯äœçœ®ã ãã§ãªããåããšããå±æ§ãæã€ã ãšããç¹ã«ã®ã¿çç®ããããã€ããã¯ã¹ã®èª¬æãè¡ãæã«ç©ççãªæå³ ãé»åãæ£ç£ç³ãšã¿ãªããæã®åãã§ããããã€é»åã®ãã€è§éåéã®åãã ã䜿ãããªããè§éåéã®å€§ããã¯äžå®(hbar/2)ã§ãããå€ããããã®ã¯ãã®åãã ãã§ããã
ãã®åããåäœãã¯ãã« s ^ {\displaystyle {\hat {s}}} ã§è¡šãããã®æåã ( s x , s y , s z ) {\displaystyle (s_{x},s_{y},s_{z})} ãšæžããåäœãã¯ãã«ãªã®ã§ s x 2 + s y 2 + s z 2 = 1 {\displaystyle s_{x}^{2}+s_{y}^{2}+s_{z}^{2}=1} ãæ®éã«èãããšãã®æå(3ã€ã®å®æ°ãåãç¯å²ã¯ãããã-1ãã1)ãæå®ããã°ã¹ãã³ã®ç¶æ
ãèšè¿°ããããšã«ãªãã¯ãã§ããããšãããã¹ãã³ã¯éåååŠã®æ³åã«åŸãã®ã§ããã¯ãªããªãã
ã¹ãã³ã®åãã®æž¬å®æ¹æ³ã§ä»£è¡šçãªã®ã¯Stern-Gerlachåå®éšãšåŒã°ãããã®ã空éçãªåŸé
ãæã€ç£å Žããããããšã§ã¹ãã³ã®åãã«äŸåããåãé»åã«ãããããã«ããã倧éæã«ç解ããã«ã¯ãæ£ç£ç³ã«ç£å Žããããããšãèããã°ãããç£å Žãäžæ§ã ãšN極ãšS極ã«ãããåãæ£å察ãã€åã倧ããã«ãªãã®ã§å
šäœãšããŠãã£ã³ã»ã«ããŠããŸããããã§zæ¹åã«åŸé
ãæã€ãã€ãŸãäžã«è¡ãã»ã©åŒ·ããªãç£å Žãããããšãããããããšç£ç³ã®åããz軞æ¹åã®æåããã€( s z â 0 {\displaystyle s_{z}\neq 0} )ãªãã°äžåŽã®æ¥µã«ãã倧ããªåããããã®ã§å
šäœã«ãããåãæ®ããé©åã«ç£å Žãèšå®ããããšã§ãè¿äŒŒçã«szã«æ¯äŸããå F â â ( 0 , 0 , k s z ) {\displaystyle {\vec {F}}\approx (0,0,ks_{z})} ãç£ç³ã«ãããããã«ã§ããããã®ãããªç£å Žã®äžã«å°ããç£ç³ãé£ã°ããšãç£ç³ã®åãã®zæåã«æ¯äŸããåãããããè»éãããããåŸã£ãŠè»éãäžäžã«ã©ãã ãããããã調ã¹ãã°ç£ç³ã® s z {\displaystyle s_{z}} ãåããã®ã§ããããã¡ããåãè°è«ãz軞æ¹å以å€ã§ãæãç«ã€ããŸãšãããšã
ã» u â {\displaystyle {\vec {u}}} æ¹å( u â {\displaystyle {\vec {u}}} ã¯åäœãã¯ãã«)ã®åŸé
ãæã€ç£å Žã䜿ãããšã§ã s â {\displaystyle {\vec {s}}} ã® u â {\displaystyle {\vec {u}}} æå s u â¡ s â â
u â {\displaystyle s_{u}\equiv {\vec {s}}\cdot {\vec {u}}} ã枬å®ããããšãã§ããã
zæ¹åã«åŸé
ãæã€ç£å Žã«ã©ã³ãã ãªåãã®ç£ç³ãããããããããšãããŸããŸsz=1ã ã£ããã®ã®è»éã¯å€§ããäžã«ãããsz=-1ã ã£ããã®ã¯å€§ããäžã«ãããããããŠãã®äžéãç¹ã«sz=0ã«è¿ããã®ã§ã¯è»éã¯ã»ãšãã©ãããªããç£ç³ã®åºå£ã«ç£ç³ãããããšãæç¥ããã¹ã¯ãªãŒã³ãããã°ãããã«ã¯äžããäžãŸã§ã»ãŒãŸãã¹ããªãç£ç³ãããåŸãæ®ãã§ãããã
ããã§èå°ã¯æŽã£ãã®ã§ãç£ç³ã®ä»£ãã«åããã°ãã°ãã®é»åãéããŠã¿ãããããšãé©ãã¹ãããšã«ç£ç³ã®å Žåãšã¯å
šãç°ãªãçµæã«ãªããã¹ã¯ãªãŒã³ã®äžçªäž(sz=1ã«å¯Ÿå¿)ãšäžçªäž(sz=-1ã«å¯Ÿå¿)ã«ããé»åãããªãã®ã§ãããããããsz=1ã®é»åãšsz=-1ã®é»åãããªããã®ãããªçµæã«ãªã£ãŠããŸããããã§ã¯ãšãä»åºŠã¯è£
眮ã90床åããŠãsxã«å¿ããŠè»éãå€ããããã«ããŠã¿ãããããšä»åºŠã¯(åãæºããããé»åãªã®ã«)sx=1ãšsx=-1ã®ãã®ãããªããã®ãããªçµæã«ãªããã€ãŸãäžçªå³ãšå·Šã«ããé»åãããªãã
ããã¯æž¬å®æ³ãå€ããŠãæãç«ã€äžè¬çãªçµæã§ãããå³ã¡ã
ã»é»åã¹ãã³ s â {\displaystyle {\vec {s}}} ã® u â {\displaystyle {\vec {u}}} æ¹åæå s â â
u â {\displaystyle {\vec {s}}\cdot {\vec {u}}} ã枬å®ãããšããã®çµæã¯å¿
ã1ã-1ã®ã©ã¡ããã«ãããªããªããæ¬æ¥é£ç¶çãªå€ããšãã¯ãã®é s â â
u â {\displaystyle {\vec {s}}\cdot {\vec {u}}} ã®æž¬å®çµæãã1,-1ãšããé¢æ£çãªå€ã ãã«ãªãã
ãã®ããé£ç¶çã§ããã¯ãç©çéã®æž¬å®å€ãé¢æ£çã«ãªããããšã埮èŠçã¹ã±ãŒã«ã®ç©çã®å€§ããªç¹åŸŽã§ãããäœããããããéã®æž¬å®å€ãé¢æ£çã«ãªãããã§ã¯ãªããäŸãã°é»åã®äœçœ®ã®æž¬å®å€ã¯é£ç¶çãªå€ããšããããããšãã«ã®ãŒã®æž¬å®å€ã¯ç³»ã«ãã£ãŠé£ç¶çãªå Žåãé¢æ£çãªå Žåããäž¡è
ãæ··åããå ŽåããããéåååŠã®å€§ããªææ(ã®äžã€)ã¯ãç©çéã®æž¬å®å€ããšãããå€ã®ã»ãã(ã¹ãã¯ãã«ãšãã)ãæ±ããããã®éŠå°Ÿäžè²«ããèšç®æ³ãšããŠäžããããšã«ããã
szã®æž¬å®å€ã¯1,-1ããåãåŸãªããšè¿°ã¹ããã§ã¯ãäŸãã°ã¹ãã³ãxæ¹åãåããŠããå Žåã«szã枬ããšæž¬å®å€ã¯ã©ããªãã ããããåžžèçãªçã§ãã0ã¯åããªããããã1,-1ã®ã©ã¡ããåãã«ããŠãåŠã§ãããçã¯ã1,-1ãå
šãã©ã³ãã ã«åããã€ãŸãç確çã§1,-1ãçŸããããšãªã(äžåããšã§ã¯åžžèçãªå€0ã¯åããªãããå€æ°åå®éšãè¡ã£ãå¹³åå€ãšããŠã¯åžžèçãªå€0ã«ãªã)ããã®ããã«ã枬å®çµæã確ççã«ãªãããšã埮èŠçäžçã®æ³åã®ããäžã€ã®å€§ããªç¹åŸŽã
äœãäžã®å®éšãè¡ãã«ã¯ãã¹ãã³ãxæ¹åãåããç¶æ
ããäœããªããã°ãªããªããã©ãããããå®éšè£
眮èªèº«ãããã£ã«ã¿ããšããŠäœ¿ããäŸãã°äžèšStern-Gerlachã®å®éšã§ã¯sz=1ã®é»åã¯è»éãäžã«æ²ãããã-1ã®ãã®ã¯äžã«æ²ããããããã£ãŠäžã«æ¥ãé»åã ããéããã°ããããã¯å
šãŠsz=1ã§ããããšããããå®éãããäžã€å®éšè£
眮ãçšæããæåã®è£
眮ã§äžã«æ²ããããé»åã ããéããŠszãããäžåºŠæž¬ãããããšã確ãã«å
šãŠã®é»åã§sz=1ã«ãªãã®ã§ããããã¡ããæåã®è£
眮ãšäºã€ã®è£
眮ã®éã«ç£å Žãªã©ãæããŠããŸããšåããå€ããããšããããããã®ãããªãã¹ãã³ã®åããå€ããèŠå ãããªããã°ãäžåºŠç®ãšäºåºŠç®ã®æž¬å®å€ã¯å¿
ãåãå€ã«ãªãã以äžã®ããšãèžãŸã次ã®å®çŸ©ãè¡ãã
ãsz=1ã®ç¶æ
ãåã£ãŠãããé»åãšã¯ãå®éšã«ããsz=1ãšãã枬å®å€ãåãããã®åŸåããå€ããããŠããªãé»åã®ããšãšããã
ä»»æã®åããžã®äžè¬åã¯èªæã§ããããä»»æã®åäœãã¯ãã« u â {\displaystyle {\vec {u}}} ã«å¯Ÿãã
ã» u â {\displaystyle {\vec {u}}} æ¹åãåããé»åãšã¯ã s â â
u â {\displaystyle {\vec {s}}\cdot {\vec {u}}} ã®æž¬å®ã§æž¬å®å€1ãåãããã®åŸåããå€ããããŠããªãé»åã§ããã
ãã®å®çŸ©ãæå³ããªãçç±ã¯ãäžèšã®éããã®å®çŸ©ã«åŸãé»åã§ããäžåºŠ s â â
u â {\displaystyle {\vec {s}}\cdot {\vec {u}}} ã枬å®ããã°å¿
ã1ãåãããšããå®éšçè£ã¥ããããããã§ãããäœããã®å®çŸ©ã«åŸãé»å㧠u â {\displaystyle {\vec {u}}} ãšåçŽãªæåã枬ã£ãŠã枬å®çµæã¯æ±ºããŠ0ã«ã¯ãªããªãããšãå¿ããŠã¯ãªããªãã
ãã®å®çŸ©ã䜿ããšãäžèšã®ã©ã³ãã æ§ãå®éšã§ç¢ºãããã«ã¯ããŸãStern-Gerachã®è£
眮ã暪ã«åããŠsxã®å€ã«å¿ããŠè»éãæ²ããããããã«ããããããŠãå³(sx=1ã«å¯Ÿå¿)ã«æ¥ãé»åã ãã第2ã®è£
眮ã«éããŠszã枬ãããããšãååã¯sz=1ãæ®ãååã¯sz=-1ãšãªãã®ã§ããã
ããäžè¬çãªå Žåãã€ãŸã u â {\displaystyle {\vec {u}}} ãšz軞ãšã®è§åºŠãä»»æã®è§åºŠA( 0 <= A <= Ï {\displaystyle 0<=A<=\pi } ) ã®å Žåãè¿°ã¹ãããzæ¹åãåããé»åã¹ãã³ã® u â {\displaystyle {\vec {u}}} æ¹åã®æå s â â
u â {\displaystyle {\vec {s}}\cdot {\vec {u}}} ã枬ããšããããããšã
枬å®å€ã1ã«ãªã確ç㯠cos 2 ( A / 2 ) {\displaystyle \cos ^{2}(A/2)} ã-1ã«ãªã確ç㯠sin 2 ( A / 2 ) {\displaystyle \sin ^{2}(A/2)} ãšãªãã(ç¹ã« A = Ï / 2 {\displaystyle A=\pi /2} ã®å Žåã«ã¯äžèšã®çµæã«åž°çããããšã«æ³šæ)ã
ãã®ãããªèŠ³æž¬å€ã®é¢æ£åãã©ã説æããããäžã€ã®çŽ çŽãªèãæ¹ã¯ãæ¬æ¥é£ç¶çãªå€ããšããã®ã芳枬éçšã§ã®äœãã®ã¡ã«ããºã ã§é¢æ£çã«ãªããšèãããã®ã¡ã«ããºã ãè¿œæ±ããããšã ãããæ ¹åºã§ã¯é£ç¶ãªãã®ãäœãã®åå ã§é¢æ£åãããšèããã®ã§ããããããéåååŠã§ã¯ãã®ãããªæ¹éã¯ãšããªãã芳枬å€ãé¢æ£åããããšãããæ ¹åºã®æ³åãèªç¶ã®æ¬æ§ã§ãããšæãããããé©åã«èšè¿°ããæ°åŠçãªæ³åãäžããã®ã§ããã以äžã§ãã®æ³åãè¿°ã¹ãããããã¯å¥ã®æ³å(äŸãã°å€å
žååŠ)ããè«ççã«å°ããããã®ã§ã¯ãªããããèªèº«ãããã°ãå
¬çãã§ããããããæ£ãããã©ããã¯å®éšçµæãäºèšã»åçŸã§ãããã«ããå€å®ããããç¹ã«å€å
žååŠãé»ç£æ°åŠã¯ããç¯å²å
ã§å®éšãšåãããšã確ç«ãããçè«ã§ããããããããããã®ãå
¬çãããå°åºãããªããã°ãªããªãã
以äžããŸãã¹ãã³ãšããç¹æ®ãªå Žåã«ã€ããŠè¿°ã¹ããäžè¬çãªå Žåãžã®æ¡åŒµã¯ãå°ãªããšã圢åŒäžã¯åçŽãªããšãšãªãã
ã¹ãã³ããã€ç©çéã¯ãã®xæåsxãyæåsy, zæåszã§ãã(äžè¬ã®æ¹åã®æåã¯ãããã®äžæ¬¡çµåãšãªã)ããããã®ç©çéã¯ãã2x2è¡å(Pauliè¡åãšåŒã°ãã)ã«å¯Ÿå¿ãããsxã«å¯Ÿå¿ããè¡åãXãšæžããsy,szããããã«å¯Ÿå¿ããè¡åãY,Zãšæžãããšã«ãããšã
X = ( 0 1 1 0 ) {\displaystyle X={\begin{pmatrix}0&1\\1&0\end{pmatrix}}} Y = ( 0 â i i 0 ) {\displaystyle Y={\begin{pmatrix}0&-i\\i&0\end{pmatrix}}} Z = ( 1 0 0 â 1 ) {\displaystyle Z={\begin{pmatrix}1&0\\0&-1\end{pmatrix}}}
ã察å¿ãããã®æå³ã¯æ®µéçã«èª¬æããŠããããŸãéèŠãªã®ã¯èŠ³æž¬å€ãåãåŸãå€ã決ããããããšã§ãããç©çészãäŸã«ãšããš
szã®æž¬å®å€ã«ãªãããã®ã¯å¯Ÿå¿ããè¡åZã®åºæå€ã®ã¿ãã€ãŸãszã®æž¬å®å€ã1, -1ã«éãããã®ã¯ã察å¿ããZã®åºæå€ã1, -1ã ãã ããã§ããã
sx, syã«ã€ããŠãåæ§ãã©ã¡ãã察å¿ããè¡åX,Yã®åºæå€ã1, -1ãããªãã®ã§æž¬å®å€ãšããŠã¯1, -1ããçŸããªãã
äžè¬çã«èšããšãã¹ãã³ã«éããç©çéã¯ããè¡å(ããäžè¬çã«ã¯ç·åœ¢æŒç®å)ã«å¯Ÿå¿ãããã€ãŸããã®ç©çéã®èŠ³æž¬å€ã¯å¯Ÿå¿ããè¡åã®åºæå€ã«éããããéã«ãããšããç©çéããšããã枬å®å€ãç¥ããããšæã£ãããããã«å¯Ÿå¿ããè¡åãæ±ããã®åºæå€ãæ±ããã°ããããšããããšã§ããã
ã§ã¯å¯Ÿå¿ããè¡å(ç·åœ¢æŒç®å)ãã©ãæ±ããããšããçåãåœç¶æµ®ãã¶ããããã¯æ±ãç©çç³»åã
ã®åé¡ã«ãªããåºæ¬çãªã®ã¯æ£æºéååãšåŒã°ããææ³ã§ãå€å
žååŠã®ãã¢ãœã³æ¬åŒ§ãšåŒã°ãããã®ããæŒç®åãæºããã¹ã亀æé¢ä¿ãæšæž¬ãããããæºãããããªæŒç®åãæ¢ããç¹ã«ãã®ãããªææ³ããè§éåéã®äžè¬è«ãå±éã§ããäžã§å°å
¥ããã¹ãã³ã®Pauliè¡åã¯ãã®ç¹å¥ãªå ŽåãšããŠåŸãããã
äœãåºæ¬çãªç©çéã®è¡åãåããã°ããããã®é¢æ°ã«ãªã£ãŠããç©çéã®è¡åã¯è¡å代æ°ã«ããåŸããããäŸãã° s x + s y {\displaystyle sx+sy} ãšããç©çéã«å¯Ÿå¿ããè¡å㯠X + Y {\displaystyle X+Y} ã«ãªãããã®åºæå€ã¯(æ®éã®ç·åœ¢ä»£æ°ã®æ¹æ³ã§èšç®ãããš) ± 2 {\displaystyle \pm {\sqrt {2}}} ãªã®ã§ s x + s y {\displaystyle sx+sy} ããšããã芳枬å€ã¯ ± 2 {\displaystyle \pm {\sqrt {2}}} ã®ã©ã¡ããã«ãªããåŸã£ãŠæ±ãç³»ã§åºæ¬çãªç©çé(äŸãã°äœçœ®xãšéåép)ã«å¯Ÿå¿ããæŒç®åãåããã°ããã®ç³»ã®ä»»æã®ç©çé(åºæ¬çãªç©çéã®é¢æ°ã«ãªã£ãŠããéãäŸãã°ãšãã«ã®ãŒ p^2/(2m)+V(x))ã察å¿ããè¡åã¯æŒç®åã®ä»£æ°(ç·åœ¢ä»£æ°)ã§åãã£ãŠããŸãã®ã§ããã
次ã«ãé¢æ£çãªèŠ³æž¬å€(ç©çéã«å¯Ÿå¿ããè¡åã®åºæå€)ã®ã©ãã芳枬ããããã®èŠåãè¿°ã¹ãããŸããã¹ãã³ã®ç¶æ
ã¯ã¹ãã³ã®ç©çéã«å¯Ÿå¿ããè¡å(X,Y,Z)ãäœçšãããã¯ãã«ãå³ã¡2è¡1åã®è€çŽ åãã¯ãã« ( α 0 α 1 ) {\displaystyle {\begin{pmatrix}\alpha _{0}\\\alpha _{1}\end{pmatrix}}} ã§è¡šãããããã㧠α 0 , α 1 {\displaystyle \alpha _{0},\alpha _{1}} ã¯ã©ã¢ããè€çŽ æ°ã ãã次ã®æ£èŠåæ¡ä»¶ãæºãããã®ãšãã | α 0 | 2 + | α 1 | 2 = 1 {\displaystyle |\alpha _{0}~|^{2}+|\alpha _{1}|^{2}=1} ããã®ãããªè€çŽ åãã¯ãã«ãDiracã«ããããã©ã±ããèšå·ãã䜿ãããã±ããã | α > {\displaystyle |\alpha >} ã§è¡šãã
| α >= ( α 0 α 1 ) {\displaystyle |\alpha >={\begin{pmatrix}\alpha _{0}\\\alpha _{1}\end{pmatrix}}}
ç·åœ¢ä»£æ°ã«ãããšãè€çŽ åãã¯ãã«å士ã®éã«ã¯èªç¶ã«å
ç©ãå®çŸ©ããããã±ãã | α >= ( α 0 α 1 ) {\displaystyle |\alpha >={\begin{pmatrix}\alpha _{0}\\\alpha _{1}\end{pmatrix}}} ãš | β >= ( β 0 β 1 ) {\displaystyle |\beta >={\begin{pmatrix}\beta _{0}\\\beta _{1}\end{pmatrix}}} ã®éã®å
ç© ( | α > , | β > ) {\displaystyle (|\alpha >,|\beta >)} ã¯æ¬¡ã§äžãããã:
( | α > , | β > ) = α 0 â β 0 + α 1 â β 1 {\displaystyle (|\alpha >,|\beta >)=\alpha _{0}^{*}\beta _{0}+\alpha _{1}^{*}\beta _{1}}
ãã®å
ç©ã¯ãæåãå®æ°ã®å Žåã«ã¯æ®éã®å®ãã¯ãã«å士ã®å
ç©ã«ãªãããè€çŽ æ°ã®å Žåã«ã¯å·ŠåŽã®èŠçŽ ã«è€çŽ å
±åœ¹ãåããããå®çŸ©ããçç±ã¯ããèªåèªèº«ãšã®å
ç© ( | α > , | α > ) {\displaystyle (|\alpha >,|\alpha >)} ããå¿
ã0以äžã®å®æ°ã«ãªãããã«ããããã§ãããç¹ã«äžèšã®èŠæ Œåæ¡ä»¶ã¯ ( | α > , | α > ) = 1 {\displaystyle (|\alpha >,|\alpha >)=1} ãšæžãããšãã§ããã
ã§ã¯ããã®ã±ããã®ç©ççæå³ã«ã€ããŠè¿°ã¹ãããäžã§å°å
¥ãããzåãã®ç¶æ
ããå³ã¡szã芳枬ããã°å¿
ãsz=1ã®çµæãåŸãããç¶æ
ã¯ãè¡åZã®åºæå€1ã®åºæãã¯ãã«(ã§èŠæ Œåããããã®)ã§èšè¿°ããããã€ãŸããszã枬å®ããã°ãçµæãå¿
ãsz=1ã«ãªãç¶æ
ãè¡šãã±ãããã|sz=1>ãšæžãããšã«ãããšæ¬¡ãæç«:
| s z = 1 >= ( 1 0 ) {\displaystyle |sz=1>={\begin{pmatrix}1\\0\end{pmatrix}}}
(å®éã«ã¯ãã®æåã§1ã®ä»£ããã«çµ¶å¯Ÿå€1ã®ä»»æã®è€çŽ æ° e i Ξ {\displaystyle e^{i\theta }} ããããŠãåããªã®ã ãããã®ä»»ææ§ã«ã€ããŠã¯åŸã§è¿°ã¹ãããšããããåäœåºæãã¯ãã«ã®äžã§äžçªæåãç°¡åãªãã®ãéžãã ãšèããŠã»ããã)
ããã¯äžè¬çã«æ¡åŒµããããå³ã¡ãä»»æã®ç©çéAã«å¯ŸããŠãAã枬å®ãããšãã«ç¢ºå®ã«æž¬å®å€aãåŸãããç¶æ
ã¯ãæ°åŠçã«ã¯Aã«å¯Ÿå¿ããè¡å(ãŸãã¯æŒç®å)ã®åºæå€aã®åºæãã¯ãã«(ã§èŠæ Œåããããã®)ã§èšè¿°ãããããã®ãããªç¶æ
ããããç¥ããèšãæ¹ã§ç©çéAã®åºæå€aã®åºæç¶æ
ãšåŒã¶ã
ã¹ãã³ã®äŸã«æ»ããšãsxã枬å®ããŠå¿
ãsx=1ã®çµæãåŸãããç¶æ
|sx=1>ã¯ãè¡åXã®åºæå€1ã®åºæç¶æ
ãªã®ã§
| s x = 1 >= 2 â 1 / 2 ( 1 1 ) {\displaystyle |sx=1>=2^{-1/2}{\begin{pmatrix}1\\1\end{pmatrix}}}
å¿
ãsx=-1ã®çµæãåŸãããç¶æ
ã¯
| s x = â 1 >= 2 â 1 / 2 ( 1 â 1 ) {\displaystyle |sx=-1>=2^{-1/2}{\begin{pmatrix}1\\-1\end{pmatrix}}}
ã§ã¯ãszã枬å®ããéã«ãç¶æ
ãszã®åºæç¶æ
ã§ãªãã£ããçµæã¯ã©ããªãã ããããããã§å§ããŠå®éšãšæ¯ã¹ãããèšè¿°ãçŸãããéåååŠãäžããäºèšã¯æ¬¡ã®éãã
ã¹ãã³ã®ç¶æ
| α > {\displaystyle |\alpha >} ãszã®åºæç¶æ
ãšã¯éããªãå Žåã«szã枬å®ãããšããã®çµæ(枬å®å€ã1ã«ãªãã-1ã«ãªãã)ã¯ã©ã³ãã ãªäºè±¡ãšãªãã確ççã«ããäºèšã§ããªãããã®ç¢ºçã¯ããšã®ç¶æ
ãšåºæç¶æ
ã®å
ç©ã®çµ¶å¯Ÿå€èªä¹ã§äžãããããäŸãã°sz=1ãšãªã確çP(sz=1)ã¯
P ( s z = 1 ) = | ( | s z = 1 > , | α > ) | 2 = | α 0 | 2 {\displaystyle P(sz=1)=|(|sz=1>,|\alpha >)|^{2}=|\alpha _{0}|^{2}}
åæ§ã«ãsx=1ã«ãªã確çP(sx=1)ã¯
P ( s x = 1 ) = | ( | s x = 1 > , | α > ) | 2 = | α 0 + α 1 2 | 2 {\displaystyle P(sx=1)=|(|sx=1>,|\alpha >)|^{2}=|{\frac {\alpha _{0}+\alpha _{1}}{2}}|^{2}}
ç¹ã«åã®äŸãšããŠåãäžãããã¹ãã³ãxæ¹åãåããŠããå Žåã«szã枬å®ããçµæã¯ã
P ( s z = 1 ) = | ( | s z = 1 > , | s x = 1 > ) | 2 = | 2 â 1 / 2 | 2 = 1 2 {\displaystyle P(sz=1)=|(|sz=1>,|sx=1>)|^{2}=|2^{-1/2}|^{2}={\frac {1}{2}}}
ãšãªããå®éšçµæãšãã確çãäžããããã
ããã«ãå®éšäŸãšããŠåãäžãããzæ¹åãåããé»åã¹ãã³ã® u â {\displaystyle {\vec {u}}} æ¹åã®æå s â â
u â {\displaystyle {\vec {s}}\cdot {\vec {u}}} ã枬ããå Žåã®çµæãèšç®ããŠã¿ããæ³åãã
P ( s â â
u â = 1 ) = | ( | s z = 1 > , | s â â
u â = 1 > ) | 2 {\displaystyle P({\vec {s}}\cdot {\vec {u}}=1)=|(|sz=1>,|{\vec {s}}\cdot {\vec {u}}=1>)|^{2}}
åé¡ã¯ | s â â
u â = 1 > {\displaystyle |{\vec {s}}\cdot {\vec {u}}=1>} ã ãã u â {\displaystyle {\vec {u}}} ã®æåãç座æšã§ã®æ¹å Ξ , Ï {\displaystyle \theta ,\phi } ã䜿ã ( sin Ξ cos Ï , sin Ξ sin Ï , cos Ξ ) {\displaystyle (\sin \theta \cos \phi ,\sin \theta \sin \phi ,\cos \theta )} ãšè¡šããš
s â â
u â = u x X + u y Y + u z Z = ( u z u x â i u y u x + i u y â u z ) = ( cos Ξ e â i Ï sin Ξ e i Ï sin Ξ â cos Ξ ) {\displaystyle {\vec {s}}\cdot {\vec {u}}=u_{x}X+u_{y}Y+u_{z}Z={\begin{pmatrix}u_{z}&u_{x}-iu_{y}\\u_{x}+iu_{y}&-u_{z}\end{pmatrix}}={\begin{pmatrix}\cos \theta &e^{-i\phi }\sin \theta \\e^{i\phi }\sin \theta &-\cos \theta \end{pmatrix}}}
ãã®åºæå€1ã®åºæãã¯ãã«(ã§èŠæ ŒåãããŠãããã®)㯠( cos Ξ 2 e i Ï sin Ξ 2 ) {\displaystyle {\begin{pmatrix}\cos {\frac {\theta }{2}}\\e^{i^{\phi }}\sin {\frac {\theta }{2}}\end{pmatrix}}}
ããã䜿ããšæ¬¡ãåŸãããå®éšçµæããã¡ããšåçŸããèšç®çµæãšãªãã
P ( s â â
u â = 1 ) = | ( | s z = 1 > , | s â â
u â = 1 > ) | 2 = cos 2 Ξ 2 {\displaystyle P({\vec {s}}\cdot {\vec {u}}=1)=|(|sz=1>,|{\vec {s}}\cdot {\vec {u}}=1>)|^{2}=\cos ^{2}{\frac {\theta }{2}}}
ãããŸã§ç¶æ
ã®æ°åŠçãªèšè¿°ãšæž¬å®ã®é¢ä¿ãæžããã次ã¯ç¶æ
ã®éåæ³åã§ãããç°¡åãªäŸãšããŠã¹ãã³ã«äžæ§ãªç£å Žããããå Žåãèããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "çµæ¶ãæãç©è³ªã®å
éšãšãã«ã®ãŒããã³ç±å®¹éãæ±ããããè°è«ãç°¡åã«ãããããçµæ¶æ§é ã®åäœã§ããåäœè 1 ã€ããšããããã 1 ã€ã®ååãšèŠãªãããã®ãããªåãæ±ãã¯çµæ¶ã®å
·äœçæ§é ã«ãããªãæ®éçãªæ§è³ªãè°è«ããäžã§éèŠã§ãããçµæ¶ãæ§æããååã¯äºãã«çžäºäœçšããããæãäž»èŠãªå¹æãåãŒãã®ã¯æè¿æ¥æ Œåç¹äžã®ååã§ãããããé è·é¢ã«ããååå士ã®çžäºäœçšã¯ãããã®éã«ååšããååå士ã®çžäºäœçšãšããŠå«ããããšãã§ããããããŸã§ã§æ±ãã¹ãåé¡ã¯ããªãç°¡çŽ ã«ãªã£ãããçµæ¶ååã®éåãããã»ã©æ¿ãããã®ã§ãªãå Žåã«ã¯(æ°äœååéåè«ã®èããæŽçšããã°ããã®ç¶æ³ã¯çµæ¶å
éšã®æž©åºŠã極ããŠäœãããšã«çžåœãã)ãåååã¯åºå®ããã平衡ç¹è¿åãæ¯åããŠãããšèŠãªãããšãã§ããããã®å Žåãåå 1 〠1 ã€ã®éåã¯ç¬ç«ãªãã®ãšããŠåãæ±ãããšãã§ãã平衡ç¹è¿åã§éåããåå 1 åã®åšãã®ããã³ã·ã£ã«ãšãã«ã®ãŒã¯ U {\\displaystyle U} ã¯ããã®å¹³è¡¡ç¹ãåç¹ãšããŠä»¥äžã®ããã«è¡šãããšãã§ããã",
"title": "å€å
žããã³éåçµ±èšååŠ"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ååã®åšãã®ããã³ã·ã£ã«ã¯ x , y , z {\\displaystyle x,y,z} ã® 3 æåã«å¯Ÿå¿ãã 3 ã€ã®èªç±åºŠãæã£ãŠããã ãŸãååã®éåãšãã«ã®ãŒ K {\\displaystyle K} ã¯",
"title": "å€å
žããã³éåçµ±èšååŠ"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ãšãªã£ãŠ v x , v y , v z {\\displaystyle v_{x},v_{y},v_{z}} ã® 3 ã€ã®é床æåã«å¯Ÿå¿ãã 3 ã€ã®èªç±åºŠãæã£ãŠããããããã®éåãšãã«ã®ãŒãšããã³ã·ã£ã«ãšãã«ã®ãŒã®åã¯ä»ãç±æ¯åãããåå 1 åãæã€å
šãšãã«ã®ãŒã«å¯Ÿå¿ããååã®ãšãã«ã®ãŒã®èªç±åºŠã¯åãã㊠6 ãšæ°ããããšãã§ããããªããªããã®ãšãã«ã®ãŒã¯ 3 次å
空éäžãéåããç²åã®äœçœ®ãšé床㮠6 ã€ã®ç¬ç«å€æ° x , y , z , v x , v y , v z {\\displaystyle x,y,z,v_{x},v_{y},v_{z}} ã«ãã£ãŠæ±ºå®ãããããã§ããã",
"title": "å€å
žããã³éåçµ±èšååŠ"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "å€å
žçãªçµ±èšååŠã«ãããŠã平衡ç¶æ
ã§ã¯ãšãã«ã®ãŒçåé
ã®æ³åãæãç«ã€ããšãããç¬ç«ã«æ¯åããçµæ¶ååãããªãç³»ã«ã€ããŠãèªç±åºŠ 1 ã€ã«ã€ã k T / 2 {\\displaystyle kT/2} ã®ãšãã«ã®ãŒãåé
ãããç³»å
šäœã®ãšãã«ã®ãŒ E {\\displaystyle E} ãšã®éã«",
"title": "å€å
žããã³éåçµ±èšååŠ"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ãšããé¢ä¿ãæãç«ã€ããã㧠N {\\displaystyle N} ã¯çµæ¶å
éšã«å«ãŸããçµæ¶ååã®æ°ã§ããããŸã k â 1.38 à 10 â 23 [ J / K ] {\\displaystyle k\\simeq 1.38\\times 10^{-23}~\\mathrm {[J/K]} } ã¯ãã«ããã³å®æ°ã T {\\displaystyle T} ã¯ç±ååŠæž©åºŠã§ãã(以äžã枩床ãšã¯ç±ååŠæž©åºŠã®ããšãæããšãã)ããã«ããã³å®æ° k {\\displaystyle k} ãšã¢ãŽã©ã¬ããå®æ° N A {\\displaystyle N_{\\mathrm {A} }} ã®ç©ã¯æ°äœå®æ° R {\\displaystyle R} ãäžããã",
"title": "å€å
žããã³éåçµ±èšååŠ"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "çµæ¶ååã®åæ° N {\\displaystyle N} ãã¢ãŽã©ã¬ããå®æ°ãçšããŠç©è³ªé n = N / N A {\\displaystyle n=N/N_{\\mathrm {A} }} ã«çœ®ãæããã°ãäžè¿°ã®é¢ä¿ã¯æ°äœå®æ°ã䜿ã£ãŠä»¥äžã®ããã«æžãçŽãããšãã§ããã",
"title": "å€å
žããã³éåçµ±èšååŠ"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "æ°äœå®æ°ãçšãã圢åŒã§ã¯ååæ°ãçŸããã代ããã«ç©è³ªéãšããéãå®çŸ©ãããããšã«æ³šæãããããã«ããã³å®æ°ãåºæ¬å®æ°ãšããç«å Žã§ã¯åãªã眮ãæãã«éããªãããæ°äœå®æ°ãåºæ¬å®æ°ãšããå Žåããã«ããã³å®æ°ãçšãã圢åŒãäžããã«ã¯ååã®ååšããããããŸã«èªããå¿
èŠãããã",
"title": "å€å
žããã³éåçµ±èšååŠ"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "çµæ¶ã®1ã¢ã«åœããã®ç±å®¹é C {\\displaystyle C} ã¯ã枩床å€åã«å¯Ÿãããšãã«ã®ãŒã®å¢æžã®å²åãå
šäœã®ç©è³ªéã§å²ã£ããã®ã«çžåœããããã",
"title": "å€å
žããã³éåçµ±èšååŠ"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "ãšãªããããã¯åžžæž© ( T ⌠300 [ K ] {\\displaystyle T\\sim 300~\\mathrm {[K]} } ) ã§ã®çµæ¶ã®æ¯ç±ã®æž¬å®å€ã«äžèŽããããã®æ¯ç±ã¯æž©åºŠäŸåæ§ããªããåžžæž©ã®åºäœã®ã¢ã«æ¯ç±ãã»ãšãã©äžå®ã§ããããšã瀺ããåºäœã®ã¢ã«æ¯ç±ãåžžæž©ã§äžå®ã®å€ãåããšããæ³åã¯ãã¥ãã³=ããã£ã®æ³å (Dulong-Petit law) ãšåŒã°ããããã¥ãã³ãšããã£ã¯ãã®æ³åãå€ãã®ç©è³ªã«ã€ããŠè¯ã粟床ã§æãç«ã€ããšãå®éšçã«çºèŠãã人ç©ã§ããã",
"title": "å€å
žããã³éåçµ±èšååŠ"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "ãã¥ãã³=ããã£ã®æ³åãæãç«ã€ãããªç³»ã«ã€ããŠãåžžæž©ããé¥ãã«äœæž©ã®é åã«ãããŠãæ¯ç±ãäžå®ã§ããããšãäºæ³ãããããå®éšã«ããäœæž©é åã§ã¯æ¯ç±ã¯ 0 ã«åæããããšã瀺åããçµæãåŸãããŠãããäœæž©é åã§ã®æ¯ç±ã®æž©åºŠäŸåæ§ããã³æ¯ç±ã®å€ã¯ãã¥ãã³=ããã£ã®æ³åããå€ããããšãç¥ãããŠããã",
"title": "å€å
žããã³éåçµ±èšååŠ"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "ä»®ã«æ¯åæ°ã Îœ {\\displaystyle \\nu } ã®èª¿åæ¯ååã®ãšãã«ã®ãŒã¯ h Îœ {\\displaystyle h\\nu } ã®æŽæ°å n h Îœ {\\displaystyle nh\\nu } ããåããªããšãã(ãã ã n {\\displaystyle n} ã¯è² ã§ãªããšãã)ãçµæ¶å
éšã® N {\\displaystyle N} åã®ååãããããæ¯åæ° Îœ {\\displaystyle \\nu } ã®èª¿åæ¯ååãšèŠãªããããšãä»®å®ããå
šéšã§ 3 N {\\displaystyle 3N} ã®èªç±åºŠãæ〠1 次å
調åæ¯ååã®éãŸããšããã",
"title": "å€å
žããã³éåçµ±èšååŠ"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "ãããããšãæç±çæ³æ°äœã§ãåååã®ãšãã«ã®ãŒãè¡çªãªã©ã«ããå€åããããã«(æ°äœå
šäœã®å
šãšãã«ã®ãŒã¯äžå®)ãåºäœã®åæ¯ååã®ãšãã«ã®ãŒã 0 , h Îœ , 2 h Îœ , 3 h Îœ , ... {\\displaystyle 0,h\\nu ,2h\\nu ,3h\\nu ,\\dots } ãšããé£ã³é£ã³ã®å€ã移ãå€ãã£ãŠãããšããã ãã㊠3 N {\\displaystyle 3N} åã®æ¯ååã®ãšãã«ã®ãŒã®å¹³åå€ã¯ãä»®ã«äžèšã®ããã«ããã«ããã³å åã䜿ã£ãŠèšç®ã§ããã¯ããã ãšä»®å®ãã(â» ãã«ããã³å åã«ã€ããŠåãããªããã°ãèšäºãé«çåŠæ ¡ååŠII/ååŠåå¿ã®éããã®åå¿é床è«ã§ã®èª¬æ(é«æ ¡~倧åŠåçŽã¬ãã«)ããŸãã¯èšäºãçµ±èšååŠI ãã¯ãã«ããã«ã«éåãã®ã¹ã¿ãŒãªã³ã°ã®å
¬åŒãçšããçµ±èšååŠã¢ãã«ã«ãã説æ(倧åŠäžçŽ~)ãåç
§ãçµ±èšååŠçã«ã¯ä»ã«ããã©ã°ã©ã³ãžã¥ã®æªå®ä¹æ°æ³ãçšããŠãã«ããã³å åã®å°å
¥ãè¡ãæ¹æ³ããã)ã",
"title": "å€å
žããã³éåçµ±èšååŠ"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "1åã®æ¯ååããšãã«ã®ãŒ ε n = n h Îœ {\\displaystyle \\varepsilon _{n}=nh\\nu } ããšã確çã Pr ( n ) {\\displaystyle \\operatorname {Pr} (n)} ãšãããã®ç¢ºçããã«ããã³å åã«æ¯äŸãããšããã",
"title": "å€å
žããã³éåçµ±èšååŠ"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "ãã®é¢æ°ãéåžžã®æå³ã®ç¢ºçã§ããããã«ã¯ããã¹ãŠã®ãšãã«ã®ãŒç¶æ
ã«ã€ããŠã®åã 1 ã«èŠæ ŒåãããŠããå¿
èŠããããããæ¯äŸä¿æ°ã® Z {\\displaystyle Z} ã¯ã",
"title": "å€å
žããã³éåçµ±èšååŠ"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "ãšãªããªããã°ãªããªã(ãªãããã®Zã®ãããªéåçµ±èšèšç®ã®èŠæ Œåã®ããã®é¢æ°ã®ããšããåé
ä¿æ°ããŸãã¯ãç¶æ
åããšãã)ããã®ãšã確ç Pr ( n ) {\\displaystyle \\operatorname {Pr} (n)} ã¯",
"title": "å€å
žããã³éåçµ±èšååŠ"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "ãšãªã( exp ( â
) {\\displaystyle \\exp(\\cdot )} ã¯ææ°é¢æ°)ããšãã«ã®ãŒã®æåŸ
å€ âš Îµ â© {\\displaystyle \\langle \\varepsilon \\rangle } ã¯ã",
"title": "å€å
žããã³éåçµ±èšååŠ"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "ãšè¡šãããšãã§ãããããã§ãã«ããã³å®æ°ãšæž©åºŠã®ç©ã®éæ°ã β = ( k T ) â 1 {\\displaystyle \\beta =(kT)^{-1}} ãšã(ããã¯é枩床ãšåŒã°ãã)ããšãã«ã®ãŒã®æåŸ
å€ãé枩床 β {\\displaystyle \\beta } ã«é¢ãã埮åãçšããŠè¡šãã°ã",
"title": "å€å
žããã³éåçµ±èšååŠ"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "ããã",
"title": "å€å
žããã³éåçµ±èšååŠ"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "ãåŸããããã§å
·äœçã«å³èŸºã®å¯Ÿæ°ãèšç®ããã°ãçæ¯çŽæ°ã®åã®å
¬åŒãçšããŠã",
"title": "å€å
žããã³éåçµ±èšååŠ"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "ãšæžãçŽãããããçµå±ãšãã«ã®ãŒã®æåŸ
å€ã¯",
"title": "å€å
žããã³éåçµ±èšååŠ"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "ãšè¡šãããšãã§ããã",
"title": "å€å
žããã³éåçµ±èšååŠ"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "åç¯ã§åŸã調åæ¯ååã®ãšãã«ã®ãŒã®æåŸ
å€ã«ã€ããŠã調åæ¯ååã®ãšãã«ã®ãŒéå h Îœ {\\displaystyle h\\nu } ã«æããé¢æ°",
"title": "å€å
žããã³éåçµ±èšååŠ"
},
{
"paragraph_id": 22,
"tag": "p",
"text": "ããã©ã³ã¯ååžãšåŒã¶ã枩床ããšãã«ã®ãŒéåã®å€§ããã«æ¯ã¹ãŠå
åå°ããå Žåã k T ⪠h Îœ {\\displaystyle kT\\ll h\\nu } ãã 1 ⪠β h Îœ {\\displaystyle 1\\ll \\beta h\\nu } ãšããé¢ä¿ãæãç«ã¡ããã©ã³ã¯ååžã¯ã",
"title": "å€å
žããã³éåçµ±èšååŠ"
},
{
"paragraph_id": 23,
"tag": "p",
"text": "ãšãã圢ã«æŒžè¿ããã",
"title": "å€å
žããã³éåçµ±èšååŠ"
},
{
"paragraph_id": 24,
"tag": "p",
"text": "ãã®ãã©ã³ã¯ååžãå©çšããŠãçµæ¶å
éšã®æ¯ç±ãåŸãããšãèãããçµæ¶ãç¬ç«ãªèª¿åæ¯ååã®éãŸããšèŠãªãæãç°¡åãªå Žåã«ã€ããŠãçµæ¶å
šäœã®å
éšãšãã«ã®ãŒãããããã®èª¿åæ¯ååã®ãšãã«ã®ãŒæåŸ
å€ã®åã«ã»ãšãã©çããããšããã",
"title": "å€å
žããã³éåçµ±èšååŠ"
},
{
"paragraph_id": 25,
"tag": "p",
"text": "ãšè¡šãããšãã§ããããã®å Žåãçµæ¶ååã«å¯Ÿããæ¯ç±å®¹éã¯ã",
"title": "å€å
žããã³éåçµ±èšååŠ"
},
{
"paragraph_id": 26,
"tag": "p",
"text": "ãšãªãããã®æ¯ç±ã®äœæž©é åã§ã®æ¯ãèãã¯ã",
"title": "å€å
žããã³éåçµ±èšååŠ"
},
{
"paragraph_id": 27,
"tag": "p",
"text": "ã§ããã0 ãžåæãããšããç¹ã§äœæž©é åã«ãããåºäœæ¯ç±ã®æ¯ãèããšåèŽãããé«æž©é åã«ãããŠ(ããã§ããé«æž©ãšã¯èª¿åæ¯ååã®ãšãã«ã®ãŒéåã«å¯ŸããŠã§ãããåºäœã®èç¹æž©åºŠã«æ¯ã¹ãã°äŸç¶äœæž©ã§ãã)ãæ¯ç±ã¯",
"title": "å€å
žããã³éåçµ±èšååŠ"
},
{
"paragraph_id": 28,
"tag": "p",
"text": "ãšãªããé«æž©é åã®æ¯ç±ã«ã€ããŠãååæ¯ç± c {\\displaystyle c} ãå®ç©ã¢ã«æ¯ç± C {\\displaystyle C} ã«çŽããšã",
"title": "å€å
žããã³éåçµ±èšååŠ"
},
{
"paragraph_id": 29,
"tag": "p",
"text": "ãšãªããããã¯ãã¥ãã³=ããã£ã®æ³åã«äžèŽãããã€ãŸãããšãã«ã®ãŒã®éååãšããæé ãèžãããšã§äœæž©é åã®æž©åºŠäŸåæ§ãåçŸãã€ã€ãåžžæž©ã§ã¯ãã¥ãã³=ããã£ã®æ³åã«æŒžè¿ãããããªååžãåŸãããããšã«ãªãã",
"title": "å€å
žããã³éåçµ±èšååŠ"
},
{
"paragraph_id": 30,
"tag": "p",
"text": "ããããã¯ããç©ççãªå®æ°ãæã€ããšãéåååŠçã«ã©ã®ãããªæå³ãæã€ãã«ã€ããŠèãããç©ççãªå®æ°ãšã¯äŸãã°ãããç©äœã®æã€äœçœ®ãéåéã®ããšã§ãããå€å
žååŠã§ã¯ããç©äœã®ç©ççãªç¶æ
ã¯äœçœ®ãéåéãªã©ãæå®ããããšã«ãã£ãŠåŸãããšãåºæ¥ããããã®éã«ç¹å¥ãªé¢ä¿ã¯ç¡ãã£ãããããã¯ããããã®å€ãé©åœã«åã£ãŠãããéã§ãã£ãã®ã§ããã",
"title": "ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã®å°å
¥"
},
{
"paragraph_id": 31,
"tag": "p",
"text": "éåååŠçã«ãããç©äœã®ç©ççç¶æ
ãå®ããéã¯ååšããŠããããã®ãããªéãå®ããããšã§ç©äœãã©ã®ãããªç¶æ
ã«ããããæå®ããããšãåºæ¥ããåé¡ãªã®ã¯ãããå Žåã«ãããŠãããã®éã«ç¹æ®ãªé¢ä¿ãããããããããã®éãä»»æã«éžã¶ããšãåºæ¥ãªããªãããšã§ãããéèŠãªäŸãšããŠãããç©äœã®äœçœ®ãšéåéã¯åæã«å®ããããšãåºæ¥ãªãããã®ããšã¯ãå€å
žçã«ã¯äœçœ®ãšéåéã«ã€ããŠãéåéãç©äœã®äœçœ®ãåãã埮å°å€æã«é¢ããä¿åéã«ãªã£ãŠããããšã«ããããã®ããšã«ã€ããŠã¯è§£æååŠã®ããŒã¿ãŒã®å®çã詳ããã®ã§ã詳现ãç¥ããããã°åç
§ããããšããããéåååŠã«ãããŠã¯ãéåéã¯ãã£ããŠåãªã芳念äžã®éã§ã¯ãªããç©è³ªæ³¢ã®æ³¢é·ã«é¢ããå®åšçãªéã§ããããšããäºãéèŠã§ããã",
"title": "ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã®å°å
¥"
},
{
"paragraph_id": 32,
"tag": "p",
"text": "ããã§ã解æååŠã®ç¥èãæŽçšããŠãããç©äœã®æã€ãšãã«ã®ãŒEãå€å
žçã«ããã«ããã¢ã³Hãšããéã§è¡šããããããšãçšããã",
"title": "ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã®å°å
¥"
},
{
"paragraph_id": 33,
"tag": "p",
"text": "ããã§ãããç©ççãªç¶æ
ã®å
šãŠãæ°ãäžãããããšããŠãããã®ç¶æ
å
šäœã§åŒµããããã¯ãã«ãåããéåžžãããç©äœãæã€ç©ççãªç¶æ
ã¯ç¡æ°ã®ãšãã«ã®ãŒãæã¡ããã®ãããªæäœã¯äžå¯èœã«æãããå®éãã®ããšã¯éåååŠã®çºå±ã®åæã«å€§ããªæ°åŠçãªåé¡ãšãªã£ããããããçŸåšã§ã¯ãã¯ãã«ã®å
ç©ã®åãæ¹ãªã©ã工倫ããããšã§ããã®æ§ãªäœæ¥ãå®éå¯èœã§ããããšã瀺ãããŠããã詳ããã¯w:ãã«ãã«ã空éãªã©ãåç
§ã",
"title": "ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã®å°å
¥"
},
{
"paragraph_id": 34,
"tag": "p",
"text": "ãã®ããã«å
šãŠã®ç©ççç¶æ
ãæ°ãäžãããããšãããšãããããã®ç¶æ
ã¯ãããšãã«ã®ãŒãæã£ãç¶æ
ãšããŠååšãããäŸãã°ãããç¶æ
Ï 1 {\\displaystyle \\psi _{1}} ããšãã«ã®ãŒ E 1 {\\displaystyle E_{1}} ãæã£ãŠãããšãããæ°åŠçã«ã¯ãã®æ§ãªç¶æ
ã¯ããè¡å H ^ {\\displaystyle {\\hat {H}}} ãçšããŠ",
"title": "ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã®å°å
¥"
},
{
"paragraph_id": 35,
"tag": "p",
"text": "ãšè¡šããããããã§ã H ^ {\\displaystyle {\\hat {H}}} ã¯ãå
šãŠã®æ°ãäžããããç©ççãªç¶æ
ã1ã€ã®åºåºãšããŠæã€ãããªè¡åãšããŠèããããŠãããæŽã« H ^ {\\displaystyle {\\hat {H}}} ã¯ãããããã®ç©ççç¶æ
ã«å¯ŸããŠå¯Ÿè§åãããŠããã",
"title": "ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã®å°å
¥"
},
{
"paragraph_id": 36,
"tag": "p",
"text": "ãªã©ã®å
šãŠã®ç©ççç¶æ
ã«å¯ŸããŠå¯Ÿå¿ãããšãã«ã®ãŒ E 1 {\\displaystyle E_{1}} , E 2 {\\displaystyle E_{2}} , E 3 {\\displaystyle E_{3}} ãªã©ãè¿ããã®ãšããã",
"title": "ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã®å°å
¥"
},
{
"paragraph_id": 37,
"tag": "p",
"text": "ãã®ãããªè¡å H ^ {\\displaystyle {\\hat {H}}} ã¯ãå®éã«ãããšãã«ã®ãŒãæã€ç¶æ
ãšããŠã¯ãå€å
žçãªèãæ¹ãšå€åããããšã¯ç¡ãããªããªãã H ^ {\\displaystyle {\\hat {H}}} ã¯ãå€å
žçã«èããŠããååŠç³»ã®äžã«ååšããç©äœãæã€ãšèãããããšãã«ã®ãŒå€ãå
šãŠæã£ãŠãããã®ãšèããããšãåºæ¥ãããã§ããã",
"title": "ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã®å°å
¥"
},
{
"paragraph_id": 38,
"tag": "p",
"text": "ãã®ãããä»®ã«å
šãŠã®éåçç¶æ
ããšãã«ã®ãŒãšããéã ãã§ç¹å®ãããã®ãªãã°ãããååŠç³»ãåãåŸããšãã«ã®ãŒãå
šãŠå®ããããšãéåçç¶æ
ãå
šãŠæ±ããããšã«ãªãããããŸã§ã®è°è«ãããæ°åŠçãªçšèªãçšããŠãŸãšãããšãåºãŠæ¥ãé㧠H ^ {\\displaystyle {\\hat {H}}} ã¯å
šãŠã®ç©ççãªç¶æ
ã«ãã£ãŠåŒµãããè¡åã§ããç©ççãªç¶æ
ãè¡šãã Ï {\\displaystyle \\psi } ã¯ã H ^ {\\displaystyle {\\hat {H}}} ããããããšã«ãã£ãŠEåããããããªãã¯ãã«ã§ããã®ã§ã H ^ {\\displaystyle {\\hat {H}}} ã®åºæãã¯ãã«ã§ãããšèããããããã®ãšããšãã«ã®ãŒEã¯ãåºæå€æ¹çšåŒ",
"title": "ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã®å°å
¥"
},
{
"paragraph_id": 39,
"tag": "p",
"text": "ã®åºæå€ã§ããã",
"title": "ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã®å°å
¥"
},
{
"paragraph_id": 40,
"tag": "p",
"text": "ãããŸã§ã®ããšã§ãããããã®éåçç¶æ
ã¯ãšãã«ã®ãŒãšãããã 1ã€ã®éã§å®å
šã«åºå¥ãããããšãä»®å®ããŠæ¥ããå®éã«ã¯ãã®ããšã¯å¿
ãããæ£ãããªãããã2ã€ã®éåçç¶æ
ãçãããšãã«ã®ãŒãæã£ãŠããããšãããããã®æã«ã¯ãåã
ã®éåçç¶æ
ã¯äºãã«åºå¥ããããšãåºæ¥ãªããããããããç¶æ
ãæã£ãŠããéåæ°ã¯éåžžãšãã«ã®ãŒã ãã¯ãªããäœçœ®ãéåéãè§éåéãªã©ãå«ãŸããŠããããã®ãããªéãçšããŠãããã®éãåºå¥ããããšãåºæ¥ãããã®ãšãããšãã«ã®ãŒã®å Žåãšåæ§äœçœ®xãéåépãªã©ãéåçç¶æ
ã«ãã£ãŠåŒµããããè¡åãã®ãããªç©ãšãªãããšãäºæ³ããã(ãäœçšçŽ ããšããã)ãããã§ã¯ãããããã®è¡åã«ã€ã㊠x ^ {\\displaystyle {\\hat {x}}} , p ^ {\\displaystyle {\\hat {p}}} ãªã©ãçšããŠè¡åãšããã§ãªãéãåºå¥ããã",
"title": "ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã®å°å
¥"
},
{
"paragraph_id": 41,
"tag": "p",
"text": "(*泚æ è¡åã§ããããéãq-numberãè¡åã§ããããªãéãc-numberãšåŒã¶ããšããã)",
"title": "ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã®å°å
¥"
},
{
"paragraph_id": 42,
"tag": "p",
"text": "ãããŸã§ã§äœçœ®xãšéåépãè¡åã§ããããããšãåãã£ãã",
"title": "ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã®å°å
¥"
},
{
"paragraph_id": 43,
"tag": "p",
"text": "ããã§ã以åã®äž»åŒµã§ãããéåè«ã§ããç©äœã®äœçœ®ãšéåéãåæã«å®ããããšãåºæ¥ãªããšããããšãçšããããšãã«ã®ãŒã®æã«ã¯ãç©äœã®ç©çéãå®ããããšã¯å¯Ÿå¿ããç©çéãè¡šããè¡åã察è§åã§ããããšã«å¯Ÿå¿ããŠããããã®ããšãçšãããšãç©äœã®2ã€ã®ç©çéãåæã«å®ããããªããšãã䞻匵ã¯å¯Ÿå¿ãã2ã€ã®ç©çéãåæã«å¯Ÿè§åãããããªåºåºã®åŒµãæ¿ãæ¹ãååšããªãããšã«å¯Ÿå¿ãããå®éã«æ°åŠçãªèšç®ãããããšã§",
"title": "ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã®å°å
¥"
},
{
"paragraph_id": 44,
"tag": "p",
"text": "ãæºãã2ã€ã®è¡åA,Bã«ã€ããŠã¯ããããåæã«å¯Ÿè§åãããããªåºåºãåããããšãç¥ãããããã®ããšã¯äœçœ®ãšéåéãè¡šããè¡åã«ã€ããŠ",
"title": "ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã®å°å
¥"
},
{
"paragraph_id": 45,
"tag": "p",
"text": "ãæãç«ã€ããšã瀺ããŠãããããã§ããã®çµæããŸãšããããã«ããã2ã€ã®è¡åA,Bã«å¯ŸããŠãããã®äº€æå [ A , B ] {\\displaystyle [A,B]} ãã",
"title": "ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã®å°å
¥"
},
{
"paragraph_id": 46,
"tag": "p",
"text": "ã§å®çŸ©ãããæ§è³ª",
"title": "ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã®å°å
¥"
},
{
"paragraph_id": 47,
"tag": "p",
"text": "ã«æ³šæããã®ãšãããã®èšå·ãçšãããšäœçœ®ãšéåéã«é¢ããŠ",
"title": "ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã®å°å
¥"
},
{
"paragraph_id": 48,
"tag": "p",
"text": "ãæãç«ã€ãå®éã«ã¯å®éšçã«ã x ^ {\\displaystyle {\\hat {x}}} ãš p ^ {\\displaystyle {\\hat {p}}} ã®äº€æåã«é¢ããŠ",
"title": "ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã®å°å
¥"
},
{
"paragraph_id": 49,
"tag": "p",
"text": "ãæãç«ã€ããšãç¥ãããŠãããããã§ã ħ {\\displaystyle \\hbar } ã¯ãw:ãã©ã³ã¯å®æ°ãšåŒã°ãåäœã¯ [ J â
s ] {\\displaystyle [J\\cdot s]} ã§äžãããããããã§ãã©ã³ã¯å®æ°ã¯ããããŠå°ããæ°ã§ãããxãpãããçšåºŠå€§ããéãæã€ãããªéåã«ã€ããŠã¯äžã®æ¹çšåŒã®å³èŸºã¯0ãšçãããã®ãšããŠæ±ã£ãŠããããã®ãšãã«ã¯xãšpã¯äº€æå¯èœã§ããã2ã€ã®éãåæã«å®ããããšãåºæ¥ãããã®ããšã¯å€å
žååŠã§ã¯2ã€ã®éãåæã«å®ããããšãå¯èœã§ããããšã«å¯Ÿå¿ããŠãããäžã®ãããªx,pã®äº€æé¢ä¿ãå€å
žååŠãšããé©åããŠããããšãåããã",
"title": "ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã®å°å
¥"
},
{
"paragraph_id": 50,
"tag": "p",
"text": "ãããŸã§ã§éåçãªç¶æ
Ï {\\displaystyle \\psi } ã",
"title": "ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã®å°å
¥"
},
{
"paragraph_id": 51,
"tag": "p",
"text": "ã®åºææ¹çšåŒã§äžããããããšãåãããxãšpã«ã¯",
"title": "ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã®å°å
¥"
},
{
"paragraph_id": 52,
"tag": "p",
"text": "ã®äº€æé¢ä¿ãååšããããšãåãã£ããå®éã«ã¯xãšpã«ã€ããŠäžã®ãããªäº€æé¢ä¿ãæºãããããªè¡åãçšæããããšã¯ãã°ãã°å°é£ã§ããããã®å°é£ã«å¯Ÿå¿ãã",
"title": "ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã®å°å
¥"
},
{
"paragraph_id": 53,
"tag": "p",
"text": "æ°åŠçææ³ãšããŠããã«ãã«ã空éã®1ã€ãšããŠw:é¢æ°ç©ºéãååšããããšãããããããé¢æ°ç©ºéãšã¯ããå€æ°ã«é¢ããé¢æ°ããã¯ãã«ãšããŠåãææ³ã§ããããã®ãšãããã¯ãã«ã®åã¯é¢æ°ã®åã§è¡šãããããã¯ãã«ã®å
ç©ã¯é©åœãªç¯å²ã§ã®é¢æ°ã®ç©åãçšããã詳ããã¯w:é¢æ°ç©ºéãåç
§ã",
"title": "ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã®å°å
¥"
},
{
"paragraph_id": 54,
"tag": "p",
"text": "ãã®ãããªä»æ¹ã§è¡åãšãã¯ãã«ãåããšããåºæç¶æ
ã§ãã Ï {\\displaystyle \\psi } ã¯ããå€æ°ã®é¢æ°ãšãªããããã«ããã x ^ {\\displaystyle {\\hat {x}}} , p ^ {\\displaystyle {\\hat {p}}} , H ^ {\\displaystyle {\\hat {H}}} ãªã©ã®è¡åã¯ãã®é¢æ°ã«ããããªãã¬ãŒã¿ãŒãšããŠè¡šããããããªãã¬ãŒã¿ãŒã®åãæ¹ã¯å
ã®é¢æ°ã«ããé¢æ°ããããããå
ã®é¢æ°ã埮åããããšæ§ã
ã ããäžã®äº€æé¢ä¿ãæºãããããªæ¹æ³ã¯ãäŸãã°ãxã«ã€ããŠ",
"title": "ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã®å°å
¥"
},
{
"paragraph_id": 55,
"tag": "p",
"text": "ã®ããç®ã察å¿ãããpã«å¯ŸããŠã",
"title": "ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã®å°å
¥"
},
{
"paragraph_id": 56,
"tag": "p",
"text": "ã察å¿ãããããšãããããããäžæ¹ã pã«ã€ããŠ",
"title": "ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã®å°å
¥"
},
{
"paragraph_id": 57,
"tag": "p",
"text": "ã®ããç®ã察å¿ãããxã«å¯ŸããŠã",
"title": "ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã®å°å
¥"
},
{
"paragraph_id": 58,
"tag": "p",
"text": "ãšããŠãåæ§ã®çµæãåŸãããããšãç¥ãããŠãããxãšpãäºãã«å
¥ãæãå¯èœã§ãããšãã解æååŠã®çµæã«é©åããŠããã",
"title": "ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã®å°å
¥"
},
{
"paragraph_id": 59,
"tag": "p",
"text": "ä»®ã«èªç±ã«åã質émã®ç²åãèãããšã",
"title": "ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã®å°å
¥"
},
{
"paragraph_id": 60,
"tag": "p",
"text": "ã«å¯ŸããŠ",
"title": "ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã®å°å
¥"
},
{
"paragraph_id": 61,
"tag": "p",
"text": "ã察å¿ããããšãåããããã®ãšãäžã®åºææ¹çšåŒã¯",
"title": "ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã®å°å
¥"
},
{
"paragraph_id": 62,
"tag": "p",
"text": "ãšãªã Ï ( x ) {\\displaystyle \\psi (x)} ã«é¢ãã2é埮åæ¹çšåŒã«ãªããããã§ããEã®ããã«æªç¥æ°ãå«ãŸããŠãã圢ã®åŸ®åæ¹çšåŒãç¹ã«åºæé¢æ°æ¹çšåŒãšåŒã¶ããšãããã",
"title": "ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã®å°å
¥"
},
{
"paragraph_id": 63,
"tag": "p",
"text": "ãããŸã§ã§ãéåçãªç¶æ
ãèšç®ããææ³ã1ã€åŸãããããŸããããå€å
žçãªããã«ããã¢ã³ãéžã³ãããã«å¯ŸããŠ",
"title": "ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã®å°å
¥"
},
{
"paragraph_id": 64,
"tag": "p",
"text": "ã®çœ®ãæãããããããã«ã€ããŠ",
"title": "ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã®å°å
¥"
},
{
"paragraph_id": 65,
"tag": "p",
"text": "ã®åŸ®åæ¹çšåŒã解ãã察å¿ãã埮åæ¹çšåŒã解ãããšã§ãéåçç¶æ
ãèšç®ãããã",
"title": "ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã®å°å
¥"
},
{
"paragraph_id": 66,
"tag": "p",
"text": "ããã§ãæåŸã®åºæå€æ¹çšåŒãæéã«äŸåããªãã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒ (time-independent Schrödinger equation) ãšåŒã¶ãåŸã«éåååŠã«ãããæéçºå±ã®æ¹çšåŒãæ±ããããã®å称ã¯ãããšæ¯èŒããŠã®ããšã§ããã",
"title": "ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã®å°å
¥"
},
{
"paragraph_id": 67,
"tag": "p",
"text": "1次å
ã®ç³»ã§è³ªémã®ç©äœãã 0 < x < a {\\displaystyle 0<x<a} ã§ã",
"title": "ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã®å°å
¥"
},
{
"paragraph_id": 68,
"tag": "p",
"text": "ãæºããã x < 0 {\\displaystyle x<0} , a < x {\\displaystyle a<x} ã§ã",
"title": "ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã®å°å
¥"
},
{
"paragraph_id": 69,
"tag": "p",
"text": "ãæºãããšããããã®ãšãã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã解ããŠããã®ç³»ã«å¯Ÿããæ³¢åé¢æ°ãæ±ããã",
"title": "ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã®å°å
¥"
},
{
"paragraph_id": 70,
"tag": "p",
"text": "åŸã«æ³¢åé¢æ°ã0ã§ç¡ãå°ç¹ã§ã¯ãç©äœãèŠã€ããå¯èœæ§ãããããšã解説ããã ããã§ã",
"title": "ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã®å°å
¥"
},
{
"paragraph_id": 71,
"tag": "p",
"text": "ã®å°ç¹ã§ç²åãèŠã€ãã£ãŠããŸããšããã®å°ç¹ã§ç²åã¯ç¡éã«å€§ãããšãã«ã®ãŒãæã£ãŠããããšã«ãªã£ãŠããŸãããç¡éã®ãšãã«ã®ãŒãšãããããªããšã¯èãã¥ããã®ã§ãããã§ã¯ã x < 0 {\\displaystyle x<0} , a < x {\\displaystyle a<x} ã§æ³¢åé¢æ° Ï {\\displaystyle \\psi } ã¯ã0ãšãªãããšã«ããããŸããéåè«ã§ããçšããããé¢æ°ç©ºéã®èŠè«ã«ãããæ³¢åé¢æ°ã¯é£ç¶ã§ããããšãå¿
èŠãšãªãããã®ããã",
"title": "ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã®å°å
¥"
},
{
"paragraph_id": 72,
"tag": "p",
"text": "ãå¿
èŠãšãªããããŠããã®ãšãã®ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã¯ 0 < x < a {\\displaystyle 0<x<a} ã§ã V(x)=0ããã",
"title": "ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã®å°å
¥"
},
{
"paragraph_id": 73,
"tag": "p",
"text": "ãšãªãããšãåãããããããæºãã Ï ( x ) {\\displaystyle \\psi (x)} ã¯",
"title": "ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã®å°å
¥"
},
{
"paragraph_id": 74,
"tag": "p",
"text": "ã§äžããããããšãåããããã ããA,Bã¯ä»»æã®å®æ°ã§ããã",
"title": "ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã®å°å
¥"
},
{
"paragraph_id": 75,
"tag": "p",
"text": "ãšãããæŽã«ã",
"title": "ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã®å°å
¥"
},
{
"paragraph_id": 76,
"tag": "p",
"text": "ãçšãããšã",
"title": "ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã®å°å
¥"
},
{
"paragraph_id": 77,
"tag": "p",
"text": "ããB = 0ãåããã",
"title": "ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã®å°å
¥"
},
{
"paragraph_id": 78,
"tag": "p",
"text": "ãããnãä»»æã®æŽæ°ãšããŠã",
"title": "ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã®å°å
¥"
},
{
"paragraph_id": 79,
"tag": "p",
"text": "ãåŸãããããã£ãŠãããããã®æŽæ°nã«å¯ŸããŠæ³¢åé¢æ° Ï n ( x ) {\\displaystyle \\psi _{n}(x)} ã¯",
"title": "ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã®å°å
¥"
},
{
"paragraph_id": 80,
"tag": "p",
"text": "ã§äžããããããã ãã",
"title": "ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã®å°å
¥"
},
{
"paragraph_id": 81,
"tag": "p",
"text": "ã§ããããŸããäžã§æ³¢åé¢æ°ã®åã®ä»»æå®æ°ããã®ãŸãŸã«ããããããã¯é¢æ°ç©ºéã§ã¯é¢æ°ãã®ãã®ããã¯ãã«ã§ãããããã®å®æ°åã¯ãã¯ãã«ã®æ§è³ªãå€ããªãããšãããã®ãŸãŸã«æ®ãããã®ã§ããããã ããåŸã«åããéããæ³¢åé¢æ°ã®èŠæ Œåãèãããšããã®å®æ°ã¯1éãã«æ±ºãŸãããšã瀺ãããã",
"title": "ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã®å°å
¥"
},
{
"paragraph_id": 82,
"tag": "p",
"text": "æŽã«ããã®ç³»ã«ãããŠç²åãæã€ããšãåºæ¥ããšãã«ã®ãŒ E n {\\displaystyle E_{n}} ãã",
"title": "ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã®å°å
¥"
},
{
"paragraph_id": 83,
"tag": "p",
"text": "ã解ãããšã§åŸãããšãåºæ¥ããçãã¯ã",
"title": "ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã®å°å
¥"
},
{
"paragraph_id": 84,
"tag": "p",
"text": "ãšãªããããæŽæ°nã«å¯ŸããŠ",
"title": "ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã®å°å
¥"
},
{
"paragraph_id": 85,
"tag": "p",
"text": "ã«æ¯äŸãããšãã«ã®ãŒãæã€ããã«ãªãããã®ããã«éåçãªç³»ãåãåŸããšãã«ã®ãŒã®ããšããšãã«ã®ãŒæºäœãšåŒã¶ããšãããã",
"title": "ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã®å°å
¥"
},
{
"paragraph_id": 86,
"tag": "p",
"text": "äžã§æ³¢åé¢æ°ãèšç®ããæ¹æ³ãåŸããããã§ã¯ãæ³¢åé¢æ°ã®æ§è³ªã«ã€ããŠèãããäžã§ã¯ããéåè«çãªç¶æ
ããã¯ãã«ãšèŠãŠãããéåååŠã®æŒç®åããããã«ãã£ãŠåŒµãããè¡åãšããŠæ±ã£ããããã§ã¯äžè¬çã«ããéåè«çãªç¶æ
ãããããã代衚ããéåè«çãªéiãçšããŠ",
"title": "æ³¢åé¢æ°ã®æ§è³ª"
},
{
"paragraph_id": 87,
"tag": "p",
"text": "ãšæžããåŸã«è¿°ã¹ãããéãããã®èšæ³ã¯ãã©ã±ããèšæ³ãšåŒã°ããå
ã¯w:ãã£ã©ãã¯ã«ãããã®ã§ãããããã§ãéåè«çãªç¶æ
ãå®ããiã®ãããªéããã®ç¶æ
ã®éåæ°ãšåŒã¶ãäŸãã°ãç¡é倧ã®ããã³ã·ã£ã«ã«ãã£ãŠæçžãããŠããç²åã§ã¯æŽæ°nãéåæ° ãšãªã£ãŠãããäžè¬ã«ã¯éåæ°ã¯æŽæ°ã®ãããªé¢æ£çãªéã§ããå Žåãä»»æã®å®æ°ã§äžããããé£ç¶çãªéã§ããããšãããã",
"title": "æ³¢åé¢æ°ã®æ§è³ª"
},
{
"paragraph_id": 88,
"tag": "p",
"text": "ããã§ãããç¶æ
| i > {\\displaystyle |i>} ãšããããšç°ãªãç¶æ
| j > {\\displaystyle |j>} ãåãããã ãããããã®ç¶æ
ã¯ããã«ããã¢ã³æŒç®åã®ãäºãã«ç°ãªã£ãåºæå€ãæã€åºæãã¯ãã«ã§ãããšãããããã§ãããã«ããã¢ã³ã®åºæå€ã¯å¿
ãå®æ°ã§ãªããã°ãªããªãããšãåããããªããªããããã§ãªããšãã«ã¯ãšãã«ã®ãŒãèæ°ã«ãªããããªéåè«çç¶æ
ãååšããããšã«ãªã£ãŠããŸãããã§ãããäžè¬ã«ãè€çŽ æ°ã®è¡åèŠçŽ ãæã£ãŠãããããããã®åºæå€ãå®æ°ã«ãªãè¡åã®çš®é¡ãšããŠããšã«ããŒãè¡åãããããã(ãšã«ããŒãè¡åã«ã€ããŠã¯ç©çæ°åŠIãåç
§)ãããã§ã¯ãããã«ããã¢ã³ã¯ãšã«ããŒãè¡åã§äžãããããã®ãšãããäžè¬ã«éåè«ã®æŒç®åã¯éåžžãšã«ããŒãæŒç®åã§ããã",
"title": "æ³¢åé¢æ°ã®æ§è³ª"
},
{
"paragraph_id": 89,
"tag": "p",
"text": "æŽã«ããããšã«ããŒãè¡åã«å¯ŸããŠãã®è¡åã¯å¿
ã察è§åããããã®åºæãã¯ãã«ã¯äºãã«çŽäº€ããããšãç¥ãããŠããããã®çµæãçšãããšããšã«ããŒãæŒç®åã§ããããã«ããã¢ã³ã®åºæãã¯ãã«ã§ãã | i > {\\displaystyle |i>} ãš | j > {\\displaystyle |j>} ã¯ãäºãã«çŽäº€ããããšãç¥ããããæŽã«ãããããã®ç¶æ
ã®é·ããé©åã«å€æŽããããšã§ãä»»æã®ç¶æ
| i > {\\displaystyle |i>} , | j > {\\displaystyle |j>} ã«ã€ããŠãããã®å
ç©ã ÎŽ i j {\\displaystyle \\delta _{ij}} ãšããããšãåºæ¥ãã ÎŽ i j {\\displaystyle \\delta _{ij}} ã«ã€ããŠã¯ãç©çæ°åŠIãåç
§ãããã§ãç¶æ
ã®é·ãã調æŽããããšãéåç¶æ
ã®èŠæ ŒåãšåŒã¶ããã ããæ
£ç¿çã«ç¶æ
| i > {\\displaystyle |i>} , | j > {\\displaystyle |j>} ã®å
ç©ã¯ < i | j > {\\displaystyle <i|j>} ã®ããã«æžãããšãå€ãããã®èšæ³ãçšãããšãä»»æã® | i > {\\displaystyle |i>} , | j > {\\displaystyle |j>} ã«å¯ŸããŠã",
"title": "æ³¢åé¢æ°ã®æ§è³ª"
},
{
"paragraph_id": 90,
"tag": "p",
"text": "ãæãç«ã€ãããã§ãããç¶æ
| i > {\\displaystyle |i>} ãšããã«å¯Ÿå¿ããæ³¢åé¢æ°f(x)ã®é¢ä¿ãã",
"title": "æ³¢åé¢æ°ã®æ§è³ª"
},
{
"paragraph_id": 91,
"tag": "p",
"text": "ã§åããããã§ã | x > {\\displaystyle |x>} ã¯å¯Ÿå¿ããç²åãã¡ããã©xã§è¡šããããç¹ã«ããç¶æ
ã§ããããã®èšæ³ã¯ãé¢æ°ç©ºéã®å
ç©ã®å®çŸ©ãšãäžã§è¿°ã¹ãéåè«çç¶æ
ã®å
ç©ã®å®çŸ©ãæŽåçã«ããããšãåããããã®ããšãè¿°ã¹ãããã«ãŸããé¢æ°ç©ºéã®å
ç©ã«ã€ããŠèª¬æãããããã§ã¯ãäžè¬çã«æ³¢åé¢æ°ãããè€çŽ é¢æ°ã§ãããšããŠèãããé¢æ°ç©ºéã®æ§è³ªã«ãããšããå
f(x),g(x)ãé¢æ°ç©ºéã®å
ãšãããšããããç©å â« {\\displaystyle \\int } ãååšããŠã",
"title": "æ³¢åé¢æ°ã®æ§è³ª"
},
{
"paragraph_id": 92,
"tag": "p",
"text": "ãå
f(x),g(x)ã®å
ç©ãšåŒã¶ãããã§ãxã«ã€ããŠã®ç©åã®ç¯å²ã¯ã â â < x < â {\\displaystyle -\\infty <x<\\infty } ãšããããã ããç¡é倧ã®ããã³ã·ã£ã«ãããå Žåã®ããã«ãæ³¢åé¢æ°ã0ãšãªãç¯å²ã«ã€ããŠã¯ç©åããªããŠãããããã®ãšãã«ã¯ç©åç¯å²ã¯ããçãç¯å²ã«ãªãã®ã§ãããããã§ãäžã®èšæ³ãçšãããš",
"title": "æ³¢åé¢æ°ã®æ§è³ª"
},
{
"paragraph_id": 93,
"tag": "p",
"text": "ãšãªããããã§ã",
"title": "æ³¢åé¢æ°ã®æ§è³ª"
},
{
"paragraph_id": 94,
"tag": "p",
"text": "ã«ã€ããŠã¯ãŸãã < i | x >< x | j > {\\displaystyle <i|x><x|j>} ã¯ãä»»æã®xã«ã€ããŠããšããš | j > {\\displaystyle |j>} ã®ç¶æ
ã«ãã£ãç²åããxã§è¡šããããç¹ãééã㊠| i > {\\displaystyle |i>} ã®ç¶æ
ã«å€åããããšãè¡šãããŠãããããã§ãäžã§ã¯å
šãŠã®xã«ã€ããŠãã®çµæã足ãåãããŠããã®ã§ãçµå±ããã®çµæã¯ã | j > {\\displaystyle |j>} ã®ç¶æ
ã«ãã£ãç²åãã | i > {\\displaystyle |i>} ã®ç¶æ
ã«å€åããããšæ¹æ³ã®å
šãŠãã€ãããŠãããšèããã®ã§ãããäžã§åŸã",
"title": "æ³¢åé¢æ°ã®æ§è³ª"
},
{
"paragraph_id": 95,
"tag": "p",
"text": "ã®ãããªè¡šåŒã¯ãã¯ãã«ã®å®å
šæ§ãšåŒã°ãããã®ããšé »ç¹ã«ã§ãŠããæ§è³ªã§ãããç¹ã«ããšã«ããŒãæŒç®åã«å¯ŸããŠã¯å¯Ÿå¿ããåºæãã¯ãã«ãå®å
šæ§ã®èŠè«ãæºããããšãç¥ãããŠããããããšã«ããŒãæŒç®åã®åºæãã¯ãã« | i > {\\displaystyle |i>} ã«å¯ŸããŠã",
"title": "æ³¢åé¢æ°ã®æ§è³ª"
},
{
"paragraph_id": 96,
"tag": "p",
"text": "ãç¥ãããŠãããããããç¹ã«å¯Ÿå¿ãããã¯ãã«ãç¡éåãããšãã«ã¯ãã®æ§è³ªã®æ°åŠçãªèšŒæã¯é£ããå Žåãå€ãã",
"title": "æ³¢åé¢æ°ã®æ§è³ª"
},
{
"paragraph_id": 97,
"tag": "p",
"text": "ããŠãäžã®ããšããåããéãã",
"title": "æ³¢åé¢æ°ã®æ§è³ª"
},
{
"paragraph_id": 98,
"tag": "p",
"text": "ãšãªã£ãŠãéåè«çãã¯ãã«ã®æ£èŠåãšå¯Ÿå¿ãããããã«ãæ³¢åé¢æ°ã®é·ããã1ã€ã«å®ããå¿
èŠãããããšãåããããã®æ¡ä»¶ã¯å
šãŠã®æ³¢åé¢æ° Ï ( x ) {\\displaystyle \\psi (x)} ã«å¯ŸããŠã",
"title": "æ³¢åé¢æ°ã®æ§è³ª"
},
{
"paragraph_id": 99,
"tag": "p",
"text": "ãšããããšã§æºããããããã®ããšãæ³¢åé¢æ°ã®æ£èŠåãšåŒã¶ã",
"title": "æ³¢åé¢æ°ã®æ§è³ª"
},
{
"paragraph_id": 100,
"tag": "p",
"text": "ãããŸã§ã§ç²åãã©ã®ç¶æ
ã«ããã®ããæå®ããæ¹æ³ãåãã£ããããããã®ãšãã«ã®ãŒã®åºæç¶æ
㯠| i > {\\displaystyle |i>} ãªã©ã®è¡šç€ºã§è¡šãããããããã®éã¯ã©ãã察å¿ããæ³¢åé¢æ°ãæã€ã®ã§ããããã ãããããã®éã¯ã©ããæ£èŠåãããŠããªããã°ãªããªãã次ã«ç²åãããç¶æ
ã«ãããšãã«ãç²åãå®éã«ã©ã®äœçœ®ã«ããã®ããç¥ãæ¹æ³ãèãããããã§ããäœçœ®ãšã¯å€å
žçãªåº§æšã®æå³ã§ããã ãããšãã«ã®ãŒåºæå€ãæã£ãç¶æ
ã«ããç²åãå€å
žçã«èŠããšãã«ã¯ã©ã®äœçœ®ã§çºèŠãããã®ããšããæå³ã§ãããä»®ã«å¯Ÿå¿ãããšãã«ã®ãŒã®åºæç¶æ
ãå¶ç¶äœçœ®ã®æŒç®åã«å¯ŸããŠãåºæãã¯ãã«ãšãªã£ãŠãããšãããšããã®ç¶æ
ã¯äœçœ®ã®æŒç®åã«å¯ŸããŠãã 1ã€ã®å€ãæã€ããããã®ç¶æ
ã«ããç²åãçºèŠãããäœçœ®ã¯æ±ºå®ããŠãããäžæ¹ãä»®ã«å¯Ÿå¿ãããšãã«ã®ãŒã®åºæç¶æ
ãäœçœ®ã®æŒç®åã«å¯ŸããŠåºæãã¯ãã«ãšãªã£ãŠããªãã£ããšãããšããã®ãšãã«ãã®ç²åã¯æ§ã
ãªäœçœ®ã§çºèŠãããããã«æãããå®éå®éšçãªçµæã¯ãã®ãšããã§ãããããäœçœ®ã®åºæç¶æ
ã§ãªãç¶æ
ã«ãããšããã®ç©äœã¯äœçœ®ã®æŒç®åãå€ãåãåŸãäœçœ®å
šäœã§èŠã€ãã確çãããããããŠãå®éã«ã©ã®äœçœ®ã«ãããã¯å®éã«èŠ³æž¬ãããŠã¿ããŸã§ã¯ãç¥ãããšãåºæ¥ãªãã®ã§ããããã®ããšã¯å
šãäžæè°ãªçµæã§ããããäŸãã°éåè«çãªã€ã³ã°ã®å®éšãªã©ã«ãããŠãã®çµæã¯ç¢ºãã«ç¢ºèªãããŠããã®ã§ããã",
"title": "æ³¢åé¢æ°ã®æ§è³ª"
},
{
"paragraph_id": 101,
"tag": "p",
"text": "ããã§ããããšãã«ã®ãŒã®åºæç¶æ
| i > {\\displaystyle |i>} ããããäœçœ®ã«çºèŠãããŠãã®äœçœ®ã«ããããšã確å®ããŠããç¶æ
ã«ç§»è¡ããéçšã¯ã察å¿ããäœçœ®ãxãšãããšã",
"title": "æ³¢åé¢æ°ã®æ§è³ª"
},
{
"paragraph_id": 102,
"tag": "p",
"text": "ã§äžããããããšãäºæ³ãããããããããã®å€ã¯ã¡ããã©ããåºæç¶æ
ã«å¯Ÿå¿ããæ³¢åé¢æ°f(x)ã§ãã£ãã",
"title": "æ³¢åé¢æ°ã®æ§è³ª"
},
{
"paragraph_id": 103,
"tag": "p",
"text": "ãã®ããšãããæ³¢åé¢æ°f(x)ã¯å¯Ÿå¿ãããšãã«ã®ãŒã®åºæç¶æ
ã«ããç²åãããå Žæxã«çºèŠãããäœçœ®ã«èŠã€ããéçšã«ã€ããŠé¢ä¿ããŠããããšãããããå®éã«ã¯æŽã«ããã®éã®çµ¶å¯Ÿå€ã2ä¹ããéããã¡ããã©ãã®å¯Ÿå¿ããç¶æ
ã«ããç²åããã®äœçœ®ã«èŠã€ãã確çãšãªã£ãŠããã®ã§ããã",
"title": "æ³¢åé¢æ°ã®æ§è³ª"
},
{
"paragraph_id": 104,
"tag": "p",
"text": "ãããããã®éã¯ã¡ããã©",
"title": "æ³¢åé¢æ°ã®æ§è³ª"
},
{
"paragraph_id": 105,
"tag": "p",
"text": "ãšããŠãæ³¢åé¢æ°ã®æ£èŠåãè¡ãªã£ãéã«å¯Ÿå¿ãããããã®ããšã¯P(x)ã確çãè¡šããéãšããŠæ±ãããã®æ¡ä»¶ãšãé©åããŠããã®ã§ããã",
"title": "æ³¢åé¢æ°ã®æ§è³ª"
},
{
"paragraph_id": 106,
"tag": "p",
"text": "æ³¢åé¢æ°f(x)ãã",
"title": "æ³¢åé¢æ°ã®æ§è³ª"
},
{
"paragraph_id": 107,
"tag": "p",
"text": "ã§äžãããããšããããã®ãšããããç¹xã§ç²åãçºèŠããã確çãèšç®ããããŸãããã®æ³¢åé¢æ°ãæ£ããæ£èŠåãããŠããããšã瀺ãã",
"title": "æ³¢åé¢æ°ã®æ§è³ª"
},
{
"paragraph_id": 108,
"tag": "p",
"text": "ããç¹xã§ç²åãçºèŠããã確çP(x)ã«ã€ããŠã",
"title": "æ³¢åé¢æ°ã®æ§è³ª"
},
{
"paragraph_id": 109,
"tag": "p",
"text": "ãæãç«ã€ããšãçšããã°ããããã£ãŠã",
"title": "æ³¢åé¢æ°ã®æ§è³ª"
},
{
"paragraph_id": 110,
"tag": "p",
"text": "ãåŸããããæŽã«ãã¬ãŠã¹ç©åãçšããŠ",
"title": "æ³¢åé¢æ°ã®æ§è³ª"
},
{
"paragraph_id": 111,
"tag": "p",
"text": "ãçšãããšã",
"title": "æ³¢åé¢æ°ã®æ§è³ª"
},
{
"paragraph_id": 112,
"tag": "p",
"text": "ãåŸãããæ£ããæ£èŠåããªãããŠããããšãåãããã¬ãŠã¹ç©åã«ã€ããŠã¯ ç©çæ°åŠIãåç
§ã",
"title": "æ³¢åé¢æ°ã®æ§è³ª"
},
{
"paragraph_id": 113,
"tag": "p",
"text": "å®éã«ã¯ããç¶æ
| a > {\\displaystyle |a>} ããããç¶æ
| b > {\\displaystyle |b>} ã«ç§»è¡ãã確çã",
"title": "æ³¢åé¢æ°ã®æ§è³ª"
},
{
"paragraph_id": 114,
"tag": "p",
"text": "ã§äžããããããšã¯ãããšãã«ã®ãŒã®åºæç¶æ
ãããäœçœ®ã«ç§»è¡ããå Žåã ãã«ãšã©ãŸãããããåºãå Žåã«ããŠã¯ãŸããç¹ã«äžã®å Žåã«ã€ããŠ",
"title": "æ³¢åé¢æ°ã®æ§è³ª"
},
{
"paragraph_id": 115,
"tag": "p",
"text": "ãaããbãžã®ç¢ºçæ¯å¹
ãšåŒã¶ãæ³¢åé¢æ°ã¯å¯Ÿå¿ãããšãã«ã®ãŒã®åºæç¶æ
ããããäœçœ®ã§è¡šããããç¶æ
ãžã®ç¢ºçæ¯å¹
ãšãããã",
"title": "æ³¢åé¢æ°ã®æ§è³ª"
},
{
"paragraph_id": 116,
"tag": "p",
"text": "äºãã«çŽäº€ããç¶æ
| 1 > {\\displaystyle |1>} , | 2 > {\\displaystyle |2>} , | 3 > {\\displaystyle |3>} ãããã ãã®ãšãã (I) | 1 > {\\displaystyle |1>} (II)",
"title": "æ³¢åé¢æ°ã®æ§è³ª"
},
{
"paragraph_id": 117,
"tag": "p",
"text": "(III)",
"title": "æ³¢åé¢æ°ã®æ§è³ª"
},
{
"paragraph_id": 118,
"tag": "p",
"text": "(IV) | 2 > {\\displaystyle |2>} ã§äžããããéåç¶æ
ãšç¶æ
| 1 > {\\displaystyle |1>} ãšã®ç¢ºçæ¯å¹
ãæ±ãããããããã®ç¶æ
ãæ£ããæ£èŠåãããŠããããšã瀺ãã",
"title": "æ³¢åé¢æ°ã®æ§è³ª"
},
{
"paragraph_id": 119,
"tag": "p",
"text": "äžããããç¶æ
ãš | 1 > {\\displaystyle |1>} ãšã®å
ç©ãåãã°ãããããããã®1,2,3ã§è¡šããããããããã®ç¶æ
ã¯äºãã«çŽäº€ããŠããããšã«æ³šæããã æ£èŠåãããŠããããšã調ã¹ãã«ã¯ããããã®ç¶æ
ã®å€§ããã1ãšãªã£ãŠããããšã調ã¹ãã°ããã",
"title": "æ³¢åé¢æ°ã®æ§è³ª"
},
{
"paragraph_id": 120,
"tag": "p",
"text": "(I) 確çæ¯å¹
ã¯",
"title": "æ³¢åé¢æ°ã®æ§è³ª"
},
{
"paragraph_id": 121,
"tag": "p",
"text": "ãšãªããæ£èŠåã",
"title": "æ³¢åé¢æ°ã®æ§è³ª"
},
{
"paragraph_id": 122,
"tag": "p",
"text": "ãšãªãæ£ããããšãåããã (II)",
"title": "æ³¢åé¢æ°ã®æ§è³ª"
},
{
"paragraph_id": 123,
"tag": "p",
"text": "ãšãªããæ£èŠåã«ã€ããŠã¯",
"title": "æ³¢åé¢æ°ã®æ§è³ª"
},
{
"paragraph_id": 124,
"tag": "p",
"text": "ãšãªãæ£ããããšãåããã (III)",
"title": "æ³¢åé¢æ°ã®æ§è³ª"
},
{
"paragraph_id": 125,
"tag": "p",
"text": "ãšãªããæ£èŠåã«ã€ããŠã¯",
"title": "æ³¢åé¢æ°ã®æ§è³ª"
},
{
"paragraph_id": 126,
"tag": "p",
"text": "ãšãªãæ£ããããšãåããã (IV) 確çæ¯å¹
ã¯",
"title": "æ³¢åé¢æ°ã®æ§è³ª"
},
{
"paragraph_id": 127,
"tag": "p",
"text": "ãšãªããæ£èŠåã¯",
"title": "æ³¢åé¢æ°ã®æ§è³ª"
},
{
"paragraph_id": 128,
"tag": "p",
"text": "ãšãªã£ãŠæ£ããããšãåããã",
"title": "æ³¢åé¢æ°ã®æ§è³ª"
},
{
"paragraph_id": 129,
"tag": "p",
"text": "ããã§ããããšãã«ã®ãŒã®åºæç¶æ
| i > {\\displaystyle |i>} ãšã察å¿ããæ³¢åé¢æ°f(x)ã«å¯ŸããŠ",
"title": "æ³¢åé¢æ°ã®æ§è³ª"
},
{
"paragraph_id": 130,
"tag": "p",
"text": "ãã©ã®ãããªæå³ãæã€ããèãããããã§ã | f ( x ) | 2 {\\displaystyle |f(x)|^{2}} ãã察å¿ããç²åãxã§èŠã€ãã確çãè¡šãããŠããããšãèãããšãäžã®åŒã¯xã®æåŸ
å€ãè¡šããåŒãã®ãã®ã§ããããã®ããã < i | x | i > {\\displaystyle <i|x|i>} ã®ãããªxæŒç®åã®å¯Ÿè§æåã¯ã察å¿ããç¶æ
ã«ç²åãååšãããšãã®ç²åãèŠã€ããäœçœ®ã®æåŸ
å€ãšãªãããšãåãããäžæ¹ãäœçœ®æŒç®åã®é察è§æåã¯ããã»ã©ç°¡åãªè§£éã¯æã£ãŠããªãããã ãããããã®éã¯éåååŠçãªæåãªã©ã§ãã䜿ãããã詳ããã¯éåååŠIIãåç
§ã",
"title": "æ³¢åé¢æ°ã®æ§è³ª"
},
{
"paragraph_id": 131,
"tag": "p",
"text": "å®éã®ç©ççãªç³»ã¯åžžã«æéã«äŸåããŠå€åããããã®ãããéåçãªç¶æ
ãäœããã®ä»æ¹ã§æéäŸåæ§ãæã€å¿
èŠããããããã§ãéåè«çãªç³»ã®æéäŸåæ§ãèããåã«ãç¹æ®çžå¯Ÿè«ã«ãããŠãæéãšç©ºéãçµ±äžçã«æ±ãæ¹æ³ãåŸãããšãæãã ããäžã®è°è«ã§ç©ºéæ¹åã®æåã«å¯ŸããŠã¯",
"title": "æéã«äŸåããã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒ"
},
{
"paragraph_id": 132,
"tag": "p",
"text": "(ãã ããi=1,2,3ã) ã®ãããªçœ®ãæããããããšãèãããšãã«ã®ãŒãšæéæ¹åã«åãæ§ãªé¢ä¿ãããããšãèãããšãäžã®çœ®ãæãã«å¯Ÿå¿ããŠ",
"title": "æéã«äŸåããã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒ"
},
{
"paragraph_id": 133,
"tag": "p",
"text": "ã®ãããªçœ®ãæããåºæ¥ãããšãäºæ³ããããäžæ¹ãéåè«çãªç³»ã§ã¯ç¹æ®çžå¯Ÿè«çãªèãæ¹ãé©çšã§ããã®ããšããããšã¯çåãæ®ããäŸãã°ãéåè«ã§ã¯ããç©äœãååšããäœçœ®ã¯èŠ³æž¬ãããåã«åççã«ç¥ãããšãã§ããã芳枬ãããç¬éã«ç©äœã®äœçœ®ã決å®ããããšãç¥ãããŠãããããããããäžç¬ã§ç©äœã®äœçœ®ã決å®ãããã®ãªãããã®ç¬éã«ãã®ç©äœã¯ããšããšç©äœããã£ãå Žæããéåžžã«éãé床ã§ç§»åããŠããããã«æãããã®é床ã¯å
éãè¶
ããŠããŸãããã«æããããã®æ§ãªäºæ
ãèãããšãç¹æ®çžå¯Ÿè«ãšéåååŠããäºãã«é©åãããããšã¯éåžžã«å°é£ã«æããäžã®ãããªçœ®ãæããããçç±ã¯å®ãã§ãªãããã«æãããããããå®éã«ã¯ãã®æ§ãªå°é£ãä¹ãè¶ããŠäžã®2ã€ãé©åãããæ¹æ³ã¯æ¢ã«ç¥ãããŠããããã®çµæãçšãããªã確ãã«äžã®çœ®ãæãã¯æ£ããçµæãäžããããšãç¥ãããã®ã§ããã詳ããã¯å Žã®éåè«ãåç
§ã",
"title": "æéã«äŸåããã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒ"
},
{
"paragraph_id": 134,
"tag": "p",
"text": "äžã®çœ®ãæããå€å
žçãªæ¹çšåŒ",
"title": "æéã«äŸåããã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒ"
},
{
"paragraph_id": 135,
"tag": "p",
"text": "ã«å¯ŸããŠçšãããªããéåè«çãªæ¹çšåŒã¯",
"title": "æéã«äŸåããã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒ"
},
{
"paragraph_id": 136,
"tag": "p",
"text": "ã®ããã«ãªããããã§ã¯ãäžè¬ã«ç³»ã®éåç¶æ
ã匵ããã¯ãã«ã Κ {\\displaystyle \\Psi } ãšæžããŠã äžã®æ¹çšåŒãã",
"title": "æéã«äŸåããã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒ"
},
{
"paragraph_id": 137,
"tag": "p",
"text": "ãšæžãæããã仮㫠Κ {\\displaystyle \\Psi } ãããšãã«ã®ãŒEãæã€ããã«ããã¢ã³ã®åºæç¶æ
ã ã£ã ãšããããã®ãšããäžã®æ¹çšåŒã¯",
"title": "æéã«äŸåããã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒ"
},
{
"paragraph_id": 138,
"tag": "p",
"text": "ãšãªãããã®åŒã¯éåžžã®æ¹æ³ã§è§£ãããšãåºæ¥ããä»®ã«t=0ã§ã",
"title": "æéã«äŸåããã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒ"
},
{
"paragraph_id": 139,
"tag": "p",
"text": "ãæãç«ã€ãšãããšãäžã®åŒã®è§£ã¯",
"title": "æéã«äŸåããã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒ"
},
{
"paragraph_id": 140,
"tag": "p",
"text": "ãšãªãããã®ããšã«ãã£ãŠãããæå» t 0 {\\displaystyle t_{0}} ã«ãããŠãããããã«ããã¢ã³ã®åºæç¶æ
ã§åŒµãããç¶æ
ã«ããç©äœãæéçã«ã©ã®ç¶æ
ã«å€åããããåãã£ãããšã«ãªããäžæ¹ãããã«ããã¢ã³ã®åºæç¶æ
ã¯æéã«äŸåããªãã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã«ãã£ãŠèšç®ãããããšãããã©ã®ç¶æ
ãã©ã®ãããªæéçºå±ããããã¯æéã«äŸåããªãã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã解ãããšã«ãã£ãŠæ±ããããããšãåããã",
"title": "æéã«äŸåããã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒ"
},
{
"paragraph_id": 141,
"tag": "p",
"text": "ãŸããæéã«äŸåããã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒãšãæéã«äŸåããªãã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã¯äºãã«é¢é£ããŠãããä»®ã«ãããç¶æ
Κ ( t ) {\\displaystyle \\Psi (t)} ã®æéçºå±ãããå®æ°EãçšããŠã",
"title": "æéã«äŸåããã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒ"
},
{
"paragraph_id": 142,
"tag": "p",
"text": "ã§æžããããšããããã®æã㮠Κ ( t ) {\\displaystyle \\Psi (t)} ãæéã«äŸåããã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã«ä»£å
¥ãããšãçµæã¯ã",
"title": "æéã«äŸåããã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒ"
},
{
"paragraph_id": 143,
"tag": "p",
"text": "ãšãªããæéã«äŸåããªãã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã«çãããªãã",
"title": "æéã«äŸåããã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒ"
},
{
"paragraph_id": 144,
"tag": "p",
"text": "å¢çæ¡ä»¶ã埮åæ¹çšåŒã解ãéã«å¿
èŠã«ãªã£ãŠãããç座æšã«å€æããã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã«ãè§åºŠã®åšæçå¢çæ¡ä»¶ãªã©ãå
¥ãããš(è§åºŠã¯äžåšãããšå
ã«æ»ããšããæ¡ä»¶)ãæ°ŽçŽ ååã®ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã解ããããã«ãªãããªããšå€§åŠååŠã§ç¿ããäž»éåæ°ãããæ¹äœéåæ°ããªã©ã®ãéåæ°ããªã©ãå°åºãããã",
"title": "æ°ŽçŽ ååæš¡åã§ã®ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã®è§£æ³"
},
{
"paragraph_id": 145,
"tag": "p",
"text": "1次å
äºæžåããã³ã·ã£ã«",
"title": "1次å
äºæžåããã³ã·ã£ã«"
},
{
"paragraph_id": 146,
"tag": "p",
"text": "ãèããããã®ãšãã®ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã¯",
"title": "1次å
äºæžåããã³ã·ã£ã«"
},
{
"paragraph_id": 147,
"tag": "p",
"text": "ãšãªãããã®ãšã V ( x ) = â {\\displaystyle V(x)=\\infty } ã®é å ( â â < x < 0 , L < x < â ) {\\displaystyle (-\\infty <x<0,L<x<\\infty )} ã§ã¯ç²å䟵å
¥äžå¯ãªã®ã§ããã®é åã«ãããæ³¢åé¢æ°ã¯ Ï ( x ) = 0 {\\displaystyle \\psi (x)=0} ãšãªããæ³¢åé¢æ° Ï ( x ) {\\displaystyle \\psi (x)} 㯠x = 0 , x = L {\\displaystyle x=0,x=L} ã§ããããé£ç¶ãªã®ã§ã Ï ( 0 ) = Ï ( L ) = 0 {\\displaystyle \\psi (0)=\\psi (L)=0} ãšãªãã 0 †x †L {\\displaystyle 0\\leq x\\leq L} ã«ãããæ³¢åé¢æ°ãèãããš",
"title": "1次å
äºæžåããã³ã·ã£ã«"
},
{
"paragraph_id": 148,
"tag": "p",
"text": "Ï ( 0 ) = Ï ( L ) = 0 {\\displaystyle \\psi (0)=\\psi (L)=0} ãã",
"title": "1次å
äºæžåããã³ã·ã£ã«"
},
{
"paragraph_id": 149,
"tag": "p",
"text": "ãšãªãããŸã â« 0 L ( Ï ( x ) ) 2 d x = 1 {\\displaystyle \\int _{0}^{L}(\\psi (x))^{2}dx=1} ãšãªãããã«Bãæ±ãããš",
"title": "1次å
äºæžåããã³ã·ã£ã«"
},
{
"paragraph_id": 150,
"tag": "p",
"text": "ãšãªã",
"title": "1次å
äºæžåããã³ã·ã£ã«"
},
{
"paragraph_id": 151,
"tag": "p",
"text": "ãšãªãããŸããã®ãšãã®ãšãã«ã®ãŒEã¯",
"title": "1次å
äºæžåããã³ã·ã£ã«"
},
{
"paragraph_id": 152,
"tag": "p",
"text": "ãšãªãããšã³ãšã³ã®å€ããšãããšãåããã",
"title": "1次å
äºæžåããã³ã·ã£ã«"
},
{
"paragraph_id": 153,
"tag": "p",
"text": "1次å
é段åããã³ã·ã£ã«",
"title": "1次å
é段åããã³ã·ã£ã«"
},
{
"paragraph_id": 154,
"tag": "p",
"text": "ãèããã",
"title": "1次å
é段åããã³ã·ã£ã«"
},
{
"paragraph_id": 155,
"tag": "p",
"text": "é å x < 0 , x †0 {\\displaystyle x<0,x\\leq 0} ã«ãããæ³¢åé¢æ°ããããã Ï â ( x ) , Ï + ( x ) {\\displaystyle \\psi _{-}(x),\\psi _{+}(x)} ãšãã.",
"title": "1次å
é段åããã³ã·ã£ã«"
},
{
"paragraph_id": 156,
"tag": "p",
"text": "ããããã®ã·ã¥ã¬ãã£ã³ã¬ãŒæ¹çšåŒã¯,",
"title": "1次å
é段åããã³ã·ã£ã«"
},
{
"paragraph_id": 157,
"tag": "p",
"text": "ãšãªã.",
"title": "1次å
é段åããã³ã·ã£ã«"
},
{
"paragraph_id": 158,
"tag": "p",
"text": "(1) E < V 0 {\\displaystyle E<V_{0}} ã®å Žå",
"title": "1次å
é段åããã³ã·ã£ã«"
},
{
"paragraph_id": 159,
"tag": "p",
"text": "ãšãããš,ã·ã¥ã¬ãã£ã³ã¬ãŒæ¹çšåŒã¯,",
"title": "1次å
é段åããã³ã·ã£ã«"
},
{
"paragraph_id": 160,
"tag": "p",
"text": "解ã¯",
"title": "1次å
é段åããã³ã·ã£ã«"
},
{
"paragraph_id": 161,
"tag": "p",
"text": "( Ï + ( x ) {\\displaystyle \\psi _{+}(x)} ã® e k + x {\\displaystyle e^{k_{+}x}} ã®é
ã¯çºæ£ã,èŠæ Œåæ¡ä»¶ãæºãããªãé€å€ãã.) æ³¢åé¢æ°ã x = 0 {\\displaystyle x=0} ã§æ»ããã§ããæ¡ä»¶ããå®æ°ãå®ãã.",
"title": "1次å
é段åããã³ã·ã£ã«"
},
{
"paragraph_id": 162,
"tag": "p",
"text": "ãã,",
"title": "1次å
é段åããã³ã·ã£ã«"
},
{
"paragraph_id": 163,
"tag": "p",
"text": "éåžžã®æ£ç£ç³ããé»åã«è¿ã¥ããŠããé»åã®ç£æ°ã¢ãŒã¡ã³ããå°ããã®ã§ãããŒã¬ã³ãå以å€ã®åã¯é»åã¯ã»ãšãã©åããªãã®ã ããç£ç³ãéåžžã§ãªãå Žåã¯å¥ã§ããã",
"title": "å極åã®ãã€ãšãã«ã®ãŒãšå"
},
{
"paragraph_id": 164,
"tag": "p",
"text": "å³ã®ããã«ãç£ç³ã«ãã£ãŠãäžé£ç¶ã§æ¥å³»ãªç£å Žãçºçãããšããé»åã®äžåŽãšäžåŽãšã§ãç£å Žã®åŒ·ããç°ãªãããã®ãããé»åå
šäœãšããŠã¯ãåãåããããšã«ãªã(ãªããåæãšããŠãé»åã«ã¯ãã¹ãã³ããšããç£æ¥µã®ãããªæ§è³ªãããããšããäºãåæã«ããŠãã)ã",
"title": "å極åã®ãã€ãšãã«ã®ãŒãšå"
},
{
"paragraph_id": 165,
"tag": "p",
"text": "N極ã®å
端ã®ãšãã£ãããã¡ãããæ£ç£ç³ãšãS極ã®å
端ã®ããŒãã æ£ç£ç³ãçšæããŠããšãã£ããN極ãšãããŒãã S極ã®è»žãäžèŽããããã®2ã€ã®ç£æ¥µã®ééãããŸãããäžå¯Ÿç£æ¥µãã€ããããã®äžå¯Ÿç£æ¥µã®ãããŸã«ãéãç±ããŠèžçºãããŠçŽ°åãªã©ããé£ã³åºãããéã®ååç·ãæã¡èŸŒããšãå³ã®ããã«ãäžãŸãã¯äžã®ã©ã¡ããã®åãåããäžäžã®2ç®æã«åè£ããããã£ããŠããªãªãæ¹åã«ã¯ç§»åããªããããã¯ãååç·ãã®ãã®ãç£åããã£ãŠããããšã®å®éšç蚌æã§ããã",
"title": "å極åã®ãã€ãšãã«ã®ãŒãšå"
},
{
"paragraph_id": 166,
"tag": "p",
"text": "éã®ååã¯äžæ§ã§ããããŸããä»®ã«é»é¢ããŠããŠãããšããŠããŒã¬ã³ãåãåãããšãããšãããŒã¬ã³ãåã®æ¹åã¯ãå³äžã®æšªåãã«ãªãã",
"title": "å極åã®ãã€ãšãã«ã®ãŒãšå"
},
{
"paragraph_id": 167,
"tag": "p",
"text": "ãã®å®éšãã·ã¥ãã«ã³ã»ã²ã«ã©ããã®å®éšãšãããé以å€ã«ããæ°ŽçŽ ã®ååç·ããããªãŠã ååç·ã§ãåæ§ã®å®éšãè¡ãããååç·ãäžæ¹åãŸãã¯äžæ¹åã®ã©ã¡ããã®åãåããããšã確èªãããã",
"title": "å極åã®ãã€ãšãã«ã®ãŒãšå"
},
{
"paragraph_id": 168,
"tag": "p",
"text": "ãã®ããã«ååç·ãäžäžã«åè£ããçç±ã¯ãååç·ãç£åããã£ãŠããäºã®ããããã§ãããããã®ååã®ç£åã®ç±æ¥ã¯ãããããé»åãç©æ§ãšããŠç£æ°ããã£ãŠããããã§ããããããŠãé»åãã®ãã®ã®ç£æ°ã®ããšãã¹ãã³ãšããã",
"title": "å極åã®ãã€ãšãã«ã®ãŒãšå"
},
{
"paragraph_id": 169,
"tag": "p",
"text": "ååç·ã®æšçã«ãªã£ãŠããå ŽæãèŠããš(å³ã®ã5ãã®å Žæ)ãååç·ãäžãŸãã¯äžã®2éãã®äœçœ®ã«åè£ããŠåœãã£ãŠããããšãããé»åã®ãã¹ãã³ãã2éãã®å€ã§ããããšãäºæ³ãããä»ã®ç©ççè«ãããé»åã®ãã¹ãã³ããå®éã«2éãã§ããäºãåãã£ãŠããã",
"title": "å極åã®ãã€ãšãã«ã®ãŒãšå"
},
{
"paragraph_id": 170,
"tag": "p",
"text": "éåè«ã®åºç€æ³åã¯æ°åŠçã«ã¯ãããåçŽã§ãç·åœ¢ä»£æ°ã«ä»ãªããªããäœããæ±ãç³»ã«ãããã¯ãã«ç©ºéã®æ¬¡å
ãç¡é倧ã«ãªã£ããé¢æ°ç©ºéã«ãªã£ããããã®ã§ãããããããè€éãã倧ãããããã§ã¯æé次å
(2次å
!)ã®ç·åœ¢ä»£æ°ã§å®å
šã«æ±ãããšãã§ããç³»ããé»åã®ã¹ãã³ããäŸã«ãšããªãããåºç€æ³åãå°å
¥ããã",
"title": "éåè«ã®åºç€æ³åïŒã¹ãã³ãäŸã«ãšã£ãŠ"
},
{
"paragraph_id": 171,
"tag": "p",
"text": "é»åã¯ç¹ç²åã§ããäœçœ®ãšããå±æ§ãæã€ããå®ã¯ããã ãã§ãªããèªè»¢ããæ£ç£ç³ããæã€ãããªå±æ§ãæã£ãŠãããæ£ç£ç³ãN極ãšS極ãçµã¶ç·ã軞ãšããŠèªè»¢ããŠãããšããããããã«ç£å Žãããããš(1)æ£ç£ç³ã¯ãã®åãã«å¿ãããšãã«ã®ãŒãæã¡ããŸã(2)ç£å Žã軞ãšããŠã³ãã®ããã«ããªã»ãã·ã§ã³(éŠæ¯éå)ãè¡ãã(1)ã¯ç£ç³ã§ããããšããèµ·ãã(2)ã¯((1)ã«å ããŠ)è§éåéãæã€ããšããèµ·ããã",
"title": "éåè«ã®åºç€æ³åïŒã¹ãã³ãäŸã«ãšã£ãŠ"
},
{
"paragraph_id": 172,
"tag": "p",
"text": "é»åããåãããæã£ãŠãããç£å Žã®äžã«å
¥ãããš(1)ãã®åãã«å¿ãããšãã«ã®ãŒããã¡ããã€(2)ãã®åããæ£ç£ç³ã®åããšåæ§ã®ããªã»ãã·ã§ã³ãèµ·ããããã®ãããªäºå®ã称ããŠãé»åã¯ã¹ãã³ããã€ããšããããåããããã¹ãã³ã®åãããšåŒã¶ãã¹ãã³ã®èµ·æº(Diracã«ãã)ãç©æ§ãšã®é¢ä¿ã¯éèŠãªäž»é¡ãšãªãã®ã ããããã§ã¯éåååŠã®æ³åã説æããäŸãšããŠçšããã ããªã®ã§ãåã« ãé»åã¯äœçœ®ã ãã§ãªããåããšããå±æ§ãæã€ã ãšããç¹ã«ã®ã¿çç®ããããã€ããã¯ã¹ã®èª¬æãè¡ãæã«ç©ççãªæå³ ãé»åãæ£ç£ç³ãšã¿ãªããæã®åãã§ããããã€é»åã®ãã€è§éåéã®åãã ã䜿ãããªããè§éåéã®å€§ããã¯äžå®(hbar/2)ã§ãããå€ããããã®ã¯ãã®åãã ãã§ããã",
"title": "éåè«ã®åºç€æ³åïŒã¹ãã³ãäŸã«ãšã£ãŠ"
},
{
"paragraph_id": 173,
"tag": "p",
"text": "ãã®åããåäœãã¯ãã« s ^ {\\displaystyle {\\hat {s}}} ã§è¡šãããã®æåã ( s x , s y , s z ) {\\displaystyle (s_{x},s_{y},s_{z})} ãšæžããåäœãã¯ãã«ãªã®ã§ s x 2 + s y 2 + s z 2 = 1 {\\displaystyle s_{x}^{2}+s_{y}^{2}+s_{z}^{2}=1} ãæ®éã«èãããšãã®æå(3ã€ã®å®æ°ãåãç¯å²ã¯ãããã-1ãã1)ãæå®ããã°ã¹ãã³ã®ç¶æ
ãèšè¿°ããããšã«ãªãã¯ãã§ããããšãããã¹ãã³ã¯éåååŠã®æ³åã«åŸãã®ã§ããã¯ãªããªãã",
"title": "éåè«ã®åºç€æ³åïŒã¹ãã³ãäŸã«ãšã£ãŠ"
},
{
"paragraph_id": 174,
"tag": "p",
"text": "ã¹ãã³ã®åãã®æž¬å®æ¹æ³ã§ä»£è¡šçãªã®ã¯Stern-Gerlachåå®éšãšåŒã°ãããã®ã空éçãªåŸé
ãæã€ç£å Žããããããšã§ã¹ãã³ã®åãã«äŸåããåãé»åã«ãããããã«ããã倧éæã«ç解ããã«ã¯ãæ£ç£ç³ã«ç£å Žããããããšãèããã°ãããç£å Žãäžæ§ã ãšN極ãšS極ã«ãããåãæ£å察ãã€åã倧ããã«ãªãã®ã§å
šäœãšããŠãã£ã³ã»ã«ããŠããŸããããã§zæ¹åã«åŸé
ãæã€ãã€ãŸãäžã«è¡ãã»ã©åŒ·ããªãç£å Žãããããšãããããããšç£ç³ã®åããz軞æ¹åã®æåããã€( s z â 0 {\\displaystyle s_{z}\\neq 0} )ãªãã°äžåŽã®æ¥µã«ãã倧ããªåããããã®ã§å
šäœã«ãããåãæ®ããé©åã«ç£å Žãèšå®ããããšã§ãè¿äŒŒçã«szã«æ¯äŸããå F â â ( 0 , 0 , k s z ) {\\displaystyle {\\vec {F}}\\approx (0,0,ks_{z})} ãç£ç³ã«ãããããã«ã§ããããã®ãããªç£å Žã®äžã«å°ããç£ç³ãé£ã°ããšãç£ç³ã®åãã®zæåã«æ¯äŸããåãããããè»éãããããåŸã£ãŠè»éãäžäžã«ã©ãã ãããããã調ã¹ãã°ç£ç³ã® s z {\\displaystyle s_{z}} ãåããã®ã§ããããã¡ããåãè°è«ãz軞æ¹å以å€ã§ãæãç«ã€ããŸãšãããšã",
"title": "éåè«ã®åºç€æ³åïŒã¹ãã³ãäŸã«ãšã£ãŠ"
},
{
"paragraph_id": 175,
"tag": "p",
"text": "ã» u â {\\displaystyle {\\vec {u}}} æ¹å( u â {\\displaystyle {\\vec {u}}} ã¯åäœãã¯ãã«)ã®åŸé
ãæã€ç£å Žã䜿ãããšã§ã s â {\\displaystyle {\\vec {s}}} ã® u â {\\displaystyle {\\vec {u}}} æå s u â¡ s â â
u â {\\displaystyle s_{u}\\equiv {\\vec {s}}\\cdot {\\vec {u}}} ã枬å®ããããšãã§ããã",
"title": "éåè«ã®åºç€æ³åïŒã¹ãã³ãäŸã«ãšã£ãŠ"
},
{
"paragraph_id": 176,
"tag": "p",
"text": "zæ¹åã«åŸé
ãæã€ç£å Žã«ã©ã³ãã ãªåãã®ç£ç³ãããããããããšãããŸããŸsz=1ã ã£ããã®ã®è»éã¯å€§ããäžã«ãããsz=-1ã ã£ããã®ã¯å€§ããäžã«ãããããããŠãã®äžéãç¹ã«sz=0ã«è¿ããã®ã§ã¯è»éã¯ã»ãšãã©ãããªããç£ç³ã®åºå£ã«ç£ç³ãããããšãæç¥ããã¹ã¯ãªãŒã³ãããã°ãããã«ã¯äžããäžãŸã§ã»ãŒãŸãã¹ããªãç£ç³ãããåŸãæ®ãã§ãããã",
"title": "éåè«ã®åºç€æ³åïŒã¹ãã³ãäŸã«ãšã£ãŠ"
},
{
"paragraph_id": 177,
"tag": "p",
"text": "ããã§èå°ã¯æŽã£ãã®ã§ãç£ç³ã®ä»£ãã«åããã°ãã°ãã®é»åãéããŠã¿ãããããšãé©ãã¹ãããšã«ç£ç³ã®å Žåãšã¯å
šãç°ãªãçµæã«ãªããã¹ã¯ãªãŒã³ã®äžçªäž(sz=1ã«å¯Ÿå¿)ãšäžçªäž(sz=-1ã«å¯Ÿå¿)ã«ããé»åãããªãã®ã§ãããããããsz=1ã®é»åãšsz=-1ã®é»åãããªããã®ãããªçµæã«ãªã£ãŠããŸããããã§ã¯ãšãä»åºŠã¯è£
眮ã90床åããŠãsxã«å¿ããŠè»éãå€ããããã«ããŠã¿ãããããšä»åºŠã¯(åãæºããããé»åãªã®ã«)sx=1ãšsx=-1ã®ãã®ãããªããã®ãããªçµæã«ãªããã€ãŸãäžçªå³ãšå·Šã«ããé»åãããªãã",
"title": "éåè«ã®åºç€æ³åïŒã¹ãã³ãäŸã«ãšã£ãŠ"
},
{
"paragraph_id": 178,
"tag": "p",
"text": "ããã¯æž¬å®æ³ãå€ããŠãæãç«ã€äžè¬çãªçµæã§ãããå³ã¡ã",
"title": "éåè«ã®åºç€æ³åïŒã¹ãã³ãäŸã«ãšã£ãŠ"
},
{
"paragraph_id": 179,
"tag": "p",
"text": "ã»é»åã¹ãã³ s â {\\displaystyle {\\vec {s}}} ã® u â {\\displaystyle {\\vec {u}}} æ¹åæå s â â
u â {\\displaystyle {\\vec {s}}\\cdot {\\vec {u}}} ã枬å®ãããšããã®çµæã¯å¿
ã1ã-1ã®ã©ã¡ããã«ãããªããªããæ¬æ¥é£ç¶çãªå€ããšãã¯ãã®é s â â
u â {\\displaystyle {\\vec {s}}\\cdot {\\vec {u}}} ã®æž¬å®çµæãã1,-1ãšããé¢æ£çãªå€ã ãã«ãªãã",
"title": "éåè«ã®åºç€æ³åïŒã¹ãã³ãäŸã«ãšã£ãŠ"
},
{
"paragraph_id": 180,
"tag": "p",
"text": "ãã®ããé£ç¶çã§ããã¯ãç©çéã®æž¬å®å€ãé¢æ£çã«ãªããããšã埮èŠçã¹ã±ãŒã«ã®ç©çã®å€§ããªç¹åŸŽã§ãããäœããããããéã®æž¬å®å€ãé¢æ£çã«ãªãããã§ã¯ãªããäŸãã°é»åã®äœçœ®ã®æž¬å®å€ã¯é£ç¶çãªå€ããšããããããšãã«ã®ãŒã®æž¬å®å€ã¯ç³»ã«ãã£ãŠé£ç¶çãªå Žåãé¢æ£çãªå Žåããäž¡è
ãæ··åããå ŽåããããéåååŠã®å€§ããªææ(ã®äžã€)ã¯ãç©çéã®æž¬å®å€ããšãããå€ã®ã»ãã(ã¹ãã¯ãã«ãšãã)ãæ±ããããã®éŠå°Ÿäžè²«ããèšç®æ³ãšããŠäžããããšã«ããã",
"title": "éåè«ã®åºç€æ³åïŒã¹ãã³ãäŸã«ãšã£ãŠ"
},
{
"paragraph_id": 181,
"tag": "p",
"text": "szã®æž¬å®å€ã¯1,-1ããåãåŸãªããšè¿°ã¹ããã§ã¯ãäŸãã°ã¹ãã³ãxæ¹åãåããŠããå Žåã«szã枬ããšæž¬å®å€ã¯ã©ããªãã ããããåžžèçãªçã§ãã0ã¯åããªããããã1,-1ã®ã©ã¡ããåãã«ããŠãåŠã§ãããçã¯ã1,-1ãå
šãã©ã³ãã ã«åããã€ãŸãç確çã§1,-1ãçŸããããšãªã(äžåããšã§ã¯åžžèçãªå€0ã¯åããªãããå€æ°åå®éšãè¡ã£ãå¹³åå€ãšããŠã¯åžžèçãªå€0ã«ãªã)ããã®ããã«ã枬å®çµæã確ççã«ãªãããšã埮èŠçäžçã®æ³åã®ããäžã€ã®å€§ããªç¹åŸŽã",
"title": "éåè«ã®åºç€æ³åïŒã¹ãã³ãäŸã«ãšã£ãŠ"
},
{
"paragraph_id": 182,
"tag": "p",
"text": "äœãäžã®å®éšãè¡ãã«ã¯ãã¹ãã³ãxæ¹åãåããç¶æ
ããäœããªããã°ãªããªããã©ãããããå®éšè£
眮èªèº«ãããã£ã«ã¿ããšããŠäœ¿ããäŸãã°äžèšStern-Gerlachã®å®éšã§ã¯sz=1ã®é»åã¯è»éãäžã«æ²ãããã-1ã®ãã®ã¯äžã«æ²ããããããã£ãŠäžã«æ¥ãé»åã ããéããã°ããããã¯å
šãŠsz=1ã§ããããšããããå®éãããäžã€å®éšè£
眮ãçšæããæåã®è£
眮ã§äžã«æ²ããããé»åã ããéããŠszãããäžåºŠæž¬ãããããšã確ãã«å
šãŠã®é»åã§sz=1ã«ãªãã®ã§ããããã¡ããæåã®è£
眮ãšäºã€ã®è£
眮ã®éã«ç£å Žãªã©ãæããŠããŸããšåããå€ããããšããããããã®ãããªãã¹ãã³ã®åããå€ããèŠå ãããªããã°ãäžåºŠç®ãšäºåºŠç®ã®æž¬å®å€ã¯å¿
ãåãå€ã«ãªãã以äžã®ããšãèžãŸã次ã®å®çŸ©ãè¡ãã",
"title": "éåè«ã®åºç€æ³åïŒã¹ãã³ãäŸã«ãšã£ãŠ"
},
{
"paragraph_id": 183,
"tag": "p",
"text": "ãsz=1ã®ç¶æ
ãåã£ãŠãããé»åãšã¯ãå®éšã«ããsz=1ãšãã枬å®å€ãåãããã®åŸåããå€ããããŠããªãé»åã®ããšãšããã",
"title": "éåè«ã®åºç€æ³åïŒã¹ãã³ãäŸã«ãšã£ãŠ"
},
{
"paragraph_id": 184,
"tag": "p",
"text": "ä»»æã®åããžã®äžè¬åã¯èªæã§ããããä»»æã®åäœãã¯ãã« u â {\\displaystyle {\\vec {u}}} ã«å¯Ÿãã",
"title": "éåè«ã®åºç€æ³åïŒã¹ãã³ãäŸã«ãšã£ãŠ"
},
{
"paragraph_id": 185,
"tag": "p",
"text": "ã» u â {\\displaystyle {\\vec {u}}} æ¹åãåããé»åãšã¯ã s â â
u â {\\displaystyle {\\vec {s}}\\cdot {\\vec {u}}} ã®æž¬å®ã§æž¬å®å€1ãåãããã®åŸåããå€ããããŠããªãé»åã§ããã",
"title": "éåè«ã®åºç€æ³åïŒã¹ãã³ãäŸã«ãšã£ãŠ"
},
{
"paragraph_id": 186,
"tag": "p",
"text": "ãã®å®çŸ©ãæå³ããªãçç±ã¯ãäžèšã®éããã®å®çŸ©ã«åŸãé»åã§ããäžåºŠ s â â
u â {\\displaystyle {\\vec {s}}\\cdot {\\vec {u}}} ã枬å®ããã°å¿
ã1ãåãããšããå®éšçè£ã¥ããããããã§ãããäœããã®å®çŸ©ã«åŸãé»å㧠u â {\\displaystyle {\\vec {u}}} ãšåçŽãªæåã枬ã£ãŠã枬å®çµæã¯æ±ºããŠ0ã«ã¯ãªããªãããšãå¿ããŠã¯ãªããªãã",
"title": "éåè«ã®åºç€æ³åïŒã¹ãã³ãäŸã«ãšã£ãŠ"
},
{
"paragraph_id": 187,
"tag": "p",
"text": "ãã®å®çŸ©ã䜿ããšãäžèšã®ã©ã³ãã æ§ãå®éšã§ç¢ºãããã«ã¯ããŸãStern-Gerachã®è£
眮ã暪ã«åããŠsxã®å€ã«å¿ããŠè»éãæ²ããããããã«ããããããŠãå³(sx=1ã«å¯Ÿå¿)ã«æ¥ãé»åã ãã第2ã®è£
眮ã«éããŠszã枬ãããããšãååã¯sz=1ãæ®ãååã¯sz=-1ãšãªãã®ã§ããã",
"title": "éåè«ã®åºç€æ³åïŒã¹ãã³ãäŸã«ãšã£ãŠ"
},
{
"paragraph_id": 188,
"tag": "p",
"text": "ããäžè¬çãªå Žåãã€ãŸã u â {\\displaystyle {\\vec {u}}} ãšz軞ãšã®è§åºŠãä»»æã®è§åºŠA( 0 <= A <= Ï {\\displaystyle 0<=A<=\\pi } ) ã®å Žåãè¿°ã¹ãããzæ¹åãåããé»åã¹ãã³ã® u â {\\displaystyle {\\vec {u}}} æ¹åã®æå s â â
u â {\\displaystyle {\\vec {s}}\\cdot {\\vec {u}}} ã枬ããšããããããšã",
"title": "éåè«ã®åºç€æ³åïŒã¹ãã³ãäŸã«ãšã£ãŠ"
},
{
"paragraph_id": 189,
"tag": "p",
"text": "枬å®å€ã1ã«ãªã確ç㯠cos 2 ( A / 2 ) {\\displaystyle \\cos ^{2}(A/2)} ã-1ã«ãªã確ç㯠sin 2 ( A / 2 ) {\\displaystyle \\sin ^{2}(A/2)} ãšãªãã(ç¹ã« A = Ï / 2 {\\displaystyle A=\\pi /2} ã®å Žåã«ã¯äžèšã®çµæã«åž°çããããšã«æ³šæ)ã",
"title": "éåè«ã®åºç€æ³åïŒã¹ãã³ãäŸã«ãšã£ãŠ"
},
{
"paragraph_id": 190,
"tag": "p",
"text": "ãã®ãããªèŠ³æž¬å€ã®é¢æ£åãã©ã説æããããäžã€ã®çŽ çŽãªèãæ¹ã¯ãæ¬æ¥é£ç¶çãªå€ããšããã®ã芳枬éçšã§ã®äœãã®ã¡ã«ããºã ã§é¢æ£çã«ãªããšèãããã®ã¡ã«ããºã ãè¿œæ±ããããšã ãããæ ¹åºã§ã¯é£ç¶ãªãã®ãäœãã®åå ã§é¢æ£åãããšèããã®ã§ããããããéåååŠã§ã¯ãã®ãããªæ¹éã¯ãšããªãã芳枬å€ãé¢æ£åããããšãããæ ¹åºã®æ³åãèªç¶ã®æ¬æ§ã§ãããšæãããããé©åã«èšè¿°ããæ°åŠçãªæ³åãäžããã®ã§ããã以äžã§ãã®æ³åãè¿°ã¹ãããããã¯å¥ã®æ³å(äŸãã°å€å
žååŠ)ããè«ççã«å°ããããã®ã§ã¯ãªããããèªèº«ãããã°ãå
¬çãã§ããããããæ£ãããã©ããã¯å®éšçµæãäºèšã»åçŸã§ãããã«ããå€å®ããããç¹ã«å€å
žååŠãé»ç£æ°åŠã¯ããç¯å²å
ã§å®éšãšåãããšã確ç«ãããçè«ã§ããããããããããã®ãå
¬çãããå°åºãããªããã°ãªããªãã",
"title": "éåè«ã®åºç€æ³åïŒã¹ãã³ãäŸã«ãšã£ãŠ"
},
{
"paragraph_id": 191,
"tag": "p",
"text": "以äžããŸãã¹ãã³ãšããç¹æ®ãªå Žåã«ã€ããŠè¿°ã¹ããäžè¬çãªå Žåãžã®æ¡åŒµã¯ãå°ãªããšã圢åŒäžã¯åçŽãªããšãšãªãã",
"title": "éåè«ã®åºç€æ³åïŒã¹ãã³ãäŸã«ãšã£ãŠ"
},
{
"paragraph_id": 192,
"tag": "p",
"text": "ã¹ãã³ããã€ç©çéã¯ãã®xæåsxãyæåsy, zæåszã§ãã(äžè¬ã®æ¹åã®æåã¯ãããã®äžæ¬¡çµåãšãªã)ããããã®ç©çéã¯ãã2x2è¡å(Pauliè¡åãšåŒã°ãã)ã«å¯Ÿå¿ãããsxã«å¯Ÿå¿ããè¡åãXãšæžããsy,szããããã«å¯Ÿå¿ããè¡åãY,Zãšæžãããšã«ãããšã",
"title": "éåè«ã®åºç€æ³åïŒã¹ãã³ãäŸã«ãšã£ãŠ"
},
{
"paragraph_id": 193,
"tag": "p",
"text": "X = ( 0 1 1 0 ) {\\displaystyle X={\\begin{pmatrix}0&1\\\\1&0\\end{pmatrix}}} Y = ( 0 â i i 0 ) {\\displaystyle Y={\\begin{pmatrix}0&-i\\\\i&0\\end{pmatrix}}} Z = ( 1 0 0 â 1 ) {\\displaystyle Z={\\begin{pmatrix}1&0\\\\0&-1\\end{pmatrix}}}",
"title": "éåè«ã®åºç€æ³åïŒã¹ãã³ãäŸã«ãšã£ãŠ"
},
{
"paragraph_id": 194,
"tag": "p",
"text": "ã察å¿ãããã®æå³ã¯æ®µéçã«èª¬æããŠããããŸãéèŠãªã®ã¯èŠ³æž¬å€ãåãåŸãå€ã決ããããããšã§ãããç©çészãäŸã«ãšããš",
"title": "éåè«ã®åºç€æ³åïŒã¹ãã³ãäŸã«ãšã£ãŠ"
},
{
"paragraph_id": 195,
"tag": "p",
"text": "szã®æž¬å®å€ã«ãªãããã®ã¯å¯Ÿå¿ããè¡åZã®åºæå€ã®ã¿ãã€ãŸãszã®æž¬å®å€ã1, -1ã«éãããã®ã¯ã察å¿ããZã®åºæå€ã1, -1ã ãã ããã§ããã",
"title": "éåè«ã®åºç€æ³åïŒã¹ãã³ãäŸã«ãšã£ãŠ"
},
{
"paragraph_id": 196,
"tag": "p",
"text": "sx, syã«ã€ããŠãåæ§ãã©ã¡ãã察å¿ããè¡åX,Yã®åºæå€ã1, -1ãããªãã®ã§æž¬å®å€ãšããŠã¯1, -1ããçŸããªãã",
"title": "éåè«ã®åºç€æ³åïŒã¹ãã³ãäŸã«ãšã£ãŠ"
},
{
"paragraph_id": 197,
"tag": "p",
"text": "äžè¬çã«èšããšãã¹ãã³ã«éããç©çéã¯ããè¡å(ããäžè¬çã«ã¯ç·åœ¢æŒç®å)ã«å¯Ÿå¿ãããã€ãŸããã®ç©çéã®èŠ³æž¬å€ã¯å¯Ÿå¿ããè¡åã®åºæå€ã«éããããéã«ãããšããç©çéããšããã枬å®å€ãç¥ããããšæã£ãããããã«å¯Ÿå¿ããè¡åãæ±ããã®åºæå€ãæ±ããã°ããããšããããšã§ããã",
"title": "éåè«ã®åºç€æ³åïŒã¹ãã³ãäŸã«ãšã£ãŠ"
},
{
"paragraph_id": 198,
"tag": "p",
"text": "ã§ã¯å¯Ÿå¿ããè¡å(ç·åœ¢æŒç®å)ãã©ãæ±ããããšããçåãåœç¶æµ®ãã¶ããããã¯æ±ãç©çç³»åã
ã®åé¡ã«ãªããåºæ¬çãªã®ã¯æ£æºéååãšåŒã°ããææ³ã§ãå€å
žååŠã®ãã¢ãœã³æ¬åŒ§ãšåŒã°ãããã®ããæŒç®åãæºããã¹ã亀æé¢ä¿ãæšæž¬ãããããæºãããããªæŒç®åãæ¢ããç¹ã«ãã®ãããªææ³ããè§éåéã®äžè¬è«ãå±éã§ããäžã§å°å
¥ããã¹ãã³ã®Pauliè¡åã¯ãã®ç¹å¥ãªå ŽåãšããŠåŸãããã",
"title": "éåè«ã®åºç€æ³åïŒã¹ãã³ãäŸã«ãšã£ãŠ"
},
{
"paragraph_id": 199,
"tag": "p",
"text": "äœãåºæ¬çãªç©çéã®è¡åãåããã°ããããã®é¢æ°ã«ãªã£ãŠããç©çéã®è¡åã¯è¡å代æ°ã«ããåŸããããäŸãã° s x + s y {\\displaystyle sx+sy} ãšããç©çéã«å¯Ÿå¿ããè¡å㯠X + Y {\\displaystyle X+Y} ã«ãªãããã®åºæå€ã¯(æ®éã®ç·åœ¢ä»£æ°ã®æ¹æ³ã§èšç®ãããš) ± 2 {\\displaystyle \\pm {\\sqrt {2}}} ãªã®ã§ s x + s y {\\displaystyle sx+sy} ããšããã芳枬å€ã¯ ± 2 {\\displaystyle \\pm {\\sqrt {2}}} ã®ã©ã¡ããã«ãªããåŸã£ãŠæ±ãç³»ã§åºæ¬çãªç©çé(äŸãã°äœçœ®xãšéåép)ã«å¯Ÿå¿ããæŒç®åãåããã°ããã®ç³»ã®ä»»æã®ç©çé(åºæ¬çãªç©çéã®é¢æ°ã«ãªã£ãŠããéãäŸãã°ãšãã«ã®ãŒ p^2/(2m)+V(x))ã察å¿ããè¡åã¯æŒç®åã®ä»£æ°(ç·åœ¢ä»£æ°)ã§åãã£ãŠããŸãã®ã§ããã",
"title": "éåè«ã®åºç€æ³åïŒã¹ãã³ãäŸã«ãšã£ãŠ"
},
{
"paragraph_id": 200,
"tag": "p",
"text": "次ã«ãé¢æ£çãªèŠ³æž¬å€(ç©çéã«å¯Ÿå¿ããè¡åã®åºæå€)ã®ã©ãã芳枬ããããã®èŠåãè¿°ã¹ãããŸããã¹ãã³ã®ç¶æ
ã¯ã¹ãã³ã®ç©çéã«å¯Ÿå¿ããè¡å(X,Y,Z)ãäœçšãããã¯ãã«ãå³ã¡2è¡1åã®è€çŽ åãã¯ãã« ( α 0 α 1 ) {\\displaystyle {\\begin{pmatrix}\\alpha _{0}\\\\\\alpha _{1}\\end{pmatrix}}} ã§è¡šãããããã㧠α 0 , α 1 {\\displaystyle \\alpha _{0},\\alpha _{1}} ã¯ã©ã¢ããè€çŽ æ°ã ãã次ã®æ£èŠåæ¡ä»¶ãæºãããã®ãšãã | α 0 | 2 + | α 1 | 2 = 1 {\\displaystyle |\\alpha _{0}~|^{2}+|\\alpha _{1}|^{2}=1} ããã®ãããªè€çŽ åãã¯ãã«ãDiracã«ããããã©ã±ããèšå·ãã䜿ãããã±ããã | α > {\\displaystyle |\\alpha >} ã§è¡šãã",
"title": "éåè«ã®åºç€æ³åïŒã¹ãã³ãäŸã«ãšã£ãŠ"
},
{
"paragraph_id": 201,
"tag": "p",
"text": "| α >= ( α 0 α 1 ) {\\displaystyle |\\alpha >={\\begin{pmatrix}\\alpha _{0}\\\\\\alpha _{1}\\end{pmatrix}}}",
"title": "éåè«ã®åºç€æ³åïŒã¹ãã³ãäŸã«ãšã£ãŠ"
},
{
"paragraph_id": 202,
"tag": "p",
"text": "ç·åœ¢ä»£æ°ã«ãããšãè€çŽ åãã¯ãã«å士ã®éã«ã¯èªç¶ã«å
ç©ãå®çŸ©ããããã±ãã | α >= ( α 0 α 1 ) {\\displaystyle |\\alpha >={\\begin{pmatrix}\\alpha _{0}\\\\\\alpha _{1}\\end{pmatrix}}} ãš | β >= ( β 0 β 1 ) {\\displaystyle |\\beta >={\\begin{pmatrix}\\beta _{0}\\\\\\beta _{1}\\end{pmatrix}}} ã®éã®å
ç© ( | α > , | β > ) {\\displaystyle (|\\alpha >,|\\beta >)} ã¯æ¬¡ã§äžãããã:",
"title": "éåè«ã®åºç€æ³åïŒã¹ãã³ãäŸã«ãšã£ãŠ"
},
{
"paragraph_id": 203,
"tag": "p",
"text": "( | α > , | β > ) = α 0 â β 0 + α 1 â β 1 {\\displaystyle (|\\alpha >,|\\beta >)=\\alpha _{0}^{*}\\beta _{0}+\\alpha _{1}^{*}\\beta _{1}}",
"title": "éåè«ã®åºç€æ³åïŒã¹ãã³ãäŸã«ãšã£ãŠ"
},
{
"paragraph_id": 204,
"tag": "p",
"text": "ãã®å
ç©ã¯ãæåãå®æ°ã®å Žåã«ã¯æ®éã®å®ãã¯ãã«å士ã®å
ç©ã«ãªãããè€çŽ æ°ã®å Žåã«ã¯å·ŠåŽã®èŠçŽ ã«è€çŽ å
±åœ¹ãåããããå®çŸ©ããçç±ã¯ããèªåèªèº«ãšã®å
ç© ( | α > , | α > ) {\\displaystyle (|\\alpha >,|\\alpha >)} ããå¿
ã0以äžã®å®æ°ã«ãªãããã«ããããã§ãããç¹ã«äžèšã®èŠæ Œåæ¡ä»¶ã¯ ( | α > , | α > ) = 1 {\\displaystyle (|\\alpha >,|\\alpha >)=1} ãšæžãããšãã§ããã",
"title": "éåè«ã®åºç€æ³åïŒã¹ãã³ãäŸã«ãšã£ãŠ"
},
{
"paragraph_id": 205,
"tag": "p",
"text": "ã§ã¯ããã®ã±ããã®ç©ççæå³ã«ã€ããŠè¿°ã¹ãããäžã§å°å
¥ãããzåãã®ç¶æ
ããå³ã¡szã芳枬ããã°å¿
ãsz=1ã®çµæãåŸãããç¶æ
ã¯ãè¡åZã®åºæå€1ã®åºæãã¯ãã«(ã§èŠæ Œåããããã®)ã§èšè¿°ããããã€ãŸããszã枬å®ããã°ãçµæãå¿
ãsz=1ã«ãªãç¶æ
ãè¡šãã±ãããã|sz=1>ãšæžãããšã«ãããšæ¬¡ãæç«:",
"title": "éåè«ã®åºç€æ³åïŒã¹ãã³ãäŸã«ãšã£ãŠ"
},
{
"paragraph_id": 206,
"tag": "p",
"text": "| s z = 1 >= ( 1 0 ) {\\displaystyle |sz=1>={\\begin{pmatrix}1\\\\0\\end{pmatrix}}}",
"title": "éåè«ã®åºç€æ³åïŒã¹ãã³ãäŸã«ãšã£ãŠ"
},
{
"paragraph_id": 207,
"tag": "p",
"text": "(å®éã«ã¯ãã®æåã§1ã®ä»£ããã«çµ¶å¯Ÿå€1ã®ä»»æã®è€çŽ æ° e i Ξ {\\displaystyle e^{i\\theta }} ããããŠãåããªã®ã ãããã®ä»»ææ§ã«ã€ããŠã¯åŸã§è¿°ã¹ãããšããããåäœåºæãã¯ãã«ã®äžã§äžçªæåãç°¡åãªãã®ãéžãã ãšèããŠã»ããã)",
"title": "éåè«ã®åºç€æ³åïŒã¹ãã³ãäŸã«ãšã£ãŠ"
},
{
"paragraph_id": 208,
"tag": "p",
"text": "ããã¯äžè¬çã«æ¡åŒµããããå³ã¡ãä»»æã®ç©çéAã«å¯ŸããŠãAã枬å®ãããšãã«ç¢ºå®ã«æž¬å®å€aãåŸãããç¶æ
ã¯ãæ°åŠçã«ã¯Aã«å¯Ÿå¿ããè¡å(ãŸãã¯æŒç®å)ã®åºæå€aã®åºæãã¯ãã«(ã§èŠæ Œåããããã®)ã§èšè¿°ãããããã®ãããªç¶æ
ããããç¥ããèšãæ¹ã§ç©çéAã®åºæå€aã®åºæç¶æ
ãšåŒã¶ã",
"title": "éåè«ã®åºç€æ³åïŒã¹ãã³ãäŸã«ãšã£ãŠ"
},
{
"paragraph_id": 209,
"tag": "p",
"text": "ã¹ãã³ã®äŸã«æ»ããšãsxã枬å®ããŠå¿
ãsx=1ã®çµæãåŸãããç¶æ
|sx=1>ã¯ãè¡åXã®åºæå€1ã®åºæç¶æ
ãªã®ã§",
"title": "éåè«ã®åºç€æ³åïŒã¹ãã³ãäŸã«ãšã£ãŠ"
},
{
"paragraph_id": 210,
"tag": "p",
"text": "| s x = 1 >= 2 â 1 / 2 ( 1 1 ) {\\displaystyle |sx=1>=2^{-1/2}{\\begin{pmatrix}1\\\\1\\end{pmatrix}}}",
"title": "éåè«ã®åºç€æ³åïŒã¹ãã³ãäŸã«ãšã£ãŠ"
},
{
"paragraph_id": 211,
"tag": "p",
"text": "å¿
ãsx=-1ã®çµæãåŸãããç¶æ
ã¯",
"title": "éåè«ã®åºç€æ³åïŒã¹ãã³ãäŸã«ãšã£ãŠ"
},
{
"paragraph_id": 212,
"tag": "p",
"text": "| s x = â 1 >= 2 â 1 / 2 ( 1 â 1 ) {\\displaystyle |sx=-1>=2^{-1/2}{\\begin{pmatrix}1\\\\-1\\end{pmatrix}}}",
"title": "éåè«ã®åºç€æ³åïŒã¹ãã³ãäŸã«ãšã£ãŠ"
},
{
"paragraph_id": 213,
"tag": "p",
"text": "ã§ã¯ãszã枬å®ããéã«ãç¶æ
ãszã®åºæç¶æ
ã§ãªãã£ããçµæã¯ã©ããªãã ããããããã§å§ããŠå®éšãšæ¯ã¹ãããèšè¿°ãçŸãããéåååŠãäžããäºèšã¯æ¬¡ã®éãã",
"title": "éåè«ã®åºç€æ³åïŒã¹ãã³ãäŸã«ãšã£ãŠ"
},
{
"paragraph_id": 214,
"tag": "p",
"text": "ã¹ãã³ã®ç¶æ
| α > {\\displaystyle |\\alpha >} ãszã®åºæç¶æ
ãšã¯éããªãå Žåã«szã枬å®ãããšããã®çµæ(枬å®å€ã1ã«ãªãã-1ã«ãªãã)ã¯ã©ã³ãã ãªäºè±¡ãšãªãã確ççã«ããäºèšã§ããªãããã®ç¢ºçã¯ããšã®ç¶æ
ãšåºæç¶æ
ã®å
ç©ã®çµ¶å¯Ÿå€èªä¹ã§äžãããããäŸãã°sz=1ãšãªã確çP(sz=1)ã¯",
"title": "éåè«ã®åºç€æ³åïŒã¹ãã³ãäŸã«ãšã£ãŠ"
},
{
"paragraph_id": 215,
"tag": "p",
"text": "P ( s z = 1 ) = | ( | s z = 1 > , | α > ) | 2 = | α 0 | 2 {\\displaystyle P(sz=1)=|(|sz=1>,|\\alpha >)|^{2}=|\\alpha _{0}|^{2}}",
"title": "éåè«ã®åºç€æ³åïŒã¹ãã³ãäŸã«ãšã£ãŠ"
},
{
"paragraph_id": 216,
"tag": "p",
"text": "åæ§ã«ãsx=1ã«ãªã確çP(sx=1)ã¯",
"title": "éåè«ã®åºç€æ³åïŒã¹ãã³ãäŸã«ãšã£ãŠ"
},
{
"paragraph_id": 217,
"tag": "p",
"text": "P ( s x = 1 ) = | ( | s x = 1 > , | α > ) | 2 = | α 0 + α 1 2 | 2 {\\displaystyle P(sx=1)=|(|sx=1>,|\\alpha >)|^{2}=|{\\frac {\\alpha _{0}+\\alpha _{1}}{2}}|^{2}}",
"title": "éåè«ã®åºç€æ³åïŒã¹ãã³ãäŸã«ãšã£ãŠ"
},
{
"paragraph_id": 218,
"tag": "p",
"text": "ç¹ã«åã®äŸãšããŠåãäžãããã¹ãã³ãxæ¹åãåããŠããå Žåã«szã枬å®ããçµæã¯ã",
"title": "éåè«ã®åºç€æ³åïŒã¹ãã³ãäŸã«ãšã£ãŠ"
},
{
"paragraph_id": 219,
"tag": "p",
"text": "P ( s z = 1 ) = | ( | s z = 1 > , | s x = 1 > ) | 2 = | 2 â 1 / 2 | 2 = 1 2 {\\displaystyle P(sz=1)=|(|sz=1>,|sx=1>)|^{2}=|2^{-1/2}|^{2}={\\frac {1}{2}}}",
"title": "éåè«ã®åºç€æ³åïŒã¹ãã³ãäŸã«ãšã£ãŠ"
},
{
"paragraph_id": 220,
"tag": "p",
"text": "ãšãªããå®éšçµæãšãã確çãäžããããã",
"title": "éåè«ã®åºç€æ³åïŒã¹ãã³ãäŸã«ãšã£ãŠ"
},
{
"paragraph_id": 221,
"tag": "p",
"text": "ããã«ãå®éšäŸãšããŠåãäžãããzæ¹åãåããé»åã¹ãã³ã® u â {\\displaystyle {\\vec {u}}} æ¹åã®æå s â â
u â {\\displaystyle {\\vec {s}}\\cdot {\\vec {u}}} ã枬ããå Žåã®çµæãèšç®ããŠã¿ããæ³åãã",
"title": "éåè«ã®åºç€æ³åïŒã¹ãã³ãäŸã«ãšã£ãŠ"
},
{
"paragraph_id": 222,
"tag": "p",
"text": "P ( s â â
u â = 1 ) = | ( | s z = 1 > , | s â â
u â = 1 > ) | 2 {\\displaystyle P({\\vec {s}}\\cdot {\\vec {u}}=1)=|(|sz=1>,|{\\vec {s}}\\cdot {\\vec {u}}=1>)|^{2}}",
"title": "éåè«ã®åºç€æ³åïŒã¹ãã³ãäŸã«ãšã£ãŠ"
},
{
"paragraph_id": 223,
"tag": "p",
"text": "åé¡ã¯ | s â â
u â = 1 > {\\displaystyle |{\\vec {s}}\\cdot {\\vec {u}}=1>} ã ãã u â {\\displaystyle {\\vec {u}}} ã®æåãç座æšã§ã®æ¹å Ξ , Ï {\\displaystyle \\theta ,\\phi } ã䜿ã ( sin Ξ cos Ï , sin Ξ sin Ï , cos Ξ ) {\\displaystyle (\\sin \\theta \\cos \\phi ,\\sin \\theta \\sin \\phi ,\\cos \\theta )} ãšè¡šããš",
"title": "éåè«ã®åºç€æ³åïŒã¹ãã³ãäŸã«ãšã£ãŠ"
},
{
"paragraph_id": 224,
"tag": "p",
"text": "s â â
u â = u x X + u y Y + u z Z = ( u z u x â i u y u x + i u y â u z ) = ( cos Ξ e â i Ï sin Ξ e i Ï sin Ξ â cos Ξ ) {\\displaystyle {\\vec {s}}\\cdot {\\vec {u}}=u_{x}X+u_{y}Y+u_{z}Z={\\begin{pmatrix}u_{z}&u_{x}-iu_{y}\\\\u_{x}+iu_{y}&-u_{z}\\end{pmatrix}}={\\begin{pmatrix}\\cos \\theta &e^{-i\\phi }\\sin \\theta \\\\e^{i\\phi }\\sin \\theta &-\\cos \\theta \\end{pmatrix}}}",
"title": "éåè«ã®åºç€æ³åïŒã¹ãã³ãäŸã«ãšã£ãŠ"
},
{
"paragraph_id": 225,
"tag": "p",
"text": "ãã®åºæå€1ã®åºæãã¯ãã«(ã§èŠæ ŒåãããŠãããã®)㯠( cos Ξ 2 e i Ï sin Ξ 2 ) {\\displaystyle {\\begin{pmatrix}\\cos {\\frac {\\theta }{2}}\\\\e^{i^{\\phi }}\\sin {\\frac {\\theta }{2}}\\end{pmatrix}}}",
"title": "éåè«ã®åºç€æ³åïŒã¹ãã³ãäŸã«ãšã£ãŠ"
},
{
"paragraph_id": 226,
"tag": "p",
"text": "ããã䜿ããšæ¬¡ãåŸãããå®éšçµæããã¡ããšåçŸããèšç®çµæãšãªãã",
"title": "éåè«ã®åºç€æ³åïŒã¹ãã³ãäŸã«ãšã£ãŠ"
},
{
"paragraph_id": 227,
"tag": "p",
"text": "P ( s â â
u â = 1 ) = | ( | s z = 1 > , | s â â
u â = 1 > ) | 2 = cos 2 Ξ 2 {\\displaystyle P({\\vec {s}}\\cdot {\\vec {u}}=1)=|(|sz=1>,|{\\vec {s}}\\cdot {\\vec {u}}=1>)|^{2}=\\cos ^{2}{\\frac {\\theta }{2}}}",
"title": "éåè«ã®åºç€æ³åïŒã¹ãã³ãäŸã«ãšã£ãŠ"
},
{
"paragraph_id": 228,
"tag": "p",
"text": "ãããŸã§ç¶æ
ã®æ°åŠçãªèšè¿°ãšæž¬å®ã®é¢ä¿ãæžããã次ã¯ç¶æ
ã®éåæ³åã§ãããç°¡åãªäŸãšããŠã¹ãã³ã«äžæ§ãªç£å Žããããå Žåãèããã",
"title": "éåè«ã®åºç€æ³åïŒã¹ãã³ãäŸã«ãšã£ãŠ"
}
] | null | {{Pathnav|ã¡ã€ã³ããŒãž|èªç¶ç§åŠ|ç©çåŠ|frame=1|small=1}}
{| style="float:right"
|-
|{{Wikipedia|éåååŠ|éåååŠ}}
|-
|{{Wikiversity|Topic:éåååŠ|éåååŠ}}
|}
{{stub}}
== éåååŠãšã¯ ==
* [[éåååŠ/éåååŠãšã¯]]
== éåååŠã®çºå± ==
* [[éåååŠ/éåååŠã®çºå±]]
== å€å
žããã³éåçµ±èšååŠ ==
=== ãã¥ãã³ïŒããã£ã®æ³å ===
[[w:çµæ¶|çµæ¶]]ãæãç©è³ªã®[[w:å
éšãšãã«ã®ãŒ|å
éšãšãã«ã®ãŒ]]ããã³[[w:ç±å®¹é|ç±å®¹é]]ãæ±ããããè°è«ãç°¡åã«ããããã[[w:çµæ¶æ§é |çµæ¶æ§é ]]ã®åäœã§ãã[[w:åäœè|åäœè]] 1 ã€ããšããããã 1 ã€ã®[[w:åå|åå]]ãšèŠãªãããã®ãããªåãæ±ãã¯çµæ¶ã®å
·äœçæ§é ã«ãããªãæ®éçãªæ§è³ªãè°è«ããäžã§éèŠã§ãããçµæ¶ãæ§æããååã¯äºãã«[[w:çžäºäœçš|çžäºäœçš]]ããããæãäž»èŠãªå¹æãåãŒãã®ã¯æè¿æ¥æ Œåç¹äžã®ååã§ãããããé è·é¢ã«ããååå士ã®çžäºäœçšã¯ãããã®éã«ååšããååå士ã®çžäºäœçšãšããŠå«ããããšãã§ããããããŸã§ã§æ±ãã¹ãåé¡ã¯ããªãç°¡çŽ ã«ãªã£ãããçµæ¶ååã®éåãããã»ã©æ¿ãããã®ã§ãªãå Žåã«ã¯ïŒæ°äœååéåè«ã®èããæŽçšããã°ããã®ç¶æ³ã¯çµæ¶å
éšã®[[w:枩床|枩床]]ã極ããŠäœãããšã«çžåœããïŒãåååã¯åºå®ããã平衡ç¹è¿åãæ¯åããŠãããšèŠãªãããšãã§ããããã®å Žåãåå 1 〠1 ã€ã®éåã¯ç¬ç«ãªãã®ãšããŠåãæ±ãããšãã§ãã平衡ç¹è¿åã§éåããåå 1 åã®åšãã®[[w:ããã³ã·ã£ã«|ããã³ã·ã£ã«ãšãã«ã®ãŒ]]㯠<math>U</math> ã¯ããã®å¹³è¡¡ç¹ãåç¹ãšããŠä»¥äžã®ããã«è¡šãããšãã§ããã
:<math>U=\frac{1}{2}k_x x^2 + \frac{1}{2}k_y y^2 + \frac{1}{2}k_z z^2</math>
ååã®åšãã®ããã³ã·ã£ã«ã¯ <math>x, y, z</math> ã® 3 æåã«å¯Ÿå¿ãã 3 ã€ã®[[w:èªç±åºŠ|èªç±åºŠ]]ãæã£ãŠããã
ãŸãååã®[[w:éåãšãã«ã®ãŒ|éåãšãã«ã®ãŒ]] <math>K</math> ã¯
:<math>K=\frac{1}{2}mv_x^2 + \frac{1}{2}mv_y^2 + \frac{1}{2}mv_z^2</math>
ãšãªã£ãŠ <math>v_x, v_y, v_z</math> ã® 3 ã€ã®é床æåã«å¯Ÿå¿ãã 3 ã€ã®èªç±åºŠãæã£ãŠããããããã®éåãšãã«ã®ãŒãšããã³ã·ã£ã«ãšãã«ã®ãŒã®åã¯ä»ãç±æ¯åãããåå 1 åãæã€å
šãšãã«ã®ãŒã«å¯Ÿå¿ããååã®ãšãã«ã®ãŒã®èªç±åºŠã¯åãã㊠6 ãšæ°ããããšãã§ããããªããªããã®ãšãã«ã®ãŒã¯ 3 次å
空éäžãéåããç²åã®äœçœ®ãšé床㮠6 ã€ã®ç¬ç«å€æ° <math>x, y, z, v_x, v_y, v_z</math> ã«ãã£ãŠæ±ºå®ãããããã§ããã
å€å
žçãªçµ±èšååŠã«ãããŠã[[w:ç±ååŠç平衡|平衡ç¶æ
]]ã§ã¯[[w:ãšãã«ã®ãŒçé
åã®æ³å|ãšãã«ã®ãŒçåé
ã®æ³å]]ãæãç«ã€ããšãããç¬ç«ã«æ¯åããçµæ¶ååãããªãç³»ã«ã€ããŠãèªç±åºŠ 1 ã€ã«ã€ã <math>kT/2</math> ã®ãšãã«ã®ãŒãåé
ãããç³»å
šäœã®ãšãã«ã®ãŒ <math>E</math> ãšã®éã«
:<math>E = N\times 6 \times \frac{kT}{2} = 3NkT</math>
ãšããé¢ä¿ãæãç«ã€ããã㧠<math>N</math> ã¯çµæ¶å
éšã«å«ãŸããçµæ¶ååã®æ°ã§ããããŸã <math>k \simeq 1.38\times 10^{-23}~\mathrm{[J/K]}</math> ã¯[[w:ãã«ããã³å®æ°|ãã«ããã³å®æ°]]ã<math>T</math> ã¯[[w:ç±ååŠæž©åºŠ|ç±ååŠæž©åºŠ]]ã§ããïŒä»¥äžã枩床ãšã¯ç±ååŠæž©åºŠã®ããšãæããšããïŒããã«ããã³å®æ° <math>k</math> ãš[[w:ã¢ãŽã©ã¬ããå®æ°|ã¢ãŽã©ã¬ããå®æ°]] <math>N_\mathrm{A}</math> ã®ç©ã¯[[w:æ°äœå®æ°|æ°äœå®æ°]] <math>R</math> ãäžããã
:<math>k =\frac{R}{N_\mathrm{A}}.</math>
çµæ¶ååã®åæ° <math>N</math> ãã¢ãŽã©ã¬ããå®æ°ãçšããŠ[[w:ç©è³ªé|ç©è³ªé]] <math>n = N/N_\mathrm{A}</math> ã«çœ®ãæããã°ãäžè¿°ã®é¢ä¿ã¯æ°äœå®æ°ã䜿ã£ãŠä»¥äžã®ããã«æžãçŽãããšãã§ããã
:<math>E = 3NkT = 3nN_\mathrm{A}\frac{R}{N_\mathrm{A}}T = 3nRT.</math>
æ°äœå®æ°ãçšãã圢åŒã§ã¯ååæ°ãçŸããã代ããã«ç©è³ªéãšããéãå®çŸ©ãããããšã«æ³šæãããããã«ããã³å®æ°ãåºæ¬å®æ°ãšããç«å Žã§ã¯åãªã眮ãæãã«éããªãããæ°äœå®æ°ãåºæ¬å®æ°ãšããå Žåããã«ããã³å®æ°ãçšãã圢åŒãäžããã«ã¯ååã®ååšããããããŸã«èªããå¿
èŠãããã
çµæ¶ã®[[w:æ¯ç±å®¹é|1ã¢ã«åœããã®ç±å®¹é]] <math>C</math> ã¯ã枩床å€åã«å¯Ÿãããšãã«ã®ãŒã®å¢æžã®å²åãå
šäœã®ç©è³ªéã§å²ã£ããã®ã«çžåœããããã
:<math>C = \frac{1}{n}\frac{\partial E}{\partial T} = 3R</math>
ãšãªããããã¯åžžæž© (<math>T \sim 300 ~\mathrm{[K]}</math>) ã§ã®çµæ¶ã®æ¯ç±ã®æž¬å®å€ã«äžèŽããããã®æ¯ç±ã¯æž©åºŠäŸåæ§ããªããåžžæž©ã®åºäœã®ã¢ã«æ¯ç±ãã»ãšãã©äžå®ã§ããããšã瀺ããåºäœã®ã¢ã«æ¯ç±ãåžžæž©ã§äžå®ã®å€ãåããšããæ³åã¯'''[[w:ãã¥ãã³ïŒããã£ã®æ³å|ãã¥ãã³ïŒããã£ã®æ³å]]''' (Dulong-Petit law) ãšåŒã°ããããã¥ãã³ãšããã£ã¯ãã®æ³åãå€ãã®ç©è³ªã«ã€ããŠè¯ã粟床ã§æãç«ã€ããšãå®éšçã«çºèŠãã人ç©ã§ããã
ãã¥ãã³ïŒããã£ã®æ³åãæãç«ã€ãããªç³»ã«ã€ããŠãåžžæž©ããé¥ãã«äœæž©ã®é åã«ãããŠãæ¯ç±ãäžå®ã§ããããšãäºæ³ãããããå®éšã«ããäœæž©é åã§ã¯æ¯ç±ã¯ 0 ã«åæããããšã瀺åããçµæãåŸãããŠãããäœæž©é åã§ã®æ¯ç±ã®æž©åºŠäŸåæ§ããã³æ¯ç±ã®å€ã¯ãã¥ãã³ïŒããã£ã®æ³åããå€ããããšãç¥ãããŠããã
=== äœæž©ã§ã®åºäœã®æ¯ç± ===
ä»®ã«æ¯åæ°ã <math>\nu</math> ã®[[w:調åæ¯åå|調åæ¯åå]]ã®ãšãã«ã®ãŒã¯ <math>h\nu</math> ã®æŽæ°å <math>nh\nu</math> ããåããªããšããïŒãã ã <math>n</math> ã¯è² ã§ãªããšããïŒãçµæ¶å
éšã® <math>N</math> åã®ååãããããæ¯åæ° <math>\nu</math> ã®èª¿åæ¯ååãšèŠãªããããšãä»®å®ããå
šéšã§ <math>3N</math> ã®èªç±åºŠãæ〠1 次å
調åæ¯ååã®éãŸããšããã
ãããããšãæç±çæ³æ°äœã§ãåååã®ãšãã«ã®ãŒãè¡çªãªã©ã«ããå€åããããã«ïŒæ°äœå
šäœã®å
šãšãã«ã®ãŒã¯äžå®ïŒãåºäœã®åæ¯ååã®ãšãã«ã®ãŒã <math>0, h\nu, 2h\nu, 3h\nu,\dots</math> ãšããé£ã³é£ã³ã®å€ã移ãå€ãã£ãŠãããšããã
ãã㊠<math>3N</math> åã®æ¯ååã®ãšãã«ã®ãŒã®å¹³åå€ã¯ãä»®ã«äžèšã®ããã«ããã«ããã³å åã䜿ã£ãŠèšç®ã§ããã¯ããã ãšä»®å®ããïŒâ» ãã«ããã³å åã«ã€ããŠåãããªããã°ãèšäºã[[é«çåŠæ ¡ååŠâ
¡/ååŠåå¿ã®éã]]ãã®[[w:åå¿é床è«|åå¿é床è«]]ã§ã®èª¬æïŒé«æ ¡ïœå€§åŠåçŽã¬ãã«ïŒããŸãã¯èšäºã[[çµ±èšååŠI ãã¯ãã«ããã«ã«éå]]ãã®[[w:ã¹ã¿ãŒãªã³ã°ã®å
¬åŒ|ã¹ã¿ãŒãªã³ã°ã®å
¬åŒ]]ãçšããçµ±èšååŠã¢ãã«ã«ãã説æïŒå€§åŠäžçŽïœïŒãåç
§ãçµ±èšååŠçã«ã¯ä»ã«ããã©ã°ã©ã³ãžã¥ã®æªå®ä¹æ°æ³ãçšããŠãã«ããã³å åã®å°å
¥ãè¡ãæ¹æ³ãããïŒã
1åã®æ¯ååããšãã«ã®ãŒ <math>\varepsilon_n = nh\nu</math> ããšã[[w:確ç|確ç]]ã <math>\operatorname{Pr}(n)</math> ãšãããã®ç¢ºçããã«ããã³å åã«æ¯äŸãããšããã
:<math>\operatorname{Pr}(n) = \frac{1}{Z}e^{-\frac{\varepsilon_n}{kT}} = \frac{1}{Z}e^{-\frac{nh\nu}{kT}}</math>
ãã®é¢æ°ãéåžžã®æå³ã®ç¢ºçã§ããããã«ã¯ããã¹ãŠã®ãšãã«ã®ãŒç¶æ
ã«ã€ããŠã®åã 1 ã«èŠæ ŒåãããŠããå¿
èŠããããããæ¯äŸä¿æ°ã® <math>Z</math> ã¯ã
:<math>Z = \sum_{m=0}^{\infty} e^{-\frac{\varepsilon_m}{kT}} = \sum_{m=0}^{\infty} e^{-\frac{mh\nu}{kT}}</math>
ãšãªããªããã°ãªããªãïŒãªãããã®Zã®ãããªéåçµ±èšèšç®ã®èŠæ Œåã®ããã®é¢æ°ã®ããšããåé
ä¿æ°ããŸãã¯ãç¶æ
åããšããïŒããã®ãšã確ç <math>\operatorname{Pr}(n)</math> ã¯
:<math>\operatorname{Pr}(n) = \frac{\exp\left(-\frac{nh\nu}{kT}\right)}{\sum_{m=0}^{\infty} \exp\left(-\frac{mh\nu}{kT}\right)}</math>
ãšãªãïŒ<math>\exp(\cdot)</math> ã¯[[w:ææ°é¢æ°|ææ°é¢æ°]]ïŒããšãã«ã®ãŒã®æåŸ
å€ <math>\langle\varepsilon\rangle</math> ã¯ã
:<math>\begin{align}
\langle\varepsilon\rangle &= \sum_{n=0}^{\infty} \left\{\varepsilon_n\operatorname{Pr}(n)\right\} \\
&=\sum_{n=0}^{\infty} \left\{nh\nu
\left(\frac{\exp\left(-\frac{nh\nu}{kT}\right)}{\sum_{m=0}^{\infty} \exp\left(-\frac{mh\nu}{kT}\right)}\right)
\right\}\\
&=\frac{1}{\sum_{m=0}^{\infty} \exp\left(-\frac{mh\nu}{kT}\right)}
\sum_{n=0}^{\infty} \left\{nh\nu\exp\left(-\frac{nh\nu}{kT}\right)\right\}
\end{align}</math>
ãšè¡šãããšãã§ãããããã§ãã«ããã³å®æ°ãšæž©åºŠã®ç©ã®éæ°ã <math>\beta = (kT)^{-1}</math> ãšãïŒããã¯[[w:é枩床|é枩床]]ãšåŒã°ããïŒããšãã«ã®ãŒã®æåŸ
å€ãé枩床 <math>\beta</math> ã«é¢ãã埮åãçšããŠè¡šãã°ã
:<math>Z(\beta) = \sum_{m=0}^{\infty} \exp\left(-\frac{\varepsilon_m}{kT}\right) = \sum_{m=0}^{\infty} \exp\left(-\frac{mh\nu}{kT}\right)</math>
ããã
:<math>\begin{align}
\langle\varepsilon\rangle &= -\frac{1}{Z(\beta)}\frac{d}{d\beta}Z(\beta)\\
&=-\frac{d}{d\beta}\ln Z(\beta)
\end{align}</math>
ãåŸããããã§å
·äœçã«å³èŸºã®å¯Ÿæ°ãèšç®ããã°ã[[w:çæ¯æ°å|çæ¯çŽæ°]]ã®åã®å
¬åŒãçšããŠã
:<math>\begin{align}
Z(\beta) &= \sum_{m=0}^{\infty}\left(e^{-\beta h\nu}\right)^n\\
&= \left(1 - e^{-\beta h\nu}\right)^{-1}
\end{align}</math>
ãšæžãçŽãããããçµå±ãšãã«ã®ãŒã®æåŸ
å€ã¯
:<math>\begin{align}
\langle\varepsilon\rangle &= \frac{d}{d\beta}\ln \left(1 - e^{-\beta h\nu}\right)\\
&= h\nu\frac{e^{-\beta h\nu}}{1 - e^{-\beta h\nu}}\\
&= \frac{h\nu}{e^{\beta h\nu} - 1}
\end{align}</math>
ãšè¡šãããšãã§ããã
=== ãã©ã³ã¯ååž ===
åç¯ã§åŸã調åæ¯ååã®ãšãã«ã®ãŒã®æåŸ
å€ã«ã€ããŠã調åæ¯ååã®ãšãã«ã®ãŒéå <math>h\nu</math> ã«æããé¢æ°
:<math>\frac{1}{e^{\beta h\nu} - 1}</math>
ã'''ãã©ã³ã¯ååž'''ãšåŒã¶ã枩床ããšãã«ã®ãŒéåã®å€§ããã«æ¯ã¹ãŠå
åå°ããå Žåã<math>kT \ll h\nu</math> ãã <math>1 \ll \beta h\nu</math> ãšããé¢ä¿ãæãç«ã¡ããã©ã³ã¯ååžã¯ã
:<math>\frac{1}{e^{\beta h\nu} - 1} \approx e^{-\beta h\nu}</math>
ãšãã圢ã«æŒžè¿ããã
ãã®ãã©ã³ã¯ååžãå©çšããŠãçµæ¶å
éšã®æ¯ç±ãåŸãããšãèãããçµæ¶ãç¬ç«ãªèª¿åæ¯ååã®éãŸããšèŠãªãæãç°¡åãªå Žåã«ã€ããŠãçµæ¶å
šäœã®å
éšãšãã«ã®ãŒãããããã®èª¿åæ¯ååã®ãšãã«ã®ãŒæåŸ
å€ã®åã«ã»ãšãã©çããããšããã
:<math>E = 3\langle\varepsilon\rangle = 3N\frac{h\nu}{e^{\beta h\nu} - 1}</math>
ãšè¡šãããšãã§ããããã®å Žåãçµæ¶ååã«å¯Ÿããæ¯ç±å®¹éã¯ã
:<math>c = \frac{1}{N}\frac{dE}{dT} = \frac{1}{N}\frac{d\beta}{dT}\frac{dE}{d\beta} = 3k(\beta h\nu)^2\frac{e^{\beta h\nu}}{(e^{\beta h\nu} - 1)^2}</math>
ãšãªãããã®æ¯ç±ã®äœæž©é åã§ã®æ¯ãèãã¯ã
:<math>c = 3k(\beta h\nu)^2\frac{e^{\beta h\nu}}{(e^{\beta h\nu} - 1)^2} = 3k\frac{(\beta h\nu)^2}{e^{\beta h\nu}} \to 0</math>
ã§ããã0 ãžåæãããšããç¹ã§äœæž©é åã«ãããåºäœæ¯ç±ã®æ¯ãèããšåèŽãããé«æž©é åã«ãããŠïŒããã§ããé«æž©ãšã¯èª¿åæ¯ååã®ãšãã«ã®ãŒéåã«å¯ŸããŠã§ãããåºäœã®èç¹æž©åºŠã«æ¯ã¹ãã°äŸç¶äœæž©ã§ããïŒãæ¯ç±ã¯
:<math>c = 3ke^{\beta h\nu}\left(\frac{\beta h\nu}{e^{\beta h\nu} - 1}\right)^2 \to 3k</math>
ãšãªããé«æž©é åã®æ¯ç±ã«ã€ããŠãååæ¯ç± <math>c</math> ãå®ç©ã¢ã«æ¯ç± <math>C</math> ã«çŽããšã
:<math>C = N_\mathrm{A}c \to 3N_\mathrm{A}k = 3R</math>
ãšãªããããã¯ãã¥ãã³ïŒããã£ã®æ³åã«äžèŽãããã€ãŸãããšãã«ã®ãŒã®éååãšããæé ãèžãããšã§äœæž©é åã®æž©åºŠäŸåæ§ãåçŸãã€ã€ãåžžæž©ã§ã¯ãã¥ãã³ïŒããã£ã®æ³åã«æŒžè¿ãããããªååžãåŸãããããšã«ãªãã
== ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã®å°å
¥ ==
ããããã¯ããç©ççãªå®æ°ãæã€ããšãéåååŠçã«ã©ã®ãããªæå³ãæã€ãã«ã€ããŠèãããç©ççãªå®æ°ãšã¯äŸãã°ãããç©äœã®æã€äœçœ®ãéåéã®ããšã§ãããå€å
žååŠã§ã¯ããç©äœã®ç©ççãªç¶æ
ã¯äœçœ®ãéåéãªã©ãæå®ããããšã«ãã£ãŠåŸãããšãåºæ¥ããããã®éã«ç¹å¥ãªé¢ä¿ã¯ç¡ãã£ãããããã¯ããããã®å€ãé©åœã«åã£ãŠãããéã§ãã£ãã®ã§ããã
éåååŠçã«ãããç©äœã®ç©ççç¶æ
ãå®ããéã¯ååšããŠããããã®ãããªéãå®ããããšã§ç©äœãã©ã®ãããªç¶æ
ã«ããããæå®ããããšãåºæ¥ããåé¡ãªã®ã¯ãããå Žåã«ãããŠãããã®éã«ç¹æ®ãªé¢ä¿ãããããããããã®éãä»»æã«éžã¶ããšãåºæ¥ãªããªãããšã§ãããéèŠãªäŸãšããŠãããç©äœã®äœçœ®ãšéåéã¯åæã«å®ããããšãåºæ¥ãªãããã®ããšã¯ãå€å
žçã«ã¯äœçœ®ãšéåéã«ã€ããŠãéåéãç©äœã®äœçœ®ãåãã埮å°å€æã«é¢ããä¿åéã«ãªã£ãŠããããšã«ããããã®ããšã«ã€ããŠã¯[[解æååŠ]]ã®ããŒã¿ãŒã®å®çã詳ããã®ã§ã詳现ãç¥ããããã°åç
§ããããšããããéåååŠã«ãããŠã¯ãéåéã¯ãã£ããŠåãªã芳念äžã®éã§ã¯ãªããç©è³ªæ³¢ã®æ³¢é·ã«é¢ããå®åšçãªéã§ããããšããäºãéèŠã§ããã
ããã§ã[[解æååŠ]]ã®ç¥èãæŽçšããŠãããç©äœã®æã€ãšãã«ã®ãŒEãå€å
žçã«ããã«ããã¢ã³Hãšããéã§è¡šããããããšãçšããã
:<math>
E = H
</math>
ããã§ãããç©ççãªç¶æ
ã®å
šãŠãæ°ãäžãããããšããŠãããã®ç¶æ
å
šäœã§åŒµããããã¯ãã«ãåããéåžžãããç©äœãæã€ç©ççãªç¶æ
ã¯ç¡æ°ã®ãšãã«ã®ãŒãæã¡ããã®ãããªæäœã¯äžå¯èœã«æãããå®éãã®ããšã¯éåååŠã®çºå±ã®åæã«å€§ããªæ°åŠçãªåé¡ãšãªã£ããããããçŸåšã§ã¯ãã¯ãã«ã®å
ç©ã®åãæ¹ãªã©ã工倫ããããšã§ããã®æ§ãªäœæ¥ãå®éå¯èœã§ããããšã瀺ãããŠããã詳ããã¯[[w:ãã«ãã«ã空é]]ãªã©ãåç
§ã
ãã®ããã«å
šãŠã®ç©ççç¶æ
ãæ°ãäžãããããšãããšãããããã®ç¶æ
ã¯ãããšãã«ã®ãŒãæã£ãç¶æ
ãšããŠååšãããäŸãã°ãããç¶æ
<math>\psi _1</math>ããšãã«ã®ãŒ<math>E _1</math>ãæã£ãŠãããšãããæ°åŠçã«ã¯ãã®æ§ãªç¶æ
ã¯ããè¡å<math>\hat H</math>ãçšããŠ
:<math>
\hat H \psi _1 = E _1 \psi _1
</math>
ãšè¡šããããããã§ã<math>\hat H</math>ã¯ãå
šãŠã®æ°ãäžããããç©ççãªç¶æ
ã1ã€ã®åºåºãšããŠæã€ãããªè¡åãšããŠèããããŠãããæŽã«<math>\hat H</math>ã¯ãããããã®ç©ççç¶æ
ã«å¯ŸããŠå¯Ÿè§åãããŠããã
:<math>
\psi _1, \psi _2,\psi _3, \cdots
</math>
ãªã©ã®å
šãŠã®ç©ççç¶æ
ã«å¯ŸããŠå¯Ÿå¿ãããšãã«ã®ãŒ<math>E _1</math>,<math>E _2</math>,<math>E _3</math>ãªã©ãè¿ããã®ãšããã
ãã®ãããªè¡å<math>\hat H</math>ã¯ãå®éã«ãããšãã«ã®ãŒãæã€ç¶æ
ãšããŠã¯ãå€å
žçãªèãæ¹ãšå€åããããšã¯ç¡ãããªããªãã<math>\hat H</math>ã¯ãå€å
žçã«èããŠããååŠç³»ã®äžã«ååšããç©äœãæã€ãšèãããããšãã«ã®ãŒå€ãå
šãŠæã£ãŠãããã®ãšèããããšãåºæ¥ãããã§ããã
ãã®ãããä»®ã«å
šãŠã®éåçç¶æ
ããšãã«ã®ãŒãšããéã ãã§ç¹å®ãããã®ãªãã°ãããååŠç³»ãåãåŸããšãã«ã®ãŒãå
šãŠå®ããããšãéåçç¶æ
ãå
šãŠæ±ããããšã«ãªãããããŸã§ã®è°è«ãããæ°åŠçãªçšèªãçšããŠãŸãšãããšãåºãŠæ¥ãéã§<math>\hat H</math>ã¯å
šãŠã®ç©ççãªç¶æ
ã«ãã£ãŠåŒµãããè¡åã§ããç©ççãªç¶æ
ãè¡šãã<math>\psi</math>ã¯ã<math>\hat H</math>ããããããšã«ãã£ãŠEåããããããªãã¯ãã«ã§ããã®ã§ã<math>\hat H</math>ã®åºæãã¯ãã«ã§ãããšèããããããã®ãšããšãã«ã®ãŒEã¯ãåºæå€æ¹çšåŒ
:<math>
\hat H \psi = E \psi
</math>
ã®åºæå€ã§ããã
ãããŸã§ã®ããšã§ãããããã®éåçç¶æ
ã¯ãšãã«ã®ãŒãšãããã 1ã€ã®éã§å®å
šã«åºå¥ãããããšãä»®å®ããŠæ¥ããå®éã«ã¯ãã®ããšã¯å¿
ãããæ£ãããªãããã2ã€ã®éåçç¶æ
ãçãããšãã«ã®ãŒãæã£ãŠããããšãããããã®æã«ã¯ãåã
ã®éåçç¶æ
ã¯äºãã«åºå¥ããããšãåºæ¥ãªããããããããç¶æ
ãæã£ãŠããéåæ°ã¯éåžžãšãã«ã®ãŒã ãã¯ãªããäœçœ®ãéåéãè§éåéãªã©ãå«ãŸããŠããããã®ãããªéãçšããŠãããã®éãåºå¥ããããšãåºæ¥ãããã®ãšãããšãã«ã®ãŒã®å Žåãšåæ§äœçœ®xãéåépãªã©ãéåçç¶æ
ã«ãã£ãŠåŒµããããè¡åãã®ãããªç©ãšãªãããšãäºæ³ãããïŒãäœçšçŽ ããšãããïŒãããã§ã¯ãããããã®è¡åã«ã€ããŠ<math>\hat x</math>,<math>\hat p</math>ãªã©ãçšããŠè¡åãšããã§ãªãéãåºå¥ããã
ïŒ*泚æ
è¡åã§ããããéãq-numberãè¡åã§ããããªãéãc-numberãšåŒã¶ããšãããïŒ
ãããŸã§ã§äœçœ®xãšéåépãè¡åã§ããããããšãåãã£ãã
ããã§ã以åã®äž»åŒµã§ãããéåè«ã§ããç©äœã®äœçœ®ãšéåéãåæã«å®ããããšãåºæ¥ãªããšããããšãçšããããšãã«ã®ãŒã®æã«ã¯ãç©äœã®ç©çéãå®ããããšã¯å¯Ÿå¿ããç©çéãè¡šããè¡åã察è§åã§ããããšã«å¯Ÿå¿ããŠããããã®ããšãçšãããšãç©äœã®2ã€ã®ç©çéãåæã«å®ããããªããšãã䞻匵ã¯å¯Ÿå¿ãã2ã€ã®ç©çéãåæã«å¯Ÿè§åãããããªåºåºã®åŒµãæ¿ãæ¹ãååšããªãããšã«å¯Ÿå¿ãããå®éã«æ°åŠçãªèšç®ãããããšã§
:<math>
AB = BA
</math>
ãæºãã2ã€ã®è¡åA,Bã«ã€ããŠã¯ããããåæã«å¯Ÿè§åãããããªåºåºãåããããšãç¥ãããããã®ããšã¯äœçœ®ãšéåéãè¡šããè¡åã«ã€ããŠ
:<math>
\hat x \hat p \ne \hat p \hat x
</math>
ãæãç«ã€ããšã瀺ããŠãããããã§ããã®çµæããŸãšããããã«ããã2ã€ã®è¡åA,Bã«å¯ŸããŠãããã®äº€æå<math>[A,B]</math>ãã
:<math>
[A,B] = AB - BA
</math>
ã§å®çŸ©ãããæ§è³ª
:<math>
[A,B] = - [B,A]
</math>
ã«æ³šæããã®ãšãããã®èšå·ãçšãããšäœçœ®ãšéåéã«é¢ããŠ
:<math>
[\hat x, \hat p] \ne 0
</math>
ãæãç«ã€ãå®éã«ã¯å®éšçã«ã<math>\hat x</math>ãš<math>\hat p</math>ã®äº€æåã«é¢ããŠ
:<math>
[\hat x, \hat p] = i \hbar
</math>
ãæãç«ã€ããšãç¥ãããŠãããããã§ã<math>\hbar</math>ã¯ã[[w:ãã©ã³ã¯å®æ°]]ãšåŒã°ãåäœã¯<math>[J\cdot s]</math>ã§äžãããããããã§ãã©ã³ã¯å®æ°ã¯ããããŠå°ããæ°ã§ãããxãpãããçšåºŠå€§ããéãæã€ãããªéåã«ã€ããŠã¯äžã®æ¹çšåŒã®å³èŸºã¯0ãšçãããã®ãšããŠæ±ã£ãŠããããã®ãšãã«ã¯xãšpã¯äº€æå¯èœã§ããã2ã€ã®éãåæã«å®ããããšãåºæ¥ãããã®ããšã¯å€å
žååŠã§ã¯2ã€ã®éãåæã«å®ããããšãå¯èœã§ããããšã«å¯Ÿå¿ããŠãããäžã®ãããªx,pã®äº€æé¢ä¿ãå€å
žååŠãšããé©åããŠããããšãåããã
ãããŸã§ã§éåçãªç¶æ
<math>\psi</math>ã
:<math>
\hat H \psi = E \psi
</math>
ã®åºææ¹çšåŒã§äžããããããšãåãããxãšpã«ã¯
:<math>
[\hat x, \hat p] = i \hbar
</math>
ã®äº€æé¢ä¿ãååšããããšãåãã£ããå®éã«ã¯xãšpã«ã€ããŠäžã®ãããªäº€æé¢ä¿ãæºãããããªè¡åãçšæããããšã¯ãã°ãã°å°é£ã§ããããã®å°é£ã«å¯Ÿå¿ãã
æ°åŠçææ³ãšããŠããã«ãã«ã空éã®1ã€ãšããŠ[[w:é¢æ°ç©ºé]]ãååšããããšãããããããé¢æ°ç©ºéãšã¯ããå€æ°ã«é¢ããé¢æ°ããã¯ãã«ãšããŠåãææ³ã§ããããã®ãšãããã¯ãã«ã®åã¯é¢æ°ã®åã§è¡šãããããã¯ãã«ã®å
ç©ã¯é©åœãªç¯å²ã§ã®é¢æ°ã®ç©åãçšããã詳ããã¯[[w:é¢æ°ç©ºé]]ãåç
§ã
ãã®ãããªä»æ¹ã§è¡åãšãã¯ãã«ãåããšããåºæç¶æ
ã§ãã<math>\psi</math>ã¯ããå€æ°ã®é¢æ°ãšãªããããã«ããã<math>\hat x</math>,<math>\hat p</math>,<math>\hat H</math>ãªã©ã®è¡åã¯ãã®é¢æ°ã«ããããªãã¬ãŒã¿ãŒãšããŠè¡šããããããªãã¬ãŒã¿ãŒã®åãæ¹ã¯å
ã®é¢æ°ã«ããé¢æ°ããããããå
ã®é¢æ°ã埮åããããšæ§ã
ã ããäžã®äº€æé¢ä¿ãæºãããããªæ¹æ³ã¯ãäŸãã°ãxã«ã€ããŠ
:<math>
\hat x \rightarrow x
</math>
ã®ããç®ã察å¿ãããpã«å¯ŸããŠã
:<math>
\hat p \rightarrow -i\hbar \frac{\partial{{}}}{\partial{{x}}}
</math>
ã察å¿ãããããšãããããããäžæ¹ã
pã«ã€ããŠ
:<math>
\hat p \rightarrow p
</math>
ã®ããç®ã察å¿ãããxã«å¯ŸããŠã
:<math>
\hat x \rightarrow i\hbar \frac{\partial{{}}}{\partial{{p}}}
</math>
ãšããŠãåæ§ã®çµæãåŸãããããšãç¥ãããŠãããxãšpãäºãã«å
¥ãæãå¯èœã§ãããšãã解æååŠã®çµæã«é©åããŠããã
ä»®ã«èªç±ã«åã質émã®ç²åãèãããšã
:<math>
H = \frac {p^2} {2m}
</math>
ã«å¯ŸããŠ
:<math>
\hat H = -\frac {\hbar ^2}{2m} \frac {\partial ^2}{\partial x ^2}
</math>
ã察å¿ããããšãåããããã®ãšãäžã®åºææ¹çšåŒã¯
:<math>
-\frac {\hbar ^2}{2m} \frac {\partial ^2}{\partial x ^2} \psi (x) = E \psi (x)
</math>
ãšãªã<math>\psi (x)</math>ã«é¢ãã2é埮åæ¹çšåŒã«ãªããããã§ããEã®ããã«æªç¥æ°ãå«ãŸããŠãã圢ã®åŸ®åæ¹çšåŒãç¹ã«åºæé¢æ°æ¹çšåŒãšåŒã¶ããšãããã
ãããŸã§ã§ãéåçãªç¶æ
ãèšç®ããææ³ã1ã€åŸãããããŸããããå€å
žçãªããã«ããã¢ã³ãéžã³ãããã«å¯ŸããŠ
:<math>
p \rightarrow -i \hbar \frac{\partial{{}}}{\partial{{x}}}
</math>
ã®çœ®ãæãããããããã«ã€ããŠ
:<math>
\hat H \psi = E \psi
</math>
ã®åŸ®åæ¹çšåŒã解ãã察å¿ãã埮åæ¹çšåŒã解ãããšã§ãéåçç¶æ
ãèšç®ãããã
ããã§ãæåŸã®åºæå€æ¹çšåŒã'''æéã«äŸåããªãã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒ''' (time-independent Schrödinger equation) ãšåŒã¶ãåŸã«éåååŠã«ãããæéçºå±ã®æ¹çšåŒãæ±ããããã®å称ã¯ãããšæ¯èŒããŠã®ããšã§ããã
*åé¡äŸ
**åé¡
1次å
ã®ç³»ã§è³ªémã®ç©äœãã<math>0<x<a</math>ã§ã
:<math>
V(x) = 0
</math>
ãæºããã<math>x<0</math>,<math>a<x</math>ã§ã
:<math>
V(x) = \infty
</math>
ãæºãããšããããã®ãšãã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã解ããŠããã®ç³»ã«å¯Ÿããæ³¢åé¢æ°ãæ±ããã
**解ç
åŸã«æ³¢åé¢æ°ã0ã§ç¡ãå°ç¹ã§ã¯ãç©äœãèŠã€ããå¯èœæ§ãããããšã解説ããã
ããã§ã
:<math>
V(x) = \infty
</math>
ã®å°ç¹ã§ç²åãèŠã€ãã£ãŠããŸããšããã®å°ç¹ã§ç²åã¯ç¡éã«å€§ãããšãã«ã®ãŒãæã£ãŠããããšã«ãªã£ãŠããŸãããç¡éã®ãšãã«ã®ãŒãšãããããªããšã¯èãã¥ããã®ã§ãããã§ã¯ã<math>x<0</math>,<math>a<x</math>ã§æ³¢åé¢æ°<math>\psi</math>ã¯ã0ãšãªãããšã«ããããŸããéåè«ã§ããçšããããé¢æ°ç©ºéã®èŠè«ã«ãããæ³¢åé¢æ°ã¯é£ç¶ã§ããããšãå¿
èŠãšãªãããã®ããã
:<math>
\psi (0) = \psi(a) = 0
</math>
ãå¿
èŠãšãªããããŠããã®ãšãã®ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã¯<math>0<x<a</math>ã§ã
V(x)=0ããã
:<math>
-\frac {\hbar ^2}{2m} \frac {\partial ^2}{\partial x ^2} \psi (x) = E \psi (x)
</math>
:<math>
\frac {\partial ^2}{\partial x ^2} \psi (x) = -\frac {2mE}{\hbar ^2} \psi (x)
</math>
ãšãªãããšãåãããããããæºãã<math>\psi(x)</math>ã¯
:<math>
\psi(x) = A\sin (kx ) + B\cos (kx)
</math>
ã§äžããããããšãåããããã ããA,Bã¯ä»»æã®å®æ°ã§ããã
:<math>
k = \sqrt { \frac {2mE}{\hbar ^2} }
</math>
ãšãããæŽã«ã
:<math>
\psi (0) = \psi(a) = 0
</math>
ãçšãããšã
:<math>
\psi (0) = B = 0
</math>
ããB = 0ãåããã
:<math>
\psi (a) = A\sin (ka) = 0
</math>
ãããnãä»»æã®æŽæ°ãšããŠã
:<math>
ka = n\pi
</math>
ãåŸãããããã£ãŠãããããã®æŽæ°nã«å¯ŸããŠæ³¢åé¢æ°<math>\psi _n(x)</math>ã¯
:<math>
\psi _n (x) = A \sin (k _n x)
</math>
ã§äžããããããã ãã
:<math>
k _n = \frac {\pi n} a
</math>
ã§ããããŸããäžã§æ³¢åé¢æ°ã®åã®ä»»æå®æ°ããã®ãŸãŸã«ããããããã¯é¢æ°ç©ºéã§ã¯é¢æ°ãã®ãã®ããã¯ãã«ã§ãããããã®å®æ°åã¯ãã¯ãã«ã®æ§è³ªãå€ããªãããšãããã®ãŸãŸã«æ®ãããã®ã§ããããã ããåŸã«åããéããæ³¢åé¢æ°ã®èŠæ Œåãèãããšããã®å®æ°ã¯1éãã«æ±ºãŸãããšã瀺ãããã
æŽã«ããã®ç³»ã«ãããŠç²åãæã€ããšãåºæ¥ããšãã«ã®ãŒ<math>E _n</math>ãã
:<math>
k _n = \sqrt { \frac {2mE _n}{\hbar ^2} }
</math>
ã解ãããšã§åŸãããšãåºæ¥ããçãã¯ã
:<math>
E _n = \frac {\hbar ^2}{2m} k _n^2
</math>
:<math>
= \frac {\hbar ^2}{2m} \{ \frac {\pi n} a \}^2
</math>
:<math>
= \frac {\hbar ^2}{2m} \frac {\pi^2 n^2} {a^2}
</math>
ãšãªããããæŽæ°nã«å¯ŸããŠ
:<math>
n^2
</math>
ã«æ¯äŸãããšãã«ã®ãŒãæã€ããã«ãªãããã®ããã«éåçãªç³»ãåãåŸããšãã«ã®ãŒã®ããšããšãã«ã®ãŒæºäœãšåŒã¶ããšãããã
== æ³¢åé¢æ°ã®æ§è³ª ==
äžã§æ³¢åé¢æ°ãèšç®ããæ¹æ³ãåŸããããã§ã¯ãæ³¢åé¢æ°ã®æ§è³ªã«ã€ããŠèãããäžã§ã¯ããéåè«çãªç¶æ
ããã¯ãã«ãšèŠãŠãããéåååŠã®æŒç®åããããã«ãã£ãŠåŒµãããè¡åãšããŠæ±ã£ããããã§ã¯äžè¬çã«ããéåè«çãªç¶æ
ãããããã代衚ããéåè«çãªéiãçšããŠ
:<math>
|i>
</math>
ãšæžããåŸã«è¿°ã¹ãããéãããã®èšæ³ã¯ãã©ã±ããèšæ³ãšåŒã°ããå
ã¯[[w:ãã£ã©ãã¯]]ã«ãããã®ã§ãããããã§ãéåè«çãªç¶æ
ãå®ããiã®ãããªéããã®ç¶æ
ã®éåæ°ãšåŒã¶ãäŸãã°ãç¡é倧ã®ããã³ã·ã£ã«ã«ãã£ãŠæçžãããŠããç²åã§ã¯æŽæ°nãéåæ°
ãšãªã£ãŠãããäžè¬ã«ã¯éåæ°ã¯æŽæ°ã®ãããªé¢æ£çãªéã§ããå Žåãä»»æã®å®æ°ã§äžããããé£ç¶çãªéã§ããããšãããã
ããã§ãããç¶æ
<math>|i></math>ãšããããšç°ãªãç¶æ
<math>|j></math>ãåãããã ãããããã®ç¶æ
ã¯ããã«ããã¢ã³æŒç®åã®ãäºãã«ç°ãªã£ãåºæå€ãæã€åºæãã¯ãã«ã§ãããšãããããã§ãããã«ããã¢ã³ã®åºæå€ã¯å¿
ãå®æ°ã§ãªããã°ãªããªãããšãåããããªããªããããã§ãªããšãã«ã¯ãšãã«ã®ãŒãèæ°ã«ãªããããªéåè«çç¶æ
ãååšããããšã«ãªã£ãŠããŸãããã§ãããäžè¬ã«ãè€çŽ æ°ã®è¡åèŠçŽ ãæã£ãŠãããããããã®åºæå€ãå®æ°ã«ãªãè¡åã®çš®é¡ãšããŠããšã«ããŒãè¡åããããããïŒãšã«ããŒãè¡åã«ã€ããŠã¯[[ç©çæ°åŠI]]ãåç
§ïŒãããã§ã¯ãããã«ããã¢ã³ã¯ãšã«ããŒãè¡åã§äžãããããã®ãšãããäžè¬ã«éåè«ã®æŒç®åã¯éåžžãšã«ããŒãæŒç®åã§ããã
æŽã«ããããšã«ããŒãè¡åã«å¯ŸããŠãã®è¡åã¯å¿
ã察è§åããããã®åºæãã¯ãã«ã¯äºãã«çŽäº€ããããšãç¥ãããŠããããã®çµæãçšãããšããšã«ããŒãæŒç®åã§ããããã«ããã¢ã³ã®åºæãã¯ãã«ã§ãã<math>|i></math>ãš<math>|j></math>ã¯ãäºãã«çŽäº€ããããšãç¥ããããæŽã«ãããããã®ç¶æ
ã®é·ããé©åã«å€æŽããããšã§ãä»»æã®ç¶æ
<math>|i></math>,<math>|j></math>ã«ã€ããŠãããã®å
ç©ã<math>\delta _{ij}</math>ãšããããšãåºæ¥ãã<math>\delta _{ij}</math>ã«ã€ããŠã¯ã[[ç©çæ°åŠI]]ãåç
§ãããã§ãç¶æ
ã®é·ãã調æŽããããšãéåç¶æ
ã®èŠæ ŒåãšåŒã¶ããã ããæ
£ç¿çã«ç¶æ
<math>|i></math>,<math>|j></math>ã®å
ç©ã¯<math><i|j></math>ã®ããã«æžãããšãå€ãããã®èšæ³ãçšãããšãä»»æã®<math>|i></math>,<math>|j></math>ã«å¯ŸããŠã
:<math>
<i|j> = \delta={ij}
</math>
ãæãç«ã€ãããã§ãããç¶æ
<math>|i></math>ãšããã«å¯Ÿå¿ããæ³¢åé¢æ°f(x)ã®é¢ä¿ãã
:<math>
f(x) = <x|i>
</math>
ã§åããããã§ã<math>|x></math>ã¯å¯Ÿå¿ããç²åãã¡ããã©xã§è¡šããããç¹ã«ããç¶æ
ã§ããããã®èšæ³ã¯ãé¢æ°ç©ºéã®å
ç©ã®å®çŸ©ãšãäžã§è¿°ã¹ãéåè«çç¶æ
ã®å
ç©ã®å®çŸ©ãæŽåçã«ããããšãåããããã®ããšãè¿°ã¹ãããã«ãŸããé¢æ°ç©ºéã®å
ç©ã«ã€ããŠèª¬æãããããã§ã¯ãäžè¬çã«æ³¢åé¢æ°ãããè€çŽ é¢æ°ã§ãããšããŠèãããé¢æ°ç©ºéã®æ§è³ªã«ãããšããå
f(x),g(x)ãé¢æ°ç©ºéã®å
ãšãããšããããç©å<math>\int</math>ãååšããŠã
:<math>
\int f^* (x) g(x) dx
</math>
ãå
f(x),g(x)ã®å
ç©ãšåŒã¶ãããã§ãxã«ã€ããŠã®ç©åã®ç¯å²ã¯ã
<math>-\infty <x<\infty</math>ãšããããã ããç¡é倧ã®ããã³ã·ã£ã«ãããå Žåã®ããã«ãæ³¢åé¢æ°ã0ãšãªãç¯å²ã«ã€ããŠã¯ç©åããªããŠãããããã®ãšãã«ã¯ç©åç¯å²ã¯ããçãç¯å²ã«ãªãã®ã§ãããããã§ãäžã®èšæ³ãçšãããš
:<math>
\int f^* (x) g(x) dx = \int dx <i|x><x|j>
</math>
:<math>
= <i|j> = \delta _{ij}
</math>
ãšãªããããã§ã
:<math>
\int dx <i|x><x|j>
</math>
ã«ã€ããŠã¯ãŸãã
<math><i|x><x|j> </math>ã¯ãä»»æã®xã«ã€ããŠããšããš<math>|j></math>ã®ç¶æ
ã«ãã£ãç²åããxã§è¡šããããç¹ãééããŠ<math>|i></math>ã®ç¶æ
ã«å€åããããšãè¡šãããŠãããããã§ãäžã§ã¯å
šãŠã®xã«ã€ããŠãã®çµæã足ãåãããŠããã®ã§ãçµå±ããã®çµæã¯ã<math>|j></math>ã®ç¶æ
ã«ãã£ãç²åãã<math>|i></math>ã®ç¶æ
ã«å€åããããšæ¹æ³ã®å
šãŠãã€ãããŠãããšèããã®ã§ãããäžã§åŸã
:<math>
\int |x><x| = 1
</math>
ã®ãããªè¡šåŒã¯ãã¯ãã«ã®å®å
šæ§ãšåŒã°ãããã®ããšé »ç¹ã«ã§ãŠããæ§è³ªã§ãããç¹ã«ããšã«ããŒãæŒç®åã«å¯ŸããŠã¯å¯Ÿå¿ããåºæãã¯ãã«ãå®å
šæ§ã®èŠè«ãæºããããšãç¥ãããŠããããããšã«ããŒãæŒç®åã®åºæãã¯ãã«<math>|i></math>ã«å¯ŸããŠã
:<math>
\Sigma _i |i><i| = 1
</math>
ãç¥ãããŠãããããããç¹ã«å¯Ÿå¿ãããã¯ãã«ãç¡éåãããšãã«ã¯ãã®æ§è³ªã®æ°åŠçãªèšŒæã¯é£ããå Žåãå€ãã
ããŠãäžã®ããšããåããéãã
:<math>
\int f^* (x) g(x) dx = <i|j> = \delta _{ij}
</math>
ãšãªã£ãŠãéåè«çãã¯ãã«ã®æ£èŠåãšå¯Ÿå¿ãããããã«ãæ³¢åé¢æ°ã®é·ããã1ã€ã«å®ããå¿
èŠãããããšãåããããã®æ¡ä»¶ã¯å
šãŠã®æ³¢åé¢æ°<math>\psi(x)</math>ã«å¯ŸããŠã
:<math>
\int |\psi(x)|^2 dx =1
</math>
ãšããããšã§æºããããããã®ããšãæ³¢åé¢æ°ã®æ£èŠåãšåŒã¶ã
ãããŸã§ã§ç²åãã©ã®ç¶æ
ã«ããã®ããæå®ããæ¹æ³ãåãã£ããããããã®ãšãã«ã®ãŒã®åºæç¶æ
ã¯<math>|i></math>ãªã©ã®è¡šç€ºã§è¡šãããããããã®éã¯ã©ãã察å¿ããæ³¢åé¢æ°ãæã€ã®ã§ããããã ãããããã®éã¯ã©ããæ£èŠåãããŠããªããã°ãªããªãã次ã«ç²åãããç¶æ
ã«ãããšãã«ãç²åãå®éã«ã©ã®äœçœ®ã«ããã®ããç¥ãæ¹æ³ãèãããããã§ããäœçœ®ãšã¯å€å
žçãªåº§æšã®æå³ã§ããã
ãããšãã«ã®ãŒåºæå€ãæã£ãç¶æ
ã«ããç²åãå€å
žçã«èŠããšãã«ã¯ã©ã®äœçœ®ã§çºèŠãããã®ããšããæå³ã§ãããä»®ã«å¯Ÿå¿ãããšãã«ã®ãŒã®åºæç¶æ
ãå¶ç¶äœçœ®ã®æŒç®åã«å¯ŸããŠãåºæãã¯ãã«ãšãªã£ãŠãããšãããšããã®ç¶æ
ã¯äœçœ®ã®æŒç®åã«å¯ŸããŠãã 1ã€ã®å€ãæã€ããããã®ç¶æ
ã«ããç²åãçºèŠãããäœçœ®ã¯æ±ºå®ããŠãããäžæ¹ãä»®ã«å¯Ÿå¿ãããšãã«ã®ãŒã®åºæç¶æ
ãäœçœ®ã®æŒç®åã«å¯ŸããŠåºæãã¯ãã«ãšãªã£ãŠããªãã£ããšãããšããã®ãšãã«ãã®ç²åã¯æ§ã
ãªäœçœ®ã§çºèŠãããããã«æãããå®éå®éšçãªçµæã¯ãã®ãšããã§ãããããäœçœ®ã®åºæç¶æ
ã§ãªãç¶æ
ã«ãããšããã®ç©äœã¯äœçœ®ã®æŒç®åãå€ãåãåŸãäœçœ®å
šäœã§èŠã€ãã確çãããããããŠãå®éã«ã©ã®äœçœ®ã«ãããã¯å®éã«èŠ³æž¬ãããŠã¿ããŸã§ã¯ãç¥ãããšãåºæ¥ãªãã®ã§ããããã®ããšã¯å
šãäžæè°ãªçµæã§ããããäŸãã°éåè«çãªã€ã³ã°ã®å®éšãªã©ã«ãããŠãã®çµæã¯ç¢ºãã«ç¢ºèªãããŠããã®ã§ããã
ããã§ããããšãã«ã®ãŒã®åºæç¶æ
<math>|i></math>ããããäœçœ®ã«çºèŠãããŠãã®äœçœ®ã«ããããšã確å®ããŠããç¶æ
ã«ç§»è¡ããéçšã¯ã察å¿ããäœçœ®ãxãšãããšã
:<math>
<x|i>
</math>
ã§äžããããããšãäºæ³ãããããããããã®å€ã¯ã¡ããã©ããåºæç¶æ
ã«å¯Ÿå¿ããæ³¢åé¢æ°f(x)ã§ãã£ãã
:<math>
<x|i> = f(x)
</math>
ãã®ããšãããæ³¢åé¢æ°f(x)ã¯å¯Ÿå¿ãããšãã«ã®ãŒã®åºæç¶æ
ã«ããç²åãããå Žæxã«çºèŠãããäœçœ®ã«èŠã€ããéçšã«ã€ããŠé¢ä¿ããŠããããšãããããå®éã«ã¯æŽã«ããã®éã®çµ¶å¯Ÿå€ã2ä¹ããéããã¡ããã©ãã®å¯Ÿå¿ããç¶æ
ã«ããç²åããã®äœçœ®ã«èŠã€ãã確çãšãªã£ãŠããã®ã§ããã
:<math>
P(x) = |f(x)|^2
</math>
ãããããã®éã¯ã¡ããã©
:<math>
\int dx |f(x)|^2 = P(x) =1
</math>
ãšããŠãæ³¢åé¢æ°ã®æ£èŠåãè¡ãªã£ãéã«å¯Ÿå¿ãããããã®ããšã¯P(x)ã確çãè¡šããéãšããŠæ±ãããã®æ¡ä»¶ãšãé©åããŠããã®ã§ããã
*åé¡äŸ
**åé¡
æ³¢åé¢æ°f(x)ãã
:<math>
f(x) = \frac 1 {{}^4\sqrt \pi} e^{-x^2/2 }
</math>
ã§äžãããããšããããã®ãšããããç¹xã§ç²åãçºèŠããã確çãèšç®ããããŸãããã®æ³¢åé¢æ°ãæ£ããæ£èŠåãããŠããããšã瀺ãã
**解ç
ããç¹xã§ç²åãçºèŠããã確çP(x)ã«ã€ããŠã
:<math>
P(x) = |f(x)|^2
</math>
ãæãç«ã€ããšãçšããã°ããããã£ãŠã
:<math>
P(x) = |f(x)|^2
=\frac 1 {\sqrt \pi} e^{-x^2 }
</math>
ãåŸããããæŽã«ãã¬ãŠã¹ç©åãçšããŠ
:<math>
\int _{-\infty }^{\infty} e^{-x^2} = \sqrt \pi
</math>
ãçšãããšã
:<math>
\int dx P(x) = 1
</math>
ãåŸãããæ£ããæ£èŠåããªãããŠããããšãåãããã¬ãŠã¹ç©åã«ã€ããŠã¯
[[ç©çæ°åŠI]]ãåç
§ã
å®éã«ã¯ããç¶æ
<math>|a></math>ããããç¶æ
<math>|b></math>ã«ç§»è¡ãã確çã
:<math>
|<b|a>|^2
</math>
ã§äžããããããšã¯ãããšãã«ã®ãŒã®åºæç¶æ
ãããäœçœ®ã«ç§»è¡ããå Žåã ãã«ãšã©ãŸãããããåºãå Žåã«ããŠã¯ãŸããç¹ã«äžã®å Žåã«ã€ããŠ
:<math>
<b|a>
</math>
ãaããbãžã®ç¢ºçæ¯å¹
ãšåŒã¶ãæ³¢åé¢æ°ã¯å¯Ÿå¿ãããšãã«ã®ãŒã®åºæç¶æ
ããããäœçœ®ã§è¡šããããç¶æ
ãžã®ç¢ºçæ¯å¹
ãšãããã
*åé¡äŸ
**åé¡
äºãã«çŽäº€ããç¶æ
<math>|1></math>,<math>|2></math>,<math>|3></math>ãããã
ãã®ãšãã
(I)
<math>|1></math>
(II)
:<math>
\frac 1 {\sqrt 2} (|1>+|2>)
</math>
(III)
:<math>
\frac 1 {\sqrt 3} (|1>+|2>+|3>)
</math>
(IV)
<math>|2></math>
ã§äžããããéåç¶æ
ãšç¶æ
<math>|1></math>ãšã®ç¢ºçæ¯å¹
ãæ±ãããããããã®ç¶æ
ãæ£ããæ£èŠåãããŠããããšã瀺ãã
**解ç
äžããããç¶æ
ãš<math>|1></math>ãšã®å
ç©ãåãã°ãããããããã®1,2,3ã§è¡šããããããããã®ç¶æ
ã¯äºãã«çŽäº€ããŠããããšã«æ³šæããã æ£èŠåãããŠããããšã調ã¹ãã«ã¯ããããã®ç¶æ
ã®å€§ããã1ãšãªã£ãŠããããšã調ã¹ãã°ããã
(I)
確çæ¯å¹
ã¯
:<math>
<1|1> = 1
</math>
ãšãªããæ£èŠåã
:<math>
<1|1> = 1
</math>
ãšãªãæ£ããããšãåããã
(II)
:<math>
<1|\frac 1 {\sqrt 2} (|1> +|2>)
</math>
:<math>
= \frac 1 {\sqrt 2} (1+0) = \frac 1 {\sqrt 2}
</math>
ãšãªããæ£èŠåã«ã€ããŠã¯
:<math>
\frac 1 {\sqrt 2} (<1| +<2|) \frac 1 {\sqrt 2} (|1> +|2>)
</math>
:<math>
= \frac 1 2 (1 + 0 + 0 +1) = 1
</math>
ãšãªãæ£ããããšãåããã
(III)
:<math>
<1|\frac 1 {\sqrt 3} (|1> +|2>+|3>)
</math>
:<math>
= \frac 1 {\sqrt 3} (1+0+0) = \frac 1 {\sqrt 3}
</math>
ãšãªããæ£èŠåã«ã€ããŠã¯
:<math>
\frac 1 {\sqrt 3} (<1| +<2|+<3|) \frac 1 {\sqrt 3} (|1> +|2>+|3>)
</math>
:<math>
= \frac 1 3 (1 + 0 + 0 +0+1+0 +0+0+1) = 1
</math>
ãšãªãæ£ããããšãåããã
(IV)
確çæ¯å¹
ã¯
:<math>
<1|2> = 0
</math>
ãšãªããæ£èŠåã¯
:<math>
<2|2> = 1
</math>
ãšãªã£ãŠæ£ããããšãåããã
ããã§ããããšãã«ã®ãŒã®åºæç¶æ
<math>|i></math>ãšã察å¿ããæ³¢åé¢æ°f(x)ã«å¯ŸããŠ
:<math>
<i|x|i> = \int dx x |f(x)|^2
</math>
ãã©ã®ãããªæå³ãæã€ããèãããããã§ã<math>|f(x)|^2</math>ãã察å¿ããç²åãxã§èŠã€ãã確çãè¡šãããŠããããšãèãããšãäžã®åŒã¯xã®æåŸ
å€ãè¡šããåŒãã®ãã®ã§ããããã®ããã<math><i|x|i></math>ã®ãããªxæŒç®åã®å¯Ÿè§æåã¯ã察å¿ããç¶æ
ã«ç²åãååšãããšãã®ç²åãèŠã€ããäœçœ®ã®æåŸ
å€ãšãªãããšãåãããäžæ¹ãäœçœ®æŒç®åã®é察è§æåã¯ããã»ã©ç°¡åãªè§£éã¯æã£ãŠããªãããã ãããããã®éã¯éåååŠçãªæåãªã©ã§ãã䜿ãããã詳ããã¯[[éåååŠII]]ãåç
§ã
== æéã«äŸåããã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒ ==
å®éã®ç©ççãªç³»ã¯åžžã«æéã«äŸåããŠå€åããããã®ãããéåçãªç¶æ
ãäœããã®ä»æ¹ã§æéäŸåæ§ãæã€å¿
èŠããããããã§ãéåè«çãªç³»ã®æéäŸåæ§ãèããåã«ã[[ç¹æ®çžå¯Ÿè«]]ã«ãããŠãæéãšç©ºéãçµ±äžçã«æ±ãæ¹æ³ãåŸãããšãæãã ããäžã®è°è«ã§ç©ºéæ¹åã®æåã«å¯ŸããŠã¯
:<math>
\vec p _i \rightarrow
-i \hbar \frac{\partial{{}}}{\partial{{x _i}}}
</math>
(ãã ããi=1,2,3ã)
ã®ãããªçœ®ãæããããããšãèãããšãã«ã®ãŒãšæéæ¹åã«åãæ§ãªé¢ä¿ãããããšãèãããšãäžã®çœ®ãæãã«å¯Ÿå¿ããŠ
:<math>
E \rightarrow
i \hbar \frac{\partial{{}}}{\partial{t}}
</math>
ã®ãããªçœ®ãæããåºæ¥ãããšãäºæ³ããããäžæ¹ãéåè«çãªç³»ã§ã¯ç¹æ®çžå¯Ÿè«çãªèãæ¹ãé©çšã§ããã®ããšããããšã¯çåãæ®ããäŸãã°ãéåè«ã§ã¯ããç©äœãååšããäœçœ®ã¯èŠ³æž¬ãããåã«åççã«ç¥ãããšãã§ããã芳枬ãããç¬éã«ç©äœã®äœçœ®ã決å®ããããšãç¥ãããŠãããããããããäžç¬ã§ç©äœã®äœçœ®ã決å®ãããã®ãªãããã®ç¬éã«ãã®ç©äœã¯ããšããšç©äœããã£ãå Žæããéåžžã«éãé床ã§ç§»åããŠããããã«æãããã®é床ã¯å
éãè¶
ããŠããŸãããã«æããããã®æ§ãªäºæ
ãèãããšã[[ç¹æ®çžå¯Ÿè«]]ãš[[éåååŠ]]ããäºãã«é©åãããããšã¯éåžžã«å°é£ã«æããäžã®ãããªçœ®ãæããããçç±ã¯å®ãã§ãªãããã«æãããããããå®éã«ã¯ãã®æ§ãªå°é£ãä¹ãè¶ããŠäžã®2ã€ãé©åãããæ¹æ³ã¯æ¢ã«ç¥ãããŠããããã®çµæãçšãããªã確ãã«äžã®çœ®ãæãã¯æ£ããçµæãäžããããšãç¥ãããã®ã§ããã詳ããã¯[[å Žã®éåè«]]ãåç
§ã
äžã®çœ®ãæããå€å
žçãªæ¹çšåŒ
:<math>
E = H
</math>
ã«å¯ŸããŠçšãããªããéåè«çãªæ¹çšåŒã¯
:<math>
i \hbar \frac{\partial{{}}}{\partial{t}} = \hat H
</math>
ã®ããã«ãªããããã§ã¯ãäžè¬ã«ç³»ã®éåç¶æ
ã匵ããã¯ãã«ã<math>\Psi</math>ãšæžããŠã
äžã®æ¹çšåŒãã
:<math>
i \hbar \frac{\partial{{}}}{\partial{t}} \Psi = \hat H \Psi
</math>
ãšæžãæãããä»®ã«<math>\Psi</math>ãããšãã«ã®ãŒEãæã€ããã«ããã¢ã³ã®åºæç¶æ
ã ã£ã
ãšããããã®ãšããäžã®æ¹çšåŒã¯
:<math>
i \hbar \frac{\partial{{}}}{\partial{t}} \Psi = E \Psi
</math>
ãšãªãããã®åŒã¯éåžžã®æ¹æ³ã§è§£ãããšãåºæ¥ããä»®ã«t=0ã§ã
:<math>
\Psi (t=0) = \psi
</math>
ãæãç«ã€ãšãããšãäžã®åŒã®è§£ã¯
:<math>
\Psi (t) = e^{-i E t/ \hbar } \psi
</math>
ãšãªãããã®ããšã«ãã£ãŠãããæå»<math>t _0</math>ã«ãããŠãããããã«ããã¢ã³ã®åºæç¶æ
ã§åŒµãããç¶æ
ã«ããç©äœãæéçã«ã©ã®ç¶æ
ã«å€åããããåãã£ãããšã«ãªããäžæ¹ãããã«ããã¢ã³ã®åºæç¶æ
ã¯æéã«äŸåããªãã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã«ãã£ãŠèšç®ãããããšãããã©ã®ç¶æ
ãã©ã®ãããªæéçºå±ããããã¯æéã«äŸåããªãã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã解ãããšã«ãã£ãŠæ±ããããããšãåããã
ãŸããæéã«äŸåããã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒãšãæéã«äŸåããªãã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã¯äºãã«é¢é£ããŠãããä»®ã«ãããç¶æ
<math>\Psi(t)</math>ã®æéçºå±ãããå®æ°EãçšããŠã
:<math>
\Psi(t) = \psi \cdot e^{-i E t/\hbar }
</math>
ã§æžããããšããããã®æãã®<math>\Psi(t)</math>ãæéã«äŸåããã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã«ä»£å
¥ãããšãçµæã¯ã
:<math>
E \psi = \hat H \psi
</math>
ãšãªããæéã«äŸåããªãã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã«çãããªãã
== 1次å
調åæ¯åå ==
== æ°ŽçŽ ååæš¡åã§ã®ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã®è§£æ³ ==
{{stub}}å¢çæ¡ä»¶ã埮åæ¹çšåŒã解ãéã«å¿
èŠã«ãªã£ãŠãããç座æšã«å€æããã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã«ãè§åºŠã®åšæçå¢çæ¡ä»¶ãªã©ãå
¥ãããšïŒè§åºŠã¯äžåšãããšå
ã«æ»ããšããæ¡ä»¶ïŒãæ°ŽçŽ ååã®ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã解ããããã«ãªãããªããšå€§åŠååŠã§ç¿ããäž»éåæ°ãããæ¹äœéåæ°ããªã©ã®ãéåæ°ããªã©ãå°åºãããã
== 1次å
äºæžåããã³ã·ã£ã« ==
1次å
äºæžåããã³ã·ã£ã«
: <math>\begin{cases}
V(x)=\infty(-\infty<x<0)\\
V(x)=0(0 \le x \le L)\\
V(x)=\infty(L<x<\infty)
\end{cases}</math>
ãèããããã®ãšãã®ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã¯
:<math>E\psi(x) =-\frac{\hbar^2}{2m}\frac{d^{2}\psi(x)}{dx^2}+V(x)\psi(x)</math>
ãšãªãããã®ãšã<math>V(x)=\infty</math>ã®é å<math>(-\infty<x<0,L<x<\infty)</math>ã§ã¯ç²å䟵å
¥äžå¯ãªã®ã§ããã®é åã«ãããæ³¢åé¢æ°ã¯<math>\psi(x)=0</math>ãšãªããæ³¢åé¢æ°<math>\psi(x)</math>ã¯<math>x=0,x=L</math>ã§ããããé£ç¶ãªã®ã§ã<math>\psi(0)=\psi(L)=0</math>ãšãªãã<math>0 \le x \le L</math>ã«ãããæ³¢åé¢æ°ãèãããš
:<math>E\psi(x) =-\frac{\hbar^2}{2m}\frac{d^{2}\psi(x)}{dx^2}</math>ïŒ<math>V(x)=0</math>ïŒ
:<math>\frac{d^{2}\psi(x)}{dx^2} = -\frac{2mE}{\hbar^2}\psi(x) = -k^2\psi(x)</math>ïŒ<math>k^2=\frac{2mE}{\hbar^2}</math>ïŒ
:<math>\psi(x)=A\cos kx+B\sin kx</math>
<math>\psi(0)=\psi(L)=0</math>ãã
:<math>\psi(x)=B\sin \frac{n\pi x}{L}</math>ïŒ<math>A=0,k=\frac{n \pi}{L}</math>ïŒ
ãšãªãããŸã<math>\int_0^{L}(\psi(x))^2 dx = 1</math>ãšãªãããã«''B''ãæ±ãããš
:<math>B=\sqrt{\frac{2}{L}}</math>
ãšãªã
:<math>\psi(x)=\sqrt{\frac{2}{L}}\sin \frac{n\pi x}{L}</math>
ãšãªãããŸããã®ãšãã®ãšãã«ã®ãŒ''E''ã¯
:<math>E=\frac{\hbar^2 k^2}{2m}=\frac{\hbar^2 n^2 \pi^2}{2m L^2}</math>
ãšãªãããšã³ãšã³ã®å€ããšãããšãåããã
== 1次å
é段åããã³ã·ã£ã« ==
1次å
é段åããã³ã·ã£ã«
: <math>\begin{cases}
V(x)=0(x<0)\\
V(x)=V_0(0 \leq x)
\end{cases}</math>
ãèããã
é å<math>x<0,x\leq 0</math>ã«ãããæ³¢åé¢æ°ããããã<math>\psi_{-}(x),\psi_{+}(x)</math>ãšããïŒ
ããããã®ã·ã¥ã¬ãã£ã³ã¬ãŒæ¹çšåŒã¯ïŒ
: <math> E\psi_-(x) = -\frac{\hbar^2}{2m}\frac{d^{2}\psi_-(x)}{dx^2} </math>
: <math> E\psi_+(x) =-\frac{\hbar^2}{2m}\frac{d^{2}\psi_+(x)}{dx^2}+V_0\psi_+(x) </math>
ãšãªãïŒ
(1)<math>E < V_0</math>ã®å Žå
: <math> k_-=\sqrt{\frac{2mE}{\hbar}} </math>
: <math> k_+=\sqrt{\frac{2m(V_0-E)}{\hbar}} </math>
ãšãããšïŒã·ã¥ã¬ãã£ã³ã¬ãŒæ¹çšåŒã¯ïŒ
: <math> \frac{d^{2}\psi_-(x)}{dx^2} = -k_-^2\psi_-(x) </math>
: <math> \frac{d^{2}\psi_+(x)}{dx^2} = k_+^2\psi_+(x) </math>
解ã¯
: <math> \psi_-(x) = C_-e^{-ik_-x} + C_+e^{ik_-x} </math>
: <math> \psi_+(x) = Ce^{-k_+x} </math>
ïŒ<math>\psi_+(x)</math>ã®<math>e^{k_+x}</math>ã®é
ã¯çºæ£ãïŒèŠæ Œåæ¡ä»¶ãæºãããªãé€å€ããïŒïŒ
æ³¢åé¢æ°ã<math>x=0</math>ã§æ»ããã§ããæ¡ä»¶ããå®æ°ãå®ããïŒ
: <math> \psi_-(0) = \psi_+(0) </math>
: <math> \frac{d\psi_-(0)}{dx} = \frac{d\psi_+(0)}{dx} </math>
ããïŒ
: <math> C_- + C_+ = C </math>
: <math> -ik_-C_- + ik_-C_+ = -k_+C </math>
== å極åã®ãã€ãšãã«ã®ãŒãšå ==
* å極åã®åããå
[[File:Stern-Gerlach experiment svg.svg|thumb|500px|ã·ã¥ãã«ã³ïŒã²ã«ã©ããã®å®éš<br>
<br>4ã¯å€å
žç©ççãªäºæ³å€ïŒãã£ããã®å®éšçµæã§ã¯ãªãïŒã<br>ãã£ããã®å®éšçµæã¯ã5ã®ããã«ãååç·ã¯ãäžäžã®2ã€ã®äœçœ®ã«åãããããã£ããŠã4ã®ããã«ããã®ããã ã®äžéã®äœçœ®ã«ã¯ãã»ãŒååç·ã¯åœãããªãã<br>ãã®5ã®ããã«ãååç·ã¯äžäž2ã€ã«åè£ããã]]
éåžžã®æ£ç£ç³ããé»åã«è¿ã¥ããŠããé»åã®ç£æ°ã¢ãŒã¡ã³ããå°ããã®ã§ãããŒã¬ã³ãå以å€ã®åã¯é»åã¯ã»ãšãã©åããªãã®ã ããç£ç³ãéåžžã§ãªãå Žåã¯å¥ã§ããã
å³ã®ããã«ãç£ç³ã«ãã£ãŠãäžé£ç¶ã§æ¥å³»ãªç£å Žãçºçãããšããé»åã®äžåŽãšäžåŽãšã§ãç£å Žã®åŒ·ããç°ãªãããã®ãããé»åå
šäœãšããŠã¯ãåãåããããšã«ãªãïŒãªããåæãšããŠãé»åã«ã¯ãã¹ãã³ããšããç£æ¥µã®ãããªæ§è³ªãããããšããäºãåæã«ããŠããïŒã
N極ã®å
端ã®ãšãã£ãããã¡ãããæ£ç£ç³ãšã極ã®å
端ã®ããŒãã æ£ç£ç³ãçšæããŠããšãã£ããN極ãšãããŒãã 極ã®è»žãäžèŽããããã®2ã€ã®ç£æ¥µã®ééãããŸãããäžå¯Ÿç£æ¥µãã€ããããã®äžå¯Ÿç£æ¥µã®ãããŸã«ãéãç±ããŠèžçºãããŠçŽ°åãªã©ããé£ã³åºãããéã®ååç·ãæã¡èŸŒããšãå³ã®ããã«ãäžãŸãã¯äžã®ã©ã¡ããã®åãåããäžäžã®2ç®æã«åè£ããããã£ããŠããªãªãæ¹åã«ã¯ç§»åããªããããã¯ãååç·ãã®ãã®ãç£åããã£ãŠããããšã®å®éšç蚌æã§ããã
éã®ååã¯äžæ§ã§ããããŸããä»®ã«é»é¢ããŠããŠãããšããŠããŒã¬ã³ãåãåãããšãããšãããŒã¬ã³ãåã®æ¹åã¯ãå³äžã®æšªåãã«ãªãã
ãã®å®éšã'''ã·ã¥ãã«ã³ã»ã²ã«ã©ããã®å®éš'''ãšãããé以å€ã«ããæ°ŽçŽ ã®ååç·ããããªãŠã ååç·ã§ãåæ§ã®å®éšãè¡ãããååç·ãäžæ¹åãŸãã¯äžæ¹åã®ã©ã¡ããã®åãåããããšã確èªãããã
ãã®ããã«ååç·ãäžäžã«åè£ããçç±ã¯ãååç·ãç£åããã£ãŠããäºã®ããããã§ãããããã®ååã®ç£åã®ç±æ¥ã¯ãããããé»åãç©æ§ãšããŠç£æ°ããã£ãŠããããã§ããããããŠãé»åãã®ãã®ã®ç£æ°ã®ããšã'''ã¹ãã³'''ãšããã
ååç·ã®æšçã«ãªã£ãŠããå ŽæãèŠããšïŒå³ã®ã5ãã®å ŽæïŒãååç·ãäžãŸãã¯äžã®2éãã®äœçœ®ã«åè£ããŠåœãã£ãŠããããšãããé»åã®ãã¹ãã³ãã2éãã®å€ã§ããããšãäºæ³ãããä»ã®ç©ççè«ãããé»åã®ãã¹ãã³ããå®éã«2éãã§ããäºãåãã£ãŠããã
== éåè«ã®åºç€æ³åïŒã¹ãã³ãäŸã«ãšã£ãŠ ==
éåè«ã®åºç€æ³åã¯æ°åŠçã«ã¯ãããåçŽã§ãç·åœ¢ä»£æ°ã«ä»ãªããªããäœããæ±ãç³»ã«ãããã¯ãã«ç©ºéã®æ¬¡å
ãç¡é倧ã«ãªã£ããé¢æ°ç©ºéã«ãªã£ããããã®ã§ãããããããè€éãã倧ãããããã§ã¯æé次å
ïŒ2次å
ïŒïŒã®ç·åœ¢ä»£æ°ã§å®å
šã«æ±ãããšãã§ããç³»ããé»åã®ã¹ãã³ããäŸã«ãšããªãããåºç€æ³åãå°å
¥ããã
=== ã¹ãã³ ===
é»åã¯ç¹ç²åã§ããäœçœ®ãšããå±æ§ãæã€ããå®ã¯ããã ãã§ãªããèªè»¢ããæ£ç£ç³ããæã€ãããªå±æ§ãæã£ãŠãããæ£ç£ç³ãN極ãšS極ãçµã¶ç·ã軞ãšããŠèªè»¢ããŠãããšããããããã«ç£å Žãããããš(1)æ£ç£ç³ã¯ãã®åãã«å¿ãããšãã«ã®ãŒãæã¡ããŸã(2)ç£å Žã軞ãšããŠã³ãã®ããã«ããªã»ãã·ã§ã³ïŒéŠæ¯éåïŒãè¡ãã(1)ã¯ç£ç³ã§ããããšããèµ·ãã(2)ã¯((1)ã«å ããŠïŒè§éåéãæã€ããšããèµ·ããã
é»åããåãããæã£ãŠãããç£å Žã®äžã«å
¥ãããš(1)ãã®åãã«å¿ãããšãã«ã®ãŒããã¡ããã€(2)ãã®åããæ£ç£ç³ã®åããšåæ§ã®ããªã»ãã·ã§ã³ãèµ·ããããã®ãããªäºå®ã称ããŠãé»åã¯ã¹ãã³ããã€ããšããããåããããã¹ãã³ã®åãããšåŒã¶ãã¹ãã³ã®èµ·æºïŒDiracã«ããïŒãç©æ§ãšã®é¢ä¿ã¯éèŠãªäž»é¡ãšãªãã®ã ããããã§ã¯éåååŠã®æ³åã説æããäŸãšããŠçšããã ããªã®ã§ãåã«
ãé»åã¯äœçœ®ã ãã§ãªããåããšããå±æ§ãæã€ã
ãšããç¹ã«ã®ã¿çç®ããããã€ããã¯ã¹ã®èª¬æãè¡ãæã«ç©ççãªæå³
ãé»åãæ£ç£ç³ãšã¿ãªããæã®åãã§ããããã€é»åã®ãã€è§éåéã®åãã
ã䜿ãããªããè§éåéã®å€§ããã¯äžå®(hbar/2)ã§ãããå€ããããã®ã¯ãã®åãã ãã§ããã
ãã®åããåäœãã¯ãã«<math>\hat{s}</math>ã§è¡šãããã®æåã<math>(s_x,s_y,s_z)</math>ãšæžããåäœãã¯ãã«ãªã®ã§<math>s_x^2+s_y^2+s_z^2=1</math>ãæ®éã«èãããšãã®æåïŒ3ã€ã®å®æ°ãåãç¯å²ã¯ãããã-1ãã1ïŒãæå®ããã°ã¹ãã³ã®ç¶æ
ãèšè¿°ããããšã«ãªãã¯ãã§ããããšãããã¹ãã³ã¯éåååŠã®æ³åã«åŸãã®ã§ããã¯ãªããªãã
=== ã¹ãã³ã®æž¬å®ïŒéåååŠçãªç¹åŸŽ ===
ã¹ãã³ã®åãã®æž¬å®æ¹æ³ã§ä»£è¡šçãªã®ã¯Stern-Gerlachåå®éšãšåŒã°ãããã®ã空éçãªåŸé
ãæã€ç£å Žããããããšã§ã¹ãã³ã®åãã«äŸåããåãé»åã«ãããããã«ããã倧éæã«ç解ããã«ã¯ãæ£ç£ç³ã«ç£å Žããããããšãèããã°ãããç£å Žãäžæ§ã ãšN極ãšS極ã«ãããåãæ£å察ãã€åã倧ããã«ãªãã®ã§å
šäœãšããŠãã£ã³ã»ã«ããŠããŸããããã§ïœæ¹åã«åŸé
ãæã€ãã€ãŸãäžã«è¡ãã»ã©åŒ·ããªãç£å Žãããããšãããããããšç£ç³ã®åããïœè»žæ¹åã®æåããã€(<math>s_z\ne 0</math>)ãªãã°äžåŽã®æ¥µã«ãã倧ããªåããããã®ã§å
šäœã«ãããåãæ®ããé©åã«ç£å Žãèšå®ããããšã§ãè¿äŒŒçã«szã«æ¯äŸããå
<math> \vec{F}\approx(0,0,k s_z) </math>
ãç£ç³ã«ãããããã«ã§ããããã®ãããªç£å Žã®äžã«å°ããç£ç³ãé£ã°ããšãç£ç³ã®åãã®zæåã«æ¯äŸããåãããããè»éãããããåŸã£ãŠè»éãäžäžã«ã©ãã ãããããã調ã¹ãã°ç£ç³ã®<math>s_z</math>ãåããã®ã§ããããã¡ããåãè°è«ãïœè»žæ¹å以å€ã§ãæãç«ã€ããŸãšãããšã
ã»<math>\vec{u}</math>æ¹å(<math>\vec{u}</math>ã¯åäœãã¯ãã«ïŒã®åŸé
ãæã€ç£å Žã䜿ãããšã§ã<math>\vec{s}</math>ã®<math>\vec{u}</math>æå<math>s_u\equiv\vec{s}\cdot\vec{u}</math>ã枬å®ããããšãã§ããã
zæ¹åã«åŸé
ãæã€ç£å Žã«ã©ã³ãã ãªåãã®ç£ç³ãããããããããšãããŸããŸsz=1ã ã£ããã®ã®è»éã¯å€§ããäžã«ãããsz=-1ã ã£ããã®ã¯å€§ããäžã«ãããããããŠãã®äžéãç¹ã«sz=0ã«è¿ããã®ã§ã¯è»éã¯ã»ãšãã©ãããªããç£ç³ã®åºå£ã«ç£ç³ãããããšãæç¥ããã¹ã¯ãªãŒã³ãããã°ãããã«ã¯äžããäžãŸã§ã»ãŒãŸãã¹ããªãç£ç³ãããåŸãæ®ãã§ãããã
==== éåååŠã®ç¹åŸŽ1ïŒèŠ³æž¬å€ã®é¢æ£åïŒãéååãïŒ ====
ããã§èå°ã¯æŽã£ãã®ã§ãç£ç³ã®ä»£ãã«åããã°ãã°ãã®é»åãéããŠã¿ãããããšãé©ãã¹ãããšã«ç£ç³ã®å Žåãšã¯å
šãç°ãªãçµæã«ãªããã¹ã¯ãªãŒã³ã®äžçªäž(sz=1ã«å¯Ÿå¿ïŒãšäžçªäž(sz=-1ã«å¯Ÿå¿ïŒã«ããé»åãããªãã®ã§ãããããããsz=1ã®é»åãšsz=-1ã®é»åãããªããã®ãããªçµæã«ãªã£ãŠããŸããããã§ã¯ãšãä»åºŠã¯è£
眮ã90床åããŠãsxã«å¿ããŠè»éãå€ããããã«ããŠã¿ãããããšä»åºŠã¯ïŒåãæºããããé»åãªã®ã«ïŒsx=1ãšsx=-1ã®ãã®ãããªããã®ãããªçµæã«ãªããã€ãŸãäžçªå³ãšå·Šã«ããé»åãããªãã
ããã¯æž¬å®æ³ãå€ããŠãæãç«ã€äžè¬çãªçµæã§ãããå³ã¡ã
ã»é»åã¹ãã³<math>\vec{s}</math>ã®<math>\vec{u}</math>æ¹åæå<math>\vec{s}\cdot\vec{u}</math>ã枬å®ãããšããã®çµæã¯å¿
ã1ã-1ã®ã©ã¡ããã«ãããªããªããæ¬æ¥é£ç¶çãªå€ããšãã¯ãã®é<math>\vec{s}\cdot\vec{u}</math>ã®æž¬å®çµæãã1,-1ãšããé¢æ£çãªå€ã ãã«ãªãã
ãã®ããé£ç¶çã§ããã¯ãç©çéã®æž¬å®å€ãé¢æ£çã«ãªããããšã埮èŠçã¹ã±ãŒã«ã®ç©çã®å€§ããªç¹åŸŽã§ãããäœããããããéã®æž¬å®å€ãé¢æ£çã«ãªãããã§ã¯ãªããäŸãã°é»åã®äœçœ®ã®æž¬å®å€ã¯é£ç¶çãªå€ããšããããããšãã«ã®ãŒã®æž¬å®å€ã¯ç³»ã«ãã£ãŠé£ç¶çãªå Žåãé¢æ£çãªå Žåããäž¡è
ãæ··åããå ŽåããããéåååŠã®å€§ããªææïŒã®äžã€ïŒã¯ãç©çéã®æž¬å®å€ããšãããå€ã®ã»ããïŒã¹ãã¯ãã«ãšããïŒãæ±ããããã®éŠå°Ÿäžè²«ããèšç®æ³ãšããŠäžããããšã«ããã
==== éåååŠã®ç¹åŸŽ2ïŒèŠ³æž¬çµæã®ã©ã³ãã æ§ ====
szã®æž¬å®å€ã¯1,-1ããåãåŸãªããšè¿°ã¹ããã§ã¯ãäŸãã°ã¹ãã³ãxæ¹åãåããŠããå Žåã«szã枬ããšæž¬å®å€ã¯ã©ããªãã ããããåžžèçãªçã§ãã0ã¯åããªããããã1,-1ã®ã©ã¡ããåãã«ããŠãåŠã§ãããçã¯ã1,-1ãå
šãã©ã³ãã ã«åããã€ãŸãç確çã§1,-1ãçŸããããšãªãïŒäžåããšã§ã¯åžžèçãªå€0ã¯åããªãããå€æ°åå®éšãè¡ã£ãå¹³åå€ãšããŠã¯åžžèçãªå€0ã«ãªãïŒããã®ããã«ã枬å®çµæã確ççã«ãªãããšã埮èŠçäžçã®æ³åã®ããäžã€ã®å€§ããªç¹åŸŽã
äœãäžã®å®éšãè¡ãã«ã¯ãã¹ãã³ãxæ¹åãåããç¶æ
ããäœããªããã°ãªããªããã©ãããããå®éšè£
眮èªèº«ãããã£ã«ã¿ããšããŠäœ¿ããäŸãã°äžèšStern-Gerlachã®å®éšã§ã¯sz=1ã®é»åã¯è»éãäžã«æ²ãããã-1ã®ãã®ã¯äžã«æ²ããããããã£ãŠäžã«æ¥ãé»åã ããéããã°ããããã¯å
šãŠsz=1ã§ããããšããããå®éãããäžã€å®éšè£
眮ãçšæããæåã®è£
眮ã§äžã«æ²ããããé»åã ããéããŠszãããäžåºŠæž¬ãããããšã確ãã«å
šãŠã®é»åã§sz=1ã«ãªãã®ã§ããããã¡ããæåã®è£
眮ãšäºã€ã®è£
眮ã®éã«ç£å Žãªã©ãæããŠããŸããšåããå€ããããšããããããã®ãããªãã¹ãã³ã®åããå€ããèŠå ãããªããã°ãäžåºŠç®ãšäºåºŠç®ã®æž¬å®å€ã¯å¿
ãåãå€ã«ãªãã以äžã®ããšãèžãŸã次ã®å®çŸ©ãè¡ãã
ãsz=1ã®ç¶æ
ãåã£ãŠãããé»åãšã¯ãå®éšã«ããsz=1ãšãã枬å®å€ãåãããã®åŸåããå€ããããŠããªãé»åã®ããšãšããã
ä»»æã®åããžã®äžè¬åã¯èªæã§ããããä»»æã®åäœãã¯ãã«<math>\vec{u}</math>ã«å¯Ÿãã
ã»<math>\vec{u}</math>æ¹åãåããé»åãšã¯ã<math>\vec{s}\cdot\vec{u}</math>ã®æž¬å®ã§æž¬å®å€1ãåãããã®åŸåããå€ããããŠããªãé»åã§ããã
ãã®å®çŸ©ãæå³ããªãçç±ã¯ãäžèšã®éããã®å®çŸ©ã«åŸãé»åã§ããäžåºŠ<math>\vec{s}\cdot\vec{u}</math>ã枬å®ããã°å¿
ã1ãåãããšããå®éšçè£ã¥ããããããã§ãããäœããã®å®çŸ©ã«åŸãé»åã§<math>\vec{u}</math>ãšåçŽãªæåã枬ã£ãŠã枬å®çµæã¯æ±ºããŠ0ã«ã¯ãªããªãããšãå¿ããŠã¯ãªããªãã
ãã®å®çŸ©ã䜿ããšãäžèšã®ã©ã³ãã æ§ãå®éšã§ç¢ºãããã«ã¯ããŸãStern-Gerachã®è£
眮ã暪ã«åããŠsxã®å€ã«å¿ããŠè»éãæ²ããããããã«ããããããŠãå³(sx=1ã«å¯Ÿå¿ïŒã«æ¥ãé»åã ãã第2ã®è£
眮ã«éããŠszã枬ãããããšãååã¯sz=1ãæ®ãååã¯sz=-1ãšãªãã®ã§ããã
ããäžè¬çãªå Žåãã€ãŸã<math>\vec{u}</math>ãšz軞ãšã®è§åºŠãä»»æã®è§åºŠA(<math>0<=A<=\pi</math>) ã®å Žåãè¿°ã¹ãããïœæ¹åãåããé»åã¹ãã³ã®<math>\vec{u}</math>æ¹åã®æå<math>\vec{s}\cdot\vec{u}</math>ã枬ããšããããããšã
枬å®å€ã1ã«ãªã確çã¯<math>\cos^2(A/2)</math>ã-1ã«ãªã確çã¯<math>\sin^2(A/2)</math>ãšãªãã(ç¹ã«<math>A=\pi/2</math>ã®å Žåã«ã¯äžèšã®çµæã«åž°çããããšã«æ³šæïŒã
=== ã¹ãã³ã®æ°åŠçãªèšè¿° ===
ãã®ãããªèŠ³æž¬å€ã®é¢æ£åãã©ã説æããããäžã€ã®çŽ çŽãªèãæ¹ã¯ãæ¬æ¥é£ç¶çãªå€ããšããã®ã芳枬éçšã§ã®äœãã®ã¡ã«ããºã ã§é¢æ£çã«ãªããšèãããã®ã¡ã«ããºã ãè¿œæ±ããããšã ãããæ ¹åºã§ã¯é£ç¶ãªãã®ãäœãã®åå ã§é¢æ£åãããšèããã®ã§ããããããéåååŠã§ã¯ãã®ãããªæ¹éã¯ãšããªãã芳枬å€ãé¢æ£åããããšãããæ ¹åºã®æ³åãèªç¶ã®æ¬æ§ã§ãããšæãããããé©åã«èšè¿°ããæ°åŠçãªæ³åãäžããã®ã§ããã以äžã§ãã®æ³åãè¿°ã¹ãããããã¯å¥ã®æ³åïŒäŸãã°å€å
žååŠïŒããè«ççã«å°ããããã®ã§ã¯ãªããããèªèº«ãããã°ãå
¬çãã§ããããããæ£ãããã©ããã¯å®éšçµæãäºèšã»åçŸã§ãããã«ããå€å®ããããç¹ã«å€å
žååŠãé»ç£æ°åŠã¯ããç¯å²å
ã§å®éšãšåãããšã確ç«ãããçè«ã§ããããããããããã®ãå
¬çãããå°åºãããªããã°ãªããªãã
以äžããŸãã¹ãã³ãšããç¹æ®ãªå Žåã«ã€ããŠè¿°ã¹ããäžè¬çãªå Žåãžã®æ¡åŒµã¯ãå°ãªããšã圢åŒäžã¯åçŽãªããšãšãªãã
==== ã¹ãã³ã®éåååŠå
¬ç1 ç©çéã®æ°åŠçè¡šçŸã¯è¡åã枬å®å€ãåãããå€ã¯ãã®åºæå€ ====
ã¹ãã³ããã€ç©çéã¯ãã®ïœæåsxãyæåsy, zæåszã§ããïŒäžè¬ã®æ¹åã®æåã¯ãããã®äžæ¬¡çµåãšãªãïŒããããã®ç©çéã¯ãã2ïœ2è¡åïŒPauliè¡åãšåŒã°ããïŒã«å¯Ÿå¿ãããsxã«å¯Ÿå¿ããè¡åãXãšæžããsy,szããããã«å¯Ÿå¿ããè¡åãY,Zãšæžãããšã«ãããšã
<math> X=\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}</math>
<math> Y=\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}</math>
<math> Z=\begin{pmatrix} 1 & 0 \\0 & -1 \end{pmatrix}</math>
ã察å¿ãããã®æå³ã¯æ®µéçã«èª¬æããŠããããŸãéèŠãªã®ã¯èŠ³æž¬å€ãåãåŸãå€ã決ããããããšã§ãããç©çészãäŸã«ãšããš
szã®æž¬å®å€ã«ãªãããã®ã¯å¯Ÿå¿ããè¡åZã®åºæå€ã®ã¿ãã€ãŸãszã®æž¬å®å€ã1, -1ã«éãããã®ã¯ã察å¿ããZã®åºæå€ã1, -1ã ãã ããã§ããã
sx, syã«ã€ããŠãåæ§ãã©ã¡ãã察å¿ããè¡åX,Yã®åºæå€ã1, -1ãããªãã®ã§æž¬å®å€ãšããŠã¯1, -1ããçŸããªãã
äžè¬çã«èšããšãã¹ãã³ã«éããç©çéã¯ããè¡åïŒããäžè¬çã«ã¯ç·åœ¢æŒç®åïŒã«å¯Ÿå¿ãããã€ãŸããã®ç©çéã®èŠ³æž¬å€ã¯å¯Ÿå¿ããè¡åã®åºæå€ã«éããããéã«ãããšããç©çéããšããã枬å®å€ãç¥ããããšæã£ãããããã«å¯Ÿå¿ããè¡åãæ±ããã®åºæå€ãæ±ããã°ããããšããããšã§ããã
ã§ã¯å¯Ÿå¿ããè¡åïŒç·åœ¢æŒç®åïŒãã©ãæ±ããããšããçåãåœç¶æµ®ãã¶ããããã¯æ±ãç©çç³»åã
ã®åé¡ã«ãªããåºæ¬çãªã®ã¯æ£æºéååãšåŒã°ããææ³ã§ãå€å
žååŠã®ãã¢ãœã³æ¬åŒ§ãšåŒã°ãããã®ããæŒç®åãæºããã¹ã亀æé¢ä¿ãæšæž¬ãããããæºãããããªæŒç®åãæ¢ããç¹ã«ãã®ãããªææ³ããè§éåéã®äžè¬è«ãå±éã§ããäžã§å°å
¥ããã¹ãã³ã®Pauliè¡åã¯ãã®ç¹å¥ãªå ŽåãšããŠåŸãããã
äœãåºæ¬çãªç©çéã®è¡åãåããã°ããããã®é¢æ°ã«ãªã£ãŠããç©çéã®è¡åã¯è¡å代æ°ã«ããåŸããããäŸãã°<math>sx+sy</math>ãšããç©çéã«å¯Ÿå¿ããè¡åã¯<math>X+Y</math>ã«ãªãããã®åºæå€ã¯ïŒæ®éã®ç·åœ¢ä»£æ°ã®æ¹æ³ã§èšç®ãããšïŒ<math>\pm\sqrt2</math> ãªã®ã§<math>sx+sy</math>ããšããã芳枬å€ã¯<math>\pm\sqrt2</math> ã®ã©ã¡ããã«ãªããåŸã£ãŠæ±ãç³»ã§åºæ¬çãªç©çéïŒäŸãã°äœçœ®xãšéåépïŒã«å¯Ÿå¿ããæŒç®åãåããã°ããã®ç³»ã®ä»»æã®ç©çéïŒåºæ¬çãªç©çéã®é¢æ°ã«ãªã£ãŠããéãäŸãã°ãšãã«ã®ãŒ p^2/(2m)+V(x)ïŒã察å¿ããè¡åã¯æŒç®åã®ä»£æ°ïŒç·åœ¢ä»£æ°ïŒã§åãã£ãŠããŸãã®ã§ããã
==== ã¹ãã³ã®éåååŠå
¬ç2 ç©çç¶æ
ã®æ°åŠçè¡šçŸã¯è€çŽ åãã¯ãã«ïŒã±ããã確çã¯åºæãã¯ãã«ãšã®å
ç©ã®çµ¶å¯Ÿå€èªä¹ ====
次ã«ãé¢æ£çãªèŠ³æž¬å€ïŒç©çéã«å¯Ÿå¿ããè¡åã®åºæå€ïŒã®ã©ãã芳枬ããããã®èŠåãè¿°ã¹ãããŸããã¹ãã³ã®ç¶æ
ã¯ã¹ãã³ã®ç©çéã«å¯Ÿå¿ããè¡åïŒX,Y,Z)ãäœçšãããã¯ãã«ãå³ã¡2è¡1åã®è€çŽ åãã¯ãã«
<math> \begin{pmatrix} \alpha_0 \\ \alpha_1 \end{pmatrix}</math>
ã§è¡šããããããã§<math>\alpha_0, \alpha_1</math>ã¯ã©ã¢ããè€çŽ æ°ã ãã次ã®æ£èŠåæ¡ä»¶ãæºãããã®ãšãã
<math> |\alpha_0~|^2+|\alpha_1|^2=1 </math>ããã®ãããªè€çŽ åãã¯ãã«ãDiracã«ããããã©ã±ããèšå·ãã䜿ãããã±ããã <math> | \alpha > </math>ã§è¡šãã
<math> |\alpha > =\begin{pmatrix} \alpha_0 \\ \alpha_1 \end{pmatrix}</math>
ç·åœ¢ä»£æ°ã«ãããšãè€çŽ åãã¯ãã«å士ã®éã«ã¯èªç¶ã«å
ç©ãå®çŸ©ããããã±ãã<math> |\alpha > =\begin{pmatrix} \alpha_0 \\ \alpha_1 \end{pmatrix}</math>ãš<math> |\beta > =\begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix}</math>
ã®éã®å
ç© <math> ( |\alpha>, |\beta> ) </math> ã¯æ¬¡ã§äžããããïŒ
<math> (|\alpha>,|\beta>)=\alpha_0^* \beta_0 + \alpha_1^* \beta_1 </math>
ãã®å
ç©ã¯ãæåãå®æ°ã®å Žåã«ã¯æ®éã®å®ãã¯ãã«å士ã®å
ç©ã«ãªãããè€çŽ æ°ã®å Žåã«ã¯å·ŠåŽã®èŠçŽ ã«è€çŽ å
±åœ¹ãåããããå®çŸ©ããçç±ã¯ããèªåèªèº«ãšã®å
ç© <math> (|\alpha>,|\alpha>) </math>ããå¿
ã0以äžã®å®æ°ã«ãªãããã«ããããã§ãããç¹ã«äžèšã®èŠæ Œåæ¡ä»¶ã¯ <math> (|\alpha>,|\alpha>)=1 </math> ãšæžãããšãã§ããã
ã§ã¯ããã®ã±ããã®ç©ççæå³ã«ã€ããŠè¿°ã¹ãããäžã§å°å
¥ãããzåãã®ç¶æ
ããå³ã¡szã芳枬ããã°å¿
ãsz=1ã®çµæãåŸãããç¶æ
ã¯ãè¡åZã®åºæå€1ã®åºæãã¯ãã«ïŒã§èŠæ Œåããããã®ïŒã§èšè¿°ããããã€ãŸããszã枬å®ããã°ãçµæãå¿
ãszïŒ1ã«ãªãç¶æ
ãè¡šãã±ãããã|sz=1>ãšæžãããšã«ãããšæ¬¡ãæç«ïŒ
<math> |sz=1> =\begin{pmatrix} 1 \\ 0 \end{pmatrix}</math>
ïŒå®éã«ã¯ãã®æåã§1ã®ä»£ããã«çµ¶å¯Ÿå€1ã®ä»»æã®è€çŽ æ°<math>e^{i\theta}</math> ããããŠãåããªã®ã ãããã®ä»»ææ§ã«ã€ããŠã¯åŸã§è¿°ã¹ãããšããããåäœåºæãã¯ãã«ã®äžã§äžçªæåãç°¡åãªãã®ãéžãã ãšèããŠã»ãããïŒ
ããã¯äžè¬çã«æ¡åŒµããããå³ã¡ãä»»æã®ç©çéAã«å¯ŸããŠãAã枬å®ãããšãã«ç¢ºå®ã«æž¬å®å€aãåŸãããç¶æ
ã¯ãæ°åŠçã«ã¯Aã«å¯Ÿå¿ããè¡åïŒãŸãã¯æŒç®åïŒã®åºæå€aã®åºæãã¯ãã«ïŒã§èŠæ Œåããããã®ïŒã§èšè¿°ãããããã®ãããªç¶æ
ããããç¥ããèšãæ¹ã§ç©çéAã®åºæå€aã®åºæç¶æ
ãšåŒã¶ã
ã¹ãã³ã®äŸã«æ»ããšãsxã枬å®ããŠå¿
ãsx=1ã®çµæãåŸãããç¶æ
|sx=1>ã¯ãè¡åXã®åºæå€1ã®åºæç¶æ
ãªã®ã§
<math> |sx=1> =2^{-1/2}\begin{pmatrix} 1 \\ 1 \end{pmatrix}</math>
å¿
ãsx=-1ã®çµæãåŸãããç¶æ
ã¯
<math> |sx=-1> =2^{-1/2}\begin{pmatrix} 1 \\ -1 \end{pmatrix}</math>
==== éåºæç¶æ
ã®æž¬å® ====
ã§ã¯ãszã枬å®ããéã«ãç¶æ
ãszã®åºæç¶æ
ã§ãªãã£ããçµæã¯ã©ããªãã ããããããã§å§ããŠå®éšãšæ¯ã¹ãããèšè¿°ãçŸãããéåååŠãäžããäºèšã¯æ¬¡ã®éãã
ã¹ãã³ã®ç¶æ
<math>|\alpha></math>ãszã®åºæç¶æ
ãšã¯éããªãå Žåã«szã枬å®ãããšããã®çµæïŒæž¬å®å€ã1ã«ãªãã-1ã«ãªããïŒã¯ã©ã³ãã ãªäºè±¡ãšãªãã確ççã«ããäºèšã§ããªãããã®ç¢ºçã¯ããšã®ç¶æ
ãšåºæç¶æ
ã®å
ç©ã®çµ¶å¯Ÿå€èªä¹ã§äžãããããäŸãã°szïŒ1ãšãªã確çP(sz=1)ã¯
<math> P(sz=1)=|(|sz=1>, |\alpha>)|^2 = |\alpha_0|^2</math>
åæ§ã«ãsx=1ã«ãªã確çP(sx=1)ã¯
<math> P(sx=1)=|(|sx=1>, |\alpha>)|^2 = |\frac{\alpha_0+\alpha_1}{2}|^2</math>
ç¹ã«åã®äŸãšããŠåãäžãããã¹ãã³ãïœæ¹åãåããŠããå Žåã«szã枬å®ããçµæã¯ã
<math> P(sz=1)=|(|sz=1>, |sx=1>)|^2 = |2^{-1/2}|^2=\frac{1}{2}</math>
ãšãªããå®éšçµæãšãã確çãäžããããã
ããã«ãå®éšäŸãšããŠåãäžãããïœæ¹åãåããé»åã¹ãã³ã®<math>\vec{u}</math>æ¹åã®æå<math>\vec{s}\cdot\vec{u}</math>ã枬ããå Žåã®çµæãèšç®ããŠã¿ããæ³åãã
<math> P(\vec{s}\cdot\vec{u}=1)=|(|sz=1>, |\vec{s}\cdot\vec{u}=1>)|^2 </math>
åé¡ã¯<math>|\vec{s}\cdot\vec{u}=1></math>ã ãã<math>\vec{u}</math>ã®æåãç座æšã§ã®æ¹å<math>\theta,\phi</math>ã䜿ã
<math>(\sin\theta\cos\phi, \sin\theta\sin\phi, \cos\theta)</math>ãšè¡šããš
<math>\vec{s}\cdot\vec{u}=u_x X+u_y Y+u_z Z=
\begin{pmatrix} u_z & u_x-i u_y \\ u_x + i u_y & -u_z \end{pmatrix}=
\begin{pmatrix} \cos\theta & e^{-i\phi}\sin\theta \\ e^{i\phi}\sin\theta & -\cos\theta \end{pmatrix}
</math>
ãã®åºæå€1ã®åºæãã¯ãã«(ã§èŠæ ŒåãããŠãããã®ïŒã¯
<math>\begin{pmatrix} \cos\frac{\theta}{2} \\ e^{i^\phi}\sin\frac{\theta}{2} \end{pmatrix}</math>
ããã䜿ããšæ¬¡ãåŸãããå®éšçµæããã¡ããšåçŸããèšç®çµæãšãªãã
<math> P(\vec{s}\cdot\vec{u}=1)=|(|sz=1>, |\vec{s}\cdot\vec{u}=1>)|^2=\cos^2\frac{\theta}{2} </math>
=== éåæ³å ===
ãããŸã§ç¶æ
ã®æ°åŠçãªèšè¿°ãšæž¬å®ã®é¢ä¿ãæžããã次ã¯ç¶æ
ã®éåæ³åã§ãããç°¡åãªäŸãšããŠã¹ãã³ã«äžæ§ãªç£å Žããããå Žåãèããã
{{stub}}
{{DEFAULTSORT:ãããããããã}}
[[Category:éåååŠ|*]]
{{NDC|423}} | 2005-01-25T10:08:58Z | 2024-03-17T10:35:16Z | [
"ãã³ãã¬ãŒã:Pathnav",
"ãã³ãã¬ãŒã:Wikipedia",
"ãã³ãã¬ãŒã:Wikiversity",
"ãã³ãã¬ãŒã:Stub",
"ãã³ãã¬ãŒã:NDC"
] | https://ja.wikibooks.org/wiki/%E9%87%8F%E5%AD%90%E5%8A%9B%E5%AD%A6 |
1,551 | OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é ãã¥ãŒãžã§ã³ç»åãäœæãã | < ^ >
OsiriX ã®ãã¥ãŒãžã§ã³åäœæã«ã¯å¶éããããŸããåäžæ®åœ±ã»ãã·ã§ã³ã§äœæãããç»åã¯ãèªåçã«åæã§ããŸãã2 ã€ã®ç»åã·ãªãŒãºéã«ãããŠãã¹ã©ã€ã¹çªå·ãã¹ã©ã€ã¹ééãåäžã§ããã°ã2D Viewer ã¡ãã¥ãŒãã2 ã·ãªãŒãºããªã³ã¯ãããŠåæããããšãã§ããŸãã
ç°æ©çš®éããããã¯åäžæ©çš®ã§ãç°ãªãæ€æ»éã§ã¯ãçŸæç¹ã§ã¯ èªåç ãªåæã¯ã§ããŸããããã ããOsiriX ã® "Move" , "Zoom" ããŒã«ãå©çšããã°ã æå ã§ãã¥ãŒãžã§ã³åãäœæå¯èœã§ããç°ãªãã¹ã©ã€ã¹ææ°ãããªãã·ãªãŒãºããã2ã€ã®ç»åãåæããå Žåã«ã¯ã2D Viewer ã¡ãã¥ãŒé
ç®ã§ "stack synchronization" ã解é€ããå¿
èŠããããŸãã
2ã€ã®ç»åã·ãªãŒãºãããã¥ãŒãžã§ã³åãäœæããã«ã¯ã2ã€ã®ã·ãªãŒãºã®ã©ã¡ããã®ãŠã€ã³ããŠã¢ã€ã³ã³ããä»æ¹ã«âãã©ãã°ã¢ã³ãããããâããã ãã§ãã:
ãŠã€ã³ããŠã¢ã€ã³ã³ã®ãã©ãã°æã«ã¯ãã¢ã€ã³ã³ãã¯ãªãã¯ããŠ1 ç§ãããå°ãåŸ
ã£ãŠããããã©ãã°ããå¿
èŠããããŸãããããªããšãå
šãŠã®ãŠã€ã³ããŠããã©ãã°ãããŠããŸããŸãã
ããŒã«ããŒã® âFusion Percentageâ ã¹ã©ã€ãã§éé床ã調ç¯ããŸãã2 ã€ã®ã·ãªãŒãºã®ãã¡1 ã€ãéãããšãåæã¯çµäºããŸããäžæ¹ã®ã·ãªãŒãºã§æœããä¿®æ£(CLUTãZoomãå転ã...)ã¯ãããäžæ¹ã®ã·ãªãŒãºã«ãé©çšãããŸãã
ãã¥ãŒãžã§ã³ç»åã®äœæã¯ãå€æé¢åæ§æãããªã¥ãŒã ã¬ã³ããªã³ã°ãªã©ã®2Dã3D åæ§æç»åã§ãå©çšã§ããŸãã
OsiriX < ^ > | [
{
"paragraph_id": 0,
"tag": "p",
"text": "< ^ >",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "OsiriX ã®ãã¥ãŒãžã§ã³åäœæã«ã¯å¶éããããŸããåäžæ®åœ±ã»ãã·ã§ã³ã§äœæãããç»åã¯ãèªåçã«åæã§ããŸãã2 ã€ã®ç»åã·ãªãŒãºéã«ãããŠãã¹ã©ã€ã¹çªå·ãã¹ã©ã€ã¹ééãåäžã§ããã°ã2D Viewer ã¡ãã¥ãŒãã2 ã·ãªãŒãºããªã³ã¯ãããŠåæããããšãã§ããŸãã",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ç°æ©çš®éããããã¯åäžæ©çš®ã§ãç°ãªãæ€æ»éã§ã¯ãçŸæç¹ã§ã¯ èªåç ãªåæã¯ã§ããŸããããã ããOsiriX ã® \"Move\" , \"Zoom\" ããŒã«ãå©çšããã°ã æå ã§ãã¥ãŒãžã§ã³åãäœæå¯èœã§ããç°ãªãã¹ã©ã€ã¹ææ°ãããªãã·ãªãŒãºããã2ã€ã®ç»åãåæããå Žåã«ã¯ã2D Viewer ã¡ãã¥ãŒé
ç®ã§ \"stack synchronization\" ã解é€ããå¿
èŠããããŸãã",
"title": ""
},
{
"paragraph_id": 3,
"tag": "p",
"text": "2ã€ã®ç»åã·ãªãŒãºãããã¥ãŒãžã§ã³åãäœæããã«ã¯ã2ã€ã®ã·ãªãŒãºã®ã©ã¡ããã®ãŠã€ã³ããŠã¢ã€ã³ã³ããä»æ¹ã«âãã©ãã°ã¢ã³ãããããâããã ãã§ãã:",
"title": ""
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ãŠã€ã³ããŠã¢ã€ã³ã³ã®ãã©ãã°æã«ã¯ãã¢ã€ã³ã³ãã¯ãªãã¯ããŠ1 ç§ãããå°ãåŸ
ã£ãŠããããã©ãã°ããå¿
èŠããããŸãããããªããšãå
šãŠã®ãŠã€ã³ããŠããã©ãã°ãããŠããŸããŸãã",
"title": ""
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ããŒã«ããŒã® âFusion Percentageâ ã¹ã©ã€ãã§éé床ã調ç¯ããŸãã2 ã€ã®ã·ãªãŒãºã®ãã¡1 ã€ãéãããšãåæã¯çµäºããŸããäžæ¹ã®ã·ãªãŒãºã§æœããä¿®æ£(CLUTãZoomãå転ã...)ã¯ãããäžæ¹ã®ã·ãªãŒãºã«ãé©çšãããŸãã",
"title": ""
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ãã¥ãŒãžã§ã³ç»åã®äœæã¯ãå€æé¢åæ§æãããªã¥ãŒã ã¬ã³ããªã³ã°ãªã©ã®2Dã3D åæ§æç»åã§ãå©çšã§ããŸãã",
"title": ""
},
{
"paragraph_id": 7,
"tag": "p",
"text": "",
"title": ""
},
{
"paragraph_id": 8,
"tag": "p",
"text": "OsiriX < ^ >",
"title": ""
}
] | < ^ > OsiriX ã®ãã¥ãŒãžã§ã³åäœæã«ã¯å¶éããããŸããåäžæ®åœ±ã»ãã·ã§ã³ã§äœæãããç»åã¯ãèªåçã«åæã§ããŸãã2 ã€ã®ç»åã·ãªãŒãºéã«ãããŠãã¹ã©ã€ã¹çªå·ãã¹ã©ã€ã¹ééãåäžã§ããã°ã2D Viewer ã¡ãã¥ãŒãã2 ã·ãªãŒãºããªã³ã¯ãããŠåæããããšãã§ããŸãã ç°æ©çš®éããããã¯åäžæ©çš®ã§ãç°ãªãæ€æ»éã§ã¯ãçŸæç¹ã§ã¯ èªåç ãªåæã¯ã§ããŸããããã ããOsiriX ã® "Move" , "Zoom" ããŒã«ãå©çšããã°ã æå ã§ãã¥ãŒãžã§ã³åãäœæå¯èœã§ããç°ãªãã¹ã©ã€ã¹ææ°ãããªãã·ãªãŒãºããã2ã€ã®ç»åãåæããå Žåã«ã¯ã2D Viewer ã¡ãã¥ãŒé
ç®ã§ "stack synchronization" ã解é€ããå¿
èŠããããŸãã 2ã€ã®ç»åã·ãªãŒãºãããã¥ãŒãžã§ã³åãäœæããã«ã¯ã2ã€ã®ã·ãªãŒãºã®ã©ã¡ããã®ãŠã€ã³ããŠã¢ã€ã³ã³ããä»æ¹ã«âãã©ãã°ã¢ã³ãããããâããã ãã§ãã: ãŠã€ã³ããŠã¢ã€ã³ã³ã®ãã©ãã°æã«ã¯ãã¢ã€ã³ã³ãã¯ãªãã¯ããŠ1 ç§ãããå°ãåŸ
ã£ãŠããããã©ãã°ããå¿
èŠããããŸãããããªããšãå
šãŠã®ãŠã€ã³ããŠããã©ãã°ãããŠããŸããŸãã ããŒã«ããŒã® âFusion Percentageâ ã¹ã©ã€ãã§éé床ã調ç¯ããŸãã2 ã€ã®ã·ãªãŒãºã®ãã¡1 ã€ãéãããšãåæã¯çµäºããŸããäžæ¹ã®ã·ãªãŒãºã§æœããä¿®æ£ïŒCLUTãZoomãå転ã...ïŒã¯ãããäžæ¹ã®ã·ãªãŒãºã«ãé©çšãããŸãã ãã¥ãŒãžã§ã³ç»åã®äœæã¯ãå€æé¢åæ§æãããªã¥ãŒã ã¬ã³ããªã³ã°ãªã©ã®2Dã3D åæ§æç»åã§ãå©çšã§ããŸãã OsiriX < ^ > | [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_ããŒã«ã«ããŒã¿ããŒã¹ã管çãã|<]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|^]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_éDICOMç»åãã ãŒããŒãéã|>]]
----
OsiriX ã®ãã¥ãŒãžã§ã³åäœæã«ã¯å¶éããããŸããåäžæ®åœ±ã»ãã·ã§ã³ã§äœæãããç»åã¯ãèªåçã«åæã§ããŸãã2 ã€ã®ç»åã·ãªãŒãºéã«ãããŠãã¹ã©ã€ã¹çªå·ãã¹ã©ã€ã¹ééãåäžã§ããã°ã2D Viewer ã¡ãã¥ãŒãã2 ã·ãªãŒãºããªã³ã¯ãããŠåæããããšãã§ããŸãã
<center>[[ç»å:ThighT1STIRFusion.jpg]]<br>''ãããããŒã«éžæã®ãã ã¹ããªã³ã°å
ã«åœ¢æãããè¡è
«äŸã«ãããã軞äœSTIR ãšT1 匷調ç»åéã®ãã¥ãŒãžã§ã³åããããã®ç»åã¯åäžæ€æ»ã·ãªãŒãºã§ãããOsiriX ã¯ã '''èªåç''' ã«åæããããªããŸãã''</center>
ç°æ©çš®éããããã¯åäžæ©çš®ã§ãç°ãªãæ€æ»éã§ã¯ãçŸæç¹ã§ã¯ '''èªåç''' ãªåæã¯ã§ããŸããããã ããOsiriX ã® "Move" [[Image:OsiriXMoveIcon.gif]] , "Zoom" [[ç»å:OsiriXZoomIcon.gif]] ããŒã«ãå©çšããã°ã '''æå''' ã§ãã¥ãŒãžã§ã³åãäœæå¯èœã§ããç°ãªãã¹ã©ã€ã¹ææ°ãããªãã·ãªãŒãºããã2ã€ã®ç»åãåæããå Žåã«ã¯ã2D Viewer ã¡ãã¥ãŒé
ç®ã§ "stack synchronization" ã解é€ããå¿
èŠããããŸãã
<center>[[ç»å:OsirixFusionEpendymomasmall.jpg]]<br>''è
°æ€L1 ã¬ãã«ã®äžè¡£è
«ãåã³è
°æ€L4 åé
è§è§£é¢äŸã«ããããè
°æ€åçŽXç·åãšMRI T2 匷調ç»åéã®ãã¥ãŒãžã§ã³åãOsiriX ã® "Move", "Zoom" ããŒã«ãå©çšããŠã '''æå''' ã§äœæããç»åã''</center>
2ã€ã®ç»åã·ãªãŒãºãããã¥ãŒãžã§ã³åãäœæããã«ã¯ã2ã€ã®ã·ãªãŒãºã®ã©ã¡ããã®ãŠã€ã³ããŠã¢ã€ã³ã³ããä»æ¹ã«âãã©ãã°ã¢ã³ãããããâããã ãã§ãã:
<center>[[ç»å:OsiriX_9.1.jpg]]<br>''ãŠã€ã³ããŠã¢ã€ã³ã³ãšã¯ããŠã€ã³ããŠåã®å·ŠåŽã«ããã¢ã€ã³ã³ã®ããšã§ãã''</center>
ãŠã€ã³ããŠã¢ã€ã³ã³ã®ãã©ãã°æã«ã¯ãã¢ã€ã³ã³ãã¯ãªãã¯ããŠ1 ç§ãããå°ãåŸ
ã£ãŠããããã©ãã°ããå¿
èŠããããŸãããããªããšãå
šãŠã®ãŠã€ã³ããŠããã©ãã°ãããŠããŸããŸãã
<center>[[ç»å:OsiriX 9.2.jpg]]<br>''CT ãšPET ç»åã·ãªãŒãºã®ãã¥ãŒãžã§ã³å''</center>
ããŒã«ããŒã® âFusion Percentageâ ã¹ã©ã€ãã§éé床ã調ç¯ããŸãã2 ã€ã®ã·ãªãŒãºã®ãã¡1 ã€ãéãããšãåæã¯çµäºããŸããäžæ¹ã®ã·ãªãŒãºã§æœããä¿®æ£ïŒCLUTãZoomãå転ã...ïŒã¯ãããäžæ¹ã®ã·ãªãŒãºã«ãé©çšãããŸãã
ãã¥ãŒãžã§ã³ç»åã®äœæã¯ãå€æé¢åæ§æãããªã¥ãŒã ã¬ã³ããªã³ã°ãªã©ã®2Dã3D åæ§æç»åã§ãå©çšã§ããŸãã
<center>[[ç»å:OsiriX_10.1.jpg]]<br>''3D å€æé¢åæ§æãŠã€ã³ããŠã«ããããã¥ãŒãžã§ã³å''</center>
<center>[[ç»å:OsiriX_10.2.jpg]]<br>''3D æ倧å€æ圱ãŠã€ã³ããŠã«ããããã¥ãŒãžã§ã³å''</center>
----
[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|OsiriX]] <br>
[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_ããŒã«ã«ããŒã¿ããŒã¹ã管çãã|<]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|^]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_éDICOMç»åãã ãŒããŒãéã|>]]
[[en:Online OsiriX Documentation/Making fusion images]]
[[es:Documentación en lÃnea de OsiriX/Fusionar imágenes]]
[[fr:Documentation en ligne de OsiriX/Fusionner des images]]
[[Category:OsiriX|ãµããããããããããããããã]] | null | 2015-08-28T12:13:28Z | [] | https://ja.wikibooks.org/wiki/OsiriX_%E3%82%AA%E3%83%B3%E3%83%A9%E3%82%A4%E3%83%B3%E8%A7%A3%E8%AA%AC%E6%96%87%E6%9B%B8/OsiriX%E5%85%A5%E9%96%80_%E3%83%95%E3%83%A5%E3%83%BC%E3%82%B8%E3%83%A7%E3%83%B3%E7%94%BB%E5%83%8F%E3%82%92%E4%BD%9C%E6%88%90%E3%81%99%E3%82%8B |
1,552 | OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é éDICOMç»åãã ãŒããŒãéã | < ^ >
OsiriX ã¯ãéDICOM ç»ååã³ã ãŒããŒããµããŒãããŠããŸããDICOM ç»åãšåãããã«åçš®ç»åãé£ç¶ããç»åãæ±ãããšãã§ããŸããèšãæããã°ãå転ãæ¡å€§çž®å°ããŠã€ã³ããŠå€ã®èª¿æŽãã«ã©ãŒç䌌衚瀺 (CLUT) ãã§ãããšããããšã§ãã
äžæŠãOsiriX ã«ããããç»åãåã蟌ãã§ããŸãã°ããããã®ç»åãDICOM 圢åŒãšããŠããã£ã¹ã¯äžã®ãã¡ã€ã«ãPACS ã·ã¹ãã ã«æžãåºããŸããOsiriX ã¯ããããã®ç»åãRAW, JPEG, TIFF, Quicktime 圢åŒã¯ãã¡ããã®ããšãçŽæ¥é»åã¡ãŒã«ã«ããæžãåºãããšãã§ããŸãã
OsiriX < ^ > | [
{
"paragraph_id": 0,
"tag": "p",
"text": "< ^ >",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "OsiriX ã¯ãéDICOM ç»ååã³ã ãŒããŒããµããŒãããŠããŸããDICOM ç»åãšåãããã«åçš®ç»åãé£ç¶ããç»åãæ±ãããšãã§ããŸããèšãæããã°ãå転ãæ¡å€§çž®å°ããŠã€ã³ããŠå€ã®èª¿æŽãã«ã©ãŒç䌌衚瀺 (CLUT) ãã§ãããšããããšã§ãã",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "äžæŠãOsiriX ã«ããããç»åãåã蟌ãã§ããŸãã°ããããã®ç»åãDICOM 圢åŒãšããŠããã£ã¹ã¯äžã®ãã¡ã€ã«ãPACS ã·ã¹ãã ã«æžãåºããŸããOsiriX ã¯ããããã®ç»åãRAW, JPEG, TIFF, Quicktime 圢åŒã¯ãã¡ããã®ããšãçŽæ¥é»åã¡ãŒã«ã«ããæžãåºãããšãã§ããŸãã",
"title": ""
},
{
"paragraph_id": 3,
"tag": "p",
"text": "OsiriX < ^ >",
"title": ""
}
] | < ^ > OsiriX ã¯ãéDICOM ç»ååã³ã ãŒããŒããµããŒãããŠããŸããDICOM ç»åãšåãããã«åçš®ç»åãé£ç¶ããç»åãæ±ãããšãã§ããŸããèšãæããã°ãå転ãæ¡å€§çž®å°ããŠã€ã³ããŠå€ã®èª¿æŽãã«ã©ãŒç䌌衚瀺 (CLUT) ãã§ãããšããããšã§ãã äžæŠãOsiriX ã«ããããç»åãåã蟌ãã§ããŸãã°ããããã®ç»åãDICOM 圢åŒãšããŠããã£ã¹ã¯äžã®ãã¡ã€ã«ãPACS ã·ã¹ãã ã«æžãåºããŸããOsiriX ã¯ããããã®ç»åãRAW, JPEG, TIFF, Quicktime 圢åŒã¯ãã¡ããã®ããšãçŽæ¥é»åã¡ãŒã«ã«ããæžãåºãããšãã§ããŸãã OsiriX < ^ > | [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_ãã¥ãŒãžã§ã³ç»åãäœæãã|<]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|^]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_DICOMç»åã«æžãåºã|>]]
----
OsiriX ã¯ãéDICOM ç»ååã³ã ãŒããŒããµããŒãããŠããŸããDICOM ç»åãšåãããã«åçš®ç»åãé£ç¶ããç»åãæ±ãããšãã§ããŸããèšãæããã°ãå転ãæ¡å€§çž®å°ããŠã€ã³ããŠå€ã®èª¿æŽãã«ã©ãŒç䌌衚瀺 (CLUT) ãã§ãããšããããšã§ãã
äžæŠãOsiriX ã«ããããç»åãåã蟌ãã§ããŸãã°ããããã®ç»åãDICOM 圢åŒãšããŠããã£ã¹ã¯äžã®ãã¡ã€ã«ãPACS ã·ã¹ãã ã«æžãåºããŸããOsiriX ã¯ããããã®ç»åãRAW, JPEG, TIFF, Quicktime 圢åŒã¯ãã¡ããã®ããšãçŽæ¥é»åã¡ãŒã«ã«ããæžãåºãããšãã§ããŸãã
<br>
<center>[[ç»å:OsiriX_11.1.jpg]]<br>''OsiriX ã§QuickTime ã ãŒããŒãéããŠãããšãã''</center>
----
[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|OsiriX]] <br>
[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_ãã¥ãŒãžã§ã³ç»åãäœæãã|<]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|^]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_DICOMç»åã«æžãåºã|>]]
[[en:Online OsiriX Documentation/Opening non-DICOM images and movies]]
[[es:Documentación en lÃnea de OsiriX/Abrir imágenes que no sean DICOM y peliculas]]
[[Category:OsiriX|ã²DICOMããããããã²ããã²ãã]] | null | 2015-08-29T00:59:48Z | [] | https://ja.wikibooks.org/wiki/OsiriX_%E3%82%AA%E3%83%B3%E3%83%A9%E3%82%A4%E3%83%B3%E8%A7%A3%E8%AA%AC%E6%96%87%E6%9B%B8/OsiriX%E5%85%A5%E9%96%80_%E9%9D%9EDICOM%E7%94%BB%E5%83%8F%E3%82%84%E3%83%A0%E3%83%BC%E3%83%93%E3%83%BC%E3%82%92%E9%96%8B%E3%81%8F |
1,553 | OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é DICOMç»åã«æžãåºã | < ^ >
OsiriX ã¯ãDICOM ç»åãTIFF, JPEG, RAW, DICOM ãQuickTime 圢åŒã«æžãåºããŸããç¹å®ã®åœ¢åŒã«æžãåºãããšã«ãã£ãŠã "PowerPoint" ã "Keynote" ã«ãããã¬ãŒã³ã "Word" æžé¡ãžåã蟌ãããšãå¯èœãªããã§ãã
1 ç»åãæžãåºãã«ã¯ãcommand ã㌠+ C ããŒã§ã¯ãªããããŒãã«ã³ããŒãããããŸã㯠"2D Viewer" ã¡ãã¥ãŒãéžæããŸãã "Export" ã¡ãã¥ãŒé
ç®ã«ã¯ãç»åä¿ååœ¢åŒ (Tiff, JPEG ç) ãéžæãããµãã¡ãã¥ãŒããããŸããããã©ã«ãã®ç°å¢èšå®ã§ã¯ãåäžã®æ¡ä»¶ (ãµã€ãºãåçãå転ããŠã€ã³ããŠã¬ãã«ç) ã§æžãåºããã¢ãã¿è¡šç€ºãããèšå®ã«ãªã£ãŠããŸãã 衚瀺ç»åã®æ
å ±ã¯ããŠã€ã³ããŠäžéšå·Šé
ã«è¡šç€ºãããŸãã:
åãããšãé£ç¶ç»åããŒã¿ã®æžãåºãã«ãåœãŠã¯ãŸããŸãã "Export to Quicktime" ãéžæãããããŸãã¯ããŒã«ããŒãã "Quicktime" ãã¿ã³ãã¯ãªãã¯ããŠæžãåºããŸããQuickTime 圢åŒãžã®æžãåºãã§ã¯ã4D Image fusion ããŒã¿ã®æžãåºããã§ããŸãã:
å§çž®åœ¢åŒããã¬ãŒã ã¬ãŒãã®å€æŽãã§ããŸããæè¯ç»è³ªã«ã¯JPEG å§çž®ãæšå¥šããŸãã
åç»åãšåãµã€ãºã§ç»åã®æžãåºããèšå®ããããšãã§ããŸãã ç°å¢èšå® (Preferences ...) ãŠã€ã³ã㊠(OsiriX ã¡ãã¥ãŒé
ç®) ãéžæã衚瀺ãŠã€ã³ããŠå
ã®Viewers ã¿ãã§èšå®å€æŽããããªããŸããèšå®å€æŽããããªããšãäŸãã°ã512 à 512 ãããªãã¯ã¹ã®CT ç»åã¯ã512 à 512 ãããªãã¯ã¹ã®ç»åã«æžãåºãããŸããæŽã«ã被éšè
ããŒã¿çã®æåæ
å ±ãå«ãŸãªããç»åã®ã¿ã®ããŒã¿ãæžãåºãããŸãããã¬ãŒã³ãè«æã«ç»åã䜿çšããå ŽåãæçšãªéžæãšãªããŸãã
OsiriX < ^ > | [
{
"paragraph_id": 0,
"tag": "p",
"text": "< ^ >",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "OsiriX ã¯ãDICOM ç»åãTIFF, JPEG, RAW, DICOM ãQuickTime 圢åŒã«æžãåºããŸããç¹å®ã®åœ¢åŒã«æžãåºãããšã«ãã£ãŠã \"PowerPoint\" ã \"Keynote\" ã«ãããã¬ãŒã³ã \"Word\" æžé¡ãžåã蟌ãããšãå¯èœãªããã§ãã",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "1 ç»åãæžãåºãã«ã¯ãcommand ã㌠+ C ããŒã§ã¯ãªããããŒãã«ã³ããŒãããããŸã㯠\"2D Viewer\" ã¡ãã¥ãŒãéžæããŸãã \"Export\" ã¡ãã¥ãŒé
ç®ã«ã¯ãç»åä¿ååœ¢åŒ (Tiff, JPEG ç) ãéžæãããµãã¡ãã¥ãŒããããŸããããã©ã«ãã®ç°å¢èšå®ã§ã¯ãåäžã®æ¡ä»¶ (ãµã€ãºãåçãå転ããŠã€ã³ããŠã¬ãã«ç) ã§æžãåºããã¢ãã¿è¡šç€ºãããèšå®ã«ãªã£ãŠããŸãã 衚瀺ç»åã®æ
å ±ã¯ããŠã€ã³ããŠäžéšå·Šé
ã«è¡šç€ºãããŸãã:",
"title": ""
},
{
"paragraph_id": 3,
"tag": "p",
"text": "",
"title": ""
},
{
"paragraph_id": 4,
"tag": "p",
"text": "åãããšãé£ç¶ç»åããŒã¿ã®æžãåºãã«ãåœãŠã¯ãŸããŸãã \"Export to Quicktime\" ãéžæãããããŸãã¯ããŒã«ããŒãã \"Quicktime\" ãã¿ã³ãã¯ãªãã¯ããŠæžãåºããŸããQuickTime 圢åŒãžã®æžãåºãã§ã¯ã4D Image fusion ããŒã¿ã®æžãåºããã§ããŸãã:",
"title": ""
},
{
"paragraph_id": 5,
"tag": "p",
"text": "",
"title": ""
},
{
"paragraph_id": 6,
"tag": "p",
"text": "å§çž®åœ¢åŒããã¬ãŒã ã¬ãŒãã®å€æŽãã§ããŸããæè¯ç»è³ªã«ã¯JPEG å§çž®ãæšå¥šããŸãã",
"title": ""
},
{
"paragraph_id": 7,
"tag": "p",
"text": "",
"title": ""
},
{
"paragraph_id": 8,
"tag": "p",
"text": "åç»åãšåãµã€ãºã§ç»åã®æžãåºããèšå®ããããšãã§ããŸãã ç°å¢èšå® (Preferences ...) ãŠã€ã³ã㊠(OsiriX ã¡ãã¥ãŒé
ç®) ãéžæã衚瀺ãŠã€ã³ããŠå
ã®Viewers ã¿ãã§èšå®å€æŽããããªããŸããèšå®å€æŽããããªããšãäŸãã°ã512 à 512 ãããªãã¯ã¹ã®CT ç»åã¯ã512 à 512 ãããªãã¯ã¹ã®ç»åã«æžãåºãããŸããæŽã«ã被éšè
ããŒã¿çã®æåæ
å ±ãå«ãŸãªããç»åã®ã¿ã®ããŒã¿ãæžãåºãããŸãããã¬ãŒã³ãè«æã«ç»åã䜿çšããå ŽåãæçšãªéžæãšãªããŸãã",
"title": ""
},
{
"paragraph_id": 9,
"tag": "p",
"text": "OsiriX < ^ >",
"title": ""
}
] | < ^ > OsiriX ã¯ãDICOM ç»åãTIFF, JPEG, RAW, DICOM ãQuickTime 圢åŒã«æžãåºããŸããç¹å®ã®åœ¢åŒã«æžãåºãããšã«ãã£ãŠã "PowerPoint" ã "Keynote" ã«ãããã¬ãŒã³ã "Word" æžé¡ãžåã蟌ãããšãå¯èœãªããã§ãã 1 ç»åãæžãåºãã«ã¯ãcommand ã㌠+ C ããŒã§ã¯ãªããããŒãã«ã³ããŒãããããŸã㯠"2D Viewer" ã¡ãã¥ãŒãéžæããŸãã "Export" ã¡ãã¥ãŒé
ç®ã«ã¯ãç»åä¿ååœ¢åŒ ãéžæãããµãã¡ãã¥ãŒããããŸããããã©ã«ãã®ç°å¢èšå®ã§ã¯ãåäžã®æ¡ä»¶ (ãµã€ãºãåçãå転ããŠã€ã³ããŠã¬ãã«ç) ã§æžãåºããã¢ãã¿è¡šç€ºãããèšå®ã«ãªã£ãŠããŸãã 衚瀺ç»åã®æ
å ±ã¯ããŠã€ã³ããŠäžéšå·Šé
ã«è¡šç€ºãããŸãã: åãããšãé£ç¶ç»åããŒã¿ã®æžãåºãã«ãåœãŠã¯ãŸããŸãã "Export to Quicktime" ãéžæãããããŸãã¯ããŒã«ããŒãã "Quicktime" ãã¿ã³ãã¯ãªãã¯ããŠæžãåºããŸããQuickTime 圢åŒãžã®æžãåºãã§ã¯ã4D Image fusion ããŒã¿ã®æžãåºããã§ããŸãã: å§çž®åœ¢åŒããã¬ãŒã ã¬ãŒãã®å€æŽãã§ããŸããæè¯ç»è³ªã«ã¯JPEG å§çž®ãæšå¥šããŸãã åç»åãšåãµã€ãºã§ç»åã®æžãåºããèšå®ããããšãã§ããŸãã ç°å¢èšå® ãŠã€ã³ã㊠ãéžæã衚瀺ãŠã€ã³ããŠå
ã®Viewers ã¿ãã§èšå®å€æŽããããªããŸããèšå®å€æŽããããªããšãäŸãã°ã512 à 512 ãããªãã¯ã¹ã®CT ç»åã¯ã512 à 512 ãããªãã¯ã¹ã®ç»åã«æžãåºãããŸããæŽã«ã被éšè
ããŒã¿çã®æåæ
å ±ãå«ãŸãªããç»åã®ã¿ã®ããŒã¿ãæžãåºãããŸãããã¬ãŒã³ãè«æã«ç»åã䜿çšããå ŽåãæçšãªéžæãšãªããŸãã OsiriX < ^ > | [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_éDICOMç»åãã ãŒããŒãéã|<]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|^]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_4Dãã¥ãŒã¢ã䜿çšãã|>]]
----
OsiriX ã¯ãDICOM ç»åãTIFF, JPEG, RAW, DICOM ãQuickTime 圢åŒã«æžãåºããŸããç¹å®ã®åœ¢åŒã«æžãåºãããšã«ãã£ãŠã "PowerPoint" ã "Keynote" ã«ãããã¬ãŒã³ã "Word" æžé¡ãžåã蟌ãããšãå¯èœãªããã§ãã
1 ç»åãæžãåºãã«ã¯ãcommand ã㌠+ C ããŒã§ã¯ãªããããŒãã«ã³ããŒãããããŸã㯠"2D Viewer" ã¡ãã¥ãŒãéžæããŸãã "Export" ã¡ãã¥ãŒé
ç®ã«ã¯ãç»åä¿ååœ¢åŒ (Tiff, JPEG ç) ãéžæãããµãã¡ãã¥ãŒããããŸããããã©ã«ãã®ç°å¢èšå®ã§ã¯ãåäžã®æ¡ä»¶ (ãµã€ãºãåçãå転ããŠã€ã³ããŠã¬ãã«ç) ã§æžãåºããã¢ãã¿è¡šç€ºãããèšå®ã«ãªã£ãŠããŸãã 衚瀺ç»åã®æ
å ±ã¯ããŠã€ã³ããŠäžéšå·Šé
ã«è¡šç€ºãããŸãã:
<center>[[ç»å:OsiriX_12.1.jpg]]<br>''æžãåºãããç»å解å床ã¯ã1266 à 709''</center>
åãããšãé£ç¶ç»åããŒã¿ã®æžãåºãã«ãåœãŠã¯ãŸããŸãã "Export to Quicktime" ãéžæãããããŸãã¯ããŒã«ããŒãã "Quicktime" ãã¿ã³ãã¯ãªãã¯ããŠæžãåºããŸããQuickTime 圢åŒãžã®æžãåºãã§ã¯ã4D Image fusion ããŒã¿ã®æžãåºããã§ããŸãã:
<center>[[ç»å:OsiriX_12.2.jpg]]<br>''æžãåºããã âdimensionâ ãéžæããŸã''</center>
å§çž®åœ¢åŒããã¬ãŒã ã¬ãŒãã®å€æŽãã§ããŸããæè¯ç»è³ªã«ã¯JPEG å§çž®ãæšå¥šããŸãã
<center>[[ç»å:OsiriX_13.1.jpg]]<br>''å§çž®åœ¢åŒããã¬ãŒã ã¬ãŒãã®èª¿ç¯ (ãã¬ãŒã ïŒç§)
''</center>
åç»åãšåãµã€ãºã§ç»åã®æžãåºããèšå®ããããšãã§ããŸãã '''ç°å¢èšå® (Preferences ...)''' ãŠã€ã³ã㊠('''OsiriX''' ã¡ãã¥ãŒé
ç®) ãéžæã衚瀺ãŠã€ã³ããŠå
ã®Viewers ã¿ãã§èšå®å€æŽããããªããŸããèšå®å€æŽããããªããšãäŸãã°ã512 à 512 ãããªãã¯ã¹ã®CT ç»åã¯ã512 à 512 ãããªãã¯ã¹ã®ç»åã«æžãåºãããŸããæŽã«ã被éšè
ããŒã¿çã®æåæ
å ±ãå«ãŸãªããç»åã®ã¿ã®ããŒã¿ãæžãåºãããŸãããã¬ãŒã³ãè«æã«ç»åã䜿çšããå ŽåãæçšãªéžæãšãªããŸãã
----
[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|OsiriX]] <br>
[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_éDICOMç»åãã ãŒããŒãéã|<]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|^]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_4Dãã¥ãŒã¢ã䜿çšãã|>]]
[[en:Online OsiriX Documentation/Exporting DICOM images]]
[[es:Documentación en lÃnea de OsiriX/Exportar imágenes DICOM]]
[[Category:OsiriX|DICOMãããã«ãããã]] | null | 2015-08-28T12:11:21Z | [] | https://ja.wikibooks.org/wiki/OsiriX_%E3%82%AA%E3%83%B3%E3%83%A9%E3%82%A4%E3%83%B3%E8%A7%A3%E8%AA%AC%E6%96%87%E6%9B%B8/OsiriX%E5%85%A5%E9%96%80_DICOM%E7%94%BB%E5%83%8F%E3%81%AB%E6%9B%B8%E3%81%8D%E5%87%BA%E3%81%99 |
1,554 | OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é 4Dãã¥ãŒã¢ã䜿çšãã | < ^ >
OsiriX ã¯4D Viewer ããµããŒãããŠããŸããçµæçã«åŸããã1 çäŸäžã®è€æ°ã·ãªãŒãºã衚瀺ã§ããŸããäŸãã°ãcardiac CT ããŒã¿ããå€æçžã®åæ§æã·ãªãŒãºããã·ãã¢ãŒãã§è¡šç€ºããããšãã§ããŸãã âLocal Databaseâ ãŠã€ã³ããŠå
ã®å
šãŠã®ã·ãªãŒãºãéžæããŠã â4D Viewerâ ã¢ã€ã³ã³ãã¯ãªãã¯ããã ãã§ããã·ãªãŒãºãã¹ãŠãåããŠã€ã³ããŠå
ã«åã蟌ãŸããããŒã«ããŒã«ãã â4D playerâ ã䜿çšããŠåç»åã®æäœã»é²èŠ§ãã§ããŸãã
è€æ°ã·ãªãŒãºãéžæã㊠â4D Viewerâ ã¢ã€ã³ã³ãã¯ãªãã¯ã
OsiriX < ^ > | [
{
"paragraph_id": 0,
"tag": "p",
"text": "< ^ >",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "OsiriX ã¯4D Viewer ããµããŒãããŠããŸããçµæçã«åŸããã1 çäŸäžã®è€æ°ã·ãªãŒãºã衚瀺ã§ããŸããäŸãã°ãcardiac CT ããŒã¿ããå€æçžã®åæ§æã·ãªãŒãºããã·ãã¢ãŒãã§è¡šç€ºããããšãã§ããŸãã âLocal Databaseâ ãŠã€ã³ããŠå
ã®å
šãŠã®ã·ãªãŒãºãéžæããŠã â4D Viewerâ ã¢ã€ã³ã³ãã¯ãªãã¯ããã ãã§ããã·ãªãŒãºãã¹ãŠãåããŠã€ã³ããŠå
ã«åã蟌ãŸããããŒã«ããŒã«ãã â4D playerâ ã䜿çšããŠåç»åã®æäœã»é²èŠ§ãã§ããŸãã",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "è€æ°ã·ãªãŒãºãéžæã㊠â4D Viewerâ ã¢ã€ã³ã³ãã¯ãªãã¯ã",
"title": ""
},
{
"paragraph_id": 3,
"tag": "p",
"text": "",
"title": ""
},
{
"paragraph_id": 4,
"tag": "p",
"text": "",
"title": ""
},
{
"paragraph_id": 5,
"tag": "p",
"text": "OsiriX < ^ >",
"title": ""
}
] | < ^ > OsiriX ã¯4D Viewer ããµããŒãããŠããŸããçµæçã«åŸããã1 çäŸäžã®è€æ°ã·ãªãŒãºã衚瀺ã§ããŸããäŸãã°ãcardiac CT ããŒã¿ããå€æçžã®åæ§æã·ãªãŒãºããã·ãã¢ãŒãã§è¡šç€ºããããšãã§ããŸãã âLocal Databaseâ ãŠã€ã³ããŠå
ã®å
šãŠã®ã·ãªãŒãºãéžæããŠã â4D Viewerâ ã¢ã€ã³ã³ãã¯ãªãã¯ããã ãã§ããã·ãªãŒãºãã¹ãŠãåããŠã€ã³ããŠå
ã«åã蟌ãŸããããŒã«ããŒã«ãã â4D playerâ ã䜿çšããŠåç»åã®æäœã»é²èŠ§ãã§ããŸãã è€æ°ã·ãªãŒãºãéžæã㊠â4D Viewerâ ã¢ã€ã³ã³ãã¯ãªãã¯ã OsiriX < ^ > | [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_DICOMç»åã«æžãåºã|<]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|^]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_å€æé¢åæ§æåãäœæãã|>]]
----
OsiriX ã¯4D Viewer ããµããŒãããŠããŸããçµæçã«åŸããã1 çäŸäžã®è€æ°ã·ãªãŒãºã衚瀺ã§ããŸããäŸãã°ãcardiac CT ããŒã¿ããå€æçžã®åæ§æã·ãªãŒãºããã·ãã¢ãŒãã§è¡šç€ºããããšãã§ããŸãã âLocal Databaseâ ãŠã€ã³ããŠå
ã®å
šãŠã®ã·ãªãŒãºãéžæããŠã â4D Viewerâ ã¢ã€ã³ã³ãã¯ãªãã¯ããã ãã§ããã·ãªãŒãºãã¹ãŠãåããŠã€ã³ããŠå
ã«åã蟌ãŸããããŒã«ããŒã«ãã â4D playerâ ã䜿çšããŠåç»åã®æäœã»é²èŠ§ãã§ããŸãã
è€æ°ã·ãªãŒãºãéžæã㊠â4D Viewerâ ã¢ã€ã³ã³ãã¯ãªãã¯ã
<center>[[ç»å:OsiriX_14.1.jpg]]<br>''ããŒã«ããŒã® â4D playerâ ã§èª¿ç¯''</center>
<center>[[ç»å:OsiriX_14.2.jpg]]<br>''â4D playerâ æ©èœã¯MPR ãŠã€ã³ããŠã§ã䜿çšã§ããŸãã''</center>
----
[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|OsiriX]] <br>
[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_DICOMç»åã«æžãåºã|<]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|^]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_å€æé¢åæ§æåãäœæãã|>]]
[[en:Online OsiriX Documentation/Using the 4-D viewer]]
[[es:Documentación en lÃnea de OsiriX/Utilizar el visualizador 4-D]]
[[Category:OsiriX|4Dã²ããŒããããããã]] | null | 2015-08-28T12:11:07Z | [] | https://ja.wikibooks.org/wiki/OsiriX_%E3%82%AA%E3%83%B3%E3%83%A9%E3%82%A4%E3%83%B3%E8%A7%A3%E8%AA%AC%E6%96%87%E6%9B%B8/OsiriX%E5%85%A5%E9%96%80_4D%E3%83%93%E3%83%A5%E3%83%BC%E3%82%A2%E3%82%92%E4%BD%BF%E7%94%A8%E3%81%99%E3%82%8B |
1,555 | OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é å€æé¢åæ§æåãäœæãã | < ^ >
OsiriX ã¯ã2 ã€ã®ç°ãªãMPR ã¢ãŒãããµããŒãããŠããŸãã: å
žåçãª2D MPR viewer ããã³çŽäº€æé¢ãããªã3D MPR viewer ã®2 çš®é¡ã§ãã
a) å
žåçãª2D MPR
2D MPR viewer ã§ã¯ã3D ããªã¥ãŒã å
ã®ä»»ææé¢ãMPR åãšããŠè¡šç€ºã§ããŸãã: ãµããŠã€ã³ããŠA ã«ãããŠé¢å¿é åãèšå®ããŸããèµ€ãåè§æ ãããŠã¹ã®ã¯ãªãã¯/ãã©ãã°ãå©çšããŠãã©ã€ã³äžå¿ã移åããŸãã次ã«ãéãèµ€ç·ãããŠã¹ã¯ãªãã¯ã§å転ãããŸã (X-Yé¢ã®å転) ãéç·ã¯äœæãããç»åæé¢ (ãµããŠã€ã³ããŠC) ã«å¯Ÿå¿ããèµ€ç·ã¯åçŽé¢ (ãµããŠã€ã³ããŠB) ã«å¯Ÿå¿ããŸãããµããŠã€ã³ããŠB ã«ãããŠãäœææé¢ (ãµããŠã€ã³ããŠC) ã«ãããZ 軞æ¹åã®è§åºŠä¿®æ£ãã§ããŸãã
(ãã®MPR ã¢ãŒãã¯ãããªãã®èšç®åŠçèœãèŠããŸãããã®ãããç»åãååŠçç³»ã«ããå€æãã§ããããã¹ãŠã®ç»åã¯ç«æ¹ç»çŽ ã«è£éãããŸãã)
b) çŽäº€æé¢ãããªã3D MPR
ãã®ã¢ãŒãã¯ãçŽäº€ããè€æ°ã®MPR æé¢ãšããŠã3D ããªã¥ãŒã 衚瀺ãã§ããŸããããŒã«ããŒã«ãã3 åã®ã¹ã©ã€ãã䜿çšããŠçŽäº€æé¢ãå€æŽããŸãã:
ãã§ãã¯ããã¯ã¹ã®ã¯ãªãã¯ã§ãåæé¢ã®è¡šç€ºã»é衚瀺ãéžæããŸãã
OsiriX < ^ > | [
{
"paragraph_id": 0,
"tag": "p",
"text": "< ^ >",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "OsiriX ã¯ã2 ã€ã®ç°ãªãMPR ã¢ãŒãããµããŒãããŠããŸãã: å
žåçãª2D MPR viewer ããã³çŽäº€æé¢ãããªã3D MPR viewer ã®2 çš®é¡ã§ãã",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "a) å
žåçãª2D MPR",
"title": ""
},
{
"paragraph_id": 3,
"tag": "p",
"text": "",
"title": ""
},
{
"paragraph_id": 4,
"tag": "p",
"text": "2D MPR viewer ã§ã¯ã3D ããªã¥ãŒã å
ã®ä»»ææé¢ãMPR åãšããŠè¡šç€ºã§ããŸãã: ãµããŠã€ã³ããŠA ã«ãããŠé¢å¿é åãèšå®ããŸããèµ€ãåè§æ ãããŠã¹ã®ã¯ãªãã¯/ãã©ãã°ãå©çšããŠãã©ã€ã³äžå¿ã移åããŸãã次ã«ãéãèµ€ç·ãããŠã¹ã¯ãªãã¯ã§å転ãããŸã (X-Yé¢ã®å転) ãéç·ã¯äœæãããç»åæé¢ (ãµããŠã€ã³ããŠC) ã«å¯Ÿå¿ããèµ€ç·ã¯åçŽé¢ (ãµããŠã€ã³ããŠB) ã«å¯Ÿå¿ããŸãããµããŠã€ã³ããŠB ã«ãããŠãäœææé¢ (ãµããŠã€ã³ããŠC) ã«ãããZ 軞æ¹åã®è§åºŠä¿®æ£ãã§ããŸãã",
"title": ""
},
{
"paragraph_id": 5,
"tag": "p",
"text": "(ãã®MPR ã¢ãŒãã¯ãããªãã®èšç®åŠçèœãèŠããŸãããã®ãããç»åãååŠçç³»ã«ããå€æãã§ããããã¹ãŠã®ç»åã¯ç«æ¹ç»çŽ ã«è£éãããŸãã)",
"title": ""
},
{
"paragraph_id": 6,
"tag": "p",
"text": "b) çŽäº€æé¢ãããªã3D MPR",
"title": ""
},
{
"paragraph_id": 7,
"tag": "p",
"text": "",
"title": ""
},
{
"paragraph_id": 8,
"tag": "p",
"text": "ãã®ã¢ãŒãã¯ãçŽäº€ããè€æ°ã®MPR æé¢ãšããŠã3D ããªã¥ãŒã 衚瀺ãã§ããŸããããŒã«ããŒã«ãã3 åã®ã¹ã©ã€ãã䜿çšããŠçŽäº€æé¢ãå€æŽããŸãã:",
"title": ""
},
{
"paragraph_id": 9,
"tag": "p",
"text": "",
"title": ""
},
{
"paragraph_id": 10,
"tag": "p",
"text": "ãã§ãã¯ããã¯ã¹ã®ã¯ãªãã¯ã§ãåæé¢ã®è¡šç€ºã»é衚瀺ãéžæããŸãã",
"title": ""
},
{
"paragraph_id": 11,
"tag": "p",
"text": "OsiriX < ^ >",
"title": ""
}
] | < ^ > OsiriX ã¯ã2 ã€ã®ç°ãªãMPR ã¢ãŒãããµããŒãããŠããŸãã: å
žåçãª2D MPR viewer ããã³çŽäº€æé¢ãããªã3D MPR viewer ã®2 çš®é¡ã§ãã a) å
žåçãª2D MPR 2D MPR viewer ã§ã¯ã3D ããªã¥ãŒã å
ã®ä»»ææé¢ãMPR åãšããŠè¡šç€ºã§ããŸãã: ãµããŠã€ã³ããŠA ã«ãããŠé¢å¿é åãèšå®ããŸããèµ€ãåè§æ ãããŠã¹ã®ã¯ãªãã¯ïŒãã©ãã°ãå©çšããŠãã©ã€ã³äžå¿ã移åããŸãã次ã«ãéãèµ€ç·ãããŠã¹ã¯ãªãã¯ã§å転ãããŸã (X-Yé¢ã®å転)ãéç·ã¯äœæãããç»åæé¢ (ãµããŠã€ã³ããŠC) ã«å¯Ÿå¿ããèµ€ç·ã¯åçŽé¢ (ãµããŠã€ã³ããŠB) ã«å¯Ÿå¿ããŸãããµããŠã€ã³ããŠB ã«ãããŠãäœææé¢ (ãµããŠã€ã³ããŠC) ã«ãããZ 軞æ¹åã®è§åºŠä¿®æ£ãã§ããŸãã b) çŽäº€æé¢ãããªã3D MPR ãã®ã¢ãŒãã¯ãçŽäº€ããè€æ°ã®MPR æé¢ãšããŠã3D ããªã¥ãŒã 衚瀺ãã§ããŸããããŒã«ããŒã«ãã3 åã®ã¹ã©ã€ãã䜿çšããŠçŽäº€æé¢ãå€æŽããŸãã: ãã§ãã¯ããã¯ã¹ã®ã¯ãªãã¯ã§ãåæé¢ã®è¡šç€ºã»é衚瀺ãéžæããŸãã OsiriX < ^ > | [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_4Dãã¥ãŒã¢ã䜿çšãã|<]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|^]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_3Dåæ§æåãäœæãã|>]]
----
OsiriX ã¯ã2 ã€ã®ç°ãªãMPR ã¢ãŒãããµããŒãããŠããŸãã: å
žåçãª2D MPR viewer ããã³çŽäº€æé¢ãããªã3D MPR viewer ã®2 çš®é¡ã§ãã
'''a) å
žåçãª2D MPR'''
<center>[[ç»å:OsiriX_15.1.jpg]]<br>''2D MPR ãŠã€ã³ããŠ''</center>
2D MPR viewer ã§ã¯ã3D ããªã¥ãŒã å
ã®ä»»ææé¢ãMPR åãšããŠè¡šç€ºã§ããŸãã: ãµããŠã€ã³ããŠA ã«ãããŠé¢å¿é åãèšå®ããŸããèµ€ãåè§æ ãããŠã¹ã®ã¯ãªãã¯ïŒãã©ãã°ãå©çšããŠãã©ã€ã³äžå¿ã移åããŸãã次ã«ãéãèµ€ç·ãããŠã¹ã¯ãªãã¯ã§å転ãããŸã (X-Yé¢ã®å転) ãéç·ã¯äœæãããç»åæé¢ (ãµããŠã€ã³ããŠC) ã«å¯Ÿå¿ããèµ€ç·ã¯åçŽé¢ (ãµããŠã€ã³ããŠB) ã«å¯Ÿå¿ããŸãããµããŠã€ã³ããŠB ã«ãããŠãäœææé¢ (ãµããŠã€ã³ããŠC) ã«ãããZ 軞æ¹åã®è§åºŠä¿®æ£ãã§ããŸãã
(ãã®MPR ã¢ãŒãã¯ãããªãã®èšç®åŠçèœãèŠããŸãããã®ãããç»åãååŠçç³»ã«ããå€æãã§ããããã¹ãŠã®ç»åã¯ç«æ¹ç»çŽ ã«è£éãããŸãã)
'''b) çŽäº€æé¢ãããªã3D MPR'''
<center>[[ç»å:OsiriX_16.1.jpg]]<br>''çŽäº€æé¢ãããªã3D MPR ã¢ãŒã''</center>
ãã®ã¢ãŒãã¯ãçŽäº€ããè€æ°ã®MPR æé¢ãšããŠã3D ããªã¥ãŒã 衚瀺ãã§ããŸããããŒã«ããŒã«ãã3 åã®ã¹ã©ã€ãã䜿çšããŠçŽäº€æé¢ãå€æŽããŸãã:
<center>[[ç»å:OsiriX_16.2.jpg]]<br>''çŽäº€ããåæé¢äœçœ®ã®èª¿ç¯''</center>
ãã§ãã¯ããã¯ã¹ã®ã¯ãªãã¯ã§ãåæé¢ã®è¡šç€ºã»é衚瀺ãéžæããŸãã
----
[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|OsiriX]] <br>
[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_4Dãã¥ãŒã¢ã䜿çšãã|<]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|^]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_3Dåæ§æåãäœæãã|>]]
[[en:Online OsiriX Documentation/Multi-planar reconstruction (MPR)]]
[[es:Documentación en lÃnea de OsiriX/Reconstrucción multi-planar (MPR)]]
[[Category:OsiriX|ãããããããããããããããããããã]] | null | 2015-08-29T00:59:40Z | [] | https://ja.wikibooks.org/wiki/OsiriX_%E3%82%AA%E3%83%B3%E3%83%A9%E3%82%A4%E3%83%B3%E8%A7%A3%E8%AA%AC%E6%96%87%E6%9B%B8/OsiriX%E5%85%A5%E9%96%80_%E5%A4%9A%E6%96%AD%E9%9D%A2%E5%86%8D%E6%A7%8B%E6%88%90%E5%83%8F%E3%82%92%E4%BD%9C%E6%88%90%E3%81%99%E3%82%8B |
1,556 | OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é 3Dåæ§æåãäœæãã | < ^ >
OsiriX ã¯ã3 çš®é¡ã®3D åæ§ææ³ããµããŒãããŠããŸãã:
1) æ倧å€æåœ±æ³ (MIP)
ãã®åæ§ææ³ã¯ãæ圱çµè·¯ã§æ倧å€ãæããç»çŽ ãåŠç衚瀺ãã âray-tracingâ ææ³ãå©çšããŠããŸããé 圱MRI ã CT åã³éªš CT ã§æçšãªåæ§ææ³ã§ãã
2) ããªã¥ãŒã ã¬ã³ããªã³ã°
ãã®åæ§ææ³ã¯ãåç»çŽ ã®äœçœ®ãå€ã«å¯ŸããŠãé£ç¶ããå
ã®ééã»äžéé床ãèšå®è¡šç€ºãã âray-tracingâ ææ³ãå©çšããŠããŸããMRI åã³CT ã«ãããè»éšçµç¹ç»åã®åæ§æ衚瀺ã«é©ããŠããŸããæãå©çšãããŠãã3D ææ³ã§ãããå€ãã®å Žé¢ã§ç²Ÿç·»ãªç»åãæäŸã§ããããšã§ãããã
3) ãµãŒãã§ã¹ã¬ã³ããªã³ã°
ãŠãŒã¶ãå®çŸ©ãã âiso-contourâ ã«åºã¥ããŠãè¡šé¢åãäœæããŸãããã®ææ³ã¯ãä»®æ³å
èŠæ³ã骚CTã«æçšã§ãããã®åæ§ææ³ã«ã¯ã2ã€ã®ç°ãªãè¡šé¢å€ãèšå®ã§ããŸãã
OsiriX < ^ > | [
{
"paragraph_id": 0,
"tag": "p",
"text": "< ^ >",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "OsiriX ã¯ã3 çš®é¡ã®3D åæ§ææ³ããµããŒãããŠããŸãã:",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "1) æ倧å€æåœ±æ³ (MIP)",
"title": ""
},
{
"paragraph_id": 3,
"tag": "p",
"text": "",
"title": ""
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ãã®åæ§ææ³ã¯ãæ圱çµè·¯ã§æ倧å€ãæããç»çŽ ãåŠç衚瀺ãã âray-tracingâ ææ³ãå©çšããŠããŸããé 圱MRI ã CT åã³éªš CT ã§æçšãªåæ§ææ³ã§ãã",
"title": ""
},
{
"paragraph_id": 5,
"tag": "p",
"text": "2) ããªã¥ãŒã ã¬ã³ããªã³ã°",
"title": ""
},
{
"paragraph_id": 6,
"tag": "p",
"text": "",
"title": ""
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ãã®åæ§ææ³ã¯ãåç»çŽ ã®äœçœ®ãå€ã«å¯ŸããŠãé£ç¶ããå
ã®ééã»äžéé床ãèšå®è¡šç€ºãã âray-tracingâ ææ³ãå©çšããŠããŸããMRI åã³CT ã«ãããè»éšçµç¹ç»åã®åæ§æ衚瀺ã«é©ããŠããŸããæãå©çšãããŠãã3D ææ³ã§ãããå€ãã®å Žé¢ã§ç²Ÿç·»ãªç»åãæäŸã§ããããšã§ãããã",
"title": ""
},
{
"paragraph_id": 8,
"tag": "p",
"text": "3) ãµãŒãã§ã¹ã¬ã³ããªã³ã°",
"title": ""
},
{
"paragraph_id": 9,
"tag": "p",
"text": "",
"title": ""
},
{
"paragraph_id": 10,
"tag": "p",
"text": "ãŠãŒã¶ãå®çŸ©ãã âiso-contourâ ã«åºã¥ããŠãè¡šé¢åãäœæããŸãããã®ææ³ã¯ãä»®æ³å
èŠæ³ã骚CTã«æçšã§ãããã®åæ§ææ³ã«ã¯ã2ã€ã®ç°ãªãè¡šé¢å€ãèšå®ã§ããŸãã",
"title": ""
},
{
"paragraph_id": 11,
"tag": "p",
"text": "OsiriX < ^ >",
"title": ""
}
] | < ^ > OsiriX ã¯ã3 çš®é¡ã®3D åæ§ææ³ããµããŒãããŠããŸãã: 1) æ倧å€æåœ±æ³ (MIP) ãã®åæ§ææ³ã¯ãæ圱çµè·¯ã§æ倧å€ãæããç»çŽ ãåŠç衚瀺ãã âray-tracingâ ææ³ãå©çšããŠããŸããé 圱MRI ã CT åã³éªš CT ã§æçšãªåæ§ææ³ã§ãã 2) ããªã¥ãŒã ã¬ã³ããªã³ã° ãã®åæ§ææ³ã¯ãåç»çŽ ã®äœçœ®ãå€ã«å¯ŸããŠãé£ç¶ããå
ã®ééã»äžéé床ãèšå®è¡šç€ºãã âray-tracingâ ææ³ãå©çšããŠããŸããMRI åã³CT ã«ãããè»éšçµç¹ç»åã®åæ§æ衚瀺ã«é©ããŠããŸããæãå©çšãããŠãã3D ææ³ã§ãããå€ãã®å Žé¢ã§ç²Ÿç·»ãªç»åãæäŸã§ããããšã§ãããã 3) ãµãŒãã§ã¹ã¬ã³ããªã³ã° ãŠãŒã¶ãå®çŸ©ãã âiso-contourâ ã«åºã¥ããŠãè¡šé¢åãäœæããŸãããã®ææ³ã¯ãä»®æ³å
èŠæ³ã骚CTã«æçšã§ãããã®åæ§ææ³ã«ã¯ã2ã€ã®ç°ãªãè¡šé¢å€ãèšå®ã§ããŸãã OsiriX < ^ > | [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_å€æé¢åæ§æåãäœæãã|<]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|^]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_PACSã¯ãŒã¯ã¹ããŒã·ã§ã³ãšããŠäœ¿çšãã|>]]
----
OsiriX ã¯ã3 çš®é¡ã®3D åæ§ææ³ããµããŒãããŠããŸãã:
'''1) æ倧å€æåœ±æ³ (MIP)'''
<center>[[ç»å:OsiriX_17.1.jpg]]<br>''3D MIP åæ§æå''</center>
ãã®åæ§ææ³ã¯ãæ圱çµè·¯ã§æ倧å€ãæããç»çŽ ãåŠç衚瀺ãã âray-tracingâ ææ³ãå©çšããŠããŸããé 圱MRI ã CT åã³éªš CT ã§æçšãªåæ§ææ³ã§ãã
'''2) ããªã¥ãŒã ã¬ã³ããªã³ã°'''
<center>[[ç»å:OsiriX_18.1.jpg]]<br>''3D ããªã¥ãŒã ã¬ã³ããªã³ã°''</center>
ãã®åæ§ææ³ã¯ãåç»çŽ ã®äœçœ®ãå€ã«å¯ŸããŠãé£ç¶ããå
ã®ééã»äžéé床ãèšå®è¡šç€ºãã âray-tracingâ ææ³ãå©çšããŠããŸããMRI åã³CT ã«ãããè»éšçµç¹ç»åã®åæ§æ衚瀺ã«é©ããŠããŸããæãå©çšãããŠãã3D ææ³ã§ãããå€ãã®å Žé¢ã§ç²Ÿç·»ãªç»åãæäŸã§ããããšã§ãããã
'''3) ãµãŒãã§ã¹ã¬ã³ããªã³ã°'''
<center>[[ç»å:OsiriX_19.1.jpg]]<br>''3D ãµãŒãã§ã¹ã¬ã³ããªã³ã°''</center>
ãŠãŒã¶ãå®çŸ©ãã âiso-contourâ ã«åºã¥ããŠãè¡šé¢åãäœæããŸãããã®ææ³ã¯ãä»®æ³å
èŠæ³ã骚CTã«æçšã§ãããã®åæ§ææ³ã«ã¯ã2ã€ã®ç°ãªãè¡šé¢å€ãèšå®ã§ããŸãã
----
[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|OsiriX]] <br>
[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_å€æé¢åæ§æåãäœæãã|<]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|^]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_PACSã¯ãŒã¯ã¹ããŒã·ã§ã³ãšããŠäœ¿çšãã|>]]
[[en:Online OsiriX Documentation/3-D reconstructions]]
[[es:Documentación en lÃnea de OsiriX/Reconstrucción 3-D]]
[[Category:OsiriX|3Dããããããããããããããã]] | null | 2015-08-28T12:10:52Z | [] | https://ja.wikibooks.org/wiki/OsiriX_%E3%82%AA%E3%83%B3%E3%83%A9%E3%82%A4%E3%83%B3%E8%A7%A3%E8%AA%AC%E6%96%87%E6%9B%B8/OsiriX%E5%85%A5%E9%96%80_3D%E5%86%8D%E6%A7%8B%E6%88%90%E5%83%8F%E3%82%92%E4%BD%9C%E6%88%90%E3%81%99%E3%82%8B |
1,557 | OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é PACSã¯ãŒã¯ã¹ããŒã·ã§ã³ãšããŠäœ¿çšãã | < ^ >
ã¯ããOsiriX ãPACS ã¯ãŒã¯ã¹ããŒã·ã§ã³ãšããŠå©çšã§ããŸã!ãã©ã€ã»ã³ã¹æã ãã§äœåãã«ããããPACS ã¯ãŒã¯ã¹ããŒã·ã§ã³ã賌å
¥ãã¹ãã§ã¯ãããŸããã賌å
¥ããªãã§æãŸã£ãæã®äžéšãããããã³ããã·ã¥ã³ã³ãã¥ãŒã¿ã®è³Œå
¥è²»çšã«å
ãŠãã ãã!ã
OsiriX æèŒã³ã³ãã¥ãŒã¿ãžããŒã¿ãèªå転éããã«ã¯ãæ€æ»æ©åšã®èšå®ãããã°ãã¿ãŸãã: OsiriX ã®AETitle ãšPort çªå·ãèšå®ããã ãã§ãã (DICOMç»åãèªã¿èŸŒã ãåç
§)
OsiriX < ^ > | [
{
"paragraph_id": 0,
"tag": "p",
"text": "< ^ >",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ã¯ããOsiriX ãPACS ã¯ãŒã¯ã¹ããŒã·ã§ã³ãšããŠå©çšã§ããŸã!ãã©ã€ã»ã³ã¹æã ãã§äœåãã«ããããPACS ã¯ãŒã¯ã¹ããŒã·ã§ã³ã賌å
¥ãã¹ãã§ã¯ãããŸããã賌å
¥ããªãã§æãŸã£ãæã®äžéšãããããã³ããã·ã¥ã³ã³ãã¥ãŒã¿ã®è³Œå
¥è²»çšã«å
ãŠãã ãã!ã",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "OsiriX æèŒã³ã³ãã¥ãŒã¿ãžããŒã¿ãèªå転éããã«ã¯ãæ€æ»æ©åšã®èšå®ãããã°ãã¿ãŸãã: OsiriX ã®AETitle ãšPort çªå·ãèšå®ããã ãã§ãã (DICOMç»åãèªã¿èŸŒã ãåç
§)",
"title": ""
},
{
"paragraph_id": 3,
"tag": "p",
"text": "",
"title": ""
},
{
"paragraph_id": 4,
"tag": "p",
"text": "OsiriX < ^ >",
"title": ""
}
] | < ^ > ã¯ããOsiriX ãPACS ã¯ãŒã¯ã¹ããŒã·ã§ã³ãšããŠå©çšã§ããŸãïŒãã©ã€ã»ã³ã¹æã ãã§äœåãã«ããããPACS ã¯ãŒã¯ã¹ããŒã·ã§ã³ã賌å
¥ãã¹ãã§ã¯ãããŸããã賌å
¥ããªãã§æãŸã£ãæã®äžéšãããããã³ããã·ã¥ã³ã³ãã¥ãŒã¿ã®è³Œå
¥è²»çšã«å
ãŠãã ããïŒã OsiriX æèŒã³ã³ãã¥ãŒã¿ãžããŒã¿ãèªå転éããã«ã¯ãæ€æ»æ©åšã®èšå®ãããã°ãã¿ãŸãã: OsiriX ã®AETitle ãšPort çªå·ãèšå®ããã ãã§ãã OsiriX < ^ > | [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_3Dåæ§æåãäœæãã|<]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|^]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_2Dã·ãã¯ã»ã¹ã©ãã䜿çšãã|>]]
----
ã¯ããOsiriX ãPACS ã¯ãŒã¯ã¹ããŒã·ã§ã³ãšããŠå©çšã§ããŸãïŒãã©ã€ã»ã³ã¹æã ãã§äœåãã«ããããPACS ã¯ãŒã¯ã¹ããŒã·ã§ã³ã賌å
¥ãã¹ãã§ã¯ãããŸããã賌å
¥ããªãã§æãŸã£ãæã®äžéšãããããã³ããã·ã¥ã³ã³ãã¥ãŒã¿ã®è³Œå
¥è²»çšã«å
ãŠãã ããïŒã
OsiriX æèŒã³ã³ãã¥ãŒã¿ãžããŒã¿ãèªå転éããã«ã¯ãæ€æ»æ©åšã®èšå®ãããã°ãã¿ãŸãã: OsiriX ã®AETitle ãšPort çªå·ãèšå®ããã ãã§ãã ([[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_DICOMç»åãèªã¿èŸŒã|DICOMç»åãèªã¿èŸŒã]] ãåç
§)
<center>[[ç»å:OsiriX_20.1.jpg]]<br>''次ã«ããªããéžæããPACS ã¯ãŒã¯ã¹ããŒã·ã§ã³...''</center>
----
[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|OsiriX]] <br>
[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_3Dåæ§æåãäœæãã|<]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|^]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_2Dã·ãã¯ã»ã¹ã©ãã䜿çšãã|>]]
[[en:Online OsiriX Documentation/Using OsiriX as a PACS workstation]]
[[es:Documentación en lÃnea de OsiriX/Utilizar OsiriX como una estación PACS]]
[[fr:Documentation en ligne de OsiriX/Utiliser OsiriX comme station PACS]]
[[Category:OsiriX|PACSãããããŠãããããšããŠããããã]] | null | 2015-08-28T12:12:01Z | [] | https://ja.wikibooks.org/wiki/OsiriX_%E3%82%AA%E3%83%B3%E3%83%A9%E3%82%A4%E3%83%B3%E8%A7%A3%E8%AA%AC%E6%96%87%E6%9B%B8/OsiriX%E5%85%A5%E9%96%80_PACS%E3%83%AF%E3%83%BC%E3%82%AF%E3%82%B9%E3%83%86%E3%83%BC%E3%82%B7%E3%83%A7%E3%83%B3%E3%81%A8%E3%81%97%E3%81%A6%E4%BD%BF%E7%94%A8%E3%81%99%E3%82%8B |
1,573 | OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é 2Dã·ãã¯ã»ã¹ã©ãã䜿çšãã | < ^ >
OsiriX ã¯ã2D thick slab ã¢ãŒãããµããŒãããŠããŸãããã«ãã¹ã©ã€ã¹CT ãå©çšããŠããç°å¢ã§ããšãããéèŠãªã¢ãŒãã§ããèšå€§ãªç»åã·ãªãŒãºãå¹çããæäœã§ããããã«ãªããŸãã
Thick slab ã¢ãŒãã¯ããŒã«ããŒã§èª¿ç¯ããŸãã:
ãã®ã¢ãŒãã«ã¯3 çš®é¡ã®ã¢ãŒãããããŸãã:
ã¹ã©ã€ããŒãæäœããŠã¹ã©ã€ã¹ææ°ã調ç¯ããŸãããŠã€ã³ããŠã®å·Šäžé
ã«thick slab ã®æ
å ±ã衚瀺ãããŸãã:
thick slab ã«é¢ããæŽã«è©³ããæ
å ±ã¯ã以äžã®æç®ãåç
§ããŠãã ããã:
OsiriX < ^ > | [
{
"paragraph_id": 0,
"tag": "p",
"text": "< ^ >",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "OsiriX ã¯ã2D thick slab ã¢ãŒãããµããŒãããŠããŸãããã«ãã¹ã©ã€ã¹CT ãå©çšããŠããç°å¢ã§ããšãããéèŠãªã¢ãŒãã§ããèšå€§ãªç»åã·ãªãŒãºãå¹çããæäœã§ããããã«ãªããŸãã",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "Thick slab ã¢ãŒãã¯ããŒã«ããŒã§èª¿ç¯ããŸãã:",
"title": ""
},
{
"paragraph_id": 3,
"tag": "p",
"text": "",
"title": ""
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ãã®ã¢ãŒãã«ã¯3 çš®é¡ã®ã¢ãŒãããããŸãã:",
"title": ""
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ã¹ã©ã€ããŒãæäœããŠã¹ã©ã€ã¹ææ°ã調ç¯ããŸãããŠã€ã³ããŠã®å·Šäžé
ã«thick slab ã®æ
å ±ã衚瀺ãããŸãã:",
"title": ""
},
{
"paragraph_id": 6,
"tag": "p",
"text": "",
"title": ""
},
{
"paragraph_id": 7,
"tag": "p",
"text": "thick slab ã«é¢ããæŽã«è©³ããæ
å ±ã¯ã以äžã®æç®ãåç
§ããŠãã ããã:",
"title": ""
},
{
"paragraph_id": 8,
"tag": "p",
"text": "OsiriX < ^ >",
"title": ""
}
] | < ^ > OsiriX ã¯ã2D thick slab ã¢ãŒãããµããŒãããŠããŸãããã«ãã¹ã©ã€ã¹CT ãå©çšããŠããç°å¢ã§ããšãããéèŠãªã¢ãŒãã§ããèšå€§ãªç»åã·ãªãŒãºãå¹çããæäœã§ããããã«ãªããŸãã Thick slab ã¢ãŒãã¯ããŒã«ããŒã§èª¿ç¯ããŸãã: ãã®ã¢ãŒãã«ã¯3 çš®é¡ã®ã¢ãŒãããããŸãã: å¹³åå€ (Mean): å
šã¹ã©ã€ã¹ãå ç®ããŠå¹³åå€ãèšç®ã
æ倧å€: å
šç»çŽ ã®æ倧å€ãåãåºããŠè¡šç€ºã
æå°å€: å
šç»çŽ ã®æå°å€ãåãåºããŠè¡šç€ºã ã¹ã©ã€ããŒãæäœããŠã¹ã©ã€ã¹ææ°ã調ç¯ããŸãããŠã€ã³ããŠã®å·Šäžé
ã«thick slab ã®æ
å ±ã衚瀺ãããŸãã: thick slab ã«é¢ããæŽã«è©³ããæ
å ±ã¯ã以äžã®æç®ãåç
§ããŠãã ããã: Gruden JF, Ouanounou S, Tigges S, Norris SD, Klausner TS. Incremental benefit of maximum-intensity-projection images on observer detection of small pulmonary nodules revealed by multidetector CT. AJR Am J Roentgenol 2002 Jul;179(1):149-57.
Coakley FV, Cohen MD, Johnson MS, Gonin R, Hanna MP. Maximum intensity projection images in the detection of simulated pulmonary nodules by spiral CT. Br J Radiol. 1998 Feb;71(842):135-40.
Remy-Jardin M, Remy J, Giraud F, Marquette C-H. Pulmonary nodules: detection with thick-section spiral CT versus conventional CT. Radiology 1993;187:513â520. OsiriX < ^ > | [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_PACSã¯ãŒã¯ã¹ããŒã·ã§ã³ãšããŠäœ¿çšãã|<]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|^]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_ã·ã§ãŒãã«ããã䜿çšãã|>]]
----
OsiriX ã¯ã2D thick slab ã¢ãŒãããµããŒãããŠããŸãããã«ãã¹ã©ã€ã¹CT ãå©çšããŠããç°å¢ã§ããšãããéèŠãªã¢ãŒãã§ããèšå€§ãªç»åã·ãªãŒãºãå¹çããæäœã§ããããã«ãªããŸãã
Thick slab ã¢ãŒãã¯ããŒã«ããŒã§èª¿ç¯ããŸãã:
<center>[[ç»å:OsiriX_21.1.jpg]]<br>''Thick Slab ã³ã³ãããŒã©''</center>
ãã®ã¢ãŒãã«ã¯3 çš®é¡ã®ã¢ãŒãããããŸãã:
* å¹³åå€ (Mean): å
šã¹ã©ã€ã¹ãå ç®ããŠå¹³åå€ãèšç®ã
* æå€§å€ (Maximum Intensity): å
šç»çŽ ã®æ倧å€ãåãåºããŠè¡šç€ºã
* æå°å€ (Minimum Intensity): å
šç»çŽ ã®æå°å€ãåãåºããŠè¡šç€ºã
ã¹ã©ã€ããŒãæäœããŠã¹ã©ã€ã¹ææ°ã調ç¯ããŸãããŠã€ã³ããŠã®å·Šäžé
ã«thick slab ã®æ
å ±ã衚瀺ãããŸãã:
<center>[[ç»å:OsiriX_21.2.jpg]]<br>''ã€ã¡ãŒãž1 ãã9 ã衚瀺ãããŠããããããã®ç»åå
šäœã®åã¿ã¯27 mm ã§ãã''</center>
'''thick slab ã«é¢ããæŽã«è©³ããæ
å ±ã¯ã以äžã®æç®ãåç
§ããŠãã ããã:'''
#Gruden JF, Ouanounou S, Tigges S, Norris SD, Klausner TS. Incremental benefit of maximum-intensity-projection images on observer detection of small pulmonary nodules revealed by multidetector CT. [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=search&DB=pubmed AJR Am J Roentgenol 2002 Jul;179(1):149-57].
#Coakley FV, Cohen MD, Johnson MS, Gonin R, Hanna MP. Maximum intensity projection images in the detection of simulated pulmonary nodules by spiral CT. [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=9579176 Br J Radiol. 1998 Feb;71(842):135-40].
#Remy-Jardin M, Remy J, Giraud F, Marquette C-H. Pulmonary nodules: detection with thick-section spiral CT versus conventional CT. [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=8475300 Radiology 1993;187:513â520].
----
[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|OsiriX]] <br>
[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_PACSã¯ãŒã¯ã¹ããŒã·ã§ã³ãšããŠäœ¿çšãã|<]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|^]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_ã·ã§ãŒãã«ããã䜿çšãã|>]]
[[en:Online OsiriX Documentation/Using 2-D thick slabs]]
[[es:Documentación en lÃnea de OsiriX/Utilizar 2-D thick slabs]]
[[Category:OsiriX|2Dãã€ã ãããµãããããã]] | null | 2015-08-28T12:10:40Z | [] | https://ja.wikibooks.org/wiki/OsiriX_%E3%82%AA%E3%83%B3%E3%83%A9%E3%82%A4%E3%83%B3%E8%A7%A3%E8%AA%AC%E6%96%87%E6%9B%B8/OsiriX%E5%85%A5%E9%96%80_2D%E3%82%B7%E3%83%83%E3%82%AF%E3%83%BB%E3%82%B9%E3%83%A9%E3%83%96%E3%82%92%E4%BD%BF%E7%94%A8%E3%81%99%E3%82%8B |
1,574 | OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é ã·ã§ãŒãã«ããã䜿çšãã | < ^ >
ç»åè©äŸ¡ãçŽ æ©ãå¹æçã«ãããªãã«ã¯ã以äžã®æ©èœãæçšã§ãã:
äžå³ã®ããŒã«ããŒã«ããå°ã¢ã€ã³ã³ãããããã®åºæ¬æ©èœã«å¯Ÿå¿ããŠããŸãã:
ãããã®æ©èœã䜿ãã«ã¯ã察å¿ããã¢ã€ã³ã³ãã¯ãªãã¯ããã ãã§ãã
æéãç¯çŽããã«ã¯ã以äžã®ãããªããŒããŒããšããŠã¹ãçµã¿åãããæäœã«ã察å¿ããŠããŸãã:
OsiriX < ^ > | [
{
"paragraph_id": 0,
"tag": "p",
"text": "< ^ >",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ç»åè©äŸ¡ãçŽ æ©ãå¹æçã«ãããªãã«ã¯ã以äžã®æ©èœãæçšã§ãã:",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "äžå³ã®ããŒã«ããŒã«ããå°ã¢ã€ã³ã³ãããããã®åºæ¬æ©èœã«å¯Ÿå¿ããŠããŸãã:",
"title": ""
},
{
"paragraph_id": 3,
"tag": "p",
"text": "",
"title": ""
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ãããã®æ©èœã䜿ãã«ã¯ã察å¿ããã¢ã€ã³ã³ãã¯ãªãã¯ããã ãã§ãã",
"title": ""
},
{
"paragraph_id": 5,
"tag": "p",
"text": "æéãç¯çŽããã«ã¯ã以äžã®ãããªããŒããŒããšããŠã¹ãçµã¿åãããæäœã«ã察å¿ããŠããŸãã:",
"title": ""
},
{
"paragraph_id": 6,
"tag": "p",
"text": "",
"title": ""
},
{
"paragraph_id": 7,
"tag": "p",
"text": "OsiriX < ^ >",
"title": ""
}
] | < ^ > ç»åè©äŸ¡ãçŽ æ©ãå¹æçã«ãããªãã«ã¯ã以äžã®æ©èœãæçšã§ãã: ãŠã€ã³ããŠã¬ãã«ã®èª¿ç¯
眮æ
ãºãŒã
å転
ç»åã·ãªãŒãºã®ãã©ãŠãº
èšæž¬
é¢å¿é å äžå³ã®ããŒã«ããŒã«ããå°ã¢ã€ã³ã³ãããããã®åºæ¬æ©èœã«å¯Ÿå¿ããŠããŸãã: ãããã®æ©èœã䜿ãã«ã¯ã察å¿ããã¢ã€ã³ã³ãã¯ãªãã¯ããã ãã§ãã æéãç¯çŽããã«ã¯ã以äžã®ãããªããŒããŒããšããŠã¹ãçµã¿åãããæäœã«ã察å¿ããŠããŸãã: OsiriX < ^ > | [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_2Dã·ãã¯ã»ã¹ã©ãã䜿çšãã|<]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|^]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_ãã£ãšæ©ãåäœããã|>]]
----
ç»åè©äŸ¡ãçŽ æ©ãå¹æçã«ãããªãã«ã¯ã以äžã®æ©èœãæçšã§ãã:
* ãŠã€ã³ããŠã¬ãã«ã®èª¿ç¯
* 眮æ
* ãºãŒã
* å転
* ç»åã·ãªãŒãºã®ãã©ãŠãº
* èšæž¬
* é¢å¿é å
äžå³ã®ããŒã«ããŒã«ããå°ã¢ã€ã³ã³ãããããã®åºæ¬æ©èœã«å¯Ÿå¿ããŠããŸãã:
<center>[[ç»å:OsiriX_22.1.jpg]]<br>''åºæ¬æ©èœ''</center>
ãããã®æ©èœã䜿ãã«ã¯ã察å¿ããã¢ã€ã³ã³ãã¯ãªãã¯ããã ãã§ãã
æéãç¯çŽããã«ã¯ã以äžã®ãããªããŒããŒããšããŠã¹ãçµã¿åãããæäœã«ã察å¿ããŠããŸãã:
:a) '''ããŠã¹ ïŒ ããŒæäœ''' <br>
::以äžã®çµã¿åããã§ããŠã¹æ©èœãå€æŽã§ããŸãã:
::* Option ããŒ ïŒ ã¯ãªãã¯ ïŒ ãŠã€ã³ããŠã¬ãã«ã®èª¿ç¯
::* Apple (ã³ãã³ã) ããŒ ïŒ ã¯ãªãã¯ ïŒ ç§»å
::* Shift ããŒ ïŒ ã¯ãªãã¯ ïŒ ãºãŒã
::* Apple (ã³ãã³ã) ããŒ ïŒ Option ããŒ ïŒ ã¯ãªãã¯ ïŒ å転
:b) '''å€ãã¿ã³ ïŒ ãã€ãŒã« ããŠã¹'''<br>
::OsiriX ã®å©çšã«ã¯ãå€ãã¿ã³ä»ãã€ãŒã«ããŠã¹ã®äœ¿çšãæšå¥šããŸãã1 ãã¿ã³ããŠã¹ã®äœ¿çšã«æ¯ã¹ãŠãããå¹çè¯ãäœæ¥ããããªããŸãã
::*å·Šãã¿ã³ ïŒ åæ©èœã®éžæ
::*å³ãã¿ã³ ïŒ ãºãŒã
::*ãã€ãŒã« ïŒ ã·ãªãŒãºã®ãã©ãŠãº
:c) '''ãžã§ã°ãã€ãŒã«'''
::OsiriX ã¯ãContour Design 瀟 (http://www.contourdesign.com/) ã®ææ°ãžã§ã°ãã€ãŒã«è£
眮ã«å®å
šå¯Ÿå¿ããŠããŸããOsiriX ã¯ãé«éãªæäœã«ãããããã€ã¹æ©èœããã«æŽ»çšããããšãã§ããŸãã
<center>[[ç»å:OsiriXJogwheelsmall.jpg]]<br>''OsiriX ã®åæäœãããžã§ã°ãã€ãŒã«ã®æ©èœã«å²ãåœãŠãŠäœ¿çš''</center>
<p>
----
[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|OsiriX]] <br>
[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_2Dã·ãã¯ã»ã¹ã©ãã䜿çšãã|<]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|^]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_ãã£ãšæ©ãåäœããã|>]]
[[en:Online OsiriX Documentation/Navigational shortcuts]]
[[es:Documentación en lÃnea de OsiriX/Combinaciones de teclas]]
[[Category:OsiriX|ããããšãã€ãšãããããã]] | null | 2015-08-28T12:12:47Z | [] | https://ja.wikibooks.org/wiki/OsiriX_%E3%82%AA%E3%83%B3%E3%83%A9%E3%82%A4%E3%83%B3%E8%A7%A3%E8%AA%AC%E6%96%87%E6%9B%B8/OsiriX%E5%85%A5%E9%96%80_%E3%82%B7%E3%83%A7%E3%83%BC%E3%83%88%E3%82%AB%E3%83%83%E3%83%88%E3%82%92%E4%BD%BF%E7%94%A8%E3%81%99%E3%82%8B |
1,575 | OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é ãã£ãšæ©ãåäœããã | < ^ >
OsiriX ã®é«éåã«ã¯ã2 ã€ã®éçããããŸããããªãã¡ãã¡ã¢ãªãšããã»ããµãã¯ãŒã§ãã
OsiriX < ^ > | [
{
"paragraph_id": 0,
"tag": "p",
"text": "< ^ >",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "OsiriX ã®é«éåã«ã¯ã2 ã€ã®éçããããŸããããªãã¡ãã¡ã¢ãªãšããã»ããµãã¯ãŒã§ãã",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "OsiriX < ^ >",
"title": ""
}
] | < ^ > OsiriX ã®é«éåã«ã¯ã2 ã€ã®éçããããŸããããªãã¡ãã¡ã¢ãªãšããã»ããµãã¯ãŒã§ãã OsiriX < ^ > | [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_ã·ã§ãŒãã«ããã䜿çšãã|<]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|^]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_ãã©ã°ã€ã³ã䜿çšãã|>]]
----
OsiriX ã®é«éåã«ã¯ã2 ã€ã®éçããããŸããããªãã¡ãã¡ã¢ãªãšããã»ããµãã¯ãŒã§ãã
:'''1) ã¡ã¢ãª:'''
::OsiriX ã¯ãèšå€§ãªç»åã·ãªãŒãºãéããã倧éã®ã¡ã¢ãªãå¿
èŠãšããŸãïŒãOsiriX ã«ååãªã¡ã¢ãªãå²ãåœãŠãããªããšãMacOS X 㯠âä»®æ³ã¡ã¢ãªâ ã¢ãŒãã䜿çšããŠãã¡ã¢ãªå®¹éã確ä¿ããããšããŸãã: ããã¯ããŒããã£ã¹ã¯ãRAM ãšããŠå©çšããæ©èœã§ãããæ¬æ¥ã®RAM (ããã§èšãã¡ã¢ãª) ã«æ¯ã¹ãŠ1000 åäœéã§ããå©çšè
ã«ãšã£ãŠå¿
èŠãªã¡ã¢ãªå®¹éã¯ãã©ããã£ãŠèšç®ããã°ããã®ã§ããããã: 以äžã«ç€ºããåæã«è¡šç€ºã»æäœããç»åææ°ããèšç®ããæ¹æ³ãç°¡åã§ãã:
::: '''å¿
èŠãªã¡ã¢ãªå®¹é ïŒ é«ã (ç»çŽ æ°) à å¹
(ç»çŽ æ°) à äžåºŠã«è¡šç€ºãããç»åææ° Ã 4 ïŒ 1048576'''
:::''äŸãã°: 512 à 512 à 100 à 4 ïŒ 1048576 ïŒ 100 æã®CT ç»åã§100 MB''
::ã€ãŸããCT ç»å100 æãããã§æäœ100 MB ãå¿
èŠãšããããšã§ããMacOS X 㯠âæ£åžžãªåäœâ ã«æäœ256 MB ãå¿
èŠãšããŸããä»®æ³ã¡ã¢ãªæ©èœãé¿ããã«ã¯ãæäœã§ã256 ïŒ 100 MB ïŒ 356 MB ãå¿
èŠãšããããšã«ãªããŸãã
:'''2) ããã»ããµãã¯ãŒ:'''
::OsiriX ã¯ãMIP ãããªã¥ãŒã ã¬ã³ãã³ãªã°ã®ãããª3D åæ§æã«ãããŠãé«ãããã»ããµåŠçèœåãå¿
èŠãšããŸããOsiriX ã¯ãã³ã³ãã¥ãŒã¿æèŒã®å
šããã»ããµãå©çšå¯èœãªããã«ãã¹ã¬ããåŠçã«å¯Ÿå¿ãããœãããŠãšã¢ã§ããæé«ã®ããã©ãŒãã³ã¹ãåŸããã®ã§ããã°ãPower Mac G5 Quad ã Mac Pro ã賌å
¥ããå¿
èŠããããŸãïŒã
::ãã®ä»ã®è§£æ±ºçãšããŠãX-Grid ã®å©çšãæããããŸã [http://www.apple.com/acg/xgrid/ Apple X-Grid /MPI technology] ããã®ããã±ãŒãžãã€ã³ã¹ããŒã«ããŠãå©çšå¯èœã«ããã«ã¯ã âOsiriX pluginâ ãã€ã³ã¹ããŒã«ããå¿
èŠããããŸãã: âã©ã€ãã©ãª (ãããã¯Library)â ãã©ã«ãã«ãã âXgrid" ãã©ã«ãå
ã® âPlug-insâ ãã©ã«ããžãâOsiriX pluginâ ãã³ããŒããŸããã°ãªããã³ã³ãã¥ãŒãã£ã³ã°ã«é¢ããæŽãªãæè¡æ
å ±ã¯ãä»åŸã®ãªãªãŒã¹ã«æåŸ
ããŠãã ããã
::ãã®ä»ã®è§£æ±ºçãšããŠã [http://www.terarecon.com/ TeraRecon (ãã©ãªã³ã³ç€Ÿ)] VolumePRO PCI ã°ã©ãã£ãã¯ããŒãã®å©çšããããŸããOsiriX ã«ãããå
šãŠã®3D åæ§æã¯ãVTK ã«åºã¥ããŠãããVTK ã¯VolumePRO ã°ã©ãã£ãã¯ããŒããå®å
šãµããŒãããŠããŸã...ã
----
[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|OsiriX]] <br>
[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_ã·ã§ãŒãã«ããã䜿çšãã|<]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|^]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_ãã©ã°ã€ã³ã䜿çšãã|>]]
[[en:Online OsiriX Documentation/Making OsiriX run faster]]
[[es:Documentación en lÃnea de OsiriX/Acelerar OsiriX]]
[[Category:OsiriX|ãã€ãšã¯ãããšããããã]] | null | 2015-08-28T12:12:12Z | [] | https://ja.wikibooks.org/wiki/OsiriX_%E3%82%AA%E3%83%B3%E3%83%A9%E3%82%A4%E3%83%B3%E8%A7%A3%E8%AA%AC%E6%96%87%E6%9B%B8/OsiriX%E5%85%A5%E9%96%80_%E3%82%82%E3%81%A3%E3%81%A8%E6%97%A9%E3%81%8F%E5%8B%95%E4%BD%9C%E3%81%95%E3%81%9B%E3%82%8B |
1,576 | OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é ãã©ã°ã€ã³ã䜿çšãã | < ^ >
ãã©ã°ã€ã³æ©èœã䜿çšããã«ã¯ããã©ã°ã€ã³ãããŠã³ããŒããããããããã¯èªåã§äœæããå¿
èŠããããŸãã
å€ãã®ãã©ã°ã€ã³ (ãœãŒã¹ã³ãŒããå«ã) ãOsiriX ã®ãŠãšããµã€ãããããŠã³ããŒãã§ããŸãã:
ãã®ãµã€ãããå©çšå¯èœãªãã©ã°ã€ã³:
//ãã©ã°ã€ã³ã®äœ¿çšæ¹æ³ã®èšè¿°ãæ¯éãé¡ãèŽããŸãã
//ãã©ã°ã€ã³ã®äœ¿çšæ¹æ³ã®èšè¿°ãæ¯éãé¡ãèŽããŸãã
ãã©ã°ã€ã³ã®éçºã«èå³ãããã°ãOsiriX ãã©ã°ã€ã³éçºããŒã«ãããããã¥ã¢ã« (PluginsManual.pdf) ããµã³ãã«ãã©ã°ã€ã³ãå«ã OsiriX ã® ãœãŒã¹ã³ãŒã äžåŒãããŠã³ããŒãããã®ãããã§ãããã
éçºè
ã§ããAntoine M. D. æ°ã:
OsiriX ãã©ã°ã€ã³ã®äœæã¯ãšãŠãç°¡åã§ããããå
šéšã¿ããªãã ã£!ãéçºç°å¢ (XCode) ã¯ãã¹ãŠã®Mac ã§äœ¿ãããã䜿ããããã°ãä»å±ã®Developer CD-ROM ããã€ã³ã¹ããŒã«ããã ãããã©ã°ã€ã³ã®äœæã«ã¯ãªããžã§ã¯ãã£ãCèšèªã«ããèšè¿°ãå¿
èŠãªãã ããªããžã§ã¯ãã£ãC ã¯ãããããªããžã§ã¯ãæåã§ãã€ãããã¯ãªããã°ã©ãã³ã°èšèªã ããããæ¬åœã£ãJava ã«äŒŒãŠããã©ãããã£ãšããã£ãšé«éã ãã!ã
ãã©ã°ã€ã³äœæã®è©³çŽ°ã«é¢ããŠã¯ãéçºããŒã«ãããã«ä»å±ããããã¥ã¢ã«ãåç
§ãããã OsiriX Divelopers Discussion Group ã«åå ããŠãã ããã
ãã©ã°ã€ã³ãå
¥æãããã次ã«ãã©ã°ã€ã³ãOsiriX ãèªèã§ããé©åãªå Žæã«é
眮ããŸãã
OsiriX ã«ã¯ã3 ã±æã®é
çœ®å ŽæããããŸãã:
äžèšã®ãã¡ãæåã®å Žæ (/Library/Application Support/OsiriX/plugins) ãæšå¥šããŸããããã¯ãå
šãŠã®ãŠãŒã¶ããã©ã°ã€ã³ãå©çšã§ããå Žæã§ãã
OsiriX < ^ > | [
{
"paragraph_id": 0,
"tag": "p",
"text": "< ^ >",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ãã©ã°ã€ã³æ©èœã䜿çšããã«ã¯ããã©ã°ã€ã³ãããŠã³ããŒããããããããã¯èªåã§äœæããå¿
èŠããããŸãã",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "å€ãã®ãã©ã°ã€ã³ (ãœãŒã¹ã³ãŒããå«ã) ãOsiriX ã®ãŠãšããµã€ãããããŠã³ããŒãã§ããŸãã:",
"title": "ãã©ã°ã€ã³ã®ããŠã³ããŒã"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ãã®ãµã€ãããå©çšå¯èœãªãã©ã°ã€ã³:",
"title": "ãã©ã°ã€ã³ã®ããŠã³ããŒã"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "//ãã©ã°ã€ã³ã®äœ¿çšæ¹æ³ã®èšè¿°ãæ¯éãé¡ãèŽããŸãã",
"title": "ãã©ã°ã€ã³ã®ããŠã³ããŒã"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "",
"title": "ãã©ã°ã€ã³ã®ããŠã³ããŒã"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "//ãã©ã°ã€ã³ã®äœ¿çšæ¹æ³ã®èšè¿°ãæ¯éãé¡ãèŽããŸãã",
"title": "ãã©ã°ã€ã³ã®ããŠã³ããŒã"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ãã©ã°ã€ã³ã®éçºã«èå³ãããã°ãOsiriX ãã©ã°ã€ã³éçºããŒã«ãããããã¥ã¢ã« (PluginsManual.pdf) ããµã³ãã«ãã©ã°ã€ã³ãå«ã OsiriX ã® ãœãŒã¹ã³ãŒã äžåŒãããŠã³ããŒãããã®ãããã§ãããã",
"title": "èªåã§ãã©ã°ã€ã³ãéçºãã"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "éçºè
ã§ããAntoine M. D. æ°ã:",
"title": "èªåã§ãã©ã°ã€ã³ãéçºãã"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "OsiriX ãã©ã°ã€ã³ã®äœæã¯ãšãŠãç°¡åã§ããããå
šéšã¿ããªãã ã£!ãéçºç°å¢ (XCode) ã¯ãã¹ãŠã®Mac ã§äœ¿ãããã䜿ããããã°ãä»å±ã®Developer CD-ROM ããã€ã³ã¹ããŒã«ããã ãããã©ã°ã€ã³ã®äœæã«ã¯ãªããžã§ã¯ãã£ãCèšèªã«ããèšè¿°ãå¿
èŠãªãã ããªããžã§ã¯ãã£ãC ã¯ãããããªããžã§ã¯ãæåã§ãã€ãããã¯ãªããã°ã©ãã³ã°èšèªã ããããæ¬åœã£ãJava ã«äŒŒãŠããã©ãããã£ãšããã£ãšé«éã ãã!ã",
"title": "èªåã§ãã©ã°ã€ã³ãéçºãã"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "ãã©ã°ã€ã³äœæã®è©³çŽ°ã«é¢ããŠã¯ãéçºããŒã«ãããã«ä»å±ããããã¥ã¢ã«ãåç
§ãããã OsiriX Divelopers Discussion Group ã«åå ããŠãã ããã",
"title": "èªåã§ãã©ã°ã€ã³ãéçºãã"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "",
"title": "èªåã§ãã©ã°ã€ã³ãéçºãã"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "ãã©ã°ã€ã³ãå
¥æãããã次ã«ãã©ã°ã€ã³ãOsiriX ãèªèã§ããé©åãªå Žæã«é
眮ããŸãã",
"title": "ãã©ã°ã€ã³ãã€ã³ã¹ããŒã«"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "OsiriX ã«ã¯ã3 ã±æã®é
çœ®å ŽæããããŸãã:",
"title": "ãã©ã°ã€ã³ãã€ã³ã¹ããŒã«"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "äžèšã®ãã¡ãæåã®å Žæ (/Library/Application Support/OsiriX/plugins) ãæšå¥šããŸããããã¯ãå
šãŠã®ãŠãŒã¶ããã©ã°ã€ã³ãå©çšã§ããå Žæã§ãã",
"title": "ãã©ã°ã€ã³ãã€ã³ã¹ããŒã«"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "OsiriX < ^ >",
"title": "ãã©ã°ã€ã³ã䜿çšãã"
}
] | < ^ > ãã©ã°ã€ã³æ©èœã䜿çšããã«ã¯ããã©ã°ã€ã³ãããŠã³ããŒããããããããã¯èªåã§äœæããå¿
èŠããããŸãã | [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_ãã£ãšæ©ãåäœããã|<]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|^]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_éçºè
ã«ã¯ã©ãã·ã¥ã¬ããŒããéä¿¡ãã|>]]
----
ãã©ã°ã€ã³æ©èœã䜿çšããã«ã¯ããã©ã°ã€ã³ãããŠã³ããŒããããããããã¯èªåã§äœæããå¿
èŠããããŸãã
==ãã©ã°ã€ã³ã®ããŠã³ããŒã==
å€ãã®ãã©ã°ã€ã³ (ãœãŒã¹ã³ãŒããå«ã) ãOsiriX ã®ãŠãšããµã€ãããããŠã³ããŒãã§ããŸãã:
<center>http://www.osirix-viewer.com/Plugins.html</center>
ãã®ãµã€ãããå©çšå¯èœãªãã©ã°ã€ã³:
* '''Image Filters'''
** Invert & Web browser
** Duplicate
** Fill Gaps
** T2 Fit Map
//ãã©ã°ã€ã³ã®äœ¿çšæ¹æ³ã®èšè¿°ãæ¯éãé¡ãèŽããŸãã
* '''ROI Tools'''
** ROI Enhancement
** ROI Creation
** Ejection Fraction Calculation
** Pixel Normalization
* '''Fusion Filters'''
** CT Angio Subtraction
** Ratio T2 Map
//ãã©ã°ã€ã³ã®äœ¿çšæ¹æ³ã®èšè¿°ãæ¯éãé¡ãèŽããŸãã
* '''Other Filters'''
** OpenGL
==èªåã§ãã©ã°ã€ã³ãéçºãã==
ãã©ã°ã€ã³ã®éçºã«èå³ãããã°ãOsiriX ãã©ã°ã€ã³éçºããŒã«ãããããã¥ã¢ã« ([https://svn.sourceforge.net/svnroot/osirix/plugins/_help/ PluginsManual.pdf]) ããµã³ãã«ãã©ã°ã€ã³ãå«ã OsiriX ã® [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXãã£ãããããŒ_éçºè
åã³å¿åãŠãŒã¶ã®SVNã«ããã¢ã¯ã»ã¹| ãœãŒã¹ã³ãŒã]] äžåŒãããŠã³ããŒãããã®ãããã§ãããã
éçºè
ã§ããAntoine M. D. æ°ã:
''OsiriX ãã©ã°ã€ã³ã®äœæã¯ãšãŠãç°¡åã§ããããå
šéšã¿ããªãã ã£ïŒãéçºç°å¢ (XCode) ã¯ãã¹ãŠã®Mac ã§äœ¿ãããã䜿ããããã°ãä»å±ã®Developer CD-ROM ããã€ã³ã¹ããŒã«ããã ãããã©ã°ã€ã³ã®äœæã«ã¯ãªããžã§ã¯ãã£ãCèšèªã«ããèšè¿°ãå¿
èŠãªãã ããªããžã§ã¯ãã£ãC ã¯ãããããªããžã§ã¯ãæåã§ãã€ãããã¯ãªããã°ã©ãã³ã°èšèªã ããããæ¬åœã£ãJava ã«äŒŒãŠããã©ãããã£ãšããã£ãšé«éã ããïŒã''
ãã©ã°ã€ã³äœæã®è©³çŽ°ã«é¢ããŠã¯ãéçºããŒã«ãããã«ä»å±ããããã¥ã¢ã«ãåç
§ãããã [http://groups.yahoo.com/group/osirix-dev/ OsiriX Divelopers Discussion Group] ã«åå ããŠãã ããã
==ãã©ã°ã€ã³ãã€ã³ã¹ããŒã«==
ãã©ã°ã€ã³ãå
¥æãããã次ã«ãã©ã°ã€ã³ãOsiriX ãèªèã§ããé©åãªå Žæã«é
眮ããŸãã
OsiriX ã«ã¯ã3 ã±æã®é
çœ®å ŽæããããŸãã:
* /Library/Application Support/OsiriX/plugins (æ¥æ¬èªè¡šç€ºã§ã¯ã/ã©ã€ãã©ãª/ã¢ããªã±ãŒã·ã§ã³ãµããŒã/OsiriX/plugins)
* homeDirectory/Library/Application Support/OsiriX/plugins (æ¥æ¬èªè¡šç€ºã§ã¯ãå©çšè
ã®ããŒã /ã©ã€ãã©ãª/ã¢ããªã±ãŒã·ã§ã³ãµããŒã/OsiriX/plugins)
* OsiriX/Contents/Plugins (OsiriX æ¬äœã®ããã±ãŒãžå
容ã衚瀺ããŠãContents/Plugins)
äžèšã®ãã¡ãæåã®å Žæ (/Library/Application Support/OsiriX/plugins) ãæšå¥šããŸããããã¯ãå
šãŠã®ãŠãŒã¶ããã©ã°ã€ã³ãå©çšã§ããå Žæã§ãã
==ãã©ã°ã€ã³ã䜿çšãã==
----
[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|OsiriX]] <br>
[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_ãã£ãšæ©ãåäœããã|<]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|^]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_éçºè
ã«ã¯ã©ãã·ã¥ã¬ããŒããéä¿¡ãã|>]]
[[en:Online OsiriX Documentation/Using OsiriX Plugins]]
[[es:Documentación en lÃnea de OsiriX/Utilizar Plugins de OsiriX]]
[[Category:OsiriX|ãµãããããããããã]] | null | 2015-08-28T12:13:37Z | [] | https://ja.wikibooks.org/wiki/OsiriX_%E3%82%AA%E3%83%B3%E3%83%A9%E3%82%A4%E3%83%B3%E8%A7%A3%E8%AA%AC%E6%96%87%E6%9B%B8/OsiriX%E5%85%A5%E9%96%80_%E3%83%97%E3%83%A9%E3%82%B0%E3%82%A4%E3%83%B3%E3%82%92%E4%BD%BF%E7%94%A8%E3%81%99%E3%82%8B |
1,577 | OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é éçºè
ã«ã¯ã©ãã·ã¥ã¬ããŒããéä¿¡ãã | < ^ |
誰ãããOsiriX ã 決ã㊠ã¯ã©ãã·ã¥ããªãããšãæã¿ãŸããããããäžå¹žã«ããŠã¯ã©ãã·ã¥ããŠããŸã£ãå Žåã«ã¯ãcrash repot ãéçºè
ã«å ±åããããšããéåžžã«æçšã§ãã
ãããå®è¡ããã«ã¯ã Applications (ã¢ããªã±ãŒã·ã§ã³) ãã©ã«ãå
ã® Utilities ãã©ã«ããéããŸãã
ãã®äžã« Console (ã³ã³ãœãŒã«) ãšããã¢ããªã±ãŒã·ã§ã³ãå
¥ã£ãŠããŸãããããããã«ã¯ãªãã¯ããŠèµ·åããŸãã以äžã®å³ã®æ§ãªãŠã€ã³ããŠã衚瀺ããããšæããŸãã:
å©çšå¯èœãã°å
šãŠã衚瀺ãããµã€ããã€ã³ãéããŠããªããã°ãäžæ®µã«ãããã°ã¢ã€ã³ã³ãã¯ããªã¯ããŠããªã¹ã衚瀺ã«åãæ¿ããŸãã
次ã«ã ~/Library/Logs ã®å·Šã«ããäžè§ãã¿ã³ãã¯ãªãã¯ããŸãããµããªã¹ã衚瀺ã«åãæ¿ãããŸãã以äžã®å³ã®ããã«è¡šç€ºãããã§ãããã:
次ã«ã CrashReporter ã®å·Šã«ããäžè§ãã¿ã³ãã¯ãªãã¯ããŸããæŽã«ãµããªã¹ãã衚瀺ãããåçš®ã¢ããªã±ãŒã·ã§ã³ã®crash report ã衚瀺ãããŸãã以äžã®å³ã®ããã«è¡šç€ºãããã§ãããã:
ãã®ãªã¹ããã¹ã¯ããŒã«ããŠã OsiriX.crash.log ãæ¢ããŸãããããã¯ãªãã¯ããŠéžæãããšã以äžã®å³ã®ããã«ãå³æ å
ã«å€ãã®ããã¹ãã衚瀺ãããŸãã
ãã®ããã¹ãæåŸã®èšè¿°ããä»åã®OsiriX ãã¯ã©ãã·ã¥ãããã°ã§ãããã®ããã¹ãéšåããã©ãã°ããŠã³ããŒããŸãããããé»åã¡ãŒã«ã«ããŒã¹ãããŠãOsiriX éçºè
å®ãŠã«éä¿¡ããŠãã ããã
OsiriX < ^ | | [
{
"paragraph_id": 0,
"tag": "p",
"text": "< ^ |",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "誰ãããOsiriX ã 決ã㊠ã¯ã©ãã·ã¥ããªãããšãæã¿ãŸããããããäžå¹žã«ããŠã¯ã©ãã·ã¥ããŠããŸã£ãå Žåã«ã¯ãcrash repot ãéçºè
ã«å ±åããããšããéåžžã«æçšã§ãã",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ãããå®è¡ããã«ã¯ã Applications (ã¢ããªã±ãŒã·ã§ã³) ãã©ã«ãå
ã® Utilities ãã©ã«ããéããŸãã",
"title": ""
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ãã®äžã« Console (ã³ã³ãœãŒã«) ãšããã¢ããªã±ãŒã·ã§ã³ãå
¥ã£ãŠããŸãããããããã«ã¯ãªãã¯ããŠèµ·åããŸãã以äžã®å³ã®æ§ãªãŠã€ã³ããŠã衚瀺ããããšæããŸãã:",
"title": ""
},
{
"paragraph_id": 4,
"tag": "p",
"text": "å©çšå¯èœãã°å
šãŠã衚瀺ãããµã€ããã€ã³ãéããŠããªããã°ãäžæ®µã«ãããã°ã¢ã€ã³ã³ãã¯ããªã¯ããŠããªã¹ã衚瀺ã«åãæ¿ããŸãã",
"title": ""
},
{
"paragraph_id": 5,
"tag": "p",
"text": "次ã«ã ~/Library/Logs ã®å·Šã«ããäžè§ãã¿ã³ãã¯ãªãã¯ããŸãããµããªã¹ã衚瀺ã«åãæ¿ãããŸãã以äžã®å³ã®ããã«è¡šç€ºãããã§ãããã:",
"title": ""
},
{
"paragraph_id": 6,
"tag": "p",
"text": "次ã«ã CrashReporter ã®å·Šã«ããäžè§ãã¿ã³ãã¯ãªãã¯ããŸããæŽã«ãµããªã¹ãã衚瀺ãããåçš®ã¢ããªã±ãŒã·ã§ã³ã®crash report ã衚瀺ãããŸãã以äžã®å³ã®ããã«è¡šç€ºãããã§ãããã:",
"title": ""
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ãã®ãªã¹ããã¹ã¯ããŒã«ããŠã OsiriX.crash.log ãæ¢ããŸãããããã¯ãªãã¯ããŠéžæãããšã以äžã®å³ã®ããã«ãå³æ å
ã«å€ãã®ããã¹ãã衚瀺ãããŸãã",
"title": ""
},
{
"paragraph_id": 8,
"tag": "p",
"text": "ãã®ããã¹ãæåŸã®èšè¿°ããä»åã®OsiriX ãã¯ã©ãã·ã¥ãããã°ã§ãããã®ããã¹ãéšåããã©ãã°ããŠã³ããŒããŸãããããé»åã¡ãŒã«ã«ããŒã¹ãããŠãOsiriX éçºè
å®ãŠã«éä¿¡ããŠãã ããã",
"title": ""
},
{
"paragraph_id": 9,
"tag": "p",
"text": "OsiriX < ^ |",
"title": ""
}
] | < ^ | 誰ãããOsiriX ã 決ã㊠ã¯ã©ãã·ã¥ããªãããšãæã¿ãŸããããããäžå¹žã«ããŠã¯ã©ãã·ã¥ããŠããŸã£ãå Žåã«ã¯ãcrash repot ãéçºè
ã«å ±åããããšããéåžžã«æçšã§ãã ãããå®è¡ããã«ã¯ã Applications (ã¢ããªã±ãŒã·ã§ã³) ãã©ã«ãå
ã® Utilities ãã©ã«ããéããŸãã ãã®äžã« Console (ã³ã³ãœãŒã«) ãšããã¢ããªã±ãŒã·ã§ã³ãå
¥ã£ãŠããŸãããããããã«ã¯ãªãã¯ããŠèµ·åããŸãã以äžã®å³ã®æ§ãªãŠã€ã³ããŠã衚瀺ããããšæããŸãã: å©çšå¯èœãã°å
šãŠã衚瀺ãããµã€ããã€ã³ãéããŠããªããã°ãäžæ®µã«ãããã°ã¢ã€ã³ã³ãã¯ããªã¯ããŠããªã¹ã衚瀺ã«åãæ¿ããŸãã 次ã«ã ~/Library/Logs ã®å·Šã«ããäžè§ãã¿ã³ãã¯ãªãã¯ããŸãããµããªã¹ã衚瀺ã«åãæ¿ãããŸãã以äžã®å³ã®ããã«è¡šç€ºãããã§ãããã: 次ã«ã CrashReporter ã®å·Šã«ããäžè§ãã¿ã³ãã¯ãªãã¯ããŸããæŽã«ãµããªã¹ãã衚瀺ãããåçš®ã¢ããªã±ãŒã·ã§ã³ã®crash report ã衚瀺ãããŸãã以äžã®å³ã®ããã«è¡šç€ºãããã§ãããã: ãã®ãªã¹ããã¹ã¯ããŒã«ããŠã OsiriX.crash.log ãæ¢ããŸãããããã¯ãªãã¯ããŠéžæãããšã以äžã®å³ã®ããã«ãå³æ å
ã«å€ãã®ããã¹ãã衚瀺ãããŸãã ãã®ããã¹ãæåŸã®èšè¿°ããä»åã®OsiriX ãã¯ã©ãã·ã¥ãããã°ã§ãããã®ããã¹ãéšåããã©ãã°ããŠã³ããŒããŸãããããé»åã¡ãŒã«ã«ããŒã¹ãããŠãOsiriX éçºè
å®ãŠã«éä¿¡ããŠãã ããã OsiriX < ^ | | [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_ãã©ã°ã€ã³ã䜿çšãã|<]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|^]] |
----
誰ãããOsiriX ã '''決ããŠ''' ã¯ã©ãã·ã¥ããªãããšãæã¿ãŸããããããäžå¹žã«ããŠã¯ã©ãã·ã¥ããŠããŸã£ãå Žåã«ã¯ãcrash repot ãéçºè
ã«å ±åããããšããéåžžã«æçšã§ãã
ãããå®è¡ããã«ã¯ã '''Applications (ã¢ããªã±ãŒã·ã§ã³)''' ãã©ã«ãå
ã® '''Utilities'''
ãã©ã«ããéããŸãã
ãã®äžã« '''Console (ã³ã³ãœãŒã«)''' ãšããã¢ããªã±ãŒã·ã§ã³ãå
¥ã£ãŠããŸãããããããã«ã¯ãªãã¯ããŠèµ·åããŸãã以äžã®å³ã®æ§ãªãŠã€ã³ããŠã衚瀺ããããšæããŸãã:
<center>[[ç»å:OSXConsole1.jpg]]</center>
å©çšå¯èœãã°å
šãŠã衚瀺ãããµã€ããã€ã³ãéããŠããªããã°ãäžæ®µã«ãããã°ã¢ã€ã³ã³ãã¯ããªã¯ããŠããªã¹ã衚瀺ã«åãæ¿ããŸãã
次ã«ã '''~/Library/Logs''' ã®å·Šã«ããäžè§ãã¿ã³ãã¯ãªãã¯ããŸãããµããªã¹ã衚瀺ã«åãæ¿ãããŸãã以äžã®å³ã®ããã«è¡šç€ºãããã§ãããã:
<center>[[ç»å:OSXConsole2.jpg]]</center>
次ã«ã '''CrashReporter''' ã®å·Šã«ããäžè§ãã¿ã³ãã¯ãªãã¯ããŸããæŽã«ãµããªã¹ãã衚瀺ãããåçš®ã¢ããªã±ãŒã·ã§ã³ã®crash report ã衚瀺ãããŸãã以äžã®å³ã®ããã«è¡šç€ºãããã§ãããã:
<center>[[ç»å:OSXConsole3.jpg]]</center>
ãã®ãªã¹ããã¹ã¯ããŒã«ããŠã '''OsiriX.crash.log''' ãæ¢ããŸãããããã¯ãªãã¯ããŠéžæãããšã以äžã®å³ã®ããã«ãå³æ å
ã«å€ãã®ããã¹ãã衚瀺ãããŸãã
<center>[[ç»å:OSXConsole4.jpg]]</center>
ãã®ããã¹ãæåŸã®èšè¿°ããä»åã®OsiriX ãã¯ã©ãã·ã¥ãããã°ã§ãããã®ããã¹ãéšåããã©ãã°ããŠã³ããŒããŸãããããé»åã¡ãŒã«ã«ããŒã¹ãããŠãOsiriX éçºè
å®ãŠã«éä¿¡ããŠãã ããã
----
[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|OsiriX]] <br>
[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_ãã©ã°ã€ã³ã䜿çšãã|<]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|^]] |
[[en:Online OsiriX Documentation/Forwarding a Crash Report to the Developers]]
[[Category:OsiriX|ããã¯ã€ããã«ããã€ãããã»ããšããããããã]] | null | 2015-08-29T00:59:46Z | [] | https://ja.wikibooks.org/wiki/OsiriX_%E3%82%AA%E3%83%B3%E3%83%A9%E3%82%A4%E3%83%B3%E8%A7%A3%E8%AA%AC%E6%96%87%E6%9B%B8/OsiriX%E5%85%A5%E9%96%80_%E9%96%8B%E7%99%BA%E8%80%85%E3%81%AB%E3%82%AF%E3%83%A9%E3%83%83%E3%82%B7%E3%83%A5%E3%83%AC%E3%83%9D%E3%83%BC%E3%83%88%E3%82%92%E9%80%81%E4%BF%A1%E3%81%99%E3%82%8B |
1,578 | çµæžåŠ çŸä»£çµæžã®ä»çµã¿ çµæžäž»äœãšãã®æŽ»å | çµæžåŠ>çŸä»£çµæžã®ä»çµã¿>çµæžäž»äœãšãã®æŽ»å
çµæžã¯å
šãŠã®äººéã®ããã«ååšãããå
šãŠã®äººéã®å
±æç©ã§ããåœäŒè°å¡ã ãã®ãã®ã§ãã瀟é·ã ãã®ãã®ã§ãã倧人ã ãã®ãã®ã§ããããŸããããªããªããçµæžãäœã£ãŠããã®ãå
šãŠã®äººéã ããã§ãã
家èšã»äŒæ¥ã»æ¿åºãšãã3ã€ã®çµæžäž»äœã«ãã£ãŠåœæ°çµæžãæãç«ã£ãŠããŸããåœæ°çµæžã¯åãçµæžäœå¶ããšã1åœå
ã§ã®çµæžæŽ»åã®ããšã§ãããŸããèªåœã®åœæ°çµæžãšå€åœã®åœæ°çµæžãç©ãéã®ååŒãããããšã貿æãšãããŸãã
家èšã¯æ¬²æã®å
足ãå³ãããã«æ¶è²»ã»è²¯èãããäž»äœã§ããäŒæ¥ã«åŽåãè³æ¬ãªã©ãæäŸãããã®å¯ŸäŸ¡ãšããŠåãåãè³éãå©åãªã©ã®æåŸã貯èã«ãŸãããããäŒæ¥ãçç£ãã財ç©ãæ¶è²»ãããããã®ã«äœ¿ããŸãã家èšã¯ãäŒæ¥ã«æ¯ã¹åŒ±ãç«å Žã«ãããŸãããããã§ãã¢ã¡ãªã«åè¡åœå€§çµ±é ãªãã£ãŒãã»ãã¯ãœã³(R. M. Nixon)ã¯1969幎ã®ç¹å¥ææžã§æ¶è²»è
ã®4ã€ã®æš©å©ãæå±ããŸããã
æ¥æ¬ã«ã¯æ¶è²»è
ã§ãã家èšãä¿è·ããããã«æ¶è²»è
ä¿è·åºæ¬æ³(1968幎å¶å®)ããããŸããããããæ¶è²»è
ä¿è·åºæ¬æ³ã¯è¡šçŸãæœè±¡çã§ãæ²çœ°æ¢å®ãç¡ãã£ãããä»ã®å
é²åœã«æ¯ã¹ãŠæ¶è²»è
ä¿è·è¡æ¿ã«é
ãããšããŸãããçŸåšã補é ç©è²¬ä»»æ³(1995幎æœè¡)ãæ¶è²»è
å¥çŽæ³(2001幎æœè¡)ãªã©ã®ç«æ³ãšãšãã«ãæ¶è²»è
ä¿è·è¡æ¿ãæ¶è²»è
æè²ãéèŠèŠãããŠããŸãã
é£åã»å»è¬åã®æ¬ é¥ã¯åŸã絶ã¡ãŸããã
ååã®å®å
šæ§ãåãããããæ¶è²»è
ã«ç€ºããããæ§ã
ãªåºæºãå®ããããŠããŸãããã ãããããã®åºæºãå€ãã£ãŠãååã販売ã§ããªããªããšããããšã¯ãããŸããã
äŒæ¥ã¯çç£ãããäž»äœã§ãã家èšããæäŸãããåŽåãè³æ¬ã掻çšããŠã財ç©ã®çç£æ段ãçµã¿ç«ãŠãçç£ããŸããçç£ãã財ç©ã¯è²©å£²ããå©æœ€ãåŸãŸããäŒæ¥ã¯å©æœ€è¿œæ±ã®åºŠåãã®åŒ·ãããããã¯å
Œ
±æ§ã®é«ãããå
¬äŒæ¥ã»å
¬ç§ååäŒæ¥ã»ç§äŒæ¥ã®3ã€ã«åããããŠããŸãã
æ ªåŒ(æ ª)ãçºè¡ããŠè³éãéããäŒæ¥åœ¢æ
ãæ ªåŒäŒç€ŸãšãããŸããæ ªåŒäŒç€Ÿã§ã¯ä»ã®äŒæ¥ãšç°ãªããå¿
ãææ(ææè
ã»æ ªäž»)ãšçµå¶(çµå¶è
)ãåé¢ãããŠããŸãã
äžçã§æåã®æ ªåŒäŒç€Ÿã¯ã17äžçŽã«ã€ã®ãªã¹ããªã©ã³ãããã©ã³ã¹ã«èšç«ãããæ±ã€ã³ãäŒç€ŸãšèŠãããŠããŸããæ±ã€ã³ãäŒç€Ÿã¯æ±åã¢ãžã¢ãªã©ã®å°åã§å
¥æããéŠèŸæãè¹ã§ãšãŒãããã«éã³å£²ã£ãŠããŸããããã®è¹ã建é ããããã®è³éãå¿
èŠã«ãªã£ããããå©æœ€ãåºè³é¡ã«å¿ããŠåºè³è
ã«åé
ããä»çµã¿ãç·šã¿åºãããããæ¡ä»¶ã«ããè³é調éã«æåããã®ã§ããããå©æœ€ãç¡ããã°åºè³è
ã«ã¯åé
éã©ãããåºè³éãåž°ã£ãŠããŸãããããã以äžã®æ倱ã¯ãããŸããããããæé責任ãšãããåºè³è
ãæé責任瀟å¡ãšãããŸãã
çŸä»£ã§ã¯æ ªåŒãã§ããã ãå€ãã®äººã«è³Œå
¥ããŠããããããã»ãšãã©ã®æ ªåŒã®ãããšãã蚌åžäŒç€ŸãéãããŠããŸãã蚌åžäŒç€Ÿã¯é¡§å®¢(æ ªãè²·ã人)ã®æ³šæãåãæ ªåŒåžå Žã§è²·ãéããŸããæ ªåŒåžå Žã«ã¯ãããããã®æ ªåŒåžå Žã®äžå Žæ¡ä»¶ãæºããããæ ªåŒãè²·ã£ãŠããããããšæã£ãŠããæ ªåŒäŒç€Ÿãäžå ŽããŠããŸããæè¿ã®æ ªåŒåžå Žã¯ãå¶åºŠå€æŽãã€ã³ã¿ãŒããã蚌åžã®æ®åããå人æè³å®¶ãå¢å ããŠãããæ ªåŒäŒç€ŸåŽãèªç€Ÿã®æ ªåŒã«å¯Ÿããå人æè³å®¶ã®èŠæ¹ãæ°ã«ããããã«ãªã£ãŠããŸãã
å
šåœã«ããã510äžç€ŸããäŒæ¥ã®ãã¡99.4%ãäžå°äŒæ¥ã§ããw:äžå°äŒæ¥åºæ¬æ³ã§ã¯äžå°äŒæ¥ã次ã®ããã«å®çŸ©ããŠããŸãã
ãªãã補é æ¥ã»åžå£²æ¥ã¯20人以äžãå°å£²æ¥ã»ãµãŒãã¹æ¥ã§ã¯ã5人以äžã®äŒæ¥ãå°èŠæš¡äŒæ¥è
ãšå®çŸ©ããŠããŸããäžå°äŒæ¥ã¯äžè«ãã茞åº(ç¹ç¶ã»é貚ã»ç²Ÿå¯æ©æ¢° ç)ãå°å£²ããããäŒæ¥ãå€ããçŸä»£çµæžã«ã¯æ¬ ãããªãååšãšãªã£ãŠããŸãããããã倧äŒæ¥ãšã®éã§æåŸã»çç£æ§ã»è³éé¢ã§ã®æ Œå·®ã倧ãããæ¥æ¬äŒæ¥ã«ãããäºéæ§é ãšããŠåé¡ã«ãªã£ãŠããŸãã
è¿å¹Žã®äŒæ¥ã®å䜵ãšè²·å(M&AãMergers and Acquisitions)ã¯ãäžéšéã®å°éæ§ãé«ããããä»éšéã売ã£ãããäžåŸæåéãè²·ãå
¥ãããªã©ã©ã¡ãã®äŒæ¥ãåŸãããããšãå€ããªã£ãŠããŸãã2005幎ã«ã¯æ ªåŒäŒç€Ÿã©ã€ããã¢ã«ããæ ªåŒäŒç€Ÿãããã³æŸéã®å䜵ãšè²·åã泚ç®ãéããŸããã
ç¹ã«å€§äŒæ¥ã«ã¯ç€ŸäŒç責任(Corporate Social Responsibility)ããããšããèãæ¹ã®ããšãå©æœ€ãè¿œæ±ããã«ç€ŸäŒç掻åãè¡ãããšãæ±ããããŠããŸããã¢ã¡ãªã«åè¡åœã§ã¯äŒæ¥ã®ç€ŸäŒçè²¢ç®(ãã£ããœããŒ(philanthropy))ã®äžç°ãšããŠèžè¡ã»æå掻åãæ¯æŽããåãçµã¿(ã¡ã»ã(mecenat))ãäžè¬åããŠããŸãã
æ¿åºã¯çµæžæŽ»åã調æŽããäž»äœã§ãã家èšãšäŒæ¥ããç§çšã城åããæè²ã»ç€ŸäŒä¿éãªã©ã®å
Œ
±ãµãŒãã¹ã瀟äŒå
šäœã«æäŸããŸãããŸããç§çšã®åŸŽåã«ããæåŸã®ååé
ãè¡ããŸãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "çµæžåŠ>çŸä»£çµæžã®ä»çµã¿>çµæžäž»äœãšãã®æŽ»å",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "çµæžã¯å
šãŠã®äººéã®ããã«ååšãããå
šãŠã®äººéã®å
±æç©ã§ããåœäŒè°å¡ã ãã®ãã®ã§ãã瀟é·ã ãã®ãã®ã§ãã倧人ã ãã®ãã®ã§ããããŸããããªããªããçµæžãäœã£ãŠããã®ãå
šãŠã®äººéã ããã§ãã",
"title": "çµæžã¯èª°ã®ãã®ïŒ"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "家èšã»äŒæ¥ã»æ¿åºãšãã3ã€ã®çµæžäž»äœã«ãã£ãŠåœæ°çµæžãæãç«ã£ãŠããŸããåœæ°çµæžã¯åãçµæžäœå¶ããšã1åœå
ã§ã®çµæžæŽ»åã®ããšã§ãããŸããèªåœã®åœæ°çµæžãšå€åœã®åœæ°çµæžãç©ãéã®ååŒãããããšã貿æãšãããŸãã",
"title": "çµæžäž»äœ"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "家èšã¯æ¬²æã®å
足ãå³ãããã«æ¶è²»ã»è²¯èãããäž»äœã§ããäŒæ¥ã«åŽåãè³æ¬ãªã©ãæäŸãããã®å¯ŸäŸ¡ãšããŠåãåãè³éãå©åãªã©ã®æåŸã貯èã«ãŸãããããäŒæ¥ãçç£ãã財ç©ãæ¶è²»ãããããã®ã«äœ¿ããŸãã家èšã¯ãäŒæ¥ã«æ¯ã¹åŒ±ãç«å Žã«ãããŸãããããã§ãã¢ã¡ãªã«åè¡åœå€§çµ±é ãªãã£ãŒãã»ãã¯ãœã³(R. M. Nixon)ã¯1969幎ã®ç¹å¥ææžã§æ¶è²»è
ã®4ã€ã®æš©å©ãæå±ããŸããã",
"title": "çµæžäž»äœ"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "æ¥æ¬ã«ã¯æ¶è²»è
ã§ãã家èšãä¿è·ããããã«æ¶è²»è
ä¿è·åºæ¬æ³(1968幎å¶å®)ããããŸããããããæ¶è²»è
ä¿è·åºæ¬æ³ã¯è¡šçŸãæœè±¡çã§ãæ²çœ°æ¢å®ãç¡ãã£ãããä»ã®å
é²åœã«æ¯ã¹ãŠæ¶è²»è
ä¿è·è¡æ¿ã«é
ãããšããŸãããçŸåšã補é ç©è²¬ä»»æ³(1995幎æœè¡)ãæ¶è²»è
å¥çŽæ³(2001幎æœè¡)ãªã©ã®ç«æ³ãšãšãã«ãæ¶è²»è
ä¿è·è¡æ¿ãæ¶è²»è
æè²ãéèŠèŠãããŠããŸãã",
"title": "çµæžäž»äœ"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "é£åã»å»è¬åã®æ¬ é¥ã¯åŸã絶ã¡ãŸããã",
"title": "çµæžäž»äœ"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ååã®å®å
šæ§ãåãããããæ¶è²»è
ã«ç€ºããããæ§ã
ãªåºæºãå®ããããŠããŸãããã ãããããã®åºæºãå€ãã£ãŠãååã販売ã§ããªããªããšããããšã¯ãããŸããã",
"title": "çµæžäž»äœ"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "äŒæ¥ã¯çç£ãããäž»äœã§ãã家èšããæäŸãããåŽåãè³æ¬ã掻çšããŠã財ç©ã®çç£æ段ãçµã¿ç«ãŠãçç£ããŸããçç£ãã財ç©ã¯è²©å£²ããå©æœ€ãåŸãŸããäŒæ¥ã¯å©æœ€è¿œæ±ã®åºŠåãã®åŒ·ãããããã¯å
Œ
±æ§ã®é«ãããå
¬äŒæ¥ã»å
¬ç§ååäŒæ¥ã»ç§äŒæ¥ã®3ã€ã«åããããŠããŸãã",
"title": "çµæžäž»äœ"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "æ ªåŒ(æ ª)ãçºè¡ããŠè³éãéããäŒæ¥åœ¢æ
ãæ ªåŒäŒç€ŸãšãããŸããæ ªåŒäŒç€Ÿã§ã¯ä»ã®äŒæ¥ãšç°ãªããå¿
ãææ(ææè
ã»æ ªäž»)ãšçµå¶(çµå¶è
)ãåé¢ãããŠããŸãã",
"title": "çµæžäž»äœ"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "äžçã§æåã®æ ªåŒäŒç€Ÿã¯ã17äžçŽã«ã€ã®ãªã¹ããªã©ã³ãããã©ã³ã¹ã«èšç«ãããæ±ã€ã³ãäŒç€ŸãšèŠãããŠããŸããæ±ã€ã³ãäŒç€Ÿã¯æ±åã¢ãžã¢ãªã©ã®å°åã§å
¥æããéŠèŸæãè¹ã§ãšãŒãããã«éã³å£²ã£ãŠããŸããããã®è¹ã建é ããããã®è³éãå¿
èŠã«ãªã£ããããå©æœ€ãåºè³é¡ã«å¿ããŠåºè³è
ã«åé
ããä»çµã¿ãç·šã¿åºãããããæ¡ä»¶ã«ããè³é調éã«æåããã®ã§ããããå©æœ€ãç¡ããã°åºè³è
ã«ã¯åé
éã©ãããåºè³éãåž°ã£ãŠããŸãããããã以äžã®æ倱ã¯ãããŸããããããæé責任ãšãããåºè³è
ãæé責任瀟å¡ãšãããŸãã",
"title": "çµæžäž»äœ"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "çŸä»£ã§ã¯æ ªåŒãã§ããã ãå€ãã®äººã«è³Œå
¥ããŠããããããã»ãšãã©ã®æ ªåŒã®ãããšãã蚌åžäŒç€ŸãéãããŠããŸãã蚌åžäŒç€Ÿã¯é¡§å®¢(æ ªãè²·ã人)ã®æ³šæãåãæ ªåŒåžå Žã§è²·ãéããŸããæ ªåŒåžå Žã«ã¯ãããããã®æ ªåŒåžå Žã®äžå Žæ¡ä»¶ãæºããããæ ªåŒãè²·ã£ãŠããããããšæã£ãŠããæ ªåŒäŒç€Ÿãäžå ŽããŠããŸããæè¿ã®æ ªåŒåžå Žã¯ãå¶åºŠå€æŽãã€ã³ã¿ãŒããã蚌åžã®æ®åããå人æè³å®¶ãå¢å ããŠãããæ ªåŒäŒç€ŸåŽãèªç€Ÿã®æ ªåŒã«å¯Ÿããå人æè³å®¶ã®èŠæ¹ãæ°ã«ããããã«ãªã£ãŠããŸãã",
"title": "çµæžäž»äœ"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "å
šåœã«ããã510äžç€ŸããäŒæ¥ã®ãã¡99.4%ãäžå°äŒæ¥ã§ããw:äžå°äŒæ¥åºæ¬æ³ã§ã¯äžå°äŒæ¥ã次ã®ããã«å®çŸ©ããŠããŸãã",
"title": "çµæžäž»äœ"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "ãªãã補é æ¥ã»åžå£²æ¥ã¯20人以äžãå°å£²æ¥ã»ãµãŒãã¹æ¥ã§ã¯ã5人以äžã®äŒæ¥ãå°èŠæš¡äŒæ¥è
ãšå®çŸ©ããŠããŸããäžå°äŒæ¥ã¯äžè«ãã茞åº(ç¹ç¶ã»é貚ã»ç²Ÿå¯æ©æ¢° ç)ãå°å£²ããããäŒæ¥ãå€ããçŸä»£çµæžã«ã¯æ¬ ãããªãååšãšãªã£ãŠããŸãããããã倧äŒæ¥ãšã®éã§æåŸã»çç£æ§ã»è³éé¢ã§ã®æ Œå·®ã倧ãããæ¥æ¬äŒæ¥ã«ãããäºéæ§é ãšããŠåé¡ã«ãªã£ãŠããŸãã",
"title": "çµæžäž»äœ"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "è¿å¹Žã®äŒæ¥ã®å䜵ãšè²·å(M&AãMergers and Acquisitions)ã¯ãäžéšéã®å°éæ§ãé«ããããä»éšéã売ã£ãããäžåŸæåéãè²·ãå
¥ãããªã©ã©ã¡ãã®äŒæ¥ãåŸãããããšãå€ããªã£ãŠããŸãã2005幎ã«ã¯æ ªåŒäŒç€Ÿã©ã€ããã¢ã«ããæ ªåŒäŒç€Ÿãããã³æŸéã®å䜵ãšè²·åã泚ç®ãéããŸããã",
"title": "çµæžäž»äœ"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "ç¹ã«å€§äŒæ¥ã«ã¯ç€ŸäŒç責任(Corporate Social Responsibility)ããããšããèãæ¹ã®ããšãå©æœ€ãè¿œæ±ããã«ç€ŸäŒç掻åãè¡ãããšãæ±ããããŠããŸããã¢ã¡ãªã«åè¡åœã§ã¯äŒæ¥ã®ç€ŸäŒçè²¢ç®(ãã£ããœããŒ(philanthropy))ã®äžç°ãšããŠèžè¡ã»æå掻åãæ¯æŽããåãçµã¿(ã¡ã»ã(mecenat))ãäžè¬åããŠããŸãã",
"title": "çµæžäž»äœ"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "æ¿åºã¯çµæžæŽ»åã調æŽããäž»äœã§ãã家èšãšäŒæ¥ããç§çšã城åããæè²ã»ç€ŸäŒä¿éãªã©ã®å
Œ
±ãµãŒãã¹ã瀟äŒå
šäœã«æäŸããŸãããŸããç§çšã®åŸŽåã«ããæåŸã®ååé
ãè¡ããŸãã",
"title": "çµæžäž»äœ"
}
] | çµæžåŠïŒçŸä»£çµæžã®ä»çµã¿ïŒçµæžäž»äœãšãã®æŽ»å | [[çµæžåŠ]]ïŒ[[çµæžåŠ_çŸä»£çµæžã®ä»çµã¿|çŸä»£çµæžã®ä»çµã¿]]ïŒ[[çµæžåŠ_çŸä»£çµæžã®ä»çµã¿_çµæžäž»äœãšãã®æŽ»å|çµæžäž»äœãšãã®æŽ»å]]
----
__TOC__
<div style="margin:0px; padding:0px; background-color:#CCFF99; border:solid #00CC00 1px; width:100%;">
== çµæžã¯èª°ã®ãã®ïŒ ==
'''çµæžã¯å
šãŠã®äººéã®ããã«ååšãããå
šãŠã®äººéã®å
±æç©ã§ããåœäŒè°å¡ã ãã®ãã®ã§ãã瀟é·ã ãã®ãã®ã§ãã倧人ã ãã®ãã®ã§ããããŸããããªããªããçµæžãäœã£ãŠããã®ãå
šãŠã®äººéã ããã§ãã'''
</div>
== çµæžäž»äœ ==
'''家èš'''ã»'''äŒæ¥'''ã»'''æ¿åº'''ãšããïŒã€ã®çµæžäž»äœã«ãã£ãŠ'''åœæ°çµæž'''ãæãç«ã£ãŠããŸããåœæ°çµæžã¯åãçµæžäœå¶ããšãïŒåœå
ã§ã®çµæžæŽ»åã®ããšã§ãããŸããèªåœã®åœæ°çµæžãšå€åœã®åœæ°çµæžãç©ãéã®ååŒãããããšã[[çµæžåŠ_äžççµæž_貿æ|'''貿æ''']]ãšãããŸãã
=== å®¶èš ===
'''家èš'''ã¯æ¬²æã®å
足ãå³ãããã«æ¶è²»ã»è²¯èãããäž»äœã§ããäŒæ¥ã«åŽåãè³æ¬ãªã©ãæäŸãããã®å¯ŸäŸ¡ãšããŠåãåãè³éãå©åãªã©ã®æåŸã貯èã«ãŸãããããäŒæ¥ãçç£ãã財ç©ãæ¶è²»ãããããã®ã«äœ¿ããŸãã家èšã¯ãäŒæ¥ã«æ¯ã¹åŒ±ãç«å Žã«ãããŸãããããã§ã[[w:ã¢ã¡ãªã«åè¡åœ|ã¢ã¡ãªã«åè¡åœ]]倧統é [[w:ãªãã£ãŒãã»ãã¯ãœã³|ãªãã£ãŒãã»ãã¯ãœã³(R. M. Nixon)]]ã¯1969幎ã®ç¹å¥ææžã§æ¶è²»è
ã®4ã€ã®æš©å©ãæå±ããŸããã
* å®å
šãªååãæäŸãããæš©å©
* ååã«é¢ããæ
å ±ãç¥ããããæš©å©
* ååãèªç±ã«éžã¶æš©å©
* æ¶è²»è
ãæèŠãæ¿çã«åæ ãããæš©å©
æ¥æ¬ã«ã¯æ¶è²»è
ã§ãã家èšãä¿è·ããããã«æ¶è²»è
ä¿è·åºæ¬æ³ïŒ1968幎å¶å®ïŒããããŸããããããæ¶è²»è
ä¿è·åºæ¬æ³ã¯è¡šçŸãæœè±¡çã§ãæ²çœ°æ¢å®ãç¡ãã£ãããä»ã®å
é²åœã«æ¯ã¹ãŠæ¶è²»è
ä¿è·è¡æ¿ã«é
ãããšããŸãããçŸåšã補é ç©è²¬ä»»æ³ïŒ1995幎æœè¡ïŒãæ¶è²»è
å¥çŽæ³ïŒ2001幎æœè¡ïŒãªã©ã®ç«æ³ãšãšãã«ãæ¶è²»è
ä¿è·è¡æ¿ãæ¶è²»è
æè²ãéèŠèŠãããŠããŸãã
==== æ¶è²»è
åé¡ ====
é£åã»å»è¬åã®æ¬ é¥ã¯åŸã絶ã¡ãŸããã
==== å®å
šãªåå ====
ååã®å®å
šæ§ãåãããããæ¶è²»è
ã«ç€ºããããæ§ã
ãªåºæºãå®ããããŠããŸãããã ãããããã®åºæºãå€ãã£ãŠãååã販売ã§ããªããªããšããããšã¯ãããŸããã
; [[w:æ¥æ¬ç£æ¥èŠæ Œ|æ¥æ¬ç£æ¥èŠæ Œ]]:ç£æ¥æšæºåæ³ïŒ1949幎å¶å®ïŒã«åºã¥ãé±å·¥æ¥è£œåã®åºæºãåæ ŒãããšJISããŒã¯ãã€ããããããã€ãŠã¯æ¥æ¬å·¥æ¥èŠæ Œãšç§°ãæ ¹æ æ³ãå·¥æ¥æšæºåæ³ãšç§°ããŠããã<ref name=sangyou1>{{cite web
| url = https://www.meti.go.jp/report/whitepaper/data/pdf/20171011001_1.pdf
| title = ä»åŸã®åºæºèªèšŒã®åšãæ¹
| publisher = [[çµæžç£æ¥ç]]
| accessdate = 2021-07-30
| date = 2017/10/11
}}</ref>ãæšæºå察象ã«ãããŒã¿ããµãŒãã¹çããè¿œå ããããšãšãªã£ã<ref name=sangyou2>{{cite web
| url = http://www.meti.go.jp/policy/economy/hyojun/JISho.html
| title = JISæ³æ¹æ£ïŒç£æ¥æšæºåæ³ïŒ
| publisher = çµæžç£æ¥ç
| accessdate = 2021-07-30
| archiveurl = https://web.archive.org/web/20181202102836/http://www.meti.go.jp/policy/economy/hyojun/JISho.html
| archivedate = 2018-12-02
}}</ref>ã
; [[w:æ¥æ¬èŸ²æèŠæ Œ|æ¥æ¬èŸ²æèŠæ Œ]]:蟲æç©è³ã®èŠæ Œååã³å質衚瀺ã®é©æ£åã«é¢ããæ³åŸïŒ1950幎å
¬åžïŒã«åºã¥ã建æãå å·¥é£æåã®åºæºãåæ ŒãããšJASããŒã¯ãã€ããããã
; [[w:ã°ãããã¶ã€ã³è³|ã°ãããã¶ã€ã³è³]]:財å£æ³äººæ¥æ¬ç£æ¥ãã¶ã€ã³æ¯èäŒãäž»å¬ãããåè³ãããšGããŒã¯ãã€ããããã
; ããã¡ãã®å®å
šåºæº
; ç©å
·å®å
šåºæºïŒSTåºæºïŒ: 瀟å£æ³äººæ¥æ¬ç©å
·åäŒã®ããã¡ãã®å®å
šåºæºïŒ1971幎å¶å®ïŒã«åºã¥ãç©å
·ã®åºæºãåæ ŒãããšSTïŒå®å
šç©å
·ïŒããŒã¯ãã€ããããã
; ãŠãŒã«ããŒã¯:ã¶ã»ãŠãŒã«ããŒã¯ã»ã«ã³ãããŒïŒåœéçŸæ¯äºåå±ïŒãå®ããåœéåºæºã
==== æ¶è²»è
ä¿è·è¡æ¿ ====
=== äŒæ¥ ===
äŒæ¥ã¯çç£ãããäž»äœã§ãã家èšããæäŸãããåŽåãè³æ¬ã掻çšããŠã財ç©ã®çç£æ段ãçµã¿ç«ãŠãçç£ããŸããçç£ãã財ç©ã¯è²©å£²ããå©æœ€ãåŸãŸããäŒæ¥ã¯å©æœ€è¿œæ±ã®åºŠåãã®åŒ·ãããããã¯å
Œ
±æ§ã®é«ãããå
¬äŒæ¥ã»å
¬ç§ååäŒæ¥ã»ç§äŒæ¥ã®ïŒã€ã«åããããŠããŸãã
*å
¬äŒæ¥ïŒæ¿åºãåºè³ã»è²žãä»ããããŠèšç«ããæ³äººã
**æ¥æ¬éµæ¿å
¬ç€Ÿãæéãåœç«å°å·å±ã
**å
¬å£ïŒæ¿åºãå°æ¹èªæ²»äœãªã©ãåºè³ããŠèšç«ãã[[w:ç¹æ®æ³äºº|ç¹æ®æ³äºº]]圢æ
ã®å
Œ
±æ³äººãæ¥æ¬éè·¯å
¬å£ãéŠéœé«ééè·¯å
¬å£ãéªç¥é«ééè·¯å
¬å£ãæ¬å·ååœé£çµ¡æ©å
¬å£ãªã©ã§ãå€ãã¯å»æ¢ã»æ°å¶åãé²ããããŠããŸãã
**å°æ¹å
¬å¶äŒæ¥ïŒå°æ¹å
Œ
±å£äœãçµå¶ããäŒæ¥ãäžäžæ°Žéãé»æ°ã亀éãã¬ã¹ã®åäºæ¥ãå
Ǎ
é¢ãªã©ã
*å
¬ç§ååäŒæ¥
**æ ªåŒäŒç€Ÿåœ¢æ
ïŒæ¥æ¬ãã°ãç£æ¥æ ªåŒäŒç€Ÿ(JT)ãæ¥æ¬é»ä¿¡é»è©±æ ªåŒäŒç€Ÿ(NTT)ãåœéé»ä¿¡é»è©±æ ªåŒäŒç€Ÿ(KDDãçŸKDDI)ãªã©
**ç¹æ®æ³äººåœ¢æ
ïŒæ¥æ¬éè¡ãæ¥æ¬èµ€åå瀟ã
*ç§äŒæ¥
**å人äŒæ¥
**äŒç€ŸäŒæ¥
***[[w:æ ªåŒäŒç€Ÿ|æ ªåŒäŒç€Ÿ]]ïŒæé責任瀟å¡ã§ããå€æ°ã®æ ªäž»ã«ãã£ãŠçµç¹
***[[w:ååäŒç€Ÿ|ååäŒç€Ÿ]]ïŒåºè³è
ã¯ç¡é責任瀟å¡ïŒçµå¶è
ïŒã«ãã£ãŠçµç¹
***[[w:åè³äŒç€Ÿ|åè³äŒç€Ÿ]]ïŒåºè³è
ã¯æé責任瀟å¡ãšç¡é責任瀟å¡ïŒçµå¶è
ïŒã«ãã£ãŠçµç¹
***[[w:æéäŒç€Ÿ|æéäŒç€Ÿ]]ïŒïŒïŒäººä»¥äžã®æé責任瀟å¡ã«ãã£ãŠçµç¹
==== æ ªåŒäŒç€Ÿã®ä»çµã¿ ====
æ ªåŒïŒæ ªïŒãçºè¡ããŠè³éãéããäŒæ¥åœ¢æ
ãæ ªåŒäŒç€ŸãšãããŸããæ ªåŒäŒç€Ÿã§ã¯ä»ã®äŒæ¥ãšç°ãªããå¿
ãææïŒææè
ã»æ ªäž»ïŒãšçµå¶ïŒçµå¶è
ïŒãåé¢ãããŠããŸãã
äžçã§æåã®æ ªåŒäŒç€Ÿã¯ã17äžçŽã«ã€ã®ãªã¹ããªã©ã³ãããã©ã³ã¹ã«èšç«ãããæ±ã€ã³ãäŒç€ŸãšèŠãããŠããŸããæ±ã€ã³ãäŒç€Ÿã¯æ±åã¢ãžã¢ãªã©ã®å°åã§å
¥æããéŠèŸæãè¹ã§ãšãŒãããã«éã³å£²ã£ãŠããŸããããã®è¹ã建é ããããã®è³éãå¿
èŠã«ãªã£ããããå©æœ€ãåºè³é¡ã«å¿ããŠåºè³è
ã«åé
ããä»çµã¿ãç·šã¿åºãããããæ¡ä»¶ã«ããè³é調éã«æåããã®ã§ããããå©æœ€ãç¡ããã°åºè³è
ã«ã¯åé
éã©ãããåºè³éãåž°ã£ãŠããŸãããããã以äžã®æ倱ã¯ãããŸããããããæé責任ãšãããåºè³è
ãæé責任瀟å¡ãšãããŸãã
çŸä»£ã§ã¯æ ªåŒãã§ããã ãå€ãã®äººã«è³Œå
¥ããŠããããããã»ãšãã©ã®æ ªåŒã®ãããšãã蚌åžäŒç€ŸãéãããŠããŸãã蚌åžäŒç€Ÿã¯é¡§å®¢ïŒæ ªãè²·ã人ïŒã®æ³šæãåãæ ªåŒåžå Žã§è²·ãéããŸããæ ªåŒåžå Žã«ã¯ãããããã®æ ªåŒåžå Žã®äžå Žæ¡ä»¶ãæºããããæ ªåŒãè²·ã£ãŠããããããšæã£ãŠããæ ªåŒäŒç€Ÿãäžå ŽããŠããŸããæè¿ã®æ ªåŒåžå Žã¯ãå¶åºŠå€æŽãã€ã³ã¿ãŒããã蚌åžã®æ®åããå人æè³å®¶ãå¢å ããŠãããæ ªåŒäŒç€ŸåŽãèªç€Ÿã®æ ªåŒã«å¯Ÿããå人æè³å®¶ã®èŠæ¹ãæ°ã«ããããã«ãªã£ãŠããŸãã
==== 倧äŒæ¥ãšäžå°äŒæ¥ ====
å
šåœã«ããã510äžç€ŸããäŒæ¥ã®ãã¡99.4%ãäžå°äŒæ¥ã§ãã[[w:äžå°äŒæ¥åºæ¬æ³]]ã§ã¯äžå°äŒæ¥ã次ã®ããã«å®çŸ©ããŠããŸãã
{| class=wikitable
|+ 倧äŒæ¥ãšäžå°äŒæ¥
|-
! !! è³æ¬é !! åŸæ¥å¡æ°
|-
! 補é æ¥
| 3ååä»¥äž || 300人以äž
|-
! åžå£²æ¥
| 1ååä»¥äž || 100人以äž
|-
! å°å£²æ¥
| 5000äžåä»¥äž || 50人以äž
|-
! ãµãŒãã¹æ¥
| 5000äžåä»¥äž || 100人以äž
|}
ãªãã補é æ¥ã»åžå£²æ¥ã¯20人以äžãå°å£²æ¥ã»ãµãŒãã¹æ¥ã§ã¯ã5人以äžã®äŒæ¥ãå°èŠæš¡äŒæ¥è
ãšå®çŸ©ããŠããŸããäžå°äŒæ¥ã¯äžè«ãã茞åºïŒç¹ç¶ã»é貚ã»ç²Ÿå¯æ©æ¢° çïŒãå°å£²ããããäŒæ¥ãå€ããçŸä»£çµæžã«ã¯æ¬ ãããªãååšãšãªã£ãŠããŸãããããã倧äŒæ¥ãšã®éã§æåŸã»çç£æ§ã»è³éé¢ã§ã®æ Œå·®ã倧ãããæ¥æ¬äŒæ¥ã«ãããäºéæ§é ãšããŠåé¡ã«ãªã£ãŠããŸãã
:â» æ¥æ¬ã§ã¯ãäŒæ¥åŸ©èã®åã®ããšãå°æ³å
é£ããïŒåæ ªåŒäŒç€ŸãæéäŒç€Ÿã®å»æ¢ã決ãŸã£ããæéäŒç€Ÿã¯ååšããŠãæéäŒç€Ÿã¯ååœãšãã瀟ã®æ¹å€ã¯èªå·±è³éã«åºãããã®ãšããïŒåæ ªåŒäŒç€Ÿã¯ãæ ªåŒãïŒïŒïŒïŒäžè³æ¬ããïŒåã«æ¹å€ãããã
==== çŸä»£ã®äŒæ¥ ====
è¿å¹Žã®äŒæ¥ã®å䜵ãšè²·å(M&AãMergers and Acquisitions)ã¯ãäžéšéã®å°éæ§ãé«ããããä»éšéã売ã£ãããäžåŸæåéãè²·ãå
¥ãããªã©ã©ã¡ãã®äŒæ¥ãåŸãããããšãå€ããªã£ãŠããŸãã2005幎ã«ã¯æ ªåŒäŒç€Ÿã©ã€ããã¢ã«ããæ ªåŒäŒç€Ÿãããã³æŸéã®å䜵ãšè²·åã泚ç®ãéããŸããã
==== äŒæ¥ã®ç€ŸäŒç責任 ====
ç¹ã«å€§äŒæ¥ã«ã¯ç€ŸäŒç責任(Corporate Social Responsibility)ããããšããèãæ¹ã®ããšãå©æœ€ãè¿œæ±ããã«ç€ŸäŒç掻åãè¡ãããšãæ±ããããŠããŸããã¢ã¡ãªã«åè¡åœã§ã¯äŒæ¥ã®ç€ŸäŒçè²¢ç®ïŒãã£ããœããŒ(philanthropy)ïŒã®äžç°ãšããŠèžè¡ã»æå掻åãæ¯æŽããåãçµã¿ïŒã¡ã»ã(mecenat)ïŒãäžè¬åããŠããŸãã
=== æ¿åº ===
æ¿åºã¯çµæžæŽ»åã調æŽããäž»äœã§ãã家èšãšäŒæ¥ããç§çšã城åããæè²ã»ç€ŸäŒä¿éãªã©ã®å
Œ
±ãµãŒãã¹ã瀟äŒå
šäœã«æäŸããŸãããŸããç§çšã®åŸŽåã«ããæåŸã®ååé
ãè¡ããŸãã
[[Category:çµæžåŠ|*]] | null | 2022-09-04T02:17:46Z | [
"ãã³ãã¬ãŒã:Cite web"
] | https://ja.wikibooks.org/wiki/%E7%B5%8C%E6%B8%88%E5%AD%A6_%E7%8F%BE%E4%BB%A3%E7%B5%8C%E6%B8%88%E3%81%AE%E4%BB%95%E7%B5%84%E3%81%BF_%E7%B5%8C%E6%B8%88%E4%B8%BB%E4%BD%93%E3%81%A8%E3%81%9D%E3%81%AE%E6%B4%BB%E5%8B%95 |
1,579 | éåååŠ/è§éåéã®åæ | ãã®ç« ã§ã¯äºã€ã®è§éåéã®åæãããªãã¡äºã€ã®è§éåéã®è¶³ãç®ãèããã
ããé»åã¹ãã³ s = 1 / 2 {\displaystyle s=1/2} ããã£ããšãã«ã ãã®zæå㯠s z = â 1 / 2 , 1 / 2 {\displaystyle s_{z}=-1/2,1/2} ããšãã
ããŸé»åã¹ãã³ s 1 = s 2 = 1 / 2 {\displaystyle s_{1}=s_{2}=1/2} ããã£ããšãã«ã ãããã®åæã¹ãã³ s {\displaystyle s} ãèããã
ãŸããåæã¹ãã³ã®zæåãæ±ãããš
ã®4éãã®çµã¿åãããèããããã
ãã®çµã¿åããã§ã® s {\displaystyle s} ã®åãæ¹ã¯
ã®2éãã®æ¹æ³ããããŸãã ãããã¹ãã³ãåæããçµæã§ãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ãã®ç« ã§ã¯äºã€ã®è§éåéã®åæãããªãã¡äºã€ã®è§éåéã®è¶³ãç®ãèããã",
"title": "è§éåéã®åæ"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ããé»åã¹ãã³ s = 1 / 2 {\\displaystyle s=1/2} ããã£ããšãã«ã ãã®zæå㯠s z = â 1 / 2 , 1 / 2 {\\displaystyle s_{z}=-1/2,1/2} ããšãã",
"title": "è§éåéã®åæ"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ããŸé»åã¹ãã³ s 1 = s 2 = 1 / 2 {\\displaystyle s_{1}=s_{2}=1/2} ããã£ããšãã«ã ãããã®åæã¹ãã³ s {\\displaystyle s} ãèããã",
"title": "è§éåéã®åæ"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ãŸããåæã¹ãã³ã®zæåãæ±ãããš",
"title": "è§éåéã®åæ"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ã®4éãã®çµã¿åãããèããããã",
"title": "è§éåéã®åæ"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ãã®çµã¿åããã§ã® s {\\displaystyle s} ã®åãæ¹ã¯",
"title": "è§éåéã®åæ"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ã®2éãã®æ¹æ³ããããŸãã ãããã¹ãã³ãåæããçµæã§ãã",
"title": "è§éåéã®åæ"
}
] | null | == è§éåéã®åæ ==
ãã®ç« ã§ã¯äºã€ã®è§éåéã®åæãããªãã¡äºã€ã®è§éåéã®è¶³ãç®ãèããã
=== ã¹ãã³1/2ã®åæ ===
ããé»åã¹ãã³ <math>s=1/2</math> ããã£ããšãã«ã
ãã®zæå㯠<math>s_z=-1/2, 1/2</math> ããšãã
ããŸé»åã¹ãã³ <math>s_1=s_2=1/2</math> ããã£ããšãã«ã
ãããã®åæã¹ãã³ <math>s</math> ãèããã
ãŸããåæã¹ãã³ã®zæåãæ±ãããš
:<math>s_z=s_{1z}+s_{2z}=-1,0,0,1</math>
ã®4éãã®çµã¿åãããèããããã
ãã®çµã¿åããã§ã®<math>s</math>ã®åãæ¹ã¯
:<math>s=1, s_z=-1,0,1</math>
:<math>s=0, s_z=0</math>
ã®2éãã®æ¹æ³ããããŸãã
ãããã¹ãã³ãåæããçµæã§ãã
{{DEFAULTSORT:ãããããããã ãããããšããããã®ãããã}}
[[Category:éåååŠ|ãããããšããããã®ãããã]] | null | 2022-12-01T04:08:59Z | [] | https://ja.wikibooks.org/wiki/%E9%87%8F%E5%AD%90%E5%8A%9B%E5%AD%A6/%E8%A7%92%E9%81%8B%E5%8B%95%E9%87%8F%E3%81%AE%E5%90%88%E6%88%90 |
1,594 | ãšã¹ãã©ã³ã | ç®æ¬¡ ã¯ããã« æåãšçºé³ å
¥éç·š äŒè©±ç·š èªè§£ç·š ææ³ç·š | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ç®æ¬¡ ã¯ããã« æåãšçºé³ å
¥éç·š äŒè©±ç·š èªè§£ç·š ææ³ç·š",
"title": "ãã®ä»"
}
] | null | <h1 style="color:green;text-align:center">ãšã¹ãã©ã³ã</h1>
[[Image:Flag of Esperanto.svg|300px|center|ãšã¹ãã©ã³ãã®æ]]
<div style="text-align: center;">
[[ãšã¹ãã©ã³ã/ç®æ¬¡|ç®æ¬¡]]
[[ãšã¹ãã©ã³ã/ã¯ããã«|ã¯ããã«]]
[[ãšã¹ãã©ã³ã/æåãšçºé³|æåãšçºé³]]
[[ãšã¹ãã©ã³ã/å
¥é|å
¥éç·š]]
[[ãšã¹ãã©ã³ã/äŒè©±|äŒè©±ç·š]]
[[ãšã¹ãã©ã³ã/èªè§£|èªè§£ç·š]]
[[ãšã¹ãã©ã³ã/ææ³|ææ³ç·š]]
</div>
==ãã®ä»==
*[[ãšã¹ãã©ã³ã/åèªåž³|åèªåž³]]: BRO3ãŸã§ã®éèŠåèªãåé²
*[[Wikijunior:ãšã¹ãã©ã³ãããã]]
{{wikipedia}}
{{NDC|899.1|ãããžãããš}}
[[ã«ããŽãª:人工èšèª|ãããžãããš]]
[[Category:ãšã¹ãã©ã³ã|*]] | 2005-01-30T06:34:20Z | 2023-09-25T05:40:52Z | [
"ãã³ãã¬ãŒã:Wikipedia",
"ãã³ãã¬ãŒã:NDC"
] | https://ja.wikibooks.org/wiki/%E3%82%A8%E3%82%B9%E3%83%9A%E3%83%A9%E3%83%B3%E3%83%88 |
1,598 | ãšã¹ãã©ã³ã/å
¥é | ãšã¹ãã©ã³ãå
¥éã®åºæ¬ã¬ãã¹ã³ã§ãããŸã äœæäžã§ãã
ãšã¹ãã©ã³ãå
¥é 第1課
ãšã¹ãã©ã³ãå
¥é 第2課
ãšã¹ãã©ã³ãå
¥é 第3課
ãšã¹ãã©ã³ãå
¥é 第4課 | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ãšã¹ãã©ã³ãå
¥éã®åºæ¬ã¬ãã¹ã³ã§ãããŸã äœæäžã§ãã",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ãšã¹ãã©ã³ãå
¥é 第1課",
"title": "ç®æ¬¡"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ãšã¹ãã©ã³ãå
¥é 第2課",
"title": "ç®æ¬¡"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ãšã¹ãã©ã³ãå
¥é 第3課",
"title": "ç®æ¬¡"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ãšã¹ãã©ã³ãå
¥é 第4課",
"title": "ç®æ¬¡"
}
] | ãšã¹ãã©ã³ãå
¥éã®åºæ¬ã¬ãã¹ã³ã§ãããŸã äœæäžã§ãã | ãšã¹ãã©ã³ãå
¥éã®åºæ¬ã¬ãã¹ã³ã§ãããŸã äœæäžã§ãã
==ç®æ¬¡==
[[ãšã¹ãã©ã³ã/å
¥é/第1課|ãšã¹ãã©ã³ãå
¥éã第1課]]
[[ãšã¹ãã©ã³ã/å
¥é/第2課|ãšã¹ãã©ã³ãå
¥éã第2課]]
[[ãšã¹ãã©ã³ã/å
¥é/第3課|ãšã¹ãã©ã³ãå
¥éã第3課]]
[[ãšã¹ãã©ã³ã/å
¥é/第4課|ãšã¹ãã©ã³ãå
¥éã第4課]]
[[Category:ãšã¹ãã©ã³ã|å
¥é]] | null | 2008-01-15T01:56:11Z | [] | https://ja.wikibooks.org/wiki/%E3%82%A8%E3%82%B9%E3%83%9A%E3%83%A9%E3%83%B3%E3%83%88/%E5%85%A5%E9%96%80 |
1,600 | ãšã¹ãã©ã³ã/ææ³ | ããã§ã¯ãšã¹ãã©ã³ãã®ææ³äºé
ãæ±ãã
æå
å è©
åè©
åè©
圢容è©ã»å¯è©
åè©è»¢æ
çåè©ã»çžé¢è©
æ°è©
æ¥èŸã»æ¥ç¶è©ã»åçœ®è© | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ããã§ã¯ãšã¹ãã©ã³ãã®ææ³äºé
ãæ±ãã",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "æå",
"title": "ç®æ¬¡"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "å è©",
"title": "ç®æ¬¡"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "åè©",
"title": "ç®æ¬¡"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "åè©",
"title": "ç®æ¬¡"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "圢容è©ã»å¯è©",
"title": "ç®æ¬¡"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "åè©è»¢æ",
"title": "ç®æ¬¡"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "çåè©ã»çžé¢è©",
"title": "ç®æ¬¡"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "æ°è©",
"title": "ç®æ¬¡"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "æ¥èŸã»æ¥ç¶è©ã»å眮è©",
"title": "ç®æ¬¡"
}
] | ããã§ã¯ãšã¹ãã©ã³ãã®ææ³äºé
ãæ±ãã | ããã§ã¯ãšã¹ãã©ã³ãã®ææ³äºé
ãæ±ãã
==ç®æ¬¡==
æå
#[[ãšã¹ãã©ã³ã/ææ³/æå|æå]]
å è©
#[[ãšã¹ãã©ã³ã/ææ³/å è©|å è©]]
åè©
#[[ãšã¹ãã©ã³ã/ææ³/åè©|åè©]]
#[[ãšã¹ãã©ã³ã/ææ³/çåæã»åŠå®æ|çåæã»åŠå®æ]]
#[[ãšã¹ãã©ã³ã/ææ³/åœä»€æ|åœä»€æ]]
#[[ãšã¹ãã©ã³ã/ææ³/æå¶|æå¶]]
#[[ãšã¹ãã©ã³ã/ææ³/ä»®å®æ³|ä»®å®æ³]]
#[[ãšã¹ãã©ã³ã/ææ³/åè©|åè©]]
#[[ãšã¹ãã©ã³ã/ææ³/話æ³|話æ³]]
#[[ãšã¹ãã©ã³ã/ææ³/è€ååè©|è€ååè©]]
åè©
#[[ãšã¹ãã©ã³ã/ææ³/åè©|åè©]]
#[[ãšã¹ãã©ã³ã/ææ³/代åè©|代åè©]]
圢容è©ã»å¯è©
#[[ãšã¹ãã©ã³ã/ææ³/圢容è©|圢容è©]]
#[[ãšã¹ãã©ã³ã/ææ³/å¯è©|å¯è©]]
#[[ãšã¹ãã©ã³ã/ææ³/æ¯èŒ|æ¯èŒ]]
åè©è»¢æ
#[[ãšã¹ãã©ã³ã/ææ³/åè©è»¢æ|åè©è»¢æ]]
çåè©ã»çžé¢è©
#[[ãšã¹ãã©ã³ã/ææ³/çåè©|çåè©]]
#[[ãšã¹ãã©ã³ã/ææ³/é¢ä¿è©|é¢ä¿è©]]
#[[ãšã¹ãã©ã³ã/ææ³/çžé¢è©|çžé¢è©]]
æ°è©
#[[ãšã¹ãã©ã³ã/ææ³/æ°è©ã»åºæ°è©|æ°è©ã»åºæ°è©]]
æ¥èŸã»æ¥ç¶è©ã»å眮è©
#[[ãšã¹ãã©ã³ã/ææ³/æ¥é èŸ|æ¥é èŸ]]
#[[ãšã¹ãã©ã³ã/ææ³/æ¥å°ŸèŸ|æ¥å°ŸèŸ]]
#[[ãšã¹ãã©ã³ã/ææ³/æ¥ç¶è©|æ¥ç¶è©]]
#[[ãšã¹ãã©ã³ã/ææ³/å眮è©|å眮è©]]
[[ã«ããŽãª:ãšã¹ãã©ã³ãææ³|ææ³]]
[[Category:ææ³|ãããžãããš]] | null | 2022-12-02T05:34:23Z | [] | https://ja.wikibooks.org/wiki/%E3%82%A8%E3%82%B9%E3%83%9A%E3%83%A9%E3%83%B3%E3%83%88/%E6%96%87%E6%B3%95 |
1,605 | éåååŠ/æéã«äŸåããªãæåè« | çŸå®çãªç³»ã§ã¯æ³¢åæ¹çšåŒã®è§£ãã«ãããªããšãŸãäŸãããªããããªãã äœããã®æ¹æ³ã§è¿äŒŒçã«è§£ãäºãå¿
èŠãšãªã£ãŠããŸãã ãã®æ¹æ³ãæåè«ã§ãã
æ£ç¢ºã«è§£ããç³»ã®ããã«ããã¢ã³ãå°ãã ããºã©ãã°ã ãã®åºæé¢æ°ãšåºæå€ãå°ãã ãå€åããã¯ãã§ãã ãã®ãããè¿äŒŒçã«æ±ãããšããã®ãç®çã«ãªããŸãã
æ±ãããç³»ã®ããã«ããã¢ã³ H ^ {\displaystyle {\hat {H}}} ãã æ£ç¢ºã«è§£ã®æ±ãŸãããã«ããã¢ã³ H ^ 0 {\displaystyle {\hat {H}}_{0}} ãšã 埮å°ãªãºã¬ãè¡šãããã«ããã¢ã³ H ^ â² {\displaystyle {\hat {H}}'} ã®åã§è¡šãããå ŽåãèããŸãã
( λ {\displaystyle \lambda } ã¯åŸ®å°éãè¡šãä¿æ°ã æçµç㫠λ {\displaystyle \lambda } ã®ããã§å±éããã)
åœç¶ããã«ããã¢ã³ H ^ 0 {\displaystyle {\hat {H}}_{0}} ã¯æ£ç¢ºã«ããšãŸãç©ãšããã®ã§ã ãã®æ³¢åæ¹çšåŒã¯ä»¥äžã®ããã«ãšããŸãã
åœç¶
ãšãªããŸãã
ãããŠæ±ãããç³»ã®ããã«ããã¢ã³ H ^ {\displaystyle {\hat {H}}} ã« é¢ããæ³¢åæ¹çšåŒã以äžã®ããã«ãšããŸãã
ããã«æåè«ã§ã¯ãã®æ¹çšåŒã®åºæå€ãšåºæé¢æ°ããããã H ^ 0 {\displaystyle {\hat {H}}_{0}} ã® å Žåããå°ãã ãããããšèããã®ã§ã 以äžã®ããã«ãšãäºãã§ããŸãã
äžã®ããã«å€æ°ãåã£ãå Žåã«ãç³»ã«çž®éãç¡ããã°ã åºæå€ã¯ã
åºæç¶æ
ã¯ã
ãšé 次埮å°é
ãæ±ããŠããäºãã§ããŸãã
çž®éãååšããå Žåã¯ã W 0 {\displaystyle W_{0}} ã«ã€ããŠè€æ°ã®ç¶æ
ãååšããŸãã ã§ãããNéã®çž®éãããŠããå Žåã | Ï 0 â© {\displaystyle \left|\psi _{0}\right\rangle } ã¯
ãšããããããã®ç¶æ
ã®éãåããã§è¡šçŸãããŸãã ( | n i â© {\displaystyle \left|n_{i}\right\rangle } ã¯åºæç¶æ
ã a n i {\displaystyle a_{n_{i}}} ã¯ããããã®åºæç¶æ
ã«å¯Ÿå¿ããé©åœãªä¿æ°)
ãããèæ
®ããŠè§£ããŠãããšæåã®äžæ¬¡ã®åºæå€ W 1 {\displaystyle W_{1}} ã¯
ãšããæåã®ããã«ããã¢ã³ã(æåã®ãŒã次ã®åºæç¶æ
ã§)è¡å衚瀺ããå Žåã®åºæå€æ¹çšåŒã§åŸãããŸãã
ããã«ãã®åºæå€æ¹çšåŒãã a n i {\displaystyle a_{n_{i}}} ãæ±ãŸãã ããã§å§ã㊠| Ï 0 â© {\displaystyle \left|\psi _{0}\right\rangle } ãåŸãããäºãããããŸãã
ãããŠæåã®äžæ¬¡ã®åºæç¶æ
ã¯
ãšããŠ
ãšæ±ãŸããŸãã
ãã㧠H 0 {\displaystyle H_{0}} ã¯æåãåãã(å°ãã ããºã©ããã)åã®ããã«ããã¢ã³ã§ã 察å¿ããæ³¢åæ¹çšåŒãæ£ç¢ºã«è§£ããç©ã§ãã äžæ¹ H â² {\displaystyle H'} ã¯åããæå(ãºã¬)ãè¡šãé
ã§ãã
ãããŠãã®æåãåããããã«ããã¢ã³ H {\displaystyle H} ã«ããæ³¢åæ¹çšåŒ
ã¯æ£ç¢ºã«ã¯è§£ããªãã¯ãã§ãã
å
ã® H , H â² , H 0 , Ï , E {\displaystyle H,H',H_{0},\psi ,E} ã¯ãããã ã¹ã«ã©ãŒã»ãã¯ãã«ã»è¡åã§è¡šããã®ã§ã ãŸãããããç°¡åãªãã¯ãã«ãšè¡åã«çœ®ãæããŠè°è«ããŸãã
次ã®ã·ã¥ã¬ãã£ã³ã¬ãŒã®æ¹çšåŒãšãã®èŠçŽ ã«å¯Ÿå¿ããç©ãèããŸãã
ãã®å Žå H 0 {\displaystyle H_{0}} ããã®ãŸãŸè§£ããšã Ï â = ( 1 0 ) , ( 0 1 ) {\displaystyle {\vec {\psi }}={\begin{pmatrix}1\\0\end{pmatrix}},{\begin{pmatrix}0\\1\end{pmatrix}}} ã§ãåºæå€ããããã E = E 1 , E 2 {\displaystyle E=E_{1},E_{2}} ãšãªãæ£ç¢ºã«è§£ãæ±ãŸããŸãã
ãšã«ããæåãåããããã«ããã¢ã³ã®å Žåã§åºæå€ãæ±ããããšã«ããŸãã
ãŸãåºæå€æ¹çšåŒãèšç®ãããšã
ããã§åºæå€ãå
ã® E 1 {\displaystyle E_{1}} ãã ε ^ {\displaystyle {\hat {\epsilon }}} ã ãããããšãããšã
ã§ããã ε {\displaystyle \epsilon } ã®äžæ¬¡ã®ãªãŒããŒã§åºæå€æ¹çšåŒã解ããšã (çž®éãç¡ãå Žå㯠E 1 â E 2 {\displaystyle E_{1}\neq E_{2}} ãªã®ã§)
ãšãªããŸãã
åæ§ã« E 2 {\displaystyle E_{2}} ããã®ãã㯠ε 2 {\displaystyle \epsilon _{2}} ãšãªããŸãã
ããã«ã E 1 + ε 1 {\displaystyle E_{1}+\epsilon _{1}} ã«å¯Ÿå¿ããåºæãã¯ãã«ã ä»®ã« Ï â = ( 1 ε ~ ) {\displaystyle {\vec {\psi }}={\begin{pmatrix}1\\{\tilde {\epsilon }}\end{pmatrix}}} ãšçœ®ã㊠ã·ã¥ã¬ãã£ã³ã¬ãŒæ¹çšåŒã解ããšã
ãšãªãæ±ããäºãã§ããŸã ( ε {\displaystyle \epsilon } ã®äºä¹ä»¥äžã®é
ã¯ç¡èŠããŠããã®ã«æ³šæ)ã ãã®çµæã¯éåååŠã®çµæãšäžèŽããŸãã
å
ã®ç·åœ¢ä»£æ°ã«ãããå Žåãããã©ã±ãããšæŒç®åãçšããŠèšç®ããŸãã
æåãåããŠããªãããã«ããã¢ã³ H ^ 0 {\displaystyle {\hat {H}}_{0}} ã«é¢ãã ã·ã¥ã¬ãã£ã³ã¬ãŒæ¹çšåŒã¯ãã©ã±ãããšæŒç®åãçšããŠ
ãšè¡šããŸãã
ãŸãæºåãšããŠãã¹ãŠã®åŸ®å°éã«ä¿æ°Î»ããããäºãšããŸãã ããã«ããæçµçã«Î»ã®ããã§å±éããäºãå¯èœã«ãªããŸãã ã€ãŸãããã«ããã¢ã³ã®æåã«ããå¹æãè¡šã H ^ â² {\displaystyle {\hat {H}}'} ã¯åŸ®å°éãªã®ã§ã λãã€ããŠè¡šãããæåãåããããã«ããã¢ã³ã¯ã
ãšè¡šãããŸãã
ãããŠè§£ãã¹ãã·ã¥ã¬ãã£ã³ã¬ãŒã®æ¹çšåŒã¯
ãšãªããŸãã(W: ãšãã«ã®ãŒåºæå€)ã
ããã§åºæç¶æ
ã® | Ï â© {\displaystyle \left|\psi \right\rangle } ãšã åºæå€Wã¯ãæåãåããŠããªãå Žåããå°ããããã¯ããªã®ã§ã ãããã以äžã®ããã«è¡šããŸãã
ããã§åŸ®å°éã¯æåã®ç¡ãå Žåããã®ãºã¬ãè¡šãã®ã§ã埮å°ã§ãªãé
ã¯ãããã
ãšãæåã®ç¡ãå Žåã®åºæå€ãšåºæç¶æ
ã«ãªãäºã«æ³šæã
ãããŠãããã®åºæå€ãšåºæç¶æ
ã解ãã¹ãæ¹çšåŒã«ä»£å
¥ãããšä»¥äžã®ããã«ãªããŸãã
ãããλã®ããã«ã€ããŠå±éãããšä»¥äžã®åæ¹çšåŒãåŸãããŸãã
ãããŠããããæ±ããã埮å°éã®ãªãŒããŒã®æ¹çšåŒãŸã§è§£ãããšã§ è¿äŒŒè§£ãåŸãŸãã
0次ã®æ¹çšåŒã解ããŸãã å
ã0次ã®æ¹çšåŒãå±éãããšã
ãšãªããããã¯æåã®ç¡ãå Žåãšåããªã®ã§åºæå€ãšåºæç¶æ
ã¯ãããã
ãšè¡šããŸãã
1次ã®æ¹çšåŒã解ããŸãã å
ã0次ã®æ¹çšåŒãã
ãšããã®ãå€ããŸãã®ã§ããããå©çšããããã«ã 1次ã®æ¹çšåŒã«å·Šãã âš Ï 0 | {\displaystyle \left\langle \psi _{0}\right|} ããããŠ
ãšåŸ®å°éã®1次ãŸã§ã®åºæå€ãæ±ãŸããŸãã
次ã«åºæç¶æ
ãæ±ããããã«
ãšããçŽæ°ã«çœ®ããŠè§£ãæ±ããŸãã
ãã®ããçŽæ°ã1次ã®æ¹çšåŒã«ä»£å
¥ãããš
ãšãªããŸãã H ^ 0 | k â© = E k | k â© {\displaystyle {\hat {H}}_{0}\left|k\right\rangle =E_{k}\left|k\right\rangle } ã§ããäºã«æ³šæã
ããã«ããã«å·Šãã âš m | {\displaystyle \left\langle m\right|} ããããŸã( m â n {\displaystyle m\neq n} )ã
ããã§ã¯ m â k {\displaystyle m\neq k} ã®å Žåã«ã¯ âš m | k â© = 0 {\displaystyle \left\langle m|k\right\rangle =0} ãšãªãé
ãæ¶ããã®ã§ã巊蟺ã®sumãæ¶ããŠããäºã«æ³šæã ãããŠã
ãšããçµæãåŸãããç·åœ¢ä»£æ°ã®å ŽåãšåãçµæãšãªããŸãã ãããå
ã®åŒã«ä»£å
¥ããŠåºæç¶æ
ãæžããš
ãšãªããŸãã
| [
{
"paragraph_id": 0,
"tag": "p",
"text": "çŸå®çãªç³»ã§ã¯æ³¢åæ¹çšåŒã®è§£ãã«ãããªããšãŸãäŸãããªããããªãã äœããã®æ¹æ³ã§è¿äŒŒçã«è§£ãäºãå¿
èŠãšãªã£ãŠããŸãã ãã®æ¹æ³ãæåè«ã§ãã",
"title": "æåè«ã®æŠèŠ"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "æ£ç¢ºã«è§£ããç³»ã®ããã«ããã¢ã³ãå°ãã ããºã©ãã°ã ãã®åºæé¢æ°ãšåºæå€ãå°ãã ãå€åããã¯ãã§ãã ãã®ãããè¿äŒŒçã«æ±ãããšããã®ãç®çã«ãªããŸãã",
"title": "æåè«ã®æŠèŠ"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "æ±ãããç³»ã®ããã«ããã¢ã³ H ^ {\\displaystyle {\\hat {H}}} ãã æ£ç¢ºã«è§£ã®æ±ãŸãããã«ããã¢ã³ H ^ 0 {\\displaystyle {\\hat {H}}_{0}} ãšã 埮å°ãªãºã¬ãè¡šãããã«ããã¢ã³ H ^ â² {\\displaystyle {\\hat {H}}'} ã®åã§è¡šãããå ŽåãèããŸãã",
"title": "æåè«ã®æŠèŠ"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "( λ {\\displaystyle \\lambda } ã¯åŸ®å°éãè¡šãä¿æ°ã æçµç㫠λ {\\displaystyle \\lambda } ã®ããã§å±éããã)",
"title": "æåè«ã®æŠèŠ"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "åœç¶ããã«ããã¢ã³ H ^ 0 {\\displaystyle {\\hat {H}}_{0}} ã¯æ£ç¢ºã«ããšãŸãç©ãšããã®ã§ã ãã®æ³¢åæ¹çšåŒã¯ä»¥äžã®ããã«ãšããŸãã",
"title": "æåè«ã®æŠèŠ"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "åœç¶",
"title": "æåè«ã®æŠèŠ"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ãšãªããŸãã",
"title": "æåè«ã®æŠèŠ"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ãããŠæ±ãããç³»ã®ããã«ããã¢ã³ H ^ {\\displaystyle {\\hat {H}}} ã« é¢ããæ³¢åæ¹çšåŒã以äžã®ããã«ãšããŸãã",
"title": "æåè«ã®æŠèŠ"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "ããã«æåè«ã§ã¯ãã®æ¹çšåŒã®åºæå€ãšåºæé¢æ°ããããã H ^ 0 {\\displaystyle {\\hat {H}}_{0}} ã® å Žåããå°ãã ãããããšèããã®ã§ã 以äžã®ããã«ãšãäºãã§ããŸãã",
"title": "æåè«ã®æŠèŠ"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "äžã®ããã«å€æ°ãåã£ãå Žåã«ãç³»ã«çž®éãç¡ããã°ã åºæå€ã¯ã",
"title": "æåè«ã®æŠèŠ"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "åºæç¶æ
ã¯ã",
"title": "æåè«ã®æŠèŠ"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "ãšé 次埮å°é
ãæ±ããŠããäºãã§ããŸãã",
"title": "æåè«ã®æŠèŠ"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "çž®éãååšããå Žåã¯ã W 0 {\\displaystyle W_{0}} ã«ã€ããŠè€æ°ã®ç¶æ
ãååšããŸãã ã§ãããNéã®çž®éãããŠããå Žåã | Ï 0 â© {\\displaystyle \\left|\\psi _{0}\\right\\rangle } ã¯",
"title": "æåè«ã®æŠèŠ"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "ãšããããããã®ç¶æ
ã®éãåããã§è¡šçŸãããŸãã ( | n i â© {\\displaystyle \\left|n_{i}\\right\\rangle } ã¯åºæç¶æ
ã a n i {\\displaystyle a_{n_{i}}} ã¯ããããã®åºæç¶æ
ã«å¯Ÿå¿ããé©åœãªä¿æ°)",
"title": "æåè«ã®æŠèŠ"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "ãããèæ
®ããŠè§£ããŠãããšæåã®äžæ¬¡ã®åºæå€ W 1 {\\displaystyle W_{1}} ã¯",
"title": "æåè«ã®æŠèŠ"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "ãšããæåã®ããã«ããã¢ã³ã(æåã®ãŒã次ã®åºæç¶æ
ã§)è¡å衚瀺ããå Žåã®åºæå€æ¹çšåŒã§åŸãããŸãã",
"title": "æåè«ã®æŠèŠ"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "ããã«ãã®åºæå€æ¹çšåŒãã a n i {\\displaystyle a_{n_{i}}} ãæ±ãŸãã ããã§å§ã㊠| Ï 0 â© {\\displaystyle \\left|\\psi _{0}\\right\\rangle } ãåŸãããäºãããããŸãã",
"title": "æåè«ã®æŠèŠ"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "ãããŠæåã®äžæ¬¡ã®åºæç¶æ
ã¯",
"title": "æåè«ã®æŠèŠ"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "ãšããŠ",
"title": "æåè«ã®æŠèŠ"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "ãšæ±ãŸããŸãã",
"title": "æåè«ã®æŠèŠ"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "ãã㧠H 0 {\\displaystyle H_{0}} ã¯æåãåãã(å°ãã ããºã©ããã)åã®ããã«ããã¢ã³ã§ã 察å¿ããæ³¢åæ¹çšåŒãæ£ç¢ºã«è§£ããç©ã§ãã äžæ¹ H â² {\\displaystyle H'} ã¯åããæå(ãºã¬)ãè¡šãé
ã§ãã",
"title": "æéã«äŸåããªãæåè«"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "ãããŠãã®æåãåããããã«ããã¢ã³ H {\\displaystyle H} ã«ããæ³¢åæ¹çšåŒ",
"title": "æéã«äŸåããªãæåè«"
},
{
"paragraph_id": 22,
"tag": "p",
"text": "ã¯æ£ç¢ºã«ã¯è§£ããªãã¯ãã§ãã",
"title": "æéã«äŸåããªãæåè«"
},
{
"paragraph_id": 23,
"tag": "p",
"text": "å
ã® H , H â² , H 0 , Ï , E {\\displaystyle H,H',H_{0},\\psi ,E} ã¯ãããã ã¹ã«ã©ãŒã»ãã¯ãã«ã»è¡åã§è¡šããã®ã§ã ãŸãããããç°¡åãªãã¯ãã«ãšè¡åã«çœ®ãæããŠè°è«ããŸãã",
"title": "æéã«äŸåããªãæåè«"
},
{
"paragraph_id": 24,
"tag": "p",
"text": "次ã®ã·ã¥ã¬ãã£ã³ã¬ãŒã®æ¹çšåŒãšãã®èŠçŽ ã«å¯Ÿå¿ããç©ãèããŸãã",
"title": "æéã«äŸåããªãæåè«"
},
{
"paragraph_id": 25,
"tag": "p",
"text": "ãã®å Žå H 0 {\\displaystyle H_{0}} ããã®ãŸãŸè§£ããšã Ï â = ( 1 0 ) , ( 0 1 ) {\\displaystyle {\\vec {\\psi }}={\\begin{pmatrix}1\\\\0\\end{pmatrix}},{\\begin{pmatrix}0\\\\1\\end{pmatrix}}} ã§ãåºæå€ããããã E = E 1 , E 2 {\\displaystyle E=E_{1},E_{2}} ãšãªãæ£ç¢ºã«è§£ãæ±ãŸããŸãã",
"title": "æéã«äŸåããªãæåè«"
},
{
"paragraph_id": 26,
"tag": "p",
"text": "ãšã«ããæåãåããããã«ããã¢ã³ã®å Žåã§åºæå€ãæ±ããããšã«ããŸãã",
"title": "æéã«äŸåããªãæåè«"
},
{
"paragraph_id": 27,
"tag": "p",
"text": "ãŸãåºæå€æ¹çšåŒãèšç®ãããšã",
"title": "æéã«äŸåããªãæåè«"
},
{
"paragraph_id": 28,
"tag": "p",
"text": "ããã§åºæå€ãå
ã® E 1 {\\displaystyle E_{1}} ãã ε ^ {\\displaystyle {\\hat {\\epsilon }}} ã ãããããšãããšã",
"title": "æéã«äŸåããªãæåè«"
},
{
"paragraph_id": 29,
"tag": "p",
"text": "ã§ããã ε {\\displaystyle \\epsilon } ã®äžæ¬¡ã®ãªãŒããŒã§åºæå€æ¹çšåŒã解ããšã (çž®éãç¡ãå Žå㯠E 1 â E 2 {\\displaystyle E_{1}\\neq E_{2}} ãªã®ã§)",
"title": "æéã«äŸåããªãæåè«"
},
{
"paragraph_id": 30,
"tag": "p",
"text": "ãšãªããŸãã",
"title": "æéã«äŸåããªãæåè«"
},
{
"paragraph_id": 31,
"tag": "p",
"text": "åæ§ã« E 2 {\\displaystyle E_{2}} ããã®ãã㯠ε 2 {\\displaystyle \\epsilon _{2}} ãšãªããŸãã",
"title": "æéã«äŸåããªãæåè«"
},
{
"paragraph_id": 32,
"tag": "p",
"text": "ããã«ã E 1 + ε 1 {\\displaystyle E_{1}+\\epsilon _{1}} ã«å¯Ÿå¿ããåºæãã¯ãã«ã ä»®ã« Ï â = ( 1 ε ~ ) {\\displaystyle {\\vec {\\psi }}={\\begin{pmatrix}1\\\\{\\tilde {\\epsilon }}\\end{pmatrix}}} ãšçœ®ã㊠ã·ã¥ã¬ãã£ã³ã¬ãŒæ¹çšåŒã解ããšã",
"title": "æéã«äŸåããªãæåè«"
},
{
"paragraph_id": 33,
"tag": "p",
"text": "ãšãªãæ±ããäºãã§ããŸã ( ε {\\displaystyle \\epsilon } ã®äºä¹ä»¥äžã®é
ã¯ç¡èŠããŠããã®ã«æ³šæ)ã ãã®çµæã¯éåååŠã®çµæãšäžèŽããŸãã",
"title": "æéã«äŸåããªãæåè«"
},
{
"paragraph_id": 34,
"tag": "p",
"text": "å
ã®ç·åœ¢ä»£æ°ã«ãããå Žåãããã©ã±ãããšæŒç®åãçšããŠèšç®ããŸãã",
"title": "æéã«äŸåããªãæåè«"
},
{
"paragraph_id": 35,
"tag": "p",
"text": "æåãåããŠããªãããã«ããã¢ã³ H ^ 0 {\\displaystyle {\\hat {H}}_{0}} ã«é¢ãã ã·ã¥ã¬ãã£ã³ã¬ãŒæ¹çšåŒã¯ãã©ã±ãããšæŒç®åãçšããŠ",
"title": "æéã«äŸåããªãæåè«"
},
{
"paragraph_id": 36,
"tag": "p",
"text": "ãšè¡šããŸãã",
"title": "æéã«äŸåããªãæåè«"
},
{
"paragraph_id": 37,
"tag": "p",
"text": "ãŸãæºåãšããŠãã¹ãŠã®åŸ®å°éã«ä¿æ°Î»ããããäºãšããŸãã ããã«ããæçµçã«Î»ã®ããã§å±éããäºãå¯èœã«ãªããŸãã ã€ãŸãããã«ããã¢ã³ã®æåã«ããå¹æãè¡šã H ^ â² {\\displaystyle {\\hat {H}}'} ã¯åŸ®å°éãªã®ã§ã λãã€ããŠè¡šãããæåãåããããã«ããã¢ã³ã¯ã",
"title": "æéã«äŸåããªãæåè«"
},
{
"paragraph_id": 38,
"tag": "p",
"text": "ãšè¡šãããŸãã",
"title": "æéã«äŸåããªãæåè«"
},
{
"paragraph_id": 39,
"tag": "p",
"text": "ãããŠè§£ãã¹ãã·ã¥ã¬ãã£ã³ã¬ãŒã®æ¹çšåŒã¯",
"title": "æéã«äŸåããªãæåè«"
},
{
"paragraph_id": 40,
"tag": "p",
"text": "ãšãªããŸãã(W: ãšãã«ã®ãŒåºæå€)ã",
"title": "æéã«äŸåããªãæåè«"
},
{
"paragraph_id": 41,
"tag": "p",
"text": "ããã§åºæç¶æ
ã® | Ï â© {\\displaystyle \\left|\\psi \\right\\rangle } ãšã åºæå€Wã¯ãæåãåããŠããªãå Žåããå°ããããã¯ããªã®ã§ã ãããã以äžã®ããã«è¡šããŸãã",
"title": "æéã«äŸåããªãæåè«"
},
{
"paragraph_id": 42,
"tag": "p",
"text": "ããã§åŸ®å°éã¯æåã®ç¡ãå Žåããã®ãºã¬ãè¡šãã®ã§ã埮å°ã§ãªãé
ã¯ãããã",
"title": "æéã«äŸåããªãæåè«"
},
{
"paragraph_id": 43,
"tag": "p",
"text": "ãšãæåã®ç¡ãå Žåã®åºæå€ãšåºæç¶æ
ã«ãªãäºã«æ³šæã",
"title": "æéã«äŸåããªãæåè«"
},
{
"paragraph_id": 44,
"tag": "p",
"text": "ãããŠãããã®åºæå€ãšåºæç¶æ
ã解ãã¹ãæ¹çšåŒã«ä»£å
¥ãããšä»¥äžã®ããã«ãªããŸãã",
"title": "æéã«äŸåããªãæåè«"
},
{
"paragraph_id": 45,
"tag": "p",
"text": "ãããλã®ããã«ã€ããŠå±éãããšä»¥äžã®åæ¹çšåŒãåŸãããŸãã",
"title": "æéã«äŸåããªãæåè«"
},
{
"paragraph_id": 46,
"tag": "p",
"text": "ãããŠããããæ±ããã埮å°éã®ãªãŒããŒã®æ¹çšåŒãŸã§è§£ãããšã§ è¿äŒŒè§£ãåŸãŸãã",
"title": "æéã«äŸåããªãæåè«"
},
{
"paragraph_id": 47,
"tag": "p",
"text": "0次ã®æ¹çšåŒã解ããŸãã å
ã0次ã®æ¹çšåŒãå±éãããšã",
"title": "æéã«äŸåããªãæåè«"
},
{
"paragraph_id": 48,
"tag": "p",
"text": "ãšãªããããã¯æåã®ç¡ãå Žåãšåããªã®ã§åºæå€ãšåºæç¶æ
ã¯ãããã",
"title": "æéã«äŸåããªãæåè«"
},
{
"paragraph_id": 49,
"tag": "p",
"text": "ãšè¡šããŸãã",
"title": "æéã«äŸåããªãæåè«"
},
{
"paragraph_id": 50,
"tag": "p",
"text": "1次ã®æ¹çšåŒã解ããŸãã å
ã0次ã®æ¹çšåŒãã",
"title": "æéã«äŸåããªãæåè«"
},
{
"paragraph_id": 51,
"tag": "p",
"text": "ãšããã®ãå€ããŸãã®ã§ããããå©çšããããã«ã 1次ã®æ¹çšåŒã«å·Šãã âš Ï 0 | {\\displaystyle \\left\\langle \\psi _{0}\\right|} ããããŠ",
"title": "æéã«äŸåããªãæåè«"
},
{
"paragraph_id": 52,
"tag": "p",
"text": "ãšåŸ®å°éã®1次ãŸã§ã®åºæå€ãæ±ãŸããŸãã",
"title": "æéã«äŸåããªãæåè«"
},
{
"paragraph_id": 53,
"tag": "p",
"text": "次ã«åºæç¶æ
ãæ±ããããã«",
"title": "æéã«äŸåããªãæåè«"
},
{
"paragraph_id": 54,
"tag": "p",
"text": "ãšããçŽæ°ã«çœ®ããŠè§£ãæ±ããŸãã",
"title": "æéã«äŸåããªãæåè«"
},
{
"paragraph_id": 55,
"tag": "p",
"text": "ãã®ããçŽæ°ã1次ã®æ¹çšåŒã«ä»£å
¥ãããš",
"title": "æéã«äŸåããªãæåè«"
},
{
"paragraph_id": 56,
"tag": "p",
"text": "ãšãªããŸãã H ^ 0 | k â© = E k | k â© {\\displaystyle {\\hat {H}}_{0}\\left|k\\right\\rangle =E_{k}\\left|k\\right\\rangle } ã§ããäºã«æ³šæã",
"title": "æéã«äŸåããªãæåè«"
},
{
"paragraph_id": 57,
"tag": "p",
"text": "ããã«ããã«å·Šãã âš m | {\\displaystyle \\left\\langle m\\right|} ããããŸã( m â n {\\displaystyle m\\neq n} )ã",
"title": "æéã«äŸåããªãæåè«"
},
{
"paragraph_id": 58,
"tag": "p",
"text": "ããã§ã¯ m â k {\\displaystyle m\\neq k} ã®å Žåã«ã¯ âš m | k â© = 0 {\\displaystyle \\left\\langle m|k\\right\\rangle =0} ãšãªãé
ãæ¶ããã®ã§ã巊蟺ã®sumãæ¶ããŠããäºã«æ³šæã ãããŠã",
"title": "æéã«äŸåããªãæåè«"
},
{
"paragraph_id": 59,
"tag": "p",
"text": "ãšããçµæãåŸãããç·åœ¢ä»£æ°ã®å ŽåãšåãçµæãšãªããŸãã ãããå
ã®åŒã«ä»£å
¥ããŠåºæç¶æ
ãæžããš",
"title": "æéã«äŸåããªãæåè«"
},
{
"paragraph_id": 60,
"tag": "p",
"text": "ãšãªããŸãã",
"title": "æéã«äŸåããªãæåè«"
},
{
"paragraph_id": 61,
"tag": "p",
"text": "",
"title": "æéã«äŸåããªãæåè«"
}
] | null | ==æåè«ã®æŠèŠ==
çŸå®çãªç³»ã§ã¯æ³¢åæ¹çšåŒã®è§£ãã«ãããªããšãŸãäŸãããªããããªãã
äœããã®æ¹æ³ã§è¿äŒŒçã«è§£ãäºãå¿
èŠãšãªã£ãŠããŸãã
ãã®æ¹æ³ãæåè«ã§ãã
æ£ç¢ºã«è§£ããç³»ã®ããã«ããã¢ã³ãå°ãã ããºã©ãã°ã
ãã®åºæé¢æ°ãšåºæå€ãå°ãã ãå€åããã¯ãã§ãã
ãã®ãããè¿äŒŒçã«æ±ãããšããã®ãç®çã«ãªããŸãã
===䜿ãå€æ°===
æ±ãããç³»ã®ããã«ããã¢ã³<math>\hat H</math>ãã
æ£ç¢ºã«è§£ã®æ±ãŸãããã«ããã¢ã³<math>\hat H_0</math>ãšã
埮å°ãªãºã¬ãè¡šãããã«ããã¢ã³<math>\hat H'</math>ã®åã§è¡šãããå ŽåãèããŸãã
:<math>\hat H = \hat H_0 + \lambda \hat H'</math>
(<math>\lambda</math>ã¯åŸ®å°éãè¡šãä¿æ°ã
æçµçã«<math>\lambda</math>ã®ããã§å±éããã)
åœç¶ããã«ããã¢ã³<math>\hat H_0</math>ã¯æ£ç¢ºã«ããšãŸãç©ãšããã®ã§ã
ãã®æ³¢åæ¹çšåŒã¯ä»¥äžã®ããã«ãšããŸãã
:<math>\hat H_0 \left|\psi_0\right\rangle = W_0 \left|\psi_0\right\rangle</math>
åœç¶
:<math>\left|\psi_0\right\rangle = \left| n \right\rangle</math>
:<math>W_0 = E_n</math>
ãšãªããŸãã
ãããŠæ±ãããç³»ã®ããã«ããã¢ã³<math>\hat H</math>ã«
é¢ããæ³¢åæ¹çšåŒã以äžã®ããã«ãšããŸãã
:<math>\hat H \left|\psi\right\rangle = W \left|\psi\right\rangle</math>
ããã«æåè«ã§ã¯ãã®æ¹çšåŒã®åºæå€ãšåºæé¢æ°ããããã<math>\hat H_0</math>ã®
å Žåããå°ãã ãããããšèããã®ã§ã
以äžã®ããã«ãšãäºãã§ããŸãã
:<math>
\left|\psi\right\rangle
= \left|\psi_0\right\rangle
+ \lambda \left|\psi_1\right\rangle
+ \lambda^2 \left|\psi_2\right\rangle
+ \cdots
</math>
:<math>W = W_0 + \lambda W_1 + \lambda^2 W_2 + \cdots</math>
===çž®éãç¡ãå Žå===
äžã®ããã«å€æ°ãåã£ãå Žåã«ãç³»ã«çž®éãç¡ããã°ã
åºæå€ã¯ã
:<math>W_0 = E_n</math>
:<math>W_s = \left\langle n \right| \hat H' \left| \psi_{s-1} \right\rangle \qquad (s=1,2,\cdots)</math>
:<math>W_1 = \left\langle n \right| \hat H' \left| n \right\rangle</math>
:<math>
W_2
= - \sum_{m \neq n}
\frac{
\left| \left\langle n \right| \hat H' \left| m \right\rangle \right|^2
}{
E_m - E_n
}
</math>
åºæç¶æ
ã¯ã
:<math>\left|\psi_0\right\rangle = \left| n \right\rangle</math>
:<math>
\left|\psi_1\right\rangle
= - \sum_{m \neq n}
\frac{
\left\langle m \right| \hat H' \left| n \right\rangle
}{
E_m - E_n
}
\left| m \right\rangle
</math>
:<math>
\left|\psi_2\right\rangle
= - \frac{
\left\langle m \right| \hat H' \left| n \right\rangle
\left\langle n \right| \hat H' \left| n \right\rangle
}{
( E_m - E_n )^2
}
+ \sum_{k \neq n} \frac{
\left\langle m \right| \hat H' \left| k \right\rangle
\left\langle k \right| \hat H' \left| n \right\rangle
}{
( E_m - E_n )( E_k - E_n )
}
\qquad (m \neq n)
</math>
ãšé 次埮å°é
ãæ±ããŠããäºãã§ããŸãã
===çž®éãããå Žå===
çž®éãååšããå Žåã¯ã<math>W_0</math>ã«ã€ããŠè€æ°ã®ç¶æ
ãååšããŸãã
ã§ãããNéã®çž®éãããŠããå Žåã<math>\left|\psi_0\right\rangle</math>ã¯
:<math>
\left|\psi_0\right\rangle
= a_{n_1}\left|n_1\right\rangle
+ a_{n_2}\left|n_2\right\rangle
+ \cdots
+ a_{n_N}\left|n_N\right\rangle
</math>
ãšããããããã®ç¶æ
ã®éãåããã§è¡šçŸãããŸãã
(<math>\left|n_i\right\rangle</math>ã¯åºæç¶æ
ã
<math>a_{n_i}</math>ã¯ããããã®åºæç¶æ
ã«å¯Ÿå¿ããé©åœãªä¿æ°)
ãããèæ
®ããŠè§£ããŠãããšæåã®äžæ¬¡ã®åºæå€<math>W_1</math>ã¯
:<math>
\begin{pmatrix}
\left\langle n_1 \right| H' \left|n_1\right\rangle & \cdots & \left\langle n_1 \right| H' \left|n_N\right\rangle \\
\vdots & \ddots & \vdots \\
\left\langle n_N \right| H' \left|n_1\right\rangle & \cdots & \left\langle n_N \right| H' \left|n_N\right\rangle
\end{pmatrix}
\begin{pmatrix}
a_{n_1} \\
\vdots \\
a_{n_N}
\end{pmatrix}
= W_1
\begin{pmatrix}
a_{n_1} \\
\vdots \\
a_{n_N}
\end{pmatrix}
</math>
ãšããæåã®ããã«ããã¢ã³ã(æåã®ãŒã次ã®åºæç¶æ
ã§)è¡å衚瀺ããå Žåã®åºæå€æ¹çšåŒã§åŸãããŸãã
ããã«ãã®åºæå€æ¹çšåŒãã<math>a_{n_i}</math>ãæ±ãŸãã
ããã§å§ããŠ<math>\left|\psi_0\right\rangle</math>ãåŸãããäºãããããŸãã
ãããŠæåã®äžæ¬¡ã®åºæç¶æ
ã¯
:<math>
\left|\psi_1\right\rangle
= \sum_{k\neq 1,\cdots,N} a_{n_k} \left| n_k \right\rangle
</math>
ãšããŠ
:<math>
a_{n_k}
= -
\frac{
\left\langle n_k \right| H' \left|n_1\right\rangle a_{n_1}
+ \cdots
+ \left\langle n_k \right| H' \left| n_N \right\rangle a_{n_N}
}{
E_k - W_0
}
</math>
ãšæ±ãŸããŸãã
==æéã«äŸåããªãæåè«==
:<math>H=H_0+H'</math>
ããã§<math>H_0</math>ã¯æåãåãã(å°ãã ããºã©ããã)åã®ããã«ããã¢ã³ã§ã
察å¿ããæ³¢åæ¹çšåŒãæ£ç¢ºã«è§£ããç©ã§ãã
äžæ¹<math>H'</math>ã¯åããæå(ãºã¬)ãè¡šãé
ã§ãã
ãããŠãã®æåãåããããã«ããã¢ã³<math>H</math>ã«ããæ³¢åæ¹çšåŒ
:<math>H\psi=E\psi</math>
ã¯æ£ç¢ºã«ã¯è§£ããªãã¯ãã§ãã
===ç·åœ¢ä»£æ°ã«ãããæåè«===
å
ã®<math>H, H', H_0, \psi, E</math>ã¯ãããã
ã¹ã«ã©ãŒã»ãã¯ãã«ã»è¡åã§è¡šããã®ã§ã
ãŸãããããç°¡åãªãã¯ãã«ãšè¡åã«çœ®ãæããŠè°è«ããŸãã
次ã®ã·ã¥ã¬ãã£ã³ã¬ãŒã®æ¹çšåŒãšãã®èŠçŽ ã«å¯Ÿå¿ããç©ãèããŸãã
:<math>H\vec\psi=E\vec\psi</math>
:<math>
H_0=\begin{pmatrix}E_1&0\\0&E_2\end{pmatrix},
H'=\begin{pmatrix}\epsilon_1&\epsilon^*_3\\\epsilon_3&\epsilon_2\end{pmatrix}
</math>
:<math>
H=H_0+H'=
\begin{pmatrix}
E_1+\epsilon_1 & \epsilon^*_3 \\
\epsilon_3 & E_2+\epsilon^2
\end{pmatrix}
</math>
ãã®å Žå<math>H_0</math>ããã®ãŸãŸè§£ããšã<math>\vec\psi=\begin{pmatrix}1\\0\end{pmatrix},
\begin{pmatrix}0\\1\end{pmatrix}</math>ã§ãåºæå€ããããã
<math>E=E_1, E_2</math>ãšãªãæ£ç¢ºã«è§£ãæ±ãŸããŸãã
ãšã«ããæåãåããããã«ããã¢ã³ã®å Žåã§åºæå€ãæ±ããããšã«ããŸãã
ãŸãåºæå€æ¹çšåŒãèšç®ãããšã
:<math>
\det\begin{pmatrix}
E_1+\epsilon_1-\kappa & \epsilon^*_3 \\
\epsilon_3 & E_2+\epsilon_2-\kappa
\end{pmatrix}
= 0
</math>
:<math>(E_1+\epsilon_1-\kappa)(E_2+\epsilon_2-\kappa)-|\epsilon_3|^2=0</math>
ããã§åºæå€ãå
ã®<math>E_1</math>ãã<math>\hat\epsilon</math>ã ãããããšãããšã
:<math>\kappa=E_1+\hat\epsilon</math>
ã§ããã<math>\epsilon</math>ã®äžæ¬¡ã®ãªãŒããŒã§åºæå€æ¹çšåŒã解ããšã
(çž®éãç¡ãå Žåã¯<math>E_1\neq E_2</math>ãªã®ã§)
:<math>\hat\epsilon=\epsilon_1</math>
ãšãªããŸãã
åæ§ã«<math>E_2</math>ããã®ããã¯<math>\epsilon_2</math>ãšãªããŸãã
ããã«ã<math>E_1+\epsilon_1</math>ã«å¯Ÿå¿ããåºæãã¯ãã«ã
ä»®ã«<math>\vec\psi=\begin{pmatrix}1\\\tilde\epsilon\end{pmatrix}</math>ãšçœ®ããŠ
ã·ã¥ã¬ãã£ã³ã¬ãŒæ¹çšåŒã解ããšã
:<math>\tilde\epsilon=\frac{\epsilon_3}{E_1-E_2}</math>
ãšãªãæ±ããäºãã§ããŸã
(<math>\epsilon</math>ã®äºä¹ä»¥äžã®é
ã¯ç¡èŠããŠããã®ã«æ³šæ)ã
ãã®çµæã¯éåååŠã®çµæãšäžèŽããŸãã
===çž®éãç¡ãå Žåã®æåè«===
å
ã®ç·åœ¢ä»£æ°ã«ãããå Žåãããã©ã±ãããšæŒç®åãçšããŠèšç®ããŸãã
æåãåããŠããªãããã«ããã¢ã³<math>\hat H_0</math>ã«é¢ãã
ã·ã¥ã¬ãã£ã³ã¬ãŒæ¹çšåŒã¯ãã©ã±ãããšæŒç®åãçšããŠ
:<math>\hat H_0 \left| n \right\rangle = E_n \left| n \right\rangle</math>
ãšè¡šããŸãã
ãŸãæºåãšããŠãã¹ãŠã®åŸ®å°éã«ä¿æ°λããããäºãšããŸãã
ããã«ããæçµçã«λã®ããã§å±éããäºãå¯èœã«ãªããŸãã
ã€ãŸãããã«ããã¢ã³ã®æåã«ããå¹æãè¡šã<math>\hat H'</math>ã¯åŸ®å°éãªã®ã§ã
λãã€ããŠè¡šãããæåãåããããã«ããã¢ã³ã¯ã
:<math>\hat H = \hat H_0 + \lambda \hat H'</math>
ãšè¡šãããŸãã
ãããŠè§£ãã¹ãã·ã¥ã¬ãã£ã³ã¬ãŒã®æ¹çšåŒã¯
:<math>\hat H \left| \psi \right\rangle = W \left| \psi \right\rangle</math>
ãšãªããŸãã(W: ãšãã«ã®ãŒåºæå€)ã
ããã§åºæç¶æ
ã®<math>\left| \psi \right\rangle</math>ãšã
åºæå€Wã¯ãæåãåããŠããªãå Žåããå°ããããã¯ããªã®ã§ã
ãããã以äžã®ããã«è¡šããŸãã
:<math>
\left| \psi \right\rangle =
\left| \psi_0 \right\rangle +
\lambda \left| \psi_1 \right\rangle +
\lambda^2 \left| \psi_2 \right\rangle +
\cdots
</math>
:<math>
W = W_0 + \lambda W_1 + \lambda^2 W_2 + \cdots
</math>
ããã§åŸ®å°éã¯æåã®ç¡ãå Žåããã®ãºã¬ãè¡šãã®ã§ã埮å°ã§ãªãé
ã¯ãããã
:<math>\left| \psi_0 \right\rangle = \left| n \right\rangle</math>
:<math>W_0 = E_n</math>
ãšãæåã®ç¡ãå Žåã®åºæå€ãšåºæç¶æ
ã«ãªãäºã«æ³šæã
ãããŠãããã®åºæå€ãšåºæç¶æ
ã解ãã¹ãæ¹çšåŒã«ä»£å
¥ãããšä»¥äžã®ããã«ãªããŸãã
:<math>
(\hat H_0+\lambda\hat H')
\left(
\left| \psi_0 \right\rangle +
\lambda \left| \psi_1 \right\rangle +
\lambda^2 \left| \psi_2 \right\rangle +
\cdots
\right)
=
( W_0 + \lambda W_1 + \lambda^2 W_2 + \cdots )
\left(
\left| \psi_0 \right\rangle +
\lambda \left| \psi_1 \right\rangle +
\lambda^2 \left| \psi_2 \right\rangle +
\cdots
\right)
</math>
ãããλã®ããã«ã€ããŠå±éãããšä»¥äžã®åæ¹çšåŒãåŸãããŸãã
:<math>
\lambda^0: \quad (\hat H_0-W_0)\left|\psi_0\right\rangle = 0
</math>
:<math>
\lambda^1: \quad (\hat H_0-W_0) \left|\psi_1\right\rangle
= (W_1-\hat H') \left|\psi_0\right\rangle
</math>
:<math>
\lambda^2: \quad (\hat H_0-W_0) \left|\psi_2\right\rangle
= (W_1-\hat H') \left|\psi_1\right\rangle
+ W_2 \left|\psi_0\right\rangle
</math>
:<math>
\lambda^3: \quad (\hat H_0-W_0) \left|\psi_3\right\rangle
= (W_1-\hat H') \left|\psi_2\right\rangle
+ W_2 \left|\psi_1\right\rangle
+ W_3 \left|\psi_0\right\rangle
</math>
ãããŠããããæ±ããã埮å°éã®ãªãŒããŒã®æ¹çšåŒãŸã§è§£ãããšã§
è¿äŒŒè§£ãåŸãŸãã
'''0次ã®æ¹çšåŒ'''ã解ããŸãã
å
ã0次ã®æ¹çšåŒãå±éãããšã
:<math> \hat H_0 \left| \psi_0 \right\rangle = W_0 \left| \psi_0 \right\rangle </math>
ãšãªããããã¯æåã®ç¡ãå Žåãšåããªã®ã§åºæå€ãšåºæç¶æ
ã¯ãããã
:<math>\left| \psi_0 \right\rangle = \left| n \right\rangle</math>
:<math>W_0 = E_n</math>
ãšè¡šããŸãã
'''1次ã®æ¹çšåŒ'''ã解ããŸãã
å
ã0次ã®æ¹çšåŒãã
:<math>\left\langle\psi_0\right|(\hat H_0-W_0)=0</math>
ãšããã®ãå€ããŸãã®ã§ããããå©çšããããã«ã
1次ã®æ¹çšåŒã«å·Šãã<math>\left\langle\psi_0\right|</math>ããããŠ
:<math>
\left\langle\psi_0\right| (\hat H_0 - W_0 ) \left|\psi_1\right\rangle
= \left\langle\psi_0\right| W_1 \left|\psi_0\right\rangle
- \left\langle\psi_0\right| \hat H' \left|\psi_0\right\rangle
</math>
:<math>
\Leftrightarrow
0
= W_1
- \left\langle\psi_0\right| \hat H' \left|\psi_0\right\rangle
</math>
:<math>
\Leftrightarrow
W_1 = \left\langle n \right| \hat H' \left| n \right\rangle
</math>
ãšåŸ®å°éã®1次ãŸã§ã®åºæå€ãæ±ãŸããŸãã
次ã«åºæç¶æ
ãæ±ããããã«
:<math>
\left|\psi_1\right\rangle = \sum_{k\neq n} a^{(1)}_k \left|k\right\rangle
</math>
ãšããçŽæ°ã«çœ®ããŠè§£ãæ±ããŸãã
ãã®ããçŽæ°ã1次ã®æ¹çšåŒã«ä»£å
¥ãããš
:<math>
\sum_{k\neq n} a^{(1)}_k (E_k-E_n) \left|k\right\rangle
= ( W_1 - \hat H' ) \left| n \right\rangle
</math>
ãšãªããŸãã
<math>\hat H_0 \left| k \right\rangle = E_k \left| k \right\rangle</math>
ã§ããäºã«æ³šæã
ããã«ããã«å·Šãã<math>\left\langle m\right|</math>ããããŸã(<math>m\neq n</math>)ã
:<math>
a^{(1)}_m ( E_m - E_n ) = - \left\langle m \right| \hat H' \left| n \right\rangle
</math>
ããã§ã¯<math>m\neq k</math>ã®å Žåã«ã¯<math>\left\langle m | k \right\rangle = 0</math>
ãšãªãé
ãæ¶ããã®ã§ã巊蟺ã®sumãæ¶ããŠããäºã«æ³šæã
ãããŠã
:<math>
a^{(1)}_m
= - \frac{
\left\langle m \right| \hat H' \left| n \right\rangle
}{
E_m - E_n
}
</math>
ãšããçµæãåŸãããç·åœ¢ä»£æ°ã®å ŽåãšåãçµæãšãªããŸãã
ãããå
ã®åŒã«ä»£å
¥ããŠåºæç¶æ
ãæžããš
:<math>
\left| \psi_1 \right\rangle
= - \sum_{m\neq n}
\frac{
\left\langle m \right| \hat H' \left| n \right\rangle
}{
E_m - E_n
}
\left| m \right\rangle
</math>
ãšãªããŸãã
==çž®éãããå Žåã®æåè«==
{{stub}}
[[Category:éåååŠ|ãããã«ãããããªããã€ãšããã]] | null | 2022-12-01T04:08:59Z | [
"ãã³ãã¬ãŒã:Stub"
] | https://ja.wikibooks.org/wiki/%E9%87%8F%E5%AD%90%E5%8A%9B%E5%AD%A6/%E6%99%82%E9%96%93%E3%81%AB%E4%BE%9D%E5%AD%98%E3%81%97%E3%81%AA%E3%81%84%E6%91%82%E5%8B%95%E8%AB%96 |
1,609 | CGI | ã¡ã€ã³ããŒãž > å·¥åŠ > æ
å ±æè¡ > ããã°ã©ãã³ã° > CGI
CGI(ã·ãŒãžãŒã¢ã€ãCommon Gateway Interface)ãšã¯ããŠã§ããµãŒããç¬ç«ããå€éšããã»ã¹(CGIããã°ã©ã )ã§ãŠã§ãããŒãžãçæã§ããããã«ããä»çµã¿ã§ããCGIããã°ã©ã ã®èšè¿°ã«ã¯Perlãªã©ã®ã¹ã¯ãªããèšèªãããçšããããŸãããåºæ¬çã«æšæºå
¥åºåãåããŠããããã°ã©ãã³ã°èšèªã§ããã°(ããšãã°Cèšèªãã·ã§ã«ã¹ã¯ãªããã§ã)çšããããšãã§ããŸãã
ãŠã§ããµãŒãã®Apacheã¯ãPHPã»Perlã»PythonãRubyã®ãããªã¹ã¯ãªããã£ã³ã°èšèªã®ã³ãŒãã ãã§ãªããCèšèªãã³ã³ãã€ã«ãããã€ããªãã¡ã€ã«ãå®è¡ã§ããŸã(ãã ãããã€ããªãªã®ã§ããã¹ãã¢ãŒããã¯ãã£ããšã«ã³ã³ãã€ã«ããªããå¿
èŠããããåãåããæªãã®ã§ãäŸå€çã«åŠçé床ã極端ã«å¿
èŠãªå Žå以å€ã«ã¯ããã£ãã«Cèšèªã«ãããã€ããªãCGIã«äœ¿çšããããšã¯ãããŸãã)ã
åºãæå³ã§ã®ãCGIãã®ãããã°ã©ãã³ã°èšèªã®å
容ãå®è¡ããããšã®æå³ã¯ãå
·äœçã«ã¯ãŠã§ãããŒãžã§ãŠãŒã¶ããã®å
¥åã«å¿çããããåçãªåºåãè¡ã£ããããããã®æ©æ§ãªã©ãCGIã§ããCGIã®èŠæ Œã¯http://hoohoo.ncsa.uiuc.edu/cgi/interface.html(ã€ã³ã¿ãŒãããã¢ãŒã«ã€ã: https://web.archive.org/web/20070809114039/hoohoo.ncsa.uiuc.edu/cgi/interface.html )ã§å®ããããŠããŸããããã§åçãšã¯ããšãã°ããã©ãŠã¶ãããªã¯ãšã¹ããåãä»ããæ¥æãããŒãžãšããŠè¡šç€ºããããã®ãåçãªããŒãžã®äžã€ã§ãããŠã£ããããã°ãªã©ãåçãªããŒãžã«å«ãŸããŸããããã«å¯ŸããŠéçãšã¯ãããããçšæããŠããHTMLçã§èšè¿°ãããããã¥ã¡ã³ãããªã¯ãšã¹ããžã®å¿çæã«å€æŽãè¡ããã«é
ä¿¡ããããšãæããŠããŸãã
PerlãPHPãªã©çšããŠããèšèªãäœããã¯å¥ãšããŠãçŸåšã€ã³ã¿ãŒãããäžã§å€§èŠæš¡ããããã¯èåãªãŠã§ããµã€ãã®ã»ãšãã©ã¯äœããã®åçãªä»çµã¿ãæããŠãããšèããããŸããCGIã®ä»çµã¿ãç解ããããšã¯å€§èŠæš¡ãªããŒã¿ãã€ã³ã¿ãŒãããäžã§åºçããæè¡çãªèæ¯ãåŠã¶ã®ãšåŒ·ãé¢ä¿ããããšèšããŸãã
åçãªãŠã§ãã¢ããªã±ãŒã·ã§ã³ã®å®è£
æè¡ã¯ãCGI以å€ã«ã mod_perl ã®ãããªApacheåãã®ã¢ãžã¥ãŒã«ã FastCGI ã®ãããªå€éšã®åžžé§ããã»ã¹ãšã®é£æºæè¡ããããŸãã ãããã®CGI以å€ã®æ¹æ³ãçšããããã®ã¯ãCGIã«ã¯ãå€éšããã»ã¹ããªã¯ãšã¹ããããããšã«èµ·åããªããã°ãããªãããšããæ¬ ç¹ããããããã»ã¹ã®èµ·åã¯æ¯ç§æ°çŸããæ°åãé床ã§ããã®æ°ã¯æ¯èŒçå°èŠæš¡ã®ãŠã§ããµã€ãã§ã容æã«éããæ°ã§ãããã®ããšããCGIã§ãªã¯ãšã¹ãæ¯ã«ããã»ã¹ãèµ·åããã®ã§ã¯ãªããåçã³ã³ãã³ããã¢ãžã¥ãŒã«ãåžžé§ããã»ã¹ã«çæããã®ãçŸåšã®äž»æµã§ãã ãã®ãŠã£ãããã¯ã¹ããµãŒãã¹ããŠããMediaWikiãPHPã®åžžé§ããã»ã¹ã§å®è£
ãããŠããŸãã
CGIãè¡ãåçãªäœçšã¯äž»ã«ä»¥äžã®4èŠçŽ ã«ãã£ãŠæãç«ã£ãŠããŸãã
ãŠã§ããµãŒãã§åçã«ã³ã³ãã³ããçæããä»çµã¿ã«ã¯ä»ã«ããŠã§ããµãŒãã®ã¢ãžã¥ãŒã«(mod_perlãªã©)ãFastCGIããããŸãã ãããã®CGIãšå€§ããªéãã¯ãCGIã®ããªã¯ãšã¹ãããšã«æ°ããããã»ã¹ãçæããããšããè² è·ã®å€§ããªåŠçãããŠã§ããµãŒãããã»ã¹å
ã§å®è¡ããããåžžé§ããããã»ã¹ãšãŠã§ããµãŒãã®éã§ã®éä¿¡ãè¡ãããšã§é¿ããŠããç¹ã§ãã
Apacheã¯CGIãå®è¡ããããã«ã¯ htttpd.conf ã®æžæãã®å¿
èŠããããŸãã
XAMPPã§ããã°ãå Žæã¯ã\xampp\apache\conf ã®äžã«èšå®ãã¡ã€ã«
ãããã®ã§ãæ¢ã㊠httpd.conf ã®ãã¡ã€ã«ã®äžèº«ã®äžèšã®ãããªéšåããäžèšã®ããã«æžæããŸãã
å€ãã®GNU/Linuxã®ãã£ã¹ããªãã¥ãŒã·ã§ã³ã§ã¯ã /etc/httpd/conf ã« httpd.conf ããããŸãã /etc/httpd.conf ã®ææè
㯠root ããã㯠www ãªã®ã§ãsudo vi /etc/httpd.conf ãªã©ãšãæžèŸŒã¿ä¿è·ããç¶æ
ãç¶æããŠãã ããã
èšå®ã®æ¹æ³ã¯2çš®é¡ãããŸãã
æžãæãå
æžãæãåŸ
ScriptAlias ãšããè¡ããäžèšã®ããã«ãªãããã«ãæžãæããŸãã
ã©ã¡ãã®æ¹æ³ã§ç·šéããã«ããŠããããApacheããã§ã«ç«ã¡äžããŠãããããã£ããApacheãçµäºããŠãããå床ãç«ã¡äžãçŽããŠäžããã
Apacheã®èµ·åæã«èšå®ãã¡ã€ã«ãèªã¿èŸŒãæ¹åŒã®ãããªã®ã§ãç«ã¡äžãçŽããªããšãèšå®ãåæ ãããªãå ŽåããããŸãã
Apacheãçµäºãããã«ã¯ãã³ãã³ã
ã§ApacheãçµäºããŸãã
å³äžã®Xãã¿ã³ãæŒããŠã³ãã³ãã©ã€ã³ãªã©ã®ãŠã£ã³ããŠãéããã ãã§ã¯ãApacheãçµäºããªãå Žåãæ®éãªã®ã§ãçµäºãããããã«ã¯ã³ãã³ãå
¥åã§ç¢ºå®ã«ããã£ããApacheãçµäºãããŠãã ããã
Apacheãç«ã¡äžããã«ã¯ãã³ãã³ã
ã§ç«ã¡äžãããŸãã
ä»åŸã®äœæ¥ã®æé»ã®åæãšããŠãApacheãµãŒããŒãç«ã¡äžããã®ãå¿ããªãããã«(ããå¿ããŠãšã©ãŒã«ãªããŸã)ããã£ããšå
ã«ApacheãµãŒããç«ã¡äžããŸãããã
ããŠãããšãã°ãäžèšã®ãããªCèšèªãã¡ã€ã«ãããã¹ããã¡ã€ã«(ãã¡ã¢åž³ãã§è¯ã)ã«æžããŠãã³ã³ãã€ã«(gccã§ãè¯ã)ããŠãå®è¡ãã¡ã€ã«(windowsãªãexeãã¡ã€ã«)ã«ããŸãããã
ã³ãŒãäŸ
Content-Type: text/html ãšããã®ã¯ãApacheåŽã解éã®ããã«å¿
èŠãªæ
å ±ã§ãããããããéãããŠããprintfæã®å
容ããããã¹ããã¡ã€ã«ãŸãã¯HTMLãã¡ã€ã«ã§ããããšã宣èšããŠããããã¹ãæã§ãããHTMLããããŒããªã©ãšèšãããŸããwebã§ã®æ
å ±ã®ãããšããããéã®ãéåä¿¡ã¡ãã»ãŒãžæã®äžçš®ã§ãã
ããŠãWindowsçApacheã§ããXAMPPã®å Žåãäžèšã³ãŒãäŸãã³ã³ãã€ã«ããŠåºæ¥äžãã£ãå®è¡ãã¡ã€ã«(ãã¡ã€ã«åãæå®ããªããã°Windowsçgccãªãã a.exe ããšããååã«ãªããŸã)ãã ãã©ã«ã \xampp\cgi-bin ã«å
¥ããã°ããã§ãã
GNU/Linuxçã®çŽ ã®Apacheã®å Žåããã©ã«ã cgi-bin ã®å Žæã¯
ã§ãã®ã§ãããã«a.outãªã©ã®å®è¡ãã¡ã€ã«ããããã°ãã¿ãŸããã§ãããåæèšå®ã§ã¯ãrootææã«ãªã£ãŠãŸãã®ã§ãchownã³ãã³ãã§ææè
ãå€ããŠãã ããã
ãšã«ãããcgi-bin ãã©ã«ãã«ãã€ããªãã¡ã€ã«ãå
¥ããããã®ããšåã«ãŠã§ãã»ãã©ãŠã¶ãŒã§
ã«ã¢ã¯ã»ã¹ããã°ããã§ãã
ãŸãã¯å®è¡ãã¡ã€ã«åãa.exe以å€ã®å¥ã®ãã¡ã€ã«åãªãã
ã«ã¢ã¯ã»ã¹ããã°ããã§ãã
ãããšã
äžèšã³ãŒãã®å Žå
ãšãããµãã«ãwebããŒãžã§printfæã®å
容ã衚瀺ãããŸãã(GNU/LinuxçApacheã§ãåæ§ã®çµæã§ããFedora 32 ã§2020幎7æ14æ¥ã«ç¢ºèªã)
Cèšèªãã€ããªã ããããApacheåŽãHTMLãã¡ã€ã«ã解éããŠãããã®ã§ããªã®ã§ãäžèšã®ããã«printfæäžã«HTMLã¿ã°ãæžããŠãã€ããªåããŠããã°ãèªåçã«ApacheãããŸãå€æããŠããã©ãŠã¶ã«HTMLã¿ã°ã®æ瀺éãã«è¡šç€ºã§ããããã«ããŠãããŸãã
ã³ãŒãäŸ
äžèšã³ãŒããã³ã³ãã€ã«ãããã€ããªãã¡ã€ã«ããã©ã«ã cgi-bin ã«å
¥ããããšããŠã§ãã»ãã©ãŠã¶ãŒã§ã¢ã¯ã»ã¹ãããšã倧ããªæåã§ã
ãšè¡šç€ºãããŸãã (GNU/Linuxã§ãåæ§ã®çµæã§ããFedora 32 ã§2020幎7æ14æ¥ã«ç¢ºèªã)
ãããèå³ããã®ãCGIã䜿ã£ããµãŒãå
¬éã§ã¯ãªããCGIãã®ãã®ã®æ©èœãäœãããå Žåããã®ããã®CGIã®åçã®ç¥èã¯è²ã
ãšèããããŸãããOSã®ã³ãã³ãã©ã€ã³ã«æèŒãããŠãã
ããåççãšæãããæ¹æ³ã§ãã(ãªããç解ã®ããã«æ¹æ³ã玹ä»ããŠããã ãã§ãããéåžžã®ãµãŒãæ§ç¯ã§ã¯CGIæ©èœèªäœã®æ°èŠã®å®è£
ã¯äžèŠãªäœæ¥ã§ãããã§ã«Apacheãªã©ã®æ¢åã®ãµãŒããœããã«CGIæ©èœãæèŒãããŠããããã§ãã)
ãŸããã³ãã³ãããã³ããã«å®è¡ããããã³ãã³ãåãããã¹ããã¡ã€ã«ã«èšè¿°ããŠç¹°ãè¿ã䜿ãããšãåºæ¥ãŸãã Windowsãªãããããã¡ã€ã«ãUnixãŸãã¯Unixã«é¡ããOSãªãã°ã·ã§ã«ã¹ã¯ãªãããšåŒã°ããŸãã
æ¬ç§ç®ã§ã¯ããªãã€ã¬ã¯ãã«ã€ããŠèª¬æããŸããããããã¡ã€ã«ã®è§£èª¬ã¯å¥ã®ç§ç®ã«ãã ããŸã(ããšãã°ãDOSå
¥éããªã©ãåç
§ããŠãã ãã)ã
ãªãã€ã¬ã¯ãã«ã€ããŠã¯ãWindowsã®å Žåãã³ãã³ãããã³ããã§
ãšå
¥åããã°ãæšæºåºåã«åºãããæååããã®ãŸãŸããªãã€ã¬ã¯ãå
ã®ãã¡ã€ã«ã«æžã蟌ãŸããŠä¿åãããŸãã
ããšãã°å®è¡ãã¡ã€ã«åãhello.exeãã§ããªãã€ã¬ã¯ãå
ãã¡ã€ã«åãridtest.txtããªã
ãšããã³ãã³ãã«ãªããŸãã
éã®æŒç®åã®æ©èœã¯
ã«ãªããŸãã
CGIçšã®ãŠã§ããµãŒããŒã«ãããŠãCGIããã°ã©ã ã®åºåãåŠçããæ¹æ³ã¯è€æ°ãããŸããäžè¬çã«ã¯ãæå®ãããCGIçšã®ãã©ã«ãå
ã«ããå®è¡ãã¡ã€ã«ããªãã€ã¬ã¯ãããŠå®è¡ããããšã§ããã®åºåãããã¹ããã¡ã€ã«ãšããŠæ±ãããšãã§ããŸãããã ãããã®æ¹æ³ã¯çŸä»£ã®å®è£
ã§ã¯ããŸã䜿çšãããŠããŸããã
å®éã®çŸå Žã§ã¯ãããå¹ççãªæ¹æ³ãäžè¬çã«æ¡çšãããŠããŸããäŸãã°ãApacheãä»ã®ãŠã§ããµãŒããŒã§ã¯ãCGIããã°ã©ã ã®åºåãçŽæ¥ãã€ãã©ã€ã³ã«æž¡ããä»ã®ããã°ã©ã ãåŠçãšé£æºãããããšãã§ããŸãããã®å Žåããªãã€ã¬ã¯ããäžæãã¡ã€ã«ã®äœæãåé¿ããããŒã¿ã®åŠçãå¹ççã«è¡ãããšãã§ããŸãã
ãã€ãã©ã€ã³ã䜿çšããããšã§ãCGIããã°ã©ã ã®åºåãå¥ã®ããã°ã©ã ãåŠçã«çŽæ¥æž¡ãããšãã§ããŸããããã«ããããªã¢ã«ã¿ã€ã ã®ããŒã¿åŠçãè€éãªããŒã¿ãããŒãå®çŸããããšãã§ããŸãããŸãããã€ãã©ã€ã³ã䜿çšããããšã§ãè€æ°ã®ããã°ã©ã ãé£éãããŠããŒã¿ãåŠçããããšãå¯èœã§ãã
å®è¡ãã¡ã€ã«ãã«ã¬ã³ãã»ãã£ã¬ã¯ããªã«ããå Žåã
ã¹ããªãŒã ãæå®ãããªãã€ã¬ã¯ãã®ããã®ã³ãã³ãã®æžåŒã¯ã
ã§ããããã§ããªãã€ã¬ã¯ãå
ãã¡ã€ã«ã«ãæžã蟌ãŸããŸãã ãã®æžåŒã¯ãsh ksh bash zsh ã«å
±éã§ãã csh ãšã¯ç°ãªããŸãã
ããšãã°å®è¡ãã¡ã€ã«å hello ã§ããªãã€ã¬ã¯ãå
ãã¡ã€ã«åã text.txt ãªã
ãšããã³ãã³ãã«ãªããŸãã
ãªããã¹ããªãŒã çªå·ã®æå³ã¯
ã«ãªããŸãã
Perl/CGI ã®ããŒãžãèŠãŠãã ããã Perl/ã©ã€ãã©ãªã»ã¢ãžã¥ãŒã«ãšãªããžã§ã¯ãæå ã®ããŒãžãã芧ãã ããã
ããã¹ããšãã£ã¿ TeraPad(ãã©ããã)çã®ããã¹ã(æ¡åŒµå *.txt)ã *.cgi ã«å€ããç©ã§ããæžãããŠããå
容ã¯textãªã®ã§ã³ãŒãæå®ã¯ããã¹ããšãã£ã¿ã®ãã¡ã€ã«ãªãŒãã³ã§UTF-8ã«å€ããŠããæ¥æ¬èªã䜿ããŸããå€ããªããšæååãããŸãã
åäœã確èªãã ãã¹ããªãã®ã確èªãããããå¥çŽãµãŒããŒã«ã¢ããããŒããFFFTPçã§ãããªããŸããçããã«æ¥œããã§ããããŸããããå±æ§(ããŒããã·ã§ã³)ã®å€æŽããå¿ããªãã
Perl/å¶åŸ¡æ§é ã»Perl/ãªãã¡ã¬ã³ã¹ã»Perl/ã¯ããã« ãã芧ãã ããã
w:ãšã»ã»ã®WWWå
¥éã¯ãè¯ãæ
å ±æºã«ãªããããããŸããã
æ¬æžã§ã¯Apache HTTP ServerãçšããäŸã瀺ããŸãããã»ãã«ãå€ãã®ãŠã§ããµãŒãã§CGIãå©çšå¯èœã§ãã
PHPãPerlãšã¯é¢ä¿ãªããäžè¬ã« Apache ã®èµ·åã®æ¹æ³ã¯ãGNU/Linux(Fedora32)ã®å Žåãã¿ãŒããã«ç»é¢ã§ãã³ãã³ã
ã§ãã(CentOS 7 以éã¯ããã®ããã§ãã)
httpd ãšã¯linuxã®å ŽåãApache ã®ããšã§ãã
ãªããæã¯
ãšããã³ãã³ãã®ããã§ããã
Apache ãæ£åžžã«åããŠããã確ãããã«ã¯ããã©ãŠã¶ãéããã¢ãã¬ã¹ããŒã«
http://localhost
ãšå
¥åããŸãã
ããŒãžã§ã³ã«ããããŸãããApacheã®ããŽããŒã¯ã®çŸœã®çµµã®ããwebããŒãžã衚瀺ãããŠããã°ããã¶ãã€ã³ã¹ããŒã«æåããŠããã§ãããã
Apache ãçµäºããã«ã¯ãGNU/Linuxãªãã¿ãŒããã«ç«¯æ«ã§
ã§çµäºããŸãã
æã¯
ã§çµäºã§ããã
çµäºåŸã«å
çšã® localhost ã®ãªã³ã¯å
ã«ç§»åããŠããäœãèªã¿èŸŒã¿ã§ããªãããºã§ãã(Apacheãçµäºããã®ã§ãèªã¿èŸŒã¿ã§ããªãã®ãæåã) ããããã¢ããããã©ãã€ã³ã¹ããŒã«ããã°ãããã«ã€ããŠã¯ãããšãã°ãPHP/確å®ã«åäœããããŸã§ããªã©ã«è§£èª¬ããããŸãã(2020幎4æ21æ¥ã®æç¹ã§ã¯ããŸã Apache å°çšã®ããŒãžã¯Wikibooksæ¥æ¬èªçã«ã¯ãããŸãã)ã
GNU/Linux ã® CentOSç³»ã®å Žåããã©ã«ãéå±€ var/www/html ã«ãç®çã®htmlãã¡ã€ã«ãå
¥ããŸãã(ãªãããã®ãããªãã©ã«ã(ããã«htmlãªã©ãå
¥ãããšãµãŒããŒãå
¬éããŠãããå Žæ)ã®ããšãããã¥ã¡ã³ãã«ãŒã DocumentRoot ãšããã)
ããããããç®çã®htmlãã¡ã€ã«ãäœã£ãŠããã
ããšãã°ãserverTest.html ãšãããã¡ã€ã«ãäœã£ãŠããããã®htmlãã¡ã€ã«ãå
¬éãããå Žåã
ãŸãã
ãšããã³ãã³ãã«ãªããŸãã
SE Linux ããªã³ã ãšèšå®ãé¢åãªã®ã§ã
ã§SE Linuxããªãã§ããŸãã
ãŠã§ãã»ãã©ãŠã¶ãŒã§ http://localhost/serverTest.html ã«ã¢ã¯ã»ã¹ããŠãäœæããhtmlã©ããã®å
容ã衚瀺ãããã°ããããŸã§ã¯æåã(å€éšå
¬éããã«ã¯ããŸã äœæ¥ãç¶ãã)
ãã¡ã€ã«åã®éšå(äŸã§ã¯æ«å°Ÿã® serverTest.html )ã¯ãäœæããhtmlãã¡ã€ã«ã®ãã¡ã€ã«åã«ããŸãã
ãŠã§ãã»ãã©ãŠã¶ãŒã§ç¢ºèªãçµãã£ãã
ã§SElinuxã®èšå®ããªã³ã«æ»ãã
Perlã§CGIããã°ã©ã ãããå Žåã
perlã ãã§ãªã perl-CGI ãã€ã³ã¹ããŒã«ããå¿
èŠããããŸãã
GNU/Linux ã® Fedoraã®å Žåã
ã§äž¡æ¹ãšãå
¥ããŸããsudo dnf install perl ã ãã§ã¯ãperl-CGI ãã€ã³ã¹ããŒã«ãããŸããã
Fedoraã«ã€ã³ã¹ããŒã«ããå Žåãdnf ã³ãã³ãã§ã® perl-CGIã®æ«å°Ÿ3æåã®ãCGIãã¯å€§æåã§ãªããã°ãªããŸãã(ã§ãªããšããã±ãŒãžãããŒãžã£ãŒãèªèããŸãã)ã
äžèšã®ã³ãŒãã¯ãPerlã«ããåçŽãªCGIããã°ã©ã ã®äŸã§ããCGIããã°ã©ã ã¯ãåŸè¿°ã®èšå®ãããããšã«ãŠã§ãã»ãã©ãŠã¶ãŒã§é²èŠ§ããŠç¢ºèªã§ããŸãã(ã³ãã³ã端æ«ã§ã¯ç¢ºèªã§ããªãããèãã確èªãå°é£ã)
text/htmlã®ããšã®ãšã¹ã±ãŒãã·ãŒã±ã³ã¹ã¯å¿
ã2〠\n\n ãšããŠãã ããããã1ã€ã ãã ãšããã©ãŠã¶ã§èŠãŠããšã©ãŒã«ãªãããHello World!ãã衚瀺ãããŸããã(ãã \n ã 1ã€ã ãã ãšã500 Internal Server Errorãã«ãªããŸãã)
ãšããã®ã¯äœããšãããšãããã¯shebangãšããOSã®æ©èœã§ãã€ã³ã¿ããªã¿ã«äœã䜿ãããæå®ããŸãã
æžåŒã¯ã³ã¡ã³ãæãšåæ§ã«ã#ãããå§ãŸã圢åŒçã«ã¯ã³ã¡ã³ãã§ãããã³ã¡ã³ãã§ã¯ãªãã®ã§æ¶ããªãã§ãã ãããæ¶ããšåäœããªããªããŸã(äŸãã°ãbash ã®ããã³ããããå®è¡ãããš bash ã¹ã¯ãªãããšã㊠perl ã¹ã¯ãªãããå®è¡ããŠããŸããŸãããããã bash ã®æ§æã§ã¯ãªãã®ã§ãšã©ãŒã«ãªããŸã)ã
Perlã ãã§ãªãUnixç³»ã®ã·ã§ã«ã¹ã¯ãªãããªã©ä»ã®ããã°ã©ã èšèªã§ãåæ§ã«shebangãèšè¿°ããäºããããŸãã
ã¯ãHTTPã¬ã¹ãã³ã¹ã»ããããŒã®äžéšã§ããŠã§ãã»ãã©ãŠã¶ãŒãªã©ãŠãŒã¶ãŒã»ãšãŒãžã§ã³ãã¯ãHTMLæ¬äœãšã¯å¥ã«ãåä¿¡ããããšããæ
å ±ã®çš®é¡ãªã©ã®æåããã®ããã« HTTPããããŒãéåä¿¡ããã£ãŠãŸã(Perlã®å Žåã¯ãCGIããããŒããšããããHTTPã¬ã¹ãã³ã¹ã»ããããŒããšåºå¥ããŠããŸãããWebãµãŒããããããŒèŠçŽ ãè¿œå ããå¯èœæ§ãããçºã§ã)ã
ãã®HTTPã¬ã¹ãã³ã¹ã»ããããŒã§éåä¿¡ãããæ
å ±ã®ã²ãšã€ã«ãContent-Type: ãããããŒããããŸãããContent-Type: text/htmlããšããããããŒã«ãã£ãŠãããããããã¹ãã®1ã€ã§ããHTMLãéãããšçžæå
ã«äŒããŠããŸãã
HTMLã®ãœãŒã¹ã³ãŒããéãããå Žåã¯ãäžèšã®ããã«æžããŸãã
ãããå®çšçã«ã¯ãäžèšã®ããã«ããã°ã©ã ãæžããã»ããã©ã¯ã§ãããã
use warnings; ãšã¯äœããšãããšãããã¯ããã°ã©ã äžã«ãšã©ãŒããã£ããèŠåãåºããšããæå³ã§ããPerlã¯ããã°ã©ã èšèªã§ãã®ã§ããšã©ãŒãèµ·ããããŸãããã®ãšã©ãŒã®éã«èŠåãåºããšããæå³ã§ãã
ã§ãããããã¯ã³ãã³ã端æ«ã§å®è¡ããŠããå Žåã®ããã·ã§ãã
ãŠã§ãã»ãã©ãŠã¶ãŒã§èŠãŠããå Žåããã®ãããªæ°ã®ãããèŠåã¯ããŠãããŸããã
ãŸããuse warnings; ã¯èŠåãããã ãã§ãã®ã§ããã®ãŸãŸããã°ã©ã ãå®è¡ããŸãããã£ããŠãæ°ãããããŠããã°ã©ã åæ¢ãããã¯ããŸããã
use strict; ã¯ãããã°ã©ã ã®åæ¢ãªã©ãå«ããŠãããå³æ Œã«å€å®ããã³åŠçœ®ãããŸãã
ãªã®ã§ãäžèšããã°ã©ã ãã use warnings; ããã³ use strict; ãé€å»ããŠãããŠã§ãã»ãã©ãŠã¶ãŒäžã§è¡šç€ºããäºã¯å¯èœã§ãã
ãã®ãã¡ã€ã«ã¯ãæ¡åŒµåãããªããã.cgiãã«ããŠãã ããã(æ¡åŒµåã.cgiããŸãã¯ã.plãã«ããªããšãä»åŸã®èšå®ãé¢åã«ãªããŸãã)
ãã®ãã¡ã€ã«ãããã©ã«ãéå±€
ã®äžã«é
眮ããŸãã
ãã cgi-bin ãã©ã«ãããŸã äœããŠããªãå Žåãperl-CGIããŸã ã€ã³ã¹ããŒã«ãããŠãªããšæãããã®ã§ããŸãperl-CGIãã€ã³ã¹ããŒã«ããŠãã ããã
ææè
ãrootã«ãªã£ãŠããªã©ã§ãé
眮ã§ããªããªã
ã§ææè
ãå€æŽã§ããŸãã
åé ã®
ã®éšåã¯ãç°å¢ã«ãã£ãŠã¯
ã®å ŽåããããŸãã
ãã®éšå #!/usr/local/bin/perl ã¯ãperlã®ã€ã³ã¿ããªã¿ãåŒåºããŠã¹ã¯ãªãããæž¡ãããã®æ瀺ã§ãã
ãããperlã€ã³ã¿ããªã¿ã®ãã€ããªã®ååšå Žæããããã«ã¯ãã³ãã³ã
ã§æ¢ããŸãã
ãããŠãå¶äœãããµã³ãã«ãã¡ã€ã«ã¯ãã¢ã¯ã»ã¹æš©ã®èšå®ã§ãããã°ã©ã ãšããŠå®è¡å¯èœãã«ãã§ãã¯ããã¯ã¹ãå
¥ããŠãã ãããå³ã¯ãªãã¯ã§çŸãããã€ã¢ãã°ããèšå®ã§ãããšæããŸãã
ã€ã³ã¿ãŒããªã¿ãŒãžã®ãã¹ãããããªãå Žåã¯ããããã¯è²ã
ãªç°å¢ã§åããããšãæ³å®ãããå Žå(æ¬æžããã®ã±ãŒã¹ã§ã)
ã®æ§ã« POSIX ã§ãã¹ã決ãŸã£ãŠãã env(1) ãåŒåºãã(絶察ãã¹ã§ãªã)ã³ãã³ãåã§ã€ã³ã¿ãŒããªã¿ãŒãæå®ããŸãã ãããããšãenv ã¯ç°å¢å€æ°PATHã®äžããé ã« ã€ã³ã¿ãŒããªã¿ãŒ ãæ¢ããèŠã€ãã£ãã€ã³ã¿ãŒããªã¿ãŒã«ã¹ã¯ãªãããæž¡ãèµ·åããŸãã
ãããããµãŒããApacheã®å ŽåããŸã§ããããã ãã§ã¯åããŸããã
Apacheã¯åæèšå®ã§ã¯ãcgiã¹ã¯ãªãããåãããªãèšå®ã«ãªã£ãŠããŸãããªã®ã§ããŸãããã®åæèšå®ãæžãæããå¿
èŠããããŸãã
cgiã¹ã¯ãªãããåãããããã«èšå®ãå€æŽããããã«ãèšå®ãã¡ã€ã«ã® httpd.conf ãšãããã¡ã€ã«ãæžãæããŠã
ãšããæç« ãè¿œå ããå¿
èŠããããŸãã
ãªããéåžžã®apacheã§ã¯ããã§ã«ã³ã¡ã³ãã¢ãŠããããç¶æ
ã§
ãšããã®ã§ãåã«åé ã®ã³ã¡ã³ãã¢ãŠãèšå·#ãã¯ããã°ããã ãã§ãã
ãã®æžãæãã«ãããæ¡åŒµå .cgi ã®ãããã¡ã€ã«ããcgiã¹ã¯ãªãããšããŠåŠçã§ããããã«ãªããŸãã
ãªããperlãªã©ã§äœ¿ãããæ¡åŒµå ã.plãã®ãã¡ã€ã«ãCGIã¹ã¯ãªãããšããŠå®è¡ããããªããäžèšã® AddHandler ã«
ãšã.plããè¿œå ããã ãã§æžã¿ãŸãã
ãã ãã管çè
ãéåžžã§ã¯ root ã«ãªã£ãŠããã®ã§ããã®ãŸãŸã§ã¯ãæžãæãã§ããŸããããªã®ã§GNU/Linuxã®å Žåãã³ãã³ãã§
ã§ã管çè
ãå€ããŠããã管çè
èšå®ãæžãæããããšã«ãªããŸãã
æžãæããçµãã£ãããapache ãç«ã¡äžãçŽããŸãã
ãããŠããŠã§ãã»ãã©ãŠã¶ãŒã§
ã«ã¢ã¯ã»ã¹ããŠãã ããã
ãã©ãŠã¶ç»é¢äžã«
ãšè¡šç€ºãããŠããŸãããŸãããã®ããŒãžã®ã¿ã€ãã«ãšããŠãã¿ãæ¬ãªã©ã«ãExample Web PageããšæžããŠãããŸãã
ã§ã¯ãããå®çšçãªããã°ã©ã ãèŠãŠãããŸãããã
äžèšã®ããã°ã©ã ã¯ãå
¥åããæååããhtmlã®ãã©ãŒã æ©èœã䜿ã£ãŠå¥ãã¡ã€ã«(äŸã§ã¯ catchtest.cgi ) ã«éãããã°ã©ã ã§ãã
â» ãPHP/HTMLãã©ãŒã ããã®ããŒã¿åãåãããšåäœå
容ã¯åãã§ãã
ãã®ããã«ããã¿ãŒã³ãšããŠ
ãšãããããªæžåŒã§ãåã« <!DOCTYPE html> ãš EOT ã®ããã ã«ãã決ãŸãã®ãã¿ãŒã³ã®ã³ãŒããæžãã ãã§ãå
¥åºåæ©èœã®ãããã¡ãŒã ãç°¡åã«äœããŸãã
äžèšã®ã³ãŒãã®é·ç§»å
ã®ããŒãžã¯ãäžèšã®ããã«ã€ãããŸã
ããšãã° ggggggg ãšãã©ãŠã¶ã«è¡šç€ºãããå
¥åããã¯ã¹ã«ããŠãã¿ã³ãç»é²ããæŒããšã
ãšè¡šç€ºãããŸãã
ãŸããé·ç§»å
ã®ããŒãžã«ããshebangãHTTPã¬ã¹ãã³ã¹ã»ããããŒãå¿ããªãããã«ããŸããã(ç¡ããšãšã©ãŒã«ãªããŸã(Internal Server Error ãªã©) )ã
äžèšã³ãŒãã® ifæ ãš elseæ ã¯ã決ãŸãæå¥ã§ãã $msg以å€ã¯ãã¹ãŠãPerlã§ã®æ±ºãŸãæå¥ã§ããSTDINã¯æšæºå
¥åã®ããšã§ãã
Perlã§ã¯ãformã¿ã°ããã®POSTã®åãåãã¯ãæšæºå
¥å STDIN ãéããŠåãåããè¡ãããä»æ§ã§ãã
ç°å¢å€æ°ãšã㊠REQUEST_METHOD ã CONTENT_LENGTH ã QUERY_STRING ãšããç°å¢å€æ°ããããããçšæãããŠããŸãããªã®ã§äžèšã³ãŒãã§ã¯ããã®å€æ°ã¯ãã®ãŸãŸäœ¿ãå¿
èŠããããŸã(åæã«ååãå€ããŠã¯ã€ã±ãã€)ã
ãªããç°å¢å€æ°ãè±èªã§ environmental variable ãšèšããŸãã
ãšããã®ã¯ããããããããç°å¢å€æ° REQUEST_METHOD ã POST ãªãã ã®ãããªæå³ã§ãã
ç°å¢å€æ° REQUEST_METHOD ã«ã¯ããã©ãŒã ãåŒã³åºããæã®ãªã¯ãšã¹ãã®çµæãPOSTãŸãã¯GETã®ã©ã¡ãããšããŠå
¥ã£ãŠããŸãã
eq æŒç®åã¯ããeqã®å·Šå³ã®äž¡èŸºãããæååãšããå Žåã«ã䞡蟺ãçããã?ãã調ã¹ãæŒç®åã§ãã
ãã£ãœãã== æŒç®åã¯ã䞡蟺ãæ°å€ãšããå Žåã«çãããã調ã¹ãæŒç®åã§ãã(Cèšèªãšéã£ãŠãPerlã§ã¯å€æ°ã®å®£èšæã«åæå®ãç¡ãã®ã§ãæ¡ä»¶åå²ifæã§ã¯ããããã£ãæŒç®åã®åºå¥ãå¿
èŠã«ãªããŸãã)
ãªã®ã§ããã£ã㊠eqæŒç®åã®éšåã == æŒç®åã«å€ããŠã¯ãã¡ã§ãã
ãªãã䞡蟺ãçãããªãå Žåã«ã€ããŠã¯ãæåãšããŠè©äŸ¡ããå Žåã«ã¯ ne æŒç®åãæ°å€ãšããŠè©äŸ¡ããå Žåã«ã¯ != æŒç®å ã§ãã
ããŠã衚瀺çµæã® username ãšããã®ã¯åã«ãåæã«ã€ãããªããžã§ã¯ãåã§ãããåŒã³åºãå
ã®ãã¡ã€ã«ã®HTMLã¿ã°ã§åæã«åœåãããªããžã§ã¯ãåã§ãã®ã§ããããã®ãªããžã§ã¯ãåãå€ããã°ã衚瀺çµæã®å·ŠèŸºã®ãã®éšåã¯ååã«ãªããŸãã
çµå±
ã®ããã«ããªããžã§ã¯ãåãšäžç·ã«ãPerlã§ã¯ POST ã§åãåã£ãå
容ã管çããä»çµã¿ã§ãã
ããé«åºŠãªCGIããã°ã©ã ã¯æ¬¡ã®ããã«ãªããŸãã
äžèšã®æžãæ¹ã¯ãä¿¡ããããªãæ€ç© ããŠã³ããŒããã§æ€çŽ¢ããŠãåèã«èŠãŠãã ãããCGIã®ã²ãŒã ã§ãã
ã¡ãã£ãšå€ãèŠãªããæ§æ ãªãªãžãã«ã§ããprintã¯äžè¬çã«äœ¿ãããŠããŸãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ã¡ã€ã³ããŒãž > å·¥åŠ > æ
å ±æè¡ > ããã°ã©ãã³ã° > CGI",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "CGI(ã·ãŒãžãŒã¢ã€ãCommon Gateway Interface)ãšã¯ããŠã§ããµãŒããç¬ç«ããå€éšããã»ã¹(CGIããã°ã©ã )ã§ãŠã§ãããŒãžãçæã§ããããã«ããä»çµã¿ã§ããCGIããã°ã©ã ã®èšè¿°ã«ã¯Perlãªã©ã®ã¹ã¯ãªããèšèªãããçšããããŸãããåºæ¬çã«æšæºå
¥åºåãåããŠããããã°ã©ãã³ã°èšèªã§ããã°(ããšãã°Cèšèªãã·ã§ã«ã¹ã¯ãªããã§ã)çšããããšãã§ããŸãã",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ãŠã§ããµãŒãã®Apacheã¯ãPHPã»Perlã»PythonãRubyã®ãããªã¹ã¯ãªããã£ã³ã°èšèªã®ã³ãŒãã ãã§ãªããCèšèªãã³ã³ãã€ã«ãããã€ããªãã¡ã€ã«ãå®è¡ã§ããŸã(ãã ãããã€ããªãªã®ã§ããã¹ãã¢ãŒããã¯ãã£ããšã«ã³ã³ãã€ã«ããªããå¿
èŠããããåãåããæªãã®ã§ãäŸå€çã«åŠçé床ã極端ã«å¿
èŠãªå Žå以å€ã«ã¯ããã£ãã«Cèšèªã«ãããã€ããªãCGIã«äœ¿çšããããšã¯ãããŸãã)ã",
"title": "æŠèŠ"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "åºãæå³ã§ã®ãCGIãã®ãããã°ã©ãã³ã°èšèªã®å
容ãå®è¡ããããšã®æå³ã¯ãå
·äœçã«ã¯ãŠã§ãããŒãžã§ãŠãŒã¶ããã®å
¥åã«å¿çããããåçãªåºåãè¡ã£ããããããã®æ©æ§ãªã©ãCGIã§ããCGIã®èŠæ Œã¯http://hoohoo.ncsa.uiuc.edu/cgi/interface.html(ã€ã³ã¿ãŒãããã¢ãŒã«ã€ã: https://web.archive.org/web/20070809114039/hoohoo.ncsa.uiuc.edu/cgi/interface.html )ã§å®ããããŠããŸããããã§åçãšã¯ããšãã°ããã©ãŠã¶ãããªã¯ãšã¹ããåãä»ããæ¥æãããŒãžãšããŠè¡šç€ºããããã®ãåçãªããŒãžã®äžã€ã§ãããŠã£ããããã°ãªã©ãåçãªããŒãžã«å«ãŸããŸããããã«å¯ŸããŠéçãšã¯ãããããçšæããŠããHTMLçã§èšè¿°ãããããã¥ã¡ã³ãããªã¯ãšã¹ããžã®å¿çæã«å€æŽãè¡ããã«é
ä¿¡ããããšãæããŠããŸãã",
"title": "æŠèŠ"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "PerlãPHPãªã©çšããŠããèšèªãäœããã¯å¥ãšããŠãçŸåšã€ã³ã¿ãŒãããäžã§å€§èŠæš¡ããããã¯èåãªãŠã§ããµã€ãã®ã»ãšãã©ã¯äœããã®åçãªä»çµã¿ãæããŠãããšèããããŸããCGIã®ä»çµã¿ãç解ããããšã¯å€§èŠæš¡ãªããŒã¿ãã€ã³ã¿ãŒãããäžã§åºçããæè¡çãªèæ¯ãåŠã¶ã®ãšåŒ·ãé¢ä¿ããããšèšããŸãã",
"title": "æŠèŠ"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "åçãªãŠã§ãã¢ããªã±ãŒã·ã§ã³ã®å®è£
æè¡ã¯ãCGI以å€ã«ã mod_perl ã®ãããªApacheåãã®ã¢ãžã¥ãŒã«ã FastCGI ã®ãããªå€éšã®åžžé§ããã»ã¹ãšã®é£æºæè¡ããããŸãã ãããã®CGI以å€ã®æ¹æ³ãçšããããã®ã¯ãCGIã«ã¯ãå€éšããã»ã¹ããªã¯ãšã¹ããããããšã«èµ·åããªããã°ãããªãããšããæ¬ ç¹ããããããã»ã¹ã®èµ·åã¯æ¯ç§æ°çŸããæ°åãé床ã§ããã®æ°ã¯æ¯èŒçå°èŠæš¡ã®ãŠã§ããµã€ãã§ã容æã«éããæ°ã§ãããã®ããšããCGIã§ãªã¯ãšã¹ãæ¯ã«ããã»ã¹ãèµ·åããã®ã§ã¯ãªããåçã³ã³ãã³ããã¢ãžã¥ãŒã«ãåžžé§ããã»ã¹ã«çæããã®ãçŸåšã®äž»æµã§ãã ãã®ãŠã£ãããã¯ã¹ããµãŒãã¹ããŠããMediaWikiãPHPã®åžžé§ããã»ã¹ã§å®è£
ãããŠããŸãã",
"title": "æŠèŠ"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "CGIãè¡ãåçãªäœçšã¯äž»ã«ä»¥äžã®4èŠçŽ ã«ãã£ãŠæãç«ã£ãŠããŸãã",
"title": "æŠèŠ"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ãŠã§ããµãŒãã§åçã«ã³ã³ãã³ããçæããä»çµã¿ã«ã¯ä»ã«ããŠã§ããµãŒãã®ã¢ãžã¥ãŒã«(mod_perlãªã©)ãFastCGIããããŸãã ãããã®CGIãšå€§ããªéãã¯ãCGIã®ããªã¯ãšã¹ãããšã«æ°ããããã»ã¹ãçæããããšããè² è·ã®å€§ããªåŠçãããŠã§ããµãŒãããã»ã¹å
ã§å®è¡ããããåžžé§ããããã»ã¹ãšãŠã§ããµãŒãã®éã§ã®éä¿¡ãè¡ãããšã§é¿ããŠããç¹ã§ãã",
"title": "æŠèŠ"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "Apacheã¯CGIãå®è¡ããããã«ã¯ htttpd.conf ã®æžæãã®å¿
èŠããããŸãã",
"title": "Cèšèªã§CGI"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "XAMPPã§ããã°ãå Žæã¯ã\\xampp\\apache\\conf ã®äžã«èšå®ãã¡ã€ã«",
"title": "Cèšèªã§CGI"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "ãããã®ã§ãæ¢ã㊠httpd.conf ã®ãã¡ã€ã«ã®äžèº«ã®äžèšã®ãããªéšåããäžèšã®ããã«æžæããŸãã",
"title": "Cèšèªã§CGI"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "å€ãã®GNU/Linuxã®ãã£ã¹ããªãã¥ãŒã·ã§ã³ã§ã¯ã /etc/httpd/conf ã« httpd.conf ããããŸãã /etc/httpd.conf ã®ææè
㯠root ããã㯠www ãªã®ã§ãsudo vi /etc/httpd.conf ãªã©ãšãæžèŸŒã¿ä¿è·ããç¶æ
ãç¶æããŠãã ããã",
"title": "Cèšèªã§CGI"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "èšå®ã®æ¹æ³ã¯2çš®é¡ãããŸãã",
"title": "Cèšèªã§CGI"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "æžãæãå",
"title": "Cèšèªã§CGI"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "æžãæãåŸ",
"title": "Cèšèªã§CGI"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "ScriptAlias ãšããè¡ããäžèšã®ããã«ãªãããã«ãæžãæããŸãã",
"title": "Cèšèªã§CGI"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "ã©ã¡ãã®æ¹æ³ã§ç·šéããã«ããŠããããApacheããã§ã«ç«ã¡äžããŠãããããã£ããApacheãçµäºããŠãããå床ãç«ã¡äžãçŽããŠäžããã",
"title": "Cèšèªã§CGI"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "Apacheã®èµ·åæã«èšå®ãã¡ã€ã«ãèªã¿èŸŒãæ¹åŒã®ãããªã®ã§ãç«ã¡äžãçŽããªããšãèšå®ãåæ ãããªãå ŽåããããŸãã",
"title": "Cèšèªã§CGI"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "Apacheãçµäºãããã«ã¯ãã³ãã³ã",
"title": "Cèšèªã§CGI"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "ã§ApacheãçµäºããŸãã",
"title": "Cèšèªã§CGI"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "å³äžã®Xãã¿ã³ãæŒããŠã³ãã³ãã©ã€ã³ãªã©ã®ãŠã£ã³ããŠãéããã ãã§ã¯ãApacheãçµäºããªãå Žåãæ®éãªã®ã§ãçµäºãããããã«ã¯ã³ãã³ãå
¥åã§ç¢ºå®ã«ããã£ããApacheãçµäºãããŠãã ããã",
"title": "Cèšèªã§CGI"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "Apacheãç«ã¡äžããã«ã¯ãã³ãã³ã",
"title": "Cèšèªã§CGI"
},
{
"paragraph_id": 22,
"tag": "p",
"text": "ã§ç«ã¡äžãããŸãã",
"title": "Cèšèªã§CGI"
},
{
"paragraph_id": 23,
"tag": "p",
"text": "ä»åŸã®äœæ¥ã®æé»ã®åæãšããŠãApacheãµãŒããŒãç«ã¡äžããã®ãå¿ããªãããã«(ããå¿ããŠãšã©ãŒã«ãªããŸã)ããã£ããšå
ã«ApacheãµãŒããç«ã¡äžããŸãããã",
"title": "Cèšèªã§CGI"
},
{
"paragraph_id": 24,
"tag": "p",
"text": "ããŠãããšãã°ãäžèšã®ãããªCèšèªãã¡ã€ã«ãããã¹ããã¡ã€ã«(ãã¡ã¢åž³ãã§è¯ã)ã«æžããŠãã³ã³ãã€ã«(gccã§ãè¯ã)ããŠãå®è¡ãã¡ã€ã«(windowsãªãexeãã¡ã€ã«)ã«ããŸãããã",
"title": "Cèšèªã§CGI"
},
{
"paragraph_id": 25,
"tag": "p",
"text": "ã³ãŒãäŸ",
"title": "Cèšèªã§CGI"
},
{
"paragraph_id": 26,
"tag": "p",
"text": "Content-Type: text/html ãšããã®ã¯ãApacheåŽã解éã®ããã«å¿
èŠãªæ
å ±ã§ãããããããéãããŠããprintfæã®å
容ããããã¹ããã¡ã€ã«ãŸãã¯HTMLãã¡ã€ã«ã§ããããšã宣èšããŠããããã¹ãæã§ãããHTMLããããŒããªã©ãšèšãããŸããwebã§ã®æ
å ±ã®ãããšããããéã®ãéåä¿¡ã¡ãã»ãŒãžæã®äžçš®ã§ãã",
"title": "Cèšèªã§CGI"
},
{
"paragraph_id": 27,
"tag": "p",
"text": "ããŠãWindowsçApacheã§ããXAMPPã®å Žåãäžèšã³ãŒãäŸãã³ã³ãã€ã«ããŠåºæ¥äžãã£ãå®è¡ãã¡ã€ã«(ãã¡ã€ã«åãæå®ããªããã°Windowsçgccãªãã a.exe ããšããååã«ãªããŸã)ãã ãã©ã«ã \\xampp\\cgi-bin ã«å
¥ããã°ããã§ãã",
"title": "Cèšèªã§CGI"
},
{
"paragraph_id": 28,
"tag": "p",
"text": "GNU/Linuxçã®çŽ ã®Apacheã®å Žåããã©ã«ã cgi-bin ã®å Žæã¯",
"title": "Cèšèªã§CGI"
},
{
"paragraph_id": 29,
"tag": "p",
"text": "ã§ãã®ã§ãããã«a.outãªã©ã®å®è¡ãã¡ã€ã«ããããã°ãã¿ãŸããã§ãããåæèšå®ã§ã¯ãrootææã«ãªã£ãŠãŸãã®ã§ãchownã³ãã³ãã§ææè
ãå€ããŠãã ããã",
"title": "Cèšèªã§CGI"
},
{
"paragraph_id": 30,
"tag": "p",
"text": "ãšã«ãããcgi-bin ãã©ã«ãã«ãã€ããªãã¡ã€ã«ãå
¥ããããã®ããšåã«ãŠã§ãã»ãã©ãŠã¶ãŒã§",
"title": "Cèšèªã§CGI"
},
{
"paragraph_id": 31,
"tag": "p",
"text": "ã«ã¢ã¯ã»ã¹ããã°ããã§ãã",
"title": "Cèšèªã§CGI"
},
{
"paragraph_id": 32,
"tag": "p",
"text": "ãŸãã¯å®è¡ãã¡ã€ã«åãa.exe以å€ã®å¥ã®ãã¡ã€ã«åãªãã",
"title": "Cèšèªã§CGI"
},
{
"paragraph_id": 33,
"tag": "p",
"text": "ã«ã¢ã¯ã»ã¹ããã°ããã§ãã",
"title": "Cèšèªã§CGI"
},
{
"paragraph_id": 34,
"tag": "p",
"text": "ãããšã",
"title": "Cèšèªã§CGI"
},
{
"paragraph_id": 35,
"tag": "p",
"text": "äžèšã³ãŒãã®å Žå",
"title": "Cèšèªã§CGI"
},
{
"paragraph_id": 36,
"tag": "p",
"text": "ãšãããµãã«ãwebããŒãžã§printfæã®å
容ã衚瀺ãããŸãã(GNU/LinuxçApacheã§ãåæ§ã®çµæã§ããFedora 32 ã§2020幎7æ14æ¥ã«ç¢ºèªã)",
"title": "Cèšèªã§CGI"
},
{
"paragraph_id": 37,
"tag": "p",
"text": "Cèšèªãã€ããªã ããããApacheåŽãHTMLãã¡ã€ã«ã解éããŠãããã®ã§ããªã®ã§ãäžèšã®ããã«printfæäžã«HTMLã¿ã°ãæžããŠãã€ããªåããŠããã°ãèªåçã«ApacheãããŸãå€æããŠããã©ãŠã¶ã«HTMLã¿ã°ã®æ瀺éãã«è¡šç€ºã§ããããã«ããŠãããŸãã",
"title": "Cèšèªã§CGI"
},
{
"paragraph_id": 38,
"tag": "p",
"text": "ã³ãŒãäŸ",
"title": "Cèšèªã§CGI"
},
{
"paragraph_id": 39,
"tag": "p",
"text": "äžèšã³ãŒããã³ã³ãã€ã«ãããã€ããªãã¡ã€ã«ããã©ã«ã cgi-bin ã«å
¥ããããšããŠã§ãã»ãã©ãŠã¶ãŒã§ã¢ã¯ã»ã¹ãããšã倧ããªæåã§ã",
"title": "Cèšèªã§CGI"
},
{
"paragraph_id": 40,
"tag": "p",
"text": "ãšè¡šç€ºãããŸãã (GNU/Linuxã§ãåæ§ã®çµæã§ããFedora 32 ã§2020幎7æ14æ¥ã«ç¢ºèªã)",
"title": "Cèšèªã§CGI"
},
{
"paragraph_id": 41,
"tag": "p",
"text": "ãããèå³ããã®ãCGIã䜿ã£ããµãŒãå
¬éã§ã¯ãªããCGIãã®ãã®ã®æ©èœãäœãããå Žåããã®ããã®CGIã®åçã®ç¥èã¯è²ã
ãšèããããŸãããOSã®ã³ãã³ãã©ã€ã³ã«æèŒãããŠãã",
"title": "CGIãã®ãã®ã®å®è£
æ¹æ³"
},
{
"paragraph_id": 42,
"tag": "p",
"text": "ããåççãšæãããæ¹æ³ã§ãã(ãªããç解ã®ããã«æ¹æ³ã玹ä»ããŠããã ãã§ãããéåžžã®ãµãŒãæ§ç¯ã§ã¯CGIæ©èœèªäœã®æ°èŠã®å®è£
ã¯äžèŠãªäœæ¥ã§ãããã§ã«Apacheãªã©ã®æ¢åã®ãµãŒããœããã«CGIæ©èœãæèŒãããŠããããã§ãã)",
"title": "CGIãã®ãã®ã®å®è£
æ¹æ³"
},
{
"paragraph_id": 43,
"tag": "p",
"text": "ãŸããã³ãã³ãããã³ããã«å®è¡ããããã³ãã³ãåãããã¹ããã¡ã€ã«ã«èšè¿°ããŠç¹°ãè¿ã䜿ãããšãåºæ¥ãŸãã Windowsãªãããããã¡ã€ã«ãUnixãŸãã¯Unixã«é¡ããOSãªãã°ã·ã§ã«ã¹ã¯ãªãããšåŒã°ããŸãã",
"title": "CGIãã®ãã®ã®å®è£
æ¹æ³"
},
{
"paragraph_id": 44,
"tag": "p",
"text": "æ¬ç§ç®ã§ã¯ããªãã€ã¬ã¯ãã«ã€ããŠèª¬æããŸããããããã¡ã€ã«ã®è§£èª¬ã¯å¥ã®ç§ç®ã«ãã ããŸã(ããšãã°ãDOSå
¥éããªã©ãåç
§ããŠãã ãã)ã",
"title": "CGIãã®ãã®ã®å®è£
æ¹æ³"
},
{
"paragraph_id": 45,
"tag": "p",
"text": "ãªãã€ã¬ã¯ãã«ã€ããŠã¯ãWindowsã®å Žåãã³ãã³ãããã³ããã§",
"title": "CGIãã®ãã®ã®å®è£
æ¹æ³"
},
{
"paragraph_id": 46,
"tag": "p",
"text": "ãšå
¥åããã°ãæšæºåºåã«åºãããæååããã®ãŸãŸããªãã€ã¬ã¯ãå
ã®ãã¡ã€ã«ã«æžã蟌ãŸããŠä¿åãããŸãã",
"title": "CGIãã®ãã®ã®å®è£
æ¹æ³"
},
{
"paragraph_id": 47,
"tag": "p",
"text": "ããšãã°å®è¡ãã¡ã€ã«åãhello.exeãã§ããªãã€ã¬ã¯ãå
ãã¡ã€ã«åãridtest.txtããªã",
"title": "CGIãã®ãã®ã®å®è£
æ¹æ³"
},
{
"paragraph_id": 48,
"tag": "p",
"text": "ãšããã³ãã³ãã«ãªããŸãã",
"title": "CGIãã®ãã®ã®å®è£
æ¹æ³"
},
{
"paragraph_id": 49,
"tag": "p",
"text": "éã®æŒç®åã®æ©èœã¯",
"title": "CGIãã®ãã®ã®å®è£
æ¹æ³"
},
{
"paragraph_id": 50,
"tag": "p",
"text": "ã«ãªããŸãã",
"title": "CGIãã®ãã®ã®å®è£
æ¹æ³"
},
{
"paragraph_id": 51,
"tag": "p",
"text": "CGIçšã®ãŠã§ããµãŒããŒã«ãããŠãCGIããã°ã©ã ã®åºåãåŠçããæ¹æ³ã¯è€æ°ãããŸããäžè¬çã«ã¯ãæå®ãããCGIçšã®ãã©ã«ãå
ã«ããå®è¡ãã¡ã€ã«ããªãã€ã¬ã¯ãããŠå®è¡ããããšã§ããã®åºåãããã¹ããã¡ã€ã«ãšããŠæ±ãããšãã§ããŸãããã ãããã®æ¹æ³ã¯çŸä»£ã®å®è£
ã§ã¯ããŸã䜿çšãããŠããŸããã",
"title": "CGIãã®ãã®ã®å®è£
æ¹æ³"
},
{
"paragraph_id": 52,
"tag": "p",
"text": "å®éã®çŸå Žã§ã¯ãããå¹ççãªæ¹æ³ãäžè¬çã«æ¡çšãããŠããŸããäŸãã°ãApacheãä»ã®ãŠã§ããµãŒããŒã§ã¯ãCGIããã°ã©ã ã®åºåãçŽæ¥ãã€ãã©ã€ã³ã«æž¡ããä»ã®ããã°ã©ã ãåŠçãšé£æºãããããšãã§ããŸãããã®å Žåããªãã€ã¬ã¯ããäžæãã¡ã€ã«ã®äœæãåé¿ããããŒã¿ã®åŠçãå¹ççã«è¡ãããšãã§ããŸãã",
"title": "CGIãã®ãã®ã®å®è£
æ¹æ³"
},
{
"paragraph_id": 53,
"tag": "p",
"text": "ãã€ãã©ã€ã³ã䜿çšããããšã§ãCGIããã°ã©ã ã®åºåãå¥ã®ããã°ã©ã ãåŠçã«çŽæ¥æž¡ãããšãã§ããŸããããã«ããããªã¢ã«ã¿ã€ã ã®ããŒã¿åŠçãè€éãªããŒã¿ãããŒãå®çŸããããšãã§ããŸãããŸãããã€ãã©ã€ã³ã䜿çšããããšã§ãè€æ°ã®ããã°ã©ã ãé£éãããŠããŒã¿ãåŠçããããšãå¯èœã§ãã",
"title": "CGIãã®ãã®ã®å®è£
æ¹æ³"
},
{
"paragraph_id": 54,
"tag": "p",
"text": "å®è¡ãã¡ã€ã«ãã«ã¬ã³ãã»ãã£ã¬ã¯ããªã«ããå Žåã",
"title": "CGIãã®ãã®ã®å®è£
æ¹æ³"
},
{
"paragraph_id": 55,
"tag": "p",
"text": "ã¹ããªãŒã ãæå®ãããªãã€ã¬ã¯ãã®ããã®ã³ãã³ãã®æžåŒã¯ã",
"title": "CGIãã®ãã®ã®å®è£
æ¹æ³"
},
{
"paragraph_id": 56,
"tag": "p",
"text": "ã§ããããã§ããªãã€ã¬ã¯ãå
ãã¡ã€ã«ã«ãæžã蟌ãŸããŸãã ãã®æžåŒã¯ãsh ksh bash zsh ã«å
±éã§ãã csh ãšã¯ç°ãªããŸãã",
"title": "CGIãã®ãã®ã®å®è£
æ¹æ³"
},
{
"paragraph_id": 57,
"tag": "p",
"text": "ããšãã°å®è¡ãã¡ã€ã«å hello ã§ããªãã€ã¬ã¯ãå
ãã¡ã€ã«åã text.txt ãªã",
"title": "CGIãã®ãã®ã®å®è£
æ¹æ³"
},
{
"paragraph_id": 58,
"tag": "p",
"text": "ãšããã³ãã³ãã«ãªããŸãã",
"title": "CGIãã®ãã®ã®å®è£
æ¹æ³"
},
{
"paragraph_id": 59,
"tag": "p",
"text": "ãªããã¹ããªãŒã çªå·ã®æå³ã¯",
"title": "CGIãã®ãã®ã®å®è£
æ¹æ³"
},
{
"paragraph_id": 60,
"tag": "p",
"text": "ã«ãªããŸãã",
"title": "CGIãã®ãã®ã®å®è£
æ¹æ³"
},
{
"paragraph_id": 61,
"tag": "p",
"text": "Perl/CGI ã®ããŒãžãèŠãŠãã ããã Perl/ã©ã€ãã©ãªã»ã¢ãžã¥ãŒã«ãšãªããžã§ã¯ãæå ã®ããŒãžãã芧ãã ããã",
"title": "éçºã®åè"
},
{
"paragraph_id": 62,
"tag": "p",
"text": "ããã¹ããšãã£ã¿ TeraPad(ãã©ããã)çã®ããã¹ã(æ¡åŒµå *.txt)ã *.cgi ã«å€ããç©ã§ããæžãããŠããå
容ã¯textãªã®ã§ã³ãŒãæå®ã¯ããã¹ããšãã£ã¿ã®ãã¡ã€ã«ãªãŒãã³ã§UTF-8ã«å€ããŠããæ¥æ¬èªã䜿ããŸããå€ããªããšæååãããŸãã",
"title": "éçºã®åè"
},
{
"paragraph_id": 63,
"tag": "p",
"text": "åäœã確èªãã ãã¹ããªãã®ã確èªãããããå¥çŽãµãŒããŒã«ã¢ããããŒããFFFTPçã§ãããªããŸããçããã«æ¥œããã§ããããŸããããå±æ§(ããŒããã·ã§ã³)ã®å€æŽããå¿ããªãã",
"title": "éçºã®åè"
},
{
"paragraph_id": 64,
"tag": "p",
"text": "Perl/å¶åŸ¡æ§é ã»Perl/ãªãã¡ã¬ã³ã¹ã»Perl/ã¯ããã« ãã芧ãã ããã",
"title": "éçºã®åè"
},
{
"paragraph_id": 65,
"tag": "p",
"text": "w:ãšã»ã»ã®WWWå
¥éã¯ãè¯ãæ
å ±æºã«ãªããããããŸããã",
"title": "éçºã®åè"
},
{
"paragraph_id": 66,
"tag": "p",
"text": "æ¬æžã§ã¯Apache HTTP ServerãçšããäŸã瀺ããŸãããã»ãã«ãå€ãã®ãŠã§ããµãŒãã§CGIãå©çšå¯èœã§ãã",
"title": "éçºã®åè"
},
{
"paragraph_id": 67,
"tag": "p",
"text": "PHPãPerlãšã¯é¢ä¿ãªããäžè¬ã« Apache ã®èµ·åã®æ¹æ³ã¯ãGNU/Linux(Fedora32)ã®å Žåãã¿ãŒããã«ç»é¢ã§ãã³ãã³ã",
"title": "Apache HTTP Server 2.2ã®çµèŸŒã¿"
},
{
"paragraph_id": 68,
"tag": "p",
"text": "ã§ãã(CentOS 7 以éã¯ããã®ããã§ãã)",
"title": "Apache HTTP Server 2.2ã®çµèŸŒã¿"
},
{
"paragraph_id": 69,
"tag": "p",
"text": "httpd ãšã¯linuxã®å ŽåãApache ã®ããšã§ãã",
"title": "Apache HTTP Server 2.2ã®çµèŸŒã¿"
},
{
"paragraph_id": 70,
"tag": "p",
"text": "ãªããæã¯",
"title": "Apache HTTP Server 2.2ã®çµèŸŒã¿"
},
{
"paragraph_id": 71,
"tag": "p",
"text": "ãšããã³ãã³ãã®ããã§ããã",
"title": "Apache HTTP Server 2.2ã®çµèŸŒã¿"
},
{
"paragraph_id": 72,
"tag": "p",
"text": "Apache ãæ£åžžã«åããŠããã確ãããã«ã¯ããã©ãŠã¶ãéããã¢ãã¬ã¹ããŒã«",
"title": "Apache HTTP Server 2.2ã®çµèŸŒã¿"
},
{
"paragraph_id": 73,
"tag": "p",
"text": "http://localhost",
"title": "Apache HTTP Server 2.2ã®çµèŸŒã¿"
},
{
"paragraph_id": 74,
"tag": "p",
"text": "ãšå
¥åããŸãã",
"title": "Apache HTTP Server 2.2ã®çµèŸŒã¿"
},
{
"paragraph_id": 75,
"tag": "p",
"text": "ããŒãžã§ã³ã«ããããŸãããApacheã®ããŽããŒã¯ã®çŸœã®çµµã®ããwebããŒãžã衚瀺ãããŠããã°ããã¶ãã€ã³ã¹ããŒã«æåããŠããã§ãããã",
"title": "Apache HTTP Server 2.2ã®çµèŸŒã¿"
},
{
"paragraph_id": 76,
"tag": "p",
"text": "",
"title": "Apache HTTP Server 2.2ã®çµèŸŒã¿"
},
{
"paragraph_id": 77,
"tag": "p",
"text": "Apache ãçµäºããã«ã¯ãGNU/Linuxãªãã¿ãŒããã«ç«¯æ«ã§",
"title": "Apache HTTP Server 2.2ã®çµèŸŒã¿"
},
{
"paragraph_id": 78,
"tag": "p",
"text": "ã§çµäºããŸãã",
"title": "Apache HTTP Server 2.2ã®çµèŸŒã¿"
},
{
"paragraph_id": 79,
"tag": "p",
"text": "æã¯",
"title": "Apache HTTP Server 2.2ã®çµèŸŒã¿"
},
{
"paragraph_id": 80,
"tag": "p",
"text": "ã§çµäºã§ããã",
"title": "Apache HTTP Server 2.2ã®çµèŸŒã¿"
},
{
"paragraph_id": 81,
"tag": "p",
"text": "çµäºåŸã«å
çšã® localhost ã®ãªã³ã¯å
ã«ç§»åããŠããäœãèªã¿èŸŒã¿ã§ããªãããºã§ãã(Apacheãçµäºããã®ã§ãèªã¿èŸŒã¿ã§ããªãã®ãæåã) ããããã¢ããããã©ãã€ã³ã¹ããŒã«ããã°ãããã«ã€ããŠã¯ãããšãã°ãPHP/確å®ã«åäœããããŸã§ããªã©ã«è§£èª¬ããããŸãã(2020幎4æ21æ¥ã®æç¹ã§ã¯ããŸã Apache å°çšã®ããŒãžã¯Wikibooksæ¥æ¬èªçã«ã¯ãããŸãã)ã",
"title": "Apache HTTP Server 2.2ã®çµèŸŒã¿"
},
{
"paragraph_id": 82,
"tag": "p",
"text": "GNU/Linux ã® CentOSç³»ã®å Žåããã©ã«ãéå±€ var/www/html ã«ãç®çã®htmlãã¡ã€ã«ãå
¥ããŸãã(ãªãããã®ãããªãã©ã«ã(ããã«htmlãªã©ãå
¥ãããšãµãŒããŒãå
¬éããŠãããå Žæ)ã®ããšãããã¥ã¡ã³ãã«ãŒã DocumentRoot ãšããã)",
"title": "Apache HTTP Server 2.2ã®çµèŸŒã¿"
},
{
"paragraph_id": 83,
"tag": "p",
"text": "ããããããç®çã®htmlãã¡ã€ã«ãäœã£ãŠããã",
"title": "Apache HTTP Server 2.2ã®çµèŸŒã¿"
},
{
"paragraph_id": 84,
"tag": "p",
"text": "ããšãã°ãserverTest.html ãšãããã¡ã€ã«ãäœã£ãŠããããã®htmlãã¡ã€ã«ãå
¬éãããå Žåã",
"title": "Apache HTTP Server 2.2ã®çµèŸŒã¿"
},
{
"paragraph_id": 85,
"tag": "p",
"text": "ãŸãã",
"title": "Apache HTTP Server 2.2ã®çµèŸŒã¿"
},
{
"paragraph_id": 86,
"tag": "p",
"text": "ãšããã³ãã³ãã«ãªããŸãã",
"title": "Apache HTTP Server 2.2ã®çµèŸŒã¿"
},
{
"paragraph_id": 87,
"tag": "p",
"text": "SE Linux ããªã³ã ãšèšå®ãé¢åãªã®ã§ã",
"title": "Apache HTTP Server 2.2ã®çµèŸŒã¿"
},
{
"paragraph_id": 88,
"tag": "p",
"text": "ã§SE Linuxããªãã§ããŸãã",
"title": "Apache HTTP Server 2.2ã®çµèŸŒã¿"
},
{
"paragraph_id": 89,
"tag": "p",
"text": "ãŠã§ãã»ãã©ãŠã¶ãŒã§ http://localhost/serverTest.html ã«ã¢ã¯ã»ã¹ããŠãäœæããhtmlã©ããã®å
容ã衚瀺ãããã°ããããŸã§ã¯æåã(å€éšå
¬éããã«ã¯ããŸã äœæ¥ãç¶ãã)",
"title": "Apache HTTP Server 2.2ã®çµèŸŒã¿"
},
{
"paragraph_id": 90,
"tag": "p",
"text": "ãã¡ã€ã«åã®éšå(äŸã§ã¯æ«å°Ÿã® serverTest.html )ã¯ãäœæããhtmlãã¡ã€ã«ã®ãã¡ã€ã«åã«ããŸãã",
"title": "Apache HTTP Server 2.2ã®çµèŸŒã¿"
},
{
"paragraph_id": 91,
"tag": "p",
"text": "ãŠã§ãã»ãã©ãŠã¶ãŒã§ç¢ºèªãçµãã£ãã",
"title": "Apache HTTP Server 2.2ã®çµèŸŒã¿"
},
{
"paragraph_id": 92,
"tag": "p",
"text": "ã§SElinuxã®èšå®ããªã³ã«æ»ãã",
"title": "Apache HTTP Server 2.2ã®çµèŸŒã¿"
},
{
"paragraph_id": 93,
"tag": "p",
"text": "Perlã§CGIããã°ã©ã ãããå Žåã",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 94,
"tag": "p",
"text": "perlã ãã§ãªã perl-CGI ãã€ã³ã¹ããŒã«ããå¿
èŠããããŸãã",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 95,
"tag": "p",
"text": "GNU/Linux ã® Fedoraã®å Žåã",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 96,
"tag": "p",
"text": "ã§äž¡æ¹ãšãå
¥ããŸããsudo dnf install perl ã ãã§ã¯ãperl-CGI ãã€ã³ã¹ããŒã«ãããŸããã",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 97,
"tag": "p",
"text": "Fedoraã«ã€ã³ã¹ããŒã«ããå Žåãdnf ã³ãã³ãã§ã® perl-CGIã®æ«å°Ÿ3æåã®ãCGIãã¯å€§æåã§ãªããã°ãªããŸãã(ã§ãªããšããã±ãŒãžãããŒãžã£ãŒãèªèããŸãã)ã",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 98,
"tag": "p",
"text": "äžèšã®ã³ãŒãã¯ãPerlã«ããåçŽãªCGIããã°ã©ã ã®äŸã§ããCGIããã°ã©ã ã¯ãåŸè¿°ã®èšå®ãããããšã«ãŠã§ãã»ãã©ãŠã¶ãŒã§é²èŠ§ããŠç¢ºèªã§ããŸãã(ã³ãã³ã端æ«ã§ã¯ç¢ºèªã§ããªãããèãã確èªãå°é£ã)",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 99,
"tag": "p",
"text": "text/htmlã®ããšã®ãšã¹ã±ãŒãã·ãŒã±ã³ã¹ã¯å¿
ã2〠\\n\\n ãšããŠãã ããããã1ã€ã ãã ãšããã©ãŠã¶ã§èŠãŠããšã©ãŒã«ãªãããHello World!ãã衚瀺ãããŸããã(ãã \\n ã 1ã€ã ãã ãšã500 Internal Server Errorãã«ãªããŸãã)",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 100,
"tag": "p",
"text": "",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 101,
"tag": "p",
"text": "ãšããã®ã¯äœããšãããšãããã¯shebangãšããOSã®æ©èœã§ãã€ã³ã¿ããªã¿ã«äœã䜿ãããæå®ããŸãã",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 102,
"tag": "p",
"text": "æžåŒã¯ã³ã¡ã³ãæãšåæ§ã«ã#ãããå§ãŸã圢åŒçã«ã¯ã³ã¡ã³ãã§ãããã³ã¡ã³ãã§ã¯ãªãã®ã§æ¶ããªãã§ãã ãããæ¶ããšåäœããªããªããŸã(äŸãã°ãbash ã®ããã³ããããå®è¡ãããš bash ã¹ã¯ãªãããšã㊠perl ã¹ã¯ãªãããå®è¡ããŠããŸããŸãããããã bash ã®æ§æã§ã¯ãªãã®ã§ãšã©ãŒã«ãªããŸã)ã",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 103,
"tag": "p",
"text": "Perlã ãã§ãªãUnixç³»ã®ã·ã§ã«ã¹ã¯ãªãããªã©ä»ã®ããã°ã©ã èšèªã§ãåæ§ã«shebangãèšè¿°ããäºããããŸãã",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 104,
"tag": "p",
"text": "ã¯ãHTTPã¬ã¹ãã³ã¹ã»ããããŒã®äžéšã§ããŠã§ãã»ãã©ãŠã¶ãŒãªã©ãŠãŒã¶ãŒã»ãšãŒãžã§ã³ãã¯ãHTMLæ¬äœãšã¯å¥ã«ãåä¿¡ããããšããæ
å ±ã®çš®é¡ãªã©ã®æåããã®ããã« HTTPããããŒãéåä¿¡ããã£ãŠãŸã(Perlã®å Žåã¯ãCGIããããŒããšããããHTTPã¬ã¹ãã³ã¹ã»ããããŒããšåºå¥ããŠããŸãããWebãµãŒããããããŒèŠçŽ ãè¿œå ããå¯èœæ§ãããçºã§ã)ã",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 105,
"tag": "p",
"text": "ãã®HTTPã¬ã¹ãã³ã¹ã»ããããŒã§éåä¿¡ãããæ
å ±ã®ã²ãšã€ã«ãContent-Type: ãããããŒããããŸãããContent-Type: text/htmlããšããããããŒã«ãã£ãŠãããããããã¹ãã®1ã€ã§ããHTMLãéãããšçžæå
ã«äŒããŠããŸãã",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 106,
"tag": "p",
"text": "HTMLã®ãœãŒã¹ã³ãŒããéãããå Žåã¯ãäžèšã®ããã«æžããŸãã",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 107,
"tag": "p",
"text": "ãããå®çšçã«ã¯ãäžèšã®ããã«ããã°ã©ã ãæžããã»ããã©ã¯ã§ãããã",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 108,
"tag": "p",
"text": "use warnings; ãšã¯äœããšãããšãããã¯ããã°ã©ã äžã«ãšã©ãŒããã£ããèŠåãåºããšããæå³ã§ããPerlã¯ããã°ã©ã èšèªã§ãã®ã§ããšã©ãŒãèµ·ããããŸãããã®ãšã©ãŒã®éã«èŠåãåºããšããæå³ã§ãã",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 109,
"tag": "p",
"text": "ã§ãããããã¯ã³ãã³ã端æ«ã§å®è¡ããŠããå Žåã®ããã·ã§ãã",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 110,
"tag": "p",
"text": "ãŠã§ãã»ãã©ãŠã¶ãŒã§èŠãŠããå Žåããã®ãããªæ°ã®ãããèŠåã¯ããŠãããŸããã",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 111,
"tag": "p",
"text": "ãŸããuse warnings; ã¯èŠåãããã ãã§ãã®ã§ããã®ãŸãŸããã°ã©ã ãå®è¡ããŸãããã£ããŠãæ°ãããããŠããã°ã©ã åæ¢ãããã¯ããŸããã",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 112,
"tag": "p",
"text": "use strict; ã¯ãããã°ã©ã ã®åæ¢ãªã©ãå«ããŠãããå³æ Œã«å€å®ããã³åŠçœ®ãããŸãã",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 113,
"tag": "p",
"text": "ãªã®ã§ãäžèšããã°ã©ã ãã use warnings; ããã³ use strict; ãé€å»ããŠãããŠã§ãã»ãã©ãŠã¶ãŒäžã§è¡šç€ºããäºã¯å¯èœã§ãã",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 114,
"tag": "p",
"text": "ãã®ãã¡ã€ã«ã¯ãæ¡åŒµåãããªããã.cgiãã«ããŠãã ããã(æ¡åŒµåã.cgiããŸãã¯ã.plãã«ããªããšãä»åŸã®èšå®ãé¢åã«ãªããŸãã)",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 115,
"tag": "p",
"text": "ãã®ãã¡ã€ã«ãããã©ã«ãéå±€",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 116,
"tag": "p",
"text": "ã®äžã«é
眮ããŸãã",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 117,
"tag": "p",
"text": "ãã cgi-bin ãã©ã«ãããŸã äœããŠããªãå Žåãperl-CGIããŸã ã€ã³ã¹ããŒã«ãããŠãªããšæãããã®ã§ããŸãperl-CGIãã€ã³ã¹ããŒã«ããŠãã ããã",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 118,
"tag": "p",
"text": "ææè
ãrootã«ãªã£ãŠããªã©ã§ãé
眮ã§ããªããªã",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 119,
"tag": "p",
"text": "ã§ææè
ãå€æŽã§ããŸãã",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 120,
"tag": "p",
"text": "åé ã®",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 121,
"tag": "p",
"text": "ã®éšåã¯ãç°å¢ã«ãã£ãŠã¯",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 122,
"tag": "p",
"text": "ã®å ŽåããããŸãã",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 123,
"tag": "p",
"text": "ãã®éšå #!/usr/local/bin/perl ã¯ãperlã®ã€ã³ã¿ããªã¿ãåŒåºããŠã¹ã¯ãªãããæž¡ãããã®æ瀺ã§ãã",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 124,
"tag": "p",
"text": "ãããperlã€ã³ã¿ããªã¿ã®ãã€ããªã®ååšå Žæããããã«ã¯ãã³ãã³ã",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 125,
"tag": "p",
"text": "ã§æ¢ããŸãã",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 126,
"tag": "p",
"text": "ãããŠãå¶äœãããµã³ãã«ãã¡ã€ã«ã¯ãã¢ã¯ã»ã¹æš©ã®èšå®ã§ãããã°ã©ã ãšããŠå®è¡å¯èœãã«ãã§ãã¯ããã¯ã¹ãå
¥ããŠãã ãããå³ã¯ãªãã¯ã§çŸãããã€ã¢ãã°ããèšå®ã§ãããšæããŸãã",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 127,
"tag": "p",
"text": "ã€ã³ã¿ãŒããªã¿ãŒãžã®ãã¹ãããããªãå Žåã¯ããããã¯è²ã
ãªç°å¢ã§åããããšãæ³å®ãããå Žå(æ¬æžããã®ã±ãŒã¹ã§ã)",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 128,
"tag": "p",
"text": "ã®æ§ã« POSIX ã§ãã¹ã決ãŸã£ãŠãã env(1) ãåŒåºãã(絶察ãã¹ã§ãªã)ã³ãã³ãåã§ã€ã³ã¿ãŒããªã¿ãŒãæå®ããŸãã ãããããšãenv ã¯ç°å¢å€æ°PATHã®äžããé ã« ã€ã³ã¿ãŒããªã¿ãŒ ãæ¢ããèŠã€ãã£ãã€ã³ã¿ãŒããªã¿ãŒã«ã¹ã¯ãªãããæž¡ãèµ·åããŸãã",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 129,
"tag": "p",
"text": "ãããããµãŒããApacheã®å ŽåããŸã§ããããã ãã§ã¯åããŸããã",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 130,
"tag": "p",
"text": "Apacheã¯åæèšå®ã§ã¯ãcgiã¹ã¯ãªãããåãããªãèšå®ã«ãªã£ãŠããŸãããªã®ã§ããŸãããã®åæèšå®ãæžãæããå¿
èŠããããŸãã",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 131,
"tag": "p",
"text": "cgiã¹ã¯ãªãããåãããããã«èšå®ãå€æŽããããã«ãèšå®ãã¡ã€ã«ã® httpd.conf ãšãããã¡ã€ã«ãæžãæããŠã",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 132,
"tag": "p",
"text": "ãšããæç« ãè¿œå ããå¿
èŠããããŸãã",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 133,
"tag": "p",
"text": "ãªããéåžžã®apacheã§ã¯ããã§ã«ã³ã¡ã³ãã¢ãŠããããç¶æ
ã§",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 134,
"tag": "p",
"text": "ãšããã®ã§ãåã«åé ã®ã³ã¡ã³ãã¢ãŠãèšå·#ãã¯ããã°ããã ãã§ãã",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 135,
"tag": "p",
"text": "ãã®æžãæãã«ãããæ¡åŒµå .cgi ã®ãããã¡ã€ã«ããcgiã¹ã¯ãªãããšããŠåŠçã§ããããã«ãªããŸãã",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 136,
"tag": "p",
"text": "ãªããperlãªã©ã§äœ¿ãããæ¡åŒµå ã.plãã®ãã¡ã€ã«ãCGIã¹ã¯ãªãããšããŠå®è¡ããããªããäžèšã® AddHandler ã«",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 137,
"tag": "p",
"text": "ãšã.plããè¿œå ããã ãã§æžã¿ãŸãã",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 138,
"tag": "p",
"text": "ãã ãã管çè
ãéåžžã§ã¯ root ã«ãªã£ãŠããã®ã§ããã®ãŸãŸã§ã¯ãæžãæãã§ããŸããããªã®ã§GNU/Linuxã®å Žåãã³ãã³ãã§",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 139,
"tag": "p",
"text": "ã§ã管çè
ãå€ããŠããã管çè
èšå®ãæžãæããããšã«ãªããŸãã",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 140,
"tag": "p",
"text": "",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 141,
"tag": "p",
"text": "æžãæããçµãã£ãããapache ãç«ã¡äžãçŽããŸãã",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 142,
"tag": "p",
"text": "ãããŠããŠã§ãã»ãã©ãŠã¶ãŒã§",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 143,
"tag": "p",
"text": "ã«ã¢ã¯ã»ã¹ããŠãã ããã",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 144,
"tag": "p",
"text": "ãã©ãŠã¶ç»é¢äžã«",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 145,
"tag": "p",
"text": "ãšè¡šç€ºãããŠããŸãããŸãããã®ããŒãžã®ã¿ã€ãã«ãšããŠãã¿ãæ¬ãªã©ã«ãExample Web PageããšæžããŠãããŸãã",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 146,
"tag": "p",
"text": "",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 147,
"tag": "p",
"text": "ã§ã¯ãããå®çšçãªããã°ã©ã ãèŠãŠãããŸãããã",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 148,
"tag": "p",
"text": "äžèšã®ããã°ã©ã ã¯ãå
¥åããæååããhtmlã®ãã©ãŒã æ©èœã䜿ã£ãŠå¥ãã¡ã€ã«(äŸã§ã¯ catchtest.cgi ) ã«éãããã°ã©ã ã§ãã",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 149,
"tag": "p",
"text": "â» ãPHP/HTMLãã©ãŒã ããã®ããŒã¿åãåãããšåäœå
容ã¯åãã§ãã",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 150,
"tag": "p",
"text": "ãã®ããã«ããã¿ãŒã³ãšããŠ",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 151,
"tag": "p",
"text": "ãšãããããªæžåŒã§ãåã« <!DOCTYPE html> ãš EOT ã®ããã ã«ãã決ãŸãã®ãã¿ãŒã³ã®ã³ãŒããæžãã ãã§ãå
¥åºåæ©èœã®ãããã¡ãŒã ãç°¡åã«äœããŸãã",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 152,
"tag": "p",
"text": "",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 153,
"tag": "p",
"text": "äžèšã®ã³ãŒãã®é·ç§»å
ã®ããŒãžã¯ãäžèšã®ããã«ã€ãããŸã",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 154,
"tag": "p",
"text": "ããšãã° ggggggg ãšãã©ãŠã¶ã«è¡šç€ºãããå
¥åããã¯ã¹ã«ããŠãã¿ã³ãç»é²ããæŒããšã",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 155,
"tag": "p",
"text": "ãšè¡šç€ºãããŸãã",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 156,
"tag": "p",
"text": "ãŸããé·ç§»å
ã®ããŒãžã«ããshebangãHTTPã¬ã¹ãã³ã¹ã»ããããŒãå¿ããªãããã«ããŸããã(ç¡ããšãšã©ãŒã«ãªããŸã(Internal Server Error ãªã©) )ã",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 157,
"tag": "p",
"text": "äžèšã³ãŒãã® ifæ ãš elseæ ã¯ã決ãŸãæå¥ã§ãã $msg以å€ã¯ãã¹ãŠãPerlã§ã®æ±ºãŸãæå¥ã§ããSTDINã¯æšæºå
¥åã®ããšã§ãã",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 158,
"tag": "p",
"text": "Perlã§ã¯ãformã¿ã°ããã®POSTã®åãåãã¯ãæšæºå
¥å STDIN ãéããŠåãåããè¡ãããä»æ§ã§ãã",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 159,
"tag": "p",
"text": "ç°å¢å€æ°ãšã㊠REQUEST_METHOD ã CONTENT_LENGTH ã QUERY_STRING ãšããç°å¢å€æ°ããããããçšæãããŠããŸãããªã®ã§äžèšã³ãŒãã§ã¯ããã®å€æ°ã¯ãã®ãŸãŸäœ¿ãå¿
èŠããããŸã(åæã«ååãå€ããŠã¯ã€ã±ãã€)ã",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 160,
"tag": "p",
"text": "ãªããç°å¢å€æ°ãè±èªã§ environmental variable ãšèšããŸãã",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 161,
"tag": "p",
"text": "ãšããã®ã¯ããããããããç°å¢å€æ° REQUEST_METHOD ã POST ãªãã ã®ãããªæå³ã§ãã",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 162,
"tag": "p",
"text": "ç°å¢å€æ° REQUEST_METHOD ã«ã¯ããã©ãŒã ãåŒã³åºããæã®ãªã¯ãšã¹ãã®çµæãPOSTãŸãã¯GETã®ã©ã¡ãããšããŠå
¥ã£ãŠããŸãã",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 163,
"tag": "p",
"text": "",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 164,
"tag": "p",
"text": "eq æŒç®åã¯ããeqã®å·Šå³ã®äž¡èŸºãããæååãšããå Žåã«ã䞡蟺ãçããã?ãã調ã¹ãæŒç®åã§ãã",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 165,
"tag": "p",
"text": "ãã£ãœãã== æŒç®åã¯ã䞡蟺ãæ°å€ãšããå Žåã«çãããã調ã¹ãæŒç®åã§ãã(Cèšèªãšéã£ãŠãPerlã§ã¯å€æ°ã®å®£èšæã«åæå®ãç¡ãã®ã§ãæ¡ä»¶åå²ifæã§ã¯ããããã£ãæŒç®åã®åºå¥ãå¿
èŠã«ãªããŸãã)",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 166,
"tag": "p",
"text": "ãªã®ã§ããã£ã㊠eqæŒç®åã®éšåã == æŒç®åã«å€ããŠã¯ãã¡ã§ãã",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 167,
"tag": "p",
"text": "",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 168,
"tag": "p",
"text": "ãªãã䞡蟺ãçãããªãå Žåã«ã€ããŠã¯ãæåãšããŠè©äŸ¡ããå Žåã«ã¯ ne æŒç®åãæ°å€ãšããŠè©äŸ¡ããå Žåã«ã¯ != æŒç®å ã§ãã",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 169,
"tag": "p",
"text": "",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 170,
"tag": "p",
"text": "ããŠã衚瀺çµæã® username ãšããã®ã¯åã«ãåæã«ã€ãããªããžã§ã¯ãåã§ãããåŒã³åºãå
ã®ãã¡ã€ã«ã®HTMLã¿ã°ã§åæã«åœåãããªããžã§ã¯ãåã§ãã®ã§ããããã®ãªããžã§ã¯ãåãå€ããã°ã衚瀺çµæã®å·ŠèŸºã®ãã®éšåã¯ååã«ãªããŸãã",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 171,
"tag": "p",
"text": "çµå±",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 172,
"tag": "p",
"text": "ã®ããã«ããªããžã§ã¯ãåãšäžç·ã«ãPerlã§ã¯ POST ã§åãåã£ãå
容ã管çããä»çµã¿ã§ãã",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 173,
"tag": "p",
"text": "ããé«åºŠãªCGIããã°ã©ã ã¯æ¬¡ã®ããã«ãªããŸãã",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 174,
"tag": "p",
"text": "äžèšã®æžãæ¹ã¯ãä¿¡ããããªãæ€ç© ããŠã³ããŒããã§æ€çŽ¢ããŠãåèã«èŠãŠãã ãããCGIã®ã²ãŒã ã§ãã",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
},
{
"paragraph_id": 175,
"tag": "p",
"text": "ã¡ãã£ãšå€ãèŠãªããæ§æ ãªãªãžãã«ã§ããprintã¯äžè¬çã«äœ¿ãããŠããŸãã",
"title": "Perl/CGIããã°ã©ã ã®äŸ"
}
] | ã¡ã€ã³ããŒãžÂ > å·¥åŠÂ > æ
å ±æè¡Â > ããã°ã©ãã³ã°Â > CGI CGIãšã¯ããŠã§ããµãŒããç¬ç«ããå€éšããã»ã¹ïŒCGIããã°ã©ã ïŒã§ãŠã§ãããŒãžãçæã§ããããã«ããä»çµã¿ã§ããCGIããã°ã©ã ã®èšè¿°ã«ã¯Perlãªã©ã®ã¹ã¯ãªããèšèªãããçšããããŸãããåºæ¬çã«æšæºå
¥åºåãåããŠããããã°ã©ãã³ã°èšèªã§ããã°ïŒããšãã°Cèšèªãã·ã§ã«ã¹ã¯ãªããã§ãïŒçšããããšãã§ããŸãã | <small>{{Pathnav|ã¡ã€ã³ããŒãž|å·¥åŠ|æ
å ±æè¡|ããã°ã©ãã³ã°}}</small>
{{Wikipedia|Common Gateway Interface}}
{{Otheruses|CGIã®ä»çµã¿|[[Perl]]ã«ãããCGIããã°ã©ãã³ã°|Perl/CGI}}
'''CGI'''ïŒã·ãŒãžãŒã¢ã€ã'''''C'''ommon '''G'''ateway '''I'''nterface''ïŒãšã¯ã[[w:WebãµãŒã|ãŠã§ããµãŒã]]ãç¬ç«ããå€éšããã»ã¹ïŒCGIããã°ã©ã ïŒã§[[w:ãŠã§ãããŒãž|ãŠã§ãããŒãž]]ãçæã§ããããã«ããä»çµã¿ã§ããCGIããã°ã©ã ã®èšè¿°ã«ã¯[[Perl]]ãªã©ã®[[w:ã¹ã¯ãªããèšèª|ã¹ã¯ãªããèšèª]]ãããçšããããŸãããåºæ¬çã«[[w:æšæºã¹ããªãŒã |æšæºå
¥åºå]]ãåããŠãã[[w:ããã°ã©ãã³ã°èšèª|ããã°ã©ãã³ã°èšèª]]ã§ããã°ïŒããšãã°[[Cèšèª]]ã[[ã·ã§ã«ãšã·ã§ã«ã¹ã¯ãªãã|ã·ã§ã«ã¹ã¯ãªãã]]ã§ãïŒçšããããšãã§ããŸãã
== æŠèŠ ==
ãŠã§ããµãŒãã®Apacheã¯ãPHPã»Perlã»PythonãRubyã®ãããªã¹ã¯ãªããã£ã³ã°èšèªã®ã³ãŒãã ãã§ãªããCèšèªãã³ã³ãã€ã«ãããã€ããªãã¡ã€ã«ãå®è¡ã§ããŸãïŒãã ãããã€ããªãªã®ã§ããã¹ãã¢ãŒããã¯ãã£ããšã«ã³ã³ãã€ã«ããªããå¿
èŠããããåãåããæªãã®ã§ãäŸå€çã«åŠçé床ã極端ã«å¿
èŠãªå Žå以å€ã«ã¯ããã£ãã«Cèšèªã«ãããã€ããªãCGIã«äœ¿çšããããšã¯ãããŸããïŒã
åºãæå³ã§ã®ãCGIãã®ãããã°ã©ãã³ã°èšèªã®å
容ãå®è¡ããããšã®æå³ã¯ãå
·äœçã«ã¯ãŠã§ãããŒãžã§ãŠãŒã¶ããã®å
¥åã«å¿çããããåçãªåºåãè¡ã£ããããããã®æ©æ§ãªã©ãCGIã§ããCGIã®èŠæ Œã¯http://hoohoo.ncsa.uiuc.edu/cgi/interface.htmlïŒã€ã³ã¿ãŒãããã¢ãŒã«ã€ãïŒ https://web.archive.org/web/20070809114039/hoohoo.ncsa.uiuc.edu/cgi/interface.html ïŒã§å®ããããŠããŸããããã§'''åç'''ãšã¯ããšãã°ããã©ãŠã¶ãããªã¯ãšã¹ããåãä»ããæ¥æãããŒãžãšããŠè¡šç€ºããããã®ãåçãªããŒãžã®äžã€ã§ãã[[w:ãŠã£ã|ãŠã£ã]]ã[[w:ããã°|ããã°]]ãªã©ãåçãªããŒãžã«å«ãŸããŸããããã«å¯ŸããŠ'''éç'''ãšã¯ãããããçšæããŠãã[[HTML]]çã§èšè¿°ãããããã¥ã¡ã³ãããªã¯ãšã¹ããžã®å¿çæã«å€æŽãè¡ããã«é
ä¿¡ããããšãæããŠããŸãã
PerlãPHPãªã©çšããŠããèšèªãäœããã¯å¥ãšããŠãçŸåšã€ã³ã¿ãŒãããäžã§å€§èŠæš¡ããããã¯èåãªãŠã§ããµã€ãã®ã»ãšãã©ã¯äœããã®åçãªä»çµã¿ãæããŠãããšèããããŸããCGIã®ä»çµã¿ãç解ããããšã¯å€§èŠæš¡ãªããŒã¿ãã€ã³ã¿ãŒãããäžã§åºçããæè¡çãªèæ¯ãåŠã¶ã®ãšåŒ·ãé¢ä¿ããããšèšããŸãã
åçãªãŠã§ãã¢ããªã±ãŒã·ã§ã³ã®å®è£
æè¡ã¯ãCGI以å€ã«ã mod_perl ã®ãããªApacheåãã®ã¢ãžã¥ãŒã«ã FastCGI ã®ãããªå€éšã®åžžé§ããã»ã¹ãšã®é£æºæè¡ããããŸãã
ãããã®CGI以å€ã®æ¹æ³ãçšããããã®ã¯ãCGIã«ã¯ãå€éšããã»ã¹ããªã¯ãšã¹ããããããšã«èµ·åããªããã°ãããªãããšããæ¬ ç¹ããããããã»ã¹ã®èµ·åã¯æ¯ç§æ°çŸããæ°åãé床ã§ããã®æ°ã¯æ¯èŒçå°èŠæš¡ã®ãŠã§ããµã€ãã§ã容æã«éããæ°ã§ãããã®ããšããCGIã§ãªã¯ãšã¹ãæ¯ã«ããã»ã¹ãèµ·åããã®ã§ã¯ãªããåçã³ã³ãã³ããã¢ãžã¥ãŒã«ãåžžé§ããã»ã¹ã«çæããã®ãçŸåšã®äž»æµã§ãã
ãã®ãŠã£ãããã¯ã¹ããµãŒãã¹ããŠããMediaWikiãPHPã®åžžé§ããã»ã¹ã§å®è£
ãããŠããŸãã
CGIãè¡ãåçãªäœçšã¯äž»ã«ä»¥äžã®4èŠçŽ ã«ãã£ãŠæãç«ã£ãŠããŸãã
* [[w:æšæºã¹ããªãŒã |æšæºå
¥åã»æšæºåºå]] ã» [[w:ã³ãã³ã (ã³ã³ãã¥ãŒã¿)| ã³ãã³ãã©ã€ã³]] [[w:åŒæ°|åŒæ°]] (ã³ãã³ãã©ã€ã³åŒæ°)
* [[w:ç°å¢å€æ°|ç°å¢å€æ°]]
* [[w:Hypertext Transfer Protocol|HTTP]]ããšã©ãŒãæ¥ãå ŽåããããŸããã[[w:HTTPã¹ããŒã¿ã¹ã³ãŒã|HTTPã¹ããŒã¿ã¹ã³ãŒã]]
* HTMLã®[[w:ãã©ãŒã (ãŠã§ã)| FORM]] [[w:HTMLèŠçŽ |èŠçŽ ]]
ãŠã§ããµãŒãã§åçã«ã³ã³ãã³ããçæããä»çµã¿ã«ã¯ä»ã«ããŠã§ããµãŒãã®ã¢ãžã¥ãŒã«ïŒmod_perlãªã©ïŒãFastCGIããããŸãã
ãããã®CGIãšå€§ããªéãã¯ãCGIã®ããªã¯ãšã¹ãããšã«æ°ããããã»ã¹ãçæããããšããè² è·ã®å€§ããªåŠçãããŠã§ããµãŒãããã»ã¹å
ã§å®è¡ããããåžžé§ããããã»ã¹ãšãŠã§ããµãŒãã®éã§ã®éä¿¡ãè¡ãããšã§é¿ããŠããç¹ã§ãã
== Cèšèªã§CGI ==
Apacheã¯CGIãå®è¡ããããã«ã¯ {{code|htttpd.conf}} ã®æžæãã®å¿
èŠããããŸãã
XAMPPã§ããã°ãå Žæã¯ã\xampp\apache\conf ã®äžã«èšå®ãã¡ã€ã«
:ãhttp.confã
ãããã®ã§ãæ¢ã㊠httpd.conf ã®ãã¡ã€ã«ã®äžèº«ã®äžèšã®ãããªéšåããäžèšã®ããã«æžæããŸãã
å€ãã®GNU/Linuxã®ãã£ã¹ããªãã¥ãŒã·ã§ã³ã§ã¯ã /etc/httpd/conf ã« httpd.conf ããããŸãã
/etc/httpd.conf ã®ææè
㯠root ããã㯠www ãªã®ã§ã{{code|sudo vi /etc/httpd.conf}} ãªã©ãšãæžèŸŒã¿ä¿è·ããç¶æ
ãç¶æããŠãã ããã
<div style="border:red 3px double">éå»ã®ç·šéã§ã'''httpd.conf ã®ææè
ããã°ã€ã³å¯èœãŠãŒã¶ã«å€æŽããããšãæå³ããèšè¿°'''ããããŸããããé倧ãªã»ãã¥ãªãã£ããŒã«ãšãªãã®ã§ããããã®èšèŒã®éãã«èšå®ããŠããŸã£ãæ¹ããããã/etc/httpd.conf ã®ææè
ã root ã«æ»ããææè
以å€ã«æžèŸŒã¿ããŒããã·ã§ã³ãäžããŠããªãã確èªãã ããã</div>
=== CGI䜿çšèšå®ã®æ¹æ³ ===
èšå®ã®æ¹æ³ã¯2çš®é¡ãããŸãã
==== <code> <Directory /> </code> ã¿ã°ã®å
容ãæžãæããæ¹æ³ ====
'''æžãæãå'''
<SyntaxHighlight lang="apache">
<Directory />
AllowOverride none
Require all denied
</Directory>
</SyntaxHighlight>
'''æžãæãåŸ'''
* AllowOverride ã®ããšã none ãã ALL ã«æžãæããŸãã
* Optionsã®ããšããExecCGIãã«æžãæããŸãã
<SyntaxHighlight lang="apache">
<Directory "C:/xampp/cgi-bin">
AllowOverride All
Options ExecCGI
Require all granted
</Directory>
</SyntaxHighlight>
==== ScriptAlias ãæžãæããæ¹æ³ ====
ScriptAlias ãšããè¡ããäžèšã®ããã«ãªãããã«ãæžãæããŸãã
<SyntaxHighlight lang="apache">
ScriptAlias /cgi-bin/ "/var/www/cgi-bin/"
</SyntaxHighlight>
ã©ã¡ãã®æ¹æ³ã§ç·šéããã«ããŠããããApacheããã§ã«ç«ã¡äžããŠãããããã£ããApacheãçµäºããŠãããå床ãç«ã¡äžãçŽããŠäžããã
Apacheã®èµ·åæã«èšå®ãã¡ã€ã«ãèªã¿èŸŒãæ¹åŒã®ãããªã®ã§ãç«ã¡äžãçŽããªããšãèšå®ãåæ ãããªãå ŽåããããŸãã
Apacheãçµäºãããã«ã¯ãã³ãã³ã
<SyntaxHighlight lang="bash">
sudo service httpd stop
</SyntaxHighlight>
ã§ApacheãçµäºããŸãã
å³äžã®Xãã¿ã³ãæŒããŠã³ãã³ãã©ã€ã³ãªã©ã®ãŠã£ã³ããŠãéããã ãã§ã¯ãApacheãçµäºããªãå Žåãæ®éãªã®ã§ãçµäºãããããã«ã¯ã³ãã³ãå
¥åã§ç¢ºå®ã«ããã£ããApacheãçµäºãããŠãã ããã
Apacheãç«ã¡äžããã«ã¯ãã³ãã³ã
<SyntaxHighlight lang="bash">
sudo service httpd start
</SyntaxHighlight>
ã§ç«ã¡äžãããŸãã
=== 次ã®äœæ¥ ===
ä»åŸã®äœæ¥ã®æé»ã®åæãšããŠãApacheãµãŒããŒãç«ã¡äžããã®ãå¿ããªãããã«ïŒããå¿ããŠãšã©ãŒã«ãªããŸãïŒããã£ããšå
ã«ApacheãµãŒããç«ã¡äžããŸãããã
ããŠãããšãã°ãäžèšã®ãããªCèšèªãã¡ã€ã«ãããã¹ããã¡ã€ã«(ãã¡ã¢åž³ãã§è¯ã)ã«æžããŠãã³ã³ãã€ã«(gccã§ãè¯ã)ããŠãå®è¡ãã¡ã€ã«ïŒwindowsãªãexeãã¡ã€ã«ïŒã«ããŸãããã
'''ã³ãŒãäŸ'''
<syntaxhighlight lang="C">
#include <stdio.h>
int main(void) {
printf("Content-Type: text/html\r\n\r\n");
int a = 3, b = 4;
int c = a + b;
printf("sum %d\n", c);
return 0;
}
</syntaxhighlight>
<code>Content-Type: text/html</code>
ãšããã®ã¯ãApacheåŽã解éã®ããã«å¿
èŠãªæ
å ±ã§ãããããããéãããŠããprintfæã®å
容ããããã¹ããã¡ã€ã«ãŸãã¯HTMLãã¡ã€ã«ã§ããããšã宣èšããŠããããã¹ãæã§ãããHTMLããããŒããªã©ãšèšãããŸããwebã§ã®æ
å ±ã®ãããšããããéã®ãéåä¿¡ã¡ãã»ãŒãžæã®äžçš®ã§ãã
ããŠãWindowsçApacheã§ããXAMPPã®å Žåãäžèšã³ãŒãäŸãã³ã³ãã€ã«ããŠåºæ¥äžãã£ãå®è¡ãã¡ã€ã«(ãã¡ã€ã«åãæå®ããªããã°Windowsçgccãªãã a.exe ããšããååã«ãªããŸã)ãã
ãã©ã«ã
\xampp\cgi-bin
ã«å
¥ããã°ããã§ãã
GNU/Linuxçã®çŽ ã®Apacheã®å Žåããã©ã«ã cgi-bin ã®å Žæã¯
/var/www
ã§ãã®ã§ãããã«a.outãªã©ã®å®è¡ãã¡ã€ã«ããããã°ãã¿ãŸããã§ãããåæèšå®ã§ã¯ãrootææã«ãªã£ãŠãŸãã®ã§ãchownã³ãã³ãã§ææè
ãå€ããŠãã ããã
sudo chown ãã°ã€ã³ãŠãŒã¶å /var/www/cgi-bin
ãšã«ãããcgi-bin ãã©ã«ãã«ãã€ããªãã¡ã€ã«ãå
¥ããããã®ããšåã«ãŠã§ãã»ãã©ãŠã¶ãŒã§
http://localhost/cgi-bin/a.exe
ã«ã¢ã¯ã»ã¹ããã°ããã§ãã
ãŸãã¯å®è¡ãã¡ã€ã«åãa.exe以å€ã®å¥ã®ãã¡ã€ã«åãªãã
http://localhost/cgi-bin/å®è¡ãã¡ã€ã«å
ã«ã¢ã¯ã»ã¹ããã°ããã§ãã
ãããšã
äžèšã³ãŒãã®å Žå
sum 7
ãšãããµãã«ãwebããŒãžã§printfæã®å
容ã衚瀺ãããŸãã(GNU/LinuxçApacheã§ãåæ§ã®çµæã§ããFedora 32 ã§2020幎7æ14æ¥ã«ç¢ºèªã)
Cèšèªãã€ããªã ããããApacheåŽãHTMLãã¡ã€ã«ã解éããŠãããã®ã§ããªã®ã§ãäžèšã®ããã«printfæäžã«HTMLã¿ã°ãæžããŠãã€ããªåããŠããã°ãèªåçã«ApacheãããŸãå€æããŠããã©ãŠã¶ã«HTMLã¿ã°ã®æ瀺éãã«è¡šç€ºã§ããããã«ããŠãããŸãã
'''ã³ãŒãäŸ'''
<syntaxhighlight lang="C">
#include <stdio.h>
int main(void) {
printf("Content-Type: Text/html\r\n\r\n");
int a = 3, b = 4;
int c = a + b;
printf("<h1>sum %d</h1>\n", c);
return 0;
}
</syntaxhighlight>
äžèšã³ãŒããã³ã³ãã€ã«ãããã€ããªãã¡ã€ã«ããã©ã«ã cgi-bin ã«å
¥ããããšããŠã§ãã»ãã©ãŠã¶ãŒã§ã¢ã¯ã»ã¹ãããšã倧ããªæåã§ã
<big>sum 7</big>
ãšè¡šç€ºãããŸãã
(GNU/Linuxã§ãåæ§ã®çµæã§ããFedora 32 ã§2020幎7æ14æ¥ã«ç¢ºèªã)
== CGIãã®ãã®ã®å®è£
æ¹æ³ ==
ãããèå³ããã®ãCGIã䜿ã£ããµãŒãå
¬éã§ã¯ãªããCGIãã®ãã®ã®æ©èœãäœãããå Žåããã®ããã®CGIã®åçã®ç¥èã¯è²ã
ãšèããããŸãããOSã®ã³ãã³ãã©ã€ã³ã«æèŒãããŠãã
:æšæºåºåã®ãªãã€ã¬ã¯ãæ©èœã䜿ãæ¹æ³
ããåççãšæãããæ¹æ³ã§ããïŒãªããç解ã®ããã«æ¹æ³ã玹ä»ããŠããã ãã§ãããéåžžã®ãµãŒãæ§ç¯ã§ã¯CGIæ©èœèªäœã®æ°èŠã®å®è£
ã¯äžèŠãªäœæ¥ã§ãããã§ã«Apacheãªã©ã®æ¢åã®ãµãŒããœããã«CGIæ©èœãæèŒãããŠããããã§ããïŒ
ãŸããã³ãã³ãããã³ããã«å®è¡ããããã³ãã³ãåãããã¹ããã¡ã€ã«ã«èšè¿°ããŠç¹°ãè¿ã䜿ãããšãåºæ¥ãŸãã
Windowsãªãããããã¡ã€ã«ãUnixãŸãã¯Unixã«é¡ããOSãªãã°ã·ã§ã«ã¹ã¯ãªãããšåŒã°ããŸãã
æ¬ç§ç®ã§ã¯ããªãã€ã¬ã¯ãã«ã€ããŠèª¬æããŸããããããã¡ã€ã«ã®è§£èª¬ã¯å¥ã®ç§ç®ã«ãã ããŸãïŒããšãã°ã[[DOSå
¥é]]ããªã©ãåç
§ããŠãã ããïŒã
=== Windowsã®å Žå ===
ãªãã€ã¬ã¯ãã«ã€ããŠã¯ãWindowsã®å Žåãã³ãã³ãããã³ããã§
:<syntaxhighlight lang=cmd>
å®è¡ãã¡ã€ã«å 1> ãªãã€ã¬ã¯ãå
ã®ãã¡ã€ã«å
</syntaxhighlight>
ãšå
¥åããã°ãæšæºåºåã«åºãããæååããã®ãŸãŸããªãã€ã¬ã¯ãå
ã®ãã¡ã€ã«ã«æžã蟌ãŸããŠä¿åãããŸãã
ããšãã°å®è¡ãã¡ã€ã«åãhello.exeãã§ããªãã€ã¬ã¯ãå
ãã¡ã€ã«åãridtest.txtããªã
:<syntaxhighlight lang=cmd>
hello.exe 1> ridtest.txt
</syntaxhighlight>
ãšããã³ãã³ãã«ãªããŸãã
éã®æŒç®åã®æ©èœã¯
; 1> : æšæºåºåã®ãªãã€ã¬ã¯ã
; 2> : æšæºãšã©ãŒåºåã®ãªãã€ã¬ã¯ã
ã«ãªããŸãã
CGIçšã®ãŠã§ããµãŒããŒã«ãããŠãCGIããã°ã©ã ã®åºåãåŠçããæ¹æ³ã¯è€æ°ãããŸããäžè¬çã«ã¯ãæå®ãããCGIçšã®ãã©ã«ãå
ã«ããå®è¡ãã¡ã€ã«ããªãã€ã¬ã¯ãããŠå®è¡ããããšã§ããã®åºåãããã¹ããã¡ã€ã«ãšããŠæ±ãããšãã§ããŸãããã ãããã®æ¹æ³ã¯çŸä»£ã®å®è£
ã§ã¯ããŸã䜿çšãããŠããŸããã
å®éã®çŸå Žã§ã¯ãããå¹ççãªæ¹æ³ãäžè¬çã«æ¡çšãããŠããŸããäŸãã°ãApacheãä»ã®ãŠã§ããµãŒããŒã§ã¯ãCGIããã°ã©ã ã®åºåãçŽæ¥ãã€ãã©ã€ã³ã«æž¡ããä»ã®ããã°ã©ã ãåŠçãšé£æºãããããšãã§ããŸãããã®å Žåããªãã€ã¬ã¯ããäžæãã¡ã€ã«ã®äœæãåé¿ããããŒã¿ã®åŠçãå¹ççã«è¡ãããšãã§ããŸãã
ãã€ãã©ã€ã³ã䜿çšããããšã§ãCGIããã°ã©ã ã®åºåãå¥ã®ããã°ã©ã ãåŠçã«çŽæ¥æž¡ãããšãã§ããŸããããã«ããããªã¢ã«ã¿ã€ã ã®ããŒã¿åŠçãè€éãªããŒã¿ãããŒãå®çŸããããšãã§ããŸãããŸãããã€ãã©ã€ã³ã䜿çšããããšã§ãè€æ°ã®ããã°ã©ã ãé£éãããŠããŒã¿ãåŠçããããšãå¯èœã§ãã
=== GNU/Linux ã®å Žå ===
å®è¡ãã¡ã€ã«ãã«ã¬ã³ãã»ãã£ã¬ã¯ããªã«ããå Žåã
ã¹ããªãŒã ãæå®ãããªãã€ã¬ã¯ãã®ããã®ã³ãã³ãã®æžåŒã¯ã
<pre>
./å®è¡ãã¡ã€ã«å 1> ãªãã€ã¬ã¯ãå
ã®ãã¡ã€ã«å
</pre>
ã§ããããã§ããªãã€ã¬ã¯ãå
ãã¡ã€ã«ã«ãæžã蟌ãŸããŸãã
ãã®æžåŒã¯ãsh ksh bash zsh ã«å
±éã§ãã csh ãšã¯ç°ãªããŸãã
ããšãã°å®è¡ãã¡ã€ã«å <code>hello</code> ã§ããªãã€ã¬ã¯ãå
ãã¡ã€ã«åã <code>text.txt</code> ãªã
<pre>
./hello 2> text.txt
</pre>
ãšããã³ãã³ãã«ãªããŸãã
ãªããã¹ããªãŒã çªå·ã®æå³ã¯
:<code> 1> </code> ãšãããšæšæºåºåã®ãªãã€ã¬ã¯ãïŒãã£ãã©ã«ãïŒ
:<code> 2> </code> ãšãããšæšæºãšã©ãŒåºåã®ãªãã€ã¬ã¯ã
ã«ãªããŸãã
== éçºã®åè ==
[[Perl/CGI]] ã®ããŒãžãèŠãŠãã ããã
[[Perl/ã©ã€ãã©ãªã»ã¢ãžã¥ãŒã«ãšãªããžã§ã¯ãæå]] ã®ããŒãžãã芧ãã ããã
[[w:ããã¹ããšãã£ã¿|ããã¹ããšãã£ã¿]] [[w:TeraPad|TeraPad]](ãã©ããã)çã®[[w:ããã¹ããã¡ã€ã«|ããã¹ã]](æ¡åŒµå <nowiki>*</nowiki>.txtïŒã <nowiki>*</nowiki>.cgi ã«å€ããç©ã§ããæžãããŠããå
容ã¯textãªã®ã§ã³ãŒãæå®ã¯ããã¹ããšãã£ã¿ã®ãã¡ã€ã«ãªãŒãã³ã§UTF-8ã«å€ããŠããæ¥æ¬èªã䜿ããŸããå€ããªããšæååãããŸãã
* ããœã³ã³ã§åæã®æ¡åŒµåã®è¡šç€ºãã衚瀺ãããã«ããªããšã<nowiki>*</nowiki>.cgi.txt ã«ãªã£ãŠããŸããŸããååä»ãã¯è±åãšæ°åãã䜿ããŸãããWindowsã®å Žåãã³ã³ãããŒã«ããã«ã®æ€çŽ¢ã§ãæ¡åŒµåãã§èšå®ããŠãã ããã
åäœã確èªãã ãã¹ããªãã®ã確èªãããããå¥çŽãµãŒããŒã«[[w:ã¢ããããŒã|ã¢ããããŒã]]ã[[w:FFFTP|FFFTP]]çã§ãããªããŸããçããã«æ¥œããã§ããããŸããããå±æ§(ããŒããã·ã§ã³)ã®å€æŽããå¿ããªãã
[[Perl/å¶åŸ¡æ§é ]]ã»[[Perl/ãªãã¡ã¬ã³ã¹]]ã»[[Perl/ã¯ããã«]] ãã芧ãã ããã
[[w:ãšã»ã»ã®WWWå
¥é]]ã¯ãè¯ãæ
å ±æºã«ãªããããããŸããã
æ¬æžã§ã¯[[w:Apache HTTP Server|Apache HTTP Server]]ãçšããäŸã瀺ããŸãããã»ãã«ãå€ãã®[[w:WebãµãŒã|ãŠã§ããµãŒã]]ã§CGIãå©çšå¯èœã§ãã
== Apache HTTP Server 2.2ã®çµèŸŒã¿ ==
* ãã¡ã€ã«åã¯ã以äžæå®ãªãç©ã¯ãmihon.cgiã[[w:ãã£ã¬ã¯ããª|ãã£ã¬ã¯ããª]](ãã©ã«ããŒ)ã¯ãµãŒããŒã®å Žåãªãã§ãããã§ãããtest-cgiããç¡é£ããç¥ããŸããã
* [[w:ããŒã«ã«ãµãŒããŒ|ããŒã«ã«ãµãŒããŒ]]ã®å Žåãã¢ãããã®æå®ããããã©ã«ããŒã®äžhtdocsãcgi-binã«ãtest-cgiããç¡é£ããç¥ããŸããããtest-cgiãã¯ãŠã€ã³ããŒãºã®å Žåãããããã£ã®æžãæããªã©ã®æå®ãäºææ§ã®å€æŽã確ãå¿
èŠã ã£ããšæããŸãã
* [[w:ããŒã«ã«ãµãŒããŒ|ããŒã«ã«ãµãŒããŒ]]ã®åŒã³åºãå®è¡ã¯ã<nowiki>http://127.0.0.1/test-cgi/mihon.cgi</nowiki>ããšãã<nowiki>http://127.0.0.1/cgi-bin/test-cgi/mihon.cgi</nowiki>ããã¢ãã¬ã¹ãšããŠåŒã³åºããŠãã ããã
* 127.0.0.1ã¯IPv4ã«ãããŠ[[w:localhost|localhost]]ããŒã«ã«ãã¹ãã«åœããã¢ãã¬ã¹ã§ãã
* å¥çŽãµãŒããŒã¯å Žææå®ããã£ããã説ææžããèªãŸãªããšåããŸããããpublic_htmlããtest-cgi/mihon.cgiããããªã©ã
* ã¢ãããããå±æ§(ããŒããã·ã§ã³)ãå®è¡å¯èœãª700ãŸãã¯755ãŸãã¯ãµãŒããŒæå®ã®å€ã«å€æŽããŸãã
* ããŒã«ã«ã®å Žå32bitãš64bitã®ããŒãžã§ã³ãããã®ã§æ³šæããŠãã ããããŸããã¢ãããã®å Žåãconf ã® httpd.conf ãæžãæããè¿œå ãªã©å¿
èŠã ã£ããšæããŸããããã¯ã€ã³ã¹ããŒã«ãããã¹ã¿ãŒãå
ã®ããã°ã©ã ãããåºæ¥ããšæããŸãã
** <strike>è£è¶³<br>ããã«ã€ããŠã®ããŒã ããŒãžãèŠã€ããŸãããã¢ãã¬ã¹ http://d.hatena.ne.jp/foussin/20110424/1303589811 å宀ã®å宀 443è¡ç®ä»¥äžã¯ã説æãåãã£ãŠããã®è¿œå å€æŽã ãšæããŸããæåã«åããæã¯è§Šããªãæ¹ããããšæããŸãã</strike>(ãªã³ã¯åã)
** StatãæŒããŠãé»ãç®±ãåºãŠããïŒã¡ãã£ãšåŸ
ã£ãŠãã ãããRrestatãæŒããŠåèµ·åã¯åºæ¥ãŸãããïŒåãããStopãããåŸã¯Rrestatã§èµ·åã§ãã
***ãWindowsã§ã¯éç¥é åãUSB æå·®ãçã®â²ã®äžãã«å
¥ã£ãŠããŸãã
* Perl http://www.activestate.com/ ã®äžã® ã¢ã¯ãã£ããã« http://www.activestate.com/activeperl/downloads èªåã®ããœã³ã³ãéžãã§ãããããããŒãžã¯èŠãŠãã ããã
* ããŒã«ã¯Perl64ã®å Žå64ãåã£ãŠPerlãšããŠèŠããŠçœ®ããŠãã ãããããŒã« â ã¢ããã ã®é ã§ã€ã³ã¹ããŒã«ããŠãã ããã
* éå»ã«ãŠã€ã«ã¹å¯ŸçãœãããããŒãã³ãã«ãããŠåäœãããããŸããã§ããããçŸåšã¯æ¹åãããŠãããã®ãšæãããŸãã
* Perlãªãã¡ã¬ã³ã¹ãªã©å
¬éãããŠãããªãã¡ã¬ã³ã¹(ã¬ãã¡ã¬ã³ã¹ïŒreferenceïŒãšãèšã) ãçµã¿åãããŠäžã€ã®ããã°ã©ã ãšããŠçµã¿äžããŸãã
* äžå匷ã®çºããŠã€ã³ããŠãºããæã£ãŠå±
ãªãã®ã§ããããåããŸããã詳ããã¯å çãé¡ãããŸãã
PHPãPerlãšã¯é¢ä¿ãªããäžè¬ã« Apache ã®èµ·åã®æ¹æ³ã¯ãGNU/Linux(Fedora32)ã®å Žåãã¿ãŒããã«ç»é¢ã§ãã³ãã³ã
sudo systemctl start httpd
ã§ãã(CentOS 7 以éã¯ããã®ããã§ãã)
httpd ãšã¯linuxã®å ŽåãApache ã®ããšã§ãã
ãªããæã¯
sudo service httpd start
ãšããã³ãã³ãã®ããã§ããã
Apache ãæ£åžžã«åããŠããã確ãããã«ã¯ããã©ãŠã¶ãéããã¢ãã¬ã¹ããŒã«
http://localhost
ãšå
¥åããŸãã
[[File:Apache Server 2.jpg|thumb|Apache ããŽããŒã¯ã®çŸœ]]
ããŒãžã§ã³ã«ããããŸãããApacheã®ããŽããŒã¯ã®çŸœã®çµµã®ããwebããŒãžã衚瀺ãããŠããã°ããã¶ãã€ã³ã¹ããŒã«æåããŠããã§ãããã
Apache ãçµäºããã«ã¯ãGNU/Linuxãªãã¿ãŒããã«ç«¯æ«ã§
systemctl stop httpd
ã§çµäºããŸãã
æã¯
service httpd stop
ã§çµäºã§ããã
çµäºåŸã«å
çšã® localhost ã®ãªã³ã¯å
ã«ç§»åããŠããäœãèªã¿èŸŒã¿ã§ããªãããºã§ãã(Apacheãçµäºããã®ã§ãèªã¿èŸŒã¿ã§ããªãã®ãæåã)
ããããã¢ããããã©ãã€ã³ã¹ããŒã«ããã°ãããã«ã€ããŠã¯ãããšãã°ã[[PHP/確å®ã«åäœããããŸã§]]ããªã©ã«è§£èª¬ããããŸãã(2020幎4æ21æ¥ã®æç¹ã§ã¯ããŸã Apache å°çšã®ããŒãžã¯Wikibooksæ¥æ¬èªçã«ã¯ãããŸããïŒã
GNU/Linux ã® CentOSç³»ã®å Žåããã©ã«ãéå±€ <code> var/www/html </code> ã«ãç®çã®htmlãã¡ã€ã«ãå
¥ããŸãã(ãªãããã®ãããªãã©ã«ãïŒããã«htmlãªã©ãå
¥ãããšãµãŒããŒãå
¬éããŠãããå ŽæïŒã®ããšãããã¥ã¡ã³ãã«ãŒã DocumentRoot ãšããã)
ããããããç®çã®htmlãã¡ã€ã«ãäœã£ãŠããã
ããšãã°ãserverTest.html ãšãããã¡ã€ã«ãäœã£ãŠããããã®htmlãã¡ã€ã«ãå
¬éãããå Žåã
ãŸãã
sudo cp serverTest.html /var/www/html
ãšããã³ãã³ãã«ãªããŸãã
SE Linux ããªã³ã ãšèšå®ãé¢åãªã®ã§ã
sudo setenforce 0
ã§SE Linuxããªãã§ããŸãã
ãŠã§ãã»ãã©ãŠã¶ãŒã§ <code> http://localhost/serverTest.html </code> ã«ã¢ã¯ã»ã¹ããŠãäœæããhtmlã©ããã®å
容ã衚瀺ãããã°ããããŸã§ã¯æåãïŒå€éšå
¬éããã«ã¯ããŸã äœæ¥ãç¶ããïŒ
ãã¡ã€ã«åã®éšåïŒäŸã§ã¯æ«å°Ÿã® serverTest.html ïŒã¯ãäœæããhtmlãã¡ã€ã«ã®ãã¡ã€ã«åã«ããŸãã
ãŠã§ãã»ãã©ãŠã¶ãŒã§ç¢ºèªãçµãã£ãã
sudo setenforce 1
ã§SElinuxã®èšå®ããªã³ã«æ»ãã
== Perl/CGIããã°ã©ã ã®äŸ ==
Perlã§CGIããã°ã©ã ãããå Žåã
perlã ãã§ãªã perl-CGI ãã€ã³ã¹ããŒã«ããå¿
èŠããããŸãã
GNU/Linux ã® Fedoraã®å Žåã
sudo dnf install perl perl-CGI
ã§äž¡æ¹ãšãå
¥ããŸããsudo dnf install perl ã ãã§ã¯ãperl-CGI ãã€ã³ã¹ããŒã«ãããŸããã
Fedoraã«ã€ã³ã¹ããŒã«ããå Žåãdnf ã³ãã³ãã§ã® perl-CGIã®æ«å°Ÿ3æåã®ãCGIãã¯å€§æåã§ãªããã°ãªããŸããïŒã§ãªããšããã±ãŒãžãããŒãžã£ãŒãèªèããŸããïŒã
=== ã³ãŒãäŸ ===
äžèšã®ã³ãŒãã¯ãPerlã«ããåçŽãªCGIããã°ã©ã ã®äŸã§ããCGIããã°ã©ã ã¯ãåŸè¿°ã®èšå®ãããããšã«ãŠã§ãã»ãã©ãŠã¶ãŒã§é²èŠ§ããŠç¢ºèªã§ããŸããïŒã³ãã³ã端æ«ã§ã¯ç¢ºèªã§ããªãããèãã確èªãå°é£ãïŒ
;ã³ãŒãäŸ
<syntaxhighlight lang="Perl">
#!/usr/bin/perl
print "Content-Type: text/html\n\n";
print "Hello World!\n";
</syntaxhighlight>
::(2020幎6æ2æ¥ã« Fedora 32 ã§ãã©ãŠã¶äž(Firefox 76)ã§ã®åäœã確èªãã¿ããã ãåŸè¿°ã®è¿œå èšå®ãå¿
èŠã)
text/htmlã®ããšã®ãšã¹ã±ãŒãã·ãŒã±ã³ã¹ã¯å¿
ã2〠\n\n ãšããŠãã ããããã1ã€ã ãã ãšããã©ãŠã¶ã§èŠãŠããšã©ãŒã«ãªãããHello World!ãã衚瀺ãããŸããã(ãã \n ã 1ã€ã ãã ãšã500 Internal Server Errorãã«ãªããŸãã)
;解説
* [[shebang]]
#!/usr/bin/perl
ãšããã®ã¯äœããšãããšãããã¯[[shebang]]ãšããOSã®æ©èœã§ãã€ã³ã¿ããªã¿ã«äœã䜿ãããæå®ããŸãã
æžåŒã¯ã³ã¡ã³ãæãšåæ§ã«ã#ãããå§ãŸã圢åŒçã«ã¯ã³ã¡ã³ãã§ãããã³ã¡ã³ãã§ã¯ãªãã®ã§æ¶ããªãã§ãã ãããæ¶ããšåäœããªããªããŸãïŒäŸãã°ãbash ã®ããã³ããããå®è¡ãããš bash ã¹ã¯ãªãããšã㊠perl ã¹ã¯ãªãããå®è¡ããŠããŸããŸãããããã bash ã®æ§æã§ã¯ãªãã®ã§ãšã©ãŒã«ãªããŸãïŒã
Perlã ãã§ãªãUnixç³»ã®ã·ã§ã«ã¹ã¯ãªãããªã©ä»ã®ããã°ã©ã èšèªã§ãåæ§ã«[[shebang]]ãèšè¿°ããäºããããŸãã
{{See also|shebang}}
* shebang ã¯ãå¿
ããã¡ã€ã«ã®ïŒè¡ç®ã«ãªããã°ãããŸãã
* HTTPã¬ã¹ãã³ã¹ã»ããããŒ
Content-Type: text/html
ã¯ãHTTPã¬ã¹ãã³ã¹ã»ããããŒã®äžéšã§ããŠã§ãã»ãã©ãŠã¶ãŒãªã©ãŠãŒã¶ãŒã»ãšãŒãžã§ã³ãã¯ãHTMLæ¬äœãšã¯å¥ã«ãåä¿¡ããããšããæ
å ±ã®çš®é¡ãªã©ã®æåããã®ããã« HTTPããããŒãéåä¿¡ããã£ãŠãŸã(Perlã®å Žåã¯ãCGIããããŒããšããããHTTPã¬ã¹ãã³ã¹ã»ããããŒããšåºå¥ããŠããŸãããWebãµãŒããããããŒèŠçŽ ãè¿œå ããå¯èœæ§ãããçºã§ã)ã
ãã®HTTPã¬ã¹ãã³ã¹ã»ããããŒã§éåä¿¡ãããæ
å ±ã®ã²ãšã€ã«ãContent-Type: ãããããŒããããŸãããContent-Type: text/htmlããšããããããŒã«ãã£ãŠãããããããã¹ãã®ïŒã€ã§ããHTMLãéãããšçžæå
ã«äŒããŠããŸãã
;ã³ãŒãäŸ2
HTMLã®ãœãŒã¹ã³ãŒããéãããå Žåã¯ãäžèšã®ããã«æžããŸãã
<syntaxhighlight lang="Perl">
#!/usr/bin/perl
print "Content-Type: text/html\n\n";
print "<!DOCTYPE html>\n";
print "<html>\n";
print "<head>\n";
print "<title>Example Web Page</title>\n";
print "</head>\n";
print "<body>\n";
print "<p>Hello, world!</p>\n";
print "</body>\n";
print "</html>\n";
</syntaxhighlight>
ãããå®çšçã«ã¯ãäžèšã®ããã«ããã°ã©ã ãæžããã»ããã©ã¯ã§ãããã
;ã³ãŒãäŸ3
<syntaxhighlight lang="Perl">
#!/usr/bin/perl
use strict;
use warnings;
print <<"EOT";
Content-Type: text/html; charset=UTF-8
<!DOCTYPE html>
<html>
<head>
<title>Example Web Page</title>
</head>
<body>
<p>Hello, world!</p>
</body>
</html>
EOT
</syntaxhighlight>
;解説
use warnings; ãšã¯äœããšãããšãããã¯ããã°ã©ã äžã«ãšã©ãŒããã£ããèŠåãåºããšããæå³ã§ããPerlã¯ããã°ã©ã èšèªã§ãã®ã§ããšã©ãŒãèµ·ããããŸãããã®ãšã©ãŒã®éã«èŠåãåºããšããæå³ã§ãã
ã§ãããããã¯ã³ãã³ã端æ«ã§å®è¡ããŠããå Žåã®ããã·ã§ãã
ãŠã§ãã»ãã©ãŠã¶ãŒã§èŠãŠããå Žåããã®ãããªæ°ã®ãããèŠåã¯ããŠãããŸããã
ãŸããuse warnings; ã¯èŠåãããã ãã§ãã®ã§ããã®ãŸãŸããã°ã©ã ãå®è¡ããŸãããã£ããŠãæ°ãããããŠããã°ã©ã åæ¢ãããã¯ããŸããã
use strict; ã¯ãããã°ã©ã ã®åæ¢ãªã©ãå«ããŠãããå³æ Œã«å€å®ããã³åŠçœ®ãããŸãã
ãªã®ã§ãäžèšããã°ã©ã ãã use warnings; ããã³ use strict; ãé€å»ããŠãããŠã§ãã»ãã©ãŠã¶ãŒäžã§è¡šç€ºããäºã¯å¯èœã§ãã
=== å¿
èŠãªè¿œå èšå® ===
ãã®ãã¡ã€ã«ã¯ãæ¡åŒµåãããªããã.cgiãã«ããŠãã ãããïŒæ¡åŒµåã.cgiããŸãã¯ã.plãã«ããªããšãä»åŸã®èšå®ãé¢åã«ãªããŸããïŒ
ãã®ãã¡ã€ã«ãããã©ã«ãéå±€
/var/www/cgi-bin
ã®äžã«é
眮ããŸãã
ãã cgi-bin ãã©ã«ãããŸã äœããŠããªãå Žåãperl-CGIããŸã ã€ã³ã¹ããŒã«ãããŠãªããšæãããã®ã§ããŸãperl-CGIãã€ã³ã¹ããŒã«ããŠãã ããã
ææè
ãrootã«ãªã£ãŠããªã©ã§ãé
眮ã§ããªããªã
sudo chown ãŠãŒã¶ãŒå /var/www/cgi-bin
ã§ææè
ãå€æŽã§ããŸãã
åé ã®
#!/usr/bin/perl
ã®éšåã¯ãç°å¢ã«ãã£ãŠã¯
#!/usr/local/bin/perl
ã®å ŽåããããŸãã
ãã®éšå #!/usr/local/bin/perl ã¯ãperlã®ã€ã³ã¿ããªã¿ãåŒåºããŠã¹ã¯ãªãããæž¡ãããã®æ瀺ã§ãã
ãããperlã€ã³ã¿ããªã¿ã®ãã€ããªã®ååšå Žæããããã«ã¯ãã³ãã³ã
which perl
ã§æ¢ããŸãã
;ã³ãã³ãå®è¡äŸ
$ which perl
/usr/bin/perl
ãããŠãå¶äœãããµã³ãã«ãã¡ã€ã«ã¯ãã¢ã¯ã»ã¹æš©ã®èšå®ã§ãããã°ã©ã ãšããŠå®è¡å¯èœãã«ãã§ãã¯ããã¯ã¹ãå
¥ããŠãã ãããå³ã¯ãªãã¯ã§çŸãããã€ã¢ãã°ããèšå®ã§ãããšæããŸãã
ã€ã³ã¿ãŒããªã¿ãŒãžã®ãã¹ãããããªãå Žåã¯ããããã¯è²ã
ãªç°å¢ã§åããããšãæ³å®ãããå ŽåïŒæ¬æžããã®ã±ãŒã¹ã§ãïŒ
#!/usr/bin/env perl
ã®æ§ã« POSIX ã§ãã¹ã決ãŸã£ãŠãã env(1) ãåŒåºããïŒçµ¶å¯Ÿãã¹ã§ãªãïŒã³ãã³ãåã§ã€ã³ã¿ãŒããªã¿ãŒãæå®ããŸãã
ãããããšãenv ã¯ç°å¢å€æ°PATHã®äžããé ã« ã€ã³ã¿ãŒããªã¿ãŒ ãæ¢ããèŠã€ãã£ãã€ã³ã¿ãŒããªã¿ãŒã«ã¹ã¯ãªãããæž¡ãèµ·åããŸãã
----
ãããããµãŒããApacheã®å ŽåããŸã§ããããã ãã§ã¯åããŸããã
Apacheã¯åæèšå®ã§ã¯ãcgiã¹ã¯ãªãããåãããªãèšå®ã«ãªã£ãŠããŸãããªã®ã§ããŸãããã®åæèšå®ãæžãæããå¿
èŠããããŸãã
cgiã¹ã¯ãªãããåãããããã«èšå®ãå€æŽããããã«ãèšå®ãã¡ã€ã«ã® httpd.conf ãšãããã¡ã€ã«ãæžãæããŠã
AddHandler cgi-script .cgi
ãšããæç« ãè¿œå ããå¿
èŠããããŸãã
ãªããéåžžã®apacheã§ã¯ããã§ã«ã³ã¡ã³ãã¢ãŠããããç¶æ
ã§
#AddHandler cgi-script .cgi
ãšããã®ã§ãåã«åé ã®ã³ã¡ã³ãã¢ãŠãèšå·#ãã¯ããã°ããã ãã§ãã
ãã®æžãæãã«ãããæ¡åŒµå .cgi ã®ãããã¡ã€ã«ããcgiã¹ã¯ãªãããšããŠåŠçã§ããããã«ãªããŸãã
ãªããperlãªã©ã§äœ¿ãããæ¡åŒµå ã.plãã®ãã¡ã€ã«ãCGIã¹ã¯ãªãããšããŠå®è¡ããããªããäžèšã® AddHandler ã«
#AddHandler cgi-script .cgi .pl
ãšã.plããè¿œå ããã ãã§æžã¿ãŸãã
ãã ãã管çè
ãéåžžã§ã¯ root ã«ãªã£ãŠããã®ã§ããã®ãŸãŸã§ã¯ãæžãæãã§ããŸããããªã®ã§GNU/Linuxã®å Žåãã³ãã³ãã§
sudo chown ãã°ã€ã³ãŠãŒã¶å /etc/httpd/conf/httpd.conf
ã§ã管çè
ãå€ããŠããã管çè
èšå®ãæžãæããããšã«ãªããŸãã
æžãæããçµãã£ãããapache ãç«ã¡äžãçŽããŸãã
ãããŠããŠã§ãã»ãã©ãŠã¶ãŒã§
http://localhost/cgi-bin/ãã¡ã€ã«å.cgi
ã«ã¢ã¯ã»ã¹ããŠãã ããã
;å®è¡çµæ
ãã©ãŠã¶ç»é¢äžã«
Hello, world!
ãšè¡šç€ºãããŠããŸãããŸãããã®ããŒãžã®ã¿ã€ãã«ãšããŠãã¿ãæ¬ãªã©ã«ãExample Web PageããšæžããŠãããŸãã
=== HTMLãšã®é£åã®äŸ ===
ã§ã¯ãããå®çšçãªããã°ã©ã ãèŠãŠãããŸãããã
äžèšã®ããã°ã©ã ã¯ãå
¥åããæååããhtmlã®ãã©ãŒã æ©èœã䜿ã£ãŠå¥ãã¡ã€ã«(äŸã§ã¯ catchtest.cgi ) ã«éãããã°ã©ã ã§ãã
;ã³ãŒãäŸ:<syntaxhighlight lang="Perl">
#!/usr/bin/env perl
print <<"EOT";
Content-Type: text/html; charset=UTF-8
<!DOCTYPE html>
<form action="catchTest.cgi" method="post">
ãŠãŒã¶ãŒåãç»é²: <input type="text" name="username">
<input type="submit" value="ç»é²">
</form>
EOT
</syntaxhighlight>
â» ã[[PHP/HTMLãã©ãŒã ããã®ããŒã¿åãåã]]ããšåäœå
容ã¯åãã§ãã
ãã®ããã«ããã¿ãŒã³ãšããŠ
<syntaxhighlight lang="Perl">
#!/usr/bin/env perl
print <<"EOT";
Content-Type: text/html; charset=UTF-8
<!DOCTYPE html>
# ããã«æžãããHTMLã®ãœãŒã¹ã³ãŒããæžã
# äžç¥
EOT
</syntaxhighlight>
ãšãããããªæžåŒã§ãåã« <nowiki><!DOCTYPE html></nowiki> ãš <nowiki> EOT </nowiki> ã®ããã ã«ãã決ãŸãã®ãã¿ãŒã³ã®ã³ãŒããæžãã ãã§ãå
¥åºåæ©èœã®ãããã¡ãŒã ãç°¡åã«äœããŸãã
----
äžèšã®ã³ãŒãã®é·ç§»å
ã®ããŒãžã¯ãäžèšã®ããã«ã€ãããŸã
;ã³ãŒãäŸ
<syntaxhighlight lang="Perl">
#!/usr/bin/env perl
print "Content-type: text/html\n\n";
$msg = ""
if ($ENV{'REQUEST_METHOD'} eq "POST") {
read(STDIN, $msg, $ENV{'CONTENT_LENGTH'});
}
else {
$msg = $ENV{'QUERY_STRING'};
}
print " $msg ãšå
¥åãããŸããã";
</syntaxhighlight>
;å®è¡çµæ
ããšãã° ggggggg ãšãã©ãŠã¶ã«è¡šç€ºãããå
¥åããã¯ã¹ã«ããŠãã¿ã³ãç»é²ããæŒããšã
username=ggggggg ãšå
¥åãããŸããã
ãšè¡šç€ºãããŸãã
:ïŒä»¥äžãå®è¡çµæïŒ
;解説
ãŸããé·ç§»å
ã®ããŒãžã«ãã[[shebang]]ãHTTPã¬ã¹ãã³ã¹ã»ããããŒãå¿ããªãããã«ããŸãããïŒç¡ããšãšã©ãŒã«ãªããŸã(Internal Server Error ãªã©) ïŒã
äžèšã³ãŒãã® ifæ ãš elseæ ã¯ã決ãŸãæå¥ã§ãã $msg以å€ã¯ãã¹ãŠãPerlã§ã®æ±ºãŸãæå¥ã§ããSTDINã¯æšæºå
¥åã®ããšã§ãã
Perlã§ã¯ãformã¿ã°ããã®POSTã®åãåãã¯ãæšæºå
¥å STDIN ãéããŠåãåããè¡ãããä»æ§ã§ãã
ç°å¢å€æ°ãšã㊠REQUEST_METHOD ã CONTENT_LENGTH ã QUERY_STRING ãšããç°å¢å€æ°ããããããçšæãããŠããŸãããªã®ã§äžèšã³ãŒãã§ã¯ããã®å€æ°ã¯ãã®ãŸãŸäœ¿ãå¿
èŠããããŸãïŒåæã«ååãå€ããŠã¯ã€ã±ãã€ïŒã
ãªããç°å¢å€æ°ãè±èªã§ environmental variable ãšèšããŸãã
if ($ENV{'REQUEST_METHOD'} eq "POST")
ãšããã®ã¯ããããããããç°å¢å€æ° REQUEST_METHOD ã POST ãªãã ã®ãããªæå³ã§ãã
ç°å¢å€æ° REQUEST_METHOD ã«ã¯ããã©ãŒã ãåŒã³åºããæã®ãªã¯ãšã¹ãã®çµæãPOSTãŸãã¯GETã®ã©ã¡ãããšããŠå
¥ã£ãŠããŸãã
{| class="wikitable" style="float: right;"
|+ ç䟡æŒç®å
|-
! style="text-align: center;" | æ°å€ãšããŠè©äŸ¡
! style="text-align:center" | æåãšããŠè©äŸ¡
! æå³
|-
| ==
| style="text-align:center"| eq
|çããå Žåã«ç
|-
| !=
| style="text-align:center"| ne
|çãããªãå Žåã«çã
|-
|}
eq æŒç®åã¯ããeqã®å·Šå³ã®äž¡èŸºãããæååãšããå Žåã«ã䞡蟺ãçãããïŒãã調ã¹ãæŒç®åã§ãã
ãã£ãœãã<nowiki>==</nowiki> æŒç®åã¯ã䞡蟺ãæ°å€ãšããå Žåã«çãããã調ã¹ãæŒç®åã§ãã(Cèšèªãšéã£ãŠãPerlã§ã¯å€æ°ã®å®£èšæã«åæå®ãç¡ãã®ã§ãæ¡ä»¶åå²ifæã§ã¯ããããã£ãæŒç®åã®åºå¥ãå¿
èŠã«ãªããŸãã)
ãªã®ã§ããã£ã㊠eqæŒç®åã®éšåã <nowiki>==</nowiki> æŒç®åã«å€ããŠã¯ãã¡ã§ãã
ãªãã䞡蟺ãçãããªãå Žåã«ã€ããŠã¯ãæåãšããŠè©äŸ¡ããå Žåã«ã¯ ne æŒç®åãæ°å€ãšããŠè©äŸ¡ããå Žåã«ã¯ != æŒç®å ã§ãã
ããŠã衚瀺çµæã® username ãšããã®ã¯åã«ãåæã«ã€ãããªããžã§ã¯ãåã§ãããåŒã³åºãå
ã®ãã¡ã€ã«ã®HTMLã¿ã°ã§åæã«åœåãããªããžã§ã¯ãåã§ãã®ã§ããããã®ãªããžã§ã¯ãåãå€ããã°ã衚瀺çµæã®å·ŠèŸºã®ãã®éšåã¯ååã«ãªããŸãã
çµå±
ãªããžã§ã¯ãå = åãåã£ãå
容
ã®ããã«ããªããžã§ã¯ãåãšäžç·ã«ãPerlã§ã¯ POST ã§åãåã£ãå
容ã管çããä»çµã¿ã§ãã
=== é«åºŠãªäŸ ===
ããé«åºŠãªCGIããã°ã©ã ã¯æ¬¡ã®ããã«ãªããŸãã
<syntaxhighlight lang="Perl">
#!/usr/local/bin/perl
use strict;
use warnings;
use CGI;
my $q = CGI->new;
print $q->header( -charset => "UTF-8" );
print $q->start_html( -title => "Example Web Page" );
print $q->p("Hello, world!");
print $q->end_html;
</syntaxhighlight>
äžèšã®æžãæ¹ã¯ãä¿¡ããããªãæ€ç©ãããŠã³ããŒããã§æ€çŽ¢ããŠãåèã«èŠãŠãã ãããCGIã®ã²ãŒã ã§ãã
ã¡ãã£ãšå€ãèŠãªããæ§æ ãªãªãžãã«ã§ããprintã¯äžè¬çã«äœ¿ãããŠããŸãã
<syntaxhighlight lang="Perl">
#!C:/Perl/bin/perl
#äžã¯å¿
ãäžè¡ç®ã«æžããŠããŒã«ã«ãã¹ã C:\Perl\bin\perl.exeã䜿ããšèšãå®çŸ©ã§ããã³ã¡ã³ããæžããŸããã
print "Content-type:text/html\n\n"; #\næ¹è¡ããµãã€å¿
èŠã§ãã¯ãããŒã¯äžã«æžããŸãã
print <<EOF ;
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<html>
<head>
<title>ãŠããš</title>
</head>
<BODY BGCOLOR="#ffffff">
<h1>test</h1>
EOF
print "åãããªã<br>\n"; #print ã«ç¶ãç©ãããã°ã©ã ã§ããããããŒãšããã¿ã«åå²ããŠãµãã«ãŒãã³ãšããäºãã§ããŸãã
print <<"EOF" ;
</BODY>
</html>
EOF
exit;
__END__
</syntaxhighlight>
*ç·šéè
ã®çµéšã«ããæèŠãå
¥ãããç¥ããŸãããèªè«ãæŒãä»ããæ°ã¯ãããŸããã
* cgi-lib.pl(èäœæš©ãããšèšããã®ããããã³ãŒããããããããããŒãããã¿ãæžãåºãã«ã¯äŸ¿å©ã§ãããèéãå©ããªããšããé£ç¹ããããŸãã
*æè¿ãCSSã䜿ãäºãå€ããªããŸãããã察å¿ç¶æ³ãå€ããŸããã
*JavaScriptããã£ãããããããŒã®å¯èŠæ§ãäžååã§ãã
* [https://ja.wikipedia.org/wiki/Jcode.pl jcode.pl]ïŒèäœæš©ããïŒãããèŠãããŸããæžããèšèªãšåãèšèªãéåžžæ»ã£ãŠããŸããã¡ãŒã«çš[https://ja.wikipedia.org/wiki/Sendmail Sendmail]ã®[https://ja.wikipedia.org/wiki/JIS%E6%BC%A2%E5%AD%97%E3%82%B3%E3%83%BC%E3%83%89 JISã³ãŒã]ã«å€æãããã«ã¯éåžžã«äŸ¿å©ã§ããcgiããã¡ãŒã«ãéä¿¡ããªãå Žåã¯å
éšã§èšèªå€æãããªãã®ãªãã°ãããŸãå¿
èŠãšæããŸããã
*ã§ã¯ããã³ãŒããã©ã®æ§ã«çµããæžããŠãããŸããcgi-lib.plïŒèäœæš©ããïŒã䜿ããš$in{'éãããŠããããŒã¿'}ãšè¿ãããŸãã®ã§$In{'éãããŠããããŒã¿'}ãšæžãæããŸãã
<syntaxhighlight lang="Perl">
#!C:/Perl/bin/perl
#äžèšã¯ãµãŒããŒã§åããæã¯ãµãŒããŒã®ä»æ§æžãèŠãŠå€ããŠãã ããã
#!/usr/local/bin/perl
# ãã®cgiã®åå
$this_cgi = "mihon.cgi";
# GETã§ã®åã蟌ã¿ãçŠæ¢ããŸãã1ããŸãã¯ã0
$getin = 0;
# ãã¡ã€ã«ã®ãµã€ãºæå®
$max_size = 100;
&decode;
&header;
&main;
&footer;
exit;
####### ã¡ã€ã³åŠç ######
sub main{
print 'ããªã㯠';
print "$In{'kakikomi'}";
print 'ããšæžã蟌ã¿ããŸãããã<br><br>'; # å
šè§ç©ºçœã¯æååãã®çº ''ã䜿ã£ãŠå²ãã
print << "EOF" ;
<br>
<form action="$this_cgi" method="POST">
<input type="text" name="kakikomi" size="40" maxlength="30">
<input type="submit" value="éä¿¡ãã">
</form>
EOF
}
#######ããããŒåºå
sub header {
print "Content-type:text/html\n\n";
print <<"EOF" ;
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<html>
<head>
<title>èŠæ¬1</title>
</head>
<BODY BGCOLOR="#ffffff">
EOF
}
#ãã³ãŒãåŠç
sub decode {
my ($query,$pair);
if($ENV{'REQUEST_METHOD'} eq 'POST') {
read(STDIN, $query, $ENV{'CONTENT_LENGTH'});
} else {
$query = $ENV{'QUERY_STRING'};
if ($query ne "" && $getin == 1){&err("GET");}
}
my ($saizu)=length $query;
if ($saizu > $max_size){&err("ãšã©ãŒã»ãµã€ãºãªãŒããŒ");}
foreach $pair (split(/&/, $query)) {
my ($key, $value) = split(/=/, $pair);
# æåã®ãã³ãŒã
$value =~ s/%([0-9a-fA-F][0-9a-fA-F])/chr(hex($1))/eg;
$value =~ s/\0/0/g;
$value =~ s/</</g;
$value =~ s/>/>/g;
$value =~ s/\r\n/<br>/g; #è¿œå
$value =~ s/\r|\n/<br>/g;
$value =~ tr/+/ /;
$In{$key} = $value;
}
}
### ããã¿ #########
sub footer{
print "<br><br><table border='1'>";
print "<tr><th>ãã©ãŒã èŠçŽ å</th><th>ããŒã¿</th></tr>";
foreach $key (keys %In) {
print "<tr><th>$key</th><td>$In{$key}</td></tr>\n";
}
print "</table><br>";
print <<"EOF" ;
</BODY>
</html>
EOF
exit;
}
###### ãšã©ãŒ ########
sub err{
&header;
print 'ãšã©ãŒ'."<br>\n";
print "$_[0]<br>\n";
&footer;
exit;
}
</syntaxhighlight>
== Perl/CGIããã°ã©ã ã®äŸ2 ==
* å°ãé£ãããªã£ãŠããŸãããHTMLã®ç¥èãã¹ã¿ã€ã«ã·ãŒãã®çµã¿èŸŒã¿ããžã£ãã¹ã¯ãªããã®æžã蟌ã¿ãè¿œå ã«ãªã£ãŠããŸãã
* ããã¯ãã¡ã€ã«ããã©ã«ãã®å¥œãŸãããªãç¹ãäžãããšããã£ã¡ããã£ã¡ãããã¯ã«æ¥ãŠããã¯ããã«çšŒåã«ãªã£ãŠããŸãããšã§ãã
* ã€ãŸããããã¯ã®åæ£åãå¿
èŠã«ãªããŸãããã¡ã€ã«ãã³ãã«ã§å¥åã䜿ããã¡ã€ã«ã«ãã£ãŠä»ããŠããã°ããã¡ã€ã«ãã³ãã«ã®è¡çªãèµ·ããªãããã¡ã€ã«ã®è¡çªãåŸ
ã¡æéã®è»œæžã«ãªããšæããŸãã
* ãããèžãŸããäžã§çµãã§èŠãŸããã
* ã©ã³ãã ãã·ãŒããäžããªããã°ã¿ã€ã ãèªåçã«ãªããŸãã
* ãèŠæãããã°ãã£ãšè©³ããæžããŸããããšãããããããªç©ããšæžãå ããŠè©ŠããŠã¿ãã®ãç®çã«çµã¿ãŸããã
<syntaxhighlight lang="Perl">
#!d:/Perl/bin/perl
#äžèšã¯ãµãŒããŒã§åããæã¯ãµãŒããŒã®ä»æ§æžãèŠãŠå€ããŠãã ããã
# ãã®cgiã®åå
$this_cgi = "mihon.cgi";
# GETã§ã®åã蟌ã¿ãçŠæ¢ããŸãã1ããŸãã¯ã0
$getin = 0;
# ãã¡ã€ã«ã®ãµã€ãºæå®
$max_size = 100;
# ã«ãŠã³ã¿ãã¡ã€ã«
$cntfile = './count.cgi';
# ç¡ãæã«èªåçã«äœæãã
unless(-e "$cntfile"){
open (FOUT, "> $cntfile") or &err("ãšã©ãŒã»ãã¡ã€ã«ãäœããŸããã");
close (FOUT);
chmod 0600,$cntfile;
}
#
# ã«ãŠã³ã¿ã®æ¡æ°
$mini_fig = 6;
# èšé²ãã¡ã€ã«ã®åå
$datafile = './kiroku.cgi';
# ç¡ãæã«èªåçã«äœæãã
unless(-e "$datafile"){
open (FOUT, "> $datafile") or &err("ãšã©ãŒã»ãã¡ã€ã«ãäœããŸããã");
close (FOUT);
chmod 0600,$cntfile;
}
#
####--------------------------------------------------------
&decode;
&header;
&main;
&footer;
exit;
######### ã«ãŠã³ã¿åŠç
sub counter {
local($count,$cntup);
# ã«ãŠã³ããã¡ã€ã«ãèªã¿ãã¿
open(CUNT,"< $cntfile") || &err("Open Error: cntfile","in");
eval{flock(CUNT, 1);};
$count = <CUNT>;
close(CUNT);
local($local_time);
local($cnt,$kiroku_day,$keika_day,$today,$yestaday) = split(/<>/, $count);
$local_time = time + (9*60*60);#GMT+9:00è£æ£
if (!$kiroku_day){
$kiroku_day = $local_time - ($local_time % (24*60*60));
}
if ($local_time - $kiroku_day > 24*60*60){
$keika_day += int(($local_time - $kiroku_day)/(24*60*60));
if ($local_time - $kiroku_day > 2*24*60*60){
$yestaday = 0;
}else{$yestaday = $today;}
$kiroku_day = $local_time - ($local_time % (24*60*60));
$today = 0;
}
$today++;
if (!$keika_day){$keika_day = 0; }
if (!$yestaday){$yestaday = 0; }
$cnt++;
open(CUNT,"> $cntfile") || &err("Write Error: cntfile","in");
eval{flock(CUNT, 2);};
print CUNT "$cnt<>$kiroku_day<>$keika_day<>$today<>$yestaday<>\n";
close(CUNT);
# æ¡æ°èª¿æŽ
while(length($cnt) < $mini_fig) { $cnt = '0' . $cnt; }
#æéã®æŽåœ¢
$date_sec = time;
($sec,$min,$hour,$mday,$mon,$year,$wday) = localtime($date_sec);
# local($sec,$min,$hour,$mday,$mon,$year,$wday) = localtime($date_sec); # æ¥æã䜿ããããã«éæŸ
local @week = ('Sun','Mon','Tue','Wed','Thu','Fri','Sat');
local $m_week = $week[$wday];
$date = sprintf("%04d/%02d/%02d(%s) %02d:%02d:%02d",$year+1900,$mon+1,$mday,$week[$wday],$hour,$min,$sec);
print "<table border=\"0\">\n";
print "<tr><td rowspan=\"3\">\n";
print "<font size=\"6\"class=\"kazu\">$cnt</font><br>\n";
print "</td><td><font size=\"2\">çµé</font></td><td><font size=\"2\">$keika_day</font></td></tr>\n";
print "<tr><td><font size=\"2\">ä»æ¥</font></td><td><font size=\"2\">$today</font></td></tr>\n";
print "<tr><td><font size=\"2\">æšæ¥</font></td><td><font size=\"2\">$yestaday</font></td></tr>\n";
print "<tr><td colspan=\"3\"><font size=\"2\"><form name=\"Watch0\"><input type=\"text\" name=\"watch01\" size=\"25\"></form></font></td></tr>\n";
print "</table><br>\n";
}
##### èšé²éã³
sub asobkiroku {
$detskazu = int(rand(10))+1;
if(6 <= $detskazu){$asobimese = 'ããªãã®åã¡';}else{$asobimese = 'ããªãã®è² ã';}
open(DATS,"< $datafile") || &err("Open Error: datafile","in");
eval{flock(DATS, 1);};
@datas = <DATS>;
close(DATS);
unshift @datas,"$detskazu<>$asobimese<>$In{'kakikomi'}<>$date<>\n";
if(@datas > 10){$#datas = 9;}
open(DATS,"> $datafile") || &err("Write Error: datafile","in");
eval{flock(DATS, 2);};
print DATS @datas;
close(DATS);
foreach (@datas){
($b_detskazu,$b_asobimese,$b_kakikomi,$b_date) = split(/<>/);
if($b_detskazu >=6){
print "<font class=\"kachi\">$b_detskazu $b_asobimese ã³ã¡ã³ã:$b_kakikomi $b_date</font><br>\n";
}else{
print "$b_detskazu $b_asobimese ã³ã¡ã³ã:$b_kakikomi $b_date<br>\n";
}
}
}
####### ã¡ã€ã³åŠç ######
sub main{
&counter;
print 'ããªã㯠';
print "$In{'kakikomi'}";
print 'ããšæžã蟌ã¿ããŸãããã<br><br>'; # å
šè§ç©ºçœã¯æååãã®çº ''ã䜿ã£ãŠå²ãã
&asobkiroku;
print << "EOF" ;
<br>
<form action="$this_cgi" method="POST">
<input type="text" name="kakikomi" size="40" maxlength="30">
<input type="submit" value="éä¿¡ãã">
</form>
EOF
}
#######ããããŒåºå
sub header {
print "Content-type:text/html\n\n";
print <<"EOF" ;
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<meta tttp-equiv="Content-Script-Type" content="taxt/javascript">
<meta http-equiv="Content-Style-Type" content="text/css">
<title>èŠæ¬2</title>
<script language="JavaScript">
<!--
function DayWatch() {
var day = new Date();
if ( day.getYear() >= 2000 ){ var year = day.getYear() }
else { var year = day.getYear() +1900 }
var month = day.getMonth()+1;
var date = day.getDate();
if (month < 10) { //æ.æ¥ãäžæ¡ã®æé ã«0ãä»ããåŠç
month = "0" + month;
}
if (date < 10) {
date = "0" + date;
}
var time = new Date();
var hour = time.getHours();
var min = time.getMinutes();
var sec = time.getSeconds();
if (hour < 10) { //æã»åã»ç§ã1æ¡ã®æé ã«0ãä»ããåŠç
hour = "0" + hour;
}
if (min < 10) {
min = "0" + min;
}
if (sec < 10) {
sec = "0" + sec;
}
document.Watch0.watch01.value = year +"/"+month+"/"+date+" "+hour+':'+min+':'+sec;
setTimeout("DayWatch()", 1000);
}
//-->
</script>
<style type="text/css">
<!--
.kazu{
color: #ff0000;
}
.kachi{
color: #0000ff;
}
-->
</style>
</head>
<BODY BGCOLOR="#ffffff" onLoad="DayWatch()">
EOF
}
#ãã³ãŒãåŠç
sub decode {
my ($query,$pair);
if($ENV{'REQUEST_METHOD'} eq 'POST') {
read(STDIN, $query, $ENV{'CONTENT_LENGTH'});
} else {
$query = $ENV{'QUERY_STRING'};
if ($query ne "" && $getin == 1){&err("GET");}
}
my ($saizu)=length $query;
if ($saizu > $max_size){&err("ãšã©ãŒã»ãµã€ãºãªãŒããŒ");}
foreach $pair (split(/&/, $query)) {
my ($key, $value) = split(/=/, $pair);
# æåã®ãã³ãŒã
$value =~ s/%([0-9a-fA-F][0-9a-fA-F])/chr(hex($1))/eg;
$value =~ s/\0/0/g;
$value =~ s/</</g;
$value =~ s/>/>/g;
$value =~ s/\r\n/<br>/g; #è¿œå
$value =~ s/\r|\n/<br>/g;
$value =~ tr/+/ /;
$In{$key} = $value;
}
}
### ããã¿ #########
sub footer{
print "<br><br><table border='1'>";
print "<tr><th>ãã©ãŒã èŠçŽ å</th><th>ããŒã¿</th></tr>";
foreach $key (keys %In) {
print "<tr><th>$key</th><td>$In{$key}</td></tr>\n";
}
print "</table><br>";
print <<"EOF" ;
</BODY>
</html>
EOF
exit;
}
###### ãšã©ãŒ ########
sub err{
if($_[1] ne "in"){
&header;
}
print 'ãšã©ãŒ'."<br>\n";
print "$_[0]<br>\n";
&footer;
exit;
}
</syntaxhighlight>
* äžèšã®ããã°ã©ã ã¯äžè¬çã§ã¯ç¡ãããç¥ããŸãããprintæã§äžæ°ã«æžãåºãã®ã楜ã§ããåããããã§ãã ãªã®ã§ãã¢ãžã¥ãŒã«ã¯äœ¿çšããããªãã®ã§ããPerlã§ã¯ãã¢ãžã¥ãŒã«åããŠçµã¿èŸŒãäºãåºæ¥ãŸãã
* äžèšã®ããã°ã©ã ã¯åçã«åããã«ã¯ã¯ãããŒãšãœãŒããé
åã®äžã®ç¬¬äžå€æ°ãåç
§ããŠã䞊ã¹æ¿ããè¡ã£ãŠããŸãã
* åããªãåèªã¯ããã§ã¯ããã°ã©ãã³ã°ã«ã€ããŠã®èšè¿°ã«ãªãã®ã§ããã§ã¯è§ŠããŸããããªãã¡ã¬ã³ã¹ãäºå
žãåç
§ããŠãã ããã
<syntaxhighlight lang="Perl">
#!d:/Perl/bin/perl
#äžèšã¯ãµãŒããŒã§åããæã¯ãµãŒããŒã®ä»æ§æžãèŠãŠå€ããŠãã ããã
# ãã®cgiã®åå
$this_cgi = "mihon.cgi";
# GETã§ã®åã蟌ã¿ãçŠæ¢ããŸãã1ããŸãã¯ã0
$getin = 0;
# ãã¡ã€ã«ã®ãµã€ãºæå®
$max_size = 100;
# ã«ãŠã³ã¿ãã¡ã€ã«
$cntfile = './count.cgi';
# ç¡ãæã«èªåçã«äœæãã
unless(-e "$cntfile"){
open (FOUT, "> $cntfile") or &err("ãšã©ãŒã»ãã¡ã€ã«ãäœããŸããã");
close (FOUT);
chmod 0600,$cntfile;
}
#
# ã«ãŠã³ã¿ã®æ¡æ°
$mini_fig = 6;
# èšé²ãã¡ã€ã«ã®åå
$datafile = './kiroku.cgi';
# ç¡ãæã«èªåçã«äœæãã
unless(-e "$datafile"){
open (FOUT, "> $datafile") or &err("ãšã©ãŒã»ãã¡ã€ã«ãäœããŸããã");
close (FOUT);
chmod 0600,$cntfile;
}
#
# ç»é²ããã¯ãããŒã®åå
$COOKIE_NAME = 'mihon';
# ã¯ãããŒã®æå¹æé
$COOKIE_LIFE = 7;
#åã蟌ã¿ãã¡ã€ã«ã®äžæºåéåžžã¯å¥ãã¡ã€ã«ãšããŠäœããŸãã
$require_txt = "errgo.cgi";
# ç¡ãæã«èªåçã«äœæãã
unless(-e "$require_txt"){
open (FOUT, "> $require_txt") or &err("ãšã©ãŒã»ãã¡ã€ã«ãäœããŸããã");
print FOUT "sub err_go { &err(\"ãšã©ãŒã¯ãšã¹ãããããŸããã\");}\n1;\n"; #ãã¡ã€ã«ã®çµããã«ã¯ã1;ããå¿
èŠãåºæ¥ããã¡ã€ã«ãèŠãŠãã ããã
close (FOUT);
chmod 0600,$require_txt;
}
####--------------------------------------------------------
require './errgo.cgi';
#sub err_go { &err("ãšã©ãŒã¯ãšã¹ãããããŸããã");}
&decode;
&cookie_in;
if($In{'kakikomi'} eq "ãšã©ãŒãŽãŒ"){&err_go;} #ãšã©ãŒãŽãŒãšæžãããæãšã©ãŒã«è¡ãã
&decode;
&cookie_in;
&header;
&main;
&footer;
exit;
######### ã«ãŠã³ã¿åŠç
sub counter {
local($count,$cntup);
# ã«ãŠã³ããã¡ã€ã«ãèªã¿ãã¿
open(CUNT,"< $cntfile") || &err("Open Error: cntfile","in");
eval{flock(CUNT, 1);};
$count = <CUNT>;
close(CUNT);
local($local_time);
local($cnt,$kiroku_day,$keika_day,$today,$yestaday) = split(/<>/, $count);
$local_time = time + (9*60*60);#GMT+9:00è£æ£
if (!$kiroku_day){
$kiroku_day = $local_time - ($local_time % (24*60*60));
}
if ($local_time - $kiroku_day > 24*60*60){
$keika_day += int(($local_time - $kiroku_day)/(24*60*60));
if ($local_time - $kiroku_day > 2*24*60*60){
$yestaday = 0;
}else{$yestaday = $today;}
$kiroku_day = $local_time - ($local_time % (24*60*60));
$today = 0;
}
$today++;
if (!$keika_day){$keika_day = 0; }
if (!$yestaday){$yestaday = 0; }
$cnt++;
open(CUNT,"> $cntfile") || &err("Write Error: cntfile","in");
eval{flock(CUNT, 2);};
print CUNT "$cnt<>$kiroku_day<>$keika_day<>$today<>$yestaday<>\n";
close(CUNT);
# æ¡æ°èª¿æŽ
while(length($cnt) < $mini_fig) { $cnt = '0' . $cnt; }
&dates;
print qq|<table border="0">\n|;
print qq|<tr><td rowspan="3">\n|;
print qq|<font size="6"class="kazu">$cnt</font><br>\n|;
print qq|</td><td><font size="2">çµé</font></td><td><font size="2">$keika_day</font></td></tr>\n|;
print qq|<tr><td><font size="2">ä»æ¥</font></td><td><font size="2">$today</font></td></tr>\n|;
print qq|<tr><td><font size="2">æšæ¥</font></td><td><font size="2">$yestaday</font></td></tr>\n|;
print qq|<tr><td colspan="3"><font size="2"><form name="Watch0"><input type="text" name="watch01" size="25"></form></font></td></tr>\n|;
print qq|</table><br>\n|;
}
###### æ¥ä»ãšæé
sub dates {
#æéã®æŽåœ¢
$date_sec = time;
($sec,$min,$hour,$mday,$mon,$year,$wday) = localtime($date_sec);
# local($sec,$min,$hour,$mday,$mon,$year,$wday) = localtime($date_sec); # æ¥æã䜿ããããã«éæŸ
local @week = ('Sun','Mon','Tue','Wed','Thu','Fri','Sat');
local $m_week = $week[$wday];
$date = sprintf("%04d/%02d/%02d(%s) %02d:%02d:%02d",$year+1900,$mon+1,$mday,$week[$wday],$hour,$min,$sec);
}
##### èšé²éã³
sub asobkiroku {
$detskazu = int(rand(10))+1;
if(6 <= $detskazu){$asobimese = 'ããªãã®åã¡';}else{$asobimese = 'ããªãã®è² ã';}
open(DATS,"< $datafile") || &err("Open Error: datafile","in");
eval{flock(DATS, 1);};
@datas = <DATS>;
close(DATS);
unshift @datas,"$detskazu<>$asobimese<>$In{'kakikomi'}<>$date<>\n";
if(@datas > 10){$#datas = 9;}
open(DATS,"> $datafile") || &err("Write Error: datafile","in");
eval{flock(DATS, 2);};
print DATS @datas;
close(DATS);
foreach (@datas){
($b_detskazu,$b_asobimese,$b_kakikomi,$b_date) = split(/<>/);
if($b_detskazu >=6){
print "<font class=\"kachi\">$b_detskazu $b_asobimese ã³ã¡ã³ã:$b_kakikomi $b_date</font><br>\n";
}else{
print "$b_detskazu $b_asobimese ã³ã¡ã³ã:$b_kakikomi $b_date<br>\n";
}
}
# å
é ã®èŠçŽ ã«ãã䞊ã¹æ¿ã
@keys1 = map {(split /<>/)[0]} @datas;
@new_datas = @datas[sort {$keys1[$b] <=> $keys1[$a]} 0 .. $#keys1];
print "<br><br>\n";
foreach (@new_datas){
($b_detskazu,$b_asobimese,$b_kakikomi,$b_date) = split(/<>/);
if($b_detskazu >=6){
print "<font class=\"kachi\">$b_detskazu $b_asobimese ã³ã¡ã³ã:$b_kakikomi $b_date</font><br>\n";
}else{
print "$b_detskazu $b_asobimese ã³ã¡ã³ã:$b_kakikomi $b_date<br>\n";
}
}
print "<br><br>ã¯ãããŒã¯ $COOKIE{'kakikomi'} ãš $COOKIE{'date'} ãè¡š\瀺ãããŸãã<br><br>\n"; # è¡šã¯æååããèµ·ããã®ã§\ãå
¥ããŸãã
}
####### ã¡ã€ã³åŠç ######
sub main{
&counter;
print 'ããªã㯠';
print "$In{'kakikomi'}";
print 'ããšæžã蟌ã¿ããŸãããã<br><br>'."\n"; # å
šè§ç©ºçœã¯æååãã®çº ''ã䜿ã£ãŠå²ãã
&asobkiroku;
print << "EOF" ;
<br>
<form action="$this_cgi" method="POST">
<input type="text" name="kakikomi" size="40" maxlength="30">
<input type="submit" value="éä¿¡ãã">
</form>
EOF
}
### ã¯ãããŒã«å€ãã»ãã ####
sub set_cookie{
if ($In{'kakikomi'}){ #æžèŸŒã®æéå®ã
# if (!$In{'coodel'}){
&dates; # æ¥ä»ãšæéã®ãµãã«ãŒãã³
$COOKIE{'kakikomi'} = $In{'kakikomi'};
$COOKIE{'date'} = $date;
# }
}
}
### ã¯ãããŒèªã¿åºã ######
sub cookie_in{
my ($pair, $cpair);
foreach $pair (split(/;\s*/, $ENV{'HTTP_COOKIE'})) {
my ($name, $value) = split(/=/, $pair);
# åäžã®ã¯ãããŒå€ãã%COOKIEã«ãã³ãŒã
if($name eq $COOKIE_NAME) {
foreach $cpair (split(/&/, $value)) {
my ($cname, $cvalue) = split(/#/, $cpair);
$cvalue =~ s/%([0-9a-fA-F][0-9a-fA-F])/chr(hex($1))/eg;
$COOKIE{$cname} = $cvalue;
}
last;
}
}
}
### ã¯ãããŒçºè¡ ####
sub cooki_hakkou{
&set_cookie; # ã¯ãããŒã®ã»ãã
my (@cpairs, $cname, $cvalue, $value);
if ($In{'coodel'}){$COOKIE_LIFE = -1;} # ã¯ãããŒæ¶å»
# %COOKIEãåäžã®ã¯ãããŒå€ã«ãšã³ã³ãŒã
foreach $cname (keys %COOKIE) {
$cvalue = $COOKIE{$cname};
$cvalue =~ s/(\W)/sprintf("%%%02X", ord $1)/eg;
push @cpairs, "$cname#$cvalue";
}
$value = join('&', @cpairs);
# ã°ãªãããžæšæºæã®æåå
my @mon_str = qw(Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec);
my @wdy_str = qw(Sun Mon Tue Wed Thu Fri Sat);
my $life = $COOKIE_LIFE * 24 * 60 * 60;
my ($sec, $min, $hour, $mday, $mon, $year, $wday) = gmtime(time + $life);
my $date = sprintf("%s, %02d-%s-%04d %02d:%02d:%02d GMT",
$wdy_str[$wday], $mday, $mon_str[$mon], $year + 1900, $hour, $min, $sec);
return ("Set-Cookie: $COOKIE_NAME=$value; expires=$date\n");
}
#######ããããŒåºå
sub header {
($my_cookie) = &cooki_hakkou;
print "$my_cookie";
print "Content-type:text/html\n\n";
print <<"EOF" ;
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<meta tttp-equiv="Content-Script-Type" content="taxt/javascript">
<meta http-equiv="Content-Style-Type" content="text/css">
<title>èŠæ¬2</title>
<script language="JavaScript">
<!--
function DayWatch() {
var day = new Date();
if ( day.getYear() >= 2000 ){ var year = day.getYear() }
else { var year = day.getYear() +1900 }
var month = day.getMonth()+1;
var date = day.getDate();
if (month < 10) { //æ.æ¥ãäžæ¡ã®æé ã«0ãä»ããåŠç
month = "0" + month;
}
if (date < 10) {
date = "0" + date;
}
var time = new Date();
var hour = time.getHours();
var min = time.getMinutes();
var sec = time.getSeconds();
if (hour < 10) { //æã»åã»ç§ã1æ¡ã®æé ã«0ãä»ããåŠç
hour = "0" + hour;
}
if (min < 10) {
min = "0" + min;
}
if (sec < 10) {
sec = "0" + sec;
}
document.Watch0.watch01.value = year +"/"+month+"/"+date+" "+hour+':'+min+':'+sec;
setTimeout("DayWatch()", 1000);
}
//-->
</script>
<style type="text/css">
<!--
.kazu{
color: #ff0000;
}
.kachi{
color: #0000ff;
}
-->
</style>
</head>
<BODY BGCOLOR="#ffffff" onLoad="DayWatch()">
EOF
}
#ãã³ãŒãåŠç
sub decode {
my ($query,$pair);
if($ENV{'REQUEST_METHOD'} eq 'POST') {
read(STDIN, $query, $ENV{'CONTENT_LENGTH'});
} else {
$query = $ENV{'QUERY_STRING'};
if ($query ne "" && $getin == 1){&err("GET");}
}
my ($saizu)=length $query;
if ($saizu > $max_size){&err("ãšã©ãŒã»ãµã€ãºãªãŒããŒ");}
foreach $pair (split(/&/, $query)) {
my ($key, $value) = split(/=/, $pair);
# æåã®ãã³ãŒã
$value =~ s/%([0-9a-fA-F][0-9a-fA-F])/chr(hex($1))/eg;
$value =~ s/\0/0/g;
$value =~ s/</</g;
$value =~ s/>/>/g;
$value =~ s/\r\n/<br>/g; #è¿œå
$value =~ s/\r|\n/<br>/g;
$value =~ tr/+/ /;
$In{$key} = $value;
}
}
### ããã¿ #########
sub footer{
print "<br><br><table border='1'>";
print "<tr><th>ãã©ãŒã èŠçŽ å</th><th>ããŒã¿</th></tr>";
foreach $key (keys %In) {
print "<tr><th>$key</th><td>$In{$key}</td></tr>\n";
}
print "</table><br>";
#-------ãã¯ãããŒèŠçŽ åã---------
my ($name, $value);
print "<table border='1'>";
print "<tr><th>ã¯ãããŒèŠçŽ å</th><th>ããŒã¿</th></tr>";
while (($name, $value) = each(%COOKIE)) {
print "<tr><td>$name</td><td>$value</td></tr>\n";#\\n
}
print "</table><br>";
print <<"EOF" ;
</BODY>
</html>
EOF
exit;
}
###### ãšã©ãŒ ########
sub err{
if($_[1] ne "in"){
&header;
}
print 'ãšã©ãŒ'."<br>\n";
print "$_[0]<br>\n";
&footer;
exit;
}
</syntaxhighlight>
==ãµãŒããŒæ»æã®é²åŸ¡==
*ã¢ã¯ã»ã¹ãã€ã³ãã®ç°å¢å€æ°ãçšããŠããã°ã©ã ãå®ããã®ã§ãã
*èšçœ®ã¯åºæ¥ãã ãäžã®æ¹ã«æžããæ¹ãè¯ããšæããŸãã
<syntaxhighlight lang="Perl">
#!D:/Perl/bin/perl
#!/usr/local/bin/perl
#ãã®ããã°ã©ã å
# in_atakka.cgi
#äœæããããã¡ã€ã« atakka.cgi
&in_atakka;
sub in_atakka {
local($c_tim,@tem_atakku,$i,$ma_aru,@tem_atakku_new,$ma_addr,$ma_host,$ma_tim,$ma_kaisu,@new_atakku_new,$count11);
my $get_host = $ENV{'REMOTE_HOST'};
my $get_addr = $ENV{'REMOTE_ADDR'};
if ($get_host eq "" || $get_host eq $get_addr) {
$get_host = gethostbyaddr(pack("C4", split(/\./, $get_addr)), 2) || $get_addr;
}
$c_tim = time;
if(!(-e "atakka.cgi")){
open(AT,"> atakka.cgi") || &disp;
close(AT);
}
open(AT,"< atakka.cgi") || &disp;
eval{ flock (AT, 1); };
@tem_atakku = <AT>;
close(AT);
$i=0;
$ma_aru =0;
@tem_atakku_new = (@tem_atakku);
foreach (@tem_atakku){
($ma_addr,$ma_host,$ma_tim,$ma_kaisu) = split(/<>/);
if($ma_addr eq $get_addr && $get_host eq $ma_host && $ma_kaisu > 5){
if($ma_tim + 600 < $c_tim){$ma_kaisu = 0;}else{&disp;}
}
if(!($ma_addr eq $get_addr && $get_host eq $ma_host) && $ma_kaisu > 5){ #5
$i++;
next;
}
if($get_addr eq $ma_addr && $get_host eq $ma_host && $c_tim < $ma_tim + 2){
$ma_kaisu++;
$tem_atakku_new[$i] = "$get_addr<>$get_host<>$c_tim<>$ma_kaisu<>\n";
$ma_aru =1;
last;
}else{
$ma_aru =0;
$ma_kaisu = 0;
unless($#tem_atakku_new < 0 && $ma_kaisu > 5){splice(@tem_atakku_new,$i,1);}
last;
}
$i++;
}
foreach (@tem_atakku_new){
($ma_addr,$ma_host,$ma_tim,$ma_kaisu) = split(/<>/);
if($c_tim > $ma_tim + 600){next;} #çµéæžã¿ã®ã¿ã€ã ã¢ãŠãè
ãæ¶ãã10å
if(@tem_atakku_new > 3 && $c_tim > $ma_tim + 3 && $ma_kaisu <= 2){ #30以äžã®åå è
ã§3ç§ä»¥äžçµéããŠ2å以äžãªãæ¶ãtest 3
next;
}
push @new_atakku_new,"$_";
}
@tem_atakku_new = (@new_atakku_new);
if(!$ma_aru){
if(@tem_atakku_new > 5){&disp("ã¢ã¯ã»ã¹ãå€ãã®ã§ãåŸ
ã¡ãã ããã");} #50以äžã®åå è
ã®æã¯æ°èŠã«å
¥ãã®ãåŸ
ã£ãŠããããtest 5
push @tem_atakku_new,"$get_addr<>$get_host<>$c_tim<>1<>\n";
}
if(@tem_atakku_new == 0){&disp("exit");}
open(AT,"> atakka.cgi") || &disp("Fail");
eval{ flock (AT, 2); };
$count11 = 0;
foreach (@tem_atakku_new){
if(m/$get_host+/){$count11 = 1;}
}
if(!$count11){close(AT);&disp("exit2");}
print AT @tem_atakku_new;
close(AT);
if(-z "atakka.cgi"){&disp("Fail=0");}
}
sub disp{
print "Content-type:text/html; charset=UTF-8\n\n";
print <<"EOF";
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<HTML>
<HEAD>
<TITLE>ãšã©ãŒ</TITLE>
</HEAD>
<BODY>
<h1>éè² è·ã«ãããšã©ãŒãèµ·ãããŸããã</h1>
$_[0]<br>
<h2>10åã»ã©çµã£ããããäžåºŠè©ŠããŠã¿ãŠãã ããã</h2>
<Script Language="JavaScript">
<!--
alert("10åã»ã©çµã£ããããäžåºŠè©ŠããŠã¿ãŠãã ããã");
// End -->
</Script>
<br><br>
</BODY>
</html>
EOF
exit;
}
####æ¬æ
local(@tem_atakku_new,$prit_out,$ma_addr,$ma_host,$ma_tim,$ma_kaisu);
open(AT,"< atakka.cgi") || &disp;
eval{ flock (AT, 1); };
@tem_atakku_new = <AT>;
close(AT);
foreach (@tem_atakku_new){
($ma_addr,$ma_host,$ma_tim,$ma_kaisu) = split(/<>/);
$prit_out .= "($ma_addr,$ma_host,$ma_tim,$ma_kaisu)<br>\n";
}
print "Content-type:text/html; charset=UTF-8\n\n";
print <<"EOF";
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<HTML>
<HEAD>
<TITLE>ã¢ã¿ãã¯ãã§ãã¯</TITLE>
</HEAD>
<BODY>
<h1>ãã¡ã€ã«å
容確èª</h1>
$prit_out
<br><br><br><br><br><br><br><br><br><br><br><br>
</BODY>
</html>
EOF
exit;
</syntaxhighlight>
==IPã§ç®¡çè
èå¥==
*èªåã®ä»ã®ïŒ©ïŒ°ãç»é²èå¥ããäºã§äžæ£ã¢ã¯ã»ã¹ããã«ããããŸãã
*ãã£ã¬ã¯ããªãšïŒã€ã®ããã°ã©ã ã«ããå
±æããŒã¿ã䜿ãã
<syntaxhighlight lang="Perl">
main.cgiãå®è¡ãã¡ã€ã«
ãã©ã«ããŒãhost3ããäœã£ãŠãã ããã
host.cgiãå®è¡ãã¡ã€ã«
in_host.cgi 空ãã¡ã€ã«
host_koushin_ari.txtã空ãã¡ã€ã«
##################### main.cgi #####################
#!D:/Perl/bin/perl
# ãµãŒããŒã«åãããŠäžãã
#!/usr/local/bin/perl
#!C:/Perl/bin/perl
# ãã®ãã¡ã€ã«ã®åå
$this_cgi = "main.cgi";
# ããŒã¿ãŒé
$max_size = 500;
# getçŠæ¢ã1
$getin =1;
# å
¥å£ã§åŒ·åããã
$host_kyuka = 'yes';
# èš±å¯ç®¡çè
å
$ohna_name = 'ãŠã£ãããã¯ã¹';
# ãªãŒããŒãã¹ã®èšå®(å€æŽããŠãã ãã)
$ohna_pas = '0000';
# 管çè
IPã®ç°¡æç»é²ã®åèšè
$aikotoba = 'wikibooks';
# ãã¹ã管ççšå°çšcgi
$host_cgi = "./host3/host.cgi";
# ãã¹ãã®ãã¡ã€ã«
$in_host = "./host3/in_host.cgi";
# ãã¹ãå€æŽã»è¿œå ãªã©ã®å ±å
$koshin_fail = './host3/host_koushin_ari.txt';
# èšé²ããŠããIPã®æ° 1åå€ããªããŸãã0ã®æ1å
$ip_kazu = 5;
##########################
&decode;
if($In{'mode'} eq 'nyuryoku'){&nyuryoku;}
if($In{'mode'} eq 'admin'){&admin;}
&syoki;
exit;
######
sub syoki {
&acsesu;
print "Content-type:text/html\n\n";
print <<"EOF" ;
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<html>
<head>
<title>ã¡ã€ã³</title>
</head>
<BODY BGCOLOR="#ffffff">
<br>
<form action="$this_cgi" method="POST">
<input type="hidden" name="mode" value="nyuryoku">
<input type="submit" value="管ç宀å
¥ãå£ãž"><br>
</form>
<form action="$host_cgi" method="POST">
<input type="submit" value="ãã¹ã管çæ现"><br>
</form>
<br><br>
$host_mes
<br><br>
EOF
if ($ohna_name eq $In{'kanrisya_name'} && $ohna_pas && $ohna_pas eq $In{'kanrisya_pas'}){ #管çè
ã®ã¿è¡šç€º
if(-e "$koshin_fail"){
open (FIN, "$koshin_fail") or &err("ãšã©ãŒã»ãã¡ã€ã«ãéããŸãã..koshin_fail");
eval{ flock (FIN, 1); };
$tem_atakku = <FIN>;
close(FIN);
($henkou_time,$mese1,$mese2) = split(/ /, $tem_atakku);
$now_time = time;
if($now_time > $henkou_time + 2*24*60*60){$mese1 = "";$mese2 = "";}else{print "$mese1 $mese2<br>\n";}
}
}else{
print "管çè
äžäžèŽ<br>\n";
}
print "<br><br><table border='1'>";
print "<tr><th>ãã©ãŒã èŠçŽ å</th><th>ããŒã¿</th></tr>";
foreach $key (keys %In) {
print "<tr><th>$key</th><td>$In{$key}</td></tr>\n";
}
print "</table><br>";
print <<"EOF" ;
</BODY>
</html>
EOF
exit;
}
### ã¢ã¯ã»ã¹ç®¡ç ##############
sub acsesu {
$host = $ENV{'REMOTE_HOST'};
$addr = $ENV{'REMOTE_ADDR'};
(@in_addr) = split(/\s/, $addr);
$addr = $in_addr[0];
$addr_in = $addr;
if ($host eq "" || $host eq $addr) {
$host = gethostbyaddr(pack("C4", split(/\./, $addr)), 2) || $addr;
}
if ($host eq "") {$host = $addr;}
$host_in = $host;
if ($host_kyuka eq 'yes' && (-e "$in_host")){
if(!(-z "$in_host")){
open(IN,"< $in_host") || &err2("Open Error : in_host");
eval{ flock (IN, 1); };
$kanri_ip = <IN>;
close(IN);
chomp $kanri_ip;
(@m_ip) = split(/<>/,$kanri_ip);
$ok = 0;
foreach (@m_ip){
if($_ eq "$host_in $addr_in"){$ok = 1;last;}
}
if($_[0]){return ($ok);}
if(!$ok){
$ohna_pas = "";
$host_mes = "ãã¹ãäžèŽããããŸããã";
}else{
$host_mes = "ãã¹ãäžèŽããããŸãã";
}
}
}
}
#ãã³ãŒãåŠç
sub decode {
my ($query,$pair);
if($ENV{'REQUEST_METHOD'} eq 'POST') {
read(STDIN, $query, $ENV{'CONTENT_LENGTH'});
} else {
$query = $ENV{'QUERY_STRING'};
if ($query ne "" && $getin == 1){&err("GET");}
}
my ($saizu)=length $query;
if ($saizu > $max_size){&err("ãšã©ãŒã»ãµã€ãºãªãŒããŒ");}
foreach $pair (split(/&/, $query)) {
my ($key, $value) = split(/=/, $pair);
# æåã®ãã³ãŒã
$value =~ s/%([0-9a-fA-F][0-9a-fA-F])/chr(hex($1))/eg;
$value =~ s/\0/0/g;
$value =~ s/</</g;
$value =~ s/>/>/g;
$value =~ s/\r\n/<br>/g; #è¿œå
$value =~ s/\r|\n/<br>/g;
$value =~ tr/+/ /;
$In{$key} = $value;
}
}
sub nyuryoku{
print "Content-type:text/html\n\n";
print <<"EOF" ;
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<html>
<head>
<title>管ç宀å
¥ãå£</title>
</head>
<BODY BGCOLOR="#ffff00">
<br>
<form action="$this_cgi" method="POST">
<input type="hidden" name="mode" value="admin">
<input type="text" name="kanrisya_name" value="" maxlength="30">åå<br>
<input type="text" name="kanrisya_pas" value="" maxlength="30">ãã¹ã¯ãŒã<br>
<input type="text" name="aikotoba" value="" maxlength="30">IPåèšèãã¹ããå€æŽãªãã®å ŽåæžããªããŠãã<br>
<input type="submit" value="éä¿¡">
</form>
</BODY>
</html>
EOF
exit;
}
#####
sub admin{
($okok) = &acsesu(1);
if(!($ohna_name eq $In{'kanrisya_name'} && $ohna_pas eq $In{'kanrisya_pas'})){return;}
if($aikotoba eq $In{'aikotoba'} && !$okok){
$host = $ENV{'REMOTE_HOST'};
($addr) = split(/ /, $ENV{'REMOTE_ADDR'});
if ($host eq "" || $host eq $addr) {
$host = gethostbyaddr(pack("C4", split(/\./, $addr)), 2) || $addr;
}
if ($host eq "") { $host = $addr; }
open (IN, "< $in_host") or &err("ãšã©ãŒã»ãã¡ã€ã«ãéããŸãã in_host");
eval{ flock (IN, 1); };
$f_host = <IN>;
@host_kiroku = <IN>;
close (IN);
chomp $f_host;
(@f_in_host) = split(/<>/, $f_host);
$purasu = 0;
foreach $deta(@f_in_host){
if("$host $addr" eq $deta){$purasu = 1;}
push @new_f_in_host,$deta;
}
if(!$purasu){unshift @new_f_in_host,"$host $addr";}
if($#new_f_in_host > $ip_kazu){$#new_f_in_host = $ip_kazu;}
$new_f_host = join ("<>",@new_f_in_host);
$new_f_host .= "<>\n";
($sec,$min,$hour,$mday,$mon,$year,$wday) = localtime(time) ; #äžæ¬åãå
¥ã
$year += 1900; # $year = $year + 1900 ãšåã
++$mon ;
@youbi=('æ¥','æ','ç«','æ°Ž','æš','é','å');
$mond = sprintf("%02d",$mon);
$mdayd = sprintf("%02d",$mday);
$hourd = sprintf("%02d",$hour);
$mind = sprintf("%02d",$min);
$secd = sprintf("%02d",$sec);
$jikan = "$year幎$mondæ$mdaydæ¥$youbi[$wday]ææ¥$hourdæ$mindå$secdç§";
if($#host_kiroku >= 24){$#host_kiroku = 24;}
unshift @host_kiroku,"$host $addr<>$jikan<>$host<>$ENV{'REMOTE_HOST'}<>$addr<>$ENV{'REMOTE_ADDR'}<>\n";
open (OUT, "> $in_host") or &err("ãšã©ãŒã»ãã¡ã€ã«ãéããŸãã in_host");
eval{ flock (OUT, 2); };
print OUT $new_f_host;
print OUT @host_kiroku ;
close (OUT);
$ima_time = time;
open (FOUT, "> $koshin_fail") or &err("ãšã©ãŒã»ãã¡ã€ã«ãéããŸãã koshin_fail");
eval{ flock (FOUT, 2); };
print FOUT "$ima_time $host èš±å¯ãã¹ãã®å€æŽããããŸããã";
close (FOUT);
}elsif(!$okok){return;}
print "Content-type:text/html\n\n";
print <<"EOF" ;
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<html>
<head>
<title>管ç宀</title>
</head>
<BODY BGCOLOR="#00ffff">
<br>
<form action="$this_cgi" method="POST">
<input type="text" name="kanrisya_name" value="$In{'kanrisya_name'}" maxlength="30"><br>
<input type="text" name="kanrisya_pas" value="$In{'kanrisya_pas'}" maxlength="30"><br>
<input type="submit" value="ãããããŒãžã«å€ãæã£ãŠåž°ã">
</form><br>
管çè
ã®åŠçãè¡ãå Žæã§ãã
EOF
exit;
}
###### ãšã©ãŒ ########
sub err{
if($_[1] ne "in"){
print "Content-type:text/html\n\n";
print <<"EOF" ;
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<html>
<head>
<title>ãšã©ãŒ</title>
</head>
<BODY BGCOLOR="#ffffff">
EOF
}
print 'ãšã©ãŒ'."<br>\n";
print "$_[0]<br>\n";
print <<"EOF" ;
</BODY>
</html>
EOF
exit;
}
####################### host3/host.cgi #########################
#!D:/Perl/bin/perl
# ãµãŒããŒã«åãããŠäžãã
#!/usr/local/bin/perl
#!C:/Perl64/bin/perl
##### éçºèšé²ãªã© ############
# ver1.01
#
# host.cgi 700(ããŒããã·ã§ã³)
##### èšå® ####################
# ãã®ïœïœïœã®ãã¡ã€ã«ã®åå
$this_cgi = 'host.cgi';
# ãªãŒããŒãã¹ã®èšå®(å€æŽããŠãã ãã)
$ona_pas = 'wiki';
# èš±å¯ç®¡çè
å
$kanre_name = 'ãŠã£ãããã¯ã¹';
$ona_id = 'ããããºã§ãã';
$hozon_fail = 'in_host.cgi';
unless(-e $hozon_fail){
open (FIN, "> $hozon_fail") or &err2("ãšã©ãŒã»ãã¡ã€ã«ãéããŸãã.0");
close (FIN);
}
# æŽæ°æ¡å
ãã¡ã€ã«å
$koshin_fail = 'host_koushin_ari.txt';
# èšé²ããŠããIPã®æ° 1åå€ããªããŸãã0ã®æ1å
$ip_kazu = 5;
# get = 1 GETåãå
¥ãçŠæ¢
$get_no = 1;
#=====================
&loadformdata; #ãã©ãŒã å
¥å
&getoin;
sub getoin{
print "Content-type:text/html;\n\n";
print <<EOF ;
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;charset=UTF-8">
<title>èš±å¯ãã¹ãå€æŽ</title>
</head>
<body>
EOF
$host = $ENV{'REMOTE_HOST'};
($addr) = split(/ /, $ENV{'REMOTE_ADDR'});
if ($host eq "" || $host eq $addr) {
$host = gethostbyaddr(pack("C4", split(/\./, $addr)), 2) || $addr;
}
if ($host eq "") { $host = $addr; }
$disp_ok = 0;
if($FORM{'name'} eq $kanre_name && $FORM{'id'} eq $ona_id && $FORM{'pas'} eq $ona_pas && $FORM{'kanri'} eq $FORM{'kensa'}){
open (IN, "< $hozon_fail") or die;
eval{ flock (IN, 1); };
$f_host = <IN>;
@host_kiroku = <IN>;
close (IN);
chomp $f_host;
(@f_in_host) = split(/<>/, $f_host);
$purasu = 0;
foreach $deta(@f_in_host){
$i = 0;$loop = 0;
foreach (0..$#f_in_host){
$d_no = "d_no$i";
if($FORM{$d_no} eq $deta){$loop = 1;}
$i++;
}
if(!$loop){
if("$FORM{'host_in'}" eq $deta){$purasu = 1;}
push @new_f_in_host,$deta;
}
}
if(!$purasu){unshift @new_f_in_host,"$FORM{'host_in'}";}
if($#new_f_in_host > $ip_kazu){$#new_f_in_host = $ip_kazu;}
$new_f_host = join ("<>",@new_f_in_host);
$new_f_host .= "<>\n";
&get_time;
if($#host_kiroku >= 24){$#host_kiroku = 24;}
unshift @host_kiroku,"$FORM{'host_in'}<>$jikan<>$host<>$ENV{'REMOTE_HOST'}<>$addr<>$ENV{'REMOTE_ADDR'}<>\n";
$host_in = $FORM{'host_in'};
open (OUT, "> $hozon_fail") or die;
eval{ flock (OUT, 2); };
print OUT $new_f_host;
print OUT @host_kiroku ;
close (OUT);
$ima_time = time;
open (FOUT, "> $koshin_fail") or die;
eval{ flock (FOUT, 2); };
print FOUT "$ima_time $host èš±å¯ãã¹ãã®å€æŽããããŸããã";
close (FOUT);
$disp_ok = 1;
}
$kensa = sprintf("%04d",int(rand(10000)));
print <<EOF ;
<h2 align="center">èš±å¯ãã¹ãå€æŽ</h2><br>
<div align="center">
host = $host<br>
addr = $ENV{'REMOTE_ADDR'}<br><br>
<form action="$this_cgi" method="post">
ååïŒ<input type="text" name="name"><br>
ïŒ<input type="text" name="id"><br>
ãã¹ã¯ãŒãïŒ<input type="password" name="pas"><br>
確èªïŒ<input type=text name="kensa"> <font color=#ff0000>$kensa</font>ãå·Šã«å
¥ããŠãã ãã
<input type=hidden name=kanri value=$kensa><br>
çŸåšã®ãã¹ã $host $addr<br>
èšå®ãã¹ãïŒ<input type=text name="host_in" value="$host $addr" size="50"><br>
<input type=submit value=" é ä¿¡ "><br>
EOF
if($disp_ok == 1){
$i = 0;
foreach (@new_f_in_host){
print "<input type=\"checkbox\" name=\"d_no$i\" value=\"$_\">$_<br>\n";
$i++;
}
}
print <<EOF ;
</form>
EOF
foreach (@host_kiroku){
($host_disp0,$time_disp,$raitu_host,$addr_disp,$host_disp,$addr0_disp) = split(/<>/);
chomp $addr0_disp;
print "$host_disp0 , $time_disp : $raitu_host , $addr_disp , $host_disp , $addr0_disp<br>\n";
}
print "</div></body></html>\n";
exit;
}
### ãã©ãŒã åä¿¡ ##########
sub loadformdata {
$max_size = 200;
my ($query,$pair);
if($ENV{'REQUEST_METHOD'} eq 'POST') {
read(STDIN, $query, $ENV{'CONTENT_LENGTH'});
} else {
$query = $ENV{'QUERY_STRING'};
if ($get_no ==1 && $query ne ""){&err2("ãšã©ãŒã»GET çŠæ¢");}
}
my ($saizu)=length $query;
if ($saizu > $max_size){&err2("ãšã©ãŒã»ãµã€ãºãªãŒããŒ");}
foreach $pair (split(/&/, $query)) {
my ($key, $value) = split(/=/, $pair);
# æåã®ãã³ãŒã
$value =~ tr/+/ /;
$value =~ s/%([0-9a-fA-F][0-9a-fA-F])/chr(hex($1))/eg;
$value =~ s/\0/0/g;
$value =~ s/&/&/g;
if($value =~ m/</ ){&err2("çŠæ¢ã³ãŒã < ããããŸãã");}
if($value =~ m/>/ ){&err2("çŠæ¢ã³ãŒã > ããããŸãã");}
$value =~ s/"/"/g;
$value =~ s/\x0D\x0A/<br>/g;
$value =~ s/\r|\n/<br>/g; #è¿œå
$value =~ tr/\t//;
$FORM{$key} = $value;
}
(@kennsa) = split(/ /, $FORM{'host_in'});
if($kennsa[2]){&err2("ã³ãŒãã®æžã蟌ã¿éå");}
}
### çŸåšã®æéåºã ###############
sub get_time{
($sec,$min,$hour,$mday,$mon,$year,$wday) = localtime(time) ; #äžæ¬åãå
¥ã
$year += 1900; # $year = $year + 1900 ãšåã
++$mon ;
@youbi=('æ¥','æ','ç«','æ°Ž','æš','é','å');
$mond = sprintf("%02d",$mon);
$mdayd = sprintf("%02d",$mday);
$hourd = sprintf("%02d",$hour);
$mind = sprintf("%02d",$min);
$secd = sprintf("%02d",$sec);
$jikan = "$year幎$mondæ$mdaydæ¥$youbi[$wday]ææ¥$hourdæ$mindå$secdç§";
}
sub err2{
print "Content-type:text/html;\n\n";
print <<EOF ;
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;charset=UTF-8">
<title>ãšã©ãŒ</title>
</head>
<body>
<h2 align="center">$_[0]</h2><br>
</body></html>
EOF
exit;
}
</syntaxhighlight>
== é¢é£æžç± ==
* [[Perl]]
* [[PHP]]
* [[HTML]]
* [[CSS]]
* [[JavaScript]]
** [[JavaScript/XMLHttpRequest#Ajax|Ajax]]
[[Category:World Wide Web]]
[[Category:ããã°ã©ãã³ã°èšèª]]
{{NDC|007.64}} | 2005-02-03T12:46:28Z | 2023-09-19T12:47:38Z | [
"ãã³ãã¬ãŒã:Code",
"ãã³ãã¬ãŒã:See also",
"ãã³ãã¬ãŒã:NDC",
"ãã³ãã¬ãŒã:Pathnav",
"ãã³ãã¬ãŒã:Wikipedia",
"ãã³ãã¬ãŒã:Otheruses"
] | https://ja.wikibooks.org/wiki/CGI |
1,611 | Perl | Perlã¯ãåºã䜿çšãããŠããããã°ã©ãã³ã°èšèªã®1ã€ã§ãããã®ååã¯ã"Practical Extraction and Reporting Language"ã®é åèªããæ¥ãŠããŸããPerlã¯ãUNIXã·ã¹ãã ã§æåã«éçºããããããããã¹ãåŠçã«é©ããŠããŸããPerlã¯ãWebéçºãã·ã¹ãã 管çãèªååãããŒã¿åŠçããã€ãªã€ã³ãã©ããã£ã¯ã¹ãªã©ã®ããŸããŸãªçšéã§äœ¿çšãããŠããŸãã ãã®Perlã®æç§æžã§ã¯ãPerlã®åºæ¬çãªæ§æãå¶åŸ¡æ§é ããã¡ã€ã«å
¥åºåãããã¹ãåŠçãæ£èŠè¡šçŸãã¢ãžã¥ãŒã«ã®äœæãªã©ã«ã€ããŠåŠã¶ããšãã§ããŸãããŸããWebã¢ããªã±ãŒã·ã§ã³ã®éçºã«å¿
èŠãªCGIããã°ã©ãã³ã°ããããŒã¿ããŒã¹ãšã®é£æºã«ã€ããŠãåŠã¶ããšãã§ããŸãã Perlã¯ãè±å¯ãªæ©èœãšæè»æ§ãåããããã°ã©ãã³ã°èšèªã§ãããç°¡æœãªã³ãŒãã§å€ãã®äœæ¥ãè¡ãããšãã§ããŸãããã®æç§æžãéããŠãPerlãå¹æçã«æŽ»çšããããã®åºç€ç¥èã身ã«ã€ããããšãã§ããŸãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "Perlã¯ãåºã䜿çšãããŠããããã°ã©ãã³ã°èšèªã®1ã€ã§ãããã®ååã¯ã\"Practical Extraction and Reporting Language\"ã®é åèªããæ¥ãŠããŸããPerlã¯ãUNIXã·ã¹ãã ã§æåã«éçºããããããããã¹ãåŠçã«é©ããŠããŸããPerlã¯ãWebéçºãã·ã¹ãã 管çãèªååãããŒã¿åŠçããã€ãªã€ã³ãã©ããã£ã¯ã¹ãªã©ã®ããŸããŸãªçšéã§äœ¿çšãããŠããŸãã ãã®Perlã®æç§æžã§ã¯ãPerlã®åºæ¬çãªæ§æãå¶åŸ¡æ§é ããã¡ã€ã«å
¥åºåãããã¹ãåŠçãæ£èŠè¡šçŸãã¢ãžã¥ãŒã«ã®äœæãªã©ã«ã€ããŠåŠã¶ããšãã§ããŸãããŸããWebã¢ããªã±ãŒã·ã§ã³ã®éçºã«å¿
èŠãªCGIããã°ã©ãã³ã°ããããŒã¿ããŒã¹ãšã®é£æºã«ã€ããŠãåŠã¶ããšãã§ããŸãã Perlã¯ãè±å¯ãªæ©èœãšæè»æ§ãåããããã°ã©ãã³ã°èšèªã§ãããç°¡æœãªã³ãŒãã§å€ãã®äœæ¥ãè¡ãããšãã§ããŸãããã®æç§æžãéããŠãPerlãå¹æçã«æŽ»çšããããã®åºç€ç¥èã身ã«ã€ããããšãã§ããŸãã",
"title": ""
}
] | Perlã¯ãåºã䜿çšãããŠããããã°ã©ãã³ã°èšèªã®1ã€ã§ãããã®ååã¯ã"Practical Extraction and Reporting Language"ã®é åèªããæ¥ãŠããŸããPerlã¯ãUNIXã·ã¹ãã ã§æåã«éçºããããããããã¹ãåŠçã«é©ããŠããŸããPerlã¯ãWebéçºãã·ã¹ãã 管çãèªååãããŒã¿åŠçããã€ãªã€ã³ãã©ããã£ã¯ã¹ãªã©ã®ããŸããŸãªçšéã§äœ¿çšãããŠããŸãã
ãã®Perlã®æç§æžã§ã¯ãPerlã®åºæ¬çãªæ§æãå¶åŸ¡æ§é ããã¡ã€ã«å
¥åºåãããã¹ãåŠçãæ£èŠè¡šçŸãã¢ãžã¥ãŒã«ã®äœæãªã©ã«ã€ããŠåŠã¶ããšãã§ããŸãããŸããWebã¢ããªã±ãŒã·ã§ã³ã®éçºã«å¿
èŠãªCGIããã°ã©ãã³ã°ããããŒã¿ããŒã¹ãšã®é£æºã«ã€ããŠãåŠã¶ããšãã§ããŸãã
Perlã¯ãè±å¯ãªæ©èœãšæè»æ§ãåããããã°ã©ãã³ã°èšèªã§ãããç°¡æœãªã³ãŒãã§å€ãã®äœæ¥ãè¡ãããšãã§ããŸãããã®æç§æžãéããŠãPerlãå¹æçã«æŽ»çšããããã®åºç€ç¥èã身ã«ã€ããããšãã§ããŸãã ã¯ããã«
åææ¡ä»¶
å®è¡ç°å¢
äœæãå®è¡ã®æµã
Perlã®åºæ¬æ©èœã®çŽ¹ä»
å¶åŸ¡æ§é
ã«ãŒã
æ¡ä»¶åå²
æ修食å
ã«ãŒãå¶åŸ¡ã³ãã³ã
å€æ°ãããŒã¿æ§é
å€æ°ãšã¯
èšæ³
å©çšæ³
ç¹æ®å€æ°
ã³ã³ããã¹ã
æŒç®å
代å
¥æŒç®å =
ç®è¡æŒç®å + - / * % ** ++ --
æååæŒç®å. x
ã¯ãªãŒãæŒç®å q qq ' " qw qr qx
ãããæŒç®å | & ~ >> << è«çæŒç®å or and || &&
æ°å€æ¯èŒæŒç®å < > <= >= == != <=> æååæ¯èŒæŒç®å eq ne le ge lt gt cmp
ç¯å²æŒç®å ..
眮ææŒç®å s/// tr/// y///
é¢æ°
çµã¿èŸŒã¿é¢æ°
ãŠãŒã¶å®çŸ©é¢æ°ïŒãµãã«ãŒãã³ïŒ
åŒæ°ã»è¿ãå€ãšã³ã³ããã¹ã
å
¥åºåã»ã³ãã³ãã©ã€ã³ãªãã·ã§ã³
ãã¡ã€ã«ãã³ãã«
ã³ãã³ãã©ã€ã³ãªãã·ã§ã³
ç°å¢å€æ°
æ£èŠè¡šçŸ
åºç€
ãªãã¡ã¬ã³ã¹
å€æ¬¡å
é
å
ãªãã¡ã¬ã³ã¹
ã¹ã«ã©ã®ãªãã¡ã¬ã³ã¹
é
åã®ãªãã¡ã¬ã³ã¹
ããã·ã¥ã®ãªãã¡ã¬ã³ã¹
ãµãã«ãŒãã³ã®ãªãã¡ã¬ã³ã¹
æ£èŠè¡šçŸã®ãªãã¡ã¬ã³ã¹
ã¯ã©ã¹æ§æ
ã©ã€ãã©ãªã»ã¢ãžã¥ãŒã«ãšãªããžã§ã¯ãæå
ã©ã€ãã©ãªã»ã¢ãžã¥ãŒã«
ãã©ã°ã
æšæºã©ã€ãã©ãª
CPAN
ã©ã€ãã©ãªãäœæãã
Perlãšãªããžã§ã¯ãæå
ãªããžã§ã¯ãæåPerlã®åæç¥è
ãªããžã§ã¯ãæåPerlã®èšè¿°äŸ
ã³ã³ã¹ãã©ã¯ã¿
ãªããžã§ã¯ã
ã¯ã©ã¹
ã¡ãœãã
ã¡ã³ã
ç¶æ¿
äŸå€åŠç
æ¥æ¬èªåŠç
ãŠã§ãã¢ããªã±ãŒã·ã§ã³
CGI
Perl/CGI
ãã«ãã»ããã¥ã¡ã³ã
éé² | {{Pathnav|ã¡ã€ã³ããŒãž|å·¥åŠ|æ
å ±æè¡|ããã°ã©ãã³ã°|frame=1}}
{{Wikipedia|Perl}}
Perlã¯ãåºã䜿çšãããŠããããã°ã©ãã³ã°èšèªã®1ã€ã§ãããã®ååã¯ã"Practical Extraction and Reporting Language"ã®é åèªããæ¥ãŠããŸããPerlã¯ãUNIXã·ã¹ãã ã§æåã«éçºããããããããã¹ãåŠçã«é©ããŠããŸããPerlã¯ãWebéçºãã·ã¹ãã 管çãèªååãããŒã¿åŠçããã€ãªã€ã³ãã©ããã£ã¯ã¹ãªã©ã®ããŸããŸãªçšéã§äœ¿çšãããŠããŸãã
ãã®Perlã®æç§æžã§ã¯ãPerlã®åºæ¬çãªæ§æãå¶åŸ¡æ§é ããã¡ã€ã«å
¥åºåãããã¹ãåŠçãæ£èŠè¡šçŸãã¢ãžã¥ãŒã«ã®äœæãªã©ã«ã€ããŠåŠã¶ããšãã§ããŸãããŸããWebã¢ããªã±ãŒã·ã§ã³ã®éçºã«å¿
èŠãªCGIããã°ã©ãã³ã°ããããŒã¿ããŒã¹ãšã®é£æºã«ã€ããŠãåŠã¶ããšãã§ããŸãã
Perlã¯ãè±å¯ãªæ©èœãšæè»æ§ãåããããã°ã©ãã³ã°èšèªã§ãããç°¡æœãªã³ãŒãã§å€ãã®äœæ¥ãè¡ãããšãã§ããŸãããã®æç§æžãéããŠãPerlãå¹æçã«æŽ»çšããããã®åºç€ç¥èã身ã«ã€ããããšãã§ããŸãã
# [[/ã¯ããã«|ã¯ããã«]]
## [[/ã¯ããã«#åææ¡ä»¶|åææ¡ä»¶]]
## [[/ã¯ããã«#å®è¡ç°å¢|å®è¡ç°å¢]]
## [[/ã¯ããã«#äœæãå®è¡ã®æµã|äœæãå®è¡ã®æµã]]
## [[/ã¯ããã«#Perlã®åºæ¬æ©èœã®çŽ¹ä»|Perlã®åºæ¬æ©èœã®çŽ¹ä»]]
# [[/å¶åŸ¡æ§é |å¶åŸ¡æ§é ]]
## [[/å¶åŸ¡æ§é #ã«ãŒã|ã«ãŒã]]
## [[/å¶åŸ¡æ§é #æ¡ä»¶åå²|æ¡ä»¶åå²]]
## [[/å¶åŸ¡æ§é #æ修食å|æ修食å]]
## [[/å¶åŸ¡æ§é #ã«ãŒãå¶åŸ¡ã³ãã³ã|ã«ãŒãå¶åŸ¡ã³ãã³ã]]
# [[/å€æ°ãããŒã¿æ§é |å€æ°ãããŒã¿æ§é ]]
## [[/å€æ°ãããŒã¿æ§é #å€æ°ãšã¯|å€æ°ãšã¯]]
## [[/å€æ°ãããŒã¿æ§é #èšæ³|èšæ³]]
## [[/å€æ°ãããŒã¿æ§é #å©çšæ³|å©çšæ³]]
## [[/å€æ°ãããŒã¿æ§é #ç¹æ®å€æ°|ç¹æ®å€æ°]]
## [[/å€æ°ãããŒã¿æ§é #ã³ã³ããã¹ã|ã³ã³ããã¹ã]]
# [[/æŒç®å|æŒç®å]]
## [[/æŒç®å#代å
¥æŒç®å|代å
¥æŒç®å <nowiki>=</nowiki>]]
## [[/æŒç®å#ç®è¡æŒç®å|ç®è¡æŒç®å + - / * % ** ++ --]]
## [[/æŒç®å#æååæŒç®å|æååæŒç®å . x]]
## [[/æŒç®å#ã¯ãªãŒãæŒç®å|ã¯ãªãŒãæŒç®å <nowiki>q qq ' " qw qr qx</nowiki>]]
## [[/æŒç®å#ãããæŒç®å|ãããæŒç®å <nowiki>| & ~ >> << </nowiki>]]
## [[/æŒç®å#è«çæŒç®å|è«çæŒç®å or and || &&]]
## [[/æŒç®å#æ°å€æ¯èŒæŒç®å|æ°å€æ¯èŒæŒç®å <nowiki>< > <= >= == != <=> </nowiki>]]
## [[/æŒç®å#æååæ¯èŒæŒç®å|æååæ¯èŒæŒç®å eq ne le ge lt gt cmp]]
## [[/æŒç®å#ç¯å²æŒç®å|ç¯å²æŒç®å ..]]
## [[/æŒç®å#眮ææŒç®å|眮ææŒç®å s/// tr/// y///]]
# [[/é¢æ°|é¢æ°]]
## [[/é¢æ°#çµã¿èŸŒã¿é¢æ°|çµã¿èŸŒã¿é¢æ°]]
## [[/é¢æ°#ãŠãŒã¶å®çŸ©é¢æ°ïŒãµãã«ãŒãã³ïŒ|ãŠãŒã¶å®çŸ©é¢æ°ïŒãµãã«ãŒãã³ïŒ]]
## [[/é¢æ°#åŒæ°ã»è¿ãå€ãšã³ã³ããã¹ã|åŒæ°ã»è¿ãå€ãšã³ã³ããã¹ã]]
# [[/å
¥åºåã»ã³ãã³ãã©ã€ã³ãªãã·ã§ã³|å
¥åºåã»ã³ãã³ãã©ã€ã³ãªãã·ã§ã³]]
## [[/å
¥åºåã»ã³ãã³ãã©ã€ã³ãªãã·ã§ã³#ãã¡ã€ã«ãã³ãã«|ãã¡ã€ã«ãã³ãã«]]
## [[/å
¥åºåã»ã³ãã³ãã©ã€ã³ãªãã·ã§ã³#ã³ãã³ãã©ã€ã³ãªãã·ã§ã³|ã³ãã³ãã©ã€ã³ãªãã·ã§ã³]]
## [[/å
¥åºåã»ã³ãã³ãã©ã€ã³ãªãã·ã§ã³#ç°å¢å€æ°|ç°å¢å€æ°]]
# [[/æ£èŠè¡šçŸ|æ£èŠè¡šçŸ]]
## [[/æ£èŠè¡šçŸ#åºç€|åºç€]]
# [[/ãªãã¡ã¬ã³ã¹|ãªãã¡ã¬ã³ã¹]]
## [[/ãªãã¡ã¬ã³ã¹#å€æ¬¡å
é
å|å€æ¬¡å
é
å]]
## [[/ãªãã¡ã¬ã³ã¹#ãªãã¡ã¬ã³ã¹|ãªãã¡ã¬ã³ã¹]]
### [[/ãªãã¡ã¬ã³ã¹#ã¹ã«ã©ã®ãªãã¡ã¬ã³ã¹|ã¹ã«ã©ã®ãªãã¡ã¬ã³ã¹]]
### [[/ãªãã¡ã¬ã³ã¹#é
åã®ãªãã¡ã¬ã³ã¹|é
åã®ãªãã¡ã¬ã³ã¹]]
### [[/ãªãã¡ã¬ã³ã¹#ããã·ã¥ã®ãªãã¡ã¬ã³ã¹|ããã·ã¥ã®ãªãã¡ã¬ã³ã¹]]
### [[/ãªãã¡ã¬ã³ã¹#ãµãã«ãŒãã³ã®ãªãã¡ã¬ã³ã¹|ãµãã«ãŒãã³ã®ãªãã¡ã¬ã³ã¹]]
### [[/ãªãã¡ã¬ã³ã¹#æ£èŠè¡šçŸã®ãªãã¡ã¬ã³ã¹|æ£èŠè¡šçŸã®ãªãã¡ã¬ã³ã¹]]
# [[/class|ã¯ã©ã¹æ§æ]]
# [[/ã©ã€ãã©ãªã»ã¢ãžã¥ãŒã«ãšãªããžã§ã¯ãæå|ã©ã€ãã©ãªã»ã¢ãžã¥ãŒã«ãšãªããžã§ã¯ãæå]]
## [[/ã©ã€ãã©ãªã»ã¢ãžã¥ãŒã«ãšãªããžã§ã¯ãæå#ã©ã€ãã©ãªã»ã¢ãžã¥ãŒã«|ã©ã€ãã©ãªã»ã¢ãžã¥ãŒã«]]
### [[/ã©ã€ãã©ãªã»ã¢ãžã¥ãŒã«ãšãªããžã§ã¯ãæå#ãã©ã°ã|ãã©ã°ã]]
### [[/ã©ã€ãã©ãªã»ã¢ãžã¥ãŒã«ãšãªããžã§ã¯ãæå#æšæºã©ã€ãã©ãª|æšæºã©ã€ãã©ãª]]
### [[/ã©ã€ãã©ãªã»ã¢ãžã¥ãŒã«ãšãªããžã§ã¯ãæå#CPAN|CPAN]]
### [[/ã©ã€ãã©ãªã»ã¢ãžã¥ãŒã«ãšãªããžã§ã¯ãæå#ã©ã€ãã©ãªãäœæãã|ã©ã€ãã©ãªãäœæãã]]
## [[/ã©ã€ãã©ãªã»ã¢ãžã¥ãŒã«ãšãªããžã§ã¯ãæå#Perlãšãªããžã§ã¯ãæå|Perlãšãªããžã§ã¯ãæå]]
### [[/ã©ã€ãã©ãªã»ã¢ãžã¥ãŒã«ãšãªããžã§ã¯ãæå#ãªããžã§ã¯ãæåPerlã®åæç¥è|ãªããžã§ã¯ãæåPerlã®åæç¥è]]
### [[/ã©ã€ãã©ãªã»ã¢ãžã¥ãŒã«ãšãªããžã§ã¯ãæå#ãªããžã§ã¯ãæåPerlã®èšè¿°äŸ|ãªããžã§ã¯ãæåPerlã®èšè¿°äŸ]]
### [[/ã©ã€ãã©ãªã»ã¢ãžã¥ãŒã«ãšãªããžã§ã¯ãæå#ã³ã³ã¹ãã©ã¯ã¿|ã³ã³ã¹ãã©ã¯ã¿]]
### [[/ã©ã€ãã©ãªã»ã¢ãžã¥ãŒã«ãšãªããžã§ã¯ãæå#ãªããžã§ã¯ã|ãªããžã§ã¯ã]]
### [[/ã©ã€ãã©ãªã»ã¢ãžã¥ãŒã«ãšãªããžã§ã¯ãæå#ã¯ã©ã¹|ã¯ã©ã¹]]
### [[/ã©ã€ãã©ãªã»ã¢ãžã¥ãŒã«ãšãªããžã§ã¯ãæå#ã¡ãœãã|ã¡ãœãã]]
### [[/ã©ã€ãã©ãªã»ã¢ãžã¥ãŒã«ãšãªããžã§ã¯ãæå#ã¡ã³ã|ã¡ã³ã]]
### [[/ã©ã€ãã©ãªã»ã¢ãžã¥ãŒã«ãšãªããžã§ã¯ãæå#ç¶æ¿|ç¶æ¿]]
# [[/äŸå€åŠç|äŸå€åŠç]]
# [[/æ¥æ¬èªåŠç|æ¥æ¬èªåŠç]]
# [[/ãŠã§ãã¢ããªã±ãŒã·ã§ã³|ãŠã§ãã¢ããªã±ãŒã·ã§ã³]]
## [[CGI]]
## [[Perl/CGI]]
# [[/ãã«ãã»ããã¥ã¡ã³ã|ãã«ãã»ããã¥ã¡ã³ã]]
# [[/éé²|éé²]]
== å€éšãªã³ã¯ ==
;CPAN :[1] https://www.cpan.org/
;æ¥æ¬èªperldoc :[2] https://perldoc.jp/
[[Category:ããã°ã©ãã³ã°èšèª]]
[[Category:Perl|*]]
{{stub}}
{{NDC|007.64}} | 2005-02-03T16:50:57Z | 2023-11-21T00:52:05Z | [
"ãã³ãã¬ãŒã:Pathnav",
"ãã³ãã¬ãŒã:Wikipedia",
"ãã³ãã¬ãŒã:Stub",
"ãã³ãã¬ãŒã:NDC"
] | https://ja.wikibooks.org/wiki/Perl |
1,613 | OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXãã£ãããããŒã®æŠèŠ | | ^ >
OsiriX ã¯ãAntoine Rosset ãäžå¿ãšããéçºè
ã®äžæ žã°ã«ãŒãã®å
±åäœæ¥ã®äžãéçºãããŠããŸããå
±åéçºäœæ¥ããããªãããããœãŒã¹ã³ãŒãã¯sourceforge ãµã€ãã®ãªã¢ãŒããµãŒãã«ä¿åãããŠããŸããã³ãŒãã®ååŸãå€æŽã¯ãSVN ããŒãžã§ã³ç®¡çãµãŒãã¹ãå©çšããŠããŸãã
OsiriXã®ã³ããŒããã«ãããã«ã¯ãã¢ããã«ã³ã³ãã¥ãŒã¿ç€Ÿãå
¬éããŠãããã£ãããããŒããŒã« (XCode) ã®ææ°ããŒãžã§ã³2.4 (èŠ Mac OS X 10.4) ãå¿
èŠã§ãã developer.apple.com ããç¡åã§å
¥æã§ããŸããããã£ãããããµã€ããžã®ã¡ã³ããŒç»é² (ç¡æ) ãå¿
èŠã§ãã
次ã®äºã€ã®é
ã§ããœãŒã¹ã³ãŒãã®ååŸåã³äžåºŠã«ã³ã³ãã€ã«ããæ¹æ³ã«ã€ããŠèšè¿°ããŠããŸãããŸãã Osirix ãŠãšããµã€ãã«ã解説ãæ²èŒãããŠããŸãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "| ^ >",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "OsiriX ã¯ãAntoine Rosset ãäžå¿ãšããéçºè
ã®äžæ žã°ã«ãŒãã®å
±åäœæ¥ã®äžãéçºãããŠããŸããå
±åéçºäœæ¥ããããªãããããœãŒã¹ã³ãŒãã¯sourceforge ãµã€ãã®ãªã¢ãŒããµãŒãã«ä¿åãããŠããŸããã³ãŒãã®ååŸãå€æŽã¯ãSVN ããŒãžã§ã³ç®¡çãµãŒãã¹ãå©çšããŠããŸãã",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "OsiriXã®ã³ããŒããã«ãããã«ã¯ãã¢ããã«ã³ã³ãã¥ãŒã¿ç€Ÿãå
¬éããŠãããã£ãããããŒããŒã« (XCode) ã®ææ°ããŒãžã§ã³2.4 (èŠ Mac OS X 10.4) ãå¿
èŠã§ãã developer.apple.com ããç¡åã§å
¥æã§ããŸããããã£ãããããµã€ããžã®ã¡ã³ããŒç»é² (ç¡æ) ãå¿
èŠã§ãã",
"title": ""
},
{
"paragraph_id": 3,
"tag": "p",
"text": "次ã®äºã€ã®é
ã§ããœãŒã¹ã³ãŒãã®ååŸåã³äžåºŠã«ã³ã³ãã€ã«ããæ¹æ³ã«ã€ããŠèšè¿°ããŠããŸãããŸãã Osirix ãŠãšããµã€ãã«ã解説ãæ²èŒãããŠããŸãã",
"title": ""
}
] | | ^ > OsiriX ã¯ãAntoine Rosset ãäžå¿ãšããéçºè
ã®äžæ žã°ã«ãŒãã®å
±åäœæ¥ã®äžãéçºãããŠããŸããå
±åéçºäœæ¥ããããªãããããœãŒã¹ã³ãŒãã¯sourceforge ãµã€ãã®ãªã¢ãŒããµãŒãã«ä¿åãããŠããŸããã³ãŒãã®ååŸãå€æŽã¯ãSVN ããŒãžã§ã³ç®¡çãµãŒãã¹ãå©çšããŠããŸãã OsiriXã®ã³ããŒããã«ãããã«ã¯ãã¢ããã«ã³ã³ãã¥ãŒã¿ç€Ÿãå
¬éããŠãããã£ãããããŒããŒã« (XCode) ã®ææ°ããŒãžã§ã³2.4 ãå¿
èŠã§ãã developer.apple.com ããç¡åã§å
¥æã§ããŸããããã£ãããããµã€ããžã®ã¡ã³ããŒç»é² (ç¡æ) ãå¿
èŠã§ãã 次ã®äºã€ã®é
ã§ããœãŒã¹ã³ãŒãã®ååŸåã³äžåºŠã«ã³ã³ãã€ã«ããæ¹æ³ã«ã€ããŠèšè¿°ããŠããŸãããŸãã Osirix ãŠãšããµã€ãã«ã解説ãæ²èŒãããŠããŸãã | | [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|^]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXãã£ãããããŒ_éçºè
åã³å¿åãŠãŒã¶ã®SVNã«ããã¢ã¯ã»ã¹|>]]
OsiriX ã¯ãAntoine Rosset ãäžå¿ãšããéçºè
ã®äžæ žã°ã«ãŒãã®å
±åäœæ¥ã®äžãéçºãããŠããŸããå
±åéçºäœæ¥ããããªãããããœãŒã¹ã³ãŒãã¯sourceforge ãµã€ãã®ãªã¢ãŒããµãŒãã«ä¿åãããŠããŸããã³ãŒãã®ååŸãå€æŽã¯ãSVN ããŒãžã§ã³ç®¡çãµãŒãã¹ãå©çšããŠããŸãã
OsiriXã®ã³ããŒããã«ãããã«ã¯ãã¢ããã«ã³ã³ãã¥ãŒã¿ç€Ÿãå
¬éããŠãããã£ãããããŒããŒã« (XCode) ã®ææ°ããŒãžã§ã³2.4 (èŠ Mac OS X 10.4) ãå¿
èŠã§ãã [http://developer.apple.com/ developer.apple.com] ããç¡åã§å
¥æã§ããŸããããã£ãããããµã€ããžã®ã¡ã³ããŒç»é² (ç¡æ) ãå¿
èŠã§ãã
次ã®äºã€ã®é
ã§ããœãŒã¹ã³ãŒãã®ååŸåã³äžåºŠã«ã³ã³ãã€ã«ããæ¹æ³ã«ã€ããŠèšè¿°ããŠããŸãããŸãã [http://web.archive.org/20040706051002/homepage.mac.com/rossetantoine/osirix/SourceCode.html Osirix] ãŠãšããµã€ãã«ã解説ãæ²èŒãããŠããŸãã
[[en:Online OsiriX Documentation/OsiriX Developer Overview]]
[[Category:OsiriX|ãŠããžãã€ã¯ãã®ãããã]] | null | 2015-08-28T12:08:37Z | [] | https://ja.wikibooks.org/wiki/OsiriX_%E3%82%AA%E3%83%B3%E3%83%A9%E3%82%A4%E3%83%B3%E8%A7%A3%E8%AA%AC%E6%96%87%E6%9B%B8/OsiriX%E3%83%87%E3%82%A3%E3%83%99%E3%83%AD%E3%83%83%E3%83%91%E3%83%BC%E3%81%AE%E6%A6%82%E8%A6%81 |
1,614 | OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXãã£ãããã㌠éçºè
åã³å¿åãŠãŒã¶ã®SVNã«ããã¢ã¯ã»ã¹ | < | ^ | >
OsiriX ã®ãœãŒã¹ã³ãŒããå
¥æããã«ã¯ãSubversion ãã€ã³ã¹ããŒã«ããå¿
èŠããããŸãã
ãµãŒãã®ãœãŒã¹æ¬äœã«å€æŽãå ããªãã®ã§ããã°ãå¿åãŠãŒã¶ãšããŠã¢ã¯ã»ã¹ããã®ãç°¡åã§ããã¿ãŒããã«ãéããŠãcd ã³ãã³ãã§ç
§åããã³ãŒãã®ååšãããã£ã¬ã¯ããª(ã³ããŒãããå Žæ)ã«ç§»åããŸããç§ã®å Žåã¯ã /Users/spalte ã§ãã次ã«:
svn co https://svn.sourceforge.net/svnroot/osirix osirix (衚瀺ãããæ瀺ã«åŸã£ãŠã't' ãŸã㯠'p' å
¥åãæŽã«ãªã¿ãŒã³ããŒãå
¥å)
ãã°ããåŸ
ã£ãŠãããšããœãŒã¹ã³ãŒãã®å
¥ã£ãosirix ãšããååã®ãã£ã¬ã¯ããªãäœæãããŸããç§ã®å Žåã¯ã /Users/spalte/osirix ã§ããããã§ãã«ãããæºåãæŽããŸããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "< | ^ | >",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "OsiriX ã®ãœãŒã¹ã³ãŒããå
¥æããã«ã¯ãSubversion ãã€ã³ã¹ããŒã«ããå¿
èŠããããŸãã",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ãµãŒãã®ãœãŒã¹æ¬äœã«å€æŽãå ããªãã®ã§ããã°ãå¿åãŠãŒã¶ãšããŠã¢ã¯ã»ã¹ããã®ãç°¡åã§ããã¿ãŒããã«ãéããŠãcd ã³ãã³ãã§ç
§åããã³ãŒãã®ååšãããã£ã¬ã¯ããª(ã³ããŒãããå Žæ)ã«ç§»åããŸããç§ã®å Žåã¯ã /Users/spalte ã§ãã次ã«:",
"title": "å¿åã«ããã¢ã¯ã»ã¹"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "svn co https://svn.sourceforge.net/svnroot/osirix osirix (衚瀺ãããæ瀺ã«åŸã£ãŠã't' ãŸã㯠'p' å
¥åãæŽã«ãªã¿ãŒã³ããŒãå
¥å)",
"title": "å¿åã«ããã¢ã¯ã»ã¹"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ãã°ããåŸ
ã£ãŠãããšããœãŒã¹ã³ãŒãã®å
¥ã£ãosirix ãšããååã®ãã£ã¬ã¯ããªãäœæãããŸããç§ã®å Žåã¯ã /Users/spalte/osirix ã§ããããã§ãã«ãããæºåãæŽããŸããã",
"title": "å¿åã«ããã¢ã¯ã»ã¹"
}
] | < | ^ | > OsiriX ã®ãœãŒã¹ã³ãŒããå
¥æããã«ã¯ãSubversion ãã€ã³ã¹ããŒã«ããå¿
èŠããããŸãã | [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXãã£ãããããŒã®æŠèŠ|<]] | [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|^]] | [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXãã£ãããããŒ_OsiriXããã«ããã|>]]
OsiriX ã®ãœãŒã¹ã³ãŒããå
¥æããã«ã¯ã[http://subversion.tigris.org/ Subversion] ãã€ã³ã¹ããŒã«ããå¿
èŠããããŸãã
== å¿åã«ããã¢ã¯ã»ã¹ ==
ãµãŒãã®ãœãŒã¹æ¬äœã«å€æŽãå ããªãã®ã§ããã°ãå¿åãŠãŒã¶ãšããŠã¢ã¯ã»ã¹ããã®ãç°¡åã§ããã¿ãŒããã«ãéããŠã'''cd''' ã³ãã³ãã§ç
§åããã³ãŒãã®ååšãããã£ã¬ã¯ããªïŒã³ããŒãããå ŽæïŒã«ç§»åããŸããç§ã®å Žåã¯ã /Users/spalte ã§ãã次ã«:
<nowiki>
svn co https://svn.sourceforge.net/svnroot/osirix osirix
</nowiki>
(衚瀺ãããæ瀺ã«åŸã£ãŠã't' ãŸã㯠'p' å
¥åãæŽã«ãªã¿ãŒã³ããŒãå
¥å)
ãã°ããåŸ
ã£ãŠãããšããœãŒã¹ã³ãŒãã®å
¥ã£ãosirix ãšããååã®ãã£ã¬ã¯ããªãäœæãããŸããç§ã®å Žåã¯ã /Users/spalte/osirix ã§ããããã§ãã«ãããæºåãæŽããŸããã
[[en:Online OsiriX Documentation/OsiriX Anonymous and Developer SVN access]]
[[Category:OsiriX|ããã¯ã€ããããã²ãšããããããã®SVNã«ãããããã]] | null | 2015-08-28T12:08:22Z | [] | https://ja.wikibooks.org/wiki/OsiriX_%E3%82%AA%E3%83%B3%E3%83%A9%E3%82%A4%E3%83%B3%E8%A7%A3%E8%AA%AC%E6%96%87%E6%9B%B8/OsiriX%E3%83%87%E3%82%A3%E3%83%99%E3%83%AD%E3%83%83%E3%83%91%E3%83%BC_%E9%96%8B%E7%99%BA%E8%80%85%E5%8F%8A%E3%81%B3%E5%8C%BF%E5%90%8D%E3%83%A6%E3%83%BC%E3%82%B6%E3%81%AESVN%E3%81%AB%E3%82%88%E3%82%8B%E3%82%A2%E3%82%AF%E3%82%BB%E3%82%B9 |
1,615 | OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXãã£ãããã㌠OsiriXããã«ããã | < | ^ | > ããŠããœãŒã¹ã³ãŒããå
¥æãããã次ã«ããããã«ãããŸãã
1) ãããžã§ã¯ããã¡ã€ã«ã§ããOsiriX.pbproj ãã¡ã€ã«ãéããŸãã
2) ã¢ã¯ãã£ãã¿ãŒã²ããã Unzip Binaries ã«ããŠãã«ãããããªããŸãã
3) 次ã«ã¢ã¯ãã£ãã¿ãŒã²ããã Development ã«èšå®ããŠã'Osirix.pbproj' ãã³ã³ãã€ã«ãã«ãããŸãã
ããã§ã¢ããªã±ãŒã·ã§ã³ã®èµ·åãå¯èœãšãªããŸããããã§ã« OsiriX ãã€ã³ã¹ããŒã«ããŠããå Žåã«ã¯ãããããã OsiriX ã®ãŠãŒã¶ããŒã¿ãã©ã«ããããã¯ã¢ããããŠãã ãããæ°ãã«ãã«ããã OsiriX ãèµ·åããå Žåãã³ã³ããªã¯ããèµ·ããå±éºæ§ããããŸãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "< | ^ | > ããŠããœãŒã¹ã³ãŒããå
¥æãããã次ã«ããããã«ãããŸãã",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "1) ãããžã§ã¯ããã¡ã€ã«ã§ããOsiriX.pbproj ãã¡ã€ã«ãéããŸãã",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "2) ã¢ã¯ãã£ãã¿ãŒã²ããã Unzip Binaries ã«ããŠãã«ãããããªããŸãã",
"title": ""
},
{
"paragraph_id": 3,
"tag": "p",
"text": "3) 次ã«ã¢ã¯ãã£ãã¿ãŒã²ããã Development ã«èšå®ããŠã'Osirix.pbproj' ãã³ã³ãã€ã«ãã«ãããŸãã",
"title": ""
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ããã§ã¢ããªã±ãŒã·ã§ã³ã®èµ·åãå¯èœãšãªããŸããããã§ã« OsiriX ãã€ã³ã¹ããŒã«ããŠããå Žåã«ã¯ãããããã OsiriX ã®ãŠãŒã¶ããŒã¿ãã©ã«ããããã¯ã¢ããããŠãã ãããæ°ãã«ãã«ããã OsiriX ãèµ·åããå Žåãã³ã³ããªã¯ããèµ·ããå±éºæ§ããããŸãã",
"title": ""
}
] | < | ^ | >
ããŠããœãŒã¹ã³ãŒããå
¥æãããã次ã«ããããã«ãããŸãã 1) ãããžã§ã¯ããã¡ã€ã«ã§ããOsiriX.pbproj ãã¡ã€ã«ãéããŸãã 2) ã¢ã¯ãã£ãã¿ãŒã²ããã Unzip Binaries ã«ããŠãã«ãããããªããŸãã 3) 次ã«ã¢ã¯ãã£ãã¿ãŒã²ããã Development ã«èšå®ããŠã'Osirix.pbproj' ãã³ã³ãã€ã«ãã«ãããŸãã ããã§ã¢ããªã±ãŒã·ã§ã³ã®èµ·åãå¯èœãšãªããŸããããã§ã« OsiriX ãã€ã³ã¹ããŒã«ããŠããå Žåã«ã¯ãããããã OsiriX ã®ãŠãŒã¶ããŒã¿ãã©ã«ããããã¯ã¢ããããŠãã ãããæ°ãã«ãã«ããã OsiriX ãèµ·åããå Žåãã³ã³ããªã¯ããèµ·ããå±éºæ§ããããŸãã | [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXãã£ãããããŒ_éçºè
åã³å¿åãŠãŒã¶ã®SVNã«ããã¢ã¯ã»ã¹|<]] | [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|^]] | [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXãã£ãããã㌠getosirixCVS.plãå©çšãã|>]]
ããŠããœãŒã¹ã³ãŒããå
¥æãããã次ã«ããããã«ãããŸãã
1) ãããžã§ã¯ããã¡ã€ã«ã§ããOsiriX.pbproj ãã¡ã€ã«ãéããŸãã
2) ã¢ã¯ãã£ãã¿ãŒã²ããã '''Unzip Binaries''' ã«ããŠãã«ãããããªããŸãã
3) 次ã«ã¢ã¯ãã£ãã¿ãŒã²ããã '''Development''' ã«èšå®ããŠã'Osirix.pbproj' ãã³ã³ãã€ã«ãã«ãããŸãã
ããã§ã¢ããªã±ãŒã·ã§ã³ã®èµ·åãå¯èœãšãªããŸããããã§ã« OsiriX ãã€ã³ã¹ããŒã«ããŠããå Žåã«ã¯ãããããã OsiriX ã®ãŠãŒã¶ããŒã¿ãã©ã«ããããã¯ã¢ããããŠãã ãããæ°ãã«ãã«ããã OsiriX ãèµ·åããå Žåãã³ã³ããªã¯ããèµ·ããå±éºæ§ããããŸãã
[[en:Online OsiriX Documentation/Building OsiriX]]
[[Category:OsiriX|ã²ããšãã]] | null | 2015-08-28T12:07:22Z | [] | https://ja.wikibooks.org/wiki/OsiriX_%E3%82%AA%E3%83%B3%E3%83%A9%E3%82%A4%E3%83%B3%E8%A7%A3%E8%AA%AC%E6%96%87%E6%9B%B8/OsiriX%E3%83%87%E3%82%A3%E3%83%99%E3%83%AD%E3%83%83%E3%83%91%E3%83%BC_OsiriX%E3%82%92%E3%83%93%E3%83%AB%E3%83%89%E3%81%99%E3%82%8B |
1,616 | OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXãã£ãããã㌠getosirixCVS.plãå©çšãã | < | ^
ç§ã¯ getosirixCVS.pl ãšããperl ã¹ã¯ãªãããäœæããŸãã (æ£ç¢ºã«ã¯bibdesk website ããã®æ¹å€) ããããããŠã³ããŒãããŸããéçºçšã®ãã£ã¬ã¯ããªã«ä¿åããã®ãè¯ãã§ããããç§ã®å Žåã¯Users/jefferis/dev ã§ããã¿ãŒããã«ãéããŠã次ã®ããã«å
¥åããŸãã:
gjg5:~/dev jefferis$ perl getosirixCVS.pl
å¿åãŠãŒã¶ã§ã®ãã°ã€ã³ã§ã¯ä»¥äžã®ããã«ãªããŸãã:
éçºè
ãšããŠç»é²ãããŠãŒã¶åã§ã®ãã°ã€ã³ã§ã¯ä»¥äžã®ããã«ãªããŸãã:
ã¯ãããã®éã!ã
以äžãperlã¹ã¯ãªããã§ãããããgetosirixCVS.plãšãããã¡ã€ã«åã§ä¿åããŸããã¿ãŒããã«ã§å©çšããŠãã ããã: | [
{
"paragraph_id": 0,
"tag": "p",
"text": "< | ^",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ç§ã¯ getosirixCVS.pl ãšããperl ã¹ã¯ãªãããäœæããŸãã (æ£ç¢ºã«ã¯bibdesk website ããã®æ¹å€) ããããããŠã³ããŒãããŸããéçºçšã®ãã£ã¬ã¯ããªã«ä¿åããã®ãè¯ãã§ããããç§ã®å Žåã¯Users/jefferis/dev ã§ããã¿ãŒããã«ãéããŠã次ã®ããã«å
¥åããŸãã:",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "gjg5:~/dev jefferis$ perl getosirixCVS.pl",
"title": ""
},
{
"paragraph_id": 3,
"tag": "p",
"text": "å¿åãŠãŒã¶ã§ã®ãã°ã€ã³ã§ã¯ä»¥äžã®ããã«ãªããŸãã:",
"title": ""
},
{
"paragraph_id": 4,
"tag": "p",
"text": "éçºè
ãšããŠç»é²ãããŠãŒã¶åã§ã®ãã°ã€ã³ã§ã¯ä»¥äžã®ããã«ãªããŸãã:",
"title": ""
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ã¯ãããã®éã!ã",
"title": ""
},
{
"paragraph_id": 6,
"tag": "p",
"text": "以äžãperlã¹ã¯ãªããã§ãããããgetosirixCVS.plãšãããã¡ã€ã«åã§ä¿åããŸããã¿ãŒããã«ã§å©çšããŠãã ããã:",
"title": ""
}
] | < | ^ ç§ã¯ getosirixCVS.pl ãšããperl ã¹ã¯ãªãããäœæããŸããããããããŠã³ããŒãããŸããéçºçšã®ãã£ã¬ã¯ããªã«ä¿åããã®ãè¯ãã§ããããç§ã®å Žåã¯Users/jefferis/dev ã§ããã¿ãŒããã«ãéããŠã次ã®ããã«å
¥åããŸãã: gjg5:~/dev jefferis$ perl getosirixCVS.pl å¿åãŠãŒã¶ã§ã®ãã°ã€ã³ã§ã¯ä»¥äžã®ããã«ãªããŸãã: éçºè
ãšããŠç»é²ãããŠãŒã¶åã§ã®ãã°ã€ã³ã§ã¯ä»¥äžã®ããã«ãªããŸãã: ã¯ãããã®éãïŒã 以äžãperlã¹ã¯ãªããã§ãããããgetosirixCVS.plãšãããã¡ã€ã«åã§ä¿åããŸããã¿ãŒããã«ã§å©çšããŠãã ããã: | [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXãã£ãããããŒ_OsiriXããã«ããã|<]] | [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|^]]
ç§ã¯ '''getosirixCVS.pl''' ãšããperl ã¹ã¯ãªãããäœæããŸãã (æ£ç¢ºã«ã¯bibdesk website ããã®æ¹å€) ããããããŠã³ããŒãããŸããéçºçšã®ãã£ã¬ã¯ããªã«ä¿åããã®ãè¯ãã§ããããç§ã®å Žåã¯Users/jefferis/dev ã§ããã¿ãŒããã«ãéããŠã次ã®ããã«å
¥åããŸãã:
gjg5:~/dev jefferis$ '''perl getosirixCVS.pl'''
å¿åãŠãŒã¶ã§ã®ãã°ã€ã³ã§ã¯ä»¥äžã®ããã«ãªããŸãã:
*******************************
Welcome to osirix development.
This script will get the stuff you need from cvs to build osirix.
Developers should set SF_USERNAME to use ssh access
Are you a developer using ssh access (y/n)? "n"
cvs -z3 -d:pserver:[email protected]:/cvsroot/osirix login
Password is empty--just hit return when asked for a password
Executing: cvs -z3 -d:pserver:[email protected]:/cvsroot/osirix login
(Logging in to [email protected])
CVS password: "Press return"
Do you want a specific tag? (empty for none or enter tag(eg TRY_RTF_041503) "Press return"
Executing: cvs -z3 -d:pserver:[email protected]:/cvsroot/osirix co osirix
cvs checkout: Updating osirix
U osirix/AdvancedQuerySubview.h
U osirix/AdvancedQuerySubview.m
U osirix/Analyze.h
...
U osirix/pixelmed/DICOMPersonNameAttribute.xcode/lpysher.pbxuser
U osirix/pixelmed/DICOMPersonNameAttribute.xcode/project.pbxproj
****************************
getosirixCVS done.You will have to expand zip files as follows:
find osirix -iname "*.zip" -execdir unzip {} ";"
After that open osirix/OsiriX.pbproj/ and commence the build.
1) compile DCM.framework target FIRST. This will create the OsiriX.framework for OsiriXBurner application
2) compile 'OsirixBurner.xcode' file
3) compile all the PreferencePanes projects located in the 'Preference Panes' folder
4) compile 'Osirix.pbproj' file with OsiriX target
éçºè
ãšããŠç»é²ãããŠãŒã¶åã§ã®ãã°ã€ã³ã§ã¯ä»¥äžã®ããã«ãªããŸãã:
*******************************
Welcome to osirix development.
This script will get the stuff you need from cvs to build osirix.
Developers should set SF_USERNAME to use ssh access
Are you a developer using ssh access (y/n)? '''y'''
What is your sourceforge username (setenv SF_USERNAME for a default)? '''jefferis'''
Do you want a specific tag? (empty for none or enter tag(eg TRY_RTF_041503) "Press return for HEAD"
Executing: cvs -z3 -d:ext:[email protected]:/cvsroot/osirix co osirix
The authenticity of host 'cvs.sourceforge.net (66.35.250.207)' can't be established.
DSA key fingerprint is 02:ab:7c:aa:49:ed:0b:a8:50:13:10:c2:3e:92:0f:42.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'cvs.sourceforge.net,66.35.250.207' (DSA) to the list of known hosts.
[email protected]'s password:
cvs checkout: Updating osirix
U osirix/AdvancedQuerySubview.h
U osirix/AdvancedQuerySubview.m
...
ã¯ãããã®éãïŒã
以äžãperlã¹ã¯ãªããã§ããããã'''getosirixCVS.pl'''ãšãããã¡ã€ã«åã§ä¿åããŸããã¿ãŒããã«ã§å©çšããŠãã ããã:
#!/usr/bin/perl -w
#
# This script was written for fetching the BibDesk CVS tree
# I basically just did a search and replace for osirix
# Greg Jefferis 21 May 2004
print "\n*******************************\n";
print "Welcome to osirix development.\n";
print "This script will get the stuff you need from cvs to build osirix.\n";
print "Developers should set SF_USERNAME to use ssh access\n";
$SFNAME=getSFName();
if ($SFNAME ne "") {
prepdev();
} else {
prepanon();
}
$bibtag=gettag();
getsources();
print "\n****************************\n";
print "getosirixCVS done.";
print "You will have to expand zip files as follows:\n";
print "find osirix -iname \"*.zip\" -execdir unzip {} \";\"\n";
print "After that open osirix/OsiriX.pbproj/ and commence the build.\n";
print << "EOF";
1) compile DCM.framework target FIRST. This will create the OsiriX.framework for OsiriXBurner application
2) compile 'OsirixBurner.xcode' file
3) compile all the PreferencePanes projects located in the 'Preference Panes' folder
4) compile 'Osirix.pbproj' file with OsiriX target
EOF
sub getSFName {
if (defined $ENV{'SF_USERNAME'} ) {
return $ENV{'SF_USERNAME'};
} else {
print "Are you a developer using ssh access (y/n)? ";
$DEV = <STDIN>;
if ( $DEV =~ /^n/ ) {
return "";
} else {
print "What is your sourceforge username (setenv SF_USERNAME for a default)? ";
$SFNAME = <STDIN>;
chomp($SFNAME);
return $SFNAME;
}
}
}
# Set the BIB tag
sub gettag {
if (defined $ENV{'SF_BIB_TAG'} ) {
$bibtag = $ENV{'SF_BIB_TAG'};
} else {
print "Do you want a specific tag? (empty for none or enter tag(eg TRY_RTF_041503) ";
$bibtag = <STDIN>;
}
chomp($bibtag);
if ($bibtag eq "") {
return $bibtag;
} else {
return "-r $bibtag";
}
}
sub prepanon {
$CVS_METHOD = "pserver";
$SFNAME = "anonymous";
$LOGIN = "cvs -z3 -d:$CVS_METHOD:$SFNAME\@cvs.sourceforge.net:/cvsroot/osirix login";
print "$LOGIN\n";
print "\nPassword is empty--just hit return when asked for a password\n";
tryGet($LOGIN);
}
sub prepdev {
$ENV{'CVS_RSH'} = 'ssh';
$CVS_METHOD = "ext";
}
sub getsources {
$GETMAIN = "cvs -z3 -d:$CVS_METHOD:$SFNAME\@cvs.sourceforge.net:/cvsroot/osirix co $bibtag osirix";
tryGet($GETMAIN);
# not relevant for osirix
#$GETVENDOR = "cvs -z3 -d:$CVS_METHOD:$SFNAME\@cvs.sourceforge.net:/cvsroot/osirix co osirix_vendorsrc";
#tryGet($GETVENDOR);
}
sub tryGet {
$toGet = shift;
print "Executing: $toGet\n";
if ( (system $toGet) != 0) { #return of 0 indicates success
print "cvs failed. Check messages above. Should I try again? (y/n)?";
undef $tryAgain;
$tryAgain = <STDIN>;
if ($tryAgain =~ /^y/) {
getsources();
} else {
print "cvs failed. Please read messages above and";
print " try again in a few moments\n";
exit;
}
}
}
[[en:Online OsiriX Documentation/Using getosirixCVS.pl]]
[[Category:OsiriX|getosirixCVS.piãããããã]] | null | 2015-08-28T12:08:02Z | [] | https://ja.wikibooks.org/wiki/OsiriX_%E3%82%AA%E3%83%B3%E3%83%A9%E3%82%A4%E3%83%B3%E8%A7%A3%E8%AA%AC%E6%96%87%E6%9B%B8/OsiriX%E3%83%87%E3%82%A3%E3%83%99%E3%83%AD%E3%83%83%E3%83%91%E3%83%BC_getosirixCVS.pl%E3%82%92%E5%88%A9%E7%94%A8%E3%81%99%E3%82%8B |
1,621 | OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXã¡ãã¥ãŒ OsiriX | | ^ >
ãããéžæãããšãçŸåšäœ¿çšããŠããOsiriX ã®ããŒãžã§ã³æ
å ±ã衚瀺ãããŸãããã®ã¹ã¯ãªãŒã³å
ã«ã¯ãOsiriX Website ãžã®ãªã³ã¯ãã¿ã³ããããŸãã
OsiriX ãªã³ã©ã€ã³è§£èª¬ææž ç®æ¬¡ > OsiriXã¡ãã¥ãŒ_OsiriX
ãã®ã¡ãã¥ãŒã«ã¯8 ã€ã®ãµãã¡ãã¥ãŒããããŸãã:
çŸåšäœ¿çšããŠããOsiriX ã®ããŒãžã§ã³ãææ°çãã©ããã調ã¹ãŸããææ°çã§ããã°ã以äžã®ããã«è¡šç€ºãããŸãã:
ææ°çã§ãªãå Žåã«ã¯ãæ°ããããŒãžã§ã³ãç¥ãããã¡ãã»ãŒãžã衚瀺ãããŸãã
ãããéžæãããšãOsiriX ãé ãããŸããèµ·åã¯ããŠããŸãããã¹ã¯ãªãŒã³è¡šç€ºãããªããªããŸãã
ä»ã®éããŠããã¢ããªã±ãŒã·ã§ã³ãé ããŸãããããã¢ããªã±ãŒã·ã§ã³ã¯èµ·åããŠããŸãããã¹ã¯ãªãŒã³è¡šç€ºãããªããªããŸãã
OsiriX ãçµäºããŸãã
OsiriX | ^ > | [
{
"paragraph_id": 0,
"tag": "p",
"text": "| ^ >",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ãããéžæãããšãçŸåšäœ¿çšããŠããOsiriX ã®ããŒãžã§ã³æ
å ±ã衚瀺ãããŸãããã®ã¹ã¯ãªãŒã³å
ã«ã¯ãOsiriX Website ãžã®ãªã³ã¯ãã¿ã³ããããŸãã",
"title": "About OsiriX (OsiriX ã«ã€ããŠ)"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "OsiriX ãªã³ã©ã€ã³è§£èª¬ææž ç®æ¬¡ > OsiriXã¡ãã¥ãŒ_OsiriX",
"title": "About OsiriX (OsiriX ã«ã€ããŠ)"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ãã®ã¡ãã¥ãŒã«ã¯8 ã€ã®ãµãã¡ãã¥ãŒããããŸãã:",
"title": "Preferences (ç°å¢èšå®)"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "çŸåšäœ¿çšããŠããOsiriX ã®ããŒãžã§ã³ãææ°çãã©ããã調ã¹ãŸããææ°çã§ããã°ã以äžã®ããã«è¡šç€ºãããŸãã:",
"title": "Check for Updates (ã¢ããããŒãã確èªãã)"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ææ°çã§ãªãå Žåã«ã¯ãæ°ããããŒãžã§ã³ãç¥ãããã¡ãã»ãŒãžã衚瀺ãããŸãã",
"title": "Check for Updates (ã¢ããããŒãã確èªãã)"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ãããéžæãããšãOsiriX ãé ãããŸããèµ·åã¯ããŠããŸãããã¹ã¯ãªãŒã³è¡šç€ºãããªããªããŸãã",
"title": "Hide OsiriX (command-H) (OsiriX ãé ã)"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "ä»ã®éããŠããã¢ããªã±ãŒã·ã§ã³ãé ããŸãããããã¢ããªã±ãŒã·ã§ã³ã¯èµ·åããŠããŸãããã¹ã¯ãªãŒã³è¡šç€ºãããªããªããŸãã",
"title": "Hide Others (ä»ãé ã)"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "OsiriX ãçµäºããŸãã",
"title": "Quit OsiriX (command-Q) (OsiriX ãçµäº)"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "OsiriX | ^ >",
"title": "Quit OsiriX (command-Q) (OsiriX ãçµäº)"
}
] | | ^ > | | [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|^]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXã¡ãã¥ãŒ_ãã¡ã€ã«_(File)|>]]
----
== About OsiriX (OsiriX ã«ã€ããŠ) ==
ãããéžæãããšãçŸåšäœ¿çšããŠããOsiriX ã®ããŒãžã§ã³æ
å ±ã衚瀺ãããŸãããã®ã¹ã¯ãªãŒã³å
ã«ã¯ãOsiriX Website ãžã®ãªã³ã¯ãã¿ã³ããããŸãã
<center>[[ç»å:AboutOsirixSS.jpg]]<br>''OsiriX ããŒãžã§ã³1.5B2 ã®ã¹ãã©ãã·ã¥ã¹ã¯ãªãŒã³''</center>
[[OsiriX_ãªã³ã©ã€ã³è§£èª¬ææž|OsiriX ãªã³ã©ã€ã³è§£èª¬ææž ç®æ¬¡]] > [[OsiriXã¡ãã¥ãŒ_OsiriX]]
----
== Preferences (ç°å¢èšå®) ==
ãã®ã¡ãã¥ãŒã«ã¯8 ã€ã®ãµãã¡ãã¥ãŒããããŸãã:
=== [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/Osirix General Preferences (äžè¬)|Osirix General Preferences (äžè¬)]] ===
=== [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/Osirix Viewers Preferences (ãã¥ãŒã¢)|Osirix Viewers Preferences (ãã¥ãŒã¢)]] ===
=== [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/Osirix CD and DVD Preferences (CD and DVD)|Osirix CD/DVD Preferences (CD/DVD)]] ===
=== [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/Osirix Database Preferences (ããŒã¿ããŒã¹)|Osirix Database Preferences (ããŒã¿ããŒã¹)]] ===
=== [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/Osirix Listener Preferences (ãªã¹ããŒ)|Osirix Listener Preferences (ãªã¹ããŒ)]] ===
=== [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/Osirix Locations Preferences (å Žæ)|Osirix Locations Preferences (å Žæ)]] ===
=== [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/Osirix Routing Preferences (ã«ãŒãã£ã³ã°)|Osirix Routing Preferences (ã«ãŒãã£ã³ã°)]] ===
=== [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/Osirix Protocols Preferences (ãããã³ãŒã«)|Osirix Protocols Preferences (ãããã³ãŒã«)]] ===
== Check for Updates (ã¢ããããŒãã確èªãã) ==
çŸåšäœ¿çšããŠããOsiriX ã®ããŒãžã§ã³ãææ°çãã©ããã調ã¹ãŸããææ°çã§ããã°ã以äžã®ããã«è¡šç€ºãããŸãã:
<center>[[ç»å:OsirixUptoDate.jpg]]</center>
ææ°çã§ãªãå Žåã«ã¯ãæ°ããããŒãžã§ã³ãç¥ãããã¡ãã»ãŒãžã衚瀺ãããŸãã
== Hide OsiriX (command-H) (OsiriX ãé ã) ==
ãããéžæãããšãOsiriX ãé ãããŸããèµ·åã¯ããŠããŸãããã¹ã¯ãªãŒã³è¡šç€ºãããªããªããŸãã
== Hide Others (ä»ãé ã) ==
ä»ã®éããŠããã¢ããªã±ãŒã·ã§ã³ãé ããŸãããããã¢ããªã±ãŒã·ã§ã³ã¯èµ·åããŠããŸãããã¹ã¯ãªãŒã³è¡šç€ºãããªããªããŸãã
== Quit OsiriX (command-Q) (OsiriX ãçµäº) ==
OsiriX ãçµäºããŸãã
----
[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|OsiriX]] <br>
| [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|^]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXã¡ãã¥ãŒ_ãã¡ã€ã«_(File)|>]]
[[en:Online OsiriX Documentation/OsiriX Menu]]
[[Category:OsiriX|ãã«ã]] | null | 2015-08-28T12:08:46Z | [] | https://ja.wikibooks.org/wiki/OsiriX_%E3%82%AA%E3%83%B3%E3%83%A9%E3%82%A4%E3%83%B3%E8%A7%A3%E8%AA%AC%E6%96%87%E6%9B%B8/OsiriX%E3%83%A1%E3%83%8B%E3%83%A5%E3%83%BC_OsiriX |
1,622 | Perl/ã¯ããã« | Perl(ããŒã«)ãšã¯ã1987幎ã«ã©ãªãŒã»ãŠã©ãŒã«ãéçºããããã°ã©ãã³ã°èšèªã§ããPerlã¯Cèšèªãã¯ãããAWKãsedã®ãããªæ§ã
ãªUNIXã®ãœãããŠã§ã¢ã®äŒçµ±ãåãç¶ããå€ãã®åªããæ©èœãåãå
¥ããŠããŸãã
Perlã®ã¢ãããŒã¯There's More Than One Way To Do It.(ããæ¹ã¯äœéãããã)ã§ãç¥ããŠTMTOWTDI(ãã£ã ãã¥ãã£)ãªã©ãšåŒã°ããŸããããã¯ãæ£ããããæ¹ãããã€ååšããŠãããããšããèãæ¹ã§ãPerlã®æè»æ§ãè¡šããŠããŸãããã®ããšãããPerlã¯ç¹ã«ããã¹ãåŠçãCGIããã°ã©ãã³ã°ã®åéã§å€ãçšããããŠããŸãã
Perlã¯Cèšèªãšæ¯ã¹ãŠç°¡æœã§ããã移æ€æ§ãé«ãèšèªã§ããCèšèªã§ã¯æ°çŸè¡ã®ããã°ã©ã ãå¿
èŠãªå Žåã§ããPerlã§ã¯æ°è¡ã§æžãããšãã§ããããšããããŸãã
äžæ¹ã§ãPerlã®ææ³ã¯çç¥ãå€çšããããç¹æ®å€æ°ãèšå·ã§è¡šãããšããããŸãã®ã§ãPerlã®ããæ¹ã«æ
£ãããŸã§ã«ã¯å°ãæéãããããããããŸãããããããäžè¡ã§ãå€ãã®ã³ãŒããæžããŠPerlã身ã«ã€ããããšããå§ãããŸãã
ããã¹ããšãã£ã¿ãçšããŠäŸã«æããããéãã®ãã¡ã€ã«ãäœæã§ããããšãåæãšããŠããŸããããã°ã©ãã³ã°ãã®ãã®ã®æŠå¿µã«ã€ããŠã¯ããã°ã©ãã³ã°(Wikibooks)ãããã°ã©ãã³ã°(Wikipedia)ãåç
§ããŠãã ããã以éãæãã®ãªãå Žåã¯Unix(ããã³Linuxãªã©ã®UnixäºæOS)äžã§ Perl 5.30.0(2019幎05æ22æ¥ ãªãªãŒã¹)以éã®ããŒãžã§ã³ãå©çšããŠãããã®ãšããŠèª¬æããŸã(ãã€ãŠ Perl6 ãšåŒã°ããŠãã Raku ã¯å«ã¿ãŸãã)ã
Perlå
¬åŒãµã€ãã§ã¯Windowsã«å¯Ÿå¿ããããã±ãŒãžã¯æäŸããŠããŸããã ãã®ããããµãŒãããŒãã£ãŒãæäŸããPerlã®ãã£ã¹ããªãã¥ãŒã·ã§ã³ãå©çšããããCygwinãWindows Subsystem for Linuxãå©çšããæ¹æ³ããããŸãã
ActivePerlã¯ãActiveState瀟(æ§ãœãã©ã¹ç€Ÿ)ãæäŸããWindowsãLinuxãmacOSåãã®Perlã®ãã£ã¹ããªãã¥ãŒã·ã§ã³ã§ãã
Strawberry Perlã¯ãMicrosoft Windowsãã©ãããã©ãŒã çšã®ããã°ã©ãã³ã°èšèªPerlã®ãã£ã¹ããªãã¥ãŒã·ã§ã³ã§ãã Strawberry Perlã«ã¯ãå®å
šã«æ©èœããMingw-w64 C/C++ã³ã³ãã€ã©ãªã©ã®ããŒã«ãã§ã€ã³ãå«ãŸããŠããŸãã Strawberry Perlã¯ãç°å¢å€æ°ã¯ã€ã³ã¹ããŒã«æã«èšå®æžã¿ãªã®ã§ãã€ã³ã¹ããŒã«çŽåŸã«ãã³ãã³ã ããã³ããã»Power shellãããã¯ãWindows Terminalãã䜿ãããšãã§ããŸãã
maxOS, FreeBSD, ãã®ä» UNIX ç°å¢ã§ã¯ã»ãšãã©ã®å ŽåãPerlã¯OSã®ãŠãŒã¶ãŒã©ã³ããšã¯å¥ã«ããã±ãŒãžãšããŠæäŸãããŠããŸãããã¿ãŒããã«ããèµ·åããã³ãã³ãããã³ãã($, %, >ãªã©ã®èšå·)ã«ç¶ããŠperl -vãšå
¥åããâ([Enter]ãŸãã¯[Return])ããŒãæŒãã以äžã®ããã«è¡šç€ºãããã°perlãå©çšå¯èœã§ãã
äž»èŠãªUNIXãªãã¯ãPerlããµããŒãããŠãããšæããŸãããããOSã®å
¬åŒããã±ãŒãžã«perlãç¡ãå Žåã§ãã Perl Download - www.perl.orgãããã€ããªããã±ãŒãžãããŠã³ããŒãã§ããŸãã
ãã€ããªããã±ãŒãžãååšããªããã©ãããã©ãŒã ã®å Žåã¯Perl Download - www.perl.orgãããœãŒã¹ã³ãŒããããŠã³ããŒããããã«ãããŠå®è¡ããŠãã ããã
GNU/Linux ã®å ŽåãLinux Standard Base(LSB; ISO/IEC 23360:2021)ã§ã¯ãæºæ ãããã¹ãŠã®ãã£ã¹ããªãã¥ãŒã·ã§ã³ã«Perlãã€ã³ã¹ããŒã«ããŠåºè·ããããšã矩åä»ããããŠããŸãã ããããäœããã®çç±ã§ã€ã³ã¹ããŒã«ãããŠããªããã£ã¹ããªãã¥ãŒã·ã§ã³ã§ã¯ãapt ãªã©ã®ããã±ãŒãžãããŒãžã£ãŒãå©çšããŠã€ã³ã¹ããŒã«ããå¿
èŠããããŸãã 詳现ã¯ãå©çšããŠãããã£ã¹ããªãã¥ãŒã·ã§ã³ã®ããã±ãŒãžãããŒãžã£ãŒã®å©çšæ³ã確èªããŠãã ããã ãŸããæ¢ã« Perl ãã€ã³ã¹ããŒã«ãããŠããç°å¢ã§ããææ°ã®ããŒãžã§ã³ãç¶æããããã«ããã±ãŒãžãããŒãžã£ãŒãå©çšã㊠update ããããå¿ãããè匱æ§ããããŸãŸäœ¿ããªãããã«ããŸãããã
Perlã¯ã€ã³ã¿ããªã¿ãŒèšèªã§ããã€ãŸããããã°ã©ã ãå®è¡ãããã³ã«ãã³ã³ãã€ã«ãšå®è¡ãè¡ãPerlã€ã³ã¿ããªã¿ãŒãåžžã«å¿
èŠãªã®ã§ãã C/C++ãJavaã®ããã«ããã°ã©ã ãã³ã³ãã€ã«ããŠããå®è¡ããã®ã§ã¯ãªããããã°ã©ã ã®ãœãŒã¹ã³ãŒãã(Perlã€ã³ã¿ããªã¿ãŒããã)å¥ã®ã³ã³ãã¥ãŒã¿ãŒã«ã³ããŒããŠå®è¡ããã ãã§è¯ãã®ã§ãã
ãœãŒã¹ã³ãŒãã®ç·šéã«ã¯å¥œããªããã¹ããšãã£ã¿ã䜿ãããšãã§ããŸãã OSæšæºã®ã¡ã¢åž³(Windows)ãTextEdit(macOS)ãvi(UnixãUnixäºæOS)ãªã©ã§ãååã§ãã Wordãªã©ã®ã¯ãŒãããã»ããµãŒã§ãç·šéã¯å¯èœã§ãããæšæºã§ã¯ãã¬ãŒã³ããã¹ããšããŠä¿åãããªãã®ã§æ³šæããŠãã ããã
Perlã§æžãããã³ãŒããå®è¡ãããå Žåã«ã¯ãããã¹ããšãã£ã¿ã§å®è¡ãããã³ãŒããæžããŠã»ãŒãä¿åããŠãããã³ãã³ã端æ«ããä¿åãããã¡ã€ã«ã perl ã§å®è¡ããããšã«ãªããŸãã
Perlã«ããPythonã®å¯Ÿè©±ã¢ãŒãã®ãã㪠REPL( Read-Eval-Print Loop ) ããããŸãã
ããã¹ããšãã£ã¿ã§hello.plãšãããœãŒã¹ãã¡ã€ã«ãäžèšã®ããã«äœæãã
Perlã¯ãå€ãã®ããã°ã©ãã³ã°èšèªãšåæ§ã«ãPerlã¯æ§é åããã°ã©ãã³ã°ãšããããã°ã©ãã³ã°ãã©ãã€ã ãæ¡çšããŠããŸãã ããã°ã©ã ã®æµãã¯é次ã»åå²ã»å埩ã®3ã€ãåºæ¬ã§ãã ã€ãŸããååãšããŠããã°ã©ã ã¯ãœãŒã¹ã³ãŒãã«èšè¿°ãããé ã«å®è¡ãããif ã for ãªã©ã®å¶åŸ¡æ§é ããã£ããšãã ãåå²ã»å埩ããŸãã
Perlã§ã¯ãå€æ°ã¯ãããŒã¿ãæ ŒçŽããé å(ãªããžã§ã¯ã)ã«ä»ããããååãã§ã(åçåä»ã)ã Perlã§ã¯å€æ°å(äŸã§ã¯x)ã®åã«$, %, @ãªã©ã®æ¥é èŸ(sigil; ã·ãžã«)ãã€ãè¡šçŸãå€æ°ãšããŠæ±ããŸãã
ãã®å¯ŸçãšããŠãããŒã¯ãŒã my ã䜿ã£ãŠã¬ãã·ã«ã«ã¹ã³ãŒãã®å€æ°(ã¬ãã·ã«ã«å€æ°)ãšããŠå®£èšããŸãã
Perlã§ã¯äŸã«ãããããªæ§é ã®ãªãããã äžã€ã®å€ã®ã¿ãä¿æããããŒã¿(ã¹ã«ã©ãŒãšåŒã³ãŸã)ã®ã»ããé çªã«äžŠãã è€æ°ã®ããŒã¿ãããªãé
åãããŒãšå€ã®ãã¢ãŒè€æ°èšé²ããããã·ã¥ãããè€éãªããŒã¿æ§é ãå®çŸãããªãã¡ã¬ã³ã¹ãªã©ã®ããŒã¿ãæ±ãããšãã§ããŸãã å€æ°ã«ã€ããŠã®è©³çŽ°ã¯å€æ°ãšããŒã¿ãŒåã§è§£èª¬ããŸãã ãªãã¡ã¬ã³ã¹ã«ã€ããŠã®è©³çŽ°ã¯ãªãã¡ã¬ã³ã¹ã§è§£èª¬ããŸãã
Perlã«ã¯ãè±å¯ãªæ°å€èšç®ã®ããã®æŒç®åãçšæãããŠãããããããçµã¿åãããŠåŒãäœãããšãåºæ¥ãŸãã
ååãšããŠPerlã®ããã°ã©ã ã¯äžã«æžãããŠãããã®ããé ã«å®è¡ãããŠãããŸãããç¹°ãè¿ãããç¹å®ã®æ¡ä»¶ã«å¿ããŠåäœãåãæ¿ããããšãã§ããŸãã
ããæ¡ä»¶ãã¿ãããŠããã(ããã§ã¯$x ã 3 ãã倧ãããã©ãã)ãå€å®ããå€å®ã®å
容ã«ããåäœãåãæ¿ããŠããŸãã
å埩ã¯ããããããã¯ãç¹°ãè¿ãå¶åŸ¡æ§é ã§ã«ãŒããšãåŒã°ããŸãã
ããã°ã©ãã³ã°ã®äœæäžã«ãããã°ã©ã å
ã«ã¡ã¢ãæ®ããŠããããããäžæçã«ããåäœãå®è¡ãããªãããã«ãããããšãã£ãèŠæ±ãçããããšããããŸãããã®ãããªãããã°ã©ãã³ã°ã®ã³ãŒãã«èšèŒããããåäœããªãç®æãã®ããšãäžè¬ã«ã³ã¡ã³ããšåŒã³ãŸãã
Perlã®Podã¯ãPlain Old Documentationã®ç¥ã§ãPerlã¹ã¯ãªããã®ããã¥ã¡ã³ããŒã·ã§ã³ãæžãããã®ãã©ãŒãããã§ãã Podã¯ãããã¹ããã¡ã€ã«ã«èšè¿°ãããã¹ã¯ãªãããšäžç·ã«é
åžãããããšãäžè¬çã§ãã Podã¯ã人éãèªã¿ãããããã¥ã¡ã³ããäœæããããã«èšèšãããŠããŸãããã³ã³ãã¥ãŒã¿ããã°ã©ã ã«ã解æå¯èœãªåçŽãªæ§æããããŸãã
以äžã¯Perlã§1ãã100ã®éã®çŽ æ°ããã¹ãŠè¡šç€ºããããã°ã©ã ã«Podã«ããããã¥ã¡ã³ããä»å ããäŸã§ãã
äžèšã®äŸã§ã¯ã=head1ã¯ã»ã¯ã·ã§ã³ã®èŠåºããè¡šããŸãã NAMEãšSYNOPSISã¯ãã¢ãžã¥ãŒã«ã®ååãšäœ¿çšäŸã説æããŸãã DESCRIPTIONã¯ãã¢ãžã¥ãŒã«ã®æ©èœã®è©³çŽ°ãªèª¬æã§ãããAUTHORã¯ãã¢ãžã¥ãŒã«ã®äœè
ã®æ
å ±ãæäŸããŸãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "Perl(ããŒã«)ãšã¯ã1987幎ã«ã©ãªãŒã»ãŠã©ãŒã«ãéçºããããã°ã©ãã³ã°èšèªã§ããPerlã¯Cèšèªãã¯ãããAWKãsedã®ãããªæ§ã
ãªUNIXã®ãœãããŠã§ã¢ã®äŒçµ±ãåãç¶ããå€ãã®åªããæ©èœãåãå
¥ããŠããŸãã",
"title": "TMTOWTDI"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "Perlã®ã¢ãããŒã¯There's More Than One Way To Do It.(ããæ¹ã¯äœéãããã)ã§ãç¥ããŠTMTOWTDI(ãã£ã ãã¥ãã£)ãªã©ãšåŒã°ããŸããããã¯ãæ£ããããæ¹ãããã€ååšããŠãããããšããèãæ¹ã§ãPerlã®æè»æ§ãè¡šããŠããŸãããã®ããšãããPerlã¯ç¹ã«ããã¹ãåŠçãCGIããã°ã©ãã³ã°ã®åéã§å€ãçšããããŠããŸãã",
"title": "TMTOWTDI"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "Perlã¯Cèšèªãšæ¯ã¹ãŠç°¡æœã§ããã移æ€æ§ãé«ãèšèªã§ããCèšèªã§ã¯æ°çŸè¡ã®ããã°ã©ã ãå¿
èŠãªå Žåã§ããPerlã§ã¯æ°è¡ã§æžãããšãã§ããããšããããŸãã",
"title": "TMTOWTDI"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "äžæ¹ã§ãPerlã®ææ³ã¯çç¥ãå€çšããããç¹æ®å€æ°ãèšå·ã§è¡šãããšããããŸãã®ã§ãPerlã®ããæ¹ã«æ
£ãããŸã§ã«ã¯å°ãæéãããããããããŸãããããããäžè¡ã§ãå€ãã®ã³ãŒããæžããŠPerlã身ã«ã€ããããšããå§ãããŸãã",
"title": "TMTOWTDI"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ããã¹ããšãã£ã¿ãçšããŠäŸã«æããããéãã®ãã¡ã€ã«ãäœæã§ããããšãåæãšããŠããŸããããã°ã©ãã³ã°ãã®ãã®ã®æŠå¿µã«ã€ããŠã¯ããã°ã©ãã³ã°(Wikibooks)ãããã°ã©ãã³ã°(Wikipedia)ãåç
§ããŠãã ããã以éãæãã®ãªãå Žåã¯Unix(ããã³Linuxãªã©ã®UnixäºæOS)äžã§ Perl 5.30.0(2019幎05æ22æ¥ ãªãªãŒã¹)以éã®ããŒãžã§ã³ãå©çšããŠãããã®ãšããŠèª¬æããŸã(ãã€ãŠ Perl6 ãšåŒã°ããŠãã Raku ã¯å«ã¿ãŸãã)ã",
"title": "åææ¡ä»¶"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "Perlå
¬åŒãµã€ãã§ã¯Windowsã«å¯Ÿå¿ããããã±ãŒãžã¯æäŸããŠããŸããã ãã®ããããµãŒãããŒãã£ãŒãæäŸããPerlã®ãã£ã¹ããªãã¥ãŒã·ã§ã³ãå©çšããããCygwinãWindows Subsystem for Linuxãå©çšããæ¹æ³ããããŸãã",
"title": "å®è¡ç°å¢"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ActivePerlã¯ãActiveState瀟(æ§ãœãã©ã¹ç€Ÿ)ãæäŸããWindowsãLinuxãmacOSåãã®Perlã®ãã£ã¹ããªãã¥ãŒã·ã§ã³ã§ãã",
"title": "å®è¡ç°å¢"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "Strawberry Perlã¯ãMicrosoft Windowsãã©ãããã©ãŒã çšã®ããã°ã©ãã³ã°èšèªPerlã®ãã£ã¹ããªãã¥ãŒã·ã§ã³ã§ãã Strawberry Perlã«ã¯ãå®å
šã«æ©èœããMingw-w64 C/C++ã³ã³ãã€ã©ãªã©ã®ããŒã«ãã§ã€ã³ãå«ãŸããŠããŸãã Strawberry Perlã¯ãç°å¢å€æ°ã¯ã€ã³ã¹ããŒã«æã«èšå®æžã¿ãªã®ã§ãã€ã³ã¹ããŒã«çŽåŸã«ãã³ãã³ã ããã³ããã»Power shellãããã¯ãWindows Terminalãã䜿ãããšãã§ããŸãã",
"title": "å®è¡ç°å¢"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "maxOS, FreeBSD, ãã®ä» UNIX ç°å¢ã§ã¯ã»ãšãã©ã®å ŽåãPerlã¯OSã®ãŠãŒã¶ãŒã©ã³ããšã¯å¥ã«ããã±ãŒãžãšããŠæäŸãããŠããŸãããã¿ãŒããã«ããèµ·åããã³ãã³ãããã³ãã($, %, >ãªã©ã®èšå·)ã«ç¶ããŠperl -vãšå
¥åããâ([Enter]ãŸãã¯[Return])ããŒãæŒãã以äžã®ããã«è¡šç€ºãããã°perlãå©çšå¯èœã§ãã",
"title": "å®è¡ç°å¢"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "äž»èŠãªUNIXãªãã¯ãPerlããµããŒãããŠãããšæããŸãããããOSã®å
¬åŒããã±ãŒãžã«perlãç¡ãå Žåã§ãã Perl Download - www.perl.orgãããã€ããªããã±ãŒãžãããŠã³ããŒãã§ããŸãã",
"title": "å®è¡ç°å¢"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "ãã€ããªããã±ãŒãžãååšããªããã©ãããã©ãŒã ã®å Žåã¯Perl Download - www.perl.orgãããœãŒã¹ã³ãŒããããŠã³ããŒããããã«ãããŠå®è¡ããŠãã ããã",
"title": "å®è¡ç°å¢"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "GNU/Linux ã®å ŽåãLinux Standard Base(LSB; ISO/IEC 23360:2021)ã§ã¯ãæºæ ãããã¹ãŠã®ãã£ã¹ããªãã¥ãŒã·ã§ã³ã«Perlãã€ã³ã¹ããŒã«ããŠåºè·ããããšã矩åä»ããããŠããŸãã ããããäœããã®çç±ã§ã€ã³ã¹ããŒã«ãããŠããªããã£ã¹ããªãã¥ãŒã·ã§ã³ã§ã¯ãapt ãªã©ã®ããã±ãŒãžãããŒãžã£ãŒãå©çšããŠã€ã³ã¹ããŒã«ããå¿
èŠããããŸãã 詳现ã¯ãå©çšããŠãããã£ã¹ããªãã¥ãŒã·ã§ã³ã®ããã±ãŒãžãããŒãžã£ãŒã®å©çšæ³ã確èªããŠãã ããã ãŸããæ¢ã« Perl ãã€ã³ã¹ããŒã«ãããŠããç°å¢ã§ããææ°ã®ããŒãžã§ã³ãç¶æããããã«ããã±ãŒãžãããŒãžã£ãŒãå©çšã㊠update ããããå¿ãããè匱æ§ããããŸãŸäœ¿ããªãããã«ããŸãããã",
"title": "å®è¡ç°å¢"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "Perlã¯ã€ã³ã¿ããªã¿ãŒèšèªã§ããã€ãŸããããã°ã©ã ãå®è¡ãããã³ã«ãã³ã³ãã€ã«ãšå®è¡ãè¡ãPerlã€ã³ã¿ããªã¿ãŒãåžžã«å¿
èŠãªã®ã§ãã C/C++ãJavaã®ããã«ããã°ã©ã ãã³ã³ãã€ã«ããŠããå®è¡ããã®ã§ã¯ãªããããã°ã©ã ã®ãœãŒã¹ã³ãŒãã(Perlã€ã³ã¿ããªã¿ãŒããã)å¥ã®ã³ã³ãã¥ãŒã¿ãŒã«ã³ããŒããŠå®è¡ããã ãã§è¯ãã®ã§ãã",
"title": "äœæãå®è¡ã®æµã"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "ãœãŒã¹ã³ãŒãã®ç·šéã«ã¯å¥œããªããã¹ããšãã£ã¿ã䜿ãããšãã§ããŸãã OSæšæºã®ã¡ã¢åž³(Windows)ãTextEdit(macOS)ãvi(UnixãUnixäºæOS)ãªã©ã§ãååã§ãã Wordãªã©ã®ã¯ãŒãããã»ããµãŒã§ãç·šéã¯å¯èœã§ãããæšæºã§ã¯ãã¬ãŒã³ããã¹ããšããŠä¿åãããªãã®ã§æ³šæããŠãã ããã",
"title": "äœæãå®è¡ã®æµã"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "Perlã§æžãããã³ãŒããå®è¡ãããå Žåã«ã¯ãããã¹ããšãã£ã¿ã§å®è¡ãããã³ãŒããæžããŠã»ãŒãä¿åããŠãããã³ãã³ã端æ«ããä¿åãããã¡ã€ã«ã perl ã§å®è¡ããããšã«ãªããŸãã",
"title": "äœæãå®è¡ã®æµã"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "Perlã«ããPythonã®å¯Ÿè©±ã¢ãŒãã®ãã㪠REPL( Read-Eval-Print Loop ) ããããŸãã",
"title": "äœæãå®è¡ã®æµã"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "ããã¹ããšãã£ã¿ã§hello.plãšãããœãŒã¹ãã¡ã€ã«ãäžèšã®ããã«äœæãã",
"title": "äœæãå®è¡ã®æµã"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "Perlã¯ãå€ãã®ããã°ã©ãã³ã°èšèªãšåæ§ã«ãPerlã¯æ§é åããã°ã©ãã³ã°ãšããããã°ã©ãã³ã°ãã©ãã€ã ãæ¡çšããŠããŸãã ããã°ã©ã ã®æµãã¯é次ã»åå²ã»å埩ã®3ã€ãåºæ¬ã§ãã ã€ãŸããååãšããŠããã°ã©ã ã¯ãœãŒã¹ã³ãŒãã«èšè¿°ãããé ã«å®è¡ãããif ã for ãªã©ã®å¶åŸ¡æ§é ããã£ããšãã ãåå²ã»å埩ããŸãã",
"title": "äœæãå®è¡ã®æµã"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "Perlã§ã¯ãå€æ°ã¯ãããŒã¿ãæ ŒçŽããé å(ãªããžã§ã¯ã)ã«ä»ããããååãã§ã(åçåä»ã)ã Perlã§ã¯å€æ°å(äŸã§ã¯x)ã®åã«$, %, @ãªã©ã®æ¥é èŸ(sigil; ã·ãžã«)ãã€ãè¡šçŸãå€æ°ãšããŠæ±ããŸãã",
"title": "Perlã®åºæ¬æ©èœã®çŽ¹ä»"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "ãã®å¯ŸçãšããŠãããŒã¯ãŒã my ã䜿ã£ãŠã¬ãã·ã«ã«ã¹ã³ãŒãã®å€æ°(ã¬ãã·ã«ã«å€æ°)ãšããŠå®£èšããŸãã",
"title": "Perlã®åºæ¬æ©èœã®çŽ¹ä»"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "Perlã§ã¯äŸã«ãããããªæ§é ã®ãªãããã äžã€ã®å€ã®ã¿ãä¿æããããŒã¿(ã¹ã«ã©ãŒãšåŒã³ãŸã)ã®ã»ããé çªã«äžŠãã è€æ°ã®ããŒã¿ãããªãé
åãããŒãšå€ã®ãã¢ãŒè€æ°èšé²ããããã·ã¥ãããè€éãªããŒã¿æ§é ãå®çŸãããªãã¡ã¬ã³ã¹ãªã©ã®ããŒã¿ãæ±ãããšãã§ããŸãã å€æ°ã«ã€ããŠã®è©³çŽ°ã¯å€æ°ãšããŒã¿ãŒåã§è§£èª¬ããŸãã ãªãã¡ã¬ã³ã¹ã«ã€ããŠã®è©³çŽ°ã¯ãªãã¡ã¬ã³ã¹ã§è§£èª¬ããŸãã",
"title": "Perlã®åºæ¬æ©èœã®çŽ¹ä»"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "Perlã«ã¯ãè±å¯ãªæ°å€èšç®ã®ããã®æŒç®åãçšæãããŠãããããããçµã¿åãããŠåŒãäœãããšãåºæ¥ãŸãã",
"title": "Perlã®åºæ¬æ©èœã®çŽ¹ä»"
},
{
"paragraph_id": 22,
"tag": "p",
"text": "ååãšããŠPerlã®ããã°ã©ã ã¯äžã«æžãããŠãããã®ããé ã«å®è¡ãããŠãããŸãããç¹°ãè¿ãããç¹å®ã®æ¡ä»¶ã«å¿ããŠåäœãåãæ¿ããããšãã§ããŸãã",
"title": "Perlã®åºæ¬æ©èœã®çŽ¹ä»"
},
{
"paragraph_id": 23,
"tag": "p",
"text": "ããæ¡ä»¶ãã¿ãããŠããã(ããã§ã¯$x ã 3 ãã倧ãããã©ãã)ãå€å®ããå€å®ã®å
容ã«ããåäœãåãæ¿ããŠããŸãã",
"title": "Perlã®åºæ¬æ©èœã®çŽ¹ä»"
},
{
"paragraph_id": 24,
"tag": "p",
"text": "å埩ã¯ããããããã¯ãç¹°ãè¿ãå¶åŸ¡æ§é ã§ã«ãŒããšãåŒã°ããŸãã",
"title": "Perlã®åºæ¬æ©èœã®çŽ¹ä»"
},
{
"paragraph_id": 25,
"tag": "p",
"text": "ããã°ã©ãã³ã°ã®äœæäžã«ãããã°ã©ã å
ã«ã¡ã¢ãæ®ããŠããããããäžæçã«ããåäœãå®è¡ãããªãããã«ãããããšãã£ãèŠæ±ãçããããšããããŸãããã®ãããªãããã°ã©ãã³ã°ã®ã³ãŒãã«èšèŒããããåäœããªãç®æãã®ããšãäžè¬ã«ã³ã¡ã³ããšåŒã³ãŸãã",
"title": "Perlã®åºæ¬æ©èœã®çŽ¹ä»"
},
{
"paragraph_id": 26,
"tag": "p",
"text": "Perlã®Podã¯ãPlain Old Documentationã®ç¥ã§ãPerlã¹ã¯ãªããã®ããã¥ã¡ã³ããŒã·ã§ã³ãæžãããã®ãã©ãŒãããã§ãã Podã¯ãããã¹ããã¡ã€ã«ã«èšè¿°ãããã¹ã¯ãªãããšäžç·ã«é
åžãããããšãäžè¬çã§ãã Podã¯ã人éãèªã¿ãããããã¥ã¡ã³ããäœæããããã«èšèšãããŠããŸãããã³ã³ãã¥ãŒã¿ããã°ã©ã ã«ã解æå¯èœãªåçŽãªæ§æããããŸãã",
"title": "Perlã®åºæ¬æ©èœã®çŽ¹ä»"
},
{
"paragraph_id": 27,
"tag": "p",
"text": "以äžã¯Perlã§1ãã100ã®éã®çŽ æ°ããã¹ãŠè¡šç€ºããããã°ã©ã ã«Podã«ããããã¥ã¡ã³ããä»å ããäŸã§ãã",
"title": "Perlã®åºæ¬æ©èœã®çŽ¹ä»"
},
{
"paragraph_id": 28,
"tag": "p",
"text": "äžèšã®äŸã§ã¯ã=head1ã¯ã»ã¯ã·ã§ã³ã®èŠåºããè¡šããŸãã NAMEãšSYNOPSISã¯ãã¢ãžã¥ãŒã«ã®ååãšäœ¿çšäŸã説æããŸãã DESCRIPTIONã¯ãã¢ãžã¥ãŒã«ã®æ©èœã®è©³çŽ°ãªèª¬æã§ãããAUTHORã¯ãã¢ãžã¥ãŒã«ã®äœè
ã®æ
å ±ãæäŸããŸãã",
"title": "Perlã®åºæ¬æ©èœã®çŽ¹ä»"
}
] | null | {{Nav}}
<noinclude>:<small>[[ããã°ã©ãã³ã°]] > [[Perl]] > '''ã¯ããã«'''</small></noinclude>
<includeonly>
= ã¯ããã« =
{{å
é ã«æ»ã}}
</includeonly>
== TMTOWTDI ==
'''Perl'''ïŒããŒã«ïŒãšã¯ã[[w:1987幎|1987幎]]ã«[[w:ã©ãªãŒã»ãŠã©ãŒã«|ã©ãªãŒã»ãŠã©ãŒã«]]ãéçºãã[[ããã°ã©ãã³ã°èšèª]]ã§ããPerlã¯[[Cèšèª]]ãã¯ããã[[AWK]]ã[[w:sed|sed]]ã®ãããªæ§ã
ãª[[UNIX/Linuxå
¥é|UNIX]]ã®[[w:ãœãããŠã§ã¢|ãœãããŠã§ã¢]]ã®äŒçµ±ãåãç¶ããå€ãã®åªããæ©èœãåãå
¥ããŠããŸãã
Perlã®ã¢ãããŒã¯'''There's More Than One Way To Do It.'''ïŒããæ¹ã¯äœéããããïŒã§ãç¥ããŠ'''TMTOWTDI'''ïŒãã£ã ãã¥ãã£ïŒãªã©ãšåŒã°ããŸããããã¯ãæ£ããããæ¹ãããã€ååšããŠãããããšããèãæ¹ã§ãPerlã®æè»æ§ãè¡šããŠããŸãããã®ããšãããPerlã¯ç¹ã«ããã¹ãåŠçã[[CGI]]ããã°ã©ãã³ã°ã®åéã§å€ãçšããããŠããŸãã
Perlã¯Cèšèªãšæ¯ã¹ãŠç°¡æœã§ããã移æ€æ§ãé«ãèšèªã§ããCèšèªã§ã¯æ°çŸè¡ã®ããã°ã©ã ãå¿
èŠãªå Žåã§ããPerlã§ã¯æ°è¡ã§æžãããšãã§ããããšããããŸãã
äžæ¹ã§ãPerlã®ææ³ã¯çç¥ãå€çšããããç¹æ®å€æ°ãèšå·ã§è¡šãããšããããŸãã®ã§ãPerlã®ããæ¹ã«æ
£ãããŸã§ã«ã¯å°ãæéãããããããããŸãããããããäžè¡ã§ãå€ãã®ã³ãŒããæžããŠPerlã身ã«ã€ããããšããå§ãããŸãã
== åææ¡ä»¶ ==
ããã¹ããšãã£ã¿ãçšããŠäŸã«æããããéãã®ãã¡ã€ã«ãäœæã§ããããšãåæãšããŠããŸããããã°ã©ãã³ã°ãã®ãã®ã®æŠå¿µã«ã€ããŠã¯[[ããã°ã©ãã³ã°|ããã°ã©ãã³ã°(Wikibooks)]]ã[[w:ããã°ã©ãã³ã° (ã³ã³ãã¥ãŒã¿)|ããã°ã©ãã³ã°(Wikipedia)]]ãåç
§ããŠãã ããã以éãæãã®ãªãå Žåã¯UnixïŒããã³[[W:Linux|Linux]]ãªã©ã®UnixäºæOSïŒäžã§
Perl 5.30.0ïŒ2019幎05æ22æ¥ ãªãªãŒã¹ïŒä»¥éã®ããŒãžã§ã³ãå©çšããŠãããã®ãšããŠèª¬æããŸãïŒãã€ãŠ Perl6 ãšåŒã°ããŠãã Raku ã¯å«ã¿ãŸããïŒã
== å®è¡ç°å¢ ==
=== Microsoft Windows ===
Perlå
¬åŒãµã€ãã§ã¯Windowsã«å¯Ÿå¿ããããã±ãŒãžã¯æäŸããŠããŸããã
ãã®ããããµãŒãããŒãã£ãŒãæäŸããPerlã®ãã£ã¹ããªãã¥ãŒã·ã§ã³ãå©çšãããã[[W:Cygwin|Cygwin]]ã[[W:Windows Subsystem for Linux|Windows Subsystem for Linux]]ãå©çšããæ¹æ³ããããŸãã
==== ActivePerl ====
{{Wikipedia|ActivePerl}}
[[W:ActivePerl|ActivePerl]]ã¯ãActiveState瀟ïŒæ§ãœãã©ã¹ç€ŸïŒãæäŸããWindowsãLinuxãmacOSåãã®Perlã®ãã£ã¹ããªãã¥ãŒã·ã§ã³ã§ãã
: 2024幎1æçŸåšãActivePerlã®Perlã³ã¢ã¯v5.38.2ïŒ2023/11/29ãªãªãŒã¹ïŒã§ãã
: [https://www.activestate.com/products/perl/ Download & Install Perl - ActiveState]
==== Strawberry Perl ====
{{Wikipedia|en:Strawberry Perl}}
[[W:Strawberry Perl|Strawberry Perl]]ã¯ãMicrosoft Windowsãã©ãããã©ãŒã çšã®ããã°ã©ãã³ã°èšèªPerlã®ãã£ã¹ããªãã¥ãŒã·ã§ã³ã§ãã
Strawberry Perlã«ã¯ãå®å
šã«æ©èœããMingw-w64 C/C++ã³ã³ãã€ã©ãªã©ã®ããŒã«ãã§ã€ã³ãå«ãŸããŠããŸãã
Strawberry Perlã¯ãç°å¢å€æ°ã¯ã€ã³ã¹ããŒã«æã«èšå®æžã¿ãªã®ã§ãã€ã³ã¹ããŒã«çŽåŸã«ãã³ãã³ã ããã³ããã»Power shellãããã¯ãWindows Terminalãã䜿ãããšãã§ããŸãã
: 2024幎1æçŸåšãStrawberry Perlã®Perlã³ã¢ã¯v5.38.0ïŒ2023/07/02ãªãªãŒã¹ïŒã§ãã
: [https://strawberryperl.com/ Strawberry Perl for Windows]
=== macOS, FreeBSD, ãã®ä» UNIX ç°å¢ ===
[[w:MacOS|maxOS]], [[w:FreeBSD|FreeBSD]], ãã®ä» [[w:UNIX|UNIX]] ç°å¢ã§ã¯ã»ãšãã©ã®å ŽåãPerlã¯OSã®ãŠãŒã¶ãŒã©ã³ããšã¯å¥ã«ããã±ãŒãžãšããŠæäŸãããŠããŸããã'''ã¿ãŒããã«'''ããèµ·åããã³ãã³ãããã³ãã(<tt>$</tt>, <tt>%</tt>, <tt><nowiki>></nowiki></tt>ãªã©ã®èšå·)ã«ç¶ããŠ<tt>perl -v</tt>ãšå
¥åããâïŒ[Enter]ãŸãã¯[Return]ïŒããŒãæŒãã以äžã®ããã«è¡šç€ºãããã°perlãå©çšå¯èœã§ãã
:<syntaxhighlight lang=tcsh>
% perl -v
This is perl 5, version 38, subversion 2 (v5.38.2) built for amd64-freebsd-thread-multi
Copyright 1987-2023, Larry Wall
Perl may be copied only under the terms of either the Artistic License or the
GNU General Public License, which may be found in the Perl 5 source kit.
Complete documentation for Perl, including FAQ lists, should be found on
this system using "man perl" or "perldoc perl". If you have access to the
Internet, point your browser at https://www.perl.org/, the Perl Home Page.
% _
</syntaxhighlight>
==== Perlãã€ã³ã¹ããŒã«ãããŠããªãUNIXç°å¢ ====
äž»èŠãªUNIXãªãã¯ãPerlããµããŒãããŠãããšæããŸãããããOSã®å
¬åŒããã±ãŒãžã«perlãç¡ãå Žåã§ãã
[https://www.perl.org/get.html Perl Download - www.perl.org]ãããã€ããªããã±ãŒãžãããŠã³ããŒãã§ããŸãã
ãã€ããªããã±ãŒãžãååšããªããã©ãããã©ãŒã ã®å Žåã¯[https://www.perl.org/get.html Perl Download - www.perl.org]ãããœãŒã¹ã³ãŒããããŠã³ããŒããããã«ãããŠå®è¡ããŠãã ããã
=== GNU/Linux ===
GNU/Linux ã®å Žåã[[W:Linux Standard Base|Linux Standard Base]](LSB; ISO/IEC 23360:2021)ã§ã¯ãæºæ ãããã¹ãŠã®ãã£ã¹ããªãã¥ãŒã·ã§ã³ã«Perlãã€ã³ã¹ããŒã«ããŠåºè·ããããšã矩åä»ããããŠããŸã<ref><code>/usr/bin/perl</code> ã«Perlã€ã³ã¿ãŒããªã¿ãŒãå®è¡åœ¢åŒãŸãã¯å®è¡åœ¢åŒãžã®ãªã³ã¯ãæã â [https://refspecs.linuxfoundation.org/LSB_5.0.0/LSB-Languages/LSB-Languages/perllocation.html Linux Standard Base Languages Specification 5.0::7.2. Perl Interpreter Location]ãv5.8.8 以éã§ããããšã矩åä»ããããŠããŸã â[https://refspecs.linuxfoundation.org/LSB_5.0.0/LSB-Languages/LSB-Languages/perlversion.html Linux Standard Base Languages Specification 5.0::7.3. Perl Interpreter Version]ã</ref>ã
ããããäœããã®çç±ã§ã€ã³ã¹ããŒã«ãããŠããªããã£ã¹ããªãã¥ãŒã·ã§ã³ã§ã¯ãapt ãªã©ã®ããã±ãŒãžãããŒãžã£ãŒãå©çšããŠã€ã³ã¹ããŒã«ããå¿
èŠããããŸãã
詳现ã¯ãå©çšããŠãããã£ã¹ããªãã¥ãŒã·ã§ã³ã®ããã±ãŒãžãããŒãžã£ãŒã®å©çšæ³ã確èªããŠãã ããã
ãŸããæ¢ã« Perl ãã€ã³ã¹ããŒã«ãããŠããç°å¢ã§ããææ°ã®ããŒãžã§ã³ãç¶æããããã«ããã±ãŒãžãããŒãžã£ãŒãå©çšã㊠update ããããå¿ãããè匱æ§ããããŸãŸäœ¿ããªãããã«ããŸãããã
== äœæãå®è¡ã®æµã ==
=== ããã°ã©ã ã®äœæ ===
Perlã¯ã€ã³ã¿ããªã¿ãŒèšèªã§ããã€ãŸããããã°ã©ã ãå®è¡ãããã³ã«ãã³ã³ãã€ã«<ref>Perlã§ã³ã³ãã€ã«ãšãã£ãå ŽåãPerlã€ã³ã¿ãŒããªã¿ãŒããœãŒã¹ã³ãŒããèªèŸŒã¿å
éšè¡šçŸã«çœ®æããããšã§ããããã¯ç§»æ€æ§ã»çžäºéçšæ§ã®èŠç¹ããã¯å¥œãŸããç¹åŸŽã§ãC/C++ãJavaã®ããã«å®è¡åœ¢åŒãäžéè¡šçŸããã¡ã€ã«ã«æžåºãããšã§ã¯ãããŸããã</ref>ãšå®è¡ãè¡ãPerlã€ã³ã¿ããªã¿ãŒãåžžã«å¿
èŠãªã®ã§ãã
C/C++ãJavaã®ããã«ããã°ã©ã ãã³ã³ãã€ã«ããŠããå®è¡ããã®ã§ã¯ãªããããã°ã©ã ã®ãœãŒã¹ã³ãŒããïŒPerlã€ã³ã¿ããªã¿ãŒãããïŒå¥ã®ã³ã³ãã¥ãŒã¿ãŒã«ã³ããŒããŠå®è¡ããã ãã§è¯ãã®ã§ãã
ãœãŒã¹ã³ãŒãã®ç·šéã«ã¯å¥œããªããã¹ããšãã£ã¿ã䜿ãããšãã§ããŸãã
OSæšæºã®[[w:ã¡ã¢åž³|ã¡ã¢åž³]]([[w:Microsoft_Windows|Windows]])ã[[w:TextEdit|TextEdit]]([[w:macOS|macOS]])ã[[w:vi|vi]]([[w:UNIX|Unix]]ãUnixäºæOS)ãªã©ã§ãååã§ãã
[[w:Microsoft_Word|Word]]ãªã©ã®ã¯ãŒãããã»ããµãŒã§ãç·šéã¯å¯èœã§ãããæšæºã§ã¯[[W:ãã¬ãŒã³ããã¹ã|ãã¬ãŒã³ããã¹ã]]ãšããŠä¿åãããªãã®ã§æ³šæããŠãã ããã
Perlã§æžãããã³ãŒããå®è¡ãããå Žåã«ã¯ãããã¹ããšãã£ã¿ã§å®è¡ãããã³ãŒããæžããŠã»ãŒãä¿åããŠãããã³ãã³ã端æ«ããä¿åãããã¡ã€ã«ã perl ã§å®è¡ããããšã«ãªããŸãã
=== ãããã¬ãŒ ===
Perlã«ãã[[Python]]ã®å¯Ÿè©±ã¢ãŒãã®ãã㪠REPL( ''Read-Eval-Print Loop'' ) ããããŸãã
;ãããã¬ãŒã®èµ·åäŸ:<syntaxhighlight lang=console>
% perl -de 1
Loading DB routines from perl5db.pl version 1.77
Editor support available.
Enter h or 'h h' for help, or 'man perldebug' for more help.
main::(-e:1): 1
DB<1> say 2**9
512
DB<2> say "Hello world!"
Hello world!
DB<3> q
% _
</syntaxhighlight>
:çãã³ãŒãã®ç¢ºèªã«ã¯ããã®ãããã°ã¢ãŒãã䟿å©ã§ãã
=== ããã°ã©ã ã®å®è¡ ===
ããã¹ããšãã£ã¿ã§<code>hello.pl</code>ãšãããœãŒã¹ãã¡ã€ã«ãäžèšã®ããã«äœæãã
;[https://paiza.io/projects/rUWKfipgtECXJeJe1lIlSg?language=python3 hello.pl]:<syntaxhighlight lang="Perl">
#!/usr/bin/env perl
use v5.30.0;
say "Hello, World";
say "Hello, Perl";
</syntaxhighlight>
;ã³ãã³ãã©ã€ã³ã§ã®å®è¡:<syntaxhighlight lang=console>
% cat > hello.pl
#!/usr/bin/env perl
use v5.30.0;
say "Hello, World";
say "Hello, Perl";
^D
% perl hello.pl
Hello, World
Hello, Perl
% chmod +x hello.pl
% ./hello.pl
Hello, World
Hello, Perl
% _
</syntaxhighlight>
:[[#say|say]] ã¯ãæååãŸãã¯æååã®ãªã¹ãã衚瀺ïŒããŠæ¹è¡ïŒããçµèŸŒã¿é¢æ°ã§ãã
:Perlã®[[#æååãªãã©ã«|æååãªãã©ã«]]ã¯ã<code>"</code>(ããã«ã¯ã©ãŒããŒã·ã§ã³ããŒã¯)ã§å²ã¿ãŸãã
:<code>â</code>(ã·ã³ã°ã«ã¯ãªãŒããŒã·ã§ã³)ã§å²ãã§æååãªãã©ã«ãè¡šçŸã§ããŸããããã®å Žåã¯æ¹è¡æå(<code>\n</code>)ãªã©ã®[[#ããã¯ã¹ã©ãã·ã¥ãšã¹ã±ãŒã|ããã¯ã¹ã©ãã·ã¥ãšã¹ã±ãŒã]]ãå€æ°(<code>$x</code>, <code>@y</code>ã<code>%z</code>,)ãå±éããããã®ãŸãŸè¡šç€ºããããªã©ã®éãããããŸãã
Perlã¯ãå€ãã®ããã°ã©ãã³ã°èšèªãšåæ§ã«ãPerlã¯[[w:æ§é åããã°ã©ãã³ã°|æ§é åããã°ã©ãã³ã°]]ãšããããã°ã©ãã³ã°ãã©ãã€ã ãæ¡çšããŠããŸãã
ããã°ã©ã ã®æµãã¯é次ã»åå²ã»å埩ã®ïŒã€ãåºæ¬ã§ã<ref>gotoã¯ãããŸãããã倧åè±åºãªã©ã¯ã©ãã«ãšäœµçšããã«ãŒãå¶åŸ¡æã§å®çŸã§ãããªã©ãgotoãå¿
èŠã«ãªãã±ãŒã¹ã¯æ¥µããŠå°ãªãã§ã</ref>ã
ã€ãŸããååãšããŠããã°ã©ã ã¯ãœãŒã¹ã³ãŒãã«èšè¿°ãããé ã«å®è¡ããã[[<noinclude>Perl/å¶åŸ¡æ§é </noinclude>#if|if]] ã [[<noinclude>Perl/å¶åŸ¡æ§é </noinclude>#for|for]] ãªã©ã®å¶åŸ¡æ§é ããã£ããšãã ãåå²ã»å埩ããŸãã
== Perlã®åºæ¬æ©èœã®çŽ¹ä» ==
=== å€æ°ã®å®£èšãšåæå ===
Perlã§ã¯ãå€æ°ã¯ãããŒã¿ãæ ŒçŽããé åïŒãªããžã§ã¯ãïŒã«ä»ããããååãã§ãïŒ[[W:åçåä»ã|åçåä»ã]]ïŒã Perlã§ã¯å€æ°å(äŸã§ã¯x)ã®åã«$, %, @ãªã©ã®[[#æ¥é èŸ|æ¥é èŸ]]ïŒsigil; ã·ãžã«ïŒãã€ãè¡šçŸãå€æ°ãšããŠæ±ããŸãã
;[https://paiza.io/projects/FL1UJywrp6TZ7K6-soeWzA?language=perl ã³ãŒãäŸïŒãšã©ãŒãšãªããŸãïŒ]:<syntaxhighlight lang="Perl" highlight='6,7' line>
#!/usr/bin/env perl
use v5.12;
#use strict; v5.12以é㯠use strict ãå«ãã§ããã®ã§ä»¥åŸã¯ç¥ããŸã
use warnings;
$x = "Perl";
say "Hello, $x";
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
Global symbol "$x" requires explicit package name (did you forget to declare "my $x"?) at Main.pl line 6.
Global symbol "$x" requires explicit package name (did you forget to declare "my $x"?) at Main.pl line 7.
Execution of Main.pl aborted due to compilation errors.
</syntaxhighlight>
# [[Shebang|ã·ãã³(shebang!)]]ã§ãã¹ã¯ãªãããå®è¡ããã€ã³ã¿ãŒããªã¿ãŒã®äœçœ®ãæããŸãã
#: <code>#!/usr/bin/perl</code>ãšããäŸãèŠãããŸãããperl ã /usr/bin/perl ã§ãªãä»ã®å ŽæïŒäŸãã° /usr/local/bin/perlïŒã«ã€ã³ã¹ããŒã«ãããŠããå¯èœæ§ãããã®ã§<code>#!/usr/bin/env perl</code>ãšããŸãããããã¯ãPATHãéã£ããã£ã¬ã¯ããªã« perl ãšèšãååã®ãããŒãžã£ã³ããŒã¹ãä»æãããããªã¹ã¯ããããšã®æ¹å€ããããŸããã<code>$ perl hello.pl</code>ãããšãã«ãåããªã¹ã¯ãããããªã¹ã¯ãŒãã§ã¯ãããŸãããåå
¥ãããããã®ã§ã¯ãªããšèããããŸãã
# Perl v5.12 以éã®æ©èœãæå¹ã«ããŠããŸãã
# å®å
šã§ã¯ãªãæ§æãå¶éãã Perl ãã©ã°ã strict 㯠Perl5.12 ãããã£ãã©ã«ãã§æå¹ã§ã<ref>{{Cite web
|url=https://perldoc.perl.org/strict
|title=strict - Perl pragma to restrict unsafe constructs - Perldoc Browser
|date=
|accessdate=2022/11/09
}}</ref>ã
#: strict ãæå¹ãªã®ã§ãã°ããŒãã«å€æ°ã®äœ¿çšã¯ãšã©ãŒãšãªããŸãã
#: ç¡å¹ã«ããã®ã¯ã no strict; ãšããŸãã
# éžæçãªèŠåã調æŽãã Perl warnings ã§ã<ref>{{Cite web
|url=https://perldoc.perl.org/warnings
|title=warnings - Perl pragma to control optional warnings - Perldoc Browser
|date=
|accessdate=2021/12/11
}}</ref>ã
#: ããã¯ãPerl5.36.0 以éã§ãã£ãã©ã«ãã§æå¹ãªã®ã§ 5.36 ããåã®ã¹ã¯ãªããã§ã¯ãæ瀺çã« use warnings; ãå¿
èŠã§ãã
ãã®å¯ŸçãšããŠãããŒã¯ãŒã <code>my</code> ã䜿ã£ãŠã¬ãã·ã«ã«ã¹ã³ãŒãã®å€æ°ïŒã¬ãã·ã«ã«å€æ°ïŒãšããŠå®£èšããŸãã
;[https://paiza.io/projects/z8rb2o2Ko36-XbXsQ9lpvg?language=perl ã³ãŒãäŸïŒä¿®æ£åŸïŒ]:<syntaxhighlight lang="Perl" highlight=6 line>
#!/usr/bin/env perl
use v5.12;
# use strict;
use warnings;
my $x = "Perl";
say "Hello, $x";
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
Hello, Perl
</syntaxhighlight>
:6è¡ç®ãä¿®æ£ããçµæãæ£ããå®è¡ã§ããŸããã
:ãã®æ§ã«ã«ã<code>use v5.12;</code>以éãæå®ããããšã§ã å®å
šã§ãªãã³ãŒããæ©ã段éã§çºèŠã§ããŸãã
Perlã§ã¯äŸã«ãããããªæ§é ã®ãªãããã äžã€ã®å€ã®ã¿ãä¿æããããŒã¿ïŒ'''ã¹ã«ã©ãŒ'''ãšåŒã³ãŸãïŒã®ã»ããé çªã«äžŠãã è€æ°ã®ããŒã¿ãããªã'''é
å'''ãããŒãšå€ã®ãã¢ãŒè€æ°èšé²ãã'''ããã·ã¥'''ãããè€éãªããŒã¿æ§é ãå®çŸãã'''ãªãã¡ã¬ã³ã¹'''ãªã©ã®ããŒã¿ãæ±ãããšãã§ããŸãã
''å€æ°ã«ã€ããŠã®è©³çŽ°ã¯[[<noinclude>Perl/å€æ°ãããŒã¿æ§é </noinclude><includeonly>#å€æ°ãšããŒã¿ãŒå</includeonly>|å€æ°ãšããŒã¿ãŒå]]ã§è§£èª¬ããŸãã''
''ãªãã¡ã¬ã³ã¹ã«ã€ããŠã®è©³çŽ°ã¯[[<noinclude>Perl/ãªãã¡ã¬ã³ã¹</noinclude><includeonly>#ãªãã¡ã¬ã³ã¹</includeonly>|ãªãã¡ã¬ã³ã¹]]ã§è§£èª¬ããŸãã''
=== åŒãšæŒç®å ===
Perlã«ã¯ãè±å¯ãªæ°å€èšç®ã®ããã®æŒç®åãçšæãããŠãããããããçµã¿åãããŠåŒãäœãããšãåºæ¥ãŸãã
;[https://paiza.io/projects/nbzjaZZ3jpAbPwNCiUerYA?language=perl ã³ãŒãäŸ]:<syntaxhighlight lang="Perl" highlight=5 line>
#!/usr/bin/env perl
use v5.12;
use warnings;
say 12 + 5;
say 12 - 5;
say 12 * 5;
say 12 / 5;
say 12 % 5;
say 12 ** 5;
say 12 & 5;
say 12 | 5;
say 12 ^ 5;
say 12 << 1;
say 12 >> 1;
say -12;
say +12;
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
17
7
60
2.4
2
248832
4
13
9
24
6
-12
12
</syntaxhighlight>
: åå åŸ å°äœ çŽ¯ä¹ ãããéè«çç© ãããéè«çå ãããéæä»çè«çå å³ã·ãã å·Šã·ãã åé
ãã€ãã¹ åé
ãã©ã¹ ã§ã
{{Main|[[<noinclude>Perl/æŒç®å</noinclude><includeonly>#æŒç®å</includeonly>|æŒç®å]]}}
{{ã³ã©ã |use v5.12;ãšuse warnings;|2=ãã©ã°ã use v5.12;ãšuse warnings;ã¯å¿
ãããã°ã©ã åé ã§æå®ããŸãããã
use v5.12;ã®v5.12ã¯ãèªåã®äœ¿ã£ãŠããPERLã€ã³ã¿ãŒããªã¿ãŒã®ããŒãžã§ã³ïŒç¹æ®å€æ° $^V ã§ç¢ºèªã§ããŸãïŒã§è¯ãã§ãããã
ãããæå®ããªããšçµèŸŒã¿é¢æ°ã®ã¹ãã«ãã¹çšåºŠã§ãããšã©ãŒãèŠåããªãæãããããªãçµæã«ãªããŸãã
;[https://paiza.io/projects/YXKLDVsafNKdeLivSicKsQ?language=perl ä¿®æ£äŸ]:<syntaxhighlight lang="Perl" highlight=1 line>
$x = cyop;
print $x
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
cyop
</syntaxhighlight>
}}
;[https://paiza.io/projects/YXKLDVsafNKdeLivSicKsQ?language=perl ã³ãŒãäŸ]:<syntaxhighlight lang="Perl" highlight="1,2" line>
use v5.12;
use warnings;
$x = cyop;
print $x</syntaxhighlight>
;å®è¡æãšã©ãŒ:<syntaxhighlight lang=text>
Global symbol "$x" requires explicit package name (did you forget to declare "my $x"?) at Main.pl line 4.
Global symbol "$x" requires explicit package name (did you forget to declare "my $x"?) at Main.pl line 5.
Bareword "cyop" not allowed while "strict subs" in use at Main.pl line 4.
Execution of Main.pl aborted due to compilation errors.
</syntaxhighlight>
=== å¶åŸ¡æ§é ===
ååãšããŠPerlã®ããã°ã©ã ã¯'''äžã«æžãããŠãããã®ããé ã«'''å®è¡ãããŠãããŸãããç¹°ãè¿ãããç¹å®ã®æ¡ä»¶ã«å¿ããŠåäœãåãæ¿ããããšãã§ããŸãã
==== æ¡ä»¶åå² ====
ããæ¡ä»¶ãã¿ãããŠããã(ããã§ã¯$x ã 3 ãã倧ãããã©ãã)ãå€å®ããå€å®ã®å
容ã«ããåäœãåãæ¿ããŠããŸãã
;[https://paiza.io/projects/R3qff1jSAWSPoXUkHHLpiQ?language=perl ã³ãŒãäŸ]:<syntaxhighlight lang="Perl" line>
#!/usr/bin/env perl
use v5.12;
use warnings;
my $x = 5;
if ($x > 3){
say "$x > 3"
} else {
say "$x <= 3"
}
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
5 > 3
</syntaxhighlight>
==== å埩 ====
å埩ã¯ããããããã¯ãç¹°ãè¿ãå¶åŸ¡æ§é ã§ã«ãŒããšãåŒã°ããŸãã
;[https://paiza.io/projects/XXmfN6Ueil78HAvDabN0CQ?language=perl ã³ãŒãäŸ]:<syntaxhighlight lang="Perl" highlight=6 line>
#!/usr/bin/env perl
use v5.12;
use warnings;
foreach my $num (1 .. 10) {
print "$num ";
}
say ""
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
1 2 3 4 5 6 7 8 9 10
</syntaxhighlight>
{{See also|[[<noinclude>Perl/å¶åŸ¡æ§é </noinclude><includeonly>#å¶åŸ¡æ§é </includeonly>|å¶åŸ¡æ§é ]]}}
=== ã³ã¡ã³ã ===
ããã°ã©ãã³ã°ã®äœæäžã«ãããã°ã©ã å
ã«ã¡ã¢ãæ®ããŠããããããäžæçã«ããåäœãå®è¡ãããªãããã«ãããããšãã£ãèŠæ±ãçããããšããããŸãããã®ãããªãããã°ã©ãã³ã°ã®ã³ãŒãã«èšèŒããããåäœããªãç®æãã®ããšãäžè¬ã«'''ã³ã¡ã³ã'''ãšåŒã³ãŸãã
;[https://paiza.io/projects/BkhWkvSnPy4mvEW-CzjGDQ?language=perl ã³ãŒãäŸ]:<syntaxhighlight lang=perl highlight=6 line>
#!/usr/bin/env perl
use v5.12;
use warnings;
# ã·ã£ãŒã以éããè¡æ«ãŸã§å®è¡ãããªã
say "ããã¯ã³ã¡ã³ãã®å€";
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
ããã¯ã³ã¡ã³ãã®å€
</syntaxhighlight>
:Perlã§ã¯#以éã®è¡ç«¯ãŸã§ãã³ã¡ã³ããšã¿ãªãããŸããCèšèªã«ãããããªè€æ°è¡ã«ãããã³ã¡ã³ãã¯ãããŸãããã以äžã®ãããªæ¹æ³ã§å®è³ªçãªè€æ°è¡ã³ã¡ã³ããå©çšããããšãã§ããŸãã
=== Podã«ããããã¥ã¡ã³ããŒã·ã§ã³ ===
Perlã®Podã¯ãPlain Old Documentationã®ç¥ã§ãPerlã¹ã¯ãªããã®ããã¥ã¡ã³ããŒã·ã§ã³ãæžãããã®ãã©ãŒãããã§ãã
Podã¯ãããã¹ããã¡ã€ã«ã«èšè¿°ãããã¹ã¯ãªãããšäžç·ã«é
åžãããããšãäžè¬çã§ãã
Podã¯ã人éãèªã¿ãããããã¥ã¡ã³ããäœæããããã«èšèšãããŠããŸãããã³ã³ãã¥ãŒã¿ããã°ã©ã ã«ã解æå¯èœãªåçŽãªæ§æããããŸãã
以äžã¯Perlã§1ãã100ã®éã®çŽ æ°ããã¹ãŠè¡šç€ºããããã°ã©ã ã«Podã«ããããã¥ã¡ã³ããä»å ããäŸã§ãã
:<syntaxhighlight lang=perl>
#!/usr/bin/env perl
use v5.12;
use warnings;
=head1 NAME
find_primes.pl - Find all prime numbers between 1 and 100
=head1 SYNOPSIS
perl find_primes.pl
=head1 DESCRIPTION
This program finds all prime numbers between 1 and 100 and prints them to the console.
=head1 AUTHOR
Your Name
=cut
# Initialize an array to hold the prime numbers
my @primes = ();
# Loop through all numbers between 1 and 100
for my $num (1..100) {
my $is_prime = 1;
# Check if the number is divisible by any number other than itself and 1
for my $divisor (2..int($num/2)) {
if ($num % $divisor == 0) {
$is_prime = 0;
last;
}
}
# If the number is prime, add it to the array
push @primes, $num if $is_prime;
}
# Print the prime numbers to the console
print "Prime numbers between 1 and 100:\n";
print join(", ", @primes) . "\n";
</syntaxhighlight>
;HTMLã®ã¬ã³ããªã³ã°äŸ:<syntaxhighlight lang=html>
<?xml version="1.0" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>find_primes.pl - Find all prime numbers between 1 and 100</title>
<meta http-equiv="content-type" content="text/html; charset=utf-8" />
<link rev="made" href="mailto:[email protected]" />
</head>
<body>
<ul id="index">
<li><a href="#NAME">NAME</a></li>
<li><a href="#SYNOPSIS">SYNOPSIS</a></li>
<li><a href="#DESCRIPTION">DESCRIPTION</a></li>
<li><a href="#AUTHOR">AUTHOR</a></li>
</ul>
<h1 id="NAME">NAME</h1>
<p>find_primes.pl - Find all prime numbers between 1 and 100</p>
<h1 id="SYNOPSIS">SYNOPSIS</h1>
<pre><code>perl find_primes.pl</code></pre>
<h1 id="DESCRIPTION">DESCRIPTION</h1>
<p>
This program finds all prime numbers between 1 and 100 and prints them to
the console.
</p>
<h1 id="AUTHOR">AUTHOR</h1>
<p>Your Name</p>
</body>
</html>
</syntaxhighlight>
äžèšã®äŸã§ã¯ã<code>=head1</code>ã¯ã»ã¯ã·ã§ã³ã®èŠåºããè¡šããŸãã
<code>NAME</code>ãš<code>SYNOPSIS</code>ã¯ãã¢ãžã¥ãŒã«ã®ååãšäœ¿çšäŸã説æããŸãã
<code>DESCRIPTION</code>ã¯ãã¢ãžã¥ãŒã«ã®æ©èœã®è©³çŽ°ãªèª¬æã§ããã<code>AUTHOR</code>ã¯ãã¢ãžã¥ãŒã«ã®äœè
ã®æ
å ±ãæäŸããŸãã
== èèš» ==
<references />
{{Nav}}
{{DEFAULTSORT:Perl ã¯ããã«}}
[[Category:Perl|ã¯ããã«]]
</noinclude> | 2005-02-05T12:53:20Z | 2024-01-20T06:57:25Z | [
"ãã³ãã¬ãŒã:See also",
"ãã³ãã¬ãŒã:Cite web",
"ãã³ãã¬ãŒã:Nav",
"ãã³ãã¬ãŒã:Wikipedia",
"ãã³ãã¬ãŒã:Main",
"ãã³ãã¬ãŒã:ã³ã©ã "
] | https://ja.wikibooks.org/wiki/Perl/%E3%81%AF%E3%81%98%E3%82%81%E3%81%AB |
1,627 | é«çåŠæ ¡çŸä»£ç€ŸäŒ | å°åŠæ ¡ã»äžåŠæ ¡ã»é«çåŠæ ¡ã®åŠç¿ > é«çåŠæ ¡ã®åŠç¿ > é«çåŠæ ¡çŸä»£ç€ŸäŒ
é«çåŠæ ¡ãå
¬æ°ãã®ç§ç®ã®äžã€ãçŸä»£çãªèª²é¡ã«çãããã®ãšããŠç»å Žããåœåã¯å¿
ä¿®ç§ç®ã ã£ã[2022幎ãŸã§]ãçŸåšã¯ãå«çããæ¿æ²»çµæžããšã®éžæå¿
ä¿®ã2022幎以éæç§æžã§ã¯ãã®ç§ç®ã®å称ããå
Œ
±ãã«å€æŽã«ãªã£ãŠããŸãã
(â» æ€å®æç§æžã«ãŠèšè¿°ãããããšã確èª)
ããã«é¢ä¿
ããã¬å¯Ÿç
å°çç°å¢åé¡ã¯äžè¬ã«ç¥ãããŠããããã¯ããã«æ·±å»ã§ããããªãŸã³å±€ç Žå£ã«ããç®èããã®æ¥æ¿ãªå¢å ããäœç©ã®çŽ«å€ç·é害ãå§ãŸã£ãŠããã 40幎åŸã«ã¯ãäžçãã森æããªããªãç æŒ åãããšããããŠããã å°é¢šãå¶æŽåããå°çæž©æåã®åœ±é¿ãå®éã«æããããããã«ãªã£ãã 21äžçŽäžã«å°çã®å¹³åæ°æž©ã5~6床äžæãçæ
ç³»ã«å£æ»
çãªè¢«å®³ãäžããããããããã®ãªãå°çãã®ããŒãã®å
ãåœé£äººéç°å¢äŒè°ãéå¬ããã人éç°å¢å®£èšãããããUNEP(åœé£ç°å¢èšç»)ãèšç«ããããããããããåŒãç¶ããæç¶å¯èœãªçºå±ãã®å
ãå°çãµããããéããããçŽ8000ãã®NGOãåå ããæ°åå€åæ çµæ¡çŽãã¢ãžã§ã³ã21ãæ¡æããããç°å¢NGOã«ãã£ãŠèªç¶ä¿è·éåããã·ã§ãã«ãã©ã¹ãéåããããªãããŠããããã®çµæã¯äžçéºç£æ¡çŽãã©ã ãµãŒã«æ¡çŽã«ç»é²ãããããšã«ãã£ãŠãããããŠããã
ç³æ²¹ã®ç¢ºèªåèµéãããç³æ²¹ã¯ããš20幎ã§ãªããªãã 第1次ç³æ²¹å±æ©ã第2次ç³æ²¹å±æ©ã¯ç³æ²¹ã¡ãžã£ãŒãšOPEC(ãªããã¯),OAPEC(ãªã¢ããã¯)ãšã®å¯Ÿç«ã«ãã£ãŠèµ·ãã£ãã ãªããOPECãšã¯ç³æ²¹èŒžåºåœæ©æ§(Organization of the Petroleum Exporting Countries)ã®ç¥ç§°ãOAPECãšã¯ã¢ã©ãç³æ²¹èŒžåºåœæ©æ§(Organization of Arab Petroleum Exporting Countries)ã®ç¥ç§°ã
åååã¯ãã¹ãªãŒãã€ã«å³¶ã§ã®åååçºé»æã®äºæ
ãããã§ã«ããã€ãªåååçºé»æã§ã®äºæ
ãçŠå³¶ç¬¬äžåååçºé»æäºæ
ããŸã䜿çšæžã¿æ žçæã®æçµåŠåå°ã®åé¡ãååçã®ç¹æ€æã®æŸå°ç·è¢«ã°ãã䌎ãäœæ¥ãååç匟ã®åææãšãªããã«ãããŠã ãçæãããåé¡ãªã©ãæ§ã
ãªåé¡ç¹ãããå©çšã«æ¹å€çãªæèŠãããã
ãã€ãã¯ã2000幎6æã«æ¿åºãšé»åäŒç€Ÿããã¹ãŠã®åååçºé»æãå»æ¢ããããšãåæãã2011幎ã«è±åçºã決å®ããã
ã¹ã€ã¹ã¯ã2011幎5æã«ãè±åçºãã2034幎ãŸã§ã«å®çŸããããšã決å®ããã
ã€ã¿ãªã¢ã¯ãåååçºé»æãèšçœ®ããŠããªãã
æ¥æ¬ãäžåœãã¢ã¡ãªã«ã¯äžçã®æµãã«éè¡ããŠããããœãããšãã«ã®ãŒãã³ãŒãžã§ãã¬ãŒã·ã§ã³ã泚ç®ãããŠããããéçºã«åç³çæããã®ä»è³æºãå€éã«äœ¿ãããŠããããšããã倧ããªåé¡ã«ãªã£ãŠããã
ã€ã³ã¿ãŒãããããã€ãã¯ãå®çãããå»åŠã®çºéã«ãã£ãŠæ»ã®å®çŸ©ãå¿èæ»ãè³å¹¹æ»ãè³æ»ã®3ã€ã«ãªã£ãããèåšç§»æ€ãåé¡ã«ãªã£ãŠããã
äžæ±ã«ããããŠãã€æ°æã®ããã ã§ã¯ãã€ããŠã§ãæé«ç¥ãšãããŠãã€æãä¿¡ããããŠããã ãŠãã€äººã§ãã£ãã€ãšã¹ã»ããªã¹ãã¯é£äººæãšå
šäžçã®æãããšããåŒåãã¡ã«ãã£ãŠã²ããããããããªã¹ãæã®å®æŽŸã«ã¯ã«ããªãã¯ããããã¹ã¿ã³ããæ£æäŒãªã©ãããã瀟äŒåŠè
ã®ãŠã§ãŒããŒã¯ãããã¹ã¿ã³ãã£ãºã ãšè·æ¥å«çãšãçµã³ã€ããã
ã€ã¹ã©ã æã¯ã ãã³ãããåµå§ããã¢ã©ãŒãžã®çµ¶å¯Ÿåž°äŸ(ãã)ã説ããã
ä»æã¯ã¬ãŠã¿ãã»ã·ãããŒã«ã¿ãå§ããæ
æ²ãããããšã«ãã£ãŠä»é(ããã)ã«ãªãããšèª¬ããã
åæ(ãã
ããã)ã¯ååãå§ããä»çŸ©(ããã)ãå±ãããç¥é(ãããšã)ã¯ã¢ãããºã ãšç¥éåŽæãããªããæåŠã¯ç¡åžžèŠ³ãèœã¯å¹œçãè¶éã¯ãã³ããããããŠããã
瀟äŒä¿éã¯ãã¥ãŒãã£ãŒã«æ¿çã«ããã瀟äŒä¿éæ³ãããããªããžã®ãããããããå¢å ŽãŸã§ãã®çŠç¥åœå®¶æ¿çãæåã§ãããæ¥æ¬ã®ç€ŸäŒä¿éã¯ã瀟äŒä¿éºãå
¬çæ¶å©ã瀟äŒçŠç¥ãå
¬è¡è¡çã®4æ¬æ±ããæãç«ã£ãŠããã瀟äŒä¿éºã¯ãå¥åº·ä¿éºã»å¹Žéã»ä»è·ä¿éºãªã©ãããªããå¥åº·ä¿éºã¯åºç€å¹Žéãåé¡ã«ãªã£ãŠããã
æ åæåãçºéãããã¹ã³ããææ
ã«èšŽãããã瀟äŒã倧è¡ç€ŸäŒãšããã瀟äŒåŠè
ã®ãªãŒã¹ãã³ã¯å€ç¬ãªçŸ€éã®äžã§è¿ä»£ä»¥åã¯å°å瀟äŒã®äžã§ç掻ããäŒçµ±æååã ã£ãããè¿ä»£ã§ã¯å®æãææ³ãããšã«äž»äœçãªè¡åããå
éšæååãçŸä»£ã¯ãã¹ã³ãã«åããããä»äººæååã«ãªã£ããšå€§è¡åãåæããã
åœé瀟äŒã®çžäºäŸåã«ããããµããããéãããããç¥çæææš©ã®åœéçãªå¯Ÿå¿ããåœå
ç£æ¥ã®æµ·å€æµåºã«ããç£æ¥ã®ç©ºæŽåã®åé¡ãèµ·ãã£ãŠããã
å€ä»£ã®ãªã·ã¢ã®å²åŠè
ã¢ãªã¹ããã¬ã¹ã¯æç¥ãšè¿°ã¹ãŠããããã¢ãµããšã³ã¹ã¯ç¥æµã®äººãšããæå³ã§ãããå€ä»£äžåœã®ææ³å®¶ååã¯åŠã¶ããšã¯éã§ãããã¿ãªã¯ççãã®ãã®ã ãšå±ããããã©ã³ã¹é©åœã«åœ±é¿ãäžããææ³å®¶ã®ã«ãœãŒã¯é幎æã¯ç¬¬äºã®èªçã§ãããšå±ãããæ¥æ¬ã®é幎ã¯å¢ç人ã§ããèè€ãæ±ããŠãããããŒãžãã«ã»ãã³ãšããããããæå人é¡åŠè
ã®ããŒãã¯ãµã¢ã¢ã§ã¯åäŸãã倧人ãžã®ç§»è¡ã¯ééå瀌ã«ãã£ãŠãããªãããŠããŠèè€ã¯èŠãããªãã£ããšã®èª¿æ»ãããŠãããå¿çåŠè
ã®ãšãªã¯ãœã³ã¯é幎æã®ç¶æ
ãå¿ç瀟äŒçã¢ã©ããªã¢ã ãšåã¥ããã欲æ±äžæºã®ããšããã©ã¹ãã¬ãŒã·ã§ã³ãšãããããã解æ¶ããããšãé©å¿è¡åãšãããå¿çåŠè
ã®ããã€ãã¯é²è¡æ©å¶ãšåŒãã ãé幎æã¯èªæãç®èŠãããåæ§ã«ã¯èœåãæ°è³ªãæ§æ Œã®3ã€ã®èŠçŽ ããããã¢ã€ãã³ãã£ãã£ã圢æãããªããšæé£çãéé£çãã¹ãã¥ãŒãã³ãã»ã¢ãã·ãŒã«ãªãããšããããã¢ã¡ãªã«ã®æè²åŠè
ããŽã£ã¬ãŒã¹ãã¯é幎æã®çºé課é¡ãæããŠããã
女æ§å·®å¥æ€å»æ¡çŽãåããŠãæ¥æ¬ã§ã¯ç·å¥³éçšæ©äŒåçæ³ãè²å
äŒæ¥æ³ãæç«ããã
æ¥æ¬äººã¯ãåæ¹ç³»ãæ鮮系ãäžåœç³»ãæ±åã¢ãžã¢ç³»ãããªãã·ã¢ç³»ã®5ã€ã®æ°æã«ãã£ãŠæ§æãããŠããã
æ¥æ¬ã¯ããããã®æåã®çµçç¹ã§éçš®æåãšåŒã°ããã
決ããŠ1ã€ã®æ°æã1ã€ã®æåã§ã¯ãªããå€æ¥æåãšäŒçµ±æåã®ãµã€ã¯ã«ã¯1200幎ã§ãããæ¥æ¬ã®äŒçµ±çãªé£ç掻ã¯äžæ±äžèã§ããã
äžäžä»¥éã®æ°å®¶ã¯ç«ªç©Žäœå±
ãšé«åºäœå±
ã®åäœã§ããã
çŸä»£ã®åæã§ããæŽãçã¯æ±æžæ代ã«ãªã£ãŠå®çãããéå£ã®ãŸãšãŸãã¯å¶æã«ãªã£ãŠçŸããŠããã
ãã¬ã®æ¥ãšã±ã®æ¥ã¯äŒçµ±æåãæ¯ããŠããããã¬ã®æ¥ãšã±ã®æ¥ã®åºå¥ã¯å¹Žäžè¡äºãééå瀌ã«ãªã£ãŠçŸãããå°æ¹ã蟲æã®ããšããããšãããéœåžã®ããšããã€ã³ãšãããéœåžã®äŒçµ±ã®ããšã ãã€ã³ã¶ã ãšããã京éœã§ã¯ã¿ãã³ã®äžçãå±éãããŠããã
æ±æžæ代ã®åœåŠè
ã®è³èçæ·µ(ããã® ãŸã¶ã¡)ã¯ãæž
ãæãå¿ãšèª ã匷調ããã
æ¥æ¬äººã®ç€ŸäŒè¡åã«ãããŠããã¡ã§ã¯æ¬é³ã§æ¥ããå€ã§ã¯ããŠãŸãã§æ¥ããã蟲家ãåŽååãæäŸãããããšã ãã ãšããã
æå人é¡åŠè
ã®ãããã£ã¯ãã¯èé£ç£ã¯ããã«ãã£ãŠå¯Ÿäººé¢ä¿ãæ°ã«ããæ¥ã®æåã圢æãããèé£ç£ã¯çžåŒµãã«ãã£ãŠå®æãå¿ã®ããã©ãããšãã眪ã®æåã圢æããããšè«ããã 瀟äŒäººé¡åŠè
ã®äžæ ¹åæã¯ã蟲èæ°æã¯å€©åãªã©å
代ã®ç¥æµãçµéšã倧åã«ããã®ã§ããŠç€ŸäŒã圢æãããç©çæ°æã¯æè¡ã次ã
ã«é©æ°ããå
代ã¯ãããŠããããã®ã§ãã瀟äŒã圢æããããšè«ãããå€ä»£ã®ãªã·ã¢ã®å²åŠè
ãœã¯ã©ãã¹ã¯äººçã§ãã£ãšã倧åãªããšã¯ããçããããšã ãšè¿°ã¹ããæ¥æ¬ã®ä»£è¡šçãªããªã¹ãæåŸã§ããææ³å®¶ã®å
æéäžã¯åŸäžãžã®æ倧ã®éºç©ã¯ãåãŸããé«å°ãªç涯ãã§ãããšè¿°ã¹ãã
ãšã¬ã¯ãããã¯ã¹ã¯ICãLSIãè¶
LSIãšæè¡é©æ°ãé²ãã§ããããã€ãã¯ãããžãŒããã€ãªãã¯ãããžãŒãçºéãããæ¥æ¬ã®å·¥æ¥ã¯ã補éãªã©ã®éåé·å€§(ãã
ããã ã¡ããã ã)ãããåå°äœãªã©ã®è»œèçå°(ããã¯ã ããããã)åã®ç£æ¥ã«åãæ¿ãããç£æ¥æ§é ã®ãã€ãã¯åãèµ·ããããããã¯çµæžã®ãœããåããµãŒãã¹åãšãåŒã°ããŠããã
äŒæ¥ã«ã¯æ ªåŒäŒç€Ÿãªã©ããããæ ªåŒäŒç€Ÿã®åºè³è
ã®è²¬ä»»ã¯æé責任ã§ãããææãšçµå¶ã®åé¢ããªãããŠããã
æ¿åºã®çµæžæŽ»åã®ããšã財æ¿ãšããã
財æ¿ã«ã¯è³æºé
åæ©èœãæåŸåé
åæ©èœãçµæžå®å®åæ©èœãããã
æ¿åºã家èšãäŒæ¥ã«ç©æ¥µçã«ä»å
¥ããããšã¯æ··åçµæžãä¿®æ£è³æ¬äž»çŸ©ãšåŒã°ããã
ç§çšã«ã¯æåŸãåã人ã«å¯Ÿããæ°Žå¹³çå
¬å¹³(ãããžããŠã ãããžã)ãšãæåŸãéã人ã«å¯ŸããåçŽçå
¬å¹³(ããã¡ãããŠã ãããžã)ãæ±ããããŠããã
çšã¯çŽæ¥çšãšéæ¥çšã«åããããšãã§ãããçŽæ¥çšã«ã¯æåŸçšãæ³äººçšãªã©ããããéæ¥çšã«ã¯æ¶è²»çšãé
çšãªã©ãããã
çŽæ¥çšãšéæ¥çšã®å²åã®ããšãçŽéæ¯ç(ã¡ãã£ãã ã²ãã€)ãšãããéæ¥çšã®ã»ãã倧ãããªããšåçŽçå
¬å¹³ã厩ããéé²æ§ã®åé¡ãèµ·ããã
æ ªåŒäŒç€Ÿãæ ªåŒã瀟åµãçºè¡ããŠèšŒåžåžå Žã§è³éã調éããããšãçŽæ¥éèãšããã
éè¡ã§è³éãåããããšãéæ¥éèãšãããéè¡ãè³éã貞ãåºãããã®äŒç€Ÿãä»ã®äŒç€Ÿã«æ¯æããä»ã®äŒç€Ÿãä»ã®éè¡ã«è³éãé ãå
¥ããããšã«ãã£ãŠé éåµé ããããªãããã
æ¥æ¬ã®äžå€®éè¡ã¯æ¥æ¬éè¡ã§ãããæ¥æ¬éè¡ã¯éè¡ã®éè¡ãæ¿åºã®éè¡ãçºåžéè¡ãšãåŒã°ãããæ¥éã®éèæ¿çã«ã¯å
¬å®æ©åæäœãé éæºåçæäœãå
¬éåžå Žæäœãããã
éèã®èªç±å以éããã«çµæžåãèµ·ãã財ãã¯ãæµè¡ã£ããããã«åŽ©å£ä»¥éã¯äœå°(ãã
ããã)ãªã©ã®äžè¯åµæš©ãåé¡ãšãªã£ãã
éçšèª¿æŽã«ãã£ãŠæŽŸé£ç€Ÿå¡ãããŒãã¿ã€ããŒãã¢ã«ãã€ããå€åœäººåŽåè
ãå¢å ãããéåŽæ»ãè£éåŽåå¶ãåé¡ã«ãªã£ãŠãããåŽååºæ¬æš©ã«ã¯åŽåæš©ãšåŽåäžæš©ããããåŽåäžæš©ã«ã¯å£çµæš©ãå£äœäº€æžæš©ãäºè°æš©ããããåŽåäžæ³ã«ã¯åŽååºæºæ³ãåŽåçµåæ³ãåŽåé¢ä¿èª¿æŽæ³ãããã
ææ²»æã«ã¯è¶³å°Ÿé±æ¯äºä»¶ãåé¡ã«ãªã£ããåå°å
¬å®³èšŽèšã«ã¯æ°Žä¿£ç
ãæ°æœæ°Žä¿£ç
ãã€ã¿ã€ã€ã¿ã€ç
ãåæ¥åžããããããããåœã¯å
¬å®³å¯Ÿçåºæ¬æ³ãæç«ãããç°å¢åºãèšç«ãããPPP(æ±æè
è² æ
ã®åå)ãç·éèŠå¶ãšãã£ãæ¿çããšãããŠãããè¿å¹Žã§ã¯ç°å¢åºæ¬æ³ãç°å¢ã¢ã»ã¹ã¡ã³ãæ³ãæç«ããã
åºæ¬ç人暩ã§ã¯å
Œ
±ã®çŠç¥ãç§äººéã«ããã人暩ä¿éãåœæ°ã®äžå€§çŸ©åãå人ã®å°éãæ³ã®äžã®å¹³çãèªç±æš©ã瀟äŒæš©ãæ²ããããŠãããèªç±æš©ã«ã¯é©æ£æç¶ã䞻矩ã眪åæ³å®äž»çŸ©ãªã©ã®èº«äœã®èªç±ãšçµæžæŽ»åã®èªç±ãããããŸãåœããã³ãã®æ©é¢ã¯ãå®ææè²ãã®ä»ãããªãå®æ掻åãããŠã¯ãªããªããšæ¿æåé¢ã®ååã詳现ã«å®ããŠããã瀟äŒæš©ã¯ã¯ã€ããŒã«æ²æ³ã§æèšããããå¥åº·ã§æåçãªæäœé床ã®ç掻ãå¶ãæš©å©ã®ããšãçåæš©ãšãããææ¥èšŽèšãå æšèšŽèšã§è©±é¡ã«ãªã£ããæé«è£ã¯çåæš©ã¯ããã°ã©ã èŠå®ã ãšã®å€æãããŠãããæè²ãåããæš©å©ã¯çŸ©åæè²ã®ç¡åãå®ããŠãããæ°ãã人暩ã«ã¯ç°å¢æš©ãç¥ãæš©å©ããã©ã€ãã·ãŒã®æš©å©ããããæ
å ±å
¬éå¶åºŠã«ã¯æ
å ±å
¬éæ¡äŸãæ
å ±å
¬éæ³ãããã
åœæ°äž»æš©ã代衚æ°äž»å¶ãšãã圢ã«ããŠããã®ãåœäŒã§ãããåœäŒã¯åœæš©ã®æé«æ©é¢ã§ãããšãšãã«å¯äžã®ç«æ³æ©é¢ã§ãããäºé¢å¶ãè¡è°é¢ã®åªè¶ãæ¡çšãããŠããããŸããå§å¡äŒå¶åºŠãåœæ¿èª¿æ»æš©ãæã£ãŠãããæ¥æ¬ã¯è°é¢å
é£å¶ãæ¡çšããŠãããè¡æ¿å§å¡äŒãªã©ããããçŸä»£ã«ãããŠã¯è¡æ¿æš©åªäœã®çŸè±¡ãèŠãããå®åæ©æ§ãžã®æ
å ±å
¬éå¶åºŠããªã³ããºãã³å¶åºŠãæ±ããããŠãããåœæ°ã¯è£å€ãåããæš©å©ãæããŠãããåžæ³æš©ã®ç¬ç«ã«ã¯è£å€å®ã®è·æš©ã®ç¬ç«ãè£å€å®ã®èº«åä¿éã匟åŸè£å€æãèŠåå¶å®æš©ãªã©ããããäžå¯©å¶ã®æåŸã«äœçœ®ããã®ãæé«è£å€æã§ãããæ²æ³ã®çªäººãšåŒã°ããŠããã
äžæŠæ¡çŽãåœéé£åæ²ç« ã§å¹³å䞻矩ããããããŠãããæ¥æ¬åœæ²æ³ã¯æŠäºã®æŸæ£ãæŠåã®äžä¿æã亀æŠæš©ã®åŠèªãå®ããŠããå¹³å䞻矩ã®æ²æ³ã§ãããæŠåã®äžä¿æãå®ããŠããæ²æ³ã¯æ¥æ¬åœæ²æ³ãšã³ã¹ã¿ãªã«æ²æ³ã ãã§ãããèªè¡éã«ã¯ææ°çµ±å¶ã®å¶åºŠããšãããŠããŠãå
é£ç·ç倧è£ãèªè¡éã®æé«ææ®å®ã§ãããéèŠäºé
ã¯å®å
šä¿éäŒè°ã決å®ããããšã«ãªã£ãŠããã
äžè«ã¯ãã¹ã¡ãã£ã¢ã«ãã£ãŠæäœããããå§åå£äœãæ¿æ²»ã«å€§ããªåœ±é¿ãåãŒããŠãããå¶ééžæã«å¯ŸããŠæ®ééžæããããããã«ã¯æ©å¯éžæãšå¹³çéžæãå«ãŸããŠããŠãå¹³çéžæã«ã¯è°å¡å®æ°äžåè¡¡ã®åé¡ããããéžæå¶åºŠã«ã¯æ¯äŸä»£è¡šå¶ãå°éžæåºå¶ã倧éžæåºå¶ãªã©ããããæ¥æ¬ã§ã¯å°éžæåºæ¯äŸä»£è¡šäžŠç«å¶ãæ¡çšãããŠãããå°éžæåºå¶ã«ã¯æ»ç¥šãã§ããããšããæ¬ ç¹ããããæ¿å
æ¿æ²»ã«ã¯äºå€§æ¿å
å¶ãšå€å
å¶ãªã©ããããæ¥æ¬ã¯55幎äœå¶ãšããæ¿æš©äº€ä»£ããªãæ¿æ²»ãç¶ãããè¿å¹Žã¯æ¿æ²»çç¡é¢å¿ãç¡å
掟局ãåºãŸã£ãŠããã
ãã©ã³ã¹ã®å²åŠè
ãµã«ãã«ã¯ã人éã¯èªç±ã®åã«åŠããããŠããããšè¡šçŸãããèªç±ã«ã¯æå§ããã®èªç±ãšäººæ ŒãšããŠã®èªç±ãããããã€ãã®å²åŠè
ã«ã³ãã¯äººæ Œã®å°å³ã瀺ãããã¢ã¡ãªã«ã®ç€ŸäŒåŠè
ãªãŒã¹ãã³ã¯ä»äººæååã¯ãã¡ã·ãºã ã«ã€ãªãããšèŠåããããã€ãã®ç€ŸäŒåŠè
ã¢ãã«ãã¯æš©åšäž»çŸ©çããŒãœããªãã£ãæå±ããããæ°äž»äž»çŸ©çããŒãœããªãã£ããããå¿
èŠãããã ããã
åœé£ã§ã¯äžç人暩宣èšãæ¡æããããåœé人暩èŠçŽã®ããšèŠçŽäººæš©å§å¡äŒãèšç«ããã¢ãã«ããã€ãã®å»æ¢ã«è²¢ç®ããã
䞻暩åœå®¶ã¯å€äº€ãåœéæ¿æ²»ããããªããåœéäžè«ãç¡èŠã§ããªãã
第1次åœé£æµ·æŽæ³äŒè°ã§å€§éžæ£å¶åºŠãå®ããããã第3次åœé£æµ·æŽæ³äŒè°ã§ã¯æä»ççµæžæ°Žåãå®ããããã
éºäŒçã«å
±éã®ç¹åŸŽãæã€äººã
ã®éå£ã®ããšã人皮ãšãããæåãå
±æãã人ã
ã®éå£ã®ããšãæ°æãšãããåœéå
äœæ°å¹Žã延é·ããäžçå
äœæ°åœé10ã幎ã«ãªã£ãã
第äºçŠç«äžžä»¥éããã°ãŠã©ãã·ã¥äŒè°ãéšåçæ žå®éšçŠæ¢æ¡çŽãNPTãSALTãINFå
šå»æ¡çŽãSTARTãSTARTIIãCTBTãªã©ãæ¡æãããã
å¢ååè¡¡æ¿çã¯éå£å®å
šä¿éã«ãªã£ãããµã³ãã©ã³ã·ã¹ã³å¹³åæ¡çŽãšåæã«æ¥ç±³å®å
šä¿éæ¡çŽãç· çµãããããã®ãšãèŠå¯äºåéã¯ä¿å®éã«ãªã£ãããã®åŸå®ä¿å察éäºãæŒãåã£ãŠæ¥ç±³çžäºååããã³å®å
šä¿éæ¡çŽã«ãªã£ãããããŠå®ä¿åå®çŸ©ã®ããšæ¥ç±³å®ä¿å
±å宣èšã«ãªããæ°ã¬ã€ãã©ã€ã³æ³ã«ãªããåšèŸºäºæ
æ³ã«ãªã£ãã
è³æ¬äž»çŸ©ãèé£ç£ã®çµæžã§ã瀟äŒäž»çŸ©ãèé£ç£ã®çµæžã§ãããæ žææ¢åã«ããææã®åè¡¡ãããããããããã¥ãŒãå±æ©ä»¥éãå¹³åå
±åæ¿çãå€æ¥µåã®æµãã®ãªããã«ã¿äŒè«ã«ãã£ãŠå·æŠãçµçµããããŽã«ããã§ãæ¿æš©ã¯ãã¬ã¹ããã€ã«ããããªã£ããäžåœã¯æ¹é©ã»éæŸæ¿çããããªãã瀟äŒäž»çŸ©åžå Žçµæžã«ãªã£ãã
MOSSåè°ãG5ããã©ã¶åæãæ¥ç±³æ§é åè°ãšäº€æžããããªãããŠããã è¿å¹Žã§ã¯2002幎ã«ã·ã³ã¬ããŒã«ãšFTA(èªç±è²¿æåå®)ãçµãã ã
ååçã«å€ãå
é²åœãšãååçã«å€ãçºå±éäžåœãšã®çµæžæ Œå·®ã®ããšããåååé¡ãšãããååçã®åœã§ã¯çŽ¯ç©åµååé¡ãã¢ãã«ã«ãã£ãŒãäžæ¬¡ç£åãªã©ã®åé¡ãæ±ããŠããããšãå€ããããããååçã®åœã®äžã§ããããã«ç³æ²¹ãç£åºã§ãããã©ãããšããçµæžæ Œå·®ããããååçã©ããã®çµæžæ Œå·®ã§ããåååé¡ãããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "å°åŠæ ¡ã»äžåŠæ ¡ã»é«çåŠæ ¡ã®åŠç¿ > é«çåŠæ ¡ã®åŠç¿ > é«çåŠæ ¡çŸä»£ç€ŸäŒ",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "é«çåŠæ ¡ãå
¬æ°ãã®ç§ç®ã®äžã€ãçŸä»£çãªèª²é¡ã«çãããã®ãšããŠç»å Žããåœåã¯å¿
ä¿®ç§ç®ã ã£ã[2022幎ãŸã§]ãçŸåšã¯ãå«çããæ¿æ²»çµæžããšã®éžæå¿
ä¿®ã2022幎以éæç§æžã§ã¯ãã®ç§ç®ã®å称ããå
Œ
±ãã«å€æŽã«ãªã£ãŠããŸãã",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "(â» æ€å®æç§æžã«ãŠèšè¿°ãããããšã確èª)",
"title": "æäºçšèªããªãã©ã·ãŒãªã©"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ããã«é¢ä¿",
"title": "æäºçšèªããªãã©ã·ãŒãªã©"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ããã¬å¯Ÿç",
"title": "æäºçšèªããªãã©ã·ãŒãªã©"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "",
"title": "æäºçšèªããªãã©ã·ãŒãªã©"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "",
"title": "æäºçšèªããªãã©ã·ãŒãªã©"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "",
"title": "æäºçšèªããªãã©ã·ãŒãªã©"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "",
"title": "æäºçšèªããªãã©ã·ãŒãªã©"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "å°çç°å¢åé¡ã¯äžè¬ã«ç¥ãããŠããããã¯ããã«æ·±å»ã§ããããªãŸã³å±€ç Žå£ã«ããç®èããã®æ¥æ¿ãªå¢å ããäœç©ã®çŽ«å€ç·é害ãå§ãŸã£ãŠããã 40幎åŸã«ã¯ãäžçãã森æããªããªãç æŒ åãããšããããŠããã å°é¢šãå¶æŽåããå°çæž©æåã®åœ±é¿ãå®éã«æããããããã«ãªã£ãã 21äžçŽäžã«å°çã®å¹³åæ°æž©ã5~6床äžæãçæ
ç³»ã«å£æ»
çãªè¢«å®³ãäžããããããããã®ãªãå°çãã®ããŒãã®å
ãåœé£äººéç°å¢äŒè°ãéå¬ããã人éç°å¢å®£èšãããããUNEP(åœé£ç°å¢èšç»)ãèšç«ããããããããããåŒãç¶ããæç¶å¯èœãªçºå±ãã®å
ãå°çãµããããéããããçŽ8000ãã®NGOãåå ããæ°åå€åæ çµæ¡çŽãã¢ãžã§ã³ã21ãæ¡æããããç°å¢NGOã«ãã£ãŠèªç¶ä¿è·éåããã·ã§ãã«ãã©ã¹ãéåããããªãããŠããããã®çµæã¯äžçéºç£æ¡çŽãã©ã ãµãŒã«æ¡çŽã«ç»é²ãããããšã«ãã£ãŠãããããŠããã",
"title": "çŸä»£ã«çããç§ãã¡ã®èª²é¡"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "ç³æ²¹ã®ç¢ºèªåèµéãããç³æ²¹ã¯ããš20幎ã§ãªããªãã 第1次ç³æ²¹å±æ©ã第2次ç³æ²¹å±æ©ã¯ç³æ²¹ã¡ãžã£ãŒãšOPEC(ãªããã¯),OAPEC(ãªã¢ããã¯)ãšã®å¯Ÿç«ã«ãã£ãŠèµ·ãã£ãã ãªããOPECãšã¯ç³æ²¹èŒžåºåœæ©æ§(Organization of the Petroleum Exporting Countries)ã®ç¥ç§°ãOAPECãšã¯ã¢ã©ãç³æ²¹èŒžåºåœæ©æ§(Organization of Arab Petroleum Exporting Countries)ã®ç¥ç§°ã",
"title": "çŸä»£ã«çããç§ãã¡ã®èª²é¡"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "åååã¯ãã¹ãªãŒãã€ã«å³¶ã§ã®åååçºé»æã®äºæ
ãããã§ã«ããã€ãªåååçºé»æã§ã®äºæ
ãçŠå³¶ç¬¬äžåååçºé»æäºæ
ããŸã䜿çšæžã¿æ žçæã®æçµåŠåå°ã®åé¡ãååçã®ç¹æ€æã®æŸå°ç·è¢«ã°ãã䌎ãäœæ¥ãååç匟ã®åææãšãªããã«ãããŠã ãçæãããåé¡ãªã©ãæ§ã
ãªåé¡ç¹ãããå©çšã«æ¹å€çãªæèŠãããã",
"title": "çŸä»£ã«çããç§ãã¡ã®èª²é¡"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "ãã€ãã¯ã2000幎6æã«æ¿åºãšé»åäŒç€Ÿããã¹ãŠã®åååçºé»æãå»æ¢ããããšãåæãã2011幎ã«è±åçºã決å®ããã",
"title": "çŸä»£ã«çããç§ãã¡ã®èª²é¡"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "ã¹ã€ã¹ã¯ã2011幎5æã«ãè±åçºãã2034幎ãŸã§ã«å®çŸããããšã決å®ããã",
"title": "çŸä»£ã«çããç§ãã¡ã®èª²é¡"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "ã€ã¿ãªã¢ã¯ãåååçºé»æãèšçœ®ããŠããªãã",
"title": "çŸä»£ã«çããç§ãã¡ã®èª²é¡"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "æ¥æ¬ãäžåœãã¢ã¡ãªã«ã¯äžçã®æµãã«éè¡ããŠããããœãããšãã«ã®ãŒãã³ãŒãžã§ãã¬ãŒã·ã§ã³ã泚ç®ãããŠããããéçºã«åç³çæããã®ä»è³æºãå€éã«äœ¿ãããŠããããšããã倧ããªåé¡ã«ãªã£ãŠããã",
"title": "çŸä»£ã«çããç§ãã¡ã®èª²é¡"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "ã€ã³ã¿ãŒãããããã€ãã¯ãå®çãããå»åŠã®çºéã«ãã£ãŠæ»ã®å®çŸ©ãå¿èæ»ãè³å¹¹æ»ãè³æ»ã®3ã€ã«ãªã£ãããèåšç§»æ€ãåé¡ã«ãªã£ãŠããã",
"title": "çŸä»£ã«çããç§ãã¡ã®èª²é¡"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "äžæ±ã«ããããŠãã€æ°æã®ããã ã§ã¯ãã€ããŠã§ãæé«ç¥ãšãããŠãã€æãä¿¡ããããŠããã ãŠãã€äººã§ãã£ãã€ãšã¹ã»ããªã¹ãã¯é£äººæãšå
šäžçã®æãããšããåŒåãã¡ã«ãã£ãŠã²ããããããããªã¹ãæã®å®æŽŸã«ã¯ã«ããªãã¯ããããã¹ã¿ã³ããæ£æäŒãªã©ãããã瀟äŒåŠè
ã®ãŠã§ãŒããŒã¯ãããã¹ã¿ã³ãã£ãºã ãšè·æ¥å«çãšãçµã³ã€ããã",
"title": "çŸä»£ã«çããç§ãã¡ã®èª²é¡"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "ã€ã¹ã©ã æã¯ã ãã³ãããåµå§ããã¢ã©ãŒãžã®çµ¶å¯Ÿåž°äŸ(ãã)ã説ããã",
"title": "çŸä»£ã«çããç§ãã¡ã®èª²é¡"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "ä»æã¯ã¬ãŠã¿ãã»ã·ãããŒã«ã¿ãå§ããæ
æ²ãããããšã«ãã£ãŠä»é(ããã)ã«ãªãããšèª¬ããã",
"title": "çŸä»£ã«çããç§ãã¡ã®èª²é¡"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "åæ(ãã
ããã)ã¯ååãå§ããä»çŸ©(ããã)ãå±ãããç¥é(ãããšã)ã¯ã¢ãããºã ãšç¥éåŽæãããªããæåŠã¯ç¡åžžèŠ³ãèœã¯å¹œçãè¶éã¯ãã³ããããããŠããã",
"title": "çŸä»£ã«çããç§ãã¡ã®èª²é¡"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "瀟äŒä¿éã¯ãã¥ãŒãã£ãŒã«æ¿çã«ããã瀟äŒä¿éæ³ãããããªããžã®ãããããããå¢å ŽãŸã§ãã®çŠç¥åœå®¶æ¿çãæåã§ãããæ¥æ¬ã®ç€ŸäŒä¿éã¯ã瀟äŒä¿éºãå
¬çæ¶å©ã瀟äŒçŠç¥ãå
¬è¡è¡çã®4æ¬æ±ããæãç«ã£ãŠããã瀟äŒä¿éºã¯ãå¥åº·ä¿éºã»å¹Žéã»ä»è·ä¿éºãªã©ãããªããå¥åº·ä¿éºã¯åºç€å¹Žéãåé¡ã«ãªã£ãŠããã",
"title": "çŸä»£ã«çããç§ãã¡ã®èª²é¡"
},
{
"paragraph_id": 22,
"tag": "p",
"text": "æ åæåãçºéãããã¹ã³ããææ
ã«èšŽãããã瀟äŒã倧è¡ç€ŸäŒãšããã瀟äŒåŠè
ã®ãªãŒã¹ãã³ã¯å€ç¬ãªçŸ€éã®äžã§è¿ä»£ä»¥åã¯å°å瀟äŒã®äžã§ç掻ããäŒçµ±æååã ã£ãããè¿ä»£ã§ã¯å®æãææ³ãããšã«äž»äœçãªè¡åããå
éšæååãçŸä»£ã¯ãã¹ã³ãã«åããããä»äººæååã«ãªã£ããšå€§è¡åãåæããã",
"title": "çŸä»£ã®ç€ŸäŒãšäººéãšããŠã®åšãæ¹çãæ¹"
},
{
"paragraph_id": 23,
"tag": "p",
"text": "åœé瀟äŒã®çžäºäŸåã«ããããµããããéãããããç¥çæææš©ã®åœéçãªå¯Ÿå¿ããåœå
ç£æ¥ã®æµ·å€æµåºã«ããç£æ¥ã®ç©ºæŽåã®åé¡ãèµ·ãã£ãŠããã",
"title": "çŸä»£ã®ç€ŸäŒãšäººéãšããŠã®åšãæ¹çãæ¹"
},
{
"paragraph_id": 24,
"tag": "p",
"text": "å€ä»£ã®ãªã·ã¢ã®å²åŠè
ã¢ãªã¹ããã¬ã¹ã¯æç¥ãšè¿°ã¹ãŠããããã¢ãµããšã³ã¹ã¯ç¥æµã®äººãšããæå³ã§ãããå€ä»£äžåœã®ææ³å®¶ååã¯åŠã¶ããšã¯éã§ãããã¿ãªã¯ççãã®ãã®ã ãšå±ããããã©ã³ã¹é©åœã«åœ±é¿ãäžããææ³å®¶ã®ã«ãœãŒã¯é幎æã¯ç¬¬äºã®èªçã§ãããšå±ãããæ¥æ¬ã®é幎ã¯å¢ç人ã§ããèè€ãæ±ããŠãããããŒãžãã«ã»ãã³ãšããããããæå人é¡åŠè
ã®ããŒãã¯ãµã¢ã¢ã§ã¯åäŸãã倧人ãžã®ç§»è¡ã¯ééå瀌ã«ãã£ãŠãããªãããŠããŠèè€ã¯èŠãããªãã£ããšã®èª¿æ»ãããŠãããå¿çåŠè
ã®ãšãªã¯ãœã³ã¯é幎æã®ç¶æ
ãå¿ç瀟äŒçã¢ã©ããªã¢ã ãšåã¥ããã欲æ±äžæºã®ããšããã©ã¹ãã¬ãŒã·ã§ã³ãšãããããã解æ¶ããããšãé©å¿è¡åãšãããå¿çåŠè
ã®ããã€ãã¯é²è¡æ©å¶ãšåŒãã ãé幎æã¯èªæãç®èŠãããåæ§ã«ã¯èœåãæ°è³ªãæ§æ Œã®3ã€ã®èŠçŽ ããããã¢ã€ãã³ãã£ãã£ã圢æãããªããšæé£çãéé£çãã¹ãã¥ãŒãã³ãã»ã¢ãã·ãŒã«ãªãããšããããã¢ã¡ãªã«ã®æè²åŠè
ããŽã£ã¬ãŒã¹ãã¯é幎æã®çºé課é¡ãæããŠããã",
"title": "çŸä»£ã®ç€ŸäŒãšäººéãšããŠã®åšãæ¹çãæ¹"
},
{
"paragraph_id": 25,
"tag": "p",
"text": "女æ§å·®å¥æ€å»æ¡çŽãåããŠãæ¥æ¬ã§ã¯ç·å¥³éçšæ©äŒåçæ³ãè²å
äŒæ¥æ³ãæç«ããã",
"title": "çŸä»£ã®ç€ŸäŒãšäººéãšããŠã®åšãæ¹çãæ¹"
},
{
"paragraph_id": 26,
"tag": "p",
"text": "æ¥æ¬äººã¯ãåæ¹ç³»ãæ鮮系ãäžåœç³»ãæ±åã¢ãžã¢ç³»ãããªãã·ã¢ç³»ã®5ã€ã®æ°æã«ãã£ãŠæ§æãããŠããã",
"title": "çŸä»£ã®ç€ŸäŒãšäººéãšããŠã®åšãæ¹çãæ¹"
},
{
"paragraph_id": 27,
"tag": "p",
"text": "æ¥æ¬ã¯ããããã®æåã®çµçç¹ã§éçš®æåãšåŒã°ããã",
"title": "çŸä»£ã®ç€ŸäŒãšäººéãšããŠã®åšãæ¹çãæ¹"
},
{
"paragraph_id": 28,
"tag": "p",
"text": "決ããŠ1ã€ã®æ°æã1ã€ã®æåã§ã¯ãªããå€æ¥æåãšäŒçµ±æåã®ãµã€ã¯ã«ã¯1200幎ã§ãããæ¥æ¬ã®äŒçµ±çãªé£ç掻ã¯äžæ±äžèã§ããã",
"title": "çŸä»£ã®ç€ŸäŒãšäººéãšããŠã®åšãæ¹çãæ¹"
},
{
"paragraph_id": 29,
"tag": "p",
"text": "äžäžä»¥éã®æ°å®¶ã¯ç«ªç©Žäœå±
ãšé«åºäœå±
ã®åäœã§ããã",
"title": "çŸä»£ã®ç€ŸäŒãšäººéãšããŠã®åšãæ¹çãæ¹"
},
{
"paragraph_id": 30,
"tag": "p",
"text": "çŸä»£ã®åæã§ããæŽãçã¯æ±æžæ代ã«ãªã£ãŠå®çãããéå£ã®ãŸãšãŸãã¯å¶æã«ãªã£ãŠçŸããŠããã",
"title": "çŸä»£ã®ç€ŸäŒãšäººéãšããŠã®åšãæ¹çãæ¹"
},
{
"paragraph_id": 31,
"tag": "p",
"text": "ãã¬ã®æ¥ãšã±ã®æ¥ã¯äŒçµ±æåãæ¯ããŠããããã¬ã®æ¥ãšã±ã®æ¥ã®åºå¥ã¯å¹Žäžè¡äºãééå瀌ã«ãªã£ãŠçŸãããå°æ¹ã蟲æã®ããšããããšãããéœåžã®ããšããã€ã³ãšãããéœåžã®äŒçµ±ã®ããšã ãã€ã³ã¶ã ãšããã京éœã§ã¯ã¿ãã³ã®äžçãå±éãããŠããã",
"title": "çŸä»£ã®ç€ŸäŒãšäººéãšããŠã®åšãæ¹çãæ¹"
},
{
"paragraph_id": 32,
"tag": "p",
"text": "æ±æžæ代ã®åœåŠè
ã®è³èçæ·µ(ããã® ãŸã¶ã¡)ã¯ãæž
ãæãå¿ãšèª ã匷調ããã",
"title": "çŸä»£ã®ç€ŸäŒãšäººéãšããŠã®åšãæ¹çãæ¹"
},
{
"paragraph_id": 33,
"tag": "p",
"text": "æ¥æ¬äººã®ç€ŸäŒè¡åã«ãããŠããã¡ã§ã¯æ¬é³ã§æ¥ããå€ã§ã¯ããŠãŸãã§æ¥ããã蟲家ãåŽååãæäŸãããããšã ãã ãšããã",
"title": "çŸä»£ã®ç€ŸäŒãšäººéãšããŠã®åšãæ¹çãæ¹"
},
{
"paragraph_id": 34,
"tag": "p",
"text": "æå人é¡åŠè
ã®ãããã£ã¯ãã¯èé£ç£ã¯ããã«ãã£ãŠå¯Ÿäººé¢ä¿ãæ°ã«ããæ¥ã®æåã圢æãããèé£ç£ã¯çžåŒµãã«ãã£ãŠå®æãå¿ã®ããã©ãããšãã眪ã®æåã圢æããããšè«ããã 瀟äŒäººé¡åŠè
ã®äžæ ¹åæã¯ã蟲èæ°æã¯å€©åãªã©å
代ã®ç¥æµãçµéšã倧åã«ããã®ã§ããŠç€ŸäŒã圢æãããç©çæ°æã¯æè¡ã次ã
ã«é©æ°ããå
代ã¯ãããŠããããã®ã§ãã瀟äŒã圢æããããšè«ãããå€ä»£ã®ãªã·ã¢ã®å²åŠè
ãœã¯ã©ãã¹ã¯äººçã§ãã£ãšã倧åãªããšã¯ããçããããšã ãšè¿°ã¹ããæ¥æ¬ã®ä»£è¡šçãªããªã¹ãæåŸã§ããææ³å®¶ã®å
æéäžã¯åŸäžãžã®æ倧ã®éºç©ã¯ãåãŸããé«å°ãªç涯ãã§ãããšè¿°ã¹ãã",
"title": "çŸä»£ã®ç€ŸäŒãšäººéãšããŠã®åšãæ¹çãæ¹"
},
{
"paragraph_id": 35,
"tag": "p",
"text": "ãšã¬ã¯ãããã¯ã¹ã¯ICãLSIãè¶
LSIãšæè¡é©æ°ãé²ãã§ããããã€ãã¯ãããžãŒããã€ãªãã¯ãããžãŒãçºéãããæ¥æ¬ã®å·¥æ¥ã¯ã補éãªã©ã®éåé·å€§(ãã
ããã ã¡ããã ã)ãããåå°äœãªã©ã®è»œèçå°(ããã¯ã ããããã)åã®ç£æ¥ã«åãæ¿ãããç£æ¥æ§é ã®ãã€ãã¯åãèµ·ããããããã¯çµæžã®ãœããåããµãŒãã¹åãšãåŒã°ããŠããã",
"title": "çŸä»£ã®ç€ŸäŒãšäººéãšããŠã®åšãæ¹çãæ¹"
},
{
"paragraph_id": 36,
"tag": "p",
"text": "äŒæ¥ã«ã¯æ ªåŒäŒç€Ÿãªã©ããããæ ªåŒäŒç€Ÿã®åºè³è
ã®è²¬ä»»ã¯æé責任ã§ãããææãšçµå¶ã®åé¢ããªãããŠããã",
"title": "çŸä»£ã®ç€ŸäŒãšäººéãšããŠã®åšãæ¹çãæ¹"
},
{
"paragraph_id": 37,
"tag": "p",
"text": "æ¿åºã®çµæžæŽ»åã®ããšã財æ¿ãšããã",
"title": "çŸä»£ã®ç€ŸäŒãšäººéãšããŠã®åšãæ¹çãæ¹"
},
{
"paragraph_id": 38,
"tag": "p",
"text": "財æ¿ã«ã¯è³æºé
åæ©èœãæåŸåé
åæ©èœãçµæžå®å®åæ©èœãããã",
"title": "çŸä»£ã®ç€ŸäŒãšäººéãšããŠã®åšãæ¹çãæ¹"
},
{
"paragraph_id": 39,
"tag": "p",
"text": "æ¿åºã家èšãäŒæ¥ã«ç©æ¥µçã«ä»å
¥ããããšã¯æ··åçµæžãä¿®æ£è³æ¬äž»çŸ©ãšåŒã°ããã",
"title": "çŸä»£ã®ç€ŸäŒãšäººéãšããŠã®åšãæ¹çãæ¹"
},
{
"paragraph_id": 40,
"tag": "p",
"text": "ç§çšã«ã¯æåŸãåã人ã«å¯Ÿããæ°Žå¹³çå
¬å¹³(ãããžããŠã ãããžã)ãšãæåŸãéã人ã«å¯ŸããåçŽçå
¬å¹³(ããã¡ãããŠã ãããžã)ãæ±ããããŠããã",
"title": "çŸä»£ã®ç€ŸäŒãšäººéãšããŠã®åšãæ¹çãæ¹"
},
{
"paragraph_id": 41,
"tag": "p",
"text": "çšã¯çŽæ¥çšãšéæ¥çšã«åããããšãã§ãããçŽæ¥çšã«ã¯æåŸçšãæ³äººçšãªã©ããããéæ¥çšã«ã¯æ¶è²»çšãé
çšãªã©ãããã",
"title": "çŸä»£ã®ç€ŸäŒãšäººéãšããŠã®åšãæ¹çãæ¹"
},
{
"paragraph_id": 42,
"tag": "p",
"text": "çŽæ¥çšãšéæ¥çšã®å²åã®ããšãçŽéæ¯ç(ã¡ãã£ãã ã²ãã€)ãšãããéæ¥çšã®ã»ãã倧ãããªããšåçŽçå
¬å¹³ã厩ããéé²æ§ã®åé¡ãèµ·ããã",
"title": "çŸä»£ã®ç€ŸäŒãšäººéãšããŠã®åšãæ¹çãæ¹"
},
{
"paragraph_id": 43,
"tag": "p",
"text": "æ ªåŒäŒç€Ÿãæ ªåŒã瀟åµãçºè¡ããŠèšŒåžåžå Žã§è³éã調éããããšãçŽæ¥éèãšããã",
"title": "çŸä»£ã®ç€ŸäŒãšäººéãšããŠã®åšãæ¹çãæ¹"
},
{
"paragraph_id": 44,
"tag": "p",
"text": "éè¡ã§è³éãåããããšãéæ¥éèãšãããéè¡ãè³éã貞ãåºãããã®äŒç€Ÿãä»ã®äŒç€Ÿã«æ¯æããä»ã®äŒç€Ÿãä»ã®éè¡ã«è³éãé ãå
¥ããããšã«ãã£ãŠé éåµé ããããªãããã",
"title": "çŸä»£ã®ç€ŸäŒãšäººéãšããŠã®åšãæ¹çãæ¹"
},
{
"paragraph_id": 45,
"tag": "p",
"text": "æ¥æ¬ã®äžå€®éè¡ã¯æ¥æ¬éè¡ã§ãããæ¥æ¬éè¡ã¯éè¡ã®éè¡ãæ¿åºã®éè¡ãçºåžéè¡ãšãåŒã°ãããæ¥éã®éèæ¿çã«ã¯å
¬å®æ©åæäœãé éæºåçæäœãå
¬éåžå Žæäœãããã",
"title": "çŸä»£ã®ç€ŸäŒãšäººéãšããŠã®åšãæ¹çãæ¹"
},
{
"paragraph_id": 46,
"tag": "p",
"text": "éèã®èªç±å以éããã«çµæžåãèµ·ãã財ãã¯ãæµè¡ã£ããããã«åŽ©å£ä»¥éã¯äœå°(ãã
ããã)ãªã©ã®äžè¯åµæš©ãåé¡ãšãªã£ãã",
"title": "çŸä»£ã®ç€ŸäŒãšäººéãšããŠã®åšãæ¹çãæ¹"
},
{
"paragraph_id": 47,
"tag": "p",
"text": "éçšèª¿æŽã«ãã£ãŠæŽŸé£ç€Ÿå¡ãããŒãã¿ã€ããŒãã¢ã«ãã€ããå€åœäººåŽåè
ãå¢å ãããéåŽæ»ãè£éåŽåå¶ãåé¡ã«ãªã£ãŠãããåŽååºæ¬æš©ã«ã¯åŽåæš©ãšåŽåäžæš©ããããåŽåäžæš©ã«ã¯å£çµæš©ãå£äœäº€æžæš©ãäºè°æš©ããããåŽåäžæ³ã«ã¯åŽååºæºæ³ãåŽåçµåæ³ãåŽåé¢ä¿èª¿æŽæ³ãããã",
"title": "çŸä»£ã®ç€ŸäŒãšäººéãšããŠã®åšãæ¹çãæ¹"
},
{
"paragraph_id": 48,
"tag": "p",
"text": "ææ²»æã«ã¯è¶³å°Ÿé±æ¯äºä»¶ãåé¡ã«ãªã£ããåå°å
¬å®³èšŽèšã«ã¯æ°Žä¿£ç
ãæ°æœæ°Žä¿£ç
ãã€ã¿ã€ã€ã¿ã€ç
ãåæ¥åžããããããããåœã¯å
¬å®³å¯Ÿçåºæ¬æ³ãæç«ãããç°å¢åºãèšç«ãããPPP(æ±æè
è² æ
ã®åå)ãç·éèŠå¶ãšãã£ãæ¿çããšãããŠãããè¿å¹Žã§ã¯ç°å¢åºæ¬æ³ãç°å¢ã¢ã»ã¹ã¡ã³ãæ³ãæç«ããã",
"title": "çŸä»£ã®ç€ŸäŒãšäººéãšããŠã®åšãæ¹çãæ¹"
},
{
"paragraph_id": 49,
"tag": "p",
"text": "åºæ¬ç人暩ã§ã¯å
Œ
±ã®çŠç¥ãç§äººéã«ããã人暩ä¿éãåœæ°ã®äžå€§çŸ©åãå人ã®å°éãæ³ã®äžã®å¹³çãèªç±æš©ã瀟äŒæš©ãæ²ããããŠãããèªç±æš©ã«ã¯é©æ£æç¶ã䞻矩ã眪åæ³å®äž»çŸ©ãªã©ã®èº«äœã®èªç±ãšçµæžæŽ»åã®èªç±ãããããŸãåœããã³ãã®æ©é¢ã¯ãå®ææè²ãã®ä»ãããªãå®æ掻åãããŠã¯ãªããªããšæ¿æåé¢ã®ååã詳现ã«å®ããŠããã瀟äŒæš©ã¯ã¯ã€ããŒã«æ²æ³ã§æèšããããå¥åº·ã§æåçãªæäœé床ã®ç掻ãå¶ãæš©å©ã®ããšãçåæš©ãšãããææ¥èšŽèšãå æšèšŽèšã§è©±é¡ã«ãªã£ããæé«è£ã¯çåæš©ã¯ããã°ã©ã èŠå®ã ãšã®å€æãããŠãããæè²ãåããæš©å©ã¯çŸ©åæè²ã®ç¡åãå®ããŠãããæ°ãã人暩ã«ã¯ç°å¢æš©ãç¥ãæš©å©ããã©ã€ãã·ãŒã®æš©å©ããããæ
å ±å
¬éå¶åºŠã«ã¯æ
å ±å
¬éæ¡äŸãæ
å ±å
¬éæ³ãããã",
"title": "çŸä»£ã®ç€ŸäŒãšäººéãšããŠã®åšãæ¹çãæ¹"
},
{
"paragraph_id": 50,
"tag": "p",
"text": "åœæ°äž»æš©ã代衚æ°äž»å¶ãšãã圢ã«ããŠããã®ãåœäŒã§ãããåœäŒã¯åœæš©ã®æé«æ©é¢ã§ãããšãšãã«å¯äžã®ç«æ³æ©é¢ã§ãããäºé¢å¶ãè¡è°é¢ã®åªè¶ãæ¡çšãããŠããããŸããå§å¡äŒå¶åºŠãåœæ¿èª¿æ»æš©ãæã£ãŠãããæ¥æ¬ã¯è°é¢å
é£å¶ãæ¡çšããŠãããè¡æ¿å§å¡äŒãªã©ããããçŸä»£ã«ãããŠã¯è¡æ¿æš©åªäœã®çŸè±¡ãèŠãããå®åæ©æ§ãžã®æ
å ±å
¬éå¶åºŠããªã³ããºãã³å¶åºŠãæ±ããããŠãããåœæ°ã¯è£å€ãåããæš©å©ãæããŠãããåžæ³æš©ã®ç¬ç«ã«ã¯è£å€å®ã®è·æš©ã®ç¬ç«ãè£å€å®ã®èº«åä¿éã匟åŸè£å€æãèŠåå¶å®æš©ãªã©ããããäžå¯©å¶ã®æåŸã«äœçœ®ããã®ãæé«è£å€æã§ãããæ²æ³ã®çªäººãšåŒã°ããŠããã",
"title": "çŸä»£ã®ç€ŸäŒãšäººéãšããŠã®åšãæ¹çãæ¹"
},
{
"paragraph_id": 51,
"tag": "p",
"text": "äžæŠæ¡çŽãåœéé£åæ²ç« ã§å¹³å䞻矩ããããããŠãããæ¥æ¬åœæ²æ³ã¯æŠäºã®æŸæ£ãæŠåã®äžä¿æã亀æŠæš©ã®åŠèªãå®ããŠããå¹³å䞻矩ã®æ²æ³ã§ãããæŠåã®äžä¿æãå®ããŠããæ²æ³ã¯æ¥æ¬åœæ²æ³ãšã³ã¹ã¿ãªã«æ²æ³ã ãã§ãããèªè¡éã«ã¯ææ°çµ±å¶ã®å¶åºŠããšãããŠããŠãå
é£ç·ç倧è£ãèªè¡éã®æé«ææ®å®ã§ãããéèŠäºé
ã¯å®å
šä¿éäŒè°ã決å®ããããšã«ãªã£ãŠããã",
"title": "çŸä»£ã®ç€ŸäŒãšäººéãšããŠã®åšãæ¹çãæ¹"
},
{
"paragraph_id": 52,
"tag": "p",
"text": "äžè«ã¯ãã¹ã¡ãã£ã¢ã«ãã£ãŠæäœããããå§åå£äœãæ¿æ²»ã«å€§ããªåœ±é¿ãåãŒããŠãããå¶ééžæã«å¯ŸããŠæ®ééžæããããããã«ã¯æ©å¯éžæãšå¹³çéžæãå«ãŸããŠããŠãå¹³çéžæã«ã¯è°å¡å®æ°äžåè¡¡ã®åé¡ããããéžæå¶åºŠã«ã¯æ¯äŸä»£è¡šå¶ãå°éžæåºå¶ã倧éžæåºå¶ãªã©ããããæ¥æ¬ã§ã¯å°éžæåºæ¯äŸä»£è¡šäžŠç«å¶ãæ¡çšãããŠãããå°éžæåºå¶ã«ã¯æ»ç¥šãã§ããããšããæ¬ ç¹ããããæ¿å
æ¿æ²»ã«ã¯äºå€§æ¿å
å¶ãšå€å
å¶ãªã©ããããæ¥æ¬ã¯55幎äœå¶ãšããæ¿æš©äº€ä»£ããªãæ¿æ²»ãç¶ãããè¿å¹Žã¯æ¿æ²»çç¡é¢å¿ãç¡å
掟局ãåºãŸã£ãŠããã",
"title": "çŸä»£ã®ç€ŸäŒãšäººéãšããŠã®åšãæ¹çãæ¹"
},
{
"paragraph_id": 53,
"tag": "p",
"text": "ãã©ã³ã¹ã®å²åŠè
ãµã«ãã«ã¯ã人éã¯èªç±ã®åã«åŠããããŠããããšè¡šçŸãããèªç±ã«ã¯æå§ããã®èªç±ãšäººæ ŒãšããŠã®èªç±ãããããã€ãã®å²åŠè
ã«ã³ãã¯äººæ Œã®å°å³ã瀺ãããã¢ã¡ãªã«ã®ç€ŸäŒåŠè
ãªãŒã¹ãã³ã¯ä»äººæååã¯ãã¡ã·ãºã ã«ã€ãªãããšèŠåããããã€ãã®ç€ŸäŒåŠè
ã¢ãã«ãã¯æš©åšäž»çŸ©çããŒãœããªãã£ãæå±ããããæ°äž»äž»çŸ©çããŒãœããªãã£ããããå¿
èŠãããã ããã",
"title": "çŸä»£ã®ç€ŸäŒãšäººéãšããŠã®åšãæ¹çãæ¹"
},
{
"paragraph_id": 54,
"tag": "p",
"text": "",
"title": "çŸä»£ã®ç€ŸäŒãšäººéãšããŠã®åšãæ¹çãæ¹"
},
{
"paragraph_id": 55,
"tag": "p",
"text": "åœé£ã§ã¯äžç人暩宣èšãæ¡æããããåœé人暩èŠçŽã®ããšèŠçŽäººæš©å§å¡äŒãèšç«ããã¢ãã«ããã€ãã®å»æ¢ã«è²¢ç®ããã",
"title": "çŸä»£ã®ç€ŸäŒãšäººéãšããŠã®åšãæ¹çãæ¹"
},
{
"paragraph_id": 56,
"tag": "p",
"text": "䞻暩åœå®¶ã¯å€äº€ãåœéæ¿æ²»ããããªããåœéäžè«ãç¡èŠã§ããªãã",
"title": "çŸä»£ã®ç€ŸäŒãšäººéãšããŠã®åšãæ¹çãæ¹"
},
{
"paragraph_id": 57,
"tag": "p",
"text": "第1次åœé£æµ·æŽæ³äŒè°ã§å€§éžæ£å¶åºŠãå®ããããã第3次åœé£æµ·æŽæ³äŒè°ã§ã¯æä»ççµæžæ°Žåãå®ããããã",
"title": "çŸä»£ã®ç€ŸäŒãšäººéãšããŠã®åšãæ¹çãæ¹"
},
{
"paragraph_id": 58,
"tag": "p",
"text": "éºäŒçã«å
±éã®ç¹åŸŽãæã€äººã
ã®éå£ã®ããšã人皮ãšãããæåãå
±æãã人ã
ã®éå£ã®ããšãæ°æãšãããåœéå
äœæ°å¹Žã延é·ããäžçå
äœæ°åœé10ã幎ã«ãªã£ãã",
"title": "çŸä»£ã®ç€ŸäŒãšäººéãšããŠã®åšãæ¹çãæ¹"
},
{
"paragraph_id": 59,
"tag": "p",
"text": "第äºçŠç«äžžä»¥éããã°ãŠã©ãã·ã¥äŒè°ãéšåçæ žå®éšçŠæ¢æ¡çŽãNPTãSALTãINFå
šå»æ¡çŽãSTARTãSTARTIIãCTBTãªã©ãæ¡æãããã",
"title": "çŸä»£ã®ç€ŸäŒãšäººéãšããŠã®åšãæ¹çãæ¹"
},
{
"paragraph_id": 60,
"tag": "p",
"text": "å¢ååè¡¡æ¿çã¯éå£å®å
šä¿éã«ãªã£ãããµã³ãã©ã³ã·ã¹ã³å¹³åæ¡çŽãšåæã«æ¥ç±³å®å
šä¿éæ¡çŽãç· çµãããããã®ãšãèŠå¯äºåéã¯ä¿å®éã«ãªã£ãããã®åŸå®ä¿å察éäºãæŒãåã£ãŠæ¥ç±³çžäºååããã³å®å
šä¿éæ¡çŽã«ãªã£ãããããŠå®ä¿åå®çŸ©ã®ããšæ¥ç±³å®ä¿å
±å宣èšã«ãªããæ°ã¬ã€ãã©ã€ã³æ³ã«ãªããåšèŸºäºæ
æ³ã«ãªã£ãã",
"title": "çŸä»£ã®ç€ŸäŒãšäººéãšããŠã®åšãæ¹çãæ¹"
},
{
"paragraph_id": 61,
"tag": "p",
"text": "è³æ¬äž»çŸ©ãèé£ç£ã®çµæžã§ã瀟äŒäž»çŸ©ãèé£ç£ã®çµæžã§ãããæ žææ¢åã«ããææã®åè¡¡ãããããããããã¥ãŒãå±æ©ä»¥éãå¹³åå
±åæ¿çãå€æ¥µåã®æµãã®ãªããã«ã¿äŒè«ã«ãã£ãŠå·æŠãçµçµããããŽã«ããã§ãæ¿æš©ã¯ãã¬ã¹ããã€ã«ããããªã£ããäžåœã¯æ¹é©ã»éæŸæ¿çããããªãã瀟äŒäž»çŸ©åžå Žçµæžã«ãªã£ãã",
"title": "çŸä»£ã®ç€ŸäŒãšäººéãšããŠã®åšãæ¹çãæ¹"
},
{
"paragraph_id": 62,
"tag": "p",
"text": "MOSSåè°ãG5ããã©ã¶åæãæ¥ç±³æ§é åè°ãšäº€æžããããªãããŠããã è¿å¹Žã§ã¯2002幎ã«ã·ã³ã¬ããŒã«ãšFTA(èªç±è²¿æåå®)ãçµãã ã",
"title": "çŸä»£ã®ç€ŸäŒãšäººéãšããŠã®åšãæ¹çãæ¹"
},
{
"paragraph_id": 63,
"tag": "p",
"text": "ååçã«å€ãå
é²åœãšãååçã«å€ãçºå±éäžåœãšã®çµæžæ Œå·®ã®ããšããåååé¡ãšãããååçã®åœã§ã¯çŽ¯ç©åµååé¡ãã¢ãã«ã«ãã£ãŒãäžæ¬¡ç£åãªã©ã®åé¡ãæ±ããŠããããšãå€ããããããååçã®åœã®äžã§ããããã«ç³æ²¹ãç£åºã§ãããã©ãããšããçµæžæ Œå·®ããããååçã©ããã®çµæžæ Œå·®ã§ããåååé¡ãããã",
"title": "çŸä»£ã®ç€ŸäŒãšäººéãšããŠã®åšãæ¹çãæ¹"
}
] | å°åŠæ ¡ã»äžåŠæ ¡ã»é«çåŠæ ¡ã®åŠç¿ > é«çåŠæ ¡ã®åŠç¿ > é«çåŠæ ¡çŸä»£ç€ŸäŒ é«çåŠæ ¡ãå
¬æ°ãã®ç§ç®ã®äžã€ãçŸä»£çãªèª²é¡ã«çãããã®ãšããŠç»å Žããåœåã¯å¿
ä¿®ç§ç®ã ã£ã[ïŒïŒïŒïŒå¹ŽãŸã§]ãçŸåšã¯ãå«çããæ¿æ²»çµæžããšã®éžæå¿
ä¿®ãïŒïŒïŒïŒå¹Žä»¥éæç§æžã§ã¯ãã®ç§ç®ã®å称ããå
Œ
±ãã«å€æŽã«ãªã£ãŠããŸãã | <small> [[å°åŠæ ¡ã»äžåŠæ ¡ã»é«çåŠæ ¡ã®åŠç¿]] > [[é«çåŠæ ¡ã®åŠç¿]] > é«çåŠæ ¡çŸä»£ç€ŸäŒ </small>
[[w:é«çåŠæ ¡|é«çåŠæ ¡]]ã[[w:å
¬æ°|å
¬æ°]]ãã®ç§ç®ã®äžã€ã[[w:çŸä»£|çŸä»£]]çãª[[w:課é¡|課é¡]]ã«çãããã®ãšããŠç»å Žããåœåã¯[[w:å¿
ä¿®ç§ç®|å¿
ä¿®ç§ç®]]ã ã£ã[ïŒïŒïŒïŒå¹ŽãŸã§]ãçŸåšã¯ã[[é«çåŠæ ¡å«ç|å«ç]]ãã[[é«çåŠæ ¡æ¿æ²»çµæž|æ¿æ²»çµæž]]ããšã®[[w:éžæå¿
ä¿®|éžæå¿
ä¿®]]ãïŒïŒïŒïŒå¹Žä»¥éæç§æžã§ã¯ãã®ç§ç®ã®å称ãã[[é«çåŠæ ¡å
Œ
±|å
Œ
±]]ãã«å€æŽã«ãªã£ãŠããŸãã
== æäºçšèªããªãã©ã·ãŒãªã© ==
ïŒâ» æ€å®æç§æžã«ãŠèšè¿°ãããããšã確èªïŒ
:æµåœæš©ãä¿èšŒäººãé£åž¯ä¿èšŒäººã â» åç
§ããâã[[é«çåŠæ ¡åæ¥ çµæžæŽ»åãšæ³/ä¿èšŒäººå¶åºŠ]]ã
:匷è¡æ³èŠãšä»»ææ³èŠ â» åç
§ããâ[[é«çåŠæ ¡åæ¥ çµæžæŽ»åãšæ³/æ³ã®åé¡]]ïŒåŒ·è¡æ³èŠãšä»»ææ³èŠãäžè¬æ³ãšç¹å¥æ³ãå
¬æ³ãšç§æ³ããªã©ïŒ
::äžè¬æ³ãšç¹å¥æ³
:ç§æ³ãå
¬æ³ã瀟äŒæ³
:ç©æš©ãåµæš©ãåµåã â» åç
§ããâã[[é«çåŠæ ¡åæ¥ çµæžæŽ»åãšæ³/æ
ä¿]]ãã[[é«çåŠæ ¡åæ¥ çµæžæŽ»åãšæ³/åµåäžå±¥è¡]]ã
::ãé«çåŠæ ¡åæ¥ çµæžæŽ»åãšæ³/æ³äººã
::
:èäœè
äººæ Œæš© ã[[é«çåŠæ ¡æ
å ± 瀟äŒãšæ
å ±/æ
å ±ç€ŸäŒã«ãããæš©å©ãšçŸ©å]]ã
:èäœé£æ¥æš©
:ç¥ç財ç£æš©
:ç£æ¥è²¡ç£æš©
:ããžã¿ã«ã»ããã€ã
:ãµã€ããŒç¯çœª
:ãœãŒã·ã£ã«ã¡ãã£ã¢
:å°±è·æ°·æ²³æ - 1993幎ã2003幎ã®å°±è·ç¶æ³ã¯ãã³ãããåœæã¯ãå°±è·æ°·æ²³æããšèšããããå°±è·æ°·æ²³æã«åæ¥ããåŽåè
ã®çµå©ãªã©ãé
ããŠãããä»åŸã瀟äŒåé¡ã«ããå¯èœæ§ãããã
:倧åŠ3幎ããã®å°±è·æŽ»å
:ã€ã³ã¿ãŒã³ã·ãã
:ã¯ãŒãã³ã°ã»ã㢠- ãŸããã«åããŠãåå
¥ãå°ãªããŠãç掻ãããã®ã倧å€ãªäººãå¢ããŠããããã®ãããªäººã
ãã¯ãŒãã³ã°ãã¢ãšããããªãã«ã¯ãç掻ä¿è·è²»æªæºã®äººãããã
:ã¢ãããæ ªäž» -
:ã³ã³ãã©ã€ã¢ã³ã¹ïŒæ³ä»€éµå®ïŒ -
:MïŒAãTOB -
:ããã¿ãªãºã - ããªãŒããã³ã®
:ã¢ãããã¯ã¹ - 2012幎ã®ç¬¬2次å®åæ¿æš©ã®çµæžæ¿çããã¢ãããšããšã³ããã¯ã¹ããçµã¿åãããé èªã
:ãæ¶ãã幎éãåé¡ -
:èšçåæ žå®éš -
:ãããŒã«ïŒã·ã¥ãŒãã³
:ã²ãã€ãæŽå©
:ãã€ã¯ãã¯ã¬ãžãããã°ã©ãã³éè¡
:ã·ã¥ã³ããŒã¿ãŒ -
:æ°çæè¡ãšè»äºæè¡
:åžäžéè¡
:åœé決æžéè¡(BIS)
:BISèŠå¶
:2010幎ã®æ¯èéè¡ã®ç Žç¶»
:ã¡ã¬ãã³ã¯ -
::äžåéè¡âUFJããŒã«ãã£ã³ã°ã¹
::äžè± â äžè±æ±äº¬ãã£ãã³ã·ã£ã«ã°ã«ãŒã â ïŒUFJãšå䜵ããŠïŒäžè±æ±äº¬UFJãã£ãã³ã·ã£ã«ã°ã«ãŒã
::第äžå§éãšå¯å£«éè¡ãå䜵ããŠãã¿ãã»ãã£ãã³ã·ã£ã«ã°ã«ãŒããã«ã
::äžäºãšäœåã®éè¡ãå䜵ããŠãäžäºäœåãã£ãã³ã·ã£ã«ã°ã«ãŒããã«ã
:ã貞ãæžããã貞ãã¯ããã
:åå
±ã®é²å£
:äœæ°åºæ¬å°åž³ãããã¯ãŒã¯
ããã«é¢ä¿
:åå°ç¥è©±ã財ãã¯
:åå°åºæ¬æ³ãå°äŸ¡çšãäžåç£ç·éèŠå¶
ããã¬å¯Ÿç
:ãŒãéå©æ¿çãéçç·©åæ¿ç
:ãªãŒãã³ã»ãã©ã¶ãŒãº - ã¢ã¡ãªã«ã®å€§ææè³éè¡
:倧èŠæš¡å°å£²åºèæ³ãæ¥ç±³æ§é åè°
:倧èŠæš¡å°å£²åºèç«å°æ³
:ã·ã£ãã¿ãŒéã
:äžå°äŒæ¥ã®ãç³»ååã
:éçéèœ
:ãã¬ãŒãµããªãã£ïŒèŸ²æ¥ãé£åïŒ
:ãã€ãã¯æ±æ
:ç°å¢ãã«ã¢ã³
:ãã€ãªãã·ã³
:ã¢ã¹ãã¹ã
:
:ã¢ã«ãŠã³ã¿ããªãã£
:ãã£ãŒãã£ã¹ãéå
:ãã«ãžã§ã¢ãšããã¬ã¿ãªã¢ãŒã
:倧æ¥æ¬ç£æ¥å ±åœäŒ
:
:ãŠãããŒãµã«ãã¶ã€ã³
:ä¿å¥æ
:ãªã€ã«ãããŒ
:ãããžãã¡ã³ã
:èåšæäŸææ衚瀺ã«ãŒã
:èåšç§»æ€æ³
:è³æ»å€å®
:ãªãã³ã°ïŒãŠã£ã«
:代çæ¯
:
:ãªãããã¯ãã£ãã»ãã«ã¹
:
:ã€ã³ãã©ãŒã ãã»ã³ã³ã»ã³ã
:ãã¿ãŒããªãºã
:
:ç·©åã±ã¢
:å®æ¥œæ»
:ã¯ãªãªãã£ã»ãªãã»ã©ã€ã
:
:
:ãã¯ã«ãŒãã³
:
:ã¬ã€ãã§ã«ã»ã«ãŒãœã³ãæ²é»ã®æ¥ã
:ããŒã«ãã£ã³ã°ããå®å®è¹å°çå·ã
:ããŒãã¯ã©ããæé·ã®éç
:京éœã¡ã«ããºã
:ç°å¢ãã«ã¢ã³
:æåºæš©ååŒ
:ççŽ çš
:èªåè»ãªãµã€ã¯ã«æ³
:家é»ãªãµã€ã¯ã«æ³
:容åšå
è£
ãªãµã€ã¯ã«æ³
:è³æºæå¹å©çšä¿é²æ³
:ã°ãªãŒã³è³Œå
¥æ³
:
:çœé³¥æ±ºå®
:äžå³¶ç±çŽå€«ã宎ã®ããšãäºä»¶
:
:æ¿æ²»çç¡é¢å¿ïŒã¢ãã·ãŒïŒ
:ãªã³ããºãã³
:
:æ»ã®å人ãè»ç£è€åäœ
:
:ç·æ¹è²åïŒåœé£é£æ°é«çåŒåå®äºåæãïŒ
:ç³æ©æ¹å±±ãå°æ¥æ¬äž»çŸ©ã
:ããŒã¿ã³ã®çŸå®
:
:
:ä¹æ°å¹æ
:ãæè³ãæè³ãåŒã¶ã
:
:éäžåœã®çŽ¯ç©åµååé¡
:
== çŸä»£ã«çããç§ãã¡ã®èª²é¡ ==
=== å°çç°å¢åé¡ ===
å°çç°å¢åé¡ã¯äžè¬ã«ç¥ãããŠããããã¯ããã«æ·±å»ã§ããããªãŸã³å±€ç Žå£ã«ããç®èããã®æ¥æ¿ãªå¢å ãã{{èŠåºå
žç¯å²|äœç©ã®çŽ«å€ç·é害ãå§ãŸã£ãŠããã|date=2014幎4æ}}ã{{èŠåºå
žç¯å²|40幎åŸã«ã¯ãäžçãã森æããªããªãç æŒ åãããšããããŠããã|date=2014幎4æ}}ã{{èŠåºå
žç¯å²|å°é¢šãå¶æŽåã|date=2014幎4æ}}ãå°çæž©æåã®åœ±é¿ãå®éã«æããããããã«ãªã£ããã{{èŠåºå
žç¯å²|21äžçŽäžã«å°çã®å¹³åæ°æž©ã5ïœ6床äžæã|date=2014幎4æ}}çæ
ç³»ã«å£æ»
çãªè¢«å®³ãäžããããããããã®ãªãå°çãã®ããŒãã®å
ãåœé£äººéç°å¢äŒè°ãéå¬ããã人éç°å¢å®£èšãããããUNEPïŒåœé£ç°å¢èšç»ïŒãèšç«ããããããããããåŒãç¶ããæç¶å¯èœãªçºå±ãã®å
ãå°çãµããããéããããçŽ8000ãã®NGOãåå ããæ°åå€åæ çµæ¡çŽãã¢ãžã§ã³ã21ãæ¡æããããç°å¢NGOã«ãã£ãŠèªç¶ä¿è·éåããã·ã§ãã«ãã©ã¹ãéåããããªãããŠããããã®çµæã¯äžçéºç£æ¡çŽãã©ã ãµãŒã«æ¡çŽã«ç»é²ãããããšã«ãã£ãŠãããããŠããã
=== è³æºã»ãšãã«ã®ãŒåé¡ ===
ç³æ²¹ã®ç¢ºèªåèµéããã{{èŠåºå
žç¯å²|ç³æ²¹ã¯ããš20幎ã§ãªããªãã|date=2014幎4æ}}ã第1次ç³æ²¹å±æ©ã第2次ç³æ²¹å±æ©ã¯ç³æ²¹ã¡ãžã£ãŒãšOPECïŒãªããã¯ïŒ,OAPECïŒãªã¢ããã¯ïŒãšã®å¯Ÿç«ã«ãã£ãŠèµ·ãã£ãã
ãªããOPECãšã¯ç³æ²¹èŒžåºåœæ©æ§ïŒOrganization of the Petroleum Exporting CountriesïŒã®ç¥ç§°ãOAPECãšã¯ã¢ã©ãç³æ²¹èŒžåºåœæ©æ§ïŒOrganization of Arab Petroleum Exporting CountriesïŒã®ç¥ç§°ã
åååã¯ãã¹ãªãŒãã€ã«å³¶ã§ã®åååçºé»æã®äºæ
ãããã§ã«ããã€ãªåååçºé»æã§ã®äºæ
ãçŠå³¶ç¬¬äžåååçºé»æäºæ
ããŸã䜿çšæžã¿æ žçæã®æçµåŠåå°ã®åé¡ãååçã®ç¹æ€æã®æŸå°ç·è¢«ã°ãã䌎ãäœæ¥ãååç匟ã®åææãšãªããã«ãããŠã ãçæãããåé¡ãªã©ãæ§ã
ãªåé¡ç¹ãããå©çšã«æ¹å€çãªæèŠãããã
ãã€ãã¯ã2000幎6æã«æ¿åºãšé»åäŒç€Ÿããã¹ãŠã®åååçºé»æãå»æ¢ããããšãåæãã2011幎ã«è±åçºã決å®ããã
ã¹ã€ã¹ã¯ã2011幎5æã«ãè±åçºãã2034幎ãŸã§ã«å®çŸããããšã決å®ããã
ã€ã¿ãªã¢ã¯ãåååçºé»æãèšçœ®ããŠããªãã
æ¥æ¬ãäžåœãã¢ã¡ãªã«ã¯äžçã®æµãã«éè¡ããŠããããœãããšãã«ã®ãŒãã³ãŒãžã§ãã¬ãŒã·ã§ã³ã泚ç®ãããŠããããéçºã«åç³çæããã®ä»è³æºãå€éã«äœ¿ãããŠããããšããã{{èŠåºå
žç¯å²|倧ããªåé¡ã«ãªã£ãŠããã|date=2014幎4æ}}
=== ç§åŠæè¡ã®çºéãšçåœã®åé¡ ===
ã€ã³ã¿ãŒãããããã€ãã¯ãå®çãããå»åŠã®çºéã«ãã£ãŠæ»ã®å®çŸ©ãå¿èæ»ãè³å¹¹æ»ãè³æ»ã®3ã€ã«ãªã£ãããèåšç§»æ€ãåé¡ã«ãªã£ãŠããã
=== æ¥åžžç掻ãšå®æãèžè¡ãšã®ãããã ===
==== äžå€§å®æ ====
*ããªã¹ãæ
äžæ±ã«ããããŠãã€æ°æã®ããã ã§ã¯ãã€ããŠã§ãæé«ç¥ãšãããŠãã€æãä¿¡ããããŠããã
ãŠãã€äººã§ãã£ãã€ãšã¹ã»ããªã¹ãã¯é£äººæãšå
šäžçã®æãããšããåŒåãã¡ã«ãã£ãŠã²ããããããããªã¹ãæã®å®æŽŸã«ã¯ã«ããªãã¯ããããã¹ã¿ã³ããæ£æäŒãªã©ãããã瀟äŒåŠè
ã®ãŠã§ãŒããŒã¯ãããã¹ã¿ã³ãã£ãºã ãšè·æ¥å«çãšãçµã³ã€ããã
*ã€ã¹ã©ã æ
ã€ã¹ã©ã æã¯ã ãã³ãããåµå§ããã¢ã©ãŒãžã®çµ¶å¯Ÿåž°äŸïŒããïŒã説ããã
*ä»æ
ä»æã¯ã¬ãŠã¿ãã»ã·ãããŒã«ã¿ãå§ããæ
æ²ãããããšã«ãã£ãŠä»éïŒãããïŒã«ãªãããšèª¬ããã
==== ãã®ä»ã®å®æãæå ====
åæïŒãã
ãããïŒã¯ååãå§ããä»çŸ©ïŒãããïŒãå±ãããç¥éïŒãããšãïŒã¯ã¢ãããºã ãšç¥éåŽæãããªããæåŠã¯ç¡åžžèŠ³ãèœã¯å¹œçãè¶éã¯ãã³ããããããŠããã
=== è±ããªç掻ãšçŠç¥ç€ŸäŒ ===
瀟äŒä¿éã¯ãã¥ãŒãã£ãŒã«æ¿çã«ããã瀟äŒä¿éæ³ãããããªããžã®ãããããããå¢å ŽãŸã§ãã®çŠç¥åœå®¶æ¿çãæåã§ãããæ¥æ¬ã®ç€ŸäŒä¿éã¯ã瀟äŒä¿éºãå
¬çæ¶å©ã瀟äŒçŠç¥ãå
¬è¡è¡çã®4æ¬æ±ããæãç«ã£ãŠããã瀟äŒä¿éºã¯ãå¥åº·ä¿éºã»å¹Žéã»ä»è·ä¿éºãªã©ãããªããå¥åº·ä¿éºã¯åºç€å¹Žéãåé¡ã«ãªã£ãŠããã
== çŸä»£ã®ç€ŸäŒãšäººéãšããŠã®åšãæ¹çãæ¹ ==
=== çŸä»£ã®ç€ŸäŒç掻ãšé幎 ===
==== 倧è¡å ====
æ åæåãçºéãããã¹ã³ããææ
ã«èšŽãããã瀟äŒã倧è¡ç€ŸäŒãšããã[[瀟äŒåŠ]]è
ã®ãªãŒã¹ãã³ã¯å€ç¬ãªçŸ€éã®äžã§è¿ä»£ä»¥åã¯å°å瀟äŒã®äžã§ç掻ããäŒçµ±æååã ã£ãããè¿ä»£ã§ã¯å®æãææ³ãããšã«äž»äœçãªè¡åããå
éšæååãçŸä»£ã¯ãã¹ã³ãã«åããããä»äººæååã«ãªã£ããšå€§è¡åãåæããã
==== åœéå ====
åœé瀟äŒã®çžäºäŸåã«ããããµããããéãããããç¥çæææš©ã®åœéçãªå¯Ÿå¿ããåœå
ç£æ¥ã®æµ·å€æµåºã«ããç£æ¥ã®ç©ºæŽåã®åé¡ãèµ·ãã£ãŠããã
==== ç涯ã«ãããé幎æã®æ矩ãšèªå·±åœ¢æã®èª²é¡ ====
å€ä»£ã®ãªã·ã¢ã®[[å²åŠ]]è
ã¢ãªã¹ããã¬ã¹ã¯æç¥ãšè¿°ã¹ãŠããããã¢ãµããšã³ã¹ã¯ç¥æµã®äººãšããæå³ã§ãããå€ä»£äžåœã®[[ææ³]]家ååã¯åŠã¶ããšã¯éã§ãããã¿ãªã¯ççãã®ãã®ã ãšå±ããããã©ã³ã¹é©åœã«åœ±é¿ãäžãã[[ææ³]]家ã®ã«ãœãŒã¯é幎æã¯ç¬¬äºã®èªçã§ãããšå±ãããæ¥æ¬ã®é幎ã¯å¢ç人ã§ããèè€ãæ±ããŠãããããŒãžãã«ã»ãã³ãšãããããã[[æå人é¡åŠ]]è
ã®ããŒãã¯ãµã¢ã¢ã§ã¯åäŸãã倧人ãžã®ç§»è¡ã¯ééå瀌ã«ãã£ãŠãããªãããŠããŠèè€ã¯èŠãããªãã£ããšã®èª¿æ»ãããŠããã[[å¿çåŠ]]è
ã®ãšãªã¯ãœã³ã¯é幎æã®ç¶æ
ãå¿ç瀟äŒçã¢ã©ããªã¢ã ãšåã¥ããã欲æ±äžæºã®ããšããã©ã¹ãã¬ãŒã·ã§ã³ãšãããããã解æ¶ããããšãé©å¿è¡åãšããã[[å¿çåŠ]]è
ã®ããã€ãã¯é²è¡æ©å¶ãšåŒãã ãé幎æã¯èªæãç®èŠãããåæ§ã«ã¯èœåãæ°è³ªãæ§æ Œã®3ã€ã®èŠçŽ ããããã¢ã€ãã³ãã£ãã£ã圢æãããªããšæé£çãéé£çãã¹ãã¥ãŒãã³ãã»ã¢ãã·ãŒã«ãªãããšããããã¢ã¡ãªã«ã®[[æè²åŠ]]è
ããŽã£ã¬ãŒã¹ãã¯é幎æã®çºé課é¡ãæããŠããã
==== è·æ¥ç掻ãšç€ŸäŒåå ====
女æ§å·®å¥æ€å»æ¡çŽãåããŠãæ¥æ¬ã§ã¯ç·å¥³éçšæ©äŒåçæ³ãè²å
äŒæ¥æ³ãæç«ããã
==== æ¥æ¬æ°è¡ã®æåã®ç±æ¥ ====
æ¥æ¬äººã¯ãåæ¹ç³»ãæ鮮系ãäžåœç³»ãæ±åã¢ãžã¢ç³»ãããªãã·ã¢ç³»ã®5ã€ã®æ°æã«ãã£ãŠæ§æãããŠããã
æ¥æ¬ã¯ããããã®æåã®çµçç¹ã§éçš®æåãšåŒã°ããã
決ããŠ1ã€ã®æ°æã1ã€ã®æåã§ã¯ãªããå€æ¥æåãšäŒçµ±æåã®ãµã€ã¯ã«ã¯1200幎ã§ãããæ¥æ¬ã®äŒçµ±çãªé£ç掻ã¯äžæ±äžèã§ããã
äžäžä»¥éã®æ°å®¶ã¯ç«ªç©Žäœå±
ãšé«åºäœå±
ã®åäœã§ããã
çŸä»£ã®åæã§ããæŽãçã¯æ±æžæ代ã«ãªã£ãŠå®çãããéå£ã®ãŸãšãŸãã¯å¶æã«ãªã£ãŠçŸããŠããã
ãã¬ã®æ¥ãšã±ã®æ¥ã¯äŒçµ±æåãæ¯ããŠããããã¬ã®æ¥ãšã±ã®æ¥ã®åºå¥ã¯å¹Žäžè¡äºãééå瀌ã«ãªã£ãŠçŸãããå°æ¹ã蟲æã®ããšããããšãããéœåžã®ããšããã€ã³ãšãããéœåžã®äŒçµ±ã®ããšã ãã€ã³ã¶ã ãšããã京éœã§ã¯ã¿ãã³ã®äžçãå±éãããŠããã
æ±æžæ代ã®åœåŠè
ã®è³èçæ·µïŒããã® ãŸã¶ã¡ïŒã¯ãæž
ãæãå¿ãšèª ã匷調ããã
æ¥æ¬äººã®ç€ŸäŒè¡åã«ãããŠããã¡ã§ã¯æ¬é³ã§æ¥ããå€ã§ã¯ããŠãŸãã§æ¥ããã蟲家ãåŽååãæäŸãããããšã ãã ãšããã
[[æå人é¡åŠ]]è
ã®ãããã£ã¯ãã¯èé£ç£ã¯ããã«ãã£ãŠå¯Ÿäººé¢ä¿ãæ°ã«ããæ¥ã®æåã圢æãããèé£ç£ã¯çžåŒµãã«ãã£ãŠå®æãå¿ã®ããã©ãããšãã眪ã®æåã圢æããããšè«ããã
[[瀟äŒäººé¡åŠ]]è
ã®äžæ ¹åæã¯ã蟲èæ°æã¯å€©åãªã©å
代ã®ç¥æµãçµéšã倧åã«ããã®ã§ããŠç€ŸäŒã圢æãããç©çæ°æã¯æè¡ã次ã
ã«é©æ°ããå
代ã¯ãããŠããããã®ã§ãã瀟äŒã圢æããããšè«ãããå€ä»£ã®ãªã·ã¢ã®[[å²åŠ]]è
ãœã¯ã©ãã¹ã¯äººçã§ãã£ãšã倧åãªããšã¯ããçããããšã ãšè¿°ã¹ããæ¥æ¬ã®ä»£è¡šçãªããªã¹ãæåŸã§ãã[[ææ³]]家ã®å
æéäžã¯åŸäžãžã®æ倧ã®éºç©ã¯ãåãŸããé«å°ãªç涯ãã§ãããšè¿°ã¹ãã
=== çŸä»£ã®çµæžç€ŸäŒãšçµæžæŽ»åã®åšãæ¹ ===
==== æè¡é©æ°ãšç£æ¥æ§é ã®å€å ====
ãšã¬ã¯ãããã¯ã¹ã¯ICãLSIãè¶
LSIãšæè¡é©æ°ãé²ãã§ããããã€ãã¯ãããžãŒããã€ãªãã¯ãããžãŒãçºéãããæ¥æ¬ã®å·¥æ¥ã¯ã補éãªã©ã®éåé·å€§ïŒãã
ããã ã¡ããã ãïŒãããåå°äœãªã©ã®è»œèçå°ïŒããã¯ã ãããããïŒåã®ç£æ¥ã«åãæ¿ãããç£æ¥æ§é ã®ãã€ãã¯åãèµ·ããããããã¯çµæžã®ãœããåããµãŒãã¹åãšãåŒã°ããŠããã
==== äŒæ¥ã®åã ====
äŒæ¥ã«ã¯æ ªåŒäŒç€Ÿãªã©ããããæ ªåŒäŒç€Ÿã®åºè³è
ã®è²¬ä»»ã¯æé責任ã§ãããææãšçµå¶ã®åé¢ããªãããŠããã
==== å
¬çéšéã®åœ¹å²ãšç§çš ====
æ¿åºã®çµæžæŽ»åã®ããšã財æ¿ãšããã
財æ¿ã«ã¯è³æºé
åæ©èœãæåŸåé
åæ©èœãçµæžå®å®åæ©èœãããã
*è³æºé
åæ©èœã¯å€éšäžçµæžãè£ãããã«å
Œ
±è²¡ãæäŸããã
*æåŸåé
åæ©èœã¯çŽ¯é²èª²çšããããªãããã«ãã»ã€ã³ã»ã¹ã¿ãã©ã€ã¶ãŒãšãåŒã°ããã
*çµæžå®å®åæ©èœã¯ãã£ã¹ã«ã«ããªã·ãŒãšãåŒã°ãããåœäŒã§æ³å
¥ãæ³åºãªã©ã®äºç®ã決ãããåœåµã¯ã建èšåœåµããçºè¡ã§ããªãããã«ãªã£ãŠããããä»ã¯èµ€ååœåµãçºè¡ã§ããããã«ãªã£ãŠããã
æ¿åºã家èšãäŒæ¥ã«ç©æ¥µçã«ä»å
¥ããããšã¯æ··åçµæžãä¿®æ£è³æ¬äž»çŸ©ãšåŒã°ããã
ç§çšã«ã¯æåŸãåã人ã«å¯Ÿããæ°Žå¹³çå
¬å¹³ïŒãããžããŠã ãããžãïŒãšãæåŸãéã人ã«å¯ŸããåçŽçå
¬å¹³ïŒããã¡ãããŠã ãããžãïŒãæ±ããããŠããã
çšã¯çŽæ¥çšãšéæ¥çšã«åããããšãã§ãããçŽæ¥çšã«ã¯æåŸçšãæ³äººçšãªã©ããããéæ¥çšã«ã¯æ¶è²»çšãé
çšãªã©ãããã
çŽæ¥çšãšéæ¥çšã®å²åã®ããšãçŽéæ¯çïŒã¡ãã£ãã ã²ãã€ïŒãšãããéæ¥çšã®ã»ãã倧ãããªããšåçŽçå
¬å¹³ã厩ããéé²æ§ã®åé¡ãèµ·ããã
==== éèæ©é¢ã®åã ====
æ ªåŒäŒç€Ÿãæ ªåŒã瀟åµãçºè¡ããŠèšŒåžåžå Žã§è³éã調éããããšãçŽæ¥éèãšããã
éè¡ã§è³éãåããããšãéæ¥éèãšãããéè¡ãè³éã貞ãåºãããã®äŒç€Ÿãä»ã®äŒç€Ÿã«æ¯æããä»ã®äŒç€Ÿãä»ã®éè¡ã«è³éãé ãå
¥ããããšã«ãã£ãŠé éåµé ããããªãããã
æ¥æ¬ã®äžå€®éè¡ã¯æ¥æ¬éè¡ã§ãããæ¥æ¬éè¡ã¯éè¡ã®éè¡ãæ¿åºã®éè¡ãçºåžéè¡ãšãåŒã°ãããæ¥éã®éèæ¿çã«ã¯å
¬å®æ©åæäœãé éæºåçæäœãå
¬éåžå Žæäœãããã
éèã®èªç±å以éããã«çµæžåãèµ·ãã財ãã¯ãæµè¡ã£ããããã«åŽ©å£ä»¥éã¯äœå°ïŒãã
ãããïŒãªã©ã®äžè¯åµæš©ãåé¡ãšãªã£ãã
==== éçšãšåŽååé¡ ====
éçšèª¿æŽã«ãã£ãŠæŽŸé£ç€Ÿå¡ãããŒãã¿ã€ããŒãã¢ã«ãã€ããå€åœäººåŽåè
ãå¢å ãããéåŽæ»ãè£éåŽåå¶ãåé¡ã«ãªã£ãŠãããåŽååºæ¬æš©ã«ã¯åŽåæš©ãšåŽåäžæš©ããããåŽåäžæš©ã«ã¯å£çµæš©ãå£äœäº€æžæš©ãäºè°æš©ããããåŽåäžæ³ã«ã¯åŽååºæºæ³ãåŽåçµåæ³ãåŽåé¢ä¿èª¿æŽæ³ãããã
==== å
¬å®³ã®é²æ¢ãšç°å¢ä¿å
š ====
ææ²»æã«ã¯è¶³å°Ÿé±æ¯äºä»¶ãåé¡ã«ãªã£ããåå°å
¬å®³èšŽèšã«ã¯æ°Žä¿£ç
ãæ°æœæ°Žä¿£ç
ãã€ã¿ã€ã€ã¿ã€ç
ãåæ¥åžããããããããåœã¯å
¬å®³å¯Ÿçåºæ¬æ³ãæç«ãããç°å¢åºãèšç«ãããPPP(æ±æè
è² æ
ã®ååïŒãç·éèŠå¶ãšãã£ãæ¿çããšãããŠãããè¿å¹Žã§ã¯ç°å¢åºæ¬æ³ãç°å¢ã¢ã»ã¹ã¡ã³ãæ³ãæç«ããã
=== çŸä»£ã®æ°äž»æ¿æ²»ãšæ°äž»ç€ŸäŒã®å«ç ===
==== åºæ¬ç人暩ã®ä¿éãšæ³ã®æ¯é
====
åºæ¬ç人暩ã§ã¯å
Œ
±ã®çŠç¥ãç§äººéã«ããã人暩ä¿éãåœæ°ã®äžå€§çŸ©åãå人ã®å°éãæ³ã®äžã®å¹³çãèªç±æš©ã瀟äŒæš©ãæ²ããããŠãããèªç±æš©ã«ã¯é©æ£æç¶ã䞻矩ã眪åæ³å®äž»çŸ©ãªã©ã®èº«äœã®èªç±ãšçµæžæŽ»åã®èªç±ãããããŸãåœããã³ãã®æ©é¢ã¯ãå®ææè²ãã®ä»ãããªãå®æ掻åãããŠã¯ãªããªããšæ¿æåé¢ã®ååã詳现ã«å®ããŠããã瀟äŒæš©ã¯ã¯ã€ããŒã«æ²æ³ã§æèšããããå¥åº·ã§æåçãªæäœé床ã®ç掻ãå¶ãæš©å©ã®ããšãçåæš©ãšãããææ¥èšŽèšãå æšèšŽèšã§è©±é¡ã«ãªã£ããæé«è£ã¯çåæš©ã¯ããã°ã©ã èŠå®ã ãšã®å€æãããŠãããæè²ãåããæš©å©ã¯çŸ©åæè²ã®ç¡åãå®ããŠãããæ°ãã人暩ã«ã¯ç°å¢æš©ãç¥ãæš©å©ããã©ã€ãã·ãŒã®æš©å©ããããæ
å ±å
¬éå¶åºŠã«ã¯æ
å ±å
¬éæ¡äŸãæ
å ±å
¬éæ³ãããã
==== åœæ°äž»æš©ãšè°äŒå¶æ°äž»äž»çŸ© ====
åœæ°äž»æš©ã代衚æ°äž»å¶ãšãã圢ã«ããŠããã®ãåœäŒã§ãããåœäŒã¯åœæš©ã®æé«æ©é¢ã§ãããšãšãã«å¯äžã®ç«æ³æ©é¢ã§ãããäºé¢å¶ãè¡è°é¢ã®åªè¶ãæ¡çšãããŠããããŸããå§å¡äŒå¶åºŠãåœæ¿èª¿æ»æš©ãæã£ãŠãããæ¥æ¬ã¯è°é¢å
é£å¶ãæ¡çšããŠãããè¡æ¿å§å¡äŒãªã©ããããçŸä»£ã«ãããŠã¯è¡æ¿æš©åªäœã®çŸè±¡ãèŠãããå®åæ©æ§ãžã®æ
å ±å
¬éå¶åºŠããªã³ããºãã³å¶åºŠãæ±ããããŠãããåœæ°ã¯è£å€ãåããæš©å©ãæããŠãããåžæ³æš©ã®ç¬ç«ã«ã¯è£å€å®ã®è·æš©ã®ç¬ç«ãè£å€å®ã®èº«åä¿éã匟åŸè£å€æãèŠåå¶å®æš©ãªã©ããããäžå¯©å¶ã®æåŸã«äœçœ®ããã®ãæé«è£å€æã§ãããæ²æ³ã®çªäººãšåŒã°ããŠããã
==== å¹³å䞻矩ãšæãåœã®å®å
š ====
äžæŠæ¡çŽãåœéé£åæ²ç« ã§å¹³å䞻矩ããããããŠãããæ¥æ¬åœæ²æ³ã¯æŠäºã®æŸæ£ãæŠåã®äžä¿æã亀æŠæš©ã®åŠèªãå®ããŠããå¹³å䞻矩ã®æ²æ³ã§ãããæŠåã®äžä¿æãå®ããŠããæ²æ³ã¯æ¥æ¬åœæ²æ³ãšã³ã¹ã¿ãªã«æ²æ³ã ãã§ãããèªè¡éã«ã¯ææ°çµ±å¶ã®å¶åºŠããšãããŠããŠãå
é£ç·ç倧è£ãèªè¡éã®æé«ææ®å®ã§ãããéèŠäºé
ã¯å®å
šä¿éäŒè°ã決å®ããããšã«ãªã£ãŠããã
==== äžè«åœ¢æãšæ¿æ²»åå ã®æ矩 ====
'''äžè«ã¯ãã¹ã¡ãã£ã¢ã«ãã£ãŠæäœãããã'''å§åå£äœãæ¿æ²»ã«å€§ããªåœ±é¿ãåãŒããŠãããå¶ééžæã«å¯ŸããŠæ®ééžæããããããã«ã¯æ©å¯éžæãšå¹³çéžæãå«ãŸããŠããŠãå¹³çéžæã«ã¯è°å¡å®æ°äžåè¡¡ã®åé¡ããããéžæå¶åºŠã«ã¯æ¯äŸä»£è¡šå¶ãå°éžæåºå¶ã倧éžæåºå¶ãªã©ããããæ¥æ¬ã§ã¯å°éžæåºæ¯äŸä»£è¡šäžŠç«å¶ãæ¡çšãããŠãããå°éžæåºå¶ã«ã¯æ»ç¥šãã§ããããšããæ¬ ç¹ããããæ¿å
æ¿æ²»ã«ã¯äºå€§æ¿å
å¶ãšå€å
å¶ãªã©ããããæ¥æ¬ã¯55幎äœå¶ãšããæ¿æš©äº€ä»£ããªãæ¿æ²»ãç¶ãããè¿å¹Žã¯æ¿æ²»çç¡é¢å¿ãç¡å
掟局ãåºãŸã£ãŠããã
==== æ°äž»ç€ŸäŒã®å«ç ====
ãã©ã³ã¹ã®[[å²åŠ]]è
ãµã«ãã«ã¯ã人éã¯èªç±ã®åã«åŠããããŠããããšè¡šçŸãããèªç±ã«ã¯æå§ããã®èªç±ãšäººæ ŒãšããŠã®èªç±ãããããã€ãã®[[å²åŠ]]è
ã«ã³ãã¯äººæ Œã®å°å³ã瀺ãããã¢ã¡ãªã«ã®[[瀟äŒåŠ]]è
ãªãŒã¹ãã³ã¯ä»äººæååã¯ãã¡ã·ãºã ã«ã€ãªãããšèŠåããããã€ãã®[[瀟äŒåŠ]]è
ã¢ãã«ãã¯æš©åšäž»çŸ©çããŒãœããªãã£ãæå±ããããæ°äž»äž»çŸ©çããŒãœããªãã£ããããå¿
èŠãããã ããã
=== åœé瀟äŒã®ååãšæ¥æ¬ã®æããã¹ãåœ¹å² ===
==== 人暩 ====
åœé£ã§ã¯äžç人暩宣èšãæ¡æããããåœé人暩èŠçŽã®ããšèŠçŽäººæš©å§å¡äŒãèšç«ããã¢ãã«ããã€ãã®å»æ¢ã«è²¢ç®ããã
==== åœå®¶äž»æš© ====
䞻暩åœå®¶ã¯å€äº€ãåœéæ¿æ²»ããããªããåœéäžè«ãç¡èŠã§ããªãã
==== é åã«é¢ããåœéæ³ã®æ矩 ====
第1次åœé£æµ·æŽæ³äŒè°ã§å€§éžæ£å¶åºŠãå®ããããã第3次åœé£æµ·æŽæ³äŒè°ã§ã¯æä»ççµæžæ°Žåãå®ããããã
==== 人皮ã»æ°æåé¡ ====
éºäŒçã«å
±éã®ç¹åŸŽãæã€äººã
ã®éå£ã®ããšã人皮ãšãããæåãå
±æãã人ã
ã®éå£ã®ããšãæ°æãšãããåœéå
äœæ°å¹Žã延é·ããäžçå
äœæ°åœé10ã幎ã«ãªã£ãã
==== æ žå
µåšãšè»çž®åé¡ ====
第äºçŠç«äžžä»¥éããã°ãŠã©ãã·ã¥äŒè°ãéšåçæ žå®éšçŠæ¢æ¡çŽãNPTãSALTãINFå
šå»æ¡çŽãSTARTãSTARTâ
¡ãCTBTãªã©ãæ¡æãããã
==== æãåœã®å®å
šä¿éãšé²è¡ ====
å¢ååè¡¡æ¿çã¯éå£å®å
šä¿éã«ãªã£ãããµã³ãã©ã³ã·ã¹ã³å¹³åæ¡çŽãšåæã«æ¥ç±³å®å
šä¿éæ¡çŽãç· çµãããããã®ãšãèŠå¯äºåéã¯ä¿å®éã«ãªã£ãããã®åŸå®ä¿å察éäºãæŒãåã£ãŠæ¥ç±³çžäºååããã³å®å
šä¿éæ¡çŽã«ãªã£ãããããŠå®ä¿åå®çŸ©ã®ããšæ¥ç±³å®ä¿å
±å宣èšã«ãªããæ°ã¬ã€ãã©ã€ã³æ³ã«ãªããåšèŸºäºæ
æ³ã«ãªã£ãã
==== è³æ¬äž»çŸ©çµæžãšç€ŸäŒäž»çŸ©çµæžã®å€å®¹ ====
è³æ¬äž»çŸ©ãèé£ç£ã®çµæžã§ã瀟äŒäž»çŸ©ãèé£ç£ã®çµæžã§ãããæ žææ¢åã«ããææã®åè¡¡ãããããããããã¥ãŒãå±æ©ä»¥éãå¹³åå
±åæ¿çãå€æ¥µåã®æµãã®ãªããã«ã¿äŒè«ã«ãã£ãŠå·æŠãçµçµããããŽã«ããã§ãæ¿æš©ã¯ãã¬ã¹ããã€ã«ããããªã£ããäžåœã¯æ¹é©ã»éæŸæ¿çããããªãã瀟äŒäž»çŸ©åžå Žçµæžã«ãªã£ãã
==== 貿æã®æ¡å€§ãšçµæžæ©æŠ ====
MOSSåè°ãG5ããã©ã¶åæãæ¥ç±³æ§é åè°ãšäº€æžããããªãããŠããã
è¿å¹Žã§ã¯2002幎ã«ã·ã³ã¬ããŒã«ãšFTAïŒèªç±è²¿æåå®ïŒãçµãã ã
==== åååé¡ ====
ååçã«å€ãå
é²åœãšãååçã«å€ãçºå±éäžåœãšã®çµæžæ Œå·®ã®ããšããåååé¡ãšãããååçã®åœã§ã¯çŽ¯ç©åµååé¡ãã¢ãã«ã«ãã£ãŒãäžæ¬¡ç£åãªã©ã®åé¡ãæ±ããŠããããšãå€ããããããååçã®åœã®äžã§ããããã«ç³æ²¹ãç£åºã§ãããã©ãããšããçµæžæ Œå·®ããããååçã©ããã®çµæžæ Œå·®ã§ããåååé¡ãããã
== å€éšãªã³ã¯ ==
[http://www.newskentei.jp/ æ¥æ¬ãã¥ãŒã¹æäºèœåæ€å®åäŒ]
[[Category:é«çåŠæ ¡æè²|ãããããããã]]
[[Category:瀟äŒç§æè²|é«ãããããããã]] | null | 2022-09-10T21:00:03Z | [
"ãã³ãã¬ãŒã:èŠåºå
žç¯å²"
] | https://ja.wikibooks.org/wiki/%E9%AB%98%E7%AD%89%E5%AD%A6%E6%A0%A1%E7%8F%BE%E4%BB%A3%E7%A4%BE%E4%BC%9A |
1,646 | OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXã¡ãã¥ãŒ ãã©ãŒããã (Format) | OsiriX ãªã³ã©ã€ã³è§£èª¬ææž ç®æ¬¡ > OsiriXã¡ãã¥ãŒ ãã©ãŒããã
ãããéžæãããšã以äžã®ãããªãŠã€ã³ããŠã衚瀺ãããŸããããŒã«ããŒã«ã¢ã€ã³ã³ããã©ãã°ã»ããããããããšã§ãããŒã«ããŒã®å€èŠ³ãå€æŽã§ããŸãã
ãããéžæãããšã以äžã®ãŠã€ã³ããŠã衚瀺ãããŸãããã©ã³ãã®åçš®èšå®ãå€æŽã§ããŸãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "OsiriX ãªã³ã©ã€ã³è§£èª¬ææž ç®æ¬¡ > OsiriXã¡ãã¥ãŒ ãã©ãŒããã",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ãããéžæãããšã以äžã®ãããªãŠã€ã³ããŠã衚瀺ãããŸããããŒã«ããŒã«ã¢ã€ã³ã³ããã©ãã°ã»ããããããããšã§ãããŒã«ããŒã®å€èŠ³ãå€æŽã§ããŸãã",
"title": "Customize Toolbar (ããŒã«ããŒãã«ã¹ã¿ãã€ãºãã...)"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "",
"title": "Customize Toolbar (ããŒã«ããŒãã«ã¹ã¿ãã€ãºãã...)"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ãããéžæãããšã以äžã®ãŠã€ã³ããŠã衚瀺ãããŸãããã©ã³ãã®åçš®èšå®ãå€æŽã§ããŸãã",
"title": "Font (ãã©ã³ã)"
}
] | OsiriX ãªã³ã©ã€ã³è§£èª¬ææž ç®æ¬¡ > OsiriXã¡ãã¥ãŒ ãã©ãŒããã | [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|OsiriX ãªã³ã©ã€ã³è§£èª¬ææž ç®æ¬¡]] > [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXã¡ãã¥ãŒ ãã©ãŒããã (Format)|OsiriXã¡ãã¥ãŒ ãã©ãŒããã]]
----
== Customize Toolbar (ããŒã«ããŒãã«ã¹ã¿ãã€ãºãã...) ==
ãããéžæãããšã以äžã®ãããªãŠã€ã³ããŠã衚瀺ãããŸããããŒã«ããŒã«ã¢ã€ã³ã³ããã©ãã°ã»ããããããããšã§ãããŒã«ããŒã®å€èŠ³ãå€æŽã§ããŸãã
<center>[[ç»å:OsiriXCustomizeTB.jpg]]</center>
== Font (ãã©ã³ã) ==
ãããéžæãããšã以äžã®ãŠã€ã³ããŠã衚瀺ãããŸãããã©ã³ãã®åçš®èšå®ãå€æŽã§ããŸãã
<center>[[ç»å:OsiriXFormatFont.jpg]]</center>
----
[[en:Online OsiriX Documentation/OsiriX Format Menu]]
[[Category:OsiriX|ãã«ã ãµãããŸã€ãš]] | null | 2015-08-28T12:09:00Z | [] | https://ja.wikibooks.org/wiki/OsiriX_%E3%82%AA%E3%83%B3%E3%83%A9%E3%82%A4%E3%83%B3%E8%A7%A3%E8%AA%AC%E6%96%87%E6%9B%B8/OsiriX%E3%83%A1%E3%83%8B%E3%83%A5%E3%83%BC_%E3%83%95%E3%82%A9%E3%83%BC%E3%83%9E%E3%83%83%E3%83%88_(Format) |
1,647 | OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXã¡ãã¥ãŒ ãã«ã (Help) | OsiriX ãªã³ã©ã€ã³è§£èª¬ææž ç®æ¬¡ > OsiriXã¡ãã¥ãŒ ãã«ã
ãããéžæãããšã以äžã®è¡šç€ºã®ããã«ãããã©ã«ãã®ã¡ãŒã«ãœãããéããŠãOsiriX ãã£ãããããŒããŒã å®ã®æ°èŠã¡ãŒã«äœæãŠã€ã³ããŠãéããŸãã:
ãããéžæãããšãããã©ã«ãã®ãŠãšããã©ãŠã¶ã§OsiriX ã®ããŒã ããŒãžã衚瀺ãããŸãã:
ãããéžæãããšãããã©ã«ãã®ãŠãšããã©ãŠã¶ã§OsiriX Discussion Group ã®ãµã€ãã衚瀺ãããŸãã:
.
ãããéžæãããšãPreview ã§Osirix Quick Manual ã衚瀺ãããŸãã
ãããéžæãããšãããã©ã«ãã®ãŠãšããã©ãŠã¶ã§OsiriX Online Documentation ã®ãµã€ãã衚瀺ãããŸãã: | [
{
"paragraph_id": 0,
"tag": "p",
"text": "OsiriX ãªã³ã©ã€ã³è§£èª¬ææž ç®æ¬¡ > OsiriXã¡ãã¥ãŒ ãã«ã",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ãããéžæãããšã以äžã®è¡šç€ºã®ããã«ãããã©ã«ãã®ã¡ãŒã«ãœãããéããŠãOsiriX ãã£ãããããŒããŒã å®ã®æ°èŠã¡ãŒã«äœæãŠã€ã³ããŠãéããŸãã:",
"title": "OsiriX Email"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ãããéžæãããšãããã©ã«ãã®ãŠãšããã©ãŠã¶ã§OsiriX ã®ããŒã ããŒãžã衚瀺ãããŸãã:",
"title": "OsiriX Webpage"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ãããéžæãããšãããã©ã«ãã®ãŠãšããã©ãŠã¶ã§OsiriX Discussion Group ã®ãµã€ãã衚瀺ãããŸãã:",
"title": "OsiriX Discussion Group"
},
{
"paragraph_id": 4,
"tag": "p",
"text": ".",
"title": "OsiriX Discussion Group"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ãããéžæãããšãPreview ã§Osirix Quick Manual ã衚瀺ãããŸãã",
"title": "OsiriX Help"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ãããéžæãããšãããã©ã«ãã®ãŠãšããã©ãŠã¶ã§OsiriX Online Documentation ã®ãµã€ãã衚瀺ãããŸãã:",
"title": "OsiriX Online Documentation"
}
] | OsiriX ãªã³ã©ã€ã³è§£èª¬ææž ç®æ¬¡ > OsiriXã¡ãã¥ãŒ ãã«ã | [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|OsiriX ãªã³ã©ã€ã³è§£èª¬ææž ç®æ¬¡]] > [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXã¡ãã¥ãŒ_ãã«ã _(Help)|OsiriXã¡ãã¥ãŒ ãã«ã]]
----
==OsiriX Email==
ãããéžæãããšã以äžã®è¡šç€ºã®ããã«ãããã©ã«ãã®ã¡ãŒã«ãœãããéããŠãOsiriX ãã£ãããããŒããŒã å®ã®æ°èŠã¡ãŒã«äœæãŠã€ã³ããŠãéããŸãã:
<center>[[ç»å:OsirixEmailSS2.jpg]]<br>
''ã¢ã³ãã©ãŒãžã¥ã®OsiriX ãã£ãããããŒå®ã¡ãŒã«äœæãŠã€ã³ããŠãéãããšãã''</center>
==OsiriX Webpage==
ãããéžæãããšãããã©ã«ãã®ãŠãšããã©ãŠã¶ã§OsiriX ã®ããŒã ããŒãžã衚瀺ãããŸãã:
<center> http://www.osirix-viewer.com/</center>
==OsiriX Discussion Group==
ãããéžæãããšãããã©ã«ãã®ãŠãšããã©ãŠã¶ã§OsiriX Discussion Group ã®ãµã€ãã衚瀺ãããŸãã:
<center>http://groups.yahoo.com/group/osirix/</center>.
==OsiriX Help==
ãããéžæãããšãPreview ã§Osirix Quick Manual ã衚瀺ãããŸãã
==OsiriX Online Documentation==
ãããéžæãããšãããã©ã«ãã®ãŠãšããã©ãŠã¶ã§OsiriX Online Documentation ã®ãµã€ãã衚瀺ãããŸãã:
<center>http://en.wikibooks.org/wiki/Online_Osirix_Documentation</center>
----
[[en:Online OsiriX Documentation/OsiriX Help Menu]]
[[Category:OsiriX|ãã«ã ãžããµ]] | null | 2015-08-28T12:09:09Z | [] | https://ja.wikibooks.org/wiki/OsiriX_%E3%82%AA%E3%83%B3%E3%83%A9%E3%82%A4%E3%83%B3%E8%A7%A3%E8%AA%AC%E6%96%87%E6%9B%B8/OsiriX%E3%83%A1%E3%83%8B%E3%83%A5%E3%83%BC_%E3%83%98%E3%83%AB%E3%83%97_(Help) |
1,648 | OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/Osirix General Preferences (äžè¬) | OsiriX ãªã³ã©ã€ã³è§£èª¬ææž ç®æ¬¡ > OsiriXã¡ãã¥ãŒ OsiriX > OsiriX ç°å¢èšå® äžè¬
ããããã§ãã¯ãããšãOsiriX ãèµ·åãããã³ã«ãæ°ããããŒãžã§ã³ã®æç¡ã確èªããŸãã
ããããã§ãã¯ãããšãã·ãªãŒãºã®ç§»åæã«ãã©ã³ãžã·ã§ã³å¹æã衚瀺ã§ããŸããçŸåšéžæã§ããå¹æã¯:
ããããã§ãã¯ãããšãææãããæ åæ©ã®ãµãŠã³ãå¹æãå³ãããŸãã
ãã¬ãŒã³æãªã©ã®å人æ
å ±ãä¿è·ãããå Žåã«æå¹ã§ãã (Ver.152 ã§ã¯ç°å¢èšå®ã®ããŒã¿ããŒã¹ã«ç§»å) | [
{
"paragraph_id": 0,
"tag": "p",
"text": "OsiriX ãªã³ã©ã€ã³è§£èª¬ææž ç®æ¬¡ > OsiriXã¡ãã¥ãŒ OsiriX > OsiriX ç°å¢èšå® äžè¬",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "",
"title": ""
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ããããã§ãã¯ãããšãOsiriX ãèµ·åãããã³ã«ãæ°ããããŒãžã§ã³ã®æç¡ã確èªããŸãã",
"title": ""
},
{
"paragraph_id": 4,
"tag": "p",
"text": "",
"title": ""
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ããããã§ãã¯ãããšãã·ãªãŒãºã®ç§»åæã«ãã©ã³ãžã·ã§ã³å¹æã衚瀺ã§ããŸããçŸåšéžæã§ããå¹æã¯:",
"title": ""
},
{
"paragraph_id": 6,
"tag": "p",
"text": "",
"title": ""
},
{
"paragraph_id": 7,
"tag": "p",
"text": "",
"title": ""
},
{
"paragraph_id": 8,
"tag": "p",
"text": "ããããã§ãã¯ãããšãææãããæ åæ©ã®ãµãŠã³ãå¹æãå³ãããŸãã",
"title": ""
},
{
"paragraph_id": 9,
"tag": "p",
"text": "",
"title": ""
},
{
"paragraph_id": 10,
"tag": "p",
"text": "ãã¬ãŒã³æãªã©ã®å人æ
å ±ãä¿è·ãããå Žåã«æå¹ã§ãã (Ver.152 ã§ã¯ç°å¢èšå®ã®ããŒã¿ããŒã¹ã«ç§»å)",
"title": ""
}
] | OsiriX ãªã³ã©ã€ã³è§£èª¬ææž ç®æ¬¡ > OsiriXã¡ãã¥ãŒ OsiriX > OsiriX ç°å¢èšå®ãäžè¬ | [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|OsiriX ãªã³ã©ã€ã³è§£èª¬ææž ç®æ¬¡]] > [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXã¡ãã¥ãŒ_OsiriX|OsiriXã¡ãã¥ãŒ OsiriX]] > [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/Osirix_General_Preferences_(äžè¬)|OsiriX ç°å¢èšå®ãäžè¬]]
----
<br>
<center>[[ç»å:OsiriXPrefsGeneral.jpg]]</center>
<br>
=== èµ·åæã«ã¢ããããŒããèªåçã«ç¢ºèªãã ===
ããããã§ãã¯ãããšãOsiriX ãèµ·åãããã³ã«ãæ°ããããŒãžã§ã³ã®æç¡ã確èªããŸãã
=== ã·ãªãŒãºå€æŽæã®ãã©ã³ãžã·ã§ã³å¹æ ===
ããããã§ãã¯ãããšãã·ãªãŒãºã®ç§»åæã«ãã©ã³ãžã·ã§ã³å¹æã衚瀺ã§ããŸããçŸåšéžæã§ããå¹æã¯:
# 枊巻ã
# ãºãŒã
# ãã§ãŒã
# ã©ã³ãã
=== JPEG DICOMs ã®èªã¿èŸŒã¿ã¯åžžã«DCMTK ãäœ¿çš ===
=== åXA ãã¬ãŒã ã«ã¯ãµãŠã³ãã鳎ãã ===
ããããã§ãã¯ãããšãææãããæ åæ©ã®ãµãŠã³ãå¹æãå³ãããŸãã
=== ããŒã¿ããŒã¹ãŠã€ã³ããŠã®è¢«éšè
æ°åãé ã ===
ãã¬ãŒã³æãªã©ã®å人æ
å ±ãä¿è·ãããå Žåã«æå¹ã§ãã (Ver.152 ã§ã¯ç°å¢èšå®ã®ããŒã¿ããŒã¹ã«ç§»å)
[[Category:OsiriX|OsiriX General Preferences ãã€ã¯ã]] | null | 2015-08-29T00:59:49Z | [] | https://ja.wikibooks.org/wiki/OsiriX_%E3%82%AA%E3%83%B3%E3%83%A9%E3%82%A4%E3%83%B3%E8%A7%A3%E8%AA%AC%E6%96%87%E6%9B%B8/Osirix_General_Preferences_(%E4%B8%80%E8%88%AC) |
1,654 | å²åŠã»ææ³ | ã¡ã€ã³ããŒãž > å²åŠã»ææ³
å²åŠãææ³ã«é¢ããæç§æžãéããæžåº«ã§ããåé²å
容ã¯ä»¥äžãã芧äžããã
| [
{
"paragraph_id": 0,
"tag": "p",
"text": "ã¡ã€ã³ããŒãž > å²åŠã»ææ³",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "å²åŠãææ³ã«é¢ããæç§æžãéããæžåº«ã§ããåé²å
容ã¯ä»¥äžãã芧äžããã",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "",
"title": ""
}
] | ã¡ã€ã³ããŒãž > å²åŠã»ææ³ å²åŠãææ³ã«é¢ããæç§æžãéããæžåº«ã§ããåé²å
容ã¯ä»¥äžãã芧äžããã | [[ã¡ã€ã³ããŒãž]] > '''å²åŠã»ææ³'''
å²åŠãææ³ã«é¢ããæç§æžãéããæžåº«ã§ããåé²å
容ã¯ä»¥äžãã芧äžããã
{| style="float:right"
|-
|{{Wikipedia|å²åŠ|å²åŠ}}
|-
|{{Wikiquote|Category:å²åŠè
|å²åŠè
}}
|-
|{{wikiversity|School:å²åŠ|å²åŠ}}
|-
|{{èµæžäžèŠ§}}
|-
|{{é²æç¶æ³}}
|}
== å²åŠã®åé ==
* å
¥éç·š
**[[é«çåŠæ ¡å«ç]]
**[[äžçã®å€§ææ³ã»å²åŠ]]
**[[æ¥æ¬ã®å€§ææ³ã»å²åŠ]]
* äŒçµ±çåŠç§
** [[å²åŠæŠè«]][[ãã¡ã€ã«:00%.svg]]å²åŠã®äžè¬çãªäºé
ã«ã€ããŠæŠèª¬ããæç§æžã§ããã
** [[è«çåŠ]]
** [[èªèè«]]
** [[圢èäžåŠ]] ãš[[ååšè«]]
** [[å«çåŠ]] ãš [[ã¡ã¿å«çåŠ]]
** [[çŸåŠ]]
* åéå¥åŠç§
** [[人éåŠ]]
**[[æŽå²å²åŠ]]
**[[æåå²åŠ]]
**[[çã®å²åŠ]]
**[[èªç¶å²åŠ]]<!--**[[æ°åŠã®å²åŠ]]æ°åŠåºç€è«ïŒ-->
**[[èšèªå²åŠ]]
**[[ç§åŠå²åŠ]]
**[[ç©çå²åŠ]]
**[[è«çåŠã®å²åŠ|è«çå²åŠ]]
**[[å¿èº«åé¡ã®å²åŠ]](å¿ã®å²åŠïŒ
**[[å®æå²åŠ]]
**[[æ¿æ²»å²åŠ]]
**[[æè²å²åŠ]]
**[[çåœå«çåŠ]]
**[[æ³å²åŠ]]
**[[瀟äŒå²åŠ]]
**[[æå³è«]]
**[[ãã€ãªããžã¿ã«è«]]
*å²åŠå²
**[[西æŽå²åŠå²]]
**[[äžåœææ³å²]]
**[[ã€ã³ãå²åŠå²]]
**[[ã€ã¹ã©ãŒã å²åŠå²]]
*[[å®æåŠ]]
**[[ä»æãšäººé]]
**[[ç¥éãšäººé]]
**[[ããªã¹ãæãšäººé]]
**ãŠãã€æãšäººé
**瀟äŒãšå®æ
**[[æåãšå®æ]]
**æ¯èŒå®æè«
*[[æ°ä¿åŠ]]
{{DEFAULTSORT:ãŠã€ããããã}}
[[Category:人æç§åŠ]]
[[Category:æžåº«]]
{{NDC|100|*}} | 2005-02-14T12:03:38Z | 2023-09-28T16:54:47Z | [
"ãã³ãã¬ãŒã:NDC",
"ãã³ãã¬ãŒã:Wikipedia",
"ãã³ãã¬ãŒã:Wikiquote",
"ãã³ãã¬ãŒã:Wikiversity",
"ãã³ãã¬ãŒã:èµæžäžèŠ§",
"ãã³ãã¬ãŒã:é²æç¶æ³"
] | https://ja.wikibooks.org/wiki/%E5%93%B2%E5%AD%A6%E3%83%BB%E6%80%9D%E6%83%B3 |
1,655 | æ¥æ¬èª/æå | æ¥æ¬èªã§äœ¿ãããæåã«ã¯ã²ãããªãšã«ã¿ã«ããšæŒ¢åããããŸãã挢åã¯äžåœããå
¥ã£ã(åçšãã)æåãã²ãããªã¯æŒ¢åãããããæåãã«ã¿ã«ãã¯æŒ¢åã®äžéšãåãåºããæåã§ããã²ãããªã¯å¹³å®æ代ã«äœãããåœæã¯å¥³æ§ã䜿ãæåãšãããŠããŸããã
ãã®ã»ãã«ããå€åœèªã®ãVããèšãå Žåã«ããŽ+å°æåã®ã¢è¡ãã䜿ãå ŽåããããŸãã(æ¥æ¬èªã®çºé³ã®è¡šèšã§ã¯ãªãããéåžžãã²ãããªã§ã¯èšè¿°ããªã) ããããã»ãšãã©ã®å Žåãè¡ã§ä»£çšãããŸãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "æ¥æ¬èªã§äœ¿ãããæåã«ã¯ã²ãããªãšã«ã¿ã«ããšæŒ¢åããããŸãã挢åã¯äžåœããå
¥ã£ã(åçšãã)æåãã²ãããªã¯æŒ¢åãããããæåãã«ã¿ã«ãã¯æŒ¢åã®äžéšãåãåºããæåã§ããã²ãããªã¯å¹³å®æ代ã«äœãããåœæã¯å¥³æ§ã䜿ãæåãšãããŠããŸããã",
"title": "䜿ãããæå"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "",
"title": "䜿ãããæå"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ãã®ã»ãã«ããå€åœèªã®ãVããèšãå Žåã«ããŽ+å°æåã®ã¢è¡ãã䜿ãå ŽåããããŸãã(æ¥æ¬èªã®çºé³ã®è¡šèšã§ã¯ãªãããéåžžãã²ãããªã§ã¯èšè¿°ããªã) ããããã»ãšãã©ã®å Žåãè¡ã§ä»£çšãããŸãã",
"title": "䜿ãããæå"
}
] | null | == '''䜿ãããæå''' ==
æ¥æ¬èªã§äœ¿ããã[[w:æå|æå]]ã«ã¯'''[[w:平仮å|ã²ãããª]]'''ãš'''[[w:çä»®å|ã«ã¿ã«ã]]'''ãš'''[[w:挢å|挢å]]'''ããããŸãã挢åã¯[[w:äžåœ|äžåœ]]ããå
¥ã£ãïŒåçšããïŒæåãã²ãããªã¯æŒ¢åãããããæåãã«ã¿ã«ãã¯æŒ¢åã®äžéšãåãåºããæåã§ãã'''ã²ãããª'''ã¯[[w:å¹³å®æ代|å¹³å®æ代]]ã«äœãããåœæã¯[[w:女æ§|女æ§]]ã䜿ãæåãšãããŠããŸããã
{| class="wikitable" style="text-align:center"
|-
! colspan="11" | [[wikt:æž
é³|æž
é³]]
||
! colspan="5" | ããŒãå転å
|-
| style="background-color:#eeffff" | [[wikt:ã|ã]]
| style="background-color:#ffeeee" | [[wikt:ã|ã]]
| style="background-color:#ffeeee" | [[wikt:ã|ã]]
| style="background-color:#ffeeee" | [[wikt:ã|ã]]
| style="background-color:#ffeeee" | [[wikt:ã|ã]]
||
| style="background-color:#eeffff" | [[wikt:ã¢|ã¢]]
| style="background-color:#ffeeee" | [[wikt:ã€|ã€]]
| style="background-color:#ffeeee" | [[wikt:ãŠ|ãŠ]]
| style="background-color:#ffeeee" | [[wikt:ãš|ãš]]
| style="background-color:#ffeeee" | [[wikt:ãª|ãª]]
||
| style="background-color:#eeffff" | [[wikt:a|a]]
| style="background-color:#ffeeee" | [[wikt:i|i]]
| style="background-color:#ffeeee" | [[wikt:u|u]]
| style="background-color:#ffeeee" | [[wikt:e|e]]
| style="background-color:#ffeeee" | [[wikt:o|o]]
|-
| style="background-color:#eeffee" | [[wikt:ã|ã]]
|| [[wikt:ã|ã]]
|| [[wikt:ã|ã]]
|| [[wikt:ã|ã]]
|| [[wikt:ã|ã]]
||
| style="background-color:#eeffee" | [[wikt:ã«|ã«]]
|| [[wikt:ã|ã]]
|| [[wikt:ã¯|ã¯]]
|| [[wikt:ã±|ã±]]
|| [[wikt:ã³|ã³]]
||
| style="background-color:#eeffee" | ka
| ki
| ku
| ke
| ko
|-
| style="background-color:#eeffee" | [[wikt:ã|ã]]
|| [[wikt:ã|ã]]
|| [[wikt:ã|ã]]
|| [[wikt:ã|ã]]
|| [[wikt:ã|ã]]
||
| style="background-color:#eeffee" | [[wikt:ãµ|ãµ]]
|| [[wikt:ã·|ã·]]
|| [[wikt:ã¹|ã¹]]
|| [[wikt:ã»|ã»]]
|| [[wikt:ãœ|ãœ]]
||
| style="background-color:#eeffee" | sa
| si (shi)
| su
| se
| so
|-
| style="background-color:#eeffee" | [[wikt:ã|ã]]
|| [[wikt:ã¡|ã¡]]
|| [[wikt:ã€|ã€]]
|| [[wikt:ãŠ|ãŠ]]
|| [[wikt:ãš|ãš]]
||
| style="background-color:#eeffee" | [[wikt:ã¿|ã¿]]
|| [[wikt:ã|ã]]
|| [[wikt:ã|ã]]
|| [[wikt:ã|ã]]
|| [[wikt:ã|ã]]
||
| style="background-color:#eeffee" | ta
| ti (chi)
| tu (tsu)
| te
| to
|-
| style="background-color:#eeffee" | [[wikt:ãª|ãª]]
|| [[wikt:ã«|ã«]]
|| [[wikt:ã¬|ã¬]]
|| [[wikt:ã|ã]]
|| [[wikt:ã®|ã®]]
||
| style="background-color:#eeffee" | [[wikt:ã|ã]]
|| [[wikt:ã|ã]]
|| [[wikt:ã|ã]]
|| [[wikt:ã|ã]]
|| [[wikt:ã|ã]]
||
| style="background-color:#eeffee" | na
| ni
| nu
| ne
| no
|-
| style="background-color:#eeffee" | [[wikt:ã¯|ã¯]]
|| [[wikt:ã²|ã²]]
|| [[wikt:ãµ|ãµ]]
|| [[wikt:ãž|ãž]]
|| [[wikt:ã»|ã»]]
||
| style="background-color:#eeffee" | [[wikt:ã|ã]]
|| [[wikt:ã|ã]]
|| [[wikt:ã|ã]]
|| [[wikt:ã|ã]]
|| [[wikt:ã|ã]]
||
| style="background-color:#eeffee" | ha
| hi
| hu (fu)
| he
| ho
|-
| style="background-color:#eeffee" | [[wikt:ãŸ|ãŸ]]
|| [[wikt:ã¿|ã¿]]
|| [[wikt:ã|ã]]
|| [[wikt:ã|ã]]
|| [[wikt:ã|ã]]
||
| style="background-color:#eeffee" | [[wikt:ã|ã]]
|| [[wikt:ã|ã]]
|| [[wikt:ã |ã ]]
|| [[wikt:ã¡|ã¡]]
|| [[wikt:ã¢|ã¢]]
||
| style="background-color:#eeffee" | ma
| mi
| mu
| me
| mo
|-
| style="background-color:#eeffee" | [[wikt:ã|ã]]
||
|| [[wikt:ã|ã]]
||
|| [[wikt:ã|ã]]
||
| style="background-color:#eeffee" | [[wikt:ã€|ã€]]
||
|| [[wikt:ãŠ|ãŠ]]
||
|| [[wikt:ãš|ãš]]
||
| style="background-color:#eeffee" | ya
|
| yu
|
| yo
|-
| style="background-color:#eeffee" | [[wikt:ã|ã]]
|| [[wikt:ã|ã]]
|| [[wikt:ã|ã]]
|| [[wikt:ã|ã]]
|| [[wikt:ã|ã]]
||
| style="background-color:#eeffee" | [[wikt:ã©|ã©]]
|| [[wikt:ãª|ãª]]
|| [[wikt:ã«|ã«]]
|| [[wikt:ã¬|ã¬]]
|| [[wikt:ã|ã]]
||
| style="background-color:#eeffee" | ra
| ri
| ru
| re
| ro
|-
| style="background-color:#eeffee" | [[wikt:ã|ã]]
|| [[wikt:ã|ã]]<sup>[[#泚æ1|*]]</sup>
||
|| [[wikt:ã|ã]]<sup>[[#泚æ1|*]]</sup>
|| [[wikt:ã|ã]]
||
| style="background-color:#eeffee" | [[wikt:ã¯|ã¯]]
|| [[wikt:ã°|ã°]]<sup>[[#泚æ1|*]]</sup>
||
|| [[wikt:ã±|ã±]]<sup>[[#泚æ1|*]]</sup>
|| [[wikt:ã²|ã²]]
||
| style="background-color:#eeffee" | wa
| i (wi)
|
| e (we)
| o (wo)
|-
| style="background-color:#eeffee" |
||
||
||
|| [[wikt:ã|ã]]
||
| style="background-color:#eeffee" |
||
||
||
|| [[wikt:ã³|ã³]]
||
| style="background-color:#eeffee" |
|
|
|
| n
|}
; <span id="泚æ1">ã/ã°ãã/ã±ã«é¢ãã泚æ</span>
:* çŸä»£èªã§ã¯ååãšããŠäœ¿çšãããçºé³ã»æåå
±ã«'''ã'''/'''ã€'''ã'''ã'''/'''ãš'''ã§ä»£çšãããŸã
:* ãã ãã人åãªã©åºæåè©ã«ã¯æ®ã£ãŠããŸã
:* å€æ¥èªãè¡šèšããéã«ã«ã¿ã«ãã§'''ãŠã£'''/'''ãŠã€'''ã'''ãŠã§'''/'''ãŠãš'''ãšãããããšããããŸãïŒæ¥æ¬èªã®çºé³ã®è¡šèšã§ã¯ãªãããéåžžãã²ãããªã§ã¯èšè¿°ããªãïŒ
{| class="wikitable" style="text-align:center"
! colspan=11 | [[wikt:æ¿é³|æ¿é³]]
||
! colspan=5 | ããŒãå転å
|-
| style="background-color:#eeffff" | [[wikt:ã|ã]]
| style="background-color:#ffeeee" | [[wikt:ã|ã]]
| style="background-color:#ffeeee" | [[wikt:ã|ã]]
| style="background-color:#ffeeee" | [[wikt:ã|ã]]
| style="background-color:#ffeeee" | [[wikt:ã|ã]]
||
| style="background-color:#eeffff" | [[wikt:ã¬|ã¬]]
| style="background-color:#ffeeee" | [[wikt:ã®|ã®]]
| style="background-color:#ffeeee" | [[wikt:ã°|ã°]]
| style="background-color:#ffeeee" | [[wikt:ã²|ã²]]
| style="background-color:#ffeeee" | [[wikt:ãŽ|ãŽ]]
||
| style="background-color:#eeffff" | ga
| style="background-color:#ffeeee" | gi
| style="background-color:#ffeeee" | gu
| style="background-color:#ffeeee" | ge
| style="background-color:#ffeeee" | go
|-
| style="background-color:#eeffee" | [[wikt:ã|ã]]
|| [[wikt:ã|ã]]
|| [[wikt:ã|ã]]
|| [[wikt:ã|ã]]
|| [[wikt:ã|ã]]
||
| style="background-color:#eeffee" | [[wikt:ã¶|ã¶]]
|| [[wikt:ãž|ãž]]
|| [[wikt:ãº|ãº]]
|| [[wikt:ãŒ|ãŒ]]
|| [[wikt:ãŸ|ãŸ]]
||
| style="background-color:#eeffee" | za
| zi (ji)
| zu
| ze
| zo
|-
| style="background-color:#eeffee" | [[wikt:ã |ã ]]
|| [[wikt:ã¢|ã¢]]
|| [[wikt:ã¥|ã¥]]
|| [[wikt:ã§|ã§]]
|| [[wikt:ã©|ã©]]
||
| style="background-color:#eeffee" | [[wikt:ã|ã]]
|| [[wikt:ã|ã]]
|| [[wikt:ã
|ã
]]
|| [[wikt:ã|ã]]
|| [[wikt:ã|ã]]
||
| style="background-color:#eeffee" | da
| di (zi, ji)
| du (zu)
| de
| do
|-
| style="background-color:#eeffee" | [[wikt:ã°|ã°]]
|| [[wikt:ã³|ã³]]
|| [[wikt:ã¶|ã¶]]
|| [[wikt:ã¹|ã¹]]
|| [[wikt:ãŒ|ãŒ]]
||
| style="background-color:#eeffee" | [[wikt:ã|ã]]
|| [[wikt:ã|ã]]
|| [[wikt:ã|ã]]
|| [[wikt:ã|ã]]
|| [[wikt:ã|ã]]
||
| style="background-color:#eeffee" | ba
| bi
| bu
| be
| bo
|-
! colspan="11" | [[wikt:åæ¿é³|åæ¿é³]]
||
! colspan="5" | ããŒãå転å
|-
| style="background-color:#eeffee" | [[wikt:ã±|ã±]]
|| [[wikt:ãŽ|ãŽ]]
|| [[wikt:ã·|ã·]]
|| [[wikt:ãº|ãº]]
|| [[wikt:ãœ|ãœ]]
||
| style="background-color:#eeffee" | [[wikt:ã|ã]]
|| [[wikt:ã|ã]]
|| [[wikt:ã|ã]]
|| [[wikt:ã|ã]]
|| [[wikt:ã|ã]]
||
| style="background-color:#eeffee" | pa
|| pi
|| pu
|| pe
|| po
|}
{| class="wikitable" style="text-align:center"
|-
! colspan="7" | [[wikt:æé³|æé³]]
||
! colspan="3" | ããŒãå転å
|-
|| [[wikt:ãã|ãã]]
|| [[wikt:ãã
|ãã
]]
|| [[wikt:ãã|ãã]]
|
|| [[wikt:ãã£|ãã£]]
|| [[wikt:ãã¥|ãã¥]]
|| [[wikt:ãã§|ãã§]]
|
| kya
| kyu
| kyo
|-
|| [[wikt:ãã|ãã]]
|| [[wikt:ãã
|ãã
]]
|| [[wikt:ãã|ãã]]
|
|| [[wikt:ã·ã£|ã·ã£]]
|| [[wikt:ã·ã¥|ã·ã¥]]
|| [[wikt:ã·ã§|ã·ã§]]
|
| sya (sha)
| syu (shu)
| syo (sho)
|-
|| [[wikt:ã¡ã|ã¡ã]]
|| [[wikt:ã¡ã
|ã¡ã
]]
|| [[wikt:ã¡ã|ã¡ã]]
|
|| [[wikt:ãã£|ãã£]]
|| [[wikt:ãã¥|ãã¥]]
|| [[wikt:ãã§|ãã§]]
|
| tya (cha)
| tyu (chu)
| tyo (cho)
|-
|| [[wikt:ã«ã|ã«ã]]
|| [[wikt:ã«ã
|ã«ã
]]
|| [[wikt:ã«ã|ã«ã]]
|
|| [[wikt:ãã£|ãã£]]
|| [[wikt:ãã¥|ãã¥]]
|| [[wikt:ãã§|ãã§]]
|
| nya
| nyu
| nyo
|-
|| [[wikt:ã²ã|ã²ã]]
|| [[wikt:ã²ã
|ã²ã
]]
|| [[wikt:ã²ã|ã²ã]]
|
|| [[wikt:ãã£|ãã£]]
|| [[wikt:ãã¥|ãã¥]]
|| [[wikt:ãã§|ãã§]]
|
| hya
| hyu
| hyo
|-
|| [[wikt:ã¿ã|ã¿ã]]
|| [[wikt:ã¿ã
|ã¿ã
]]
|| [[wikt:ã¿ã|ã¿ã]]
|
|| [[wikt:ãã£|ãã£]]
|| [[wikt:ãã¥|ãã¥]]
|| [[wikt:ãã§|ãã§]]
|
| mya
| myu
| myo
|-
|| [[wikt:ãã|ãã]]
|| [[wikt:ãã
|ãã
]]
|| [[wikt:ãã|ãã]]
|
|| [[wikt:ãªã£|ãªã£]]
|| [[wikt:ãªã¥|ãªã¥]]
|| [[wikt:ãªã§|ãªã§]]
|
| rya
| ryu
| ryo
|-
|| [[wikt:ãã|ãã]]
|| [[wikt:ãã
|ãã
]]
|| [[wikt:ãã|ãã]]
|
|| [[wikt:ã®ã£|ã®ã£]]
|| [[wikt:ã®ã¥|ã®ã¥]]
|| [[wikt:ã®ã§|ã®ã§]]
|
| gya
| gyu
| gyo
|-
|| [[wikt:ãã|ãã]]
|| [[wikt:ãã
|ãã
]]
|| [[wikt:ãã|ãã]]
|
|| [[wikt:ãžã£|ãžã£]]
|| [[wikt:ãžã¥|ãžã¥]]
|| [[wikt:ãžã§|ãžã§]]
|
| zya (ja)
| zyu (ju)
| zyo (jo)
|-
|| [[wikt:ã¢ã|ã¢ã]]
|| [[wikt:ã¢ã
|ã¢ã
]]
|| [[wikt:ã¢ã|ã¢ã]]
|
|| [[wikt:ãã£|ãã£]]
|| [[wikt:ãã¥|ãã¥]]
|| [[wikt:ãã§|ãã§]]
|
| dya (ja)
| dyu (ju)
| dyo (jo)
|-
|| [[wikt:ã³ã|ã³ã]]
|| [[wikt:ã³ã
|ã³ã
]]
|| [[wikt:ã³ã|ã³ã]]
|
|| [[wikt:ãã£|ãã£]]
|| [[wikt:ãã¥|ãã¥]]
|| [[wikt:ãã§|ãã§]]
|
| bya
| byu
| byo
|-
|| [[wikt:ãŽã|ãŽã]]
|| [[wikt:ãŽã
|ãŽã
]]
|| [[wikt:ãŽã|ãŽã]]
|
|| [[wikt:ãã£|ãã£]]
|| [[wikt:ãã¥|ãã¥]]
|| [[wikt:ãã§|ãã§]]
|
| pya
| pyu
| pyo
|}
ãã®ã»ãã«ããå€åœèªã®ãVããèšãå Žåã«ã[[wikt:ãŽ|ãŽ]]+å°æåã®ã¢è¡ãã䜿ãå ŽåããããŸããïŒæ¥æ¬èªã®çºé³ã®è¡šèšã§ã¯ãªãããéåžžãã²ãããªã§ã¯èšè¿°ããªãïŒ<br />
ããããã»ãšãã©ã®å Žåãè¡ã§ä»£çšãããŸãã
; äŸ
: ãŽã¡ã€ãªãªã³(violin) â ãã€ãªãªã³
: ãŽã£ãŒãã¹(Venus) â ããŒãã¹
[[Category:æ¥æ¬èª|æ]] | null | 2019-10-13T11:53:04Z | [] | https://ja.wikibooks.org/wiki/%E6%97%A5%E6%9C%AC%E8%AA%9E/%E6%96%87%E5%AD%97 |
1,658 | æ¥æ¬èª/æ§æ | æ¥æ¬èªã®æ§æè«ã«ã€ããŠã®æŠç¥ãè¿°ã¹ãã
ææ³ãšã¯æãå®çŸ©ããä»çµã¿ã§ãããææ³ã«ã¯äºã€ã®æå³ããããšããèšããããäžã€ã¯æ¯èªè©±è
ã«åããææ³ã§ãããããäžã€ã¯ãã®ã¢ãã«ã§ãããã¢ãã«ãšããŠã®ææ³ã劥åœã§ãããªãã°ããã®ææ³ã¯æ¯èªè©±è
ã«æ¿ãã£ãŠæãå®çŸ©ããã以äžã§æ±ãã®ã¯ã¢ãã«ãšããŠã®ææ³ã§ãããæ¥æ¬ã§ã¯çŸ©åæè²ã§æ¥æ¬èªã®ææ³ãæããããã®ææ³ã¯äžè¬ã«ãåœææ³ããšåŒã°ããã以äžãåœææ³ãäžæ·ãã«ããŠãå¿
èŠã«å¿ããŠçè«èšèªåŠã®æŠå¿µãå ããŠãããææ³ã«ãã£ãŠãããèšå·åã¯æã§ãããéæ ã§ããããå€å¥ãããããã®ããã«å€å¥ãããæãšãããã®ãäºãç¹åŸŽä»ããããšã¯é£ãããææ³ãåºæ¥äžãããšãããã«ãã£ãŠæãç¹åŸŽä»ããããããããæ¯èªè©±è
ã¯æ¯èªã«ã€ããŠã®çŽèŠ³ãæã¡ãããèšå·åãæã§ãããšå€å¥ããããšãã§ãããææ³ãšã¯ããªãã¡ãã®çŽèŠ³ã®èšè¿°ã§ãããæ¯èªè©±è
ãæã§ãããšèªå®ããèšå·åã¯ãæžèšèšèªã«ãããŠã¯å¥ç¹(ã)ãããªãªãã§çµããããšã§äŸ¿å®äžãããšæ瀺ããããšãã§ããã
æã¯æ§é ãæã€ãæ¯èªè©±è
ãæãç解ããã®ã¯ãã®æã«æ§é ãåœãŠåµãããšããè¡çºã§ãããäœæãçºè©±ãããšããã®ã¯æ§é ãæåãé³çŽ ã®çµã¿åããã«æ圱ãããšããè¡çºã§ãããææ³ã¯ãæã®æ§é ãå®çŸ©ããé©æ Œãªæ§é ãäžé©åãªæ§é ããåºå¥ã§ããªããã°ãªããªãã ææ³ã¯æã®æ§é ã«é¢ããŠãåå§èšå·ãšçµã¿åããæ¹ãå®çŸ©ãããæã®åå§èšå·ã¯èªã§ãããå³å¯ã«ã¯èªããå°ããåäœã§ããæ¥èŸãªã©ã®åœ¢æ
çŽ ãå«ãŸãããåœææ³ã§æ§é ãè¡šãæ¹æ³ã«ã¯æç¯ãçšãããã®ãšå
¥ååæ§é ãããã矩åæè²ãåããè
ã«ã¯æç¯ã銎æã¿æ·±ããšããã¡ãªãããããããæ§é 衚瀺ã®æ£ç¢ºããšããç¹ã§ã¯å
¥ååæ§é ã®æ¹ãããããŠãããäž¡è
ãçšéã«ãã£ãŠäœ¿ãåããããšã«ããã ææ³ã¯åå§èšå·ãšæ§é ãå®çŸ©ãããæ§é ãè¡šãæ¹æ³ã«ã¯æç¯ãçšãããã®ãšå
¥ååæ§é ãããã矩åæè²ãåããè
ã«ã¯æç¯ã銎æã¿æ·±ããšããã¡ãªãããããããæ§é 衚瀺ã®æ£ç¢ºããšããç¹ã§ã¯å
¥ååæ§é ã®æ¹ãããããŠãããäž¡è
ãçšéã«ãã£ãŠäœ¿ãåããããšã«ããã æã¯æç¯ããæ§æããããæç¯ã¯èªç«èªãæ žãšããŠä»»æã«ä»å±èªã䌎ãã
è€æ°ã®æç¯ã¯é£æç¯ãæ§æãããæç¯èªäœã¯ããèªäœã®ããªãã¢ã«ãªé£æç¯ãšããããšãã§ãããããããªããé£æç¯ã®æ倧ã®ãã®ãæã§ããã矩åæè²ã§ã¯åŒ·èª¿ãããªãããé£æç¯ã¯éèŠã§ããã
修食é¢ä¿ãšè£å©é¢ä¿ã¯ååãšããŠé£æç¯ã«ãã£ãŠå®çŸ©ãããã
é£æç¯ã®æ§é ã¯éå±€æ§é ããªããæç¯ãšæç¯ãé£æç¯ããªãããŸãé£æç¯ãšé£æç¯ãæ°ããªé£æç¯ããªããæ倧ã®é£æç¯ã§ããæã圢æããããŸã§å埩ããã
äžã®æã®ç¢ºå®æ¹æ³ã«åŸããš
ã¯æ¥æ¬èªã®æã ãšå€å®ããããšãã§ããŸãããã®ãããªæã¯ãæç¯ããšåŒã°ããèŠçŽ ãéãŸã£ãŠäœãããŠããŸããæç¯ã¯ã次ã®||ã§åºåããšãã(åŠæ ¡ã§ã¯ããããå
¥ãããšæãã)ã§æç¯ã«åããããŸãã
ãã®ãããªæç¯ã®å¢çéšåã¯ãä»ã«ãã»ãããããã®ãŒããªã©ã®èŠçŽ (ç¬ç«éšã®äžçš®)ãå·®ãæãããšãã§ããäœçœ®ã§ãããæå³ã®ãŸãšãŸããšå¥ã®ãŸãšãŸãã®åãç®ã«ãªã£ãŠããŸãã
ãã®ããã«ãããããæç¯ã¯ãç¬ç«éšãé€ããŠãä»ã®æç¯ãšäžå®ã®é¢ä¿ãçµãã§ããŸãããããã®é¢ä¿ã¯ã修食ã®é¢ä¿ã䞊ç«ã®é¢ä¿ãè£å©ã®é¢ä¿ã«åããããŸã(修食éšãé修食éšåã«èŠæ±ããããè£å
æåããšããã§ãªãã修食æåãã«åããèãæ¹ããã)ã
ãããã®ãã¡ã修食ã®é¢ä¿ãšè£å
ã®é¢ä¿ã¯ããããæç¯ãšãããæç¯ãšã®é¢ä¿ã§ã修食ã®é¢ä¿ã§ã¯ãããæç¯ãåã«æ¥ãŠãè£å
ã®é¢ä¿ã§ã¯ãããæç¯ãåŸã«æ¥ãŸãã
äžã«æãããããªé¢ä¿ã«ãã£ãŠæç¯ã¯ãã倧ããªãé£æç¯ããæ§æããŸãã
é£æç¯ã¯åç¬ã®æç¯ãšåãããã«ä»ã®æç¯ãšäžå®ã®é¢ä¿ãçµã³ãããã«å€§ããªé£æç¯ãæ§æããŸããæã倧ããªé£æç¯ã¯æã§ãããã®ç¹ã¯äžåŠé«æ ¡ã®åœææ³ã§ã¯è»œèŠãããã¡ãªããã§ããä¿ãåãã®é¢ä¿ããã£ãšãå°ããªæç¯çžäºã®é¢ä¿ããå§ããæ倧ã®é£æç¯ã§ããæãŸã§å®å
šã«è¡ããæã®æ§é ãå
šäœçã«ç解ããŠããããšã倧äºã§ãã
ãã¡ãããããåžžã«å¿
èŠã§ããããã§ã¯ãªãããããããæã®ãããããçŽãããšãããšããªã©ã«ã¯å¿
èŠãªä¿ãåãã®é¢ä¿ã ããåãåºãã°ããã®ã§ããããã®æã«ããæ確ã«ç€ºãããéšå以å€ã®æ§é ã«é
æ
®ããŠããããšã倧äºã§ãã
äžã§æããæãæå°ã®ä¿ãåãããã¯ãããŠãæ倧ã®é£æç¯ã§ããæãŸã§ç¶ãããã®ã次ã®æ§é ã§ãã
ããŠããã®æã®äžéšã§ããããéæã¡ã§ããããéæã¡ãªãã«çœ®ãæãããšä¿ãåãã®é¢ä¿ã¯æ¬¡ã®ããã«å€ãããŸãã
ãã®ãããªä¿ãåãã®æ§é ã¯ã次ã®ãããªã(1)ãš(2)ãšã«ãããã察å¿ãã解éãããããã€å€çŸ©çãªæ(3)ãè¡šçŸãåããããšãå¯èœã«ããŸãã
ããã§ãèªç¹(ã)ã®åœ¹å²ã®äžã€ã«è§ŠããŠãããŸãããã(3)ã«æ¬¡ã®ãããªèªç¹ãæã€ãšã解éã¯(1)ã«å¯Ÿå¿ãããã®ã«ç¹å®ãããŸãã
ããã¯ãèªç¹ãé£æ¥ããæç¯ã®ä¿ãåãé¢ä¿ããã£ã³ã»ã«ããããã§ãããã®ããã«èãããšãèªç¹ãšã¯(ãšãã©ãèšãããããã§ãã)ããªãããªã£ãããããããæãšãããªããšæã£ãŠæã€ããšãããããªãã®ã§ã¯ãªããæã®æ§é ãæ瀺ããç©æ¥µçãªåããããŠããããšãããããŸãã
æãæ§æããæç¯ã»é£æç¯ã«ã¯ãæã®äžã§ããäžå®ã®åããæ
ã£ãŠãããã®ããããŸãããã®ãããªæç¯ãŸãã¯é£æç¯ããæåããšèšããŸãã
äŸãã°
ãšããæã¯æ¬¡ã®åã€ã®æåããã§ããŠããŸãã
ãã®ãã¡ãè¿°éšã¯æã®äžæ žããªãæåãšããããšãã§ããŸã(åæã»è€æã»éæãåç
§)ãè¿°éšã®(é£)æç¯ã¯ä¿®é£Ÿéš(ç¹ã«è£å
æå)ã«ãã修食ãåããŠããã«å€§ããªãè¿°éšçé£æç¯ãäœããŸããè€æãéæã«èŠãããæã«äŒŒãæåã¯ãã®è¿°éšçãªé£æç¯ã§ãã
è¿°éšãçšèšã§ããå Žåã«ã¯é£çšä¿®é£Ÿã®æåãåããäœèšã§ããå Žåã«ã¯é£äœä¿®é£Ÿã®æåãåãããããã¯æ±ºããŠçŽããŸãããåè©ã¯äœèšã§ããè¿°èªçãªæåã䌎ããšçšèšãšããŠæ¯ãèããŸãã®ã§ããåè©+è¿°èªçèŠçŽ ãã®å
šäœã修食ããæåã¯é£çšä¿®é£Ÿæåã§ããé£äœä¿®é£Ÿã®æåã¯çšèšä»¥å€ã§ã¯å¿
ãé£äœæ Œã®å©è©ãã®ãã䌎ããå€åœ¢äžãé£çšä¿®é£Ÿã®æåãšã¯åºå¥ãããŸãã®ã§ãè¿°éšã®åè©ã ãã修食ããå Žåã¯é£äœä¿®é£Ÿã§ãããã®åºå¥ã¯æ¬¡ã®ãããªæŒ¢èªãµå€åè©ã§ç¢ºèªãããŸãã
äž»éšã¯ãä¿å©è©ãã¯ããå¯å©è©ã䌎ããäž»é¡ããšåŒã°ããæåããå€ãã®å Žåæ Œå©è©ãããããŸãã¯äžéšæ Œå©è©ãã«ãã䌎ãæ ŒæåããæããŸããä»ã®è¿°éšã®ä¿®é£Ÿæåãšæ¯ã¹ãå Žåãäž»éšã¯æ§æäžã®éç«ã£ãç¹åŸŽã瀺ããŸãã
ãããã«å ããäžåŠæ ¡ã®åœææ³ã§ã¯ãæ¥ç¶éšããšããæåãæããŠããŸãã ããã«ãæã¯ãè©ããšåŒã°ãã客äœçæåãšãèŸããšåŒã°ããäž»äœçéšåããæãç«ã€ãšèããããŸããããããå
ã¿å
ãŸããšããé¢ä¿ãç¹°ãè¿ãããå
¥ãåæ§é ã(ææèª èš)ããªããŸããææ«ã®â ã¯ãé¶èšå·ããšåŒã°ããèŸã§ãã
ãã®ãããªæ§é ã¯çæææ³ã§çšãããããã©ãã«ä»ãæ¬åŒ§ä»ããã§è¡šããæ§é ãšã»ãŒçãããã®ã«ãªããŸãã
æã¯è¿°éšãããã€ããããŠè€æ°ã®å Žåã«ã¯çžäºã«ã©ã®ãããªé¢ä¿ã«ãããã«ãã£ãŠäžã€ã«åé¡ãããŸã(åŠæ ¡ææ³ã§ã¯ãäž»éšãšè¿°éšããšæããŠããŸã)ã è¿°éšãäžã€ã ãæã€æãåæãšãããŸãã
è¿°éšãè€æ°ããããããã䞊ç«ã®é¢ä¿ãšãªã£ãŠããæãéæãšãããŸãã
è¿°éšãè€æ°ãããé£äœä¿®é£ŸãŸãã¯é£çšä¿®é£Ÿã®é¢ä¿ã«ããæãè€æãšãããŸãã
è¿°éšãé£çšåœ¢ãé£çšåœ¢+ãã§ããå Žåã圢ã®äžããã ãã§ã¯äžŠç«ã®é¢ä¿ã修食ã®é¢ä¿ãå€æã§ããªãå ŽåããããŸãã
æã¯ãæå
šäœããŸãšããŠèãæã«äŒããæ§åŒã瀺ããé³è¿°ãã®æ§è³ªã«ãã£ãŠåã€ã«åé¡ãããŸãã
ããæ
å ±ã«ã€ããŠæå®ããŠèãæã«äŒããŸãã
ãã®ãããªæããè¯å®æããšèšããŸããããã«å¯Ÿããããæ
å ±ã«ã€ããŠããããæãç«ã£ãŠããªãããšäŒããæããåŠå®æããšèšããŸãã
ææèª èšã®æ§é ã§ã¯ãããŸããããŸãããã®éšåãé³è¿°ã§ããããããäžå¯§ã»æå®ããäžå¯§ã»åŠå®ããè¡šãããååããŠããŸãããã®é³è¿°ããããããå¯å£«å±±ãèŠãããšããéšåãå
ãã§ãŸãšããæã®æ§è³ªã決ããŠããŸãã
次ã®æã¯ãããæ
å ±ã«ã€ããŠããã®å
容ãæç«ãããåŠããèãæã«å°ããæã§ããè«ŸåŠçåæããªã©ã®ããã«åŒã°ããŸãã
ãã®çåæã®ãå¯å£«å±±ãããäœããšããäžå®èªã«çœ®ãæãããã®ã¯ãäžå®èªã®éšåã®æ
å ±ãèãæã«å°ããæã§ããçåèªçåæããªã©ã®ããã«åŒã°ããŸãã
æ¥æ¬èªã§ã¯ãçåèªçåæã次ã®ããã«æé ã«ããå¿
èŠã¯ãããŸããã
çåæã§ã¯é³è¿°ããŸãããããããããå¯å£«å±±/äœãèŠãããšããéšåãå
ãã§ãŸãšããŠããŸãã
åæã¯è¿°éšã®æ§è³ªã«ãã£ãŠåºæ¬çã«ã¯äž»ã«ä»¥äžã®åçš®é¡ã«åé¡ã§ããŸãã
è¿°éšã修食ããè£å
æåã«ãã£ãŠããã«æ§ã
ãªãã¿ã³ããšããŸãã
以äžã®æã¯ç¡é¡æãšãããŸãããã®ãããªåæã®äžã€ã®æç¯ãäž»é¡ã«ããããšã«ãã£ãŠæé¡æãäœãããšãã§ããŸãããã®éãäž»é¡ã¯æã®äžçªã¯ããã«æ¥ãŸã(äž»èªä»¥å€ã§å
ã®äœçœ®ã«ããå Žåã¯ãä»ãšå¯Ÿæ¯ããæå³ã匷ããªããŸã)ã
修食éšã®ãã¡ãè¿°éšãå¿
èŠãšããããããªããšäžè¶³ã ãšæãããããããª(質åãåŒãèµ·ãããããª)ãã®ãè£å
æåãšãããŸãã
è£å
æåã«ã¯åè©å¥ãšåŸå±å¥ããããŸããåè©å¥ã¯æ Œå©è©ã䌎ããŸããåŸå±å¥ã¯åŒçšã®ããšããã£ãŠãã䌎ãå Žåãä¿å©è©ãããã䌎ãå Žåãšã圢åŒåè©ãããšããæºäœå©è©ãã®ãã䌎ã£ãŠåè©å¥çžåœã«ãªãå ŽåããããŸãã
æ Œå©è©ããããã«ã(é£äœä¿®é£Ÿæåã®äžã§ãã®ãã)ã䌎ãäž»éšã¯åç«ããç¹æ§ãæã€è£å
æåã®äžã€ãšèããããŸãã
修食éšã®ãã¡ãæã«ããç¶æ³ã®èª¬æããã詳ããããããã«ä»ãå ãããããå¿
é ã§ã¯ãªãæåã修食æå(ä»å éš)ãšãããŸãã
修食æåã«ã¯ãé£çšä¿®é£Ÿã§ããã«ãé¢ãããè£å
æåã®ä¿®é£Ÿãè¡ããã®ããããŸãã
è£å©ã®é¢ä¿ã«ããçšèšã¯ãäž»éšã®äžå¿ãšãªãè¿°èªã®æå³ãæ§ã
ãªåœ¢ã§è£ããŸãããã®ãããªçšèšãè£å©çšèšãšãããŸãã
è£å©çšèšãšãããè£å©ããè¿°èªã¯ããããç¬ç«ã®æç¯ã§ä¿å©è©ãå¯å©è©ã䌎ãããšãã§ããŸãããæå³çã«ã¯ã²ãšã€ã®æåã§ãããããèªç¹ãæã£ãããããŒãºãå
¥ããŠèªãã ãããããšã¯ã§ããŸããã
圢容è©ãåŠå®ããè£å©åœ¢å®¹è©ã¯ç¬ç«ã®æç¯ãæããŸãã
äžæ¹ã䌌ãé¢ä¿ã§ããåè©ã®åŠå®ã¯ç¬ç«ã®æç¯ãæãããåŠå®ã®å©åè©ãšããŠåè©ã«åŸæ¥ããŠäžæç¯ã圢æããŸããåè©ã®åŠå®åœ¢ã«ä¿å©è©ãå¯å©è©ãå·®ãæãããšããå Žåã«ã¯ãåè©é£çšåœ¢+圢åŒåè©ã+åŠå®å©åè©ãªãããšãã圢ã«ãªããŸãã
è£å©ã»è¢«è£å©ã®é¢ä¿ã«ããåè©ã«äŒŒãŠãããã®ã®ãçµã³ã€ãã匷ãäžã€ã®èª(è€åèª)ã«ãªã£ããã®ãè€ååè©ãšãããŸããè€ååè©ã¯æç¯ãåããããã«ããããå
¥ããããšã¯ã§ããŸããã
è£å©çšèšã®ä»£è¡šçãªãã®ã«ã¯äžã«æããåŠå®ã®è£å©åœ¢å®¹è©ã®ä»ãæå®ã®è£å©åè©ãããã(ãåè©+ã§ãã«ç¶ã)ããã¢ã¹ãã¯ãããšããæéã«é¢ããæå³ãæã€ãã®(ãåè©é£çšåœ¢+ãŠ+ããŸã(ã¡ãã)ããªã©)ãå©çã®ç§»åã«é¢ãããã®(ãåè©é£çšåœ¢+ãŠ+ãããããªã©)ããªã©ããããŸãã
䞊ç«ã®é¢ä¿ãé£äœçãªãã®ãšé£çšçãªãã®ããããŸãã
é£äœçãªäžŠç«æç¯ãä»ã®äžŠç«æç¯ãšãŸãšããããŠé£çšä¿®é£Ÿã®é£æç¯ãšãªãå Žåãé£çšåœ¢ã«ãªããŸãã
è€æ°åœ¢ã¯ããæå³ã§äžŠç«è¡šçŸã®çž®çŽãšèŠãããšãã§ããŸãããè±èªã§ã¯-sãã€ããè€æ°åœ¢ã§ã¯the student A and student Bã®ãããªãã®ãthe studentsãšããŠè¡šããããã«ã¯ä»ã®ã¿ã€ãã®ã²ãšã¯å«ãŸããªãã®ã«ããããŠãæ¥æ¬èªã®ãéãã§ã¯ãåŠçAãšåŠçBãšãã®ä¿è·è
ãã®ãããªãã®ããåŠçéããšããããšãã§ããŸãã
ãæ Œã®æç¯ã¯ãå§å©ããããçµå©ãããã§ã¯è£å
æåãšããŠé£çšä¿®é£Ÿã®é¢ä¿ã«ããããã§ãããåæã«ãäž»éšãšäžŠç«ã®é¢ä¿ã«ãããšãèŠãããšãã§ããŸãã
ãŸããäºçªç®ã®å©æããšãã眮ãã眮ããªããã§æ¬¡ã®ãããªéããçŸããŸãã
åæçžåœã®ãã®(ç¯)ã¯è£å
æåãšããŠæã«åã蟌ãŸããŠè€æãäœãããšãã§ããã
ãã®ããšã¯æãèªç±ã«é·ãäœãããšãã§ããããšãä¿èšŒãããããããç¹°ãè¿ããšéåžžã«ãããã«ããæã«ãªãã
ãã®æã®ãããã«ããã®åå ã¯ã次ã®ããã«äž»éšãšè¿°éšã®éã«è£å
æåã§ããç¯ã次ã
ã«åã蟌ãã ãäžå€®åã蟌ã¿ããšããæ§é ã«ãªã£ãŠããããšã«ããã
ãã®ãããã«ããã解æ¶ããæ¹æ³ãšããŠãã²ãšã€ã«ã¯äž»éšã®åŸã«èªç¹ãæã€ããšããæ¹æ³ãããã
ãããããã ãåã蟌ã¿ãç¹°ãè¿ããšèªç¹ã ãã§ã¯ãããã«ãããåé¿ã§ããªãããã®ãããªå Žåã被修食æåã§ããè¿°éšã®çŽåã«äž»éšãæã£ãŠãããšããæ¹æ³ãããã
äž»éšãè¿°éšã®è¿ãã«æã£ãŠãããšããæ¹æ³ã¯ããçãæã§ã解éãããããå¢ãè¯ãæ¹æ³ã§ããã
æ¥æ¬èªã®åºæ¬èªé ã¯æ¬¡ã®ãããªãã®ãšèããããŸãã
ãšããã§ã次ã®ããã«èªé ãå
¥ãæããå Žåãããããããããæ¥æ¬èªã®èªé ã¯èªç±ã ããšèšãããŸãã
ãããã次ã®ãããªèªé ã¯èš±ãããŸããã
ãŸãè¿°éšã®åŸã«é£çšæåãããããšãäž»ç¯ã§ã¯å¯èœã§ãããåŸå±ç¯ã§ã¯äžå¯èœã§ãã
次ã®ãããªéåè¡šçŸã§ã¯ãèªé ãå€ãããšè§£éãå€ãããŸãã
ãã®ãããªããšãããèªé ã®äº€æ¿ã¯ããæåã®æé ãžã®å眮(ã¹ã¯ã©ã³ããªã³ã°)ã§ããããã®å眮ã¯äžå®ã®å¶çŽã«åŸããšèããããŸãã
éæã§ã¯ãå
±éããæåãçç¥ãããå ŽåããããäŸãã°
ãšããäºã€ã®åæãäžã€ã®éæã«ããå Žåã
ãšãèšããã
ãšããããã«ãå
±éãããè²·ã£ãŠããããäžã€ã«ãŸãšããããšãã§ããã ãŸãã
ã§ã¯ã
ãšããããã«ä»£çšè¡šçŸã®ããããã䜿ãããšãã§ããã
ãšããããã«ãŸãšããããšãã§ããã ãŸã
ã
ãšä»£çšè¡šçŸããããããã䜿ãããšãã§ããã
ãšãŸãšããããšãã§ãããããã
ã
ãšèšãããšã¯ã§ããªãã ãªããäžã®ãããªçç¥ã§
ãçç¥ããŠ
ãšããæã«ã¯ã倪éãšæ¬¡éã¯ããããèªåã®ãã£ã¢ã³ã»ã«ãã¹ãããšãã解éãšã次éã倪éã®ãã£ã¢ã³ã»ã«ãã¹ãããšãã解éã®äºéããããã
åèæç®:
次ã®æã§ã¯ãçç¥ãšäžèŠäŒŒãŠãããæ§è³ªã®ç°ãªããããªæåã®ãªããªãæ¹ãèŠãããã
ãã®æã¯è€æã§ããããã¡ããã©æ¬¡ã®äºã€ã®åæãçµã¿åããããããªããã¡ãããŠããã
ããããã®å Žåãéæã«èŠãããçç¥ãšã¯ç°ãªãã代çšè¡šçŸã®åºçŸã¯äžå¯èœã§ããã
ãã®ãããªè€æã§ã¯ã察å¿ããäºã€ã®åæã®äž»éšã®ãã¡ã®çæ¹ãå¿
ããªããªããªããã°ãªããªãããã®ãããªãã®ãåäžåè©å¥åé€ãšããã åäžåè©å¥åé€ã¯ãAé¡åŸå±å¥ãšåŒã°ããåŸå±å¥ã§ã¯äžè¬ã«èŠããããŸãã䜿圹æãªã©ã«ãèŠããããšèããããã Aé¡åŸå±å¥ã«ã¯æ Œå©è©ãããã䌎ãäž»éšãçŸããªãããšäžèŠç¹åŸŽä»ããããšãã§ãããã ããããã¯æ£ãããªããäŸãã°ã身äœã®å
šäœãŒéšåã®é¢ä¿ã«ããäž»éšãè€æ°çŸãããããªåæãããšã«ããå Žåã äžã€ã®äž»éšã ããæ¶ããã
次ã®æãèããŠã¿ããã
ãã®æã¯å€çŸ©çã§ãããäžã€ã®è§£éã¯ãå³ãå·Šã®ã©ã¡ãããã€ããããšããŠãã§ããªãããšãã解éã§ãããããäžã€ã®è§£éã¯ãç®ãã€ããããšãããšã©ãããŠãäž¡ç®ãã€ãã£ãŠããŸãããšãã解éã§ããããã®æã®ãçç®ã ããã«æ Œå©è©ã®ããããããããã€ãããšã解éãåè
ãåŸè
ãã«å®ãŸãã
ããã¯å¯å©è©ãã ãããšåŠå®ã®å©åè©ããªããã®é¢ä¿ã®çµã³æ¹ãé¢ãããããã§ãŸãåé¡ã«ããŠããæãè€æã§ããã次ã®ãããªåæãçµã¿åããããããªãã®ã§ããããšããç¹ã«æ³šç®ãããã
ãããããã®ãŸãŸçµã¿åããããšæ¬¡ã®ããã«ãªãã
ãã®æã®äž»éšã«åäžåè©å¥åé€ãèµ·ããã次ã®ããã«ãªãã
ãã®æã«ãããã«ããã²ãšã€ããçç®ã ãããšããåäžã®åè©å¥ãåé€ãããªããã°ãªããªããããããã䌎ãåè©å¥ãæ®ã£ãå Žåããã§ããªããã®é£çšä¿®é£Ÿæåãšãªãã
äžæ¹ãããã䌎ãåè©å¥ãæ®ã£ãå Žåããã€ãããã®é£çšä¿®é£Ÿæåãšãªãã
詳现ã¯ããã§ã¯çãããäž¡è
ã®ãã¡ããã€ãããã®é£çšä¿®é£Ÿæåã®å Žåã«ãçç®ã ããããªã=äž¡ç®ããšãã解éã«ãªãã ããŠã以äžã®è©±ã¯å¯èœã®å©åè©ãæã€æ¬¡ã®ãããªå Žåã«ããã®ãŸãŸããŠã¯ãŸãã
ãã®ãããªæã¯åæã®ããã«èŠãããã解éã®ç¹æ§ãèžãŸãããšè€æãšèããããšãã§ããããŸããäŒçµ±çã«å¯èœã®e/rareã¯ä»ã®å©åè©ãšåãã«ããŽãªãŒã«å«ããããŠããã®ããææèª èšã¯åè©ãšåããè©ãã«æå±ãå€æŽãããããå¯èœã®å©åè©ãèªç«ããè¿°éšãšåãããã«è€æãæ§æããç¹ã¯ãã®èããšæãåããããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "æ¥æ¬èªã®æ§æè«ã«ã€ããŠã®æŠç¥ãè¿°ã¹ãã",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ææ³ãšã¯æãå®çŸ©ããä»çµã¿ã§ãããææ³ã«ã¯äºã€ã®æå³ããããšããèšããããäžã€ã¯æ¯èªè©±è
ã«åããææ³ã§ãããããäžã€ã¯ãã®ã¢ãã«ã§ãããã¢ãã«ãšããŠã®ææ³ã劥åœã§ãããªãã°ããã®ææ³ã¯æ¯èªè©±è
ã«æ¿ãã£ãŠæãå®çŸ©ããã以äžã§æ±ãã®ã¯ã¢ãã«ãšããŠã®ææ³ã§ãããæ¥æ¬ã§ã¯çŸ©åæè²ã§æ¥æ¬èªã®ææ³ãæããããã®ææ³ã¯äžè¬ã«ãåœææ³ããšåŒã°ããã以äžãåœææ³ãäžæ·ãã«ããŠãå¿
èŠã«å¿ããŠçè«èšèªåŠã®æŠå¿µãå ããŠãããææ³ã«ãã£ãŠãããèšå·åã¯æã§ãããéæ ã§ããããå€å¥ãããããã®ããã«å€å¥ãããæãšãããã®ãäºãç¹åŸŽä»ããããšã¯é£ãããææ³ãåºæ¥äžãããšãããã«ãã£ãŠæãç¹åŸŽä»ããããããããæ¯èªè©±è
ã¯æ¯èªã«ã€ããŠã®çŽèŠ³ãæã¡ãããèšå·åãæã§ãããšå€å¥ããããšãã§ãããææ³ãšã¯ããªãã¡ãã®çŽèŠ³ã®èšè¿°ã§ãããæ¯èªè©±è
ãæã§ãããšèªå®ããèšå·åã¯ãæžèšèšèªã«ãããŠã¯å¥ç¹(ã)ãããªãªãã§çµããããšã§äŸ¿å®äžãããšæ瀺ããããšãã§ããã",
"title": "æãšã¯äœã"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "æã¯æ§é ãæã€ãæ¯èªè©±è
ãæãç解ããã®ã¯ãã®æã«æ§é ãåœãŠåµãããšããè¡çºã§ãããäœæãçºè©±ãããšããã®ã¯æ§é ãæåãé³çŽ ã®çµã¿åããã«æ圱ãããšããè¡çºã§ãããææ³ã¯ãæã®æ§é ãå®çŸ©ããé©æ Œãªæ§é ãäžé©åãªæ§é ããåºå¥ã§ããªããã°ãªããªãã ææ³ã¯æã®æ§é ã«é¢ããŠãåå§èšå·ãšçµã¿åããæ¹ãå®çŸ©ãããæã®åå§èšå·ã¯èªã§ãããå³å¯ã«ã¯èªããå°ããåäœã§ããæ¥èŸãªã©ã®åœ¢æ
çŽ ãå«ãŸãããåœææ³ã§æ§é ãè¡šãæ¹æ³ã«ã¯æç¯ãçšãããã®ãšå
¥ååæ§é ãããã矩åæè²ãåããè
ã«ã¯æç¯ã銎æã¿æ·±ããšããã¡ãªãããããããæ§é 衚瀺ã®æ£ç¢ºããšããç¹ã§ã¯å
¥ååæ§é ã®æ¹ãããããŠãããäž¡è
ãçšéã«ãã£ãŠäœ¿ãåããããšã«ããã ææ³ã¯åå§èšå·ãšæ§é ãå®çŸ©ãããæ§é ãè¡šãæ¹æ³ã«ã¯æç¯ãçšãããã®ãšå
¥ååæ§é ãããã矩åæè²ãåããè
ã«ã¯æç¯ã銎æã¿æ·±ããšããã¡ãªãããããããæ§é 衚瀺ã®æ£ç¢ºããšããç¹ã§ã¯å
¥ååæ§é ã®æ¹ãããããŠãããäž¡è
ãçšéã«ãã£ãŠäœ¿ãåããããšã«ããã æã¯æç¯ããæ§æããããæç¯ã¯èªç«èªãæ žãšããŠä»»æã«ä»å±èªã䌎ãã",
"title": "æ§é ãšæç¯"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "è€æ°ã®æç¯ã¯é£æç¯ãæ§æãããæç¯èªäœã¯ããèªäœã®ããªãã¢ã«ãªé£æç¯ãšããããšãã§ãããããããªããé£æç¯ã®æ倧ã®ãã®ãæã§ããã矩åæè²ã§ã¯åŒ·èª¿ãããªãããé£æç¯ã¯éèŠã§ããã",
"title": "æ§é ãšæç¯"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "修食é¢ä¿ãšè£å©é¢ä¿ã¯ååãšããŠé£æç¯ã«ãã£ãŠå®çŸ©ãããã",
"title": "æ§é ãšæç¯"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "é£æç¯ã®æ§é ã¯éå±€æ§é ããªããæç¯ãšæç¯ãé£æç¯ããªãããŸãé£æç¯ãšé£æç¯ãæ°ããªé£æç¯ããªããæ倧ã®é£æç¯ã§ããæã圢æããããŸã§å埩ããã",
"title": "æ§é ãšæç¯"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "äžã®æã®ç¢ºå®æ¹æ³ã«åŸããš",
"title": "æ§é ãšæç¯"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ã¯æ¥æ¬èªã®æã ãšå€å®ããããšãã§ããŸãããã®ãããªæã¯ãæç¯ããšåŒã°ããèŠçŽ ãéãŸã£ãŠäœãããŠããŸããæç¯ã¯ã次ã®||ã§åºåããšãã(åŠæ ¡ã§ã¯ããããå
¥ãããšæãã)ã§æç¯ã«åããããŸãã",
"title": "æ§é ãšæç¯"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "ãã®ãããªæç¯ã®å¢çéšåã¯ãä»ã«ãã»ãããããã®ãŒããªã©ã®èŠçŽ (ç¬ç«éšã®äžçš®)ãå·®ãæãããšãã§ããäœçœ®ã§ãããæå³ã®ãŸãšãŸããšå¥ã®ãŸãšãŸãã®åãç®ã«ãªã£ãŠããŸãã",
"title": "æ§é ãšæç¯"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "ãã®ããã«ãããããæç¯ã¯ãç¬ç«éšãé€ããŠãä»ã®æç¯ãšäžå®ã®é¢ä¿ãçµãã§ããŸãããããã®é¢ä¿ã¯ã修食ã®é¢ä¿ã䞊ç«ã®é¢ä¿ãè£å©ã®é¢ä¿ã«åããããŸã(修食éšãé修食éšåã«èŠæ±ããããè£å
æåããšããã§ãªãã修食æåãã«åããèãæ¹ããã)ã",
"title": "æ§é ãšæç¯"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "ãããã®ãã¡ã修食ã®é¢ä¿ãšè£å
ã®é¢ä¿ã¯ããããæç¯ãšãããæç¯ãšã®é¢ä¿ã§ã修食ã®é¢ä¿ã§ã¯ãããæç¯ãåã«æ¥ãŠãè£å
ã®é¢ä¿ã§ã¯ãããæç¯ãåŸã«æ¥ãŸãã",
"title": "æ§é ãšæç¯"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "äžã«æãããããªé¢ä¿ã«ãã£ãŠæç¯ã¯ãã倧ããªãé£æç¯ããæ§æããŸãã",
"title": "é£æç¯"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "é£æç¯ã¯åç¬ã®æç¯ãšåãããã«ä»ã®æç¯ãšäžå®ã®é¢ä¿ãçµã³ãããã«å€§ããªé£æç¯ãæ§æããŸããæã倧ããªé£æç¯ã¯æã§ãããã®ç¹ã¯äžåŠé«æ ¡ã®åœææ³ã§ã¯è»œèŠãããã¡ãªããã§ããä¿ãåãã®é¢ä¿ããã£ãšãå°ããªæç¯çžäºã®é¢ä¿ããå§ããæ倧ã®é£æç¯ã§ããæãŸã§å®å
šã«è¡ããæã®æ§é ãå
šäœçã«ç解ããŠããããšã倧äºã§ãã",
"title": "é£æç¯"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "ãã¡ãããããåžžã«å¿
èŠã§ããããã§ã¯ãªãããããããæã®ãããããçŽãããšãããšããªã©ã«ã¯å¿
èŠãªä¿ãåãã®é¢ä¿ã ããåãåºãã°ããã®ã§ããããã®æã«ããæ確ã«ç€ºãããéšå以å€ã®æ§é ã«é
æ
®ããŠããããšã倧äºã§ãã",
"title": "é£æç¯"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "äžã§æããæãæå°ã®ä¿ãåãããã¯ãããŠãæ倧ã®é£æç¯ã§ããæãŸã§ç¶ãããã®ã次ã®æ§é ã§ãã",
"title": "é£æç¯"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "ããŠããã®æã®äžéšã§ããããéæã¡ã§ããããéæã¡ãªãã«çœ®ãæãããšä¿ãåãã®é¢ä¿ã¯æ¬¡ã®ããã«å€ãããŸãã",
"title": "é£æç¯"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "ãã®ãããªä¿ãåãã®æ§é ã¯ã次ã®ãããªã(1)ãš(2)ãšã«ãããã察å¿ãã解éãããããã€å€çŸ©çãªæ(3)ãè¡šçŸãåããããšãå¯èœã«ããŸãã",
"title": "é£æç¯"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "ããã§ãèªç¹(ã)ã®åœ¹å²ã®äžã€ã«è§ŠããŠãããŸãããã(3)ã«æ¬¡ã®ãããªèªç¹ãæã€ãšã解éã¯(1)ã«å¯Ÿå¿ãããã®ã«ç¹å®ãããŸãã",
"title": "é£æç¯"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "ããã¯ãèªç¹ãé£æ¥ããæç¯ã®ä¿ãåãé¢ä¿ããã£ã³ã»ã«ããããã§ãããã®ããã«èãããšãèªç¹ãšã¯(ãšãã©ãèšãããããã§ãã)ããªãããªã£ãããããããæãšãããªããšæã£ãŠæã€ããšãããããªãã®ã§ã¯ãªããæã®æ§é ãæ瀺ããç©æ¥µçãªåããããŠããããšãããããŸãã",
"title": "é£æç¯"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "æãæ§æããæç¯ã»é£æç¯ã«ã¯ãæã®äžã§ããäžå®ã®åããæ
ã£ãŠãããã®ããããŸãããã®ãããªæç¯ãŸãã¯é£æç¯ããæåããšèšããŸãã",
"title": "æã®æå"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "äŸãã°",
"title": "æã®æå"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "ãšããæã¯æ¬¡ã®åã€ã®æåããã§ããŠããŸãã",
"title": "æã®æå"
},
{
"paragraph_id": 22,
"tag": "p",
"text": "ãã®ãã¡ãè¿°éšã¯æã®äžæ žããªãæåãšããããšãã§ããŸã(åæã»è€æã»éæãåç
§)ãè¿°éšã®(é£)æç¯ã¯ä¿®é£Ÿéš(ç¹ã«è£å
æå)ã«ãã修食ãåããŠããã«å€§ããªãè¿°éšçé£æç¯ãäœããŸããè€æãéæã«èŠãããæã«äŒŒãæåã¯ãã®è¿°éšçãªé£æç¯ã§ãã",
"title": "æã®æå"
},
{
"paragraph_id": 23,
"tag": "p",
"text": "è¿°éšãçšèšã§ããå Žåã«ã¯é£çšä¿®é£Ÿã®æåãåããäœèšã§ããå Žåã«ã¯é£äœä¿®é£Ÿã®æåãåãããããã¯æ±ºããŠçŽããŸãããåè©ã¯äœèšã§ããè¿°èªçãªæåã䌎ããšçšèšãšããŠæ¯ãèããŸãã®ã§ããåè©+è¿°èªçèŠçŽ ãã®å
šäœã修食ããæåã¯é£çšä¿®é£Ÿæåã§ããé£äœä¿®é£Ÿã®æåã¯çšèšä»¥å€ã§ã¯å¿
ãé£äœæ Œã®å©è©ãã®ãã䌎ããå€åœ¢äžãé£çšä¿®é£Ÿã®æåãšã¯åºå¥ãããŸãã®ã§ãè¿°éšã®åè©ã ãã修食ããå Žåã¯é£äœä¿®é£Ÿã§ãããã®åºå¥ã¯æ¬¡ã®ãããªæŒ¢èªãµå€åè©ã§ç¢ºèªãããŸãã",
"title": "æã®æå"
},
{
"paragraph_id": 24,
"tag": "p",
"text": "äž»éšã¯ãä¿å©è©ãã¯ããå¯å©è©ã䌎ããäž»é¡ããšåŒã°ããæåããå€ãã®å Žåæ Œå©è©ãããããŸãã¯äžéšæ Œå©è©ãã«ãã䌎ãæ ŒæåããæããŸããä»ã®è¿°éšã®ä¿®é£Ÿæåãšæ¯ã¹ãå Žåãäž»éšã¯æ§æäžã®éç«ã£ãç¹åŸŽã瀺ããŸãã",
"title": "æã®æå"
},
{
"paragraph_id": 25,
"tag": "p",
"text": "ãããã«å ããäžåŠæ ¡ã®åœææ³ã§ã¯ãæ¥ç¶éšããšããæåãæããŠããŸãã ããã«ãæã¯ãè©ããšåŒã°ãã客äœçæåãšãèŸããšåŒã°ããäž»äœçéšåããæãç«ã€ãšèããããŸããããããå
ã¿å
ãŸããšããé¢ä¿ãç¹°ãè¿ãããå
¥ãåæ§é ã(ææèª èš)ããªããŸããææ«ã®â ã¯ãé¶èšå·ããšåŒã°ããèŸã§ãã",
"title": "æã®æå"
},
{
"paragraph_id": 26,
"tag": "p",
"text": "ãã®ãããªæ§é ã¯çæææ³ã§çšãããããã©ãã«ä»ãæ¬åŒ§ä»ããã§è¡šããæ§é ãšã»ãŒçãããã®ã«ãªããŸãã",
"title": "æã®æå"
},
{
"paragraph_id": 27,
"tag": "p",
"text": "æã¯è¿°éšãããã€ããããŠè€æ°ã®å Žåã«ã¯çžäºã«ã©ã®ãããªé¢ä¿ã«ãããã«ãã£ãŠäžã€ã«åé¡ãããŸã(åŠæ ¡ææ³ã§ã¯ãäž»éšãšè¿°éšããšæããŠããŸã)ã è¿°éšãäžã€ã ãæã€æãåæãšãããŸãã",
"title": "åæã»è€æã»éæ"
},
{
"paragraph_id": 28,
"tag": "p",
"text": "è¿°éšãè€æ°ããããããã䞊ç«ã®é¢ä¿ãšãªã£ãŠããæãéæãšãããŸãã",
"title": "åæã»è€æã»éæ"
},
{
"paragraph_id": 29,
"tag": "p",
"text": "è¿°éšãè€æ°ãããé£äœä¿®é£ŸãŸãã¯é£çšä¿®é£Ÿã®é¢ä¿ã«ããæãè€æãšãããŸãã",
"title": "åæã»è€æã»éæ"
},
{
"paragraph_id": 30,
"tag": "p",
"text": "è¿°éšãé£çšåœ¢ãé£çšåœ¢+ãã§ããå Žåã圢ã®äžããã ãã§ã¯äžŠç«ã®é¢ä¿ã修食ã®é¢ä¿ãå€æã§ããªãå ŽåããããŸãã",
"title": "åæã»è€æã»éæ"
},
{
"paragraph_id": 31,
"tag": "p",
"text": "æã¯ãæå
šäœããŸãšããŠèãæã«äŒããæ§åŒã瀺ããé³è¿°ãã®æ§è³ªã«ãã£ãŠåã€ã«åé¡ãããŸãã",
"title": "å¹³åæã»çåæã»åœä»€æã»æåæ"
},
{
"paragraph_id": 32,
"tag": "p",
"text": "ããæ
å ±ã«ã€ããŠæå®ããŠèãæã«äŒããŸãã",
"title": "å¹³åæã»çåæã»åœä»€æã»æåæ"
},
{
"paragraph_id": 33,
"tag": "p",
"text": "ãã®ãããªæããè¯å®æããšèšããŸããããã«å¯Ÿããããæ
å ±ã«ã€ããŠããããæãç«ã£ãŠããªãããšäŒããæããåŠå®æããšèšããŸãã",
"title": "å¹³åæã»çåæã»åœä»€æã»æåæ"
},
{
"paragraph_id": 34,
"tag": "p",
"text": "ææèª èšã®æ§é ã§ã¯ãããŸããããŸãããã®éšåãé³è¿°ã§ããããããäžå¯§ã»æå®ããäžå¯§ã»åŠå®ããè¡šãããååããŠããŸãããã®é³è¿°ããããããå¯å£«å±±ãèŠãããšããéšåãå
ãã§ãŸãšããæã®æ§è³ªã決ããŠããŸãã",
"title": "å¹³åæã»çåæã»åœä»€æã»æåæ"
},
{
"paragraph_id": 35,
"tag": "p",
"text": "次ã®æã¯ãããæ
å ±ã«ã€ããŠããã®å
容ãæç«ãããåŠããèãæã«å°ããæã§ããè«ŸåŠçåæããªã©ã®ããã«åŒã°ããŸãã",
"title": "å¹³åæã»çåæã»åœä»€æã»æåæ"
},
{
"paragraph_id": 36,
"tag": "p",
"text": "ãã®çåæã®ãå¯å£«å±±ãããäœããšããäžå®èªã«çœ®ãæãããã®ã¯ãäžå®èªã®éšåã®æ
å ±ãèãæã«å°ããæã§ããçåèªçåæããªã©ã®ããã«åŒã°ããŸãã",
"title": "å¹³åæã»çåæã»åœä»€æã»æåæ"
},
{
"paragraph_id": 37,
"tag": "p",
"text": "æ¥æ¬èªã§ã¯ãçåèªçåæã次ã®ããã«æé ã«ããå¿
èŠã¯ãããŸããã",
"title": "å¹³åæã»çåæã»åœä»€æã»æåæ"
},
{
"paragraph_id": 38,
"tag": "p",
"text": "çåæã§ã¯é³è¿°ããŸãããããããããå¯å£«å±±/äœãèŠãããšããéšåãå
ãã§ãŸãšããŠããŸãã",
"title": "å¹³åæã»çåæã»åœä»€æã»æåæ"
},
{
"paragraph_id": 39,
"tag": "p",
"text": "åæã¯è¿°éšã®æ§è³ªã«ãã£ãŠåºæ¬çã«ã¯äž»ã«ä»¥äžã®åçš®é¡ã«åé¡ã§ããŸãã",
"title": "åæã®ã¿ã€ã"
},
{
"paragraph_id": 40,
"tag": "p",
"text": "è¿°éšã修食ããè£å
æåã«ãã£ãŠããã«æ§ã
ãªãã¿ã³ããšããŸãã",
"title": "åæã®ã¿ã€ã"
},
{
"paragraph_id": 41,
"tag": "p",
"text": "以äžã®æã¯ç¡é¡æãšãããŸãããã®ãããªåæã®äžã€ã®æç¯ãäž»é¡ã«ããããšã«ãã£ãŠæé¡æãäœãããšãã§ããŸãããã®éãäž»é¡ã¯æã®äžçªã¯ããã«æ¥ãŸã(äž»èªä»¥å€ã§å
ã®äœçœ®ã«ããå Žåã¯ãä»ãšå¯Ÿæ¯ããæå³ã匷ããªããŸã)ã",
"title": "åæã®ã¿ã€ã"
},
{
"paragraph_id": 42,
"tag": "p",
"text": "修食éšã®ãã¡ãè¿°éšãå¿
èŠãšããããããªããšäžè¶³ã ãšæãããããããª(質åãåŒãèµ·ãããããª)ãã®ãè£å
æåãšãããŸãã",
"title": "修食ã®é¢ä¿ïŒè£å
æå"
},
{
"paragraph_id": 43,
"tag": "p",
"text": "è£å
æåã«ã¯åè©å¥ãšåŸå±å¥ããããŸããåè©å¥ã¯æ Œå©è©ã䌎ããŸããåŸå±å¥ã¯åŒçšã®ããšããã£ãŠãã䌎ãå Žåãä¿å©è©ãããã䌎ãå Žåãšã圢åŒåè©ãããšããæºäœå©è©ãã®ãã䌎ã£ãŠåè©å¥çžåœã«ãªãå ŽåããããŸãã",
"title": "修食ã®é¢ä¿ïŒè£å
æå"
},
{
"paragraph_id": 44,
"tag": "p",
"text": "æ Œå©è©ããããã«ã(é£äœä¿®é£Ÿæåã®äžã§ãã®ãã)ã䌎ãäž»éšã¯åç«ããç¹æ§ãæã€è£å
æåã®äžã€ãšèããããŸãã",
"title": "修食ã®é¢ä¿ïŒè£å
æå"
},
{
"paragraph_id": 45,
"tag": "p",
"text": "修食éšã®ãã¡ãæã«ããç¶æ³ã®èª¬æããã詳ããããããã«ä»ãå ãããããå¿
é ã§ã¯ãªãæåã修食æå(ä»å éš)ãšãããŸãã",
"title": "修食ã®é¢ä¿ïŒä¿®é£Ÿæå"
},
{
"paragraph_id": 46,
"tag": "p",
"text": "修食æåã«ã¯ãé£çšä¿®é£Ÿã§ããã«ãé¢ãããè£å
æåã®ä¿®é£Ÿãè¡ããã®ããããŸãã",
"title": "修食ã®é¢ä¿ïŒä¿®é£Ÿæå"
},
{
"paragraph_id": 47,
"tag": "p",
"text": "è£å©ã®é¢ä¿ã«ããçšèšã¯ãäž»éšã®äžå¿ãšãªãè¿°èªã®æå³ãæ§ã
ãªåœ¢ã§è£ããŸãããã®ãããªçšèšãè£å©çšèšãšãããŸãã",
"title": "è£å©ã®é¢ä¿"
},
{
"paragraph_id": 48,
"tag": "p",
"text": "è£å©çšèšãšãããè£å©ããè¿°èªã¯ããããç¬ç«ã®æç¯ã§ä¿å©è©ãå¯å©è©ã䌎ãããšãã§ããŸãããæå³çã«ã¯ã²ãšã€ã®æåã§ãããããèªç¹ãæã£ãããããŒãºãå
¥ããŠèªãã ãããããšã¯ã§ããŸããã",
"title": "è£å©ã®é¢ä¿"
},
{
"paragraph_id": 49,
"tag": "p",
"text": "圢容è©ãåŠå®ããè£å©åœ¢å®¹è©ã¯ç¬ç«ã®æç¯ãæããŸãã",
"title": "è£å©ã®é¢ä¿"
},
{
"paragraph_id": 50,
"tag": "p",
"text": "äžæ¹ã䌌ãé¢ä¿ã§ããåè©ã®åŠå®ã¯ç¬ç«ã®æç¯ãæãããåŠå®ã®å©åè©ãšããŠåè©ã«åŸæ¥ããŠäžæç¯ã圢æããŸããåè©ã®åŠå®åœ¢ã«ä¿å©è©ãå¯å©è©ãå·®ãæãããšããå Žåã«ã¯ãåè©é£çšåœ¢+圢åŒåè©ã+åŠå®å©åè©ãªãããšãã圢ã«ãªããŸãã",
"title": "è£å©ã®é¢ä¿"
},
{
"paragraph_id": 51,
"tag": "p",
"text": "è£å©ã»è¢«è£å©ã®é¢ä¿ã«ããåè©ã«äŒŒãŠãããã®ã®ãçµã³ã€ãã匷ãäžã€ã®èª(è€åèª)ã«ãªã£ããã®ãè€ååè©ãšãããŸããè€ååè©ã¯æç¯ãåããããã«ããããå
¥ããããšã¯ã§ããŸããã",
"title": "è£å©ã®é¢ä¿"
},
{
"paragraph_id": 52,
"tag": "p",
"text": "è£å©çšèšã®ä»£è¡šçãªãã®ã«ã¯äžã«æããåŠå®ã®è£å©åœ¢å®¹è©ã®ä»ãæå®ã®è£å©åè©ãããã(ãåè©+ã§ãã«ç¶ã)ããã¢ã¹ãã¯ãããšããæéã«é¢ããæå³ãæã€ãã®(ãåè©é£çšåœ¢+ãŠ+ããŸã(ã¡ãã)ããªã©)ãå©çã®ç§»åã«é¢ãããã®(ãåè©é£çšåœ¢+ãŠ+ãããããªã©)ããªã©ããããŸãã",
"title": "è£å©ã®é¢ä¿"
},
{
"paragraph_id": 53,
"tag": "p",
"text": "䞊ç«ã®é¢ä¿ãé£äœçãªãã®ãšé£çšçãªãã®ããããŸãã",
"title": "䞊ç«ã®é¢ä¿"
},
{
"paragraph_id": 54,
"tag": "p",
"text": "é£äœçãªäžŠç«æç¯ãä»ã®äžŠç«æç¯ãšãŸãšããããŠé£çšä¿®é£Ÿã®é£æç¯ãšãªãå Žåãé£çšåœ¢ã«ãªããŸãã",
"title": "䞊ç«ã®é¢ä¿"
},
{
"paragraph_id": 55,
"tag": "p",
"text": "è€æ°åœ¢ã¯ããæå³ã§äžŠç«è¡šçŸã®çž®çŽãšèŠãããšãã§ããŸãããè±èªã§ã¯-sãã€ããè€æ°åœ¢ã§ã¯the student A and student Bã®ãããªãã®ãthe studentsãšããŠè¡šããããã«ã¯ä»ã®ã¿ã€ãã®ã²ãšã¯å«ãŸããªãã®ã«ããããŠãæ¥æ¬èªã®ãéãã§ã¯ãåŠçAãšåŠçBãšãã®ä¿è·è
ãã®ãããªãã®ããåŠçéããšããããšãã§ããŸãã",
"title": "䞊ç«ã®é¢ä¿"
},
{
"paragraph_id": 56,
"tag": "p",
"text": "ãæ Œã®æç¯ã¯ãå§å©ããããçµå©ãããã§ã¯è£å
æåãšããŠé£çšä¿®é£Ÿã®é¢ä¿ã«ããããã§ãããåæã«ãäž»éšãšäžŠç«ã®é¢ä¿ã«ãããšãèŠãããšãã§ããŸãã",
"title": "䞊ç«ã®é¢ä¿"
},
{
"paragraph_id": 57,
"tag": "p",
"text": "ãŸããäºçªç®ã®å©æããšãã眮ãã眮ããªããã§æ¬¡ã®ãããªéããçŸããŸãã",
"title": "䞊ç«ã®é¢ä¿"
},
{
"paragraph_id": 58,
"tag": "p",
"text": "",
"title": "䞊ç«ã®é¢ä¿"
},
{
"paragraph_id": 59,
"tag": "p",
"text": "åæçžåœã®ãã®(ç¯)ã¯è£å
æåãšããŠæã«åã蟌ãŸããŠè€æãäœãããšãã§ããã",
"title": "è€æãšäžå€®åã蟌ã¿"
},
{
"paragraph_id": 60,
"tag": "p",
"text": "ãã®ããšã¯æãèªç±ã«é·ãäœãããšãã§ããããšãä¿èšŒãããããããç¹°ãè¿ããšéåžžã«ãããã«ããæã«ãªãã",
"title": "è€æãšäžå€®åã蟌ã¿"
},
{
"paragraph_id": 61,
"tag": "p",
"text": "ãã®æã®ãããã«ããã®åå ã¯ã次ã®ããã«äž»éšãšè¿°éšã®éã«è£å
æåã§ããç¯ã次ã
ã«åã蟌ãã ãäžå€®åã蟌ã¿ããšããæ§é ã«ãªã£ãŠããããšã«ããã",
"title": "è€æãšäžå€®åã蟌ã¿"
},
{
"paragraph_id": 62,
"tag": "p",
"text": "ãã®ãããã«ããã解æ¶ããæ¹æ³ãšããŠãã²ãšã€ã«ã¯äž»éšã®åŸã«èªç¹ãæã€ããšããæ¹æ³ãããã",
"title": "è€æãšäžå€®åã蟌ã¿"
},
{
"paragraph_id": 63,
"tag": "p",
"text": "ãããããã ãåã蟌ã¿ãç¹°ãè¿ããšèªç¹ã ãã§ã¯ãããã«ãããåé¿ã§ããªãããã®ãããªå Žåã被修食æåã§ããè¿°éšã®çŽåã«äž»éšãæã£ãŠãããšããæ¹æ³ãããã",
"title": "è€æãšäžå€®åã蟌ã¿"
},
{
"paragraph_id": 64,
"tag": "p",
"text": "äž»éšãè¿°éšã®è¿ãã«æã£ãŠãããšããæ¹æ³ã¯ããçãæã§ã解éãããããå¢ãè¯ãæ¹æ³ã§ããã",
"title": "è€æãšäžå€®åã蟌ã¿"
},
{
"paragraph_id": 65,
"tag": "p",
"text": "",
"title": "è€æãšäžå€®åã蟌ã¿"
},
{
"paragraph_id": 66,
"tag": "p",
"text": "",
"title": "è€æãšäžå€®åã蟌ã¿"
},
{
"paragraph_id": 67,
"tag": "p",
"text": "æ¥æ¬èªã®åºæ¬èªé ã¯æ¬¡ã®ãããªãã®ãšèããããŸãã",
"title": "æ¥æ¬èªã®èªé ã¯èªç±ãªã®ã"
},
{
"paragraph_id": 68,
"tag": "p",
"text": "ãšããã§ã次ã®ããã«èªé ãå
¥ãæããå Žåãããããããããæ¥æ¬èªã®èªé ã¯èªç±ã ããšèšãããŸãã",
"title": "æ¥æ¬èªã®èªé ã¯èªç±ãªã®ã"
},
{
"paragraph_id": 69,
"tag": "p",
"text": "ãããã次ã®ãããªèªé ã¯èš±ãããŸããã",
"title": "æ¥æ¬èªã®èªé ã¯èªç±ãªã®ã"
},
{
"paragraph_id": 70,
"tag": "p",
"text": "ãŸãè¿°éšã®åŸã«é£çšæåãããããšãäž»ç¯ã§ã¯å¯èœã§ãããåŸå±ç¯ã§ã¯äžå¯èœã§ãã",
"title": "æ¥æ¬èªã®èªé ã¯èªç±ãªã®ã"
},
{
"paragraph_id": 71,
"tag": "p",
"text": "次ã®ãããªéåè¡šçŸã§ã¯ãèªé ãå€ãããšè§£éãå€ãããŸãã",
"title": "æ¥æ¬èªã®èªé ã¯èªç±ãªã®ã"
},
{
"paragraph_id": 72,
"tag": "p",
"text": "ãã®ãããªããšãããèªé ã®äº€æ¿ã¯ããæåã®æé ãžã®å眮(ã¹ã¯ã©ã³ããªã³ã°)ã§ããããã®å眮ã¯äžå®ã®å¶çŽã«åŸããšèããããŸãã",
"title": "æ¥æ¬èªã®èªé ã¯èªç±ãªã®ã"
},
{
"paragraph_id": 73,
"tag": "p",
"text": "éæã§ã¯ãå
±éããæåãçç¥ãããå ŽåããããäŸãã°",
"title": "çç¥ã¯èªç±ãªã®ãïŒéæãšçç¥"
},
{
"paragraph_id": 74,
"tag": "p",
"text": "ãšããäºã€ã®åæãäžã€ã®éæã«ããå Žåã",
"title": "çç¥ã¯èªç±ãªã®ãïŒéæãšçç¥"
},
{
"paragraph_id": 75,
"tag": "p",
"text": "ãšãèšããã",
"title": "çç¥ã¯èªç±ãªã®ãïŒéæãšçç¥"
},
{
"paragraph_id": 76,
"tag": "p",
"text": "ãšããããã«ãå
±éãããè²·ã£ãŠããããäžã€ã«ãŸãšããããšãã§ããã ãŸãã",
"title": "çç¥ã¯èªç±ãªã®ãïŒéæãšçç¥"
},
{
"paragraph_id": 77,
"tag": "p",
"text": "ã§ã¯ã",
"title": "çç¥ã¯èªç±ãªã®ãïŒéæãšçç¥"
},
{
"paragraph_id": 78,
"tag": "p",
"text": "ãšããããã«ä»£çšè¡šçŸã®ããããã䜿ãããšãã§ããã",
"title": "çç¥ã¯èªç±ãªã®ãïŒéæãšçç¥"
},
{
"paragraph_id": 79,
"tag": "p",
"text": "ãšããããã«ãŸãšããããšãã§ããã ãŸã",
"title": "çç¥ã¯èªç±ãªã®ãïŒéæãšçç¥"
},
{
"paragraph_id": 80,
"tag": "p",
"text": "ã",
"title": "çç¥ã¯èªç±ãªã®ãïŒéæãšçç¥"
},
{
"paragraph_id": 81,
"tag": "p",
"text": "ãšä»£çšè¡šçŸããããããã䜿ãããšãã§ããã",
"title": "çç¥ã¯èªç±ãªã®ãïŒéæãšçç¥"
},
{
"paragraph_id": 82,
"tag": "p",
"text": "ãšãŸãšããããšãã§ãããããã",
"title": "çç¥ã¯èªç±ãªã®ãïŒéæãšçç¥"
},
{
"paragraph_id": 83,
"tag": "p",
"text": "ã",
"title": "çç¥ã¯èªç±ãªã®ãïŒéæãšçç¥"
},
{
"paragraph_id": 84,
"tag": "p",
"text": "ãšèšãããšã¯ã§ããªãã ãªããäžã®ãããªçç¥ã§",
"title": "çç¥ã¯èªç±ãªã®ãïŒéæãšçç¥"
},
{
"paragraph_id": 85,
"tag": "p",
"text": "ãçç¥ããŠ",
"title": "çç¥ã¯èªç±ãªã®ãïŒéæãšçç¥"
},
{
"paragraph_id": 86,
"tag": "p",
"text": "ãšããæã«ã¯ã倪éãšæ¬¡éã¯ããããèªåã®ãã£ã¢ã³ã»ã«ãã¹ãããšãã解éãšã次éã倪éã®ãã£ã¢ã³ã»ã«ãã¹ãããšãã解éã®äºéããããã",
"title": "çç¥ã¯èªç±ãªã®ãïŒéæãšçç¥"
},
{
"paragraph_id": 87,
"tag": "p",
"text": "åèæç®:",
"title": "çç¥ã¯èªç±ãªã®ãïŒéæãšçç¥"
},
{
"paragraph_id": 88,
"tag": "p",
"text": "次ã®æã§ã¯ãçç¥ãšäžèŠäŒŒãŠãããæ§è³ªã®ç°ãªããããªæåã®ãªããªãæ¹ãèŠãããã",
"title": "çç¥ã¯èªç±ãªã®ãïŒè€æãšåäžåè©å¥åé€"
},
{
"paragraph_id": 89,
"tag": "p",
"text": "ãã®æã¯è€æã§ããããã¡ããã©æ¬¡ã®äºã€ã®åæãçµã¿åããããããªããã¡ãããŠããã",
"title": "çç¥ã¯èªç±ãªã®ãïŒè€æãšåäžåè©å¥åé€"
},
{
"paragraph_id": 90,
"tag": "p",
"text": "ããããã®å Žåãéæã«èŠãããçç¥ãšã¯ç°ãªãã代çšè¡šçŸã®åºçŸã¯äžå¯èœã§ããã",
"title": "çç¥ã¯èªç±ãªã®ãïŒè€æãšåäžåè©å¥åé€"
},
{
"paragraph_id": 91,
"tag": "p",
"text": "ãã®ãããªè€æã§ã¯ã察å¿ããäºã€ã®åæã®äž»éšã®ãã¡ã®çæ¹ãå¿
ããªããªããªããã°ãªããªãããã®ãããªãã®ãåäžåè©å¥åé€ãšããã åäžåè©å¥åé€ã¯ãAé¡åŸå±å¥ãšåŒã°ããåŸå±å¥ã§ã¯äžè¬ã«èŠããããŸãã䜿圹æãªã©ã«ãèŠããããšèããããã Aé¡åŸå±å¥ã«ã¯æ Œå©è©ãããã䌎ãäž»éšãçŸããªãããšäžèŠç¹åŸŽä»ããããšãã§ãããã ããããã¯æ£ãããªããäŸãã°ã身äœã®å
šäœãŒéšåã®é¢ä¿ã«ããäž»éšãè€æ°çŸãããããªåæãããšã«ããå Žåã äžã€ã®äž»éšã ããæ¶ããã",
"title": "çç¥ã¯èªç±ãªã®ãïŒè€æãšåäžåè©å¥åé€"
},
{
"paragraph_id": 92,
"tag": "p",
"text": "次ã®æãèããŠã¿ããã",
"title": "è€æïŒå¯èœæ"
},
{
"paragraph_id": 93,
"tag": "p",
"text": "ãã®æã¯å€çŸ©çã§ãããäžã€ã®è§£éã¯ãå³ãå·Šã®ã©ã¡ãããã€ããããšããŠãã§ããªãããšãã解éã§ãããããäžã€ã®è§£éã¯ãç®ãã€ããããšãããšã©ãããŠãäž¡ç®ãã€ãã£ãŠããŸãããšãã解éã§ããããã®æã®ãçç®ã ããã«æ Œå©è©ã®ããããããããã€ãããšã解éãåè
ãåŸè
ãã«å®ãŸãã",
"title": "è€æïŒå¯èœæ"
},
{
"paragraph_id": 94,
"tag": "p",
"text": "ããã¯å¯å©è©ãã ãããšåŠå®ã®å©åè©ããªããã®é¢ä¿ã®çµã³æ¹ãé¢ãããããã§ãŸãåé¡ã«ããŠããæãè€æã§ããã次ã®ãããªåæãçµã¿åããããããªãã®ã§ããããšããç¹ã«æ³šç®ãããã",
"title": "è€æïŒå¯èœæ"
},
{
"paragraph_id": 95,
"tag": "p",
"text": "ãããããã®ãŸãŸçµã¿åããããšæ¬¡ã®ããã«ãªãã",
"title": "è€æïŒå¯èœæ"
},
{
"paragraph_id": 96,
"tag": "p",
"text": "ãã®æã®äž»éšã«åäžåè©å¥åé€ãèµ·ããã次ã®ããã«ãªãã",
"title": "è€æïŒå¯èœæ"
},
{
"paragraph_id": 97,
"tag": "p",
"text": "ãã®æã«ãããã«ããã²ãšã€ããçç®ã ãããšããåäžã®åè©å¥ãåé€ãããªããã°ãªããªããããããã䌎ãåè©å¥ãæ®ã£ãå Žåããã§ããªããã®é£çšä¿®é£Ÿæåãšãªãã",
"title": "è€æïŒå¯èœæ"
},
{
"paragraph_id": 98,
"tag": "p",
"text": "äžæ¹ãããã䌎ãåè©å¥ãæ®ã£ãå Žåããã€ãããã®é£çšä¿®é£Ÿæåãšãªãã",
"title": "è€æïŒå¯èœæ"
},
{
"paragraph_id": 99,
"tag": "p",
"text": "詳现ã¯ããã§ã¯çãããäž¡è
ã®ãã¡ããã€ãããã®é£çšä¿®é£Ÿæåã®å Žåã«ãçç®ã ããããªã=äž¡ç®ããšãã解éã«ãªãã ããŠã以äžã®è©±ã¯å¯èœã®å©åè©ãæã€æ¬¡ã®ãããªå Žåã«ããã®ãŸãŸããŠã¯ãŸãã",
"title": "è€æïŒå¯èœæ"
},
{
"paragraph_id": 100,
"tag": "p",
"text": "ãã®ãããªæã¯åæã®ããã«èŠãããã解éã®ç¹æ§ãèžãŸãããšè€æãšèããããšãã§ããããŸããäŒçµ±çã«å¯èœã®e/rareã¯ä»ã®å©åè©ãšåãã«ããŽãªãŒã«å«ããããŠããã®ããææèª èšã¯åè©ãšåããè©ãã«æå±ãå€æŽãããããå¯èœã®å©åè©ãèªç«ããè¿°éšãšåãããã«è€æãæ§æããç¹ã¯ãã®èããšæãåããããã",
"title": "è€æïŒå¯èœæ"
}
] | æ¥æ¬èªã®æ§æè«ã«ã€ããŠã®æŠç¥ãè¿°ã¹ãã | æ¥æ¬èªã®æ§æè«ã«ã€ããŠã®æŠç¥ãè¿°ã¹ãã
==æãšã¯äœã==
ææ³ãšã¯æãå®çŸ©ããä»çµã¿ã§ãããææ³ã«ã¯äºã€ã®æå³ããããšããèšããããäžã€ã¯æ¯èªè©±è
ã«åããææ³ã§ãããããäžã€ã¯ãã®ã¢ãã«ã§ãããã¢ãã«ãšããŠã®ææ³ã劥åœã§ãããªãã°ããã®ææ³ã¯æ¯èªè©±è
ã«æ¿ãã£ãŠæãå®çŸ©ããã以äžã§æ±ãã®ã¯ã¢ãã«ãšããŠã®ææ³ã§ãããæ¥æ¬ã§ã¯çŸ©åæè²ã§æ¥æ¬èªã®ææ³ãæããããã®ææ³ã¯äžè¬ã«ãåœææ³ããšåŒã°ããã以äžãåœææ³ãäžæ·ãã«ããŠãå¿
èŠã«å¿ããŠçè«èšèªåŠã®æŠå¿µãå ããŠãããææ³ã«ãã£ãŠãããèšå·åã¯æã§ãããéæ ã§ããããå€å¥ãããããã®ããã«å€å¥ãããæãšãããã®ãäºãç¹åŸŽä»ããããšã¯é£ãããææ³ãåºæ¥äžãããšãããã«ãã£ãŠæãç¹åŸŽä»ããããããããæ¯èªè©±è
ã¯æ¯èªã«ã€ããŠã®çŽèŠ³ãæã¡ãããèšå·åãæã§ãããšå€å¥ããããšãã§ãããææ³ãšã¯ããªãã¡ãã®çŽèŠ³ã®èšè¿°ã§ãããæ¯èªè©±è
ãæã§ãããšèªå®ããèšå·åã¯ãæžèšèšèªã«ãããŠã¯å¥ç¹ïŒãïŒãããªãªãã§çµããããšã§äŸ¿å®äžãããšæ瀺ããããšãã§ããã
==æ§é ãšæç¯==
ãæã¯æ§é ãæã€ãæ¯èªè©±è
ãæãç解ããã®ã¯ãã®æã«æ§é ãåœãŠåµãããšããè¡çºã§ãããäœæãçºè©±ãããšããã®ã¯æ§é ãæåãé³çŽ ã®çµã¿åããã«æ圱ãããšããè¡çºã§ãããææ³ã¯ãæã®æ§é ãå®çŸ©ããé©æ Œãªæ§é ãäžé©åãªæ§é ããåºå¥ã§ããªããã°ãªããªãã
ãææ³ã¯æã®æ§é ã«é¢ããŠãåå§èšå·ãšçµã¿åããæ¹ãå®çŸ©ãããæã®åå§èšå·ã¯èªã§ãããå³å¯ã«ã¯èªããå°ããåäœã§ããæ¥èŸãªã©ã®åœ¢æ
çŽ ãå«ãŸãããåœææ³ã§æ§é ãè¡šãæ¹æ³ã«ã¯æç¯ãçšãããã®ãšå
¥ååæ§é ãããã矩åæè²ãåããè
ã«ã¯æç¯ã銎æã¿æ·±ããšããã¡ãªãããããããæ§é 衚瀺ã®æ£ç¢ºããšããç¹ã§ã¯å
¥ååæ§é ã®æ¹ãããããŠãããäž¡è
ãçšéã«ãã£ãŠäœ¿ãåããããšã«ããã
ãææ³ã¯åå§èšå·ãšæ§é ãå®çŸ©ãããæ§é ãè¡šãæ¹æ³ã«ã¯æç¯ãçšãããã®ãšå
¥ååæ§é ãããã矩åæè²ãåããè
ã«ã¯æç¯ã銎æã¿æ·±ããšããã¡ãªãããããããæ§é 衚瀺ã®æ£ç¢ºããšããç¹ã§ã¯å
¥ååæ§é ã®æ¹ãããããŠãããäž¡è
ãçšéã«ãã£ãŠäœ¿ãåããããšã«ããã
ãæã¯æç¯ããæ§æããããæç¯ã¯èªç«èªãæ žãšããŠä»»æã«ä»å±èªã䌎ãã
:; æç¯ = èªç«èªâä»å±èª
:;æç¯ = èªç«èª
ãè€æ°ã®æç¯ã¯é£æç¯ãæ§æãããæç¯èªäœã¯ããèªäœã®ããªãã¢ã«ãªé£æç¯ãšããããšãã§ãããããããªããé£æç¯ã®æ倧ã®ãã®ãæã§ããã矩åæè²ã§ã¯åŒ·èª¿ãããªãããé£æç¯ã¯éèŠã§ããã
:;æç¯
:;é£æç¯ïŒâ
âæç¯ââ
ãæç¯âæç¯ãæç¯âæç¯âæç¯ããªã©
:;æ倧ã®é£æç¯ =def æ
ã修食é¢ä¿ãšè£å©é¢ä¿ã¯ååãšããŠé£æç¯ã«ãã£ãŠå®çŸ©ãããã
:;é£æç¯ Î±, β ã«ãããŠãαâβ ãªã㰠α 㯠β ã修食ããã
:;é£æç¯ Î±, β ã«ãããŠãαâβ ãªã㰠β 㯠α ãè£å©ããã
ãé£æç¯ã®æ§é ã¯éå±€æ§é ããªããæç¯ãšæç¯ãé£æç¯ããªãããŸãé£æç¯ãšé£æç¯ãæ°ããªé£æç¯ããªããæ倧ã®é£æç¯ã§ããæã圢æããããŸã§å埩ããã
äžã®æã®ç¢ºå®æ¹æ³ã«åŸããš
:;ãéæã¡ã§ãã²ãšã«èŠªåãªç·ãè¿ã¥ããŠãããã
ã¯æ¥æ¬èªã®æã ãšå€å®ããããšãã§ããŸãããã®ãããªæã¯ãæç¯ããšåŒã°ããèŠçŽ ãéãŸã£ãŠäœãããŠããŸããæç¯ã¯ã次ã®||ã§åºåããšããïŒåŠæ ¡ã§ã¯ããããå
¥ãããšæããïŒã§æç¯ã«åããããŸãã
:;ãéæã¡ã§||ã²ãšã«||芪åãª||ç·ã||è¿ã¥ããŠ||ããã
ãã®ãããªæç¯ã®å¢çéšåã¯ãä»ã«ãã»ãããããã®ãŒããªã©ã®èŠçŽ ïŒç¬ç«éšã®äžçš®ïŒãå·®ãæãããšãã§ããäœçœ®ã§ãããæå³ã®ãŸãšãŸããšå¥ã®ãŸãšãŸãã®åãç®ã«ãªã£ãŠããŸãã
:;ïŒã»ã/ãã®ãŒïŒãéæã¡ã§ïŒã»ã/ãã®ãŒïŒã²ãšã«ïŒã»ã/ãã®ãŒïŒèŠªåãªïŒã»ã/ãã®ãŒïŒç·ãïŒã»ã/ãã®ãŒïŒè¿ã¥ããŠïŒã»ã/ãã®ãŒïŒããã
ãã®ããã«ãããããæç¯ã¯ãç¬ç«éšãé€ããŠãä»ã®æç¯ãšäžå®ã®é¢ä¿ãçµãã§ããŸãããããã®é¢ä¿ã¯ã修食ã®é¢ä¿ã䞊ç«ã®é¢ä¿ãè£å©ã®é¢ä¿ã«åããããŸãïŒä¿®é£Ÿéšãé修食éšåã«èŠæ±ããããè£å
æåããšããã§ãªãã修食æåãã«åããèãæ¹ãããïŒã
;修食ã®é¢ä¿
;;芪åãªç·
;;ãŒãŒâšâŠ
;䞊ç«ã®é¢ä¿
;;ãéæã¡ã§èŠªåãª
;;ãŒãŒãŒãŒâšâŠãŒãŒ
;è£å©ã®é¢ä¿
;;è¿ã¥ããŠæ¥ã
;;ãŒãŒãŒâšâŠãŒ
ãããã®ãã¡ã修食ã®é¢ä¿ãšè£å
ã®é¢ä¿ã¯ããããæç¯ãšãããæç¯ãšã®é¢ä¿ã§ã修食ã®é¢ä¿ã§ã¯ãããæç¯ãåã«æ¥ãŠãè£å
ã®é¢ä¿ã§ã¯ãããæç¯ãåŸã«æ¥ãŸãã
==é£æç¯==
äžã«æãããããªé¢ä¿ã«ãã£ãŠæç¯ã¯ãã倧ããªãé£æç¯ããæ§æããŸãã
é£æç¯ã¯åç¬ã®æç¯ãšåãããã«ä»ã®æç¯ãšäžå®ã®é¢ä¿ãçµã³ãããã«å€§ããªé£æç¯ãæ§æããŸããæã倧ããªé£æç¯ã¯æã§ãããã®ç¹ã¯äžåŠé«æ ¡ã®åœææ³ã§ã¯è»œèŠãããã¡ãªããã§ããä¿ãåãã®é¢ä¿ããã£ãšãå°ããªæç¯çžäºã®é¢ä¿ããå§ããæ倧ã®é£æç¯ã§ããæãŸã§å®å
šã«è¡ããæã®æ§é ãå
šäœçã«ç解ããŠããããšã倧äºã§ãã
ãã¡ãããããåžžã«å¿
èŠã§ããããã§ã¯ãªãããããããæã®ãããããçŽãããšãããšããªã©ã«ã¯å¿
èŠãªä¿ãåãã®é¢ä¿ã ããåãåºãã°ããã®ã§ããããã®æã«ããæ確ã«ç€ºãããéšå以å€ã®æ§é ã«é
æ
®ããŠããããšã倧äºã§ãã
äžã§æããæãæå°ã®ä¿ãåãããã¯ãããŠãæ倧ã®é£æç¯ã§ããæãŸã§ç¶ãããã®ã次ã®æ§é ã§ãã
;;ãéæã¡ã§ã²ãšã«èŠªåãªç·ãè¿ã¥ããŠããã...(1)
;;ãŒãŒãŒãŒâšâŠãŒãŒãŒãŒãŒïŒäžŠç«ïŒ
;;ãŒãŒãŒãŒãŒãŒãŒãŒãŒãŒâšâŠãŒïŒä¿®é£Ÿã»è¢«ä¿®é£ŸïŒ
;;ãŒãŒãŒãŒãŒãŒãŒãŒãŒãŒãŒãŒâšâŠãŒãŒãŒãŒãŒãŒïŒäž»éšé£æç¯ã«ããé£çšä¿®é£ŸïŒ
;;ãŒãŒãŒãŒãŒãŒãŒãŒãŒãŒãŒãŒãŒãŒãŒãŒãŒãŒãŒãŒïŒæ倧ã®é£æç¯ïŒæïŒ
ããŠããã®æã®äžéšã§ããããéæã¡ã§ããããéæã¡ãªãã«çœ®ãæãããšä¿ãåãã®é¢ä¿ã¯æ¬¡ã®ããã«å€ãããŸãã
;;ãéæã¡ãªã²ãšã«èŠªåãªç·ãè¿ã¥ããŠããã...(2)
;;ãŒãŒãŒãŒâšâŠãŒãŒïŒçŽè¿ã®åè©ãé£äœä¿®é£ŸïŒ
;;ãŒãŒãŒãŒãŒãŒãŒâšâŠãŒãŒïŒè€æçãªé£æç¯ã«ããé£çšä¿®é£ŸïŒ
;;ãŒãŒãŒãŒãŒãŒãŒãŒãŒãŒâšâŠãŒ
 ãã®ãããªä¿ãåãã®æ§é ã¯ã次ã®ãããªã(1)ãš(2)ãšã«ãããã察å¿ãã解éãããããã€å€çŸ©çãªæ(3)ãè¡šçŸãåããããšãå¯èœã«ããŸãã
;;ãéæã¡ã®ã²ãšã«èŠªåãªç·ãè¿ã¥ããŠãããâŠ(3)
ããã§ãèªç¹ïŒãïŒã®åœ¹å²ã®äžã€ã«è§ŠããŠãããŸãããã(3)ã«æ¬¡ã®ãããªèªç¹ãæã€ãšã解éã¯(1)ã«å¯Ÿå¿ãããã®ã«ç¹å®ãããŸãã
;;ãéæã¡ã®ãã²ãšã«èŠªåãªç·ãè¿ã¥ããŠãããã
;;ãŒãŒãŒãŒâš X âŠãŒãŒïŒçŽè¿åè©ã®é£äœä¿®é£Ÿããã£ã³ã»ã«ïŒ
;;ãŒãŒãŒãŒâš   âŠãŒãŒãŒãŒãŒïŒäžŠç«ïŒ
ããã¯ãèªç¹ãé£æ¥ããæç¯ã®ä¿ãåãé¢ä¿ããã£ã³ã»ã«ããããã§ãããã®ããã«èãããšãèªç¹ãšã¯ïŒãšãã©ãèšãããããã§ããïŒããªãããªã£ãããããããæãšãããªããšæã£ãŠæã€ããšãããããªãã®ã§ã¯ãªããæã®æ§é ãæ瀺ããç©æ¥µçãªåããããŠããããšãããããŸãã
==æã®æå==
æãæ§æããæç¯ã»é£æç¯ã«ã¯ãæã®äžã§ããäžå®ã®åããæ
ã£ãŠãããã®ããããŸãããã®ãããªæç¯ãŸãã¯é£æç¯ããæåããšèšããŸãã
äŸãã°
:;ãã£ããã¡ã®åãéè·¯ã§éãã§ããïŒ
ãšããæã¯æ¬¡ã®åã€ã®æåããã§ããŠããŸãã
;;ç¬ç«éšïŒãã£ïŒã»äž»éšïŒãã¡ã®åãïŒã»ä¿®é£ŸéšïŒéè·¯ã§ïŒã»è¿°éšïŒéãã§ããïŒ
ãã®ãã¡ãè¿°éšã¯æã®äžæ žããªãæåãšããããšãã§ããŸãïŒåæã»è€æã»éæãåç
§ïŒãè¿°éšã®ïŒé£ïŒæç¯ã¯ä¿®é£ŸéšïŒç¹ã«è£å
æåïŒã«ãã修食ãåããŠããã«å€§ããªãè¿°éšçé£æç¯ãäœããŸããè€æãéæã«èŠãããæã«äŒŒãæåã¯ãã®è¿°éšçãªé£æç¯ã§ãã
è¿°éšãçšèšã§ããå Žåã«ã¯é£çšä¿®é£Ÿã®æåãåããäœèšã§ããå Žåã«ã¯é£äœä¿®é£Ÿã®æåãåãããããã¯æ±ºããŠçŽããŸãããåè©ã¯äœèšã§ããè¿°èªçãªæåã䌎ããšçšèšãšããŠæ¯ãèããŸãã®ã§ããåè©ïŒè¿°èªçèŠçŽ ãã®å
šäœã修食ããæåã¯é£çšä¿®é£Ÿæåã§ããé£äœä¿®é£Ÿã®æåã¯çšèšä»¥å€ã§ã¯å¿
ãé£äœæ Œã®å©è©ãã®ãã䌎ããå€åœ¢äžãé£çšä¿®é£Ÿã®æåãšã¯åºå¥ãããŸãã®ã§ãè¿°éšã®åè©ã ãã修食ããå Žåã¯é£äœä¿®é£Ÿã§ãããã®åºå¥ã¯æ¬¡ã®ãããªæŒ¢èªãµå€åè©ã§ç¢ºèªãããŸãã
:;æ·±ãå€æãå匷ããïŒãæ·±ãããå€æãïŒé£çšä¿®é£ŸïŒ
:;å€æã®æ·±ãå匷ãããïŒãå€æããæ·±ããïŒé£äœä¿®é£ŸïŒ
äž»éšã¯ãä¿å©è©ãã¯ããå¯å©è©ã䌎ããäž»é¡ããšåŒã°ããæåããå€ãã®å Žåæ Œå©è©ãããããŸãã¯äžéšæ Œå©è©ãã«ãã䌎ãæ ŒæåããæããŸããä»ã®è¿°éšã®ä¿®é£Ÿæåãšæ¯ã¹ãå Žåãäž»éšã¯æ§æäžã®éç«ã£ãç¹åŸŽã瀺ããŸãã
ãããã«å ããäžåŠæ ¡ã®åœææ³ã§ã¯ãæ¥ç¶éšããšããæåãæããŠããŸãã
Â
ããã«ãæã¯ãè©ããšåŒã°ãã客äœçæåãšãèŸããšåŒã°ããäž»äœçéšåããæãç«ã€ãšèããããŸããããããå
ã¿å
ãŸããšããé¢ä¿ãç¹°ãè¿ãããå
¥ãåæ§é ãïŒææèª èšïŒããªããŸããææ«ã®â ã¯ãé¶èšå·ããšåŒã°ããèŸã§ãã
:;[[[ãã¡]ã®>å]ã> [éè·¯]ã§> [éã]ã§>ãã]â >
ãã®ãããªæ§é ã¯çæææ³ã§çšãããããã©ãã«ä»ãæ¬åŒ§ä»ããã§è¡šããæ§é ãšã»ãŒçãããã®ã«ãªããŸãã
:;[<sub>CP</sub> [<sub>IP</sub> [<sub>NP</sub>[<sub>NP</sub>ãã¡ã®]åã] [<sub>I'</sub>[<sub>VP</sub>[<sub>PP</sub>éè·¯ã§] [<sub>V</sub>éãã§ã]] [<sub>Infl</sub>ã]] [<sub>Comp</sub> 0]]
==åæã»è€æã»éæ==
æã¯è¿°éšãããã€ããããŠè€æ°ã®å Žåã«ã¯çžäºã«ã©ã®ãããªé¢ä¿ã«ãããã«ãã£ãŠäžã€ã«åé¡ãããŸãïŒåŠæ ¡ææ³ã§ã¯ãäž»éšãšè¿°éšããšæããŠããŸãïŒã
è¿°éšãäžã€ã ãæã€æãåæãšãããŸãã
;;éšãéã£ãŠãã
è¿°éšãè€æ°ããããããã䞊ç«ã®é¢ä¿ãšãªã£ãŠããæãéæãšãããŸãã
;;éšãéã颚ãå¹ããŠãã
;;ãŒãŒãŒâšâŠãŒãŒãŒãŒãŒãŒ
è¿°éšãè€æ°ãããé£äœä¿®é£ŸãŸãã¯é£çšä¿®é£Ÿã®é¢ä¿ã«ããæãè€æãšãããŸãã
;;éªããµãïŒãšããïŒäºå ±ãåºãŠãã
;;ãŒãŒãŒãŒãŒãŒãŒãŒâšâŠãŒãŒïŒé£äœä¿®é£ŸïŒ
;;éªãéã£ãŠå·ã蟌ãã§ãã
;;ãŒãŒãŒãŒâšâŠãŒãŒãŒãŒãŒãŒïŒé£çšä¿®é£ŸïŒ
è¿°éšãé£çšåœ¢ãé£çšåœ¢ïŒãã§ããå Žåã圢ã®äžããã ãã§ã¯äžŠç«ã®é¢ä¿ã修食ã®é¢ä¿ãå€æã§ããªãå ŽåããããŸãã
==å¹³åæã»çåæã»åœä»€æã»æåæ==
æã¯ãæå
šäœããŸãšããŠèãæã«äŒããæ§åŒã瀺ããé³è¿°ãã®æ§è³ªã«ãã£ãŠåã€ã«åé¡ãããŸãã
;å¹³åæ
ããæ
å ±ã«ã€ããŠæå®ããŠèãæã«äŒããŸãã
:;ããããã¯å¯å£«å±±ãèŠããŸã
ãã®ãããªæããè¯å®æããšèšããŸããããã«å¯Ÿããããæ
å ±ã«ã€ããŠããããæãç«ã£ãŠããªãããšäŒããæããåŠå®æããšèšããŸãã
:;ããããã¯å¯å£«å±±ãèŠããŸãã
ææèª èšã®æ§é ã§ã¯ãããŸããããŸãããã®éšåãé³è¿°ã§ããããããäžå¯§ã»æå®ããäžå¯§ã»åŠå®ããè¡šãããååããŠããŸãããã®é³è¿°ããããããå¯å£«å±±ãèŠãããšããéšåãå
ãã§ãŸãšããæã®æ§è³ªã決ããŠããŸãã
:;[ããããã¯å¯å£«å±±ãèŠã]ãŸã>
:;[ããããã¯å¯å£«å±±ãèŠã]ãŸãã>
:;[<sub>CP</sub> [<sub>IP</sub> ããããã¯å¯å£«å±±ãèŠã]-[<sub>Comp</sub>Pol-Neg-Mod]]
;çåæ
次ã®æã¯ãããæ
å ±ã«ã€ããŠããã®å
容ãæç«ãããåŠããèãæã«å°ããæã§ããè«ŸåŠçåæããªã©ã®ããã«åŒã°ããŸãã
:;ããããã¯å¯å£«å±±ãèŠããŸãã
ãã®çåæã®ãå¯å£«å±±ãããäœããšããäžå®èªã«çœ®ãæãããã®ã¯ãäžå®èªã®éšåã®æ
å ±ãèãæã«å°ããæã§ããçåèªçåæããªã©ã®ããã«åŒã°ããŸãã
:;ããããã¯äœãèŠããŸãã
æ¥æ¬èªã§ã¯ãçåèªçåæã次ã®ããã«æé ã«ããå¿
èŠã¯ãããŸããã
:;äœãããããã¯èŠããŸãã
çåæã§ã¯é³è¿°ããŸãããããããããå¯å£«å±±/äœãèŠãããšããéšåãå
ãã§ãŸãšããŠããŸãã
:;[ããããã¯å¯å£«å±±ãèŠã]ãŸãã>
:;[ããããã¯äœãèŠã]ãŸãã>
;åœä»€æ
:;å
蚱蚌ãèŠããªãã
;æåæ
:;å¯ãïŒ
:;ãªããŠå¯ãïŒ
==åæã®ã¿ã€ã==
åæã¯è¿°éšã®æ§è³ªã«ãã£ãŠåºæ¬çã«ã¯äž»ã«ä»¥äžã®åçš®é¡ã«åé¡ã§ããŸãã
; äœåŠã»ã«äœã
ããã/äœåŠã»ã«èª°ã
ãããïŒååšæïŒ
:; ã¹ããŒãã®åã«ç«ããã
; äœã
ïŒèª°ã
ïŒãäœã
ããŠããïŒåè©æïŒ
è¿°éšã修食ããè£å
æåã«ãã£ãŠããã«æ§ã
ãªãã¿ã³ããšããŸãã
:; éªãéã£ãŠãã
:;åäŸãæ³£ããŠãã
:;倧åŠçãã¡ããæŒãé£ã¹ãŠãã
;;ãµã©ãªãŒãã³ãå°äžéã«ä¹ã£ãŠãã
:;ç·ååŠçã女ååŠçã«ãã¬ãŒã³ããæž¡ããŠãã
; äœã
ãæ¯ãŠã»ã ïŒåœ¢å®¹è©æïŒ
:;ãã®ç«ããããã
:;ãã®ç¬ãç°çã
; äœã
ïŒèª°ã
ïŒãäœã
ïŒèª°ã
ïŒã ïŒåè©æïŒ
:;圌女ããã®å€§åŠé¢çã
以äžã®æã¯ç¡é¡æãšãããŸãããã®ãããªåæã®äžã€ã®æç¯ãäž»é¡ã«ããããšã«ãã£ãŠæé¡æãäœãããšãã§ããŸãããã®éãäž»é¡ã¯æã®äžçªã¯ããã«æ¥ãŸãïŒäž»èªä»¥å€ã§å
ã®äœçœ®ã«ããå Žåã¯ãä»ãšå¯Ÿæ¯ããæå³ã匷ããªããŸãïŒã
; æé¡æïŒæç¯ïŒä¿å©è©/å¯å©è©
:; ææ³æžã¯æºã®äžã«ãã
==修食ã®é¢ä¿ïŒè£å
æå==
修食éšã®ãã¡ãè¿°éšãå¿
èŠãšããããããªããšäžè¶³ã ãšæãããããããªïŒè³ªåãåŒãèµ·ãããããªïŒãã®ãè£å
æåãšãããŸãã
:;ãã£ããããšã·ã«ãã«è¡ã£ãŠé£ã¹ãã®ããŒãäœãé£ã¹ãã®
è£å
æåã«ã¯åè©å¥ãšåŸå±å¥ããããŸããåè©å¥ã¯æ Œå©è©ã䌎ããŸããåŸå±å¥ã¯åŒçšã®ããšããã£ãŠãã䌎ãå Žåãä¿å©è©ãããã䌎ãå Žåãšã圢åŒåè©ãããšããæºäœå©è©ãã®ãã䌎ã£ãŠåè©å¥çžåœã«ãªãå ŽåããããŸãã
;åè©å¥
:;ä¹å®¢ãè»æã«é»è»ã®å°çæéã蚪ãã
;åŸå±å¥
:;ä¹å®¢ãè»æã«é»è»ããã€çãã®ããšå°ãã
:;ä¹å®¢ãè»æã«é»è»ããã€çãã®ãå°ãã
:;ä¹å®¢ãã¡ã«ã¯é»è»ããã€çãã®ããããããªãã£ã
æ Œå©è©ããããã«ãïŒé£äœä¿®é£Ÿæåã®äžã§ãã®ããïŒã䌎ãäž»éšã¯åç«ããç¹æ§ãæã€è£å
æåã®äžã€ãšèããããŸãã
==修食ã®é¢ä¿ïŒä¿®é£Ÿæå==
修食éšã®ãã¡ãæã«ããç¶æ³ã®èª¬æããã詳ããããããã«ä»ãå ãããããå¿
é ã§ã¯ãªãæåã修食æåïŒä»å éšïŒãšãããŸãã
;æ§æ
ã®ä¿®é£ŸïŒãã暣äºïŒ
:;ãããã¡ããããã£ããæ©ããŠãã
;çšåºŠã®ä¿®é£ŸïŒããäœïŒ
;;ããããã©ã£ãããšãã
;ç¶æ³èšå®
:;æšæ¥ãæ²å¥ã§
修食æåã«ã¯ãé£çšä¿®é£Ÿã§ããã«ãé¢ãããè£å
æåã®ä¿®é£Ÿãè¡ããã®ããããŸãã
:;èªåè»ãäžåäžå°çç£ãããïŒæ°éè©ïŒ
:;åçŽçãã¡ãã·ã©ãã§å€§éšãããŠããïŒæåã®äºæ¬¡è¿°èªïŒ
:;ãã³ãããããçŒãäžãã£ãïŒçµæã®äºæ¬¡è¿°èªïŒ
==è£å©ã®é¢ä¿==
è£å©ã®é¢ä¿ã«ããçšèšã¯ãäž»éšã®äžå¿ãšãªãè¿°èªã®æå³ãæ§ã
ãªåœ¢ã§è£ããŸãããã®ãããªçšèšãè£å©çšèšãšãããŸãã
:;éšãéã£ãŠããïŒç¶ç¶ïŒâéšãéã£ãïŒå®äºïŒ
:;劻ãç§ã«ããçŒããè²·ã£ãŠããâ劻ãããçŒããè²·ã£ã
:;æ¯åãå€é£¯ã®æºåãæäŒã£ãŠãããâæ¯åãå€é£¯ã®æºåãæäŒã£ã
è£å©çšèšãšãããè£å©ããè¿°èªã¯ããããç¬ç«ã®æç¯ã§ä¿å©è©ãå¯å©è©ã䌎ãããšãã§ããŸãããæå³çã«ã¯ã²ãšã€ã®æåã§ãããããèªç¹ãæã£ãããããŒãºãå
¥ããŠèªãã ãããããšã¯ã§ããŸããã
:;æ¯åãå€é£¯ã®æºåãæäŒã£ãŠïŒãïŒããã
:;Ãæ¯åãå€é£¯ã®æºåãæäŒã£ãŠãããã
圢容è©ãåŠå®ããè£å©åœ¢å®¹è©ã¯ç¬ç«ã®æç¯ãæããŸãã
:;ãã®è±ã¯çŸããïŒã¯ïŒãªã
äžæ¹ã䌌ãé¢ä¿ã§ããåè©ã®åŠå®ã¯ç¬ç«ã®æç¯ãæãããåŠå®ã®å©åè©ãšããŠåè©ã«åŸæ¥ããŠäžæç¯ã圢æããŸããåè©ã®åŠå®åœ¢ã«ä¿å©è©ãå¯å©è©ãå·®ãæãããšããå Žåã«ã¯ãåè©é£çšåœ¢ïŒåœ¢åŒåè©ãïŒåŠå®å©åè©ãªãããšãã圢ã«ãªããŸãã
:;圌ã¯ããåŠæ ¡ãžã¯è¡ããªã
:;Ã圌ã¯ããåŠæ ¡ãžè¡ãã¯ãªãïŒâ圌ã¯ããåŠæ ¡ãžã¯è¡ãã¯ããªãïŒ
è£å©ã»è¢«è£å©ã®é¢ä¿ã«ããåè©ã«äŒŒãŠãããã®ã®ãçµã³ã€ãã匷ãäžã€ã®èªïŒè€åèªïŒã«ãªã£ããã®ãè€ååè©ãšãããŸããè€ååè©ã¯æç¯ãåããããã«ããããå
¥ããããšã¯ã§ããŸããã
:;ãã£ãä»äºãã¯ããïŒÃãïŒããã
è£å©çšèšã®ä»£è¡šçãªãã®ã«ã¯äžã«æããåŠå®ã®è£å©åœ¢å®¹è©ã®ä»ãæå®ã®è£å©åè©ããããïŒãåè©ïŒã§ãã«ç¶ãïŒããã¢ã¹ãã¯ãããšããæéã«é¢ããæå³ãæã€ãã®ïŒãåè©é£çšåœ¢ïŒãŠïŒããŸãïŒã¡ããïŒããªã©ïŒãå©çã®ç§»åã«é¢ãããã®ïŒãåè©é£çšåœ¢ïŒãŠïŒãããããªã©ïŒããªã©ããããŸãã
==䞊ç«ã®é¢ä¿==
䞊ç«ã®é¢ä¿ãé£äœçãªãã®ãšé£çšçãªãã®ããããŸãã
;é£äœç
:;倪éãšè±åãšãCD-ROMãUSBã¡ã¢ãªãªã©
;é£çšç
;åè©
:;éšããµã颚ãå¹ããéšãéã£ããéªãéã£ããããŠãã
;圢容è©
:;çŸããåªãããçŸãããåªããã
;åè©+ç¹èŸã»åœ¢å®¹åè©
:;åŠçã§å®æ¥å®¶ã ãåŠçã ãæ æ°ã ã
é£äœçãªäžŠç«æç¯ãä»ã®äžŠç«æç¯ãšãŸãšããããŠé£çšä¿®é£Ÿã®é£æç¯ãšãªãå Žåãé£çšåœ¢ã«ãªããŸãã
:;éããªéšå±ã§åºãéšå±=éãã§åºãéšå±
è€æ°åœ¢ã¯ããæå³ã§äžŠç«è¡šçŸã®çž®çŽãšèŠãããšãã§ããŸãããè±èªã§ã¯-sãã€ããè€æ°åœ¢ã§ã¯the student A and student Bã®ãããªãã®ãthe studentsãšããŠè¡šããããã«ã¯ä»ã®ã¿ã€ãã®ã²ãšã¯å«ãŸããªãã®ã«ããããŠãæ¥æ¬èªã®ãéãã§ã¯ãåŠçAãšåŠçBãšãã®ä¿è·è
ãã®ãããªãã®ããåŠçéããšããããšãã§ããŸãã
ãæ Œã®æç¯ã¯ãå§å©ããããçµå©ãããã§ã¯è£å
æåãšããŠé£çšä¿®é£Ÿã®é¢ä¿ã«ããããã§ãããåæã«ãäž»éšãšäžŠç«ã®é¢ä¿ã«ãããšãèŠãããšãã§ããŸãã
:;倪éãè±åãšå§å©ããâ倪éãšè±åïŒãšïŒãå§å©ãã
ãŸããäºçªç®ã®å©æããšãã眮ãã眮ããªããã§æ¬¡ã®ãããªéããçŸããŸãã
:;çµµéãšçŸéŠãçµå©ãã=ç°æ§å©è§£éãïŒä»ã®ã²ãšãšïŒçµå©ããã®ãçµµéãšçŸéŠã/åæ§å©è§£é
:;çµµéãšçŸéŠãšãçµå©ãã=åæ§å©è§£éã®ã¿
==è€æãšäžå€®åã蟌ã¿==
åæçžåœã®ãã®ïŒç¯ïŒã¯è£å
æåãšããŠæã«åã蟌ãŸããŠè€æãäœãããšãã§ããã
:;瀟é·ãäœå®¶ãã©ãã«é ããŠãããç§æžã«èª¿ã¹ãããŠããããšãã¿ããªã¯é»ã£ãŠãã
ãã®ããšã¯æãèªç±ã«é·ãäœãããšãã§ããããšãä¿èšŒãããããããç¹°ãè¿ããšéåžžã«ãããã«ããæã«ãªãã
:;ååŒå
ãæã瀟ã®ç€Ÿé·ãäœå®¶ãã©ãã«é ããŠãããç§æžã«èª¿ã¹ãããŠããããšãå¿«ãæã£ãŠããªãããšãã¿ããªã¯é»ã£ãŠãã
ãã®æã®ãããã«ããã®åå ã¯ã次ã®ããã«äž»éšãšè¿°éšã®éã«è£å
æåã§ããç¯ã次ã
ã«åã蟌ãã ãäžå€®åã蟌ã¿ããšããæ§é ã«ãªã£ãŠããããšã«ããã
:;âŠäž»éš [äž»éš [äž»éš [äž»éš [âŠ] è¿°éš] è¿°éš] è¿°éš] è¿°éšâŠ
ãã®ãããã«ããã解æ¶ããæ¹æ³ãšããŠãã²ãšã€ã«ã¯äž»éšã®åŸã«èªç¹ãæã€ããšããæ¹æ³ãããã
:;ååŒå
ããæã瀟ã®ç€Ÿé·ããäœå®¶ãã©ãã«é ããŠãããç§æžã«èª¿ã¹ãããŠããããšãå¿«ãæã£ãŠããªãããšãã¿ããªã¯é»ã£ãŠãã
ãããããã ãåã蟌ã¿ãç¹°ãè¿ããšèªç¹ã ãã§ã¯ãããã«ãããåé¿ã§ããªãããã®ãããªå Žåã被修食æåã§ããè¿°éšã®çŽåã«äž»éšãæã£ãŠãããšããæ¹æ³ãããã
:;æã瀟ã®ç€Ÿé·ããäœå®¶ãã©ãã«é ããŠãããç§æžã«èª¿ã¹ãããŠããããšããååŒå
ãå¿«ãæã£ãŠããªãããšãã¿ããªã¯é»ã£ãŠãã
äž»éšãè¿°éšã®è¿ãã«æã£ãŠãããšããæ¹æ³ã¯ããçãæã§ã解éãããããå¢ãè¯ãæ¹æ³ã§ããã
==æ¥æ¬èªã®èªé ã¯èªç±ãªã®ã==
æ¥æ¬èªã®åºæ¬èªé ã¯æ¬¡ã®ãããªãã®ãšèããããŸãã
:;äž»éšãŒè£å
æåãŒè¿°éšïŒä»åè©ïŒïŒåŠçãå€æãèªãã§ãã
:;è£å
æåãŒäž»éšãŒè¿°éšïŒèœæ Œåè©ïŒïŒåŠçã«è±æãèªããªã
ãšããã§ã次ã®ããã«èªé ãå
¥ãæããå Žåãããããããããæ¥æ¬èªã®èªé ã¯èªç±ã ããšèšãããŸãã
#ãã¡ã®æ¯åãæšæ¥å°åŠæ ¡æ代ã®æ©åž«ã«é§
åã§å¶ç¶ãç®ã«ããã£ãã
#æšæ¥ãã¡ã®æ¯åãå°åŠæ ¡æ代ã®æ©åž«ã«é§
åã§å¶ç¶ãç®ã«ããã£ãã
#æšæ¥å°åŠæ ¡æ代ã®æ©åž«ã«ãã¡ã®æ¯åãé§
åã§å¶ç¶ãç®ã«ããã£ãã
#æšæ¥å°åŠæ ¡æ代ã®æ©åž«ã«é§
åã§ãã¡ã®æ¯åãå¶ç¶ãç®ã«ããã£ãã
#æšæ¥å°åŠæ ¡æ代ã®æ©åž«ã«é§
åã§å¶ç¶ãã¡ã®æ¯åããç®ã«ããã£ãã
ãããã次ã®ãããªèªé ã¯èš±ãããŸããã
#Ããã¡ã®æšæ¥æ¯åãå°åŠæ ¡æ代ã®æ©åž«ã«é§
åã§å¶ç¶ãç®ã«ããã£ãã
#Ãå°åŠæ ¡æ代ã®æšæ¥ãã¡ã®æ¯åãæ©åž«ã«é§
åã§å¶ç¶ãç®ã«ããã£ãã
#Ããç®ã«æšæ¥ãã¡ã®æ¯åãå°åŠæ ¡æ代ã®æ©åž«ã«é§
åã§å¶ç¶ããã£ãã
ãŸãè¿°éšã®åŸã«é£çšæåãããããšãäž»ç¯ã§ã¯å¯èœã§ãããåŸå±ç¯ã§ã¯äžå¯èœã§ãã
#æšæ¥å°åŠæ ¡æ代ã®æ©åž«ã«é§
åã§å¶ç¶ãç®ã«ããã£ãããã¡ã®æ¯åãã
#æšæ¥ãã¡ã®æ¯åãé§
åã§å¶ç¶ãç®ã«ããã£ããå°åŠæ ¡æ代ã®æ©åž«ã«ã
#Ãæšæ¥å°åŠæ ¡æ代ã®æ©åž«ã«é§
åã§å¶ç¶ãç®ã«ããã£ããã¡ã®æ¯åããšãããããŸããã
#Ãæšæ¥ãã¡ã®æ¯åãé§
åã§å¶ç¶ãç®ã«ããã£ãå°åŠæ ¡æ代ã®æ©åž«ã«ãšãããããŸããã
次ã®ãããªéåè¡šçŸã§ã¯ãèªé ãå€ãããšè§£éãå€ãããŸãã
:;誰ãã誰ãã矚ãŸããã£ãŠããïŒsome>allïŒ
:;誰ãã誰ãã矚ãŸããã£ãŠããïŒall>some, some>allïŒ
ãã®ãããªããšãããèªé ã®äº€æ¿ã¯ããæåã®æé ãžã®å眮ïŒã¹ã¯ã©ã³ããªã³ã°ïŒã§ããããã®å眮ã¯äžå®ã®å¶çŽã«åŸããšèããããŸãã
;ã¹ã¯ã©ã³ããªã³ã°
:;[<sub>IP</sub> ã»ã»ã»Xã»ã»ã»] â [<sub>IP</sub> X [<sub>IP</sub> ã»ã»ã»___ã»ã»ã»]]
==çç¥ã¯èªç±ãªã®ãïŒéæãšçç¥==
éæã§ã¯ãå
±éããæåãçç¥ãããå ŽåããããäŸãã°
;;ç¶ãã±ãŒããè²·ã£ãŠããããããŠæ¯ããªãŒããã«ãè²·ã£ãŠããã
ãšããäºã€ã®åæãäžã€ã®éæã«ããå Žåã
;;ç¶ãã±ãŒããè²·ã£ãŠããŠãæ¯ããªãŒããã«ãè²·ã£ãŠããã
ãšãèšããã
;;ç¶ãã±ãŒãããæ¯ããªãŒããã«ãè²·ã£ãŠããã
ãšããããã«ãå
±éãããè²·ã£ãŠããããäžã€ã«ãŸãšããããšãã§ããã
ãŸãã
;;ç¶ãã±ãŒããè²·ã£ãŠããããããŠæ¯ããã®ã±ãŒããã¿ããªã«åãåããã
ã§ã¯ã
;;ç¶ãã±ãŒããè²·ã£ãŠããŠãæ¯ããããã¿ããªã«åãåããã
ãšããããã«ä»£çšè¡šçŸã®ããããã䜿ãããšãã§ããã
;;ç¶ãã±ãŒããè²·ã£ãŠããŠãæ¯ãã¿ããªã«åãåããã
ãšããããã«ãŸãšããããšãã§ããã
ãŸã
;;ç¶ãæ¯åãã»ãããæ¯ãæ¯åãã»ããã
ã
;;ç¶ãæ¯åãã»ããæ¯ãããããã
ãšä»£çšè¡šçŸããããããã䜿ãããšãã§ããã
;;ç¶ãæ¯åãã»ããæ¯ãã»ããã
ãšãŸãšããããšãã§ãããããã
;;ç¶ããæ¯ãæ¯åãã»ããã
ã
;;ç¶ãæ¯åãã»ããæ¯ãã
ãšèšãããšã¯ã§ããªãã
ãªããäžã®ãããªçç¥ã§
;;倪éããã£ã¢ã³ã»ã«ãã¹ãã次éããã£ã¢ã³ã»ã«ãã¹ããã
ãçç¥ããŠ
;;倪éããã£ã¢ã³ã»ã«ãã¹ãã次éããã¹ããã
ãšããæã«ã¯ã倪éãšæ¬¡éã¯ããããèªåã®ãã£ã¢ã³ã»ã«ãã¹ãããšãã解éãšã次éã倪éã®ãã£ã¢ã³ã»ã«ãã¹ãããšãã解éã®äºéããããã
åèæç®ïŒ
==çç¥ã¯èªç±ãªã®ãïŒè€æãšåäžåè©å¥åé€==
次ã®æã§ã¯ãçç¥ãšäžèŠäŒŒãŠãããæ§è³ªã®ç°ãªããããªæåã®ãªããªãæ¹ãèŠãããã
;;åšãã¡ããèåãé£ã¹ãªãããããã¹ããããŠãã
ãã®æã¯è€æã§ããããã¡ããã©æ¬¡ã®äºã€ã®åæãçµã¿åããããããªããã¡ãããŠããã
;;åšãã¡ããããã¹ããããŠãã
;;åšãã¡ããèåãé£ã¹ãŠãã
ããããã®å Žåãéæã«èŠãããçç¥ãšã¯ç°ãªãã代çšè¡šçŸã®åºçŸã¯äžå¯èœã§ããã
;;åšãã¡ãã圌女ãã¡ããèåãé£ã¹ãªãããããã¹ããããŠãã
;;圌女ãã¡ããåšãã¡ããèåãé£ã¹ãªãããããã¹ããããŠãã
ãã®ãããªè€æã§ã¯ã察å¿ããäºã€ã®åæã®äž»éšã®ãã¡ã®çæ¹ãå¿
ããªããªããªããã°ãªããªãããã®ãããªãã®ãåäžåè©å¥åé€ãšããã
åäžåè©å¥åé€ã¯ãAé¡åŸå±å¥ãšåŒã°ããåŸå±å¥ã§ã¯äžè¬ã«èŠããããŸãã䜿圹æãªã©ã«ãèŠããããšèããããã
Aé¡åŸå±å¥ã«ã¯æ Œå©è©ãããã䌎ãäž»éšãçŸããªãããšäžèŠç¹åŸŽä»ããããšãã§ãããã ããããã¯æ£ãããªããäŸãã°ã身äœã®å
šäœãŒéšåã®é¢ä¿ã«ããäž»éšãè€æ°çŸãããããªåæãããšã«ããå Žåã
äžã€ã®äž»éšã ããæ¶ããã
;;圌ã¯ãæèãããã¿ãªããåŽã転ããèœã¡ãŠãã£ãã
==è€æïŒå¯èœæ==
次ã®æãèããŠã¿ããã
;;圌女ã«ã¯çç®ã ãã€ããããšãã§ããªã
ãã®æã¯å€çŸ©çã§ãããäžã€ã®è§£éã¯ãå³ãå·Šã®ã©ã¡ãããã€ããããšããŠãã§ããªãããšãã解éã§ãããããäžã€ã®è§£éã¯ãç®ãã€ããããšãããšã©ãããŠãäž¡ç®ãã€ãã£ãŠããŸãããšãã解éã§ããããã®æã®ãçç®ã ããã«æ Œå©è©ã®ããããããããã€ãããšã解éãåè
ãåŸè
ãã«å®ãŸãã
;;圌女ã«ã¯çç®ã ããã€ããããšãã§ããªãïŒåè
ã®è§£éïŒ
;;圌女ã«ã¯çç®ã ããã€ããããšãã§ããªãïŒåŸè
ã®è§£éïŒ
ããã¯å¯å©è©ãã ãããšåŠå®ã®å©åè©ããªããã®é¢ä¿ã®çµã³æ¹ãé¢ãããããã§ãŸãåé¡ã«ããŠããæãè€æã§ããã次ã®ãããªåæãçµã¿åããããããªãã®ã§ããããšããç¹ã«æ³šç®ãããã
;;圌女ã«çç®ã ããXããšãã§ããªã
;;圌女ãçç®ã ããã€ãã
ãããããã®ãŸãŸçµã¿åããããšæ¬¡ã®ããã«ãªãã
;;圌女ã«çç®ã ãã(圌女ãçç®ã ããã€ãã)ããšãã§ããªã
ãã®æã®äž»éšã«åäžåè©å¥åé€ãèµ·ããã次ã®ããã«ãªãã
;;圌女ã«çç®ã ãã(çç®ã ããã€ãã)ããšãã§ããªã
ãã®æã«ãããã«ããã²ãšã€ããçç®ã ãããšããåäžã®åè©å¥ãåé€ãããªããã°ãªããªããããããã䌎ãåè©å¥ãæ®ã£ãå Žåããã§ããªããã®é£çšä¿®é£Ÿæåãšãªãã
;;圌女ã«çç®ã ãã( ã€ãã)ããšãã§ããªã
äžæ¹ãããã䌎ãåè©å¥ãæ®ã£ãå Žåããã€ãããã®é£çšä¿®é£Ÿæåãšãªãã
;;圌女ã«ïŒ¿(çç®ã ããã€ãã)ããšãã§ããªã
詳现ã¯ããã§ã¯çãããäž¡è
ã®ãã¡ããã€ãããã®é£çšä¿®é£Ÿæåã®å Žåã«ãçç®ã ããããªãïŒäž¡ç®ããšãã解éã«ãªãã
ããŠã以äžã®è©±ã¯å¯èœã®å©åè©ãæã€æ¬¡ã®ãããªå Žåã«ããã®ãŸãŸããŠã¯ãŸãã
;;圌女ã«ã¯çç®ã ã{ã/ã}ã€ãããªã
ãã®ãããªæã¯åæã®ããã«èŠãããã解éã®ç¹æ§ãèžãŸãããšè€æãšèããããšãã§ããããŸããäŒçµ±çã«å¯èœã®e/rareã¯ä»ã®å©åè©ãšåãã«ããŽãªãŒã«å«ããããŠããã®ããææèª èšã¯åè©ãšåããè©ãã«æå±ãå€æŽãããããå¯èœã®å©åè©ãèªç«ããè¿°éšãšåãããã«è€æãæ§æããç¹ã¯ãã®èããšæãåããããã
==åèæç®==
äŒç°ã»äžéã»äžæãæ¹èšæ°çåŠæ ¡ã§æããŠããŠããçŸä»£æ¥æ¬èªã®ææ³ãå³ææžé¢.
ååä¿éãæ¥æ¬èªã®äžç6 æ¥æ¬èªã®ææ³ãäžå€®å
¬è«ç€Ÿ.
é»ç°æ幞ãæ¥æ¬èªããèŠãçæææ³ã岩波æžåº.
ææèª èšãåèªåŠåè«ã岩波æžåº.
æ©æ¬é²åãåèªæ³ç 究ã岩波æžåº.
æ©æ¬é²åãåææ³é«ç³»è«ã岩波æžåº.
æè±å ç·šééšïŒç·šïŒãããã§ãããåœææ³ãæè±å .
åäžäºç·ãçŸä»£æ¥æ¬èªã®æ§é ã倧修通æžåº.
åäžäºç·ãçŸä»£æ¥æ¬èªææ³ã®èŒªéã倧修通æžåº.
Sano, Masaki.1989. A Condition on LF Representation, Tsukuba English Studies 8.
Koizumi, Masatoshi. 1998. Phrase Structure in Minimalist Syntax. Hituzi Shobo.
Saito, Mamoru. 1985. MIT doctoral dissertation.
[[Category:æ¥æ¬èª|æ§æ]] | null | 2021-02-07T04:49:31Z | [] | https://ja.wikibooks.org/wiki/%E6%97%A5%E6%9C%AC%E8%AA%9E/%E6%A7%8B%E6%96%87 |
1,659 | æ¥æ¬èª/åè© | 倧ãŸãã«ãæç¯ã®é ã«ããããªããã§ãæç¯ã®é ã«ãããã®ãèªç«èªã§ãããæç¯ã®é ã«ãªããã®ãä»å±èªã§ãããšåããããã
掻çšã®ä»æ¹ã«ã¯ãå£èªã§ã¯ãæªç¶åœ¢ãé£çšåœ¢ãçµæ¢åœ¢ãé£äœåœ¢ãä»®å®åœ¢ãåœä»€åœ¢ã®6çš®é¡ãããã掻çšåœ¢ã®å称(ããšãã°æªç¶åœ¢)ã¯ããã®æŽ»çšåœ¢ãçšããŠè¡šããããæå³ã®ãã¡ã®äžã€(æªç¶)ããã£ãŠåœåãããã®ã«ãããããã®æŽ»çšåœ¢(æªç¶åœ¢)ããã ã¡ã«ãã®ããš(æªç¶)ãæå³ããã®ã§ã¯ãªãããšã«æ³šæããªããã°ãªããªãã
| [
{
"paragraph_id": 0,
"tag": "p",
"text": "倧ãŸãã«ãæç¯ã®é ã«ããããªããã§ãæç¯ã®é ã«ãããã®ãèªç«èªã§ãããæç¯ã®é ã«ãªããã®ãä»å±èªã§ãããšåããããã",
"title": "åè©"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "掻çšã®ä»æ¹ã«ã¯ãå£èªã§ã¯ãæªç¶åœ¢ãé£çšåœ¢ãçµæ¢åœ¢ãé£äœåœ¢ãä»®å®åœ¢ãåœä»€åœ¢ã®6çš®é¡ãããã掻çšåœ¢ã®å称(ããšãã°æªç¶åœ¢)ã¯ããã®æŽ»çšåœ¢ãçšããŠè¡šããããæå³ã®ãã¡ã®äžã€(æªç¶)ããã£ãŠåœåãããã®ã«ãããããã®æŽ»çšåœ¢(æªç¶åœ¢)ããã ã¡ã«ãã®ããš(æªç¶)ãæå³ããã®ã§ã¯ãªãããšã«æ³šæããªããã°ãªããªãã",
"title": "åè©"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "",
"title": "åè©"
}
] | null | {{Wikipedia|åè©}}
{{Wiktionary|åè©}}
== åè© ==
倧ãŸãã«ãæç¯ã®é ã«ããããªããã§ãæç¯ã®é ã«ãããã®ã'''[[wikt:èªç«èª|èªç«èª]]'''ã§ãããæç¯ã®é ã«ãªããã®ã'''[[wikt:ä»å±èª|ä»å±èª]]'''ã§ãããšåããããã
; äŸ
: ã'''ç§ã¯æ°ããããŒã«ãã³ã䜿ã£ã'''ããšããæããããšããã
: æç¯ã«åãããšã'''ç§ã¯ã»æ°ããã»ããŒã«ãã³ãã»äœ¿ã£ã'''ããšãªãããã®æãã'''ç§ã¯'''ããšããæç¯ã¯ã'''ç§ã»ã¯'''ããšåããããããã®ã'''ç§'''ããèªç«èªã§ãããã'''ã¯'''ããä»å±èªã§ããã
: åæ§ã«ãã'''ããŒã«ãã³'''ããèªç«èªã§ãããã'''ã'''ããä»å±èªã§ããã
: ã'''䜿ã£ã'''ãã¯ãã'''䜿ã'''ãã«ã'''ã'''ããã€ããã'''䜿ãã'''ãã®[[wikt:ä¿é³äŸ¿|ä¿é³äŸ¿]]ã ãããã'''䜿ã£'''ããšã'''ã'''ãã«åããããåæ§ã«åè
ãèªç«èªã§ãããåŸè
ãä»å±èªã§ããã
<!--ãã®ç¯ã¯çšèšã«ç§»åããã»ããããããã®ã§ã¯ïŒ-->
=== 掻çšã«ã€ã㊠===
[[wikt:掻çš|掻çš]]ã®ä»æ¹ã«ã¯ã[[wikt:å£èª|å£èª]]ã§ã¯ã'''[[wikt:æªç¶åœ¢|æªç¶åœ¢]]'''ã'''[[wikt:é£çšåœ¢|é£çšåœ¢]]'''ã'''[[wikt:çµæ¢åœ¢|çµæ¢åœ¢]]'''ã'''[[wikt:é£äœåœ¢|é£äœåœ¢]]'''ã'''[[wikt:ä»®å®åœ¢|ä»®å®åœ¢]]'''ã'''[[wikt:åœä»€åœ¢|åœä»€åœ¢]]'''ã®6çš®é¡ãããã掻çšåœ¢ã®å称ïŒããšãã°æªç¶åœ¢ïŒã¯ããã®æŽ»çšåœ¢ãçšããŠè¡šããããæå³ã®ãã¡ã®äžã€ïŒæªç¶ïŒããã£ãŠåœåãããã®ã«ãããããã®æŽ»çšåœ¢ïŒæªç¶åœ¢ïŒããã ã¡ã«ãã®ããšïŒæªç¶ïŒãæå³ããã®ã§ã¯ãªãããšã«æ³šæããªããã°ãªããªãã
; æªç¶åœ¢
: æªã ãã®ç¶ãã¹ãç¶æ
ã«ãªã£ãŠããªã掻çšåœ¢ã
: å
·äœçã«ã¯åŠå®ããæšéãå§èªã®[[/ä»å±èª/å©åè©|å©åè©]]ãªã©ãã€ãããšãã®æŽ»çšã®ä»æ¹ãæèªã§ã¯ãä»®å®è¡šçŸã§ã䜿ããããïœãªãããŸãã¯ãïœ(ã)ãããšç¶ãã
; é£çšåœ¢
: çšèšã«é£ãªã掻çšåœ¢ã
: '''ïœã'''ã'''ïœãŸã'''ã'''ïœãã'''ãªã©ã«é£ãªããšããåã圢ã
; çµæ¢åœ¢
: ïœããšããŠãæ¢ãã圢ãèšãåãã®åœ¢ã
; é£äœåœ¢
: äœèšã«é£ãªã圢ã
: ããèªäœãäœèšãšããŠæ±ãããããšãããã
; ä»®å®åœ¢
: ä»®å®ãã圢ã
: ïœã°ãã®åœ¢ãæèªã§ã¯å·²ç¶åœ¢ãšããã確å®æ¡ä»¶ãããããããšããŸãä¿ãçµã³ã®çµã³ããªãããšãããã
; åœä»€åœ¢
: åœä»€ãã圢ã
<!-- äžèšã®ç¯åã¯ä»®ã§ã -->
== ãµãããŒãž ==
{{é²æç¶æ³}}
* [[/èªç«èª|èªç«èª]]{{é²æ|75%|2023-09-25}}
** [[/èªç«èª/çšèš|çšèš]]{{é²æ|50%|2023-09-25}}
*** [[/èªç«èª/çšèš/åè©|åè©]]{{é²æ|75%|2023-09-25}}
*** [[/èªç«èª/çšèš/圢容è©|圢容è©]]{{é²æ|50%|2023-09-25}}
*** [[/èªç«èª/çšèš/圢容åè©|圢容åè©]]{{é²æ|50%|2023-09-25}}
** [[/èªç«èª/äœèš|äœèš]]{{é²æ|75%|2023-09-25}}
*** [[/èªç«èª/äœèš/åè©|åè©]]{{é²æ|100%|2023-09-25}}
*** [[/èªç«èª/äœèš/代åè©|代åè©]]{{é²æ|75%|2023-09-25}}
** [[/èªç«èª/äœèš/é£äœè©|é£äœè©]]{{é²æ|25%|2023-09-25}}
** [[/èªç«èª/äœèš/å¯è©|å¯è©]]{{é²æ|50%|2023-09-25}}
** [[/èªç«èª/äœèš/æåè©|æåè©]]{{é²æ|75%|2023-09-25}}
** [[/èªç«èª/äœèš/æ¥ç¶è©|æ¥ç¶è©]]{{é²æ|100%|2023-09-25}}
* [[/ä»å±èª|ä»å±èª]]{{é²æ|00%|2023-09-25}}
** [[/ä»å±èª/å©è©|å©è©]]{{é²æ|25%|2023-09-25}}
** [[/ä»å±èª/å©åè©|å©åè©]]
[[ã«ããŽãª:æ¥æ¬èª åè©|åè©]] | 2005-02-17T08:38:58Z | 2023-09-25T08:55:47Z | [
"ãã³ãã¬ãŒã:Wikipedia",
"ãã³ãã¬ãŒã:Wiktionary",
"ãã³ãã¬ãŒã:é²æç¶æ³",
"ãã³ãã¬ãŒã:é²æ"
] | https://ja.wikibooks.org/wiki/%E6%97%A5%E6%9C%AC%E8%AA%9E/%E5%93%81%E8%A9%9E |
1,660 | æ¥æ¬èª/åè©/èªç«èª | èªç«èªã掻çšãããã®ãšããªããã®ã§åãã掻çšãããã®ãçšèšãšããããŸã掻çšããªããã®ã®ãã¡äž»èªã«ãªãããã®ãäœèšãšããã
äœèšä»¥å€ã®æŽ»çšããªãèªç«èªã«ã¯ãäœèšã®ä¿®é£Ÿèª(é£äœä¿®é£Ÿèª)ã«ãªãé£äœè©ãçšèšã®ä¿®é£Ÿèª(é£çšä¿®é£Ÿèª)ã«ãªãå¯è©ãç¬ç«èªã«ãªãæåãå¿çã瀺ãæåè©ãæ¥ç¶èªã«ãªãæ¥ç¶è©ãããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "èªç«èªã掻çšãããã®ãšããªããã®ã§åãã掻çšãããã®ãçšèšãšããããŸã掻çšããªããã®ã®ãã¡äž»èªã«ãªãããã®ãäœèšãšããã",
"title": "èªç«èª"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "äœèšä»¥å€ã®æŽ»çšããªãèªç«èªã«ã¯ãäœèšã®ä¿®é£Ÿèª(é£äœä¿®é£Ÿèª)ã«ãªãé£äœè©ãçšèšã®ä¿®é£Ÿèª(é£çšä¿®é£Ÿèª)ã«ãªãå¯è©ãç¬ç«èªã«ãªãæåãå¿çã瀺ãæåè©ãæ¥ç¶èªã«ãªãæ¥ç¶è©ãããã",
"title": "èªç«èª"
}
] | null | {{Wiktionary|èªç«èª}}
== èªç«èª ==
èªç«èªã掻çšãããã®ãšããªããã®ã§åãã掻çšãããã®ã'''[[/çšèš|çšèš]]'''ãšããããŸã掻çšããªããã®ã®ãã¡äž»èªã«ãªãããã®ã'''[[/äœèš|äœèš]]'''ãšããã
; äŸ
: [[../#åè©|å
äŸ]]ã®'''ç§ã¯æ°ããããŒã«ãã³ã䜿ã£ã'''ã§'''ç§'''ãš'''ããŒã«ãã³'''ã¯æŽ»çšããªãã'''æ°ãã'''ãš'''䜿ã'''ã¯'''æ°ãããããæ°ããã£ããæ°ãããæ°ãããã°'''ã»'''䜿ããã䜿ããªãã䜿ããŸãã䜿ã£ãã䜿ãã䜿ã'''ãšããããã«æŽ»çšããã
: ãã£ãŠ'''æ°ãã'''ãš'''䜿ã'''ã¯çšèšããã®æ'''ç§'''ãš'''ããŒã«ãã³'''ã¯äž»èªã«ãªããã®ã§äœèšã
äœèšä»¥å€ã®æŽ»çšããªãèªç«èªã«ã¯ãäœèšã®[[wikt:修食èª|修食èª]]ïŒé£äœä¿®é£ŸèªïŒã«ãªã'''[[wikt:é£äœè©|é£äœè©]]'''ãçšèšã®ä¿®é£ŸèªïŒé£çšä¿®é£ŸèªïŒã«ãªã'''[[wikt:å¯è©|å¯è©]]'''ã[[wikt:ç¬ç«èª|ç¬ç«èª]]ã«ãªãæåãå¿çã瀺ã'''[[wikt:æåè©|æåè©]]'''ã[[wikt:æ¥ç¶èª|æ¥ç¶èª]]ã«ãªã'''[[wikt:æ¥ç¶è©|æ¥ç¶è©]]'''ãããã
== ãµãããŒãž ==
{{é²æç¶æ³}}
* [[/çšèš|çšèš]]{{é²æ|50%|2023-09-25}}
** [[/çšèš/åè©|åè©]]{{é²æ|75%|2023-09-25}}
** [[/çšèš/圢容è©|圢容è©]]{{é²æ|50%|2023-09-25}}
** [[/çšèš/圢容åè©|圢容åè©]]{{é²æ|50%|2023-09-25}}
* [[/äœèš|äœèš]]{{é²æ|75%|2023-09-25}}
** [[/äœèš/åè©|åè©]]{{é²æ|100%|2023-09-25}}
** [[/äœèš/代åè©|代åè©]]{{é²æ|75%|2023-09-25}}
* [[/äœèš/é£äœè©|é£äœè©]]{{é²æ|25%|2023-09-25}}
* [[/äœèš/å¯è©|å¯è©]]{{é²æ|50%|2023-09-25}}
* [[/äœèš/æåè©|æåè©]]{{é²æ|75%|2023-09-25}}
* [[/äœèš/æ¥ç¶è©|æ¥ç¶è©]]{{é²æ|100%|2023-09-25}}
[[ã«ããŽãª:æ¥æ¬èª åè©|åããã€ã]] | 2005-02-17T08:46:12Z | 2023-09-25T08:52:00Z | [
"ãã³ãã¬ãŒã:Wiktionary",
"ãã³ãã¬ãŒã:é²æç¶æ³",
"ãã³ãã¬ãŒã:é²æ"
] | https://ja.wikibooks.org/wiki/%E6%97%A5%E6%9C%AC%E8%AA%9E/%E5%93%81%E8%A9%9E/%E8%87%AA%E7%AB%8B%E8%AA%9E |
1,661 | æ¥æ¬èª/åè©/èªç«èª/çšèš | çšèšã¯ãè¿°èªã«ãªããããã«åè©ãšåœ¢å®¹è©ã圢容åè©ã«åããããã掻çšããããç©äºã®æ§è³ªãç¶æ
ãååšãè¡šããèšãåã£ããšãã®åœ¢ããŠæ®µã®ãã®ãåè©ãšãããã€æ®µã®ãã®ã圢容è©ãã~ã ããã~ã§ããã®ãã®ã圢容åè©ãšããã
ãã®ç¯ã¯æžãããã§ãããã®ç¯ãç·šéããŠãããæ¹ãå¿ãããåŸ
ã¡ããŠããŸãã
掻çšèªå°Ÿããããããã圢ã«å€ãã£ããã®ãé³äŸ¿ãšãããå£èªã§ã¯ã€é³äŸ¿ãæ¥é³äŸ¿ãä¿é³äŸ¿ã®3ã€ãæèªã§ã¯ããã«ãŠé³äŸ¿ãå ãããäž»ã«é£çšåœ¢ã®ãšãããããã€ãã³ããããŠã«èªå°Ÿãå€ããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "çšèšã¯ãè¿°èªã«ãªããããã«åè©ãšåœ¢å®¹è©ã圢容åè©ã«åããããã掻çšããããç©äºã®æ§è³ªãç¶æ
ãååšãè¡šããèšãåã£ããšãã®åœ¢ããŠæ®µã®ãã®ãåè©ãšãããã€æ®µã®ãã®ã圢容è©ãã~ã ããã~ã§ããã®ãã®ã圢容åè©ãšããã",
"title": "çšèš"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ãã®ç¯ã¯æžãããã§ãããã®ç¯ãç·šéããŠãããæ¹ãå¿ãããåŸ
ã¡ããŠããŸãã",
"title": "çšèš"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "掻çšèªå°Ÿããããããã圢ã«å€ãã£ããã®ãé³äŸ¿ãšãããå£èªã§ã¯ã€é³äŸ¿ãæ¥é³äŸ¿ãä¿é³äŸ¿ã®3ã€ãæèªã§ã¯ããã«ãŠé³äŸ¿ãå ãããäž»ã«é£çšåœ¢ã®ãšãããããã€ãã³ããããŠã«èªå°Ÿãå€ããã",
"title": "çšèš"
}
] | null | {{Wiktionary|çšèš}}
{{Wikiversity|æ¥æ¬èª/çŸä»£èªææ³/èªç«èª/çšèš|çšèš}}
== çšèš ==
çšèšã¯ãè¿°èªã«ãªããããã«'''åè©'''ãš'''圢容è©'''ã'''圢容åè©'''ã«åããããã掻çšããããç©äºã®æ§è³ªãç¶æ
ãååšãè¡šããèšãåã£ããšãã®åœ¢ã[[wikt:ã段|ãŠæ®µ]]ã®ãã®ãåè©ãšããã[[wikt:ã段|ã€æ®µ]]ã®ãã®ã圢容è©ãã'''ïœã '''ããã'''ïœã§ã'''ãã®ãã®ã圢容åè©ãšããã
=== é³äŸ¿ã«ã€ã㊠===
{{ç¯stub}}
掻çšèªå°Ÿããããããã圢ã«å€ãã£ããã®ãé³äŸ¿ãšãããå£èªã§ã¯[[wikt:ã€é³äŸ¿|ã€é³äŸ¿]]ã[[wikt:æ¥é³äŸ¿|æ¥é³äŸ¿]]ã[[wikt:ä¿é³äŸ¿|ä¿é³äŸ¿]]ã®3ã€ã[[wikt:æèª|æèª]]ã§ã¯ããã«[[wikt:ãŠé³äŸ¿|ãŠé³äŸ¿]]ãå ãããäž»ã«[[wikt:é£çšåœ¢|é£çšåœ¢]]ã®ãšãããããã€ãã³ããããŠã«[[wikt:èªå°Ÿ|èªå°Ÿ]]ãå€ããã
; äŸ
: èã㊠â èããŠ
== ãµãããŒãž ==
{{é²æç¶æ³}}
* [[/åè©|åè©]]{{é²æ|75%|2023-09-25}}
* [[/圢容è©|圢容è©]]{{é²æ|50%|2023-09-25}}
* [[/圢容åè©|圢容åè©]]{{é²æ|50%|2023-09-25}}
[[ã«ããŽãª:æ¥æ¬èª åè©|å]] | 2005-02-17T08:46:56Z | 2023-09-25T08:08:22Z | [
"ãã³ãã¬ãŒã:ç¯stub",
"ãã³ãã¬ãŒã:é²æç¶æ³",
"ãã³ãã¬ãŒã:é²æ",
"ãã³ãã¬ãŒã:Wiktionary",
"ãã³ãã¬ãŒã:Wikiversity"
] | https://ja.wikibooks.org/wiki/%E6%97%A5%E6%9C%AC%E8%AA%9E/%E5%93%81%E8%A9%9E/%E8%87%AA%E7%AB%8B%E8%AA%9E/%E7%94%A8%E8%A8%80 |
1,663 | æ¥æ¬èª/åè©/ä»å±èª | ä»å±èª(ãµããã)ã¯ã掻çšãããã®ãšããªããã®ã§ã掻çšãããã®ãå©åè©ãããªããã®ãå©è©ãšåããããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ä»å±èª(ãµããã)ã¯ã掻çšãããã®ãšããªããã®ã§ã掻çšãããã®ãå©åè©ãããªããã®ãå©è©ãšåããããã",
"title": "ä»å±èª"
}
] | null | {{Wiktionary|ä»å±èª}}
== ä»å±èª ==
'''ä»å±èª'''ïŒãµãããïŒã¯ã掻çšãããã®ãšããªããã®ã§ã掻çšãããã®ã'''å©åè©'''ãããªããã®ã'''å©è©'''ãšåããããã
== ãµãããŒãž ==
{{é²æç¶æ³}}
* [[/å©è©|å©è©]]{{é²æ|25%|2023-09-25}}
* [[/å©åè©|å©åè©]]
[[ã«ããŽãª:æ¥æ¬èª åè©|åãµããã]] | 2005-02-17T08:50:27Z | 2023-09-25T08:55:15Z | [
"ãã³ãã¬ãŒã:é²æ",
"ãã³ãã¬ãŒã:Wiktionary",
"ãã³ãã¬ãŒã:é²æç¶æ³"
] | https://ja.wikibooks.org/wiki/%E6%97%A5%E6%9C%AC%E8%AA%9E/%E5%93%81%E8%A9%9E/%E4%BB%98%E5%B1%9E%E8%AA%9E |
1,664 | æ¥æ¬å²/æ¥æ¬ã®é¢šåãšæ°æ | ãã®é
ç®ãæ¥æ¬å²/æ¥æ¬ã®é¢šåãšæ°æãã¯ãã¿ã€ãã«åãšå
容ã«é¢ãè°è«ãæ祚ãããŠããŸãã詳现㯠Wikibooksã»ããŒã¯:ãŠã£ããããžã§ã¯ã æ¥æ¬å²#æžãåºããã ãåç
§ããŠãã ããã
æ¥æ¬å²ãåŠç¿ããåã«ãããããæ¥æ¬ãšã¯ã©ããæããã©ã®ãããªæ°æãæ®ãããŠããã®ããç¥ãå¿
èŠãããããã®æ¥æ¬ã®é¢šåãšæ°æã§ã¯ãæ¥æ¬ã®å°çãæŠèª¬ããã
æ¥æ¬å島ã¯ãŠãŒã©ã·ã¢å€§éžã¯ã¢ãžã¢å·ã®æ±ã«äœçœ®ããŠãããå
·äœçã«èšãã°ãåºæ¬çã«ã¯åæµ·éã»æ¬å·ã»ååœã»ä¹å·ã»æ²çžãšåšèŸºã®è«žå³¶ã§æ§æãããŠããããŸããåšå²ãæµ·ã§å²ãããå€å³¶ã§ããããã®ãããç¬èªã®æåã»ææãçºå±ããŠããããšãç¹åŸŽãšããã
æ¥æ¬æ°æã¯ãåæ¹ã®ã¢ã³ãŽãã€ãç³»æ°æãåæ¹ç³»ã®æ°æãäºãã«äº€ãã£ãŠçãŸããŠãããšãèšãããŠãããæ¥æ¬æ°æã¯æ°ã¢ã³ãŽãã€ãã«å±ããããšãããèè
ã®éã§ã¯åæ¹ç³»ã®æ°æãèµ·æºã§ã¯ãªãããšããã®ãäžè¬çã§ããã
å°ççæ¡ä»¶ããèå¯ãããšãåŸå€ããææã®æ ããæ±åã¢ãžã¢ã«äœçœ®ããç¹æã®ç¥è©±ã»æåããã¡ã€ã€ããäžåœãæé®®å島ã®ææã«å€å€§ãªåœ±é¿ãåãããè
åéçã®é£å䜿å»æ¢åŸã¯ãããŸã§ã«äŒãã£ãŠããæåãæ¥æ¬ã®æ°åãæ®ããã«åãããé²åããåæãæ¥èšãç©èªæåŠãå¯æ®¿é ãªã©ã®åœé¢šæåãéè±ããã
è¿ä»£ãšçŸä»£ã«ãããŠã¯ãéåœä»¥æ¥ã®è±äºå
¥æ¬§æ¿çã«ãã瀟äŒå
šäœã西æŽåããããããã«ãããå€æ¥æåãäŒæ¥ãããšãããæ¥æ¬åãããšããå¥ç¹ãªåœæ°æ§ã§ããã
äž»ã«ãå€äºèšããæ¥æ¬æžçŽãåã³åå°æ¹ã®ã颚åèšãã«èšè¿°ãããŠããäºæã倧æ¬ã«ããŠããããæ¥æ¬åå°ã«ã¯åçš®ã®ç¥è©±ãäŒæ¿ãããããŸãåå°ã®è±ªæã«ãã£ãŠãããŸããŸãªç¥è©±äŒæ¿ãèŠããããããã«èšããé«å€©åç¥è©±ããšããã®ã¯ã倩ç家ã®åºç€ã§ãã£ã倧åçæš©ã®å
šåœçµ±äžãšå€©ç家ã®æ¥æ¬åœçµ±æ²»ã®æ£çµ±æ§ãæããŠããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ãã®é
ç®ãæ¥æ¬å²/æ¥æ¬ã®é¢šåãšæ°æãã¯ãã¿ã€ãã«åãšå
容ã«é¢ãè°è«ãæ祚ãããŠããŸãã詳现㯠Wikibooksã»ããŒã¯:ãŠã£ããããžã§ã¯ã æ¥æ¬å²#æžãåºããã ãåç
§ããŠãã ããã",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "æ¥æ¬å²ãåŠç¿ããåã«ãããããæ¥æ¬ãšã¯ã©ããæããã©ã®ãããªæ°æãæ®ãããŠããã®ããç¥ãå¿
èŠãããããã®æ¥æ¬ã®é¢šåãšæ°æã§ã¯ãæ¥æ¬ã®å°çãæŠèª¬ããã",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "æ¥æ¬å島ã¯ãŠãŒã©ã·ã¢å€§éžã¯ã¢ãžã¢å·ã®æ±ã«äœçœ®ããŠãããå
·äœçã«èšãã°ãåºæ¬çã«ã¯åæµ·éã»æ¬å·ã»ååœã»ä¹å·ã»æ²çžãšåšèŸºã®è«žå³¶ã§æ§æãããŠããããŸããåšå²ãæµ·ã§å²ãããå€å³¶ã§ããããã®ãããç¬èªã®æåã»ææãçºå±ããŠããããšãç¹åŸŽãšããã",
"title": "æ¥æ¬ã®äœçœ®"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "æ¥æ¬æ°æã¯ãåæ¹ã®ã¢ã³ãŽãã€ãç³»æ°æãåæ¹ç³»ã®æ°æãäºãã«äº€ãã£ãŠçãŸããŠãããšãèšãããŠãããæ¥æ¬æ°æã¯æ°ã¢ã³ãŽãã€ãã«å±ããããšãããèè
ã®éã§ã¯åæ¹ç³»ã®æ°æãèµ·æºã§ã¯ãªãããšããã®ãäžè¬çã§ããã",
"title": "æ¥æ¬æ°æ"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "å°ççæ¡ä»¶ããèå¯ãããšãåŸå€ããææã®æ ããæ±åã¢ãžã¢ã«äœçœ®ããç¹æã®ç¥è©±ã»æåããã¡ã€ã€ããäžåœãæé®®å島ã®ææã«å€å€§ãªåœ±é¿ãåãããè
åéçã®é£å䜿å»æ¢åŸã¯ãããŸã§ã«äŒãã£ãŠããæåãæ¥æ¬ã®æ°åãæ®ããã«åãããé²åããåæãæ¥èšãç©èªæåŠãå¯æ®¿é ãªã©ã®åœé¢šæåãéè±ããã",
"title": "æ¥æ¬æå"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "è¿ä»£ãšçŸä»£ã«ãããŠã¯ãéåœä»¥æ¥ã®è±äºå
¥æ¬§æ¿çã«ãã瀟äŒå
šäœã西æŽåããããããã«ãããå€æ¥æåãäŒæ¥ãããšãããæ¥æ¬åãããšããå¥ç¹ãªåœæ°æ§ã§ããã",
"title": "æ¥æ¬æå"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "äž»ã«ãå€äºèšããæ¥æ¬æžçŽãåã³åå°æ¹ã®ã颚åèšãã«èšè¿°ãããŠããäºæã倧æ¬ã«ããŠããããæ¥æ¬åå°ã«ã¯åçš®ã®ç¥è©±ãäŒæ¿ãããããŸãåå°ã®è±ªæã«ãã£ãŠãããŸããŸãªç¥è©±äŒæ¿ãèŠããããããã«èšããé«å€©åç¥è©±ããšããã®ã¯ã倩ç家ã®åºç€ã§ãã£ã倧åçæš©ã®å
šåœçµ±äžãšå€©ç家ã®æ¥æ¬åœçµ±æ²»ã®æ£çµ±æ§ãæããŠããã",
"title": "æ¥æ¬ç¥è©±"
}
] | æ¥æ¬å²ãåŠç¿ããåã«ãããããæ¥æ¬ãšã¯ã©ããæããã©ã®ãããªæ°æãæ®ãããŠããã®ããç¥ãå¿
èŠãããããã®æ¥æ¬ã®é¢šåãšæ°æã§ã¯ãæ¥æ¬ã®å°çãæŠèª¬ããã | {{Kaimei|ãŠã£ããããžã§ã¯ã æ¥æ¬å²#æžãåºããã|Wikibooksã»ããŒã¯}}
{{Pathnav|ã¡ã€ã³ããŒãž|æŽå²åŠ|æ¥æ¬å²|frame=1}}
[[æ¥æ¬å²]]ãåŠç¿ããåã«ãããããæ¥æ¬ãšã¯ã©ããæããã©ã®ãããªæ°æãæ®ãããŠããã®ããç¥ãå¿
èŠãããããã®'''æ¥æ¬ã®é¢šåãšæ°æ'''ã§ã¯ãæ¥æ¬ã®å°çãæŠèª¬ããã
== æ¥æ¬ã®äœçœ® ==
æ¥æ¬å島ã¯ãŠãŒã©ã·ã¢å€§éžã¯ã¢ãžã¢å·ã®æ±ã«äœçœ®ããŠãããå
·äœçã«èšãã°ãåºæ¬çã«ã¯åæµ·éã»æ¬å·ã»ååœã»ä¹å·ã»æ²çžãšåšèŸºã®è«žå³¶ã§æ§æãããŠããããŸããåšå²ãæµ·ã§å²ãããå€å³¶ã§ããããã®ãããç¬èªã®æåã»ææãçºå±ããŠããããšãç¹åŸŽãšããã
== æ¥æ¬æ°æ ==
æ¥æ¬æ°æã¯ãåæ¹ã®ã¢ã³ãŽãã€ãç³»æ°æãåæ¹ç³»ã®æ°æãäºãã«äº€ãã£ãŠçãŸããŠãããšãèšãããŠãããæ¥æ¬æ°æã¯æ°ã¢ã³ãŽãã€ãã«å±ããããšãããèè
ã®éã§ã¯åæ¹ç³»ã®æ°æãèµ·æºã§ã¯ãªãããšããã®ãäžè¬çã§ããã
== æ¥æ¬æå ==
å°ççæ¡ä»¶ããèå¯ãããšãåŸå€ããææã®æ ããæ±åã¢ãžã¢ã«äœçœ®ããç¹æã®ç¥è©±ã»æåããã¡ã€ã€ããäžåœãæé®®å島ã®ææã«å€å€§ãªåœ±é¿ãåãããè
åéçã®é£å䜿å»æ¢åŸã¯ãããŸã§ã«äŒãã£ãŠããæåãæ¥æ¬ã®æ°åãæ®ããã«åãããé²åããåæãæ¥èšãç©èªæåŠãå¯æ®¿é ãªã©ã®åœé¢šæåãéè±ããã
è¿ä»£ãšçŸä»£ã«ãããŠã¯ãéåœä»¥æ¥ã®è±äºå
¥æ¬§æ¿çã«ãã瀟äŒå
šäœã西æŽåããããããã«ããã'''å€æ¥æåãäŒæ¥ãããšãããæ¥æ¬åãã'''ãšããå¥ç¹ãªåœæ°æ§ã§ããã
== æ¥æ¬ç¥è©± ==
äž»ã«ãå€äºèšããæ¥æ¬æžçŽãåã³åå°æ¹ã®ã颚åèšãã«èšè¿°ãããŠããäºæã倧æ¬ã«ããŠããããæ¥æ¬åå°ã«ã¯åçš®ã®ç¥è©±ãäŒæ¿ãããããŸãåå°ã®è±ªæã«ãã£ãŠãããŸããŸãªç¥è©±äŒæ¿ãèŠããããããã«èšããé«å€©åç¥è©±ããšããã®ã¯ã倩ç家ã®åºç€ã§ãã£ã倧åçæš©ã®å
šåœçµ±äžãšå€©ç家ã®æ¥æ¬åœçµ±æ²»ã®æ£çµ±æ§ãæããŠããã
[[Category:æ¥æ¬ã®æŽå²|ã«ã»ãã®ãµããšãšã¿ããã]]
[[ã«ããŽãª:æ°æ]] | 2005-02-17T21:30:53Z | 2024-02-06T02:36:03Z | [
"ãã³ãã¬ãŒã:Pathnav",
"ãã³ãã¬ãŒã:Kaimei"
] | https://ja.wikibooks.org/wiki/%E6%97%A5%E6%9C%AC%E5%8F%B2/%E6%97%A5%E6%9C%AC%E3%81%AE%E9%A2%A8%E5%9C%9F%E3%81%A8%E6%B0%91%E6%97%8F |
1,666 | Perl/æ£èŠè¡šçŸ | Perl > Perl/æ£èŠè¡šçŸ
Perlã¯åŒ·å㪠æ£èŠè¡šçŸ ããµããŒãããŠããŸããæ£èŠè¡šçŸãšã¯ã倧ãŸãã«ãããšãæ€çŽ¢ã®æ©èœãé«åºŠåãããããããã®ã§ããPerl以å€ã®JavaãJavaSciptãPHPãªã©ãæ£èŠè¡šçŸããµããŒãããŠããŸãããPerlã¯å€ãããæ£èŠè¡šçŸãæ¬æ Œçã«ãµããŒãããŠããŸãã ãŸããPerlã®æ¡åŒµæ£èŠè¡šçŸã¯ãPerl Compatible Regular Expressions( PCRE ) ãšããŠPerlã®å€ã§ã䜿ãããšãã§ãããããæ£èŠè¡šçŸã®ãã£ãã¡ã¯ãã¹ã¿ã³ããŒãã®1ã€ãšãªã£ãŠããŸãã
äºé
æŒç®å =~ ã¯ã巊蟺ã®ã¹ã«ã©ãŒåŒãå³èŸºã®ãã¿ãŒã³ãããã«ææããŸãã æ£èŠè¡šçŸã«é¢ããæäœã§ã¯ãããã©ã«ã㧠$_ ãšããæååãæ€çŽ¢ãããå€æŽãããããŸãã ãã®æŒç®åã¯ããã®ãããªæäœãä»ã®æååã«å¯ŸããŠè¡ãããã«ããŸãã å³èŸºã¯ãæ€çŽ¢ãã¿ãŒã³(//)ã眮æ(s///)ããŸãã¯å€æ(tr///)ã§ãã 巊蟺ã¯ãããã©ã«ãã®$_ã®ä»£ããã«æ€çŽ¢ã眮æããŸãã¯å€æãããã¯ãã®ãã®ã§ãã ã¹ã«ã©ãŒã³ã³ããã¹ãã§äœ¿çšããå Žåãè¿ãå€ã¯éåžžæäœã®æåãè¡šããŸãã ãªã¹ãã³ã³ããã¹ãã§ã®åäœã¯ãç¹å®ã®æŒç®åã«äŸåããŸãã
!~ã¯ã=~ã®è«çå転ããŒãžã§ã³ã§ãã
=~ã¯ãå³èŸºã« s/// ãåããšå·ŠèŸºã眮æããã
=~ã¯ãå³èŸºã« tr/// ãåããšå·ŠèŸºãå€æããã
m ãå眮ãããšæ£èŠè¡šçŸãå²ãèšå·ã«ã¹ã©ãã·ã¥ä»¥å€ãçšããããšãã§ããŸãã [ ], ( ), < >, { } ãªã©ã®æ¬åŒ§ã¯éãæ¬åŒ§ãšéãæ¬åŒ§ã察å¿ããããã«çšããŸãã
å²ã¿èšå·ã«ã·ã³ã°ã«ã¯ã©ãŒããŒã·ã§ã³ãçšãããšãå€æ°ããšã¹ã±ãŒãã·ãŒã±ã³ã¹ãè©äŸ¡ãããã®ãé²ãããšãã§ããŸãã
æåã¯ã©ã¹ã¯ãæåã®éåãããã®éåã®äžã®1æåã«ãããããããã«è¡šçŸããæ¹æ³ã§ãã ããã§éèŠãªã®ã¯ãæåã¯ã©ã¹ã®ãããã³ã°ã¯ãœãŒã¹æååã®ã¡ããã©äžæåãæ¶è²»ãããšããããšã§ã(ãœãŒã¹æååãšã¯ãæ£èŠè¡šçŸãããããããæååã®ããšã§ã)ã
Perlã®æ£èŠè¡šçŸã«ã¯ãããããããã¯ã¹ã©ãã·ã¥ã»ã·ãŒã±ã³ã¹ãè§æ¬åŒ§ã§å²ãŸããæåã¯ã©ã¹ã®3çš®é¡ã®æåã¯ã©ã¹ããããŸãã ãããããæåã¯ã©ã¹ããšããçšèªã¯ããã°ãã°è§æ¬åŒ§ã§å²ãŸãã圢åŒã ããæå³ãããã®ãšããŠäœ¿ãããããšãããã®ã§ãæèã«ããã©ã¡ããè¡šããŠããã®ã泚æãå¿
èŠã§ã
ããã.ã¯ãããã©ã«ãã§ã¯ããããã¯æ¹è¡ãé€ãå
šãŠã®1æåã«ãããããŸãã
æ£èŠè¡šçŸã«ãããŠç¹æ®ãªæå³ãæã€ä»¥äžã®æåãã¡ã¿ãã£ã©ã¯ã¿ãŒãšåŒã³ãŸãã
ãããã®æåèªèº«ãããããã«ã¯ \+, \* ã®ããã«ããã¯ã¹ã©ãã·ã¥ã§ãšã¹ã±ãŒãããŸãã
ã¢ã³ã«ãŒãšã¯é·ããæããªãæ£èŠè¡šçŸã§ãã
代衚çãªãã®ã«ãæååå
é ã«ããããã ^ãæååæ«å°Ÿã«ããããã $ ããããŸãã
æååãWikiãã¯æ€çŽ¢å¯Ÿè±¡ã®å
é ã«ããã®ã§ãããããŸãã
æååãbooksãã¯æ€çŽ¢å¯Ÿè±¡ã«å«ãŸããŠå±
ããŸããããããå
é ã«ã¯ç¡ãã®ã§ãããããªãã®ã§ãã
ä»ã«ãåèªã®å¢ç(æ£ç¢ºã«ã¯ãåèªã®å
é ãããã¯æ«å°Ÿ)ã«ããããã \bããã以å€ã®éšåã«ããããã\B ããããŸãã
ã€ãŸãããã®äœçœ®ã«åè§ã¹ããŒã¹ãŸãã¯åèªã®å
é ãããã¯çµãããããå Žåã«ããããããããšã«ãªããŸãã
dogã®gã®åŸãã«åè§ã¹ããŒã¹ãããã®ã§ãçµæã¯ãããã§ãã
catã®ãªãã«ãaãããããŸãããäœçœ®ãåèªã®å¢çã§ã¯ãªãã®ã§ããããããŸããã
ããã¯ã¹ã©ãã·ã¥ã»ã·ãŒã±ã³ã¹ãšã¯ãæåã®1æåãããã¯ã¹ã©ãã·ã¥ã§ããæåã®äžŠã³ã®ããšã§ããPerlã¯ãã®ãããªå€ãã®ã·ãŒã±ã³ã¹ã«ç¹å¥ãªæå³ãæãããŠããããã®ãã¡ã®ããã€ãã¯æåã¯ã©ã¹ã«ãªã£ãŠããŸããã€ãŸã,ãã®æåãã·ãŒã±ã³ã¹ã§å®çŸ©ãããç¹å®ã®æåéåã«å±ããŠããã°,ãããã1ã€ã®æåã«ãããããŸãã
/[ ]/ ã®ããã«ãã¹ã©ãã·ã¥ã®å
åŽããã©ã±ããã§å²ãã éšåã¯è§æ¬åŒ§ã§å²ãŸããæåã¯ã©ã¹ã§ãã
/[ - ]/ ã®ããã«ãæåã¯ã©ã¹/[ ]/ã®äžã«ãããŠãã€ãã³ (-) ãçšããããšã«ãããæåã®ç¯å²ãæå®ããããšãã§ããŸãã
ããšãã°ã/[a-z]/ ãšæžãã°ãè±èªã®å°æåã«ãããããŸãã(ãªã Perl ã®æ£èŠè¡šçŸã§ã¯ã倧æåãšå°æåãåºå¥ããŸãã)
ããã㯠/[0-9]/ ãšæžãã°ãåé²æ°ã®æ°åã«ãããããŸãã
ãã€ãã³ã®åã®æåã¯ãåŸãã®æåãããæåã³ãŒãã«ãããŠåã§ãªããã°ãªããŸããã
ãã€ãã³èªäœãæåã¯ã©ã¹ã«å«ããã«ã¯ãæåã¯ã©ã¹ã®äžçªåãäžçªåŸãã«èšè¿°ããããããã¯ã¹ã©ãã·ã¥ã§ãšã¹ã±ãŒãããŸãã(ãªããWindowsç°å¢ã§ã¯è¡šç€ºã§ãããã¯ã¹ã©ãã·ã¥ã®ä»£ããã«ãé貚èšå·ã®åããŒã¯ã衚瀺ããããããããŸããã)
éããã©ã±ãã ([) ã« ^ ãåŸçœ®ãããšãåŠå®ãã£ã©ã¯ã¿ã¯ã©ã¹ãè¡šçŸããããšãã§ããŸãã
äžžæ¬åŒ§ã§æ¬ã£ãéšåã¯ã°ã«ãŒãåãããŸãã
ã°ã«ãŒãåããéšåã¯åŸããåç
§ããããšãã§ããŸãããããåŸæ¹åç
§ãšãããŸãã åãæ£èŠè¡šçŸå
ã§åŸæ¹åç
§ãè¡ãã«ã¯ã\1, \2... ãçšããŸãã
ãŸããæ£èŠè¡šçŸå€ã§åŸæ¹åç
§ãè¡ãã«ã¯ãã¹ã«ã©ãŒå€æ° $1, $2... ãçšããŸãã
瞊ç·ãçšãããšæ£èŠè¡šçŸãéžæããããšãã§ããŸãã
äžèšã®æžåŒäŸã§ã¯ã^ ã $ ã | ãããåªå
é äœãé«ããããabc ã§å§ãŸãæååã def ã§çµããæååã«ãããããŸãã
å
é ãšæ«å°Ÿã®äž¡æ¹ã«æ¥ããã"abc"ãã ã"def"ãã ãã«ããããããã«ã¯ä»¥äžã®ããã«ããŸãã
s///æŒç®åãçšãããšãæååã®çœ®æãè¡ãããšãã§ããŸãã
m//ãšåãããã¹ã©ãã·ã¥ä»¥å€ã®èšå·ãçšããããšãã§ããŸãã
æ£èŠè¡šçŸã®ã¡ã¿ãã£ã©ã¯ã¿ãŒããããã¯ãã¿ãŒã³ããããã®ãã®ã®æ¯ãèããå€ããããã«ã修食åãæå®ããããšãã§ããŸããããšãã°ãæ£èŠè¡šçŸãã¢ã«ãã¡ãããã®å€§æåå°æåãåºå¥ããã«ãããããããã«ããããã«ã¯ã
ã®ããã«ãæåŸã®ã¹ã©ãã·ã¥(ãããã¯äœããã®èšå·)ã®åŸã«ãi修食åãä»å ããŸãã
x修食åãä»ãããšæ£èŠè¡šçŸå
ã®ç©ºçœãæ¹è¡ãç¡èŠãããã#ã以éã¯ã³ã¡ã³ããšããŠæ±ãããŸãã
ãABCããã[0-9]ããã.*?ãã®ããã«ãäœãã«ãããããæ£èŠè¡šçŸã®æ§æãã¢ãã ãšãããŸããæåŸã®ã.*?ãã¯ãã¢ãã ã.ãã«éæå®åã*ããã?ããä»ãããã®ã§ãç¹ã«éæå®åä»ãã¢ãã ãšãããŸãã
ã^ããã$ããã|ãã®ããã«ãäœãã«ãããããããã§ã¯ãªãæ£èŠè¡šçŸã®æ§æãã¢ãµãŒã·ã§ã³ãšãããŸãã
æ£èŠè¡šçŸã®æ§æã¯åºæ¬çã«ã¢ãã ãšã¢ãµãŒã·ã§ã³ã®ã©ã¡ããã«åããããŸãããã ãã\Qã\Eã\uã\Uã®ãããªç¹æ®ãªã·ãŒã±ã³ã¹ã¯ã¢ãã ã§ãã¢ãµãŒã·ã§ã³ã§ããããŸããããããã¯æ§æã®ãµããŸããå€ãããã®ã§ãã
(?:...)ã¯ã¯ã©ã¹ã¿å(æ£èŠè¡šçŸããŸãšããããš)ã®ã¿ã«äœ¿ãããã«ãã³ã§ãããã£ããã£ãè¡ããªãããããããããéšåãæ£èŠè¡šçŸã®äžã§\1ã\2ã®ããã«åç
§ããããåŸãã$1ã$2ã®ãããªå€æ°ã§åç
§ãããããããšãã§ããŸããããã£ããã£ãè¡ãå¿
èŠããªãå Žåã¯ããã®ã«ãã³ã䜿ãããšã§å¹çåãå³ãããšãã§ããŸãã
ããã«ã¯imsx修食åãä»ããããšãã§ããŸããi修食åãä»ããã«ã¯ãi-msx(iãæå®ãmsxãæå®ããªã)ãšããŸãã
åã«ä¿®é£Ÿåãæå¹ãŸãã¯ç¡å¹ã«ããããã ãã«ãã®ã«ãã³ã䜿ãããšãã§ããŸãã
ã«ãã¯ã¢ã©ãŠã³ãã¢ãµãŒã·ã§ã³ãšã¯ãçŽåŸãŸãã¯çŽåã«ãã¿ãŒã³ãåºçŸããããšããããã¯åºçŸããªãããšã確èªãã確èªããã ãã§äœã«ããããããªãã¢ãµãŒã·ã§ã³ã§ãã
çŽåŸã«PATTERNãåºçŸããããšã確èªããŸãã
çŽåŸã«PATTERNãåºçŸããªãããšã確èªããŸãã
次ã®äŸã§ã¯ãã&ã以å€ã®ã&ãããã¹ãŠã&ãã«çœ®æããŸãã
çŽåã«PATTERNãåºçŸããããšã確èªããŸãã
çŽåã«PATTERNãåºçŸããªãããšã確èªããŸãã
ããã¯ãã©ãã¯ããªãPATTRENã«ã®ã¿ãããããŸãã
(?{ CODE })ãšãã圢ã§ãæ£èŠè¡šçŸã®äžã«Perlã®ã³ãŒããåã蟌ãããšãã§ããŸãã
(??{ CODE })ãšãã圢ã§ã¯ãCODEãè©äŸ¡ããçµæåŸãããæ£èŠè¡šçŸã«ãããããŸãã
Perlã®æ¡ä»¶æŒç®å?:ã®ããã«ãæ¡ä»¶ãçãåœãã§ãããããããã¿ãŒã³ãå€ããããšãã§ããŸãã
ãŸãã¯
CONDãçã®å Žåã¯TRUEãåœã®å Žåã¯FALSEã®ãã¿ãŒã³ã«ãããããŸãã
| [
{
"paragraph_id": 0,
"tag": "p",
"text": "Perl > Perl/æ£èŠè¡šçŸ",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "Perlã¯åŒ·å㪠æ£èŠè¡šçŸ ããµããŒãããŠããŸããæ£èŠè¡šçŸãšã¯ã倧ãŸãã«ãããšãæ€çŽ¢ã®æ©èœãé«åºŠåãããããããã®ã§ããPerl以å€ã®JavaãJavaSciptãPHPãªã©ãæ£èŠè¡šçŸããµããŒãããŠããŸãããPerlã¯å€ãããæ£èŠè¡šçŸãæ¬æ Œçã«ãµããŒãããŠããŸãã ãŸããPerlã®æ¡åŒµæ£èŠè¡šçŸã¯ãPerl Compatible Regular Expressions( PCRE ) ãšããŠPerlã®å€ã§ã䜿ãããšãã§ãããããæ£èŠè¡šçŸã®ãã£ãã¡ã¯ãã¹ã¿ã³ããŒãã®1ã€ãšãªã£ãŠããŸãã",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "äºé
æŒç®å =~ ã¯ã巊蟺ã®ã¹ã«ã©ãŒåŒãå³èŸºã®ãã¿ãŒã³ãããã«ææããŸãã æ£èŠè¡šçŸã«é¢ããæäœã§ã¯ãããã©ã«ã㧠$_ ãšããæååãæ€çŽ¢ãããå€æŽãããããŸãã ãã®æŒç®åã¯ããã®ãããªæäœãä»ã®æååã«å¯ŸããŠè¡ãããã«ããŸãã å³èŸºã¯ãæ€çŽ¢ãã¿ãŒã³(//)ã眮æ(s///)ããŸãã¯å€æ(tr///)ã§ãã 巊蟺ã¯ãããã©ã«ãã®$_ã®ä»£ããã«æ€çŽ¢ã眮æããŸãã¯å€æãããã¯ãã®ãã®ã§ãã ã¹ã«ã©ãŒã³ã³ããã¹ãã§äœ¿çšããå Žåãè¿ãå€ã¯éåžžæäœã®æåãè¡šããŸãã ãªã¹ãã³ã³ããã¹ãã§ã®åäœã¯ãç¹å®ã®æŒç®åã«äŸåããŸãã",
"title": "ãã¿ãŒã³ãããã³ã°"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "!~ã¯ã=~ã®è«çå転ããŒãžã§ã³ã§ãã",
"title": "ãã¿ãŒã³ãããã³ã°"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "=~ã¯ãå³èŸºã« s/// ãåããšå·ŠèŸºã眮æããã",
"title": "ãã¿ãŒã³ãããã³ã°"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "=~ã¯ãå³èŸºã« tr/// ãåããšå·ŠèŸºãå€æããã",
"title": "ãã¿ãŒã³ãããã³ã°"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "m ãå眮ãããšæ£èŠè¡šçŸãå²ãèšå·ã«ã¹ã©ãã·ã¥ä»¥å€ãçšããããšãã§ããŸãã [ ], ( ), < >, { } ãªã©ã®æ¬åŒ§ã¯éãæ¬åŒ§ãšéãæ¬åŒ§ã察å¿ããããã«çšããŸãã",
"title": "ãã¿ãŒã³ãããã³ã°"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "å²ã¿èšå·ã«ã·ã³ã°ã«ã¯ã©ãŒããŒã·ã§ã³ãçšãããšãå€æ°ããšã¹ã±ãŒãã·ãŒã±ã³ã¹ãè©äŸ¡ãããã®ãé²ãããšãã§ããŸãã",
"title": "ãã¿ãŒã³ãããã³ã°"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "æåã¯ã©ã¹ã¯ãæåã®éåãããã®éåã®äžã®1æåã«ãããããããã«è¡šçŸããæ¹æ³ã§ãã ããã§éèŠãªã®ã¯ãæåã¯ã©ã¹ã®ãããã³ã°ã¯ãœãŒã¹æååã®ã¡ããã©äžæåãæ¶è²»ãããšããããšã§ã(ãœãŒã¹æååãšã¯ãæ£èŠè¡šçŸãããããããæååã®ããšã§ã)ã",
"title": "æ£èŠè¡šçŸã«ãããæåã¯ã©ã¹ã®æ§æãšäœ¿çšæ¹æ³"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "Perlã®æ£èŠè¡šçŸã«ã¯ãããããããã¯ã¹ã©ãã·ã¥ã»ã·ãŒã±ã³ã¹ãè§æ¬åŒ§ã§å²ãŸããæåã¯ã©ã¹ã®3çš®é¡ã®æåã¯ã©ã¹ããããŸãã ãããããæåã¯ã©ã¹ããšããçšèªã¯ããã°ãã°è§æ¬åŒ§ã§å²ãŸãã圢åŒã ããæå³ãããã®ãšããŠäœ¿ãããããšãããã®ã§ãæèã«ããã©ã¡ããè¡šããŠããã®ã泚æãå¿
èŠã§ã",
"title": "æ£èŠè¡šçŸã«ãããæåã¯ã©ã¹ã®æ§æãšäœ¿çšæ¹æ³"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "ããã.ã¯ãããã©ã«ãã§ã¯ããããã¯æ¹è¡ãé€ãå
šãŠã®1æåã«ãããããŸãã",
"title": "æ£èŠè¡šçŸã«ãããæåã¯ã©ã¹ã®æ§æãšäœ¿çšæ¹æ³"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "æ£èŠè¡šçŸã«ãããŠç¹æ®ãªæå³ãæã€ä»¥äžã®æåãã¡ã¿ãã£ã©ã¯ã¿ãŒãšåŒã³ãŸãã",
"title": "æ£èŠè¡šçŸã«ãããæåã¯ã©ã¹ã®æ§æãšäœ¿çšæ¹æ³"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "ãããã®æåèªèº«ãããããã«ã¯ \\+, \\* ã®ããã«ããã¯ã¹ã©ãã·ã¥ã§ãšã¹ã±ãŒãããŸãã",
"title": "æ£èŠè¡šçŸã«ãããæåã¯ã©ã¹ã®æ§æãšäœ¿çšæ¹æ³"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "ã¢ã³ã«ãŒãšã¯é·ããæããªãæ£èŠè¡šçŸã§ãã",
"title": "æ£èŠè¡šçŸã«ãããæåã¯ã©ã¹ã®æ§æãšäœ¿çšæ¹æ³"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "代衚çãªãã®ã«ãæååå
é ã«ããããã ^ãæååæ«å°Ÿã«ããããã $ ããããŸãã",
"title": "æ£èŠè¡šçŸã«ãããæåã¯ã©ã¹ã®æ§æãšäœ¿çšæ¹æ³"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "æååãWikiãã¯æ€çŽ¢å¯Ÿè±¡ã®å
é ã«ããã®ã§ãããããŸãã",
"title": "æ£èŠè¡šçŸã«ãããæåã¯ã©ã¹ã®æ§æãšäœ¿çšæ¹æ³"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "æååãbooksãã¯æ€çŽ¢å¯Ÿè±¡ã«å«ãŸããŠå±
ããŸããããããå
é ã«ã¯ç¡ãã®ã§ãããããªãã®ã§ãã",
"title": "æ£èŠè¡šçŸã«ãããæåã¯ã©ã¹ã®æ§æãšäœ¿çšæ¹æ³"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "ä»ã«ãåèªã®å¢ç(æ£ç¢ºã«ã¯ãåèªã®å
é ãããã¯æ«å°Ÿ)ã«ããããã \\bããã以å€ã®éšåã«ããããã\\B ããããŸãã",
"title": "æ£èŠè¡šçŸã«ãããæåã¯ã©ã¹ã®æ§æãšäœ¿çšæ¹æ³"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "ã€ãŸãããã®äœçœ®ã«åè§ã¹ããŒã¹ãŸãã¯åèªã®å
é ãããã¯çµãããããå Žåã«ããããããããšã«ãªããŸãã",
"title": "æ£èŠè¡šçŸã«ãããæåã¯ã©ã¹ã®æ§æãšäœ¿çšæ¹æ³"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "dogã®gã®åŸãã«åè§ã¹ããŒã¹ãããã®ã§ãçµæã¯ãããã§ãã",
"title": "æ£èŠè¡šçŸã«ãããæåã¯ã©ã¹ã®æ§æãšäœ¿çšæ¹æ³"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "",
"title": "æ£èŠè¡šçŸã«ãããæåã¯ã©ã¹ã®æ§æãšäœ¿çšæ¹æ³"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "catã®ãªãã«ãaãããããŸãããäœçœ®ãåèªã®å¢çã§ã¯ãªãã®ã§ããããããŸããã",
"title": "æ£èŠè¡šçŸã«ãããæåã¯ã©ã¹ã®æ§æãšäœ¿çšæ¹æ³"
},
{
"paragraph_id": 22,
"tag": "p",
"text": "ããã¯ã¹ã©ãã·ã¥ã»ã·ãŒã±ã³ã¹ãšã¯ãæåã®1æåãããã¯ã¹ã©ãã·ã¥ã§ããæåã®äžŠã³ã®ããšã§ããPerlã¯ãã®ãããªå€ãã®ã·ãŒã±ã³ã¹ã«ç¹å¥ãªæå³ãæãããŠããããã®ãã¡ã®ããã€ãã¯æåã¯ã©ã¹ã«ãªã£ãŠããŸããã€ãŸã,ãã®æåãã·ãŒã±ã³ã¹ã§å®çŸ©ãããç¹å®ã®æåéåã«å±ããŠããã°,ãããã1ã€ã®æåã«ãããããŸãã",
"title": "æ£èŠè¡šçŸã«ãããæåã¯ã©ã¹ã®æ§æãšäœ¿çšæ¹æ³"
},
{
"paragraph_id": 23,
"tag": "p",
"text": "/[ ]/ ã®ããã«ãã¹ã©ãã·ã¥ã®å
åŽããã©ã±ããã§å²ãã éšåã¯è§æ¬åŒ§ã§å²ãŸããæåã¯ã©ã¹ã§ãã",
"title": "æ£èŠè¡šçŸã«ãããæåã¯ã©ã¹ã®æ§æãšäœ¿çšæ¹æ³"
},
{
"paragraph_id": 24,
"tag": "p",
"text": "/[ - ]/ ã®ããã«ãæåã¯ã©ã¹/[ ]/ã®äžã«ãããŠãã€ãã³ (-) ãçšããããšã«ãããæåã®ç¯å²ãæå®ããããšãã§ããŸãã",
"title": "æ£èŠè¡šçŸã«ãããæåã¯ã©ã¹ã®æ§æãšäœ¿çšæ¹æ³"
},
{
"paragraph_id": 25,
"tag": "p",
"text": "ããšãã°ã/[a-z]/ ãšæžãã°ãè±èªã®å°æåã«ãããããŸãã(ãªã Perl ã®æ£èŠè¡šçŸã§ã¯ã倧æåãšå°æåãåºå¥ããŸãã)",
"title": "æ£èŠè¡šçŸã«ãããæåã¯ã©ã¹ã®æ§æãšäœ¿çšæ¹æ³"
},
{
"paragraph_id": 26,
"tag": "p",
"text": "ããã㯠/[0-9]/ ãšæžãã°ãåé²æ°ã®æ°åã«ãããããŸãã",
"title": "æ£èŠè¡šçŸã«ãããæåã¯ã©ã¹ã®æ§æãšäœ¿çšæ¹æ³"
},
{
"paragraph_id": 27,
"tag": "p",
"text": "",
"title": "æ£èŠè¡šçŸã«ãããæåã¯ã©ã¹ã®æ§æãšäœ¿çšæ¹æ³"
},
{
"paragraph_id": 28,
"tag": "p",
"text": "ãã€ãã³ã®åã®æåã¯ãåŸãã®æåãããæåã³ãŒãã«ãããŠåã§ãªããã°ãªããŸããã",
"title": "æ£èŠè¡šçŸã«ãããæåã¯ã©ã¹ã®æ§æãšäœ¿çšæ¹æ³"
},
{
"paragraph_id": 29,
"tag": "p",
"text": "ãã€ãã³èªäœãæåã¯ã©ã¹ã«å«ããã«ã¯ãæåã¯ã©ã¹ã®äžçªåãäžçªåŸãã«èšè¿°ããããããã¯ã¹ã©ãã·ã¥ã§ãšã¹ã±ãŒãããŸãã(ãªããWindowsç°å¢ã§ã¯è¡šç€ºã§ãããã¯ã¹ã©ãã·ã¥ã®ä»£ããã«ãé貚èšå·ã®åããŒã¯ã衚瀺ããããããããŸããã)",
"title": "æ£èŠè¡šçŸã«ãããæåã¯ã©ã¹ã®æ§æãšäœ¿çšæ¹æ³"
},
{
"paragraph_id": 30,
"tag": "p",
"text": "éããã©ã±ãã ([) ã« ^ ãåŸçœ®ãããšãåŠå®ãã£ã©ã¯ã¿ã¯ã©ã¹ãè¡šçŸããããšãã§ããŸãã",
"title": "æ£èŠè¡šçŸã«ãããæåã¯ã©ã¹ã®æ§æãšäœ¿çšæ¹æ³"
},
{
"paragraph_id": 31,
"tag": "p",
"text": "äžžæ¬åŒ§ã§æ¬ã£ãéšåã¯ã°ã«ãŒãåãããŸãã",
"title": "æ£èŠè¡šçŸã«ãããæåã¯ã©ã¹ã®æ§æãšäœ¿çšæ¹æ³"
},
{
"paragraph_id": 32,
"tag": "p",
"text": "ã°ã«ãŒãåããéšåã¯åŸããåç
§ããããšãã§ããŸãããããåŸæ¹åç
§ãšãããŸãã åãæ£èŠè¡šçŸå
ã§åŸæ¹åç
§ãè¡ãã«ã¯ã\\1, \\2... ãçšããŸãã",
"title": "æ£èŠè¡šçŸã«ãããæåã¯ã©ã¹ã®æ§æãšäœ¿çšæ¹æ³"
},
{
"paragraph_id": 33,
"tag": "p",
"text": "ãŸããæ£èŠè¡šçŸå€ã§åŸæ¹åç
§ãè¡ãã«ã¯ãã¹ã«ã©ãŒå€æ° $1, $2... ãçšããŸãã",
"title": "æ£èŠè¡šçŸã«ãããæåã¯ã©ã¹ã®æ§æãšäœ¿çšæ¹æ³"
},
{
"paragraph_id": 34,
"tag": "p",
"text": "瞊ç·ãçšãããšæ£èŠè¡šçŸãéžæããããšãã§ããŸãã",
"title": "æ£èŠè¡šçŸã«ãããæåã¯ã©ã¹ã®æ§æãšäœ¿çšæ¹æ³"
},
{
"paragraph_id": 35,
"tag": "p",
"text": "äžèšã®æžåŒäŸã§ã¯ã^ ã $ ã | ãããåªå
é äœãé«ããããabc ã§å§ãŸãæååã def ã§çµããæååã«ãããããŸãã",
"title": "æ£èŠè¡šçŸã«ãããæåã¯ã©ã¹ã®æ§æãšäœ¿çšæ¹æ³"
},
{
"paragraph_id": 36,
"tag": "p",
"text": "",
"title": "æ£èŠè¡šçŸã«ãããæåã¯ã©ã¹ã®æ§æãšäœ¿çšæ¹æ³"
},
{
"paragraph_id": 37,
"tag": "p",
"text": "å
é ãšæ«å°Ÿã®äž¡æ¹ã«æ¥ããã\"abc\"ãã ã\"def\"ãã ãã«ããããããã«ã¯ä»¥äžã®ããã«ããŸãã",
"title": "æ£èŠè¡šçŸã«ãããæåã¯ã©ã¹ã®æ§æãšäœ¿çšæ¹æ³"
},
{
"paragraph_id": 38,
"tag": "p",
"text": "",
"title": "æ£èŠè¡šçŸã«ãããæåã¯ã©ã¹ã®æ§æãšäœ¿çšæ¹æ³"
},
{
"paragraph_id": 39,
"tag": "p",
"text": "",
"title": "æ£èŠè¡šçŸã«ãããæåã¯ã©ã¹ã®æ§æãšäœ¿çšæ¹æ³"
},
{
"paragraph_id": 40,
"tag": "p",
"text": "s///æŒç®åãçšãããšãæååã®çœ®æãè¡ãããšãã§ããŸãã",
"title": "æ£èŠè¡šçŸã«ãããæåã¯ã©ã¹ã®æ§æãšäœ¿çšæ¹æ³"
},
{
"paragraph_id": 41,
"tag": "p",
"text": "m//ãšåãããã¹ã©ãã·ã¥ä»¥å€ã®èšå·ãçšããããšãã§ããŸãã",
"title": "æ£èŠè¡šçŸã«ãããæåã¯ã©ã¹ã®æ§æãšäœ¿çšæ¹æ³"
},
{
"paragraph_id": 42,
"tag": "p",
"text": "æ£èŠè¡šçŸã®ã¡ã¿ãã£ã©ã¯ã¿ãŒããããã¯ãã¿ãŒã³ããããã®ãã®ã®æ¯ãèããå€ããããã«ã修食åãæå®ããããšãã§ããŸããããšãã°ãæ£èŠè¡šçŸãã¢ã«ãã¡ãããã®å€§æåå°æåãåºå¥ããã«ãããããããã«ããããã«ã¯ã",
"title": "æ£èŠè¡šçŸã«ãããæåã¯ã©ã¹ã®æ§æãšäœ¿çšæ¹æ³"
},
{
"paragraph_id": 43,
"tag": "p",
"text": "ã®ããã«ãæåŸã®ã¹ã©ãã·ã¥(ãããã¯äœããã®èšå·)ã®åŸã«ãi修食åãä»å ããŸãã",
"title": "æ£èŠè¡šçŸã«ãããæåã¯ã©ã¹ã®æ§æãšäœ¿çšæ¹æ³"
},
{
"paragraph_id": 44,
"tag": "p",
"text": "x修食åãä»ãããšæ£èŠè¡šçŸå
ã®ç©ºçœãæ¹è¡ãç¡èŠãããã#ã以éã¯ã³ã¡ã³ããšããŠæ±ãããŸãã",
"title": "æ£èŠè¡šçŸã«ãããæåã¯ã©ã¹ã®æ§æãšäœ¿çšæ¹æ³"
},
{
"paragraph_id": 45,
"tag": "p",
"text": "ãABCããã[0-9]ããã.*?ãã®ããã«ãäœãã«ãããããæ£èŠè¡šçŸã®æ§æãã¢ãã ãšãããŸããæåŸã®ã.*?ãã¯ãã¢ãã ã.ãã«éæå®åã*ããã?ããä»ãããã®ã§ãç¹ã«éæå®åä»ãã¢ãã ãšãããŸãã",
"title": "æ£èŠè¡šçŸã«ãããæåã¯ã©ã¹ã®æ§æãšäœ¿çšæ¹æ³"
},
{
"paragraph_id": 46,
"tag": "p",
"text": "ã^ããã$ããã|ãã®ããã«ãäœãã«ãããããããã§ã¯ãªãæ£èŠè¡šçŸã®æ§æãã¢ãµãŒã·ã§ã³ãšãããŸãã",
"title": "æ£èŠè¡šçŸã«ãããæåã¯ã©ã¹ã®æ§æãšäœ¿çšæ¹æ³"
},
{
"paragraph_id": 47,
"tag": "p",
"text": "æ£èŠè¡šçŸã®æ§æã¯åºæ¬çã«ã¢ãã ãšã¢ãµãŒã·ã§ã³ã®ã©ã¡ããã«åããããŸãããã ãã\\Qã\\Eã\\uã\\Uã®ãããªç¹æ®ãªã·ãŒã±ã³ã¹ã¯ã¢ãã ã§ãã¢ãµãŒã·ã§ã³ã§ããããŸããããããã¯æ§æã®ãµããŸããå€ãããã®ã§ãã",
"title": "æ£èŠè¡šçŸã«ãããæåã¯ã©ã¹ã®æ§æãšäœ¿çšæ¹æ³"
},
{
"paragraph_id": 48,
"tag": "p",
"text": "(?:...)ã¯ã¯ã©ã¹ã¿å(æ£èŠè¡šçŸããŸãšããããš)ã®ã¿ã«äœ¿ãããã«ãã³ã§ãããã£ããã£ãè¡ããªãããããããããéšåãæ£èŠè¡šçŸã®äžã§\\1ã\\2ã®ããã«åç
§ããããåŸãã$1ã$2ã®ãããªå€æ°ã§åç
§ãããããããšãã§ããŸããããã£ããã£ãè¡ãå¿
èŠããªãå Žåã¯ããã®ã«ãã³ã䜿ãããšã§å¹çåãå³ãããšãã§ããŸãã",
"title": "æ¡åŒµæ§æ"
},
{
"paragraph_id": 49,
"tag": "p",
"text": "ããã«ã¯imsx修食åãä»ããããšãã§ããŸããi修食åãä»ããã«ã¯ãi-msx(iãæå®ãmsxãæå®ããªã)ãšããŸãã",
"title": "æ¡åŒµæ§æ"
},
{
"paragraph_id": 50,
"tag": "p",
"text": "åã«ä¿®é£Ÿåãæå¹ãŸãã¯ç¡å¹ã«ããããã ãã«ãã®ã«ãã³ã䜿ãããšãã§ããŸãã",
"title": "æ¡åŒµæ§æ"
},
{
"paragraph_id": 51,
"tag": "p",
"text": "ã«ãã¯ã¢ã©ãŠã³ãã¢ãµãŒã·ã§ã³ãšã¯ãçŽåŸãŸãã¯çŽåã«ãã¿ãŒã³ãåºçŸããããšããããã¯åºçŸããªãããšã確èªãã確èªããã ãã§äœã«ããããããªãã¢ãµãŒã·ã§ã³ã§ãã",
"title": "æ¡åŒµæ§æ"
},
{
"paragraph_id": 52,
"tag": "p",
"text": "çŽåŸã«PATTERNãåºçŸããããšã確èªããŸãã",
"title": "æ¡åŒµæ§æ"
},
{
"paragraph_id": 53,
"tag": "p",
"text": "çŽåŸã«PATTERNãåºçŸããªãããšã確èªããŸãã",
"title": "æ¡åŒµæ§æ"
},
{
"paragraph_id": 54,
"tag": "p",
"text": "次ã®äŸã§ã¯ãã&ã以å€ã®ã&ãããã¹ãŠã&ãã«çœ®æããŸãã",
"title": "æ¡åŒµæ§æ"
},
{
"paragraph_id": 55,
"tag": "p",
"text": "çŽåã«PATTERNãåºçŸããããšã確èªããŸãã",
"title": "æ¡åŒµæ§æ"
},
{
"paragraph_id": 56,
"tag": "p",
"text": "çŽåã«PATTERNãåºçŸããªãããšã確èªããŸãã",
"title": "æ¡åŒµæ§æ"
},
{
"paragraph_id": 57,
"tag": "p",
"text": "ããã¯ãã©ãã¯ããªãPATTRENã«ã®ã¿ãããããŸãã",
"title": "æ¡åŒµæ§æ"
},
{
"paragraph_id": 58,
"tag": "p",
"text": "(?{ CODE })ãšãã圢ã§ãæ£èŠè¡šçŸã®äžã«Perlã®ã³ãŒããåã蟌ãããšãã§ããŸãã",
"title": "æ¡åŒµæ§æ"
},
{
"paragraph_id": 59,
"tag": "p",
"text": "(??{ CODE })ãšãã圢ã§ã¯ãCODEãè©äŸ¡ããçµæåŸãããæ£èŠè¡šçŸã«ãããããŸãã",
"title": "æ¡åŒµæ§æ"
},
{
"paragraph_id": 60,
"tag": "p",
"text": "Perlã®æ¡ä»¶æŒç®å?:ã®ããã«ãæ¡ä»¶ãçãåœãã§ãããããããã¿ãŒã³ãå€ããããšãã§ããŸãã",
"title": "æ¡åŒµæ§æ"
},
{
"paragraph_id": 61,
"tag": "p",
"text": "ãŸãã¯",
"title": "æ¡åŒµæ§æ"
},
{
"paragraph_id": 62,
"tag": "p",
"text": "CONDãçã®å Žåã¯TRUEãåœã®å Žåã¯FALSEã®ãã¿ãŒã³ã«ãããããŸãã",
"title": "æ¡åŒµæ§æ"
},
{
"paragraph_id": 63,
"tag": "p",
"text": "",
"title": "æ¡åŒµæ§æ"
}
] | Perl > Perl/æ£èŠè¡šçŸ Perlã¯åŒ·å㪠æ£èŠè¡šçŸ ããµããŒãããŠããŸããæ£èŠè¡šçŸãšã¯ã倧ãŸãã«ãããšãæ€çŽ¢ã®æ©èœãé«åºŠåãããããããã®ã§ããPerl以å€ã®JavaãJavaSciptãPHPãªã©ãæ£èŠè¡šçŸããµããŒãããŠããŸãããPerlã¯å€ãããæ£èŠè¡šçŸãæ¬æ Œçã«ãµããŒãããŠããŸãã
ãŸããPerlã®æ¡åŒµæ£èŠè¡šçŸã¯ãPerl Compatible Regular Expressions( PCRE ) ãšããŠPerlã®å€ã§ã䜿ãããšãã§ãããããæ£èŠè¡šçŸã®ãã£ãã¡ã¯ãã¹ã¿ã³ããŒãã®ïŒã€ãšãªã£ãŠããŸãã | <noinclude>
{{Nav}}
{{Pathnav|Perl}}
----
</noinclude>
<includeonly>
= æ£èŠè¡šçŸ =
{{å
é ã«æ»ã}}
</includeonly>
{{Main|[https://perldoc.perl.org/5.36.0/perlre perlre(en)]|[https://perldoc.jp/docs/perl/5.36.0/perlre.pod perlre(ja)]}}
Perlã¯åŒ·å㪠[[æ£èŠè¡šçŸ]] ããµããŒãããŠããŸããæ£èŠè¡šçŸãšã¯ã倧ãŸãã«ãããšãæ€çŽ¢ã®æ©èœãé«åºŠåãããããããã®ã§ããPerl以å€ã®JavaãJavaSciptãPHPãªã©ãæ£èŠè¡šçŸããµããŒãããŠããŸãããPerlã¯å€ãããæ£èŠè¡šçŸãæ¬æ Œçã«ãµããŒãããŠããŸãã
ãŸããPerlã®æ¡åŒµæ£èŠè¡šçŸã¯ã[[W:Perl Compatible Regular Expressions|Perl Compatible Regular Expressions]]( PCRE ) ãšããŠPerlã®å€ã§ã䜿ãããšãã§ãããããæ£èŠè¡šçŸã®ãã£ãã¡ã¯ãã¹ã¿ã³ããŒãã®ïŒã€ãšãªã£ãŠããŸãã
== ãã¿ãŒã³ãããã³ã° ==
=== =~ ===
äºé
æŒç®å <code>=~</code> ã¯ã巊蟺ã®ã¹ã«ã©ãŒåŒãå³èŸºã®ãã¿ãŒã³ãããã«ææããŸãã
æ£èŠè¡šçŸã«é¢ããæäœã§ã¯ãããã©ã«ã㧠<code>$_</code> ãšããæååãæ€çŽ¢ãããå€æŽãããããŸãã
ãã®æŒç®åã¯ããã®ãããªæäœãä»ã®æååã«å¯ŸããŠè¡ãããã«ããŸãã
å³èŸºã¯ãæ€çŽ¢ãã¿ãŒã³ (<code>//</code>)ã眮æ (<code>s///</code>)ããŸãã¯å€æ (<code>tr///</code>) ã§ãã
巊蟺ã¯ãããã©ã«ãã® <code>$_</code> ã®ä»£ããã«æ€çŽ¢ã眮æããŸãã¯å€æãããã¯ãã®ãã®ã§ãã
ã¹ã«ã©ãŒã³ã³ããã¹ãã§äœ¿çšããå Žåãè¿ãå€ã¯éåžžæäœã®æåãè¡šããŸãã
ãªã¹ãã³ã³ããã¹ãã§ã®åäœã¯ãç¹å®ã®æŒç®åã«äŸåããŸãã
;[https://paiza.io/projects/dF7qJtYsYaCJO5AdHDXVYw?language=perl æ€çŽ¢]:<syntaxhighlight lang=perl>
if ("Wikibooks" =~ /book/) {
print "Match!";
} else {
print "Not match.";
}
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang="text">
Match!
</syntaxhighlight>
;æžåŒ:<syntaxhighlight lang=perl>
$æ€çŽ¢å¯Ÿè±¡ã®å€æ° =~ /æ€çŽ¢ãããæåå/
</syntaxhighlight>
:æ€çŽ¢ãããæååããå€æ°ãå
éšã«å«ãã§ãããã©ããã調ã¹ãéã«ã <code>=~</code> ããã³ <code>/RE/</code> ã䜿ããŸããäžèšã®ã³ãŒãã¯çåœãè¿ãã®ã§ãäž»ã«æ¡ä»¶åå²ãè¡ãéã«çšããããŸãã
=== !~ ===
<code>!~</code>ã¯ã<code>=~</code>ã®è«çå転ããŒãžã§ã³ã§ãã
;ã³ãŒãäŸ:<syntaxhighlight lang=perl>
if ("Wikibooks" !~ /books/) {
print "Not match.";
} else {
print "Match!";
}
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
Match!
</syntaxhighlight>
:<code>/.../</code> å
ã§ã¯ããã«ã¯ã©ãŒããŒã·ã§ã³ (<code>"..."</code>) ãšåãããå€æ°ããšã¹ã±ãŒãã·ãŒã±ã³ã¹ãè©äŸ¡ãããŸãã
;ã³ãŒãäŸ:<syntaxhighlight lang=perl>
$bar = "books";
"Wikibooks" =~ /$bar/ # ãããããã
</syntaxhighlight>
=== 眮æ ===
<code>=~</code>æŒç®åã䜿çšãããšãå³èŸºã« <code>s///</code> ãåãããšã§å·ŠèŸºã®æååã眮æããããšãã§ããŸãã
;ã³ãŒãäŸ:<syntaxhighlight lang=perl>
my $string = "Hello, world!";
$string =~ s/world/Perl/; # "world"ã"Perl"ã«çœ®æ
print $string; # åºå㯠"Hello, Perl!"
</syntaxhighlight>
äžèšã®äŸã§ã¯ã<code>$string</code>å
ã® "world" ã "Perl" ã«çœ®æããŠããŸãã
=== å€æ ===
<code>=~</code>æŒç®åã䜿çšãããšãå³èŸºã« <code>tr///</code> ãåãããšã§å·ŠèŸºã®æååãå€æããããšãã§ããŸãã
;ã³ãŒãäŸ:<syntaxhighlight lang=perl>
my $string = "hello world";
$string =~ tr/a-z/A-Z/; # ã¢ã«ãã¡ãããã倧æåã«å€æ
print $string; # åºå㯠"HELLO WORLD"
</syntaxhighlight>
ãã®äŸã§ã¯ã<code>$string</code>å
ã®ã¢ã«ãã¡ããããå°æåãã倧æåã«å€æããŠããŸãã
=== ãã¿ãŒã³ã®åºåãæå ===
<code>m</code> ãå眮ãããšæ£èŠè¡šçŸãå²ãèšå·ã«ã¹ã©ãã·ã¥ä»¥å€ãçšããããšãã§ããŸãã
<code>[ ]</code>, <code>( )</code>, <code>< ></code>, <code>{ }</code> ãªã©ã®æ¬åŒ§ã¯éãæ¬åŒ§ãšéãæ¬åŒ§ã察å¿ããããã«çšããŸãã
:<syntaxhighlight lang=perl>
$foo =~ m/bar/;
$foo =~ m#bar#;
$foo =~ m@bar@;
$foo =~ m!bar!;
$foo =~ m{bar};
$foo =~ m(bar);
</syntaxhighlight>
å²ã¿èšå·ã«ã·ã³ã°ã«ã¯ã©ãŒããŒã·ã§ã³ãçšãããšãå€æ°ããšã¹ã±ãŒãã·ãŒã±ã³ã¹ãè©äŸ¡ãããã®ãé²ãããšãã§ããŸãã
:<syntaxhighlight lang=perl>
$foo = "books";
"Wikibooks" =~ m/$foo/; # ããããã
"Wikibooks" =~ m'$foo'; # ãããããªã
</syntaxhighlight>
== æ£èŠè¡šçŸã«ãããæåã¯ã©ã¹ã®æ§æãšäœ¿çšæ¹æ³ ==
æåã¯ã©ã¹ã¯ãæåã®éåãè¡šçŸãããã®éåã®äžã®1æåã«ãããããæ¹æ³ã§ãã
éèŠãªã®ã¯ãæåã¯ã©ã¹ã®ãããã³ã°ããœãŒã¹æååã®ã¡ããã©1æåãæ¶è²»ãããšããããšã§ãïŒãœãŒã¹æååãšã¯ãæ£èŠè¡šçŸãããããããæååã®ããšã§ãïŒã
=== æåã¯ã©ã¹ ===
Perlã®æ£èŠè¡šçŸã«ã¯ã[[#ããã|ããã]]ã[[#ããã¯ã¹ã©ãã·ã¥ã»ã·ãŒã±ã³ã¹|ããã¯ã¹ã©ãã·ã¥ã»ã·ãŒã±ã³ã¹]]ã[[#è§æ¬åŒ§ã§å²ãŸããæåã¯ã©ã¹|è§æ¬åŒ§ã§å²ãŸããæåã¯ã©ã¹]]ã®3çš®é¡ã®æåã¯ã©ã¹ããããŸãã
ãããããæåã¯ã©ã¹ããšããçšèªã¯ããã°ãã°è§æ¬åŒ§ã§å²ãŸãã圢åŒã ããæå³ãããã®ãšããŠäœ¿ãããããšãããã®ã§ãæèã«ããã©ã¡ããè¡šããŠããã®ã泚æãå¿
èŠã§ãã
=== ããã ===
ããã <code>.</code> ã¯ãããã©ã«ãã§ã¯ãæ¹è¡ãé€ãå
šãŠã®1æåã«ãããããŸãã
;ã³ãŒãäŸ:<syntaxhighlight lang=perl>
if ("dog cat" =~ /..g/) {
print "Match!";
} else {
print "Not match.";
}
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
Match!
</syntaxhighlight>
: äŸãã°ãã..gãã¯æååã®æ«å°Ÿã "g" ã§ãã3æåã®åèªïŒä»ã®2æåç®ã¯ä»»æïŒã«ãããããŸãããããã£ãŠã"dog" ã¯ãã®æ¡ä»¶ãæºããã®ã§ãããããŸãã
: ãããããããã1ã€è¿œå ããå ŽåããããããªããªããŸãããªããªãã"g" ã®åã«ã¯2æåãããªãããã§ãã
;ã³ãŒãäŸ:<syntaxhighlight lang=perl>
if ("dog cat" =~ /...g/) {
print "Match!";
} else {
print "Not match.";
}
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
Not Match.
</syntaxhighlight>
: dogã®ãgãã®åã«ã¯1æå以äžã®æåãããã®ã§ããããã1ã€ã§ããããããŸãã
;ã³ãŒãäŸ:<syntaxhighlight lang=perl>
if ("dog cat" =~ /.g/) {
print "Match!";
} else {
print "Not match.";
}
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
Match!
</syntaxhighlight>
=== ã¡ã¿ãã£ã©ã¯ã¿ãŒ ===
æ£èŠè¡šçŸã«ãããŠç¹æ®ãªæå³ãæã€ä»¥äžã®æåã'''ã¡ã¿ãã£ã©ã¯ã¿ãŒ'''ãšåŒã³ãŸãã
+ * ? . ( ) [ ] { } | \ $ ^
ãããã®æåèªèº«ãè¡šãã«ã¯ <code>\+</code>, <code>\*</code> ã®ããã«ããã¯ã¹ã©ãã·ã¥ã§ãšã¹ã±ãŒãããŸãã
=== ã¢ã³ã«ãŒ ===
ãã¢ã³ã«ãŒããšã¯é·ããæããªãæ£èŠè¡šçŸã§ãã
代衚çãªãã®ã«ãæååå
é ã«ããããã <code>^</code>ãæååæ«å°Ÿã«ããããã <code>$</code> ããããŸãã
;æžåŒ:<syntaxhighlight lang=perl>
"Wikibooks" =~ /^Wiki/; # ããããã
"Wikibooks" =~ /books$/; # ããããã
"Wikibooks" =~ /Wiki$/; # ãããããªã
</syntaxhighlight>
;ã³ãŒãäŸ:<syntaxhighlight lang=perl>
if ("Wikibooks" =~ /^Wiki/) {
print "Match!";
} else {
print "Not match.";
}
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
Match!
</syntaxhighlight>
æååãWikiãã¯æ€çŽ¢å¯Ÿè±¡ã®å
é ã«ããã®ã§ãããããŸãã
:<syntaxhighlight lang=perl>
if ("Wikibooks" =~ /^books/) {
print "Match!";
} else {
print "Not match.";
}
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
Not Match.
</syntaxhighlight>
æååãbooksãã¯æ€çŽ¢å¯Ÿè±¡ã«å«ãŸããŠããŸãããå
é ã«ã¯ãªãã®ã§ãããããŸããã
ä»ã«ãåèªã®å¢çïŒæ£ç¢ºã«ã¯ãåèªã®å
é ãããã¯æ«å°ŸïŒã«ããããã <code>\b</code>ããã以å€ã®éšåã«ããããã <code>\B</code> ããããŸããã€ãŸãããã®äœçœ®ã«åè§ã¹ããŒã¹ãŸãã¯åèªã®å
é ãããã¯çµãããããå Žåã«ãããããŸãã
;æžåŒ:<syntaxhighlight lang=perl>
"dog cat" =~ /a\b/; # ãããããªã
"dog cat" =~ /g\b/; # ããããã
</syntaxhighlight>
;ã³ãŒãäŸ:<syntaxhighlight lang=perl>
if ("dog cat" =~ /g\b/) {
print "Match!";
} else {
print "Not match.";
}
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
Match!
</syntaxhighlight>
dogã®gã®åŸãã«åè§ã¹ããŒã¹ãããã®ã§ãçµæã¯ãããã§ãã
;ã³ãŒãäŸ:<syntaxhighlight lang=perl>
if ("dog cat" =~ /a\b/) {
print "Match!";
} else {
print "Not match.";
}
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
Not Match.
</syntaxhighlight>
catã®ãªãã«ãaãããããŸãããäœçœ®ãåèªã®å¢çã§ã¯ãªãã®ã§ããããããŸããã
=== ããã¯ã¹ã©ãã·ã¥ã»ã·ãŒã±ã³ã¹ ===
ããã¯ã¹ã©ãã·ã¥ã»ã·ãŒã±ã³ã¹ãšã¯ãæåã®1æåãããã¯ã¹ã©ãã·ã¥ã§ããæåã®äžŠã³ã®ããšã§ããPerlã¯ãã®ãããªå€ãã®ã·ãŒã±ã³ã¹ã«ç¹å¥ãªæå³ãæãããŠããããã®ãã¡ã®ããã€ãã¯æåã¯ã©ã¹ã«ãªã£ãŠããŸããã€ãŸãïŒãã®æåãã·ãŒã±ã³ã¹ã§å®çŸ©ãããç¹å®ã®æåéåã«å±ããŠããã°ïŒãããã1ã€ã®æåã«ãããããŸãã
{| class="sortable wikitable"
|+ ããã¯ã¹ã©ãã·ã¥ã»ã·ãŒã±ã³ã¹
! èšå· !! æå³
|-
! <code>\d</code>
| 10é²æ°æåã«ãããããŸãã
|-
! <code>\D</code>
| 10é²ã§ãªãæ¡ã®æåã«ãããããŸãã
|-
! <code>\w</code>
| åèªæåã«ãããããŸãã
|-
! <code>\W</code>
| åèªä»¥å€ã®æåã«ãããããŸãã
|-
! <code>\s</code>
| 空çœæåã«ãããããŸãã
|-
! <code>\S</code>
| é空çœæåã«ãããããŸãã
|-
! <code>\h</code>
| 暪ã®ç©ºçœæåã«ãããããŸãã
|-
! <code>\H</code>
| 暪æžã以å€ã®æåã«ãããããŸãã
|-
! <code>\v</code>
| 瞊æžã空çœæåã«ãããããŸãã
|-
! <code>\V</code>
| 瞊æžã空çœã§ãªãæåã«ãããããŸãã
|-
! <code>\N</code>
| æ¹è¡ã§ãªãæåã«ãããããŸãã
|-
! <code>\pP</code>,<code>\p{Prop}</code>
| æå®ããã Unicode ããããã£ãæã€æåã«ãããããŸãã
|-
! <code>\PP</code>,<code>P{Ptop}</code>
| æå®ããã Unicode ããããã£ãæããªãæåã«ãããããŸãã
|}
=== è§æ¬åŒ§ã§å²ãŸããæåã¯ã©ã¹ ===
<code>[]</code> ã®å
åŽããã©ã±ããã§å²ãã éšåã¯ãè§æ¬åŒ§ã§å²ãŸããæåã¯ã©ã¹ãã§ãã
;æžåŒ:<syntaxhighlight lang=perl>
"Wikibooks" =~ /[abc]/ # a ãš c ã¯å«ãŸããªãããb ã¯å«ãŸããã®ã§ããããã
</syntaxhighlight>
;ã³ãŒãäŸ:<syntaxhighlight lang=perl>
if ("Wikibooks" =~ /[abc]/) {
print "Match!";
} else {
print "Not match.";
}
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
Match!
</syntaxhighlight>
* æåã¯ã©ã¹ã®ãã€ãã³
<code>[]</code> ã®äžã§ãã€ãã³ <code>-</code> ã䜿ãããšã§ãæåã®ç¯å²ãæå®ããããšãã§ããŸãã
ããšãã°ã<nowiki>/[a-z]/</nowiki> ãšæžãã°ãè±èªã®å°æåã«ãããããŸãã(ãªã Perl ã®æ£èŠè¡šçŸã§ã¯ã倧æåãšå°æåãåºå¥ããŸãã)
ããã㯠<nowiki>/[0-9]/</nowiki> ãšæžãã°ãåé²æ°ã®æ°åã«ãããããŸãã
;æžåŒ:<syntaxhighlight lang=perl>
$foo =~ /[abc]/;
$foo =~ /[a-c]/; # äžã®æãšç䟡
$foo =~ /[01234]/;
$foo =~ /[0-4]/; # äžã®æãšç䟡
</syntaxhighlight>
ãã€ãã³ã®åã®æåã¯ãåŸãã®æåãããæåã³ãŒãã«ãããŠåã§ãªããã°ãªããŸããã
;æžåŒ:<syntaxhighlight lang=perl>
$foo =~ /[b-a]/; # ãšã©ãŒ
$foo =~ /[5-3]/; # ãšã©ãŒ
$foo =~ /[a-3]/; # ãšã©ãŒ
</syntaxhighlight>
;ã³ãŒãäŸ:<syntaxhighlight lang=perl>
if ("Wikibooks" =~ /[a-c]/) {
print "Match!ggg";
} else {
print "Not matchggg.";
}
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
Match!
</syntaxhighlight>
;;ãšã¹ã±ãŒã
ãã€ãã³èªäœãæåã¯ã©ã¹ã«å«ããã«ã¯ãæåã¯ã©ã¹ã®äžçªåãäžçªåŸãã«èšè¿°ããããããã¯ã¹ã©ãã·ã¥ã§ãšã¹ã±ãŒãããŸãã(ãªããWindowsç°å¢ã§ã¯è¡šç€ºã§ãããã¯ã¹ã©ãã·ã¥ã®ä»£ããã«ãé貚èšå·ã®åããŒã¯ã衚瀺ããããããããŸããã)
;æžåŒ:<syntaxhighlight lang=perl>
$foo =~ /[-ab]/; # ãã€ãã³ãŸã㯠a ã b ã«ããããã
$foo =~ /[ab-]/; # äžã®æãšç䟡
$foo =~ /[a\-b]/; # äžã®æãšç䟡
</syntaxhighlight>
éããã©ã±ãã ({{tt|[}}) ã« {{tt|^}} ãåŸçœ®ãããšã'''åŠå®ãã£ã©ã¯ã¿ã¯ã©ã¹'''ãè¡šçŸããããšãã§ããŸãã
;åŠå®ãã£ã©ã¯ã¿ã¯ã©ã¹:<syntaxhighlight lang=perl>
$foo =~ /[^0-9]/; # æ°å以å€ã«ããããã
</syntaxhighlight>
=== ã°ã«ãŒãå ===
äžžæ¬åŒ§ã§æ¬ã£ãéšåã¯'''ã°ã«ãŒãå'''ãããŸãã
ã°ã«ãŒãåããéšåã¯åŸããåç
§ããããšãã§ããŸããããã'''åŸæ¹åç
§'''ãšãããŸãã
åãæ£èŠè¡šçŸå
ã§åŸæ¹åç
§ãè¡ãã«ã¯ã{{tt|\1}}, {{tt|\2}}... ãçšããŸãã
;åŸæ¹åç
§:<syntaxhighlight lang=perl>
$foo =~ /(abc)\1/; # abc ã2åé£ç¶ããæååã«ããããã
</syntaxhighlight>
ãŸããæ£èŠè¡šçŸå€ã§åŸæ¹åç
§ãè¡ãã«ã¯ãã¹ã«ã©ãŒå€æ° {{tt|$1}}, {{tt|$2}}... ãçšããŸãã
;$1ãã€ãã£ãäžèŽéšååç
§:<syntaxhighlight lang=perl>
"Wikibooks" =~ /(wiki)/i;
print $1; # 'Wiki' ãšåºåãããã
</syntaxhighlight>
=== éžæ ===
瞊ç·ãçšãããšæ£èŠè¡šçŸãéžæããããšãã§ããŸãã
;ãã¿ãŒã³ã®éžæ:<syntaxhighlight lang=perl>
$foo =~ /abc|def/; # abc ããã㯠def ã«ããããã
</syntaxhighlight>
;ã³ãŒãäŸ:<syntaxhighlight lang=perl>
$foo = "defabc" ;
if ($foo =~ /abc|def/) {
print "Match!";
} else {
print "Not match.";
}
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
Match!
</syntaxhighlight>
äžèšã®æžåŒäŸã§ã¯ã{{tt|^}} ã {{tt|$}} ã {{tt|{{!}}}} ãããåªå
é äœãé«ããããabc ã§å§ãŸãæååã def ã§çµããæååã«ãããããŸãã
;ã³ãŒãäŸ:<syntaxhighlight lang=perl>
$foo =~ /^abc|def$/;
</syntaxhighlight>
;ã³ãŒãäŸ:<syntaxhighlight lang=perl>
$foo = "defabc" ;
if ($foo =~ /^abc|def$/) {
print "Match!";
} else {
print "Not match.";
}
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
Not Match.
</syntaxhighlight>
;ã³ãŒãäŸ:<syntaxhighlight lang=perl>
$foo = "abcdef" ;
if ($foo =~ /^abc|def$/) {
print "Match!";
} else {
print "Not match.";
}
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
Match!
</syntaxhighlight>
å
é ãšæ«å°Ÿã®äž¡æ¹ã«æ¥ããã"abc"ãã ã"def"ãã ãã«ããããããã«ã¯ä»¥äžã®ããã«ããŸãã
:<syntaxhighlight lang=perl>
# ã«ãã³ã§äž¡é
ãšãã¯ã¯ãæ¹åŒ
$foo =~ /^(abc|def)$/;
# ãããã¯åé
ã«å±éããæ¹åŒ
$foo =~ /^abc$|^def$/;
</syntaxhighlight>
;ã³ãŒãäŸ:<syntaxhighlight lang=perl>
$foo = "defabc" ;
if ($foo =~ /^abc$|^def$/) {
print "Match!";
} else {
print "Not match.";
}
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
Not Match.
</syntaxhighlight>
;ã³ãŒãäŸ:<syntaxhighlight lang=perl>
$foo = "def" ;
if ($foo =~ /^abc$|^def$/) {
print "Match!";
} else {
print "Not match.";
}
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
Match!
</syntaxhighlight>
;ã³ãŒãäŸ:<syntaxhighlight lang=perl>
$foo = "def555" ;
if ($foo =~ /^abc$|^def$/) {
print "Match!";
} else {
print "Not match.";
}
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
Not Match.
</syntaxhighlight>
=== 眮ãæã ===
s///æŒç®åãçšãããšãæååã®çœ®æãè¡ãããšãã§ããŸãã
:<syntaxhighlight lang=perl>
$str = "Wikibooks";
$str =~ s/books/pedia/; # $str 㯠"Wikipedia" ã«ãªã
</syntaxhighlight>
m//ãšåãããã¹ã©ãã·ã¥ä»¥å€ã®èšå·ãçšããããšãã§ããŸãã
:<syntaxhighlight lang=perl>
<pre><nowiki>$foo =~ s/foo/bar/;
$foo =~ s#foo#bar#;
$foo =~ s@foo@bar@;
$foo =~ s!foo!bar!;
$foo =~ s{foo}{bar};
$foo =~ s(foo)(bar);</nowiki></pre>
</syntaxhighlight>
=== 修食å ===
æ£èŠè¡šçŸã®ã¡ã¿ãã£ã©ã¯ã¿ãŒããããã¯ãã¿ãŒã³ããããã®ãã®ã®æ¯ãèããå€ããããã«ã修食åãæå®ããããšãã§ããŸããããšãã°ãæ£èŠè¡šçŸãã¢ã«ãã¡ãããã®å€§æåå°æåãåºå¥ããã«ãããããããã«ããããã«ã¯ã
:<syntaxhighlight lang=perl>
m/^perl$/i; # perlãPerlãPERLãPeRlãpErLãªã©ã«ãããããã
</syntaxhighlight>
ã®ããã«ãæåŸã®ã¹ã©ãã·ã¥ïŒãããã¯äœããã®èšå·ïŒã®åŸã«ãi修食åãä»å ããŸãã
{| class="wikitable"
|+ Perlã®æ£èŠè¡šçŸã®ä¿®é£Ÿå
! i
| 倧æåå°æåã®åäžèŠ (case-'''i'''nsensitive)
|-
! s
| ã.ããæ¹è¡ã«ããããããããã«ãã ('''s'''ingle line)
|-
! m
| è€æ°è¡ãšããŠæ±ã ('''m'''ulti-line)
|-
! x
| æ¡åŒµæ£èŠè¡šçŸã䜿ã ('''ex'''tended)
|-
! e
| Perlã®ã³ãŒããšããŠè©äŸ¡ãã ('''e'''valuation)
|-
! ee
| Perlã®ã³ãŒããšããŠ2åè©äŸ¡ãã ('''e'''valuation and '''e'''valuation)
|-
! g
| é£ç¶ããŠäœåãããã ('''g'''lobal)
|-
! o
| äžåºŠã ãã³ã³ãã€ã«ãã ('''o'''nly '''o'''nce)
|-
|}
=== æ¡åŒµæ£èŠè¡šçŸ ===
x修食åãä»ãããšæ£èŠè¡šçŸå
ã®ç©ºçœãæ¹è¡ãç¡èŠãããã#ã以éã¯ã³ã¡ã³ããšããŠæ±ãããŸãã
:<syntaxhighlight lang=perl>
# 1ãšåºå
print 1 if "Apple" =~ /
A
p
p
l
e
/x;
</syntaxhighlight>
=== ã¢ãã ãšã¢ãµãŒã·ã§ã³ ===
ãABCããã[0-9]ããã.*?ãã®ããã«ãäœãã«ãããããæ£èŠè¡šçŸã®æ§æã'''ã¢ãã '''ãšãããŸããæåŸã®ã.*?ãã¯ãã¢ãã ã.ãã«éæå®åã*ããã?ããä»ãããã®ã§ãç¹ã«'''éæå®åä»ãã¢ãã '''ãšãããŸãã
ã^ããã$ããã|ãã®ããã«ãäœãã«ãããããããã§ã¯ãªãæ£èŠè¡šçŸã®æ§æã'''ã¢ãµãŒã·ã§ã³'''ãšãããŸãã
æ£èŠè¡šçŸã®æ§æã¯åºæ¬çã«ã¢ãã ãšã¢ãµãŒã·ã§ã³ã®ã©ã¡ããã«åããããŸãããã ãã\Qã\Eã\uã\Uã®ãããªç¹æ®ãªã·ãŒã±ã³ã¹ã¯ã¢ãã ã§ãã¢ãµãŒã·ã§ã³ã§ããããŸããããããã¯æ§æã®ãµããŸããå€ãããã®ã§ãã
== æ¡åŒµæ§æ ==
=== ã³ã¡ã³ã ===
:<syntaxhighlight lang=perl>
/(?#ããã¯ã³ã¡ã³ã)/
</syntaxhighlight>
=== ã¯ã©ã¹ã¿åå°çšã«ãã³ ===
(?:...)ã¯ã¯ã©ã¹ã¿åïŒæ£èŠè¡šçŸããŸãšããããšïŒã®ã¿ã«äœ¿ãããã«ãã³ã§ãããã£ããã£ãè¡ããªãããããããããéšåãæ£èŠè¡šçŸã®äžã§\1ã\2ã®ããã«åç
§ããããåŸãã$1ã$2ã®ãããªå€æ°ã§åç
§ãããããããšãã§ããŸããããã£ããã£ãè¡ãå¿
èŠããªãå Žåã¯ããã®ã«ãã³ã䜿ãããšã§å¹çåãå³ãããšãã§ããŸãã
:<syntaxhighlight lang=perl>
"Apple" =~ /^(?:Apple|Banana|Cherry)$/; # AppleãBananaãCherryã«ããã
</syntaxhighlight>
ããã«ã¯imsx修食åãä»ããããšãã§ããŸããi修食åãä»ããã«ã¯ãi-msxïŒiãæå®ãmsxãæå®ããªãïŒãšããŸãã
:<syntaxhighlight lang=perl>
"aPpLe" =~ /^(?i-msx:Apple|Banana|Cherry)$/;
</syntaxhighlight>
åã«ä¿®é£Ÿåãæå¹ãŸãã¯ç¡å¹ã«ããããã ãã«ãã®ã«ãã³ã䜿ãããšãã§ããŸãã
:<syntaxhighlight lang=perl>
/A(?i-msx)B/; # Aã¯å€§æåå°æåãåºå¥ããããBã¯åºå¥ããªã
</syntaxhighlight>
=== ã«ãã¯ã¢ã©ãŠã³ãã¢ãµãŒã·ã§ã³ ===
'''ã«ãã¯ã¢ã©ãŠã³ãã¢ãµãŒã·ã§ã³'''ãšã¯ãçŽåŸãŸãã¯çŽåã«ãã¿ãŒã³ãåºçŸããããšããããã¯åºçŸããªãããšã確èªãã確èªããã ãã§äœã«ããããããªãã¢ãµãŒã·ã§ã³ã§ãã
* è¯å®å
èªã¿
çŽåŸã«''PATTERN''ãåºçŸããããšã確èªããŸãã
:<syntaxhighlight lang=perl>
/(?=PATTERN)/
</syntaxhighlight>
* åŠå®å
èªã¿
çŽåŸã«''PATTERN''ãåºçŸããªãããšã確èªããŸãã
:<syntaxhighlight lang=perl>
/(?!PATTERN)/
</syntaxhighlight>
次ã®äŸã§ã¯ãã&amp;ã以å€ã®ã&ãããã¹ãŠã&amp;ãã«çœ®æããŸãã
:<syntaxhighlight lang=perl>
$str =~ s/&(?!amp;)/&/g;
</syntaxhighlight>
* è¯å®åŸèªã¿
çŽåã«''PATTERN''ãåºçŸããããšã確èªããŸãã
:<syntaxhighlight lang=perl>
/(?<=PATTERN)/
</syntaxhighlight>
* åŠå®åŸèªã¿
çŽåã«''PATTERN''ãåºçŸããªãããšã確èªããŸãã
:<syntaxhighlight lang=perl>
/(?<!PATTERN)/
</syntaxhighlight>
=== éããã¯ãã©ãã¯ãµããã¿ãŒã³ ===
ããã¯ãã©ãã¯ããªã''PATTREN''ã«ã®ã¿ãããããŸãã
:<syntaxhighlight lang=perl>
(?>PATTERN)
</syntaxhighlight>
=== ã³ãŒããµããã¿ãŒã³ ===
(?{ ''CODE'' })ãšãã圢ã§ãæ£èŠè¡šçŸã®äžã«Perlã®ã³ãŒããåã蟌ãããšãã§ããŸãã
:<syntaxhighlight lang=perl>
/(?{ print "Hello, world!\n" })/; # Hello, world!ãšè¡šç€º
</syntaxhighlight>
(??{ ''CODE'' })ãšãã圢ã§ã¯ã''CODE''ãè©äŸ¡ããçµæåŸãããæ£èŠè¡šçŸã«ãããããŸãã
:<syntaxhighlight lang=perl>
"ABC" =~ /^(??{ "A"."B"."C" })$/; # ABCã«ããããã
</syntaxhighlight>
=== æ¡ä»¶ä»ãå±é ===
Perlã®æ¡ä»¶æŒç®å?:ã®ããã«ãæ¡ä»¶ãçãåœãã§ãããããããã¿ãŒã³ãå€ããããšãã§ããŸãã
:<syntaxhighlight lang=perl>
/(?(COND)TRUE|FALSE)/
</syntaxhighlight>
ãŸãã¯
:<syntaxhighlight lang=perl>
/(?(COND)TRUE)/
</syntaxhighlight>
''COND''ãçã®å Žåã¯''TRUE''ãåœã®å Žåã¯''FALSE''ã®ãã¿ãŒã³ã«ãããããŸãã
===å€æ===
{{Nav}}
<noinclude>
{{DEFAULTSORT:Perl ãããã²ãããã}}
[[Category:Perl|ãããã²ãããã]]
[[ã«ããŽãª:æ£èŠè¡šçŸ]]
{{stub}}
</noinclude> | 2005-02-20T13:24:27Z | 2024-02-09T01:49:01Z | [
"ãã³ãã¬ãŒã:Nav",
"ãã³ãã¬ãŒã:Pathnav",
"ãã³ãã¬ãŒã:Main",
"ãã³ãã¬ãŒã:Tt",
"ãã³ãã¬ãŒã:Stub"
] | https://ja.wikibooks.org/wiki/Perl/%E6%AD%A3%E8%A6%8F%E8%A1%A8%E7%8F%BE |
1,678 | OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é ã·ãªãŒãºå
ç»åãã3Dåæ§æåäœæã«å¿
èŠãªé åãæãåºã | ^ >
1) 察象ãšããã·ãªãŒãºãéããŠãROI ã¡ãã¥ãŒããâClosed polygonâ ãéžæããŸã:
2) Thick Slab é
ç®ãèšå®ããŸã:
3) èšå®ããThick Slab åäžã«ROI ç¯å²ãäœæããŸã:
4) âCtrl-Sâ ããŒãããã¯ROI ã¡ãã¥ãŒã®âPropagate to current Thick Slabâ ãéžæããŠãäœæããROI ç¯å²ãçŸåšã®Thick Slab åã«é©çšã»ç¢ºå®ããŸã:
5) âCtrl-Leftâ ããŒãããã¯å³ç¢å°ããŒã§æ¬¡ã®Thick Slab åã衚瀺ããŸã:
6) åæ§ã«ããŠãæåŸã®ç»åãŸã§ROI ç¯å²ãäœæãé©çšã»ç¢ºå®ããŠãããŸã:
7) ãããã®ROIs ç¯å²ã®å€åŽã®ãã¯ã»ã«ãåé€ããŸã:
8) CT ã·ãªãŒãºäŸã§ã¯: âOutsideâ ããã§ãã¯ããŠã å€ã â-1000â ãšããŸã:
9) 以äžã§3D åæ§æåäœæãã§ããŸã:
OsiriX ^ > | [
{
"paragraph_id": 0,
"tag": "p",
"text": "^ >",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "1) 察象ãšããã·ãªãŒãºãéããŠãROI ã¡ãã¥ãŒããâClosed polygonâ ãéžæããŸã:",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "",
"title": ""
},
{
"paragraph_id": 3,
"tag": "p",
"text": "2) Thick Slab é
ç®ãèšå®ããŸã:",
"title": ""
},
{
"paragraph_id": 4,
"tag": "p",
"text": "3) èšå®ããThick Slab åäžã«ROI ç¯å²ãäœæããŸã:",
"title": ""
},
{
"paragraph_id": 5,
"tag": "p",
"text": "4) âCtrl-Sâ ããŒãããã¯ROI ã¡ãã¥ãŒã®âPropagate to current Thick Slabâ ãéžæããŠãäœæããROI ç¯å²ãçŸåšã®Thick Slab åã«é©çšã»ç¢ºå®ããŸã:",
"title": ""
},
{
"paragraph_id": 6,
"tag": "p",
"text": "5) âCtrl-Leftâ ããŒãããã¯å³ç¢å°ããŒã§æ¬¡ã®Thick Slab åã衚瀺ããŸã:",
"title": ""
},
{
"paragraph_id": 7,
"tag": "p",
"text": "6) åæ§ã«ããŠãæåŸã®ç»åãŸã§ROI ç¯å²ãäœæãé©çšã»ç¢ºå®ããŠãããŸã:",
"title": ""
},
{
"paragraph_id": 8,
"tag": "p",
"text": "7) ãããã®ROIs ç¯å²ã®å€åŽã®ãã¯ã»ã«ãåé€ããŸã:",
"title": ""
},
{
"paragraph_id": 9,
"tag": "p",
"text": "8) CT ã·ãªãŒãºäŸã§ã¯: âOutsideâ ããã§ãã¯ããŠã å€ã â-1000â ãšããŸã:",
"title": ""
},
{
"paragraph_id": 10,
"tag": "p",
"text": "9) 以äžã§3D åæ§æåäœæãã§ããŸã:",
"title": ""
},
{
"paragraph_id": 11,
"tag": "p",
"text": "OsiriX ^ >",
"title": ""
}
] | ^ > 1) 察象ãšããã·ãªãŒãºãéããŠãROI ã¡ãã¥ãŒããâClosed polygonâ ãéžæããŸã: 2) Thick Slab é
ç®ãèšå®ããŸã: 3) èšå®ããThick Slab åäžã«ROI ç¯å²ãäœæããŸã: 4) âCtrl-Sâ ããŒãããã¯ROI ã¡ãã¥ãŒã®âPropagate to current Thick Slabâ ãéžæããŠãäœæããROI ç¯å²ãçŸåšã®Thick Slab åã«é©çšã»ç¢ºå®ããŸã: 5) âCtrl-Leftâ ããŒãããã¯å³ç¢å°ããŒã§æ¬¡ã®Thick Slab åã衚瀺ããŸã: 6) åæ§ã«ããŠãæåŸã®ç»åãŸã§ROI ç¯å²ãäœæãé©çšã»ç¢ºå®ããŠãããŸã: 7) ãããã®ROIs ç¯å²ã®å€åŽã®ãã¯ã»ã«ãåé€ããŸã: 8) CT ã·ãªãŒãºäŸã§ã¯: âOutsideâ ããã§ãã¯ããŠã å€ã â-1000â ãšããŸã: 9) 以äžã§3D åæ§æåäœæãã§ããŸã: OsiriX ^ > | [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|^]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é æ²é¢ä»»æå€æé¢åæ§æåãäœæãã|>]]
----
1) 察象ãšããã·ãªãŒãºãéããŠãROI ã¡ãã¥ãŒããâClosed polygonâ ãéžæããŸã:
<center>[[ç»å:OsiriX_ROIMenu.jpg|ROIã¡ãã¥ãŒ]]</center>
2) Thick Slab é
ç®ãèšå®ããŸã:
<center>[[ç»å:OsiriX_ThicSlab.jpg|ThickSlabèšå®]]</center>
3) èšå®ããThick Slab åäžã«ROI ç¯å²ãäœæããŸã:
<center>[[ç»å:OsiriX_DrawROI.jpg|ROIäœæ]]</center>
4) âCtrl-Sâ ããŒãããã¯ROI ã¡ãã¥ãŒã®âPropagate to current Thick Slabâ ãéžæããŠãäœæããROI ç¯å²ãçŸåšã®Thick Slab åã«é©çšã»ç¢ºå®ããŸã:
<center>[[ç»å:OsiriX_Propagate.jpg|ROIé©çš]]</center>
5) âCtrl-Leftâ ããŒãããã¯å³ç¢å°ããŒã§æ¬¡ã®Thick Slab åã衚瀺ããŸã:
6) åæ§ã«ããŠãæåŸã®ç»åãŸã§ROI ç¯å²ãäœæãé©çšã»ç¢ºå®ããŠãããŸã:
<center>[[ç»å:OsiriX_DrawROI2.jpg|ROIäœæ2]]</center>
7) ãããã®ROIs ç¯å²ã®å€åŽã®ãã¯ã»ã«ãåé€ããŸã:
<center>[[ç»å:OsiriX_SetPixelTo.jpg|ãã¯ã»ã«å€èšå®]]</center>
8) CT ã·ãªãŒãºäŸã§ã¯: âOutsideâ ããã§ãã¯ããŠã å€ã â-1000â ãšããŸã:
<center>[[ç»å:OsiriX_SetPixelToDialog.jpg|ãã¯ã»ã«å€èšå®ãŠã€ã³ããŠ]]</center>
9) 以äžã§3D åæ§æåäœæãã§ããŸã:
<center>[[ç»å:OsiriX_CardiacCTExample.jpg|å¿å€§è¡ç®¡3DCT]]<br>''äŸãã°ã骚ãªãã®å¿èéš3D åæ§æåâŠ''</center>
----
[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|OsiriX]] <br>
[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|^]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é æ²é¢ä»»æå€æé¢åæ§æåãäœæãã|>]]
[[en:Online OsiriX Documentation/Extract a 3D volume from a series]]
[[Category:OsiriX|ãããããªãããããã3Dããããããããããããã«ã²ã€ãããªããããããã¬ããã]] | null | 2015-08-28T12:13:09Z | [] | https://ja.wikibooks.org/wiki/OsiriX_%E3%82%AA%E3%83%B3%E3%83%A9%E3%82%A4%E3%83%B3%E8%A7%A3%E8%AA%AC%E6%96%87%E6%9B%B8/OsiriX%E5%85%A5%E9%96%80_%E3%82%B7%E3%83%AA%E3%83%BC%E3%82%BA%E5%86%85%E7%94%BB%E5%83%8F%E3%81%8B%E3%82%893D%E5%86%8D%E6%A7%8B%E6%88%90%E5%83%8F%E4%BD%9C%E6%88%90%E3%81%AB%E5%BF%85%E8%A6%81%E3%81%AA%E9%A0%98%E5%9F%9F%E3%82%92%E6%8A%9C%E3%81%8D%E5%87%BA%E3%81%99 |
1,685 | ã«ãŒã«ã»ãã«ã¯ã¹ã®å¯ç©å²èŠ³ | æŽå²èŠ³ > ã«ãŒã«ã»ãã«ã¯ã¹ã®å¯ç©å²èŠ³
ä»æ¥ããããŠãã瀟äŒäž»çŸ©ã®åµèšè
ã»ã«ãŒã«ã»ãã«ã¯ã¹ãšããªãŒããªãã»ãšã³ã²ã«ã¹ã確ç«ããå²èŠ³ããããå¯ç©å²èŠ³ããŸãã¯å²çå¯ç©è«ãšãããããã®ã§ãããã®é
ç®ã§ã¯ã»ãã®å¯ç©è«ãšã®åºå¥ã®ããããã®ãããªé
ç®ã«ããŸããã
人éãéãŸã£ãéåäœãããã瀟äŒã§ã瀟äŒãã€ãããã®ã¯åºæ¬çã«ã¯å®è³ªçã»ç©è³ªçãªäžéšæ§é ãšãã€ããªãã®ãŒã»ç²Ÿç¥çãªäžéšæ§é ã«åãããäžéšæ§é ãšäžéšæ§é ã¯äºãã«åœ±é¿ãããããæ ¹æ¬çãªæ§é ã¯äžéšæ§é ãšããŠããŸãã
äžéšæ§é ã¯ããçç£çè«žé¢ä¿ããšåŒã°ããããã¯äººéããåŽåã«ãã£ãŠãè³æ¬ãçã¿åºããããããŸãåŽååã«ç¹ããéçšã®ããšããããŸãã
ãããããã£ãšåŽ©ããŠèª¬æããŸãããã
åå§æ代ã人é¡ã¯éå
·ã䜿ãããšãèŠããé£èºçã«æåãææã¯é«åºŠãªãã®ãšãªããŸããããã®éçšã«ãããŠãããéèœaã«äœãã§ãã人é¡ã¯ããã®éèœã«ããããç³ãããã®ã§ãç³åšäœãã«ã¯äºæ¬ ããªãããç²åããªãã®ã§ååšãã€ããããç
®çããªã©æçãã§ããªããšããŸããããé£ã®éèœbã«ã¯ãç²åããããããšããŠååšäœãã«ã¯äºæ¬ ããªãããç³ããªãã®ã§ç³åšãã€ãããªããšãããšãåœç¶ãããéèœaã®äœæ°ã¯ããèããã§ãããããé£ã®éèœbã®ååšãããããããšããã ããéèœbããã ã§ãããããã«ã¯ãããŸãããããã§ã圌ãã¯ãã£ãšããèããã§ãããããéèœaã®ç³åšãšéèœbã®ååšã亀æãããããšã ããã«ããã®äº€æååŒã¯å
ŒããŠããã²ãšã€ã®ããšãæå³ããŸããããã¯ãéèœaãååšã«ããé£ç©æåéãå€ããªãããã®çµæç³åšãäœãåŽååããã ãéèœaã®äœæ°ã®æ é€ãåäžããéèœbãåãã§ããããšããããšã§ãã
ãããããã®çµç¹ããçŸåšã®ç€ŸäŒã§ã¯è€éåããŠããŠã瀟äŒã®åºæ¬çæ§é ãããã§ããããšã«ãŒã«ã»ãã«ã¯ã¹ã¯èª¬ããŠããŸãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "æŽå²èŠ³ > ã«ãŒã«ã»ãã«ã¯ã¹ã®å¯ç©å²èŠ³",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ä»æ¥ããããŠãã瀟äŒäž»çŸ©ã®åµèšè
ã»ã«ãŒã«ã»ãã«ã¯ã¹ãšããªãŒããªãã»ãšã³ã²ã«ã¹ã確ç«ããå²èŠ³ããããå¯ç©å²èŠ³ããŸãã¯å²çå¯ç©è«ãšãããããã®ã§ãããã®é
ç®ã§ã¯ã»ãã®å¯ç©è«ãšã®åºå¥ã®ããããã®ãããªé
ç®ã«ããŸããã",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "人éãéãŸã£ãéåäœãããã瀟äŒã§ã瀟äŒãã€ãããã®ã¯åºæ¬çã«ã¯å®è³ªçã»ç©è³ªçãªäžéšæ§é ãšãã€ããªãã®ãŒã»ç²Ÿç¥çãªäžéšæ§é ã«åãããäžéšæ§é ãšäžéšæ§é ã¯äºãã«åœ±é¿ãããããæ ¹æ¬çãªæ§é ã¯äžéšæ§é ãšããŠããŸãã",
"title": "瀟äŒ"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "äžéšæ§é ã¯ããçç£çè«žé¢ä¿ããšåŒã°ããããã¯äººéããåŽåã«ãã£ãŠãè³æ¬ãçã¿åºããããããŸãåŽååã«ç¹ããéçšã®ããšããããŸãã",
"title": "äžéšæ§é "
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ãããããã£ãšåŽ©ããŠèª¬æããŸãããã",
"title": "äžéšæ§é "
},
{
"paragraph_id": 5,
"tag": "p",
"text": "åå§æ代ã人é¡ã¯éå
·ã䜿ãããšãèŠããé£èºçã«æåãææã¯é«åºŠãªãã®ãšãªããŸããããã®éçšã«ãããŠãããéèœaã«äœãã§ãã人é¡ã¯ããã®éèœã«ããããç³ãããã®ã§ãç³åšäœãã«ã¯äºæ¬ ããªãããç²åããªãã®ã§ååšãã€ããããç
®çããªã©æçãã§ããªããšããŸããããé£ã®éèœbã«ã¯ãç²åããããããšããŠååšäœãã«ã¯äºæ¬ ããªãããç³ããªãã®ã§ç³åšãã€ãããªããšãããšãåœç¶ãããéèœaã®äœæ°ã¯ããèããã§ãããããé£ã®éèœbã®ååšãããããããšããã ããéèœbããã ã§ãããããã«ã¯ãããŸãããããã§ã圌ãã¯ãã£ãšããèããã§ãããããéèœaã®ç³åšãšéèœbã®ååšã亀æãããããšã ããã«ããã®äº€æååŒã¯å
ŒããŠããã²ãšã€ã®ããšãæå³ããŸããããã¯ãéèœaãååšã«ããé£ç©æåéãå€ããªãããã®çµæç³åšãäœãåŽååããã ãéèœaã®äœæ°ã®æ é€ãåäžããéèœbãåãã§ããããšããããšã§ãã",
"title": "äžéšæ§é "
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ãããããã®çµç¹ããçŸåšã®ç€ŸäŒã§ã¯è€éåããŠããŠã瀟äŒã®åºæ¬çæ§é ãããã§ããããšã«ãŒã«ã»ãã«ã¯ã¹ã¯èª¬ããŠããŸãã",
"title": "äžéšæ§é "
}
] | æŽå²èŠ³ > ã«ãŒã«ã»ãã«ã¯ã¹ã®å¯ç©å²èŠ³ ä»æ¥ããããŠãã瀟äŒäž»çŸ©ã®åµèšè
ã»ã«ãŒã«ã»ãã«ã¯ã¹ãšããªãŒããªãã»ãšã³ã²ã«ã¹ã確ç«ããå²èŠ³ããããå¯ç©å²èŠ³ããŸãã¯å²çå¯ç©è«ãšãããããã®ã§ãããã®é
ç®ã§ã¯ã»ãã®å¯ç©è«ãšã®åºå¥ã®ããããã®ãããªé
ç®ã«ããŸããã | [[æŽå²èŠ³]] > '''ã«ãŒã«ã»ãã«ã¯ã¹ã®å¯ç©å²èŠ³'''
ä»æ¥ããããŠãã瀟äŒäž»çŸ©ã®åµèšè
ã»ã«ãŒã«ã»ãã«ã¯ã¹ãšããªãŒããªãã»ãšã³ã²ã«ã¹ã確ç«ããå²èŠ³ããããå¯ç©å²èŠ³ããŸãã¯å²çå¯ç©è«ãšãããããã®ã§ãããã®é
ç®ã§ã¯ã»ãã®å¯ç©è«ãšã®åºå¥ã®ããããã®ãããªé
ç®ã«ããŸããã
== ç€ŸäŒ ==
人éãéãŸã£ãéåäœãããã瀟äŒã§ã瀟äŒãã€ãããã®ã¯åºæ¬çã«ã¯å®è³ªçã»ç©è³ªçãªäžéšæ§é ãšãã€ããªãã®ãŒã»ç²Ÿç¥çãªäžéšæ§é ã«åãããäžéšæ§é ãšäžéšæ§é ã¯äºãã«åœ±é¿ãããããæ ¹æ¬çãªæ§é ã¯äžéšæ§é ãšããŠããŸãã
== äžéšæ§é ==
äžéšæ§é ã¯ããçç£çè«žé¢ä¿ããšåŒã°ããããã¯äººéããåŽåã«ãã£ãŠãè³æ¬ãçã¿åºããããããŸãåŽååã«ç¹ããéçšã®ããšããããŸãã
ãããããã£ãšåŽ©ããŠèª¬æããŸãããã
åå§æ代ã人é¡ã¯éå
·ã䜿ãããšãèŠããé£èºçã«æåãææã¯é«åºŠãªãã®ãšãªããŸããããã®éçšã«ãããŠãããéèœaã«äœãã§ãã人é¡ã¯ããã®éèœã«ããããç³ãããã®ã§ãç³åšäœãã«ã¯äºæ¬ ããªãããç²åããªãã®ã§ååšãã€ããããç
®çããªã©æçãã§ããªããšããŸããããé£ã®éèœbã«ã¯ãç²åããããããšããŠååšäœãã«ã¯äºæ¬ ããªãããç³ããªãã®ã§ç³åšãã€ãããªããšãããšãåœç¶ãããéèœaã®äœæ°ã¯ããèããã§ãããããé£ã®éèœbã®ååšãããããããšããã ããéèœbããã ã§ãããããã«ã¯ãããŸãããããã§ã圌ãã¯ãã£ãšããèããã§ãããããéèœaã®ç³åšãšéèœbã®ååšã亀æãããããšããããã«ããã®äº€æååŒã¯å
ŒããŠããã²ãšã€ã®ããšãæå³ããŸããããã¯ãéèœaãååšã«ããé£ç©æåéãå€ããªãããã®çµæç³åšãäœãåŽååããã ãéèœaã®äœæ°ã®æ é€ãåäžããéèœbãåãã§ããããšããããšã§ãã
ãããããã®çµç¹ããçŸåšã®ç€ŸäŒã§ã¯è€éåããŠããŠã瀟äŒã®åºæ¬çæ§é ãããã§ããããšã«ãŒã«ïœ¥ãã«ã¯ã¹ã¯èª¬ããŠããŸãã
== äžéšæ§é ==
== éçŽéäº ==
[[Category:æŽå²|ãããŸãããã®ãããµã€ããã]] | null | 2008-07-15T13:34:13Z | [] | https://ja.wikibooks.org/wiki/%E3%82%AB%E3%83%BC%E3%83%AB%E3%83%BB%E3%83%9E%E3%83%AB%E3%82%AF%E3%82%B9%E3%81%AE%E5%94%AF%E7%89%A9%E5%8F%B2%E8%A6%B3 |
1,687 | çµ±èšåŠåºç€ | çµ±èšåŠ > çµ±èšåŠåºç€
çµ±èšåŠã®æç§æž | [
{
"paragraph_id": 0,
"tag": "p",
"text": "çµ±èšåŠ > çµ±èšåŠåºç€",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "çµ±èšåŠã®æç§æž",
"title": ""
}
] | çµ±èšåŠ > çµ±èšåŠåºç€ çµ±èšåŠã®æç§æž ããã«æ§ç¯ããæç§æžã®æžåã¯ãçµ±èšåŠåºç€ããšããŸãã
çç³»ã«å¿
é ã®TeXãç·šéã«åœ¹ç«ã¡ãŸããTeXèšè¿°æ³ãæ°åŠèšå·ãåèã«ããŠãã ããã | {{åä¿è·S}}
[[çµ±èšåŠ]] > [[çµ±èšåŠåºç€]]
'''çµ±èšåŠã®æç§æž'''
<div style="text-align:center; margin-top:2em;">ãŠã£ãããã¯ã¹ãžãããã
<div style="font-size:4em;margin:.5em">'''çµ±èšåŠåºç€'''</div>
</div>
*ããã«æ§ç¯ããæç§æžã®æžåã¯ãçµ±èšåŠåºç€ããšããŸãã
*çç³»ã«å¿
é ã®TeXãç·šéã«åœ¹ç«ã¡ãŸãã[[w:Wikipedia:TeXèšè¿°æ³|TeXèšè¿°æ³]]ã[[w:æ°åŠèšå·ã®è¡š|æ°åŠèšå·]]ãåèã«ããŠãã ããã
==çµ±èšåŠåºç€==
#å§ãã«
##[[/åºæ|çµ±èšåŠã®çŽ¹ä»]]
#èšè¿°çµ±èš
##[[/ããŒã¿ã®çš®é¡|ããŒã¿ã®çš®é¡ãšãŸãšãæ¹]]
##[[/äžæ¬¡å
ããŒã¿|ããŒã¿ã®åŠç]]
##[[/å€æ¬¡å
ããŒã¿|å€æ¬¡å
ããŒã¿]]
#確çã®åºç€
##[[/æšæ¬ç©ºé|æšæ¬ç©ºé]]
##[[/確ç|確ç]]
#[[/確çååž|確çååž]]
##[[/確çååž/é¢æ£å€æ°|é¢æ£å€æ°]]
##[[/確çååž/é£ç¶å€æ°|é£ç¶å€æ°]]
#æšæ¬
##[[/æšæ¬å¹³å|æšæ¬å¹³å]]
##[[/æšæ¬åæ£|æšæ¬åæ£]]
#æšå®
##ç¹æšå®
###[[/ç¹æšå®|ç¹æšå®]]
###[[/ã¢ãŒã¡ã³ãæ³|ã¢ãŒã¡ã³ãæ³]]
###[[/æå°€æ³|æå°€æ³]]
###[[/ä¿¡é Œåºé|ä¿¡é Œåºé]]
##åºéæšå®
###[[/åºéæšå®|åºéæšå®]]
###[[/å¹³åã®åºéæšå®|å¹³åã®åºéæšå®]]
###[[/åæ£ã®åºéæšå®|åæ£ã®åºéæšå®]]
#[[/仮説æ€å®|仮説æ€å®]]
##[[/æ€å®ã®åºç€|æ€å®ã®åºç€]]
##[[/å¹³åã®æ€å®|å¹³åã®æ€å®]]
##[[/åæ£ã®æ€å®|åæ£ã®æ€å®]]
#ååž°åæ
##[[/åååž°åæ|åååž°åæ]]
##[[/éååž°åæ|éååž°åæ]]
[[Category:çµ±èšåŠ|ãšããããã]]
[[de:Mathematik: Statistik]]
[[en:Statistics]]
[[es:EstadÃstica]]
[[fr:Statistiques]]
[[pl:Statystyka]]
[[ru:ÐаÑеЌаÑОка ÑлÑÑаÑ]] | null | 2021-05-30T07:01:13Z | [
"ãã³ãã¬ãŒã:åä¿è·S"
] | https://ja.wikibooks.org/wiki/%E7%B5%B1%E8%A8%88%E5%AD%A6%E5%9F%BA%E7%A4%8E |
1,693 | è±èª/ææ³/æå¶ | è±èªã®åè©ã¯ãåè©ã ãã§ãã€ã®åäœã(æå¶)ãè¡šãããšãåºæ¥ãŸãã
play ãäžè¬åè© play ã®çŸåšåœ¢ã§ããç¿æ
£çã«ããã¹ãããããšãè¡šããŠããŸãã
played ã¯ã play ã®éå»åœ¢ã§ããplay ã¯ã次ã®ããã«åœ¢ãå€ããŠæå¶ãè¡šããŸãã
ã§ã¯ãããããã®æå¶ã®æã€æå³ããã©ã®ããã«ããŠæå¶ãå€ããã®ãåŠç¿ããŸãããã
ãéå»ããçŸåšãã®äºã€ã®æå¶ãåºæ¬ãšãªããŸããæªæ¥è¡šçŸã¯æå¶ã«ã¯å«ãŸããªãããŸããå®äºåœ¢ãé²è¡åœ¢ãæå¶ã§ã¯ãªãçž(aspect)ã«å«ãŸããã
ä»çŸåšã®åäœãç¶æ
ãªã©ãè¡šããŸãã
ã»ãšãã©ã®åè©ã«ãããŠãå圢ãšå圢ã§ãã ãŸãäž»èªã第3人称åæ°ã®å Žåãèªå°Ÿã« s ãä»ããŸãã
éå»ã«ãããåäœãç¶æ
ãªã©ãè¡šããŸãã
beåè©ã®å Žåãåæ°éå»åœ¢ã¯ was, è€æ°éå»åœ¢ã¯wereã§ãã ãŸããèŠåå€åããäžè¬åè©ã¯ãå圢ã®èªå°Ÿã« ed ãä»ããäºã§éå»åœ¢ã«ãªããŸãã ãŸãå圢ã®èªå°Ÿã®çºé³(å€ãã¯èã«é¢é£ããåé³)ã«ãã£ãŠ ed ã®çºé³ãå€åããŸãããã以å€ã®å€åãããåè©ãäžèŠååè©ãšãããŸãã(äžèŠååè©å€åè¡šãåç
§ã®ããš)
éå»å®äºãšããããéå»ããããã«åã«èµ·ãã£ãããšãè¡šãæå¶ã§ãã圢ã¯had+éå»åè©ã§ãã
ãªããéå»ãããåã§ããã°å¿
ããã®åœ¢ããšãèš³ã§ã¯ãããŸãããäŸãã°ã
ã®ãããªå Žåã¯éå»åœ¢ãšãªããŸãã
æªæ¥ã®åäœãç¶æ
ãªã©ãè¡šããŸãã åºæ¬çã«å©åè© will ãããã¯äººç§°ã«ãã£ãŠã¯ shall ãçšããŸãã
åºæ¬æå¶ã®ããããã«ãå®äºæå¶ãã®ããªãšãŒã·ã§ã³ãå ãããŸãã
å®äºæå¶ã¯ãããæç¹ãŸã§ã«ããåäœãç¶æ
ãªã©ãå®äºãã/ç¶ç¶ããŠãã/çµéšããããšããããªã©ãè¡šããŸãã
å®äºæå¶ã«ã¯haveå©åè©ãšéå»åè©ãçšããŸãã åè©ã®éå»åè©ã®å€ãã¯éå»åœ¢ãšåã圢ã§ãããäžéšã®åè©ã®éå»åè©ã¯äžèŠåã«å€åããŸãã(äžèŠååè©å€åè¡šãåç
§ã®ããš)
åºæ¬æå¶åã³ãå®äºæå¶ãã®ããããã«é²è¡åœ¢ã®ããªãšãŒã·ã§ã³ãå ãããŸãã
é²è¡åœ¢ã¯ããæç¹ã§ã®åäœãç¶ç¶äžã§ããããšãªã©ãè¡šããŠããŸãã
é²è¡åœ¢ã«ã¯ãåºæ¬ã®çŸåšé²è¡åœ¢ãéå»é²è¡åœ¢ãæªæ¥é²è¡åœ¢ãšãå®äºæå¶ã§ããçŸåšå®äºé²è¡åœ¢ãéå»å®äºé²è¡åœ¢ãæªæ¥å®äºé²è¡åœ¢ããããŸãã é²è¡åœ¢ã«ã¯beåè©ãšçŸåšåè©ãçšããŸããçŸåšåè©ã¯ååãšããŠåè©ã®å圢ã®èªå°Ÿã«ingãä»ãã圢ã«ãªããŸãã
| [
{
"paragraph_id": 0,
"tag": "p",
"text": "è±èªã®åè©ã¯ãåè©ã ãã§ãã€ã®åäœã(æå¶)ãè¡šãããšãåºæ¥ãŸãã",
"title": "æå¶"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "play ãäžè¬åè© play ã®çŸåšåœ¢ã§ããç¿æ
£çã«ããã¹ãããããšãè¡šããŠããŸãã",
"title": "æå¶"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "played ã¯ã play ã®éå»åœ¢ã§ããplay ã¯ã次ã®ããã«åœ¢ãå€ããŠæå¶ãè¡šããŸãã",
"title": "æå¶"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ã§ã¯ãããããã®æå¶ã®æã€æå³ããã©ã®ããã«ããŠæå¶ãå€ããã®ãåŠç¿ããŸãããã",
"title": "æå¶"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ãéå»ããçŸåšãã®äºã€ã®æå¶ãåºæ¬ãšãªããŸããæªæ¥è¡šçŸã¯æå¶ã«ã¯å«ãŸããªãããŸããå®äºåœ¢ãé²è¡åœ¢ãæå¶ã§ã¯ãªãçž(aspect)ã«å«ãŸããã",
"title": "æå¶"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ä»çŸåšã®åäœãç¶æ
ãªã©ãè¡šããŸãã",
"title": "æå¶"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ã»ãšãã©ã®åè©ã«ãããŠãå圢ãšå圢ã§ãã ãŸãäž»èªã第3人称åæ°ã®å Žåãèªå°Ÿã« s ãä»ããŸãã",
"title": "æå¶"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "éå»ã«ãããåäœãç¶æ
ãªã©ãè¡šããŸãã",
"title": "æå¶"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "beåè©ã®å Žåãåæ°éå»åœ¢ã¯ was, è€æ°éå»åœ¢ã¯wereã§ãã ãŸããèŠåå€åããäžè¬åè©ã¯ãå圢ã®èªå°Ÿã« ed ãä»ããäºã§éå»åœ¢ã«ãªããŸãã ãŸãå圢ã®èªå°Ÿã®çºé³(å€ãã¯èã«é¢é£ããåé³)ã«ãã£ãŠ ed ã®çºé³ãå€åããŸãããã以å€ã®å€åãããåè©ãäžèŠååè©ãšãããŸãã(äžèŠååè©å€åè¡šãåç
§ã®ããš)",
"title": "æå¶"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "éå»å®äºãšããããéå»ããããã«åã«èµ·ãã£ãããšãè¡šãæå¶ã§ãã圢ã¯had+éå»åè©ã§ãã",
"title": "æå¶"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "ãªããéå»ãããåã§ããã°å¿
ããã®åœ¢ããšãèš³ã§ã¯ãããŸãããäŸãã°ã",
"title": "æå¶"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "ã®ãããªå Žåã¯éå»åœ¢ãšãªããŸãã",
"title": "æå¶"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "æªæ¥ã®åäœãç¶æ
ãªã©ãè¡šããŸãã åºæ¬çã«å©åè© will ãããã¯äººç§°ã«ãã£ãŠã¯ shall ãçšããŸãã",
"title": "æå¶"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "åºæ¬æå¶ã®ããããã«ãå®äºæå¶ãã®ããªãšãŒã·ã§ã³ãå ãããŸãã",
"title": "æå¶"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "å®äºæå¶ã¯ãããæç¹ãŸã§ã«ããåäœãç¶æ
ãªã©ãå®äºãã/ç¶ç¶ããŠãã/çµéšããããšããããªã©ãè¡šããŸãã",
"title": "æå¶"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "å®äºæå¶ã«ã¯haveå©åè©ãšéå»åè©ãçšããŸãã åè©ã®éå»åè©ã®å€ãã¯éå»åœ¢ãšåã圢ã§ãããäžéšã®åè©ã®éå»åè©ã¯äžèŠåã«å€åããŸãã(äžèŠååè©å€åè¡šãåç
§ã®ããš)",
"title": "æå¶"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "åºæ¬æå¶åã³ãå®äºæå¶ãã®ããããã«é²è¡åœ¢ã®ããªãšãŒã·ã§ã³ãå ãããŸãã",
"title": "æå¶"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "é²è¡åœ¢ã¯ããæç¹ã§ã®åäœãç¶ç¶äžã§ããããšãªã©ãè¡šããŠããŸãã",
"title": "æå¶"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "é²è¡åœ¢ã«ã¯ãåºæ¬ã®çŸåšé²è¡åœ¢ãéå»é²è¡åœ¢ãæªæ¥é²è¡åœ¢ãšãå®äºæå¶ã§ããçŸåšå®äºé²è¡åœ¢ãéå»å®äºé²è¡åœ¢ãæªæ¥å®äºé²è¡åœ¢ããããŸãã é²è¡åœ¢ã«ã¯beåè©ãšçŸåšåè©ãçšããŸããçŸåšåè©ã¯ååãšããŠåè©ã®å圢ã®èªå°Ÿã«ingãä»ãã圢ã«ãªããŸãã",
"title": "æå¶"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "",
"title": "æå¶"
}
] | null | == æå¶ ==
è±èªã®åè©ã¯ãåè©ã ãã§ãã€ã®åäœãïŒæå¶ïŒãè¡šãããšãåºæ¥ãŸãã<br />
*äŸïŒI play tennis. ãç§ã¯ããã¹ãããŸãããïŒäžè¬åè©ã®çŸåšåœ¢ïŒ
play ãäžè¬åè© play ã®çŸåšåœ¢ã§ããç¿æ
£çã«ããã¹ãããããšãè¡šããŠããŸãã<br />
*äŸïŒI played tennis. ãç§ã¯ããã¹ãããŸããããïŒäžè¬åè©ã®éå»åœ¢ïŒ
played ã¯ã play ã®éå»åœ¢ã§ããplay ã¯ã次ã®ããã«åœ¢ãå€ããŠæå¶ãè¡šããŸãã
*å圢ïŒplay
*çŸåšåœ¢ïŒplay (plays)
*éå»åœ¢ïŒplayed
*éå»åè©ïŒplayed
*çŸåšåè©ïŒplaying
ã§ã¯ãããããã®æå¶ã®æã€æå³ããã©ã®ããã«ããŠæå¶ãå€ããã®ãåŠç¿ããŸãããã
=== åºæ¬æå¶ ===
ãéå»ããçŸåšãã®äºã€ã®æå¶ãåºæ¬ãšãªããŸããæªæ¥è¡šçŸã¯æå¶ã«ã¯å«ãŸããªãããŸããå®äºåœ¢ãé²è¡åœ¢ãæå¶ã§ã¯ãªãçžïŒaspect)ã«å«ãŸããã
==== çŸåšæå¶ ====
ä»çŸåšã®åäœãç¶æ
ãªã©ãè¡šããŸãã
*æ¥æ¬èª:ç§ã¯ãã¢ããæŒå¥ããã
*è±èª:I play the piano.
ã»ãšãã©ã®åè©ã«ãããŠãå圢ãšå圢ã§ãã<br />
ãŸãäž»èªã第3人称åæ°ã®å Žåãèªå°Ÿã« s ãä»ããŸãã
*æ¥æ¬èª:圌ã¯ãã¢ããæŒå¥ããã
*è±èª:He plays the piano.
==== éå»æå¶ ====
éå»ã«ãããåäœãç¶æ
ãªã©ãè¡šããŸãã<br />
*æ¥æ¬èª:ç§ã¯è±èªãå匷ããŸããã<br />
*è±èª:I studied English.
beåè©ã®å Žåãåæ°éå»åœ¢ã¯ was, è€æ°éå»åœ¢ã¯wereã§ãã
ãŸããèŠåå€åããäžè¬åè©ã¯ãå圢ã®èªå°Ÿã« ed ãä»ããäºã§éå»åœ¢ã«ãªããŸãã<br />
ãŸãå圢ã®èªå°Ÿã®çºé³ïŒå€ãã¯èã«é¢é£ããåé³ïŒã«ãã£ãŠ ed ã®çºé³ãå€åããŸãããã以å€ã®å€åãããåè©ã'''äžèŠååè©'''ãšãããŸããïŒäžèŠååè©å€åè¡šãåç
§ã®ããšïŒ
==== 倧éå»æå¶ ====
éå»å®äºãšããããéå»ããããã«åã«èµ·ãã£ãããšãè¡šãæå¶ã§ãã圢ã¯had+éå»åè©ã§ãã
*éå»ããåã®ããšãè¡šãããã«
**He said that he '''had gone''' there three days before.ïŒãã®äžæ¥åã«ããã«è¡ã£ãããšåœŒã¯ãã£ããïŒ
ãªããéå»ãããåã§ããã°å¿
ããã®åœ¢ããšãèš³ã§ã¯ãããŸãããäŸãã°ã
*æŽå²çãªäºå®
**Our teacher said that Mozart was born in 1756.
*å
容ããæããã§ã誀解ãæãçšããªã
**I came back home and had dinner.
**I had dinner after I came back home.
ã®ãããªå Žåã¯éå»åœ¢ãšãªããŸãã
==== æªæ¥è¡šçŸ ====
æªæ¥ã®åäœãç¶æ
ãªã©ãè¡šããŸãã
åºæ¬çã«å©åè© will ãããã¯äººç§°ã«ãã£ãŠã¯ shall ãçšããŸãã
**I shall be busy tomorrow.ïŒç§ã¯ææ¥å¿ããã ããïŒ
**You will be busy tomorrow.ïŒåã¯ææ¥å¿ããã ããïŒ
**We will have an exam next week.ïŒç§ãã¡ã¯æ¥é±è©ŠéšãããïŒ
**I will go there tomorrow.ïŒç§ã¯ææ¥ãããžè¡ãã€ããã§ãïŒ
**I will play the piano.ïŒç§ã¯ãã¢ããæŒå¥ããã€ããã§ãïŒ
=== å®äºæå¶ ===
åºæ¬æå¶ã®ããããã«ãå®äºæå¶ãã®ããªãšãŒã·ã§ã³ãå ãããŸãã
<!--ããªãšãŒã·ã§ã³ããè¯ãèšãæ¹ãããã°ããããã»ã»ã»-->
å®äºæå¶ã¯ãããæç¹ãŸã§ã«ããåäœãç¶æ
ãªã©ãå®äºãã/ç¶ç¶ããŠãã/çµéšããããšããããªã©ãè¡šããŸãã
*å®äºïŒI have already finished my homework.ïŒç§ã¯å®¿é¡ãããæžãŸããŸããïŒ
*ç¶ç¶ïŒI have lived here for ten years.ïŒç§ã¯ããã«10幎éäœãã§ããŸãïŒ
*çµéšïŒI have played that game before.ïŒç§ã¯ä»¥åã«ãã®ã²ãŒã ãããããšãããïŒ
å®äºæå¶ã«ã¯haveå©åè©ãšéå»åè©ãçšããŸãã
åè©ã®éå»åè©ã®å€ãã¯éå»åœ¢ãšåã圢ã§ãããäžéšã®åè©ã®éå»åè©ã¯äžèŠåã«å€åããŸããïŒäžèŠååè©å€åè¡šãåç
§ã®ããšïŒ
*'''çŸåšå®äºæå¶'''ã¯äž»ã«ãhaveãŸãã¯has+éå»åè©ã«ãã£ãŠæãç«ã¡ãŸãã
*'''éå»å®äºæå¶'''ã¯äž»ã«ãhad+éå»åè©ã«ãã£ãŠæãç«ã¡ãŸãã
*'''æªæ¥å®äºæå¶'''ã¯äž»ã«ãwill have+éå»åè©ã«ãã£ãŠæãç«ã¡ãŸãã
=== é²è¡åœ¢ ===
åºæ¬æå¶åã³ãå®äºæå¶ãã®ããããã«é²è¡åœ¢ã®ããªãšãŒã·ã§ã³ãå ãããŸãã
é²è¡åœ¢ã¯ããæç¹ã§ã®åäœãç¶ç¶äžã§ããããšãªã©ãè¡šããŠããŸãã
*I am reading a book now.ïŒç§ã¯ä»æ¬ãèªãã§ãããšããã§ãïŒ
é²è¡åœ¢ã«ã¯ãåºæ¬ã®çŸåšé²è¡åœ¢ãéå»é²è¡åœ¢ãæªæ¥é²è¡åœ¢ãšãå®äºæå¶ã§ããçŸåšå®äºé²è¡åœ¢ãéå»å®äºé²è¡åœ¢ãæªæ¥å®äºé²è¡åœ¢ããããŸãã<br />
é²è¡åœ¢ã«ã¯beåè©ãšçŸåšåè©ãçšããŸããçŸåšåè©ã¯ååãšããŠåè©ã®å圢ã®èªå°Ÿã«ingãä»ãã圢ã«ãªããŸãã
*çŸåšåè©ã®äŸ
**play : playing
**ski : skiing
**skate : skating
**swim : swimming
*'''çŸåšé²è¡åœ¢'''ã¯beåè©çŸåšåœ¢+çŸåšåè©ã®åœ¢ããšããŸãã
*'''éå»é²è¡åœ¢'''ã¯beåè©éå»åœ¢+çŸåšåè©ã®åœ¢ããšããŸãã
*'''æªæ¥é²è¡åœ¢'''ã¯will be+çŸåšåè©ã®åœ¢ããšããŸãã
*'''çŸåšå®äºé²è¡åœ¢'''ã¯haveãŸãã¯has+been+çŸåšåè©ã®åœ¢ããšããŸãã
*'''éå»å®äºé²è¡åœ¢'''ã¯had+been+çŸåšåè©ã®åœ¢ããšããŸãã
*'''æªæ¥å®äºé²è¡åœ¢'''ã¯will have+been+çŸåšåè©ã®åœ¢ããšããŸãã
----
<!--ããã²ãŒã·ã§ã³-->
*[[è±èª]], [[è±èª/ææ³/åè©|åè©]], [[è±èª/ææ³/æ§æ|æ§æ]],
[[Category:è±èªææ³|ãããµã]] | null | 2022-12-03T12:34:22Z | [] | https://ja.wikibooks.org/wiki/%E8%8B%B1%E8%AA%9E/%E6%96%87%E6%B3%95/%E6%99%82%E5%88%B6 |
1,694 | è±èª/å
¥é/æžæ³ | è±èªã¯è¡šé³æåã§ãã26æåã®ã¢ã«ãã¡ããããçµã¿åãããŠåèªãã€ã¥ããã¹ããŒã¹ã空ããŠåèªã䞊ã¹æç« ãçµã¿ç«ãŠãŸãã
ã¢ã«ãã¡ãããã¯ããããäœéããã®ãé³ããè¡šããŸãã ãã®ãé³ããèŠããã°ãç¥ããªãåèªã§ãããããã®èªã¿æ¹ããããããã«ãªããŸãã
ã¢ã«ãã¡ãããã«ã¯å€§æåãšå°æåããããéåžžã®æç« ã§ã¯ãããã䜿ãåããŸãã
æç« ã®åºåãã瀺ãèšå·ã§ããéåžžã®æç« ã§ãã䜿ãã®ã¯ããªãªã(.)ãã³ã³ã(,)ãçå笊(?)ã§ããæ¥æ¬èªã§ã®å¥ç¹(ã)ãèªç¹(ã)ã«çžåœããŸãã
æç« ã®å¡ãæ§è³ªãè¡šãèšå·ã§ãããã䜿ãããç©ã«ã¯ã©ãŒããŒã·ã§ã³(ââ)ãããã«ã¯ã©ãŒããŒã·ã§ã³(ââ)ãã«ãã³( () )ãªã©ããããŸããæ¥æ¬èªã§ã®ã«ã®æ¬åŒ§ãæ¬åŒ§ã«çžåœããŸãã
ã¢ãã¹ãããã£(')ã¯äºã€ã®åèªããã£ã€ããŠçç¥ããããçºé³ãçç¥ãããŠããããšãè¡šããŸãã
beåè©ãå©åè©ãä»ãç瞮圢
beåè©ãå©åè©+notã®ç瞮圢
+haveã®ç瞮圢
çºé³ã®çç¥(èšããè¡šãã®ã«ã䜿ãããŸããå£èªç) | [
{
"paragraph_id": 0,
"tag": "p",
"text": "è±èªã¯è¡šé³æåã§ãã26æåã®ã¢ã«ãã¡ããããçµã¿åãããŠåèªãã€ã¥ããã¹ããŒã¹ã空ããŠåèªã䞊ã¹æç« ãçµã¿ç«ãŠãŸãã",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ã¢ã«ãã¡ãããã¯ããããäœéããã®ãé³ããè¡šããŸãã ãã®ãé³ããèŠããã°ãç¥ããªãåèªã§ãããããã®èªã¿æ¹ããããããã«ãªããŸãã",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ã¢ã«ãã¡ãããã«ã¯å€§æåãšå°æåããããéåžžã®æç« ã§ã¯ãããã䜿ãåããŸãã",
"title": "倧æåãå°æå"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "æç« ã®åºåãã瀺ãèšå·ã§ããéåžžã®æç« ã§ãã䜿ãã®ã¯ããªãªã(.)ãã³ã³ã(,)ãçå笊(?)ã§ããæ¥æ¬èªã§ã®å¥ç¹(ã)ãèªç¹(ã)ã«çžåœããŸãã",
"title": "å¥èªç¹"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "æç« ã®å¡ãæ§è³ªãè¡šãèšå·ã§ãããã䜿ãããç©ã«ã¯ã©ãŒããŒã·ã§ã³(ââ)ãããã«ã¯ã©ãŒããŒã·ã§ã³(ââ)ãã«ãã³( () )ãªã©ããããŸããæ¥æ¬èªã§ã®ã«ã®æ¬åŒ§ãæ¬åŒ§ã«çžåœããŸãã",
"title": "å²ã¿æå"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ã¢ãã¹ãããã£(')ã¯äºã€ã®åèªããã£ã€ããŠçç¥ããããçºé³ãçç¥ãããŠããããšãè¡šããŸãã",
"title": "ã¢ãã¹ãããã£"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "beåè©ãå©åè©ãä»ãç瞮圢",
"title": "ã¢ãã¹ãããã£"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "beåè©ãå©åè©+notã®ç瞮圢",
"title": "ã¢ãã¹ãããã£"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "+haveã®ç瞮圢",
"title": "ã¢ãã¹ãããã£"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "çºé³ã®çç¥(èšããè¡šãã®ã«ã䜿ãããŸããå£èªç)",
"title": "ã¢ãã¹ãããã£"
}
] | è±èªã¯è¡šé³æåã§ãã26æåã®ã¢ã«ãã¡ããããçµã¿åãããŠåèªãã€ã¥ããã¹ããŒã¹ã空ããŠåèªã䞊ã¹æç« ãçµã¿ç«ãŠãŸãã ã¢ã«ãã¡ãããã¯ããããäœéããã®ãé³ããè¡šããŸãã
ãã®ãé³ããèŠããã°ãç¥ããªãåèªã§ãããããã®èªã¿æ¹ããããããã«ãªããŸãã Aã
çæ¯é³ /Ê/: apple
çæ¯é³ /É/: want
çæ¯é³ /É/: any
é·æ¯é³ /eɪ/: acorn
é·æ¯é³ /ÉË/: father
é·æ¯é³ /ÉË/: water
匱æ¯é³ /É/: about
匱æ¯é³ /ɪ/: climate
Bã/b/ïŒbig C
/k/: cake
/s/: centre
D /d/ïŒdish
E
çæ¯é³ /e/: egg
çæ¯é³ /ɪ/: English
é·æ¯é³ /iË/: green
匱æ¯é³ /ɪ/: target
匱æ¯é³ /É/: water
F /f/: fish
G
/É¡/: gate
/Ê€/: gem
Hã/h/ïŒhat
I
çæ¯é³ /ɪ/: ink
é·æ¯é³ /aɪ/: icon
匱æ¯é³ /ɪ/: edit Jã/Ê€/: joker
K /k/: kick
L /l/: lemon M /m/: monkey
N /n/: nine
O
çæ¯é³ /É/: hot
çæ¯é³ /Ê/: son
çæ¯é³ /Ê/: wolf
é·æ¯é³ /ÉÊ/: over
é·æ¯é³ /ÉË/: horse
é·æ¯é³ /uË/: move
匱æ¯é³ /É/: random
匱æ¯é³ /Ê/: today
P /p/: pig
Q /k/: queen
R /r/: rabbit
S /s/: star
T /t/: toe
U
çæ¯é³ /Ê/: up
çæ¯é³ /Ê/: full
çæ¯é³ /ɪ/: busy
çæ¯é³ /É/: bury
é·æ¯é³ /juË/: U
é·æ¯é³ /ÉË/: fur
é·æ¯é³ /uË/: tofu
匱æ¯é³ /É/: survive
匱æ¯é³ /Ê/: careful
匱æ¯é³ /jÊ/: education
匱æ¯é³ /jÉ/: failure
V /v/: violin
W /w/: wolf
X
/ks/: box
/gz/: exam
/z/: xylophone
Y
/j/: yacht
/i/: happy
/aɪ/: sky
Z /z/: zebra ch /ʧ/: chance
/Ê/: chef
/k/: character
ng /Å/: sing
ph /f/: phone
sh /Ê/: fresh
th
/Ξ/: think
/ð/: this | è±èªã¯è¡šé³æåã§ãã26æåã®ã¢ã«ãã¡ããããçµã¿åãããŠåèªãã€ã¥ããã¹ããŒã¹ã空ããŠåèªã䞊ã¹æç« ãçµã¿ç«ãŠãŸãã
ã¢ã«ãã¡ãããã¯ããããäœéããã®ãé³ããè¡šããŸãã
ãã®ãé³ããèŠããã°ãç¥ããªãåèªã§ãããããã®èªã¿æ¹ããããããã«ãªããŸãã
*Aã
*:çæ¯é³ /Ê/: apple
*:çæ¯é³ /É/: want
*:çæ¯é³ /É/: any
*:é·æ¯é³ /eɪ/: acorn
*:é·æ¯é³ /ÉË/: father
*:é·æ¯é³ /ÉË/: water
*:匱æ¯é³ /É/: about
*:匱æ¯é³ /ɪ/: climate
*Bã/b/ïŒbig
*C
*:/k/: cake
*:/s/: centre
*D /d/ïŒdish
*E
*:çæ¯é³ /e/: egg
*:çæ¯é³ /ɪ/: English
*:é·æ¯é³ /iË/: green
*:匱æ¯é³ /ɪ/: target
*:匱æ¯é³ /É/: water
*F /f/: fish
*G
*:/É¡/: gate
*:/Ê€/: gem
*Hã/h/ïŒhat
*I
*:çæ¯é³ /ɪ/: ink
*:é·æ¯é³ /aɪ/: icon
*:匱æ¯é³ /ɪ/: edit
*Jã/Ê€/: joker
*K /k/: kick
*L /l/: lemon
*M /m/: monkey
*N /n/: nine
*O
*:çæ¯é³ /É/: hot
*:çæ¯é³ /Ê/: son
*:çæ¯é³ /Ê/: wolf
*:é·æ¯é³ /ÉÊ/: over
*:é·æ¯é³ /ÉË/: horse
*:é·æ¯é³ /uË/: move
*:匱æ¯é³ /É/: random
*:匱æ¯é³ /Ê/: today
*P /p/: pig
*Q /k/: queen
*R /r/: rabbit
*S /s/: star
*T /t/: toe
*U
*:çæ¯é³ /Ê/: up
*:çæ¯é³ /Ê/: full
*:çæ¯é³ /ɪ/: busy
*:çæ¯é³ /É/: bury
*:é·æ¯é³ /juË/: U
*:é·æ¯é³ /ÉË/: fur
*:é·æ¯é³ /uË/: tofu
*:匱æ¯é³ /É/: survive
*:匱æ¯é³ /Ê/: careful
*:匱æ¯é³ /jÊ/: education
*:匱æ¯é³ /jÉ/: failure
*V /v/: violin
*W /w/: wolf
*X
*:/ks/: box
*:/gz/: exam
*:/z/: xylophone
*Y
*:/j/: yacht
*:/i/: happy
*:/aɪ/: sky
*Z /z/: zebra
*ch
*:/ʧ/: chance
*:/Ê/: chef
*:/k/: character
*ng /Å/: sing
*ph /f/: phone
*sh /Ê/: fresh
*th
*:/Ξ/: think
*:/ð/: this
<!--
i ɪ e É ÉË É Ê É u Ê É É É
p b t d k f v s z Ê Ê h ÊŠ Ê£ m n l r w j
-->
==倧æåãå°æå==
ã¢ã«ãã¡ãããã«ã¯å€§æåãšå°æåããããéåžžã®æç« ã§ã¯ãããã䜿ãåããŸãã
*æç« ã®æåã®æåã倧æåã«ãã
*:It is an apple.
*äžäººç§°ä»£åè©ã® I ã¯åžžã«å€§æå
*:I have a book.
*:May I help you?
*人åãå°åããã®ä»åºæåè©ã®é æåã倧æåã«ãã
*:Jack loves Elizabeth.
*:I live in Japan.
*ææ¥åãæåã®é æåã倧æåã«ããïŒåºæåè©ã®äžã€ãšèããããïŒ
*:Monday / November
*ãŸãã«ãäžéšã匷調ãããšãã«å€§æåã䜿ãããšããã
==å¥èªç¹==
æç« ã®åºåãã瀺ãèšå·ã§ããéåžžã®æç« ã§ãã䜿ãã®ã¯ããªãªã(.)ãã³ã³ã(,)ãçå笊(?)ã§ããæ¥æ¬èªã§ã®å¥ç¹(ã)ãèªç¹(ã)ã«çžåœããŸãã
*æç« ã®çµãã«ã¯ããªãªãã
*:I read a book.
*æç« ã®ç¶ãç®ã«ã¯ã³ã³ãã
*:When I was a child, I was in New York.
*çåæã®çµãã«ã¯çå笊(ã¯ãšã¹ãã§ã³ããŒã¯ãã¯ãŠãªããŒã¯)ã
*:What is that?
==å²ã¿æå==
æç« ã®å¡ãæ§è³ªãè¡šãèšå·ã§ãããã䜿ãããç©ã«ã¯ã©ãŒããŒã·ã§ã³(ââ)ãããã«ã¯ã©ãŒããŒã·ã§ã³(ââ)ãã«ãã³(ã()ã<!--ããã¡ãã£ãšè¯ã瀺ãæ¹ã¯ãªããã®ãïŒâãšããããã¹ããŒã¹ããã-->)ãªã©ããããŸããæ¥æ¬èªã§ã®ã«ã®æ¬åŒ§ãæ¬åŒ§ã«çžåœããŸãã
*ããã«ã¯ã©ãŒããŒã·ã§ã³ã¯åèªã®åŒ·èª¿ããå°è©ãå²ãã®ã«äœ¿ãããŸã
*:She said, "So, what happened?"
*ã«ãã³ã¯æå³ã®è£å®ãè¿œå ãªã©ã«äœ¿ãããŸã
*:Holiemon's e-mail (I heard it was fake) caused a lot of trouble.
==ã¢ãã¹ãããã£==
ã¢ãã¹ãããã£(')ã¯äºã€ã®åèªããã£ã€ããŠçç¥ããããçºé³ãçç¥ãããŠããããšãè¡šããŸãã
beåè©ãå©åè©ãä»ãç瞮圢
*I+am I'm
*you/we/they+are you're/we're/they're
*he/she/it+is/has he's/she's/it's
*there+is there's
*what+is/has what's
*what+are what're
*what+did what'd
*I+had/would/should I'd
*you+had/would you'd
*he+had/would he'd
*she+had/would she'd
*it+had/would it'd
*we+had/would/shouldãwe'd
*they+had/would they'd
*I+will/shall I'll
*you+will/shall you'll
*he+will/shall he'll
*she+will/shall she'll
*it+will/shall it'll
*we+will/shall we'll
*they+will/shall they'll
*what+will what'll
beåè©ãå©åè©+notã®ç瞮圢
*are+not aren't
*is+not isn't
*was+not wasn't
*were+not weren't
*do+not don't
*does+not doesn't
*did+not didn't
*can+not can't
*could+not couldn't
*will+not won't
*would+not wouldn't
*shall+not shan't
*should+not shouldn't
*must+not mustn't
*might+not mightn't
*need+not needn't
+haveã®ç瞮圢
*I+have I've
*you+have you've
*we+have we've
*they+have they've
*what+have what've
*may+have may've
*must+have must've
*would+have would've
*could+have could've
çºé³ã®çç¥(èšããè¡šãã®ã«ã䜿ãããŸããå£èªç)
*shaking shakin'
*madam ma'am
<!--ããã²ãŒã·ã§ã³-->
*[[è±èª]]ã[[è±èª/ææ³/åè©|åè©]]ã[[è±èª/ææ³/æå¶|æå¶]]
[[Category:è±èª|å
¥ããã»ã]] | null | 2022-08-02T00:09:51Z | [] | https://ja.wikibooks.org/wiki/%E8%8B%B1%E8%AA%9E/%E5%85%A5%E9%96%80/%E6%9B%B8%E6%B3%95 |
1,700 | æ¥æ¬èª/åè©/èªç«èª/çšèš/åè© | 掻çšãããã»ãã»ãã»ãã»ãã®äºæ®µã§è¡ããã掻çšåœ¢ãæèªã§ã¯ãã»ãã»ãã»ãã®å段ã§æŽ»çšããã
掻çšèªå°Ÿããã¹ãŠã€æ®µã®ãã®ããŠæ®µãäžå¿ãšèãããšããã¹ãŠãŠæ®µã®ã²ãšã€äžã§æŽ»çšããŠããã
æèªã§äžäžæ®µåè©ã¯ã€ãã®ãšããã§ãããçãã䌌ããç
®ããå¹²(ã²)ãã也(ã²)ããç°ž(ã²)ããå(ã²)ããèŠãããããã¿ãããããã¿ããããžãã¿ãããããã¿ãããããã¿ããå(ã¿)ããå°(ã)ããé³(ã)ããç(ã)ããæ²(ã)ããå±
(ã)ããç(ã)ããç(ã²ã)ãããçš(ãã¡)ããã
掻çšèªå°Ÿããã¹ãŠãšæ®µã§æŽ»çšãã掻çšã®ä»æ¹ãæèªã§ã¯ 蹎(ã)ã ã®1èªã®ã¿ã§ãã£ã(â蹎(ã)ãã)ã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "掻çšãããã»ãã»ãã»ãã»ãã®äºæ®µã§è¡ããã掻çšåœ¢ãæèªã§ã¯ãã»ãã»ãã»ãã®å段ã§æŽ»çšããã",
"title": "åè©"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "掻çšèªå°Ÿããã¹ãŠã€æ®µã®ãã®ããŠæ®µãäžå¿ãšèãããšããã¹ãŠãŠæ®µã®ã²ãšã€äžã§æŽ»çšããŠããã",
"title": "åè©"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "æèªã§äžäžæ®µåè©ã¯ã€ãã®ãšããã§ãããçãã䌌ããç
®ããå¹²(ã²)ãã也(ã²)ããç°ž(ã²)ããå(ã²)ããèŠãããããã¿ãããããã¿ããããžãã¿ãããããã¿ãããããã¿ããå(ã¿)ããå°(ã)ããé³(ã)ããç(ã)ããæ²(ã)ããå±
(ã)ããç(ã)ããç(ã²ã)ãããçš(ãã¡)ããã",
"title": "åè©"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "掻çšèªå°Ÿããã¹ãŠãšæ®µã§æŽ»çšãã掻çšã®ä»æ¹ãæèªã§ã¯ 蹎(ã)ã ã®1èªã®ã¿ã§ãã£ã(â蹎(ã)ãã)ã",
"title": "åè©"
}
] | null | {{Wikipedia|åè©}}
{{Wiktionary|åè©}}
{{NDC|815.5}}
[[File:AMB Japanese Verbs.pdf|thumb|250px|ã/ã/ã/ã/ã/ãŠ]]
== åè© ==
* ç©äºã®äœçšãåäœãååšãè¡šããåç¬ã§è¿°èªã«ãªãããšãã§ããã
* 掻çšã®ä»æ¹ã«ãå£èªã«ãããŠã¯'''äºæ®µæŽ»çš'''ã'''äžäžæ®µæŽ»çš'''ã'''äžäžæ®µæŽ»çš'''ã'''ãµè¡å€æ ŒæŽ»çš'''ã'''ã«è¡å€æ ŒæŽ»çš'''ãããã
* æ¥æ¬èªã®åè©ã¯ãçµæ¢åœ¢ã§å¿
ãèšãåãã®åœ¢ããã段ãã®é³ã«ãªããããã¯ãããšãã°ãã€ãèªã«ãããŠãå€ãã®åè©ã®å圢ã®èªå°Ÿãã-enããšãªãããšãšåãã§ããããæ¥æ¬èªã§ã¯äŸå€ããªãã
{| class="wikitable"
! åè©/<br />掻çšåœ¢ !! æ¥ã !! å匷ãã !! èŠãã !! èµ·ãã !! èµ°ã
|-
! èªå¹¹
| à || ã¹ãããã || ã || ã || ã¯ã
|-
! é£çšåœ¢
| ã || ãã»ãã»ãã»ã || ã || ã || ãã»ã
|-
! é£çšåœ¢
| ã || ã || ã || ã || ãïŒã£ïŒ
|-
! çµæ¢åœ¢
| ãã || ãã || ãã || ãã || ã
|-
! é£äœåœ¢
| ãã || ãã || ãã || ãã || ã
|-
! ä»®å®åœ¢
| ãã || ãã || ãã || ãã || ã
|-
! åœä»€åœ¢
| ãã || ããããã || ãã || ããããã || ã
|}
=== äºæ®µæŽ»çš ===
掻çšãããã»ãã»ãã»ãã»ãã®äºæ®µã§è¡ããã掻çšåœ¢ãæèªã§ã¯ãã»ãã»ãã»ãã®å段ã§æŽ»çšããã
; äŸ
:; æ©ã
:: ãã®ãšã''æ©ã''ã¯ãã»ãã»ãã»ãã»ãããšã«è¡ã®äžã§æŽ»çšããŠããã®ã§'''æ©ã'''ã¯ã«è¡äºæ®µæŽ»çšã§ãããšããïŒé£çšåœ¢ã¯é³äŸ¿ïŒã
{| class="wikitable"
! æ¯é³/<br />掻çšåœ¢ !! a !! i !! u !! e !! o
|-
! æªç¶åœ¢
| bgcolor="#ff9966" | ã || Ã || Ã || Ã || bgcolor="#ff9966" | ã
|-
! é£çšåœ¢
| Ã
| bgcolor="#ff9966" | ã || Ã || Ã || Ã
|-
! çµæ¢åœ¢
| Ã || Ã || bgcolor="#ff9966" | ã || Ã || Ã
|-
! é£äœåœ¢
| Ã || Ã || bgcolor="#ff9966" | ã || Ã || Ã
|-
! ä»®å®åœ¢
| Ã || Ã || Ã || bgcolor="#ff9966" | ã || Ã
|-
! åœä»€åœ¢
| Ã || Ã || Ã || bgcolor="#ff9966" | ã || Ã
|}
=== äžäžæ®µæŽ»çš ===
掻çšèªå°Ÿããã¹ãŠã€æ®µã®ãã®ããŠæ®µãäžå¿ãšèãããšããã¹ãŠãŠæ®µã®ã²ãšã€äžã§æŽ»çšããŠããã
; èŠã
: æªç¶åœ¢ãé£çšåœ¢ã®ãšãã®æŽ»çšã''ã¿''ã«ãªãã®ã§ãã®ãšãèªå¹¹ã¯ãªãã«ãªããã¿ã¯ãè¡ã ãããè¡äžäžæ®µæŽ»çšãšããã
æèªã§äžäžæ®µåè©ã¯ã€ãã®ãšããã§ãããçãã䌌ããç
®ããå¹²ïŒã²ïŒãã也ïŒã²ïŒããç°žïŒã²ïŒããåïŒã²ïŒããèŠãããããã¿ãããããã¿ããããžãã¿ãããããã¿ãããããã¿ããåïŒã¿ïŒããå°ïŒãïŒããé³ïŒãïŒããçïŒãïŒããæ²ïŒãïŒããå±
ïŒãïŒããçïŒãïŒããçïŒã²ãïŒãããçšïŒãã¡ïŒããã
{| class="wikitable"
! æ¯é³/<br />掻çšåœ¢ !! a !! i !! u !! e !! o
|-
! æªç¶åœ¢
| Ã || bgcolor="#ff9966" | ã¿ || Ã || Ã || Ã
|-
! é£çšåœ¢
| Ã || bgcolor="#ff9966" | ã¿ || Ã || Ã || Ã
|-
! çµæ¢åœ¢
| Ã || bgcolor="#ff9966" | ã¿ã || Ã || Ã || Ã
|-
! é£äœåœ¢
| Ã || bgcolor="#ff9966" | ã¿ã || Ã || Ã || Ã
|-
! ä»®å®åœ¢
| Ã || bgcolor="#ff9966" | ã¿ã || Ã || Ã || Ã
|-
! åœä»€åœ¢
| Ã || bgcolor="#ff9966" | ã¿ã || Ã || Ã || Ã
|}
=== äžäžæ®µæŽ»çš ===
掻çšèªå°Ÿããã¹ãŠãšæ®µã§æŽ»çšãã掻çšã®ä»æ¹ãæèªã§ã¯ 蹎ïŒãïŒã ã®1èªã®ã¿ã§ãã£ãïŒâ蹎ïŒãïŒããïŒã
; äŸ
:; ''ããã''
:: æäœã¯èªå¹¹
{| class="wikitable"
! æ¯é³/<br />掻çšåœ¢ !! a !! i !! u !! e !! o
|-
! æªç¶åœ¢
| Ã || Ã || Ã || bgcolor="#ff9966" | ''ãã'' || Ã
|-
! é£çšåœ¢
| Ã || Ã || Ã || bgcolor="#ff9966" | ''ãã'' || Ã
|-
! çµæ¢åœ¢
| Ã || Ã || Ã || bgcolor="#ff9966" | ''ãã''ã || Ã
|-
! é£äœåœ¢
| Ã || Ã || Ã || bgcolor="#ff9966" | ''ãã''ã || Ã
|-
! ä»®å®åœ¢
| Ã || Ã || Ã || bgcolor="#ff9966" | ''ãã''ã || Ã
|-
! åœä»€åœ¢
| Ã || Ã || Ã || bgcolor="#ff9966" | ''ãã''ã || Ã
|}
=== ãµè¡å€æ ŒæŽ»çš ===
* å£èªã§ã¯çºïŒãïŒããæèªã§ã¯çºïŒãïŒããã¯ã ã®ã¿ã§ããã
=== ã«è¡å€æ ŒæŽ»çš ===
* æ¥ããæèªã§ã¯æ¥ïŒãïŒã®1èªã®ã¿ã§ããã
=== äžäºæ®µæŽ»çšïŒæèªã®ã¿ïŒ ===
* ã€è¡äžäºæ®µæŽ»çšã®åè©ã¯ãèïŒãïŒããæïŒãïŒããå ±ïŒããïŒã ã®3èªã®ã¿ã§ããã
=== äžäºæ®µæŽ»çšïŒæèªã®ã¿ïŒ ===
* ã¢è¡äžäºæ®µæŽ»çšã®åè©ã¯ãåŸïŒãïŒ ã®1èªã®ã¿ã§ããã
* ã¯è¡äžäºæ®µæŽ»çšã®åè©ã¯ãæ€ïŒãïŒãã飢ïŒãïŒããæ®ïŒãïŒã ã®3èªã®ã¿ã§ããã
=== ãè¡å€æ ŒæŽ»çšïŒæèªã®ã¿ïŒ ===
* æ»ã¬ããã¬ïŒåŸãå»ïŒã®ã¿ã§ããã
=== ã©è¡å€æ ŒæŽ»çšïŒæèªã®ã¿ïŒ ===
* ããããããã¯ã¹ããããŸããããããŸããã ã®ã¿ã§ããã
[[ã«ããŽãª:æ¥æ¬èª åè©|å]] | 2005-03-05T05:25:00Z | 2023-09-28T15:23:25Z | [
"ãã³ãã¬ãŒã:Wikipedia",
"ãã³ãã¬ãŒã:Wiktionary",
"ãã³ãã¬ãŒã:NDC"
] | https://ja.wikibooks.org/wiki/%E6%97%A5%E6%9C%AC%E8%AA%9E/%E5%93%81%E8%A9%9E/%E8%87%AA%E7%AB%8B%E8%AA%9E/%E7%94%A8%E8%A8%80/%E5%8B%95%E8%A9%9E |
1,702 | è±èª/ææ³/æ§æ | æ§æ:ããã§ã¯äž»ãªæ§æãåæããŸãã詳ããã¯ããããã®æ§æã®ããŒãžãèŠãŠãã ããã
å¡äŸ(説æãç°¡ç¥åãããã以äžã®èšå·ãçšããã
è±èªã®æ§æã®åºæ¬ã¯ ãäž»èª+åè©ãã®çµã¿åããã§ãã æé ã«äž»èªããã®æ¬¡ã«è¿°èªãšãªãåè©ãæ¥ãŸãã æ¥æ¬ã§ã®é«çåŠæ ¡ã§ã¯äŒçµ±çã«åºæ¬5æåãšãã5ã€ã®è±æã®åãç¿ããŸãããªããSV,SVC,SVO,SVOO,SVOCã®5ã€ã«SVA,SVOAã®2ã€ãå ãã7æåã«åé¡ããããšããç«å ŽããããŸããããã§ãAã¯å Žæãªã©ãè¡šãå¯è©å¥ã§ãã
S+V:
å¯è©å¥Mã䌎ããSVMã®åœ¢ã§äœ¿ãããããšãå€ãã
S+V+C:
äž»èª+beåè©+ åè©/代åè©/圢容è©
äž»èª+beåè©ä»¥å€ã®åè©+åè©/圢容è©
S+V+O: Oã¯ç®çèªãšãããåäœã®å¯Ÿè±¡ãè¡šããŸããç®çèªãšãªãããã®ã¯ãåè©(Noun)ããã³ããã«ä»£ãããããã®ã§ã代åè©(Pronoun),ååè©,toäžå®è©(to-infinitive),thatç¯(that-clause),wh-ç¯ãªã©ã§ãã ãã®æåããšãåè©ãå®å
šä»åè©ãšãããŸãã
äž»èª+åè©+åè©/代åè©
äž»èª+åè©+ååè©/toäžå®è©/wh- + toäžå®è©/thatç¯
äž»èª+åè©+wh-ç¯
S+V+iO+dO:
ä»æ¥ã®é«çåŠæ ¡ã«ãããè±ææ³ã§ã¯ãåè©ã代åè©ã«ã¯äž»æ Œã»æææ Œã»ç®çæ Œã®3ã€ã®æ Œããããšç¿ãã
æŽå²çã«ã¯ç®çæ Œã¯æŽã«2ã€ã®æ Œã«åãããã~ããã«ããããã®ã¯å¯Ÿæ Œãã~ã«ãã«ããããã®ã¯èæ Œ(äžæ Œ)ãšããã éæ¥ç®çèªiOã¯èæ Œãè¡šããçŽæ¥ç®çèªdOã¯å¯Ÿæ Œãè¡šãã ãã®æåããšãåè©ãæäžåè©ãšããã
ãªããaskã¯çŽæ¥ç®çèªãäºéã«åãåè©ã§ãããæäžåè©ã§ã¯ãªããšãããã
äž»èª+åè©+éæ¥ç®çèª+ åè©/代åè©
äž»èª+åè©+éæ¥ç®çèª+çåè©(what, howãªã©)toäžå®è©
äž»èª+åè©+éæ¥ç®çèª+åè©ç¯
第4æåã®æã¯ãäžæ Œãto + nounãããã¯for + nounã«ãã£ãŠè¡šãããšã«ãã£ãŠã第3æåã«æžãæããããšãå¯èœã ãšããã
toãšforã®ã©ã¡ããçšãããã¯ãåè©ã«ãã£ãŠæ±ºãŸã£ãŠãããã®ãšããŠãã»ã©åé¡ã¯çããªãããã~ã«å¯ŸããŠããšããæ°æã¡ã§ã¯to,ã~ã®ããã«/~ã«ä»£ãã£ãŠããšããæ°æã¡ã§ã¯forã䜿ããããããšãã°ãäžã®2ã€ã®äŸæã®ãã¡ãåŸè
ã¯ã~ã®ããã«ããšããæ°æã¡ã§äœ¿ãããŠãããšèããããããã®ãããªäžæ Œã®äœ¿ããæ¹ããæŽå²çã«ã¯å©çã®äžæ Œãšããã ãªããSVOOã®æãšSVO to Oã®æã¯å
šãåãæå³ãªã®ããšããã°ãããã§ã¯ãªããçžæã«ãšã£ãŠæ°æ
å ±ã§ããæ
å ±ããç¹ã«çŠç¹ãããããæ
å ±ã®å Žåã¯ææ«ã«çœ®ãããåŸåã«ããã®ã§ã2ã€ã®ç®çèªã®ãã¡ãã©ã¡ããæ°æ
å ±ã§ãã©ã¡ãã«éç¹ããããŠè©±ãã®ããèããé©åãªæ§æãéžã¶ã¹ãã§ããã
ãŸããS V iO dOã¯ãdOãiOã®æã«æž¡ã£ãããšãŸã§å«æããäžæ¹ã§ãS V O to Nounã«ã¯ãã®ãããªæå³ã¯å«ãŸããªãã
S+V+O+C: ãã®æåã«ãããè£èªã¯ãç®çèªã®ç¶æ
ãè¡šãã®ã§ãç®çæ Œè£èªãšåŒã°ããã O+Cã®éšåã ããO+é£çµåè©(linking verb:be,seem,appearãªã©)+CãæãšããŠæå³ãæããäŸãã°ãThey named their first baby William.ã§ããã°ãTheir first baby is William.ãæãç«ã€ã SVOCã®æã¯ãã€ãŸããOCã®éšåã«é£çµåè©ãè±èœãã第2æåãçµã¿èŸŒãŸããŠãããšèããããã
äž»èª+åè©+ç®çèª+ åè©
äž»èª+åè©+ç®çèª+ 圢容è©
äž»èª+åè©+ç®çèª+å¯è©
åŠå®ã¯ãæåŠå®ãšèªå¥åŠå®ãå
šäœåŠå®ãšéšååŠå®ãªã©ãšåããããšãã§ããã
æåŠå® beåè©ãããã¯å©åè©ã®çŽåŸã«åŠå®ãè¡šãå¯è©notãããã«æºãããã®(hardlyãªã©)ãæ¿å
¥ããããšã§æå
šäœãåŠå®ããæãã§ãããå©åè©ãå«ãŸãªãäžè¬åè©ã®æã¯ãåè©ã®åã«å©åè©doãè£ã£ãŠããããã®çŽåŸã«notãšç¶ããã
ãŸããã¢ãã¹ãããã£(')ã䜿ãããšã§"~ not"ã"~n't"ãšçç¥ããããšãå¯èœã§ãã
ãã ããwill notã¯willn'tã§ã¯ãªãwon'tãshall notã¯shan'tã§ããããŸããamn'tãšã¯ãããªãããšã«æ³šæããããã(ã©ãããŠãam notãçž®ãããå Žåã¯ãaren'tã§ä»£çšããããain'tãšãã)
æ§æã¯è¯å®çã§ããäž»èªãç®çèªã«åŠå®çãªèªãå
¥ããããšã§ãåŠå®æãäœãããšãã§ããŸãã
èªå¥åŠå® åŠå®ãããèªå¥(ãããã¯ç¯)ã®çŽåã«notã眮ãããšã«ããããã®èªå¥ãåŠå®ããããšãã§ããã
è«ççã«é©åãªäœçœ®ããä»ã®å Žæãžnotã移åããçŸè±¡ãããããããnotã®è»¢ç§»ãšããããäžã«äŸãæããã
ãã®2ã€ã®æã¯ãè«ççã«ã¯æ¬¡ã®ããã«æžããæ¹ãæ£ããã
ãªããªãã°ãI don't wantã®å Žåã¯ãå®éã«ã¯ã~ããªãããšãæããããã§ãããI don't thinkã®å Žåã¯ã~ã§ãªããšèããŠãããããã§ããã ã²ãã£ãšããããã³ãšããªãããç¥ããªãããã©ã¡ãã"é¡ã£ãŠãã"ããšã"èããŠãã"ããšã¯äºå®ã§ããã ãã ããã®é¡ã£ãŠããããšãèããŠããããšã®å
容ãåŠå®çãªã®ã§ããã
ãã®2äŸã®å Žåã¯ãnotã®è»¢ç§»ãæèããã«èš³ããŠã解éã«æ··ä¹±ãçããããšã¯ãªãã ãããã次ã®äŸã®å Žåã¯ã2éãã®è§£éãååšããæèãããã¯é³å£°ã«ãã匷å¢æãã«ã¯ãã©ã¡ããæ£ãããšããããªãã
ããã¯ãnot becauseã®notã転移ããå¯èœæ§ãèæ
®ãã次ã®2éãã®è§£éãããããã
It+åè©+~(+for~)+toäžå®è©
There+beåè©+~
There+beåè©ã¯ååšæãšãããçžæã«ãšã£ãŠã®æ°æ
å ±ã§ããç©ã人ã®ååšãç¥ãããã®ã«çšããããŸããäž»èªã¯beåè©ã®åŸãã«æ¥ãã®ã§ãäž»èªã¯åžžã«äžäººç§°ã§ããããããã«ãåæ°ã®ãã®ã®ååšã¯There is~ãè€æ°ã®ãã®ã®ååšã¯There are~ã§è¡šããŸããä»ã«ããéå»ã«ã€ããŠè¿°ã¹ãã®ã§ããã°ãThere was[were]~ ãThere used to be~ãšãªããŸãã
there is ã®ç瞮圢ã¯there'sã§ãthere are ã®ç瞮圢ã¯there'reã§ãã
ãªããçžæã«ãšã£ãŠã®æ°æ
å ±ã§ãªããã°ãã®æ§æ(ååšæ)ã¯äœ¿ããŸããããã
ã®ãããªæã¯äœããŸããã(å®å è©ã¯æ°æ
å ±ãè¡šããªã)
ifç¯(if clause)ã«ãã£ãŠæ¡ä»¶ãä»®å®ãè¡šãã çŸå®ã«åããä»®å®(åå®ä»®æ³)ãããå Žåã«çšããããæ³(Mood)ãä»®å®æ³ãšããããã以å€ã§ããã°çŽèª¬æ³ã§ããã
ããã¯ãåã«ãææ¥éšãéãããšããæ¡ä»¶ã®äžã§ã¯è²·ãç©ã«è¡ããªããšããæ¡ä»¶ã瀺ããã«éããŸããããããããä»®å®æ³ã§ã¯ãããŸãããä»æ¹ã§ã
ãã®æã¯ããç§ãããªãã§ããããšããããšãæãåŸãªããã€ãŸãã©ãèããŠãçŸå®ã«åããã®ã§ãä»®å®æ³ã«ãã£ãŠæãèµ·ãã£ãŠããŸãã
ifç¯ã®ä»ã«ãunlessããããŸããã»ãšãã©ã®å Žåã§ã¯ãunless㯠if ~ notãšåãæå³ã«ãªããŸãããå
šãéãæå³ã«è§£éãããå ŽåããããŸããifãæ¡ä»¶ãªã®ã«å¯ŸããŠãunlessã¯åŠå®ã®æ¡ä»¶ãšãããã"é€å€"ãšèšã£ãã»ããæ£ç¢ºããç¥ããŸããã
äžèšã®ãããªçç±ã«ãããunlessã¯å¿
ãããif notã§æžãæããããããã§ã¯ãããŸããã
æ¡ä»¶ã瀺ãå Žåãéåžžã«éèŠãªèŠåãšããŠã
ãšããèŠåããããŸãã
ããããæ¡ä»¶ãè¡šãç¯ã ãããæãè¡šãç¯ã ããããå¯è©ç¯ã§ãªãåè©ç¯ã§ããã°åé¡ãªãæªæ¥è¡šçŸã¯äœ¿ãããŸãã
åè©ç¯ãšããŠæ±ãããå Žåã¯ãifã¯ã~ãã©ããããwhenã¯ããã€~ããã®ã(ãšããããš)ããšããæå³ã«ãªããŸãã
ãŸããå
ã»ã©ã®èŠåã¯ã次ã®ãããªå Žåã«ãã£ããªãç ŽããŸãã
ãŸãã1)ã®å ŽåããèŠãŸãã
ãã®æã§ã®willã¯äž»èªã®ææãè¡šãæææªæ¥ã§ããããå
ã»ã©ã®èŠåã¯é©çšãããŸããã
次ã«2)ã®å ŽåãèŠãŸãããã
(人質解æŸã«ç¹ãããã ã£ããã圌ã¯100äžãã«ã§ãã身代éãæ¯æãã ãã) ãã®æã®å Žåã¯ãäž»ç¯(he will ~)ããŸãèµ·ããããšã«ãã£ãŠããã®åŸã«äººè³ªè§£æŸãšããåºæ¥äºãèµ·ããã®ã§ãå
ã»ã©ã®èŠåãé©çšãããªãããã§ãã
çŸåšãäžå¿ãšããããšã«å¯Ÿããåå®ä»®æ³ã¯ä»®å®æ³éå»ã§è¡šãã ããšãã°ãI am in your position.ãä»®æ³ããå Žåãªã©ã åå®ä»®æ³ãªã®ã§ãçŸå®ã«åããŠããããšã倧åæã äžçªç°¡åãªåœ¢ãšããŠã¯ã If S V(éå»åœ¢) ~, S would[might/should/could] V(åå) ~.
ãã®å Žåã¯ããå®éã«ã¯ããŒãã£ã«æ¥ãŠããªããããšãåæã«ãªããŸãã ä»ã«ãäŸãæããŸãã
ãã®æã¯ãäºã€ã®æç« ãé£çµãããŠããŸããã€ãŸããI had enough moneyã®æ¡ä»¶ãæºããããŠãããªãã°ãI could buy the new game.ã§ããã ããããšããä»®å®æ³ã®æã§ãã åœç¶ããã®ãããªæ¡ä»¶ãæºããããŠããªãããšãåæãšãªã£ãŠããŸãã ã€ãŸããçŸå®ã«ã¯ãããéãç¡ãã£ããããæ°ããã²ãŒã ã¯è²·ããªãã£ããããªã®ã§ãã
éèŠãªå®åè¡šçŸã«ã If it were not for ~, = ãããã~ããªãã£ããã ããããŸãã
ãã°ãã°ãwithout~ãBut for ~ã«ä»£çšãããŸãã
éå»ã«èµ·ãã£ãäºå®ã«åããä»®æ³ã»ä»®å®ãè¡šãå Žåã«ã¯ãä»®å®æ³éå»å®äºãçšããã åºæ¬çãªåœ¢ãšããŠã¯ã If S+had+P.P.~, S+would[should/might/could] have+P.P.~. ãšãªãã
å眮ãããšifãæ¶æ»
ããã
= Had it not been for your help, ~. = Without your help, ~. = But for your help, ~.
äž»èª+tell,want,expectãªã©+ç®çèª+toäžå®è©
make,let,have+ç®çèª+åè©ã®åå makeãletãªã©ã®èªã䜿ãããšã§ãä»äººãç©ã«åããããŠããåè©ã®å圢ãããããããšããæãäœãããšãã§ããŸãã
ããã¯åœä»€æã§ãæå¹ã§ããLet's~ã¯Let usã®çç¥åœ¢ã§ãçŽèš³ããã°ãæã
ã«~ãããããšãªããŸãããæ
£çšå¥ãªã®ã§ã~ãããããšèš³ãããŸãã
çåæã¯å©åè©ãæé ã«æã£ãŠããããšã§äœããŸããããããŠäœãããçåæã¯ãyes/noã§çããããçåæã§ããããšãããyes/no questionãããã¯äžè¬çåæãšãããŸãã beåè©ãçšããæã®å Žåã¯ãbeåè©ãæé ã«ç§»åããŸããæäžã«å©åè©ãå«ãŸãªãæã®å Žåã¯ãå©åè©do[does/did]ãæé ã«ãããŸãã
ãã®ä»ã«ããç¹æ®çåæ,ä»å çåæãªã©ããããŸãã ç¹æ®çåæã¯ãçåæã®æé ã«çåè©ãä»ããŸããçåè©ã¯æ¬¡ã®6çš®é¡ããããäžè¬çã«5W1HãšåŒã°ããŸãã
ãã®ä»
Whatã¯ãäœããè¡šãçå代åè©/圢容è©ã§ããææ³çã«ã¯ä»£åè©/圢容è©ã®æ±ããšãªããŸãã
çå代åè©whatãè£èªã®å Žå
çå代åè©whatãç®çèªã®å Žå
çå代åè©whatãäž»èªã®å Žå
çå圢容è©ãšããŠäœ¿ãå Žå
What+åè©ã®åœ¢ã§äœ¿ããŸãã
Whoã¯ã誰ããè¡šãçå代åè©ã§ããWhatãç©äºã«å¯ŸããŠäœ¿ãããã®ã«å¯ŸããŠãWhoã¯äººç©ã«å¯ŸããŠäœ¿ããŸãã
whoãè£èªã®å Žå
whoãç®çèªã®å Žå
whomãšããçåè©ãååšãããããã»ã©formalãªè±èªä»¥å€ã§ã¯äœ¿ãããªãã
whoãäž»èªã®å Žå
以äžã®ããã«ãé¢ä¿ä»£åè©whoã¯äž»æ Œã»ç®çæ Œã®ãããããšãããšãã§ãã(ãã ããformalãªè±èªã§ã¯ç®çæ Œã¯whomãšãã)ã®ã ããå±æ Œ(æææ Œ)ããšãããšã¯ã§ããªããwhoã®2æ Œ(å±æ Œ)ã¯whoseã§ãããæ¥æ¬èªã®ã誰ã®~ãã«å¯Ÿå¿ããã
Whereã¯ãã©ãããè¡šãåèªã§ããå Žæãå°ããã®ã«äœ¿ããŸãã çåå¯è©ã§ãããææ³çã«ã¯å¯è©ãšããŠæ±ãããŸãã
ææ³çã«ã¯å¯è©ã®æ±ãã§ãã®ã§ã
ã¯èª€æãšãªããŸãã(è¿çã"It is åè©"ã®åœ¢ã§ããã¹ããªã®ã§) ãã®å Žåã¯ãWhereãçå代åè©ã®Whatã«æããã¹ãã§ãã (æé ã®?ã¯ããã®æãäžèªç¶ããããã¯ææ³çã«èª€ã£ãæã§ããããšã瀺ããŠããŸãã)
Whenã¯ããã€ããè¡šãçåå¯è©ã§ããæéãå°ããã®ã«äœ¿ããŸãã
Whyã¯ããªãããè¡šãçåå¯è©ã§ããçç±ãåãã®ã«äœ¿ãããŸãã
Howã¯ãã©ããã£ãŠ/ã©ã®ãããª/ã©ã®ãããããªã©ã®æå³ãè¡šãçåå¯è©ã§ããæ¹æ³ã»æ§æ
ã»çšåºŠãåãã®ã«äœ¿ãããŸãã
ãŸããæ°éãè¡šãåèªãªã©ãšçµã¿åãããããšã§ãéãèãããšãã§ããŸãã
Whichã¯ãã©ãããè¡šãçå代åè©ã§ããéžæè¢ãããããã®äžããéžã¶æã«äœ¿ããŸãã
ææ«ã«ã,å©åè©+äž»èª?ãä»å ããããšã«ãã£ãŠãã~ã§ããããããšãã確èªã®æå³ã®çåæãäœããã è¯å®æã«å¯ŸããŠã¯åŠå®åœ¢ã®å©åè©ããåŠå®æã«å¯ŸããŠã¯åŠå®åœ¢ã§ãªãå©åè©ãä»å ããã
ãã ããäžèŠè¯å®æã«èŠããŠãåŠå®ã®æå³ãè¡šãæããéã«äžèŠåŠå®æã ãè¯å®ã®æå³ãè¡šãæãããã®ã§æ³šæãããã ãªããä»å çåã¯ã以äžã®ãããªã~ã§ãããããšãã確èªã®æå³ã®çå以å€ã«ã誰ãã®èšèãç¹°ãè¿ãããã誰ãã®èšèããæšè«ããŠãã~ãšããããšã«ãªããŸããããšããçåãè¡šãããšãã§ãã(ç¹°ãè¿ãçå)ããã®å Žåã¯ã確èªçåã®å Žåãšã¯éã«ãåŠå®æã«å¯ŸããŠåŠå®åœ¢ã®å©åè©ãä»å ããã
åè©ã«ãã£ãŠæ修食ã®å¯è©å¥ãäœããæ¥ç¶è©+äž»èª+åè©~ãšåãåãããããæã®ããšã ããšãã°ã
ã¯ã次ã®åè©æ§æã«æžãæããããŸãã
conj.=æ¥ç¶è©, subj.=äž»èª, verb=åè©
è€æ conj. + subj.1 + verb1 ~, subj.2 + verb2 ~. ãåè©æ§æã«æ¹ããå Žåã ãŸãã¯ãæ¥ç¶è©ãåããã€ã¥ããŠsubj.1ãšsubj.2ãäžèŽããŠããå Žåã¯subj.1ãåããæåŸã«ãverb1ãåè©ã«æžãæãããšããæ©æ¢°çãªæç¶ãã«ãã£ãŠåè©æ§æãäœãããšãã§ããã
è€æ conj. + subj.1 + verb1 ~, subj.2 + verb2 ~. ã«ãããsubj.1ãšsubj.2ãäžèŽããªãå Žåã subj.1ã¯åãããã«æ®ãããšã«ãªãããã®ãšãæ®çããsubj.1ã¯åè©ã®æå³äžã®äž»èªã«ãªã£ãŠããããã®ãããªåè©æ§æã®ããšãç¬ç«åè©æ§æ(absolute participial construction)ãšããã Weather permitting(倩åãèš±ãã°)ã®ãããªæ±ºãŸãæå¥ãããã
æ
£çšäžãæå³äžã®äž»èªãçç¥ããæ
£çšå¥çãªåè©æ§æãããã代衚çãªãã®ãäžã«èšããåŸè¿°ã®æžååè©ãšã¯éããééã£ãçšæ³ã§ã¯ãªãã
generally speaking(å
šè¬çã«ã¯)
strictly speaking(å³å¯ã«èšãã°)
judging from ~(~ããå€æããã°)
taking ~ into consideration(~ãèæ
®ã«å
¥ãããš)
all things considered(ãã¹ãŠãèæ
®ãããš)
speaking of ~(~ãšèšãã°) ãªã©
æå³äžã®äž»èªãå¿
èŠã§ããã«ãé¢ãããæå³äžã®äž»èªã«æ¬ ãåè©ãæžååè©(dangling particle)ãšããã
äžã®æã®å Žåãåè©ã®æå³äžã®äž»èªã¯heã§ãããhis expressionã§ã¯ãªãã®ã§ãHe being in ~ã®æ¹ãé©åãªã®ã§ããããã®æå³äžã®äž»èªãæãèœã¡ãŠããŸã£ãŠããŸãã æžååè©ã¯ææ³çã«æ£ãããªãã®ã§çšãã¬ããã«ãã¹ãã ãšèšãããŠããã
æäžã®èª(Word), å¥(Phrase), ç¯(Clause)ã匷調ããããã«ã¯ããã€ãã®æ¹æ³ãããã
åäžã®èªå¥ãç¹°ãè¿ãããšã«ãã£ãŠåŒ·èª¿ããæ¹æ³ã
å©åè©do[does; did]ãåè©ã®çŽåã«çœ®ãããšã«ãã匷調ãè¡šãããã®å Žåãdo[does; did]ã«åŒ·å¢(stress)ã眮ãããã
çåè©ã匷調ããåã°æ±ºãŸãæå¥ãšãªã£ãŠããèªå¥ããããæ¥æ¬èªã«èš³ããšãäžäœå
šäœ~ããšãã£ãèš³ã«ãªãã
not ... at all, not ... in the leastãªã©ã§åŠå®ã®æå³ã匷調ã§ããã
ç¯ã®äžã®åŒ·èª¿ãããèª, å¥, ç¯ã匷調ããªãèŠçŽ ãšåããŠãé¢ä¿è©ãthatç¯ãªã©ã䜿ãåè£ãããæã®ããšã匷調ããèŠçŽ ãšãã以å€ãåè£ããããåè£æ(cleft sentence)ãšãããé«æ ¡ã§ç¿ãIt is[was]+匷調ãããèŠçŽ +that~ã¯ãã®åè£æã®äžçš®ã§ãããåè£æã«ãã匷調ã®äŸãäžã«èšãã匷調ãããèªå¥,ç¯ãªã©ã¯ã€ã¿ãªãã¯ã§è¡šèšããã
æåŸã®æã¯ãåè£æã䜿ããã«æžããšãThe key to success is will power.(æåã®éµã¯æå¿åã§ãã)
åŸè¿°ã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "æ§æ:ããã§ã¯äž»ãªæ§æãåæããŸãã詳ããã¯ããããã®æ§æã®ããŒãžãèŠãŠãã ããã",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "å¡äŸ(説æãç°¡ç¥åãããã以äžã®èšå·ãçšããã",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "è±èªã®æ§æã®åºæ¬ã¯ ãäž»èª+åè©ãã®çµã¿åããã§ãã æé ã«äž»èªããã®æ¬¡ã«è¿°èªãšãªãåè©ãæ¥ãŸãã æ¥æ¬ã§ã®é«çåŠæ ¡ã§ã¯äŒçµ±çã«åºæ¬5æåãšãã5ã€ã®è±æã®åãç¿ããŸãããªããSV,SVC,SVO,SVOO,SVOCã®5ã€ã«SVA,SVOAã®2ã€ãå ãã7æåã«åé¡ããããšããç«å ŽããããŸããããã§ãAã¯å Žæãªã©ãè¡šãå¯è©å¥ã§ãã",
"title": "5æå"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "S+V:",
"title": "5æå"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "å¯è©å¥Mã䌎ããSVMã®åœ¢ã§äœ¿ãããããšãå€ãã",
"title": "5æå"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "S+V+C:",
"title": "5æå"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "äž»èª+beåè©+ åè©/代åè©/圢容è©",
"title": "5æå"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "äž»èª+beåè©ä»¥å€ã®åè©+åè©/圢容è©",
"title": "5æå"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "S+V+O: Oã¯ç®çèªãšãããåäœã®å¯Ÿè±¡ãè¡šããŸããç®çèªãšãªãããã®ã¯ãåè©(Noun)ããã³ããã«ä»£ãããããã®ã§ã代åè©(Pronoun),ååè©,toäžå®è©(to-infinitive),thatç¯(that-clause),wh-ç¯ãªã©ã§ãã ãã®æåããšãåè©ãå®å
šä»åè©ãšãããŸãã",
"title": "5æå"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "äž»èª+åè©+åè©/代åè©",
"title": "5æå"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "äž»èª+åè©+ååè©/toäžå®è©/wh- + toäžå®è©/thatç¯",
"title": "5æå"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "äž»èª+åè©+wh-ç¯",
"title": "5æå"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "S+V+iO+dO:",
"title": "5æå"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "ä»æ¥ã®é«çåŠæ ¡ã«ãããè±ææ³ã§ã¯ãåè©ã代åè©ã«ã¯äž»æ Œã»æææ Œã»ç®çæ Œã®3ã€ã®æ Œããããšç¿ãã",
"title": "5æå"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "æŽå²çã«ã¯ç®çæ Œã¯æŽã«2ã€ã®æ Œã«åãããã~ããã«ããããã®ã¯å¯Ÿæ Œãã~ã«ãã«ããããã®ã¯èæ Œ(äžæ Œ)ãšããã éæ¥ç®çèªiOã¯èæ Œãè¡šããçŽæ¥ç®çèªdOã¯å¯Ÿæ Œãè¡šãã ãã®æåããšãåè©ãæäžåè©ãšããã",
"title": "5æå"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "ãªããaskã¯çŽæ¥ç®çèªãäºéã«åãåè©ã§ãããæäžåè©ã§ã¯ãªããšãããã",
"title": "5æå"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "äž»èª+åè©+éæ¥ç®çèª+ åè©/代åè©",
"title": "5æå"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "äž»èª+åè©+éæ¥ç®çèª+çåè©(what, howãªã©)toäžå®è©",
"title": "5æå"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "äž»èª+åè©+éæ¥ç®çèª+åè©ç¯",
"title": "5æå"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "第4æåã®æã¯ãäžæ Œãto + nounãããã¯for + nounã«ãã£ãŠè¡šãããšã«ãã£ãŠã第3æåã«æžãæããããšãå¯èœã ãšããã",
"title": "5æå"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "toãšforã®ã©ã¡ããçšãããã¯ãåè©ã«ãã£ãŠæ±ºãŸã£ãŠãããã®ãšããŠãã»ã©åé¡ã¯çããªãããã~ã«å¯ŸããŠããšããæ°æã¡ã§ã¯to,ã~ã®ããã«/~ã«ä»£ãã£ãŠããšããæ°æã¡ã§ã¯forã䜿ããããããšãã°ãäžã®2ã€ã®äŸæã®ãã¡ãåŸè
ã¯ã~ã®ããã«ããšããæ°æã¡ã§äœ¿ãããŠãããšèããããããã®ãããªäžæ Œã®äœ¿ããæ¹ããæŽå²çã«ã¯å©çã®äžæ Œãšããã ãªããSVOOã®æãšSVO to Oã®æã¯å
šãåãæå³ãªã®ããšããã°ãããã§ã¯ãªããçžæã«ãšã£ãŠæ°æ
å ±ã§ããæ
å ±ããç¹ã«çŠç¹ãããããæ
å ±ã®å Žåã¯ææ«ã«çœ®ãããåŸåã«ããã®ã§ã2ã€ã®ç®çèªã®ãã¡ãã©ã¡ããæ°æ
å ±ã§ãã©ã¡ãã«éç¹ããããŠè©±ãã®ããèããé©åãªæ§æãéžã¶ã¹ãã§ããã",
"title": "5æå"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "ãŸããS V iO dOã¯ãdOãiOã®æã«æž¡ã£ãããšãŸã§å«æããäžæ¹ã§ãS V O to Nounã«ã¯ãã®ãããªæå³ã¯å«ãŸããªãã",
"title": "5æå"
},
{
"paragraph_id": 22,
"tag": "p",
"text": "S+V+O+C: ãã®æåã«ãããè£èªã¯ãç®çèªã®ç¶æ
ãè¡šãã®ã§ãç®çæ Œè£èªãšåŒã°ããã O+Cã®éšåã ããO+é£çµåè©(linking verb:be,seem,appearãªã©)+CãæãšããŠæå³ãæããäŸãã°ãThey named their first baby William.ã§ããã°ãTheir first baby is William.ãæãç«ã€ã SVOCã®æã¯ãã€ãŸããOCã®éšåã«é£çµåè©ãè±èœãã第2æåãçµã¿èŸŒãŸããŠãããšèããããã",
"title": "5æå"
},
{
"paragraph_id": 23,
"tag": "p",
"text": "äž»èª+åè©+ç®çèª+ åè©",
"title": "5æå"
},
{
"paragraph_id": 24,
"tag": "p",
"text": "äž»èª+åè©+ç®çèª+ 圢容è©",
"title": "5æå"
},
{
"paragraph_id": 25,
"tag": "p",
"text": "äž»èª+åè©+ç®çèª+å¯è©",
"title": "5æå"
},
{
"paragraph_id": 26,
"tag": "p",
"text": "åŠå®ã¯ãæåŠå®ãšèªå¥åŠå®ãå
šäœåŠå®ãšéšååŠå®ãªã©ãšåããããšãã§ããã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 27,
"tag": "p",
"text": "æåŠå® beåè©ãããã¯å©åè©ã®çŽåŸã«åŠå®ãè¡šãå¯è©notãããã«æºãããã®(hardlyãªã©)ãæ¿å
¥ããããšã§æå
šäœãåŠå®ããæãã§ãããå©åè©ãå«ãŸãªãäžè¬åè©ã®æã¯ãåè©ã®åã«å©åè©doãè£ã£ãŠããããã®çŽåŸã«notãšç¶ããã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 28,
"tag": "p",
"text": "ãŸããã¢ãã¹ãããã£(')ã䜿ãããšã§\"~ not\"ã\"~n't\"ãšçç¥ããããšãå¯èœã§ãã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 29,
"tag": "p",
"text": "ãã ããwill notã¯willn'tã§ã¯ãªãwon'tãshall notã¯shan'tã§ããããŸããamn'tãšã¯ãããªãããšã«æ³šæããããã(ã©ãããŠãam notãçž®ãããå Žåã¯ãaren'tã§ä»£çšããããain'tãšãã)",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 30,
"tag": "p",
"text": "æ§æã¯è¯å®çã§ããäž»èªãç®çèªã«åŠå®çãªèªãå
¥ããããšã§ãåŠå®æãäœãããšãã§ããŸãã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 31,
"tag": "p",
"text": "èªå¥åŠå® åŠå®ãããèªå¥(ãããã¯ç¯)ã®çŽåã«notã眮ãããšã«ããããã®èªå¥ãåŠå®ããããšãã§ããã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 32,
"tag": "p",
"text": "è«ççã«é©åãªäœçœ®ããä»ã®å Žæãžnotã移åããçŸè±¡ãããããããnotã®è»¢ç§»ãšããããäžã«äŸãæããã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 33,
"tag": "p",
"text": "ãã®2ã€ã®æã¯ãè«ççã«ã¯æ¬¡ã®ããã«æžããæ¹ãæ£ããã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 34,
"tag": "p",
"text": "ãªããªãã°ãI don't wantã®å Žåã¯ãå®éã«ã¯ã~ããªãããšãæããããã§ãããI don't thinkã®å Žåã¯ã~ã§ãªããšèããŠãããããã§ããã ã²ãã£ãšããããã³ãšããªãããç¥ããªãããã©ã¡ãã\"é¡ã£ãŠãã\"ããšã\"èããŠãã\"ããšã¯äºå®ã§ããã ãã ããã®é¡ã£ãŠããããšãèããŠããããšã®å
容ãåŠå®çãªã®ã§ããã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 35,
"tag": "p",
"text": "ãã®2äŸã®å Žåã¯ãnotã®è»¢ç§»ãæèããã«èš³ããŠã解éã«æ··ä¹±ãçããããšã¯ãªãã ãããã次ã®äŸã®å Žåã¯ã2éãã®è§£éãååšããæèãããã¯é³å£°ã«ãã匷å¢æãã«ã¯ãã©ã¡ããæ£ãããšããããªãã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 36,
"tag": "p",
"text": "ããã¯ãnot becauseã®notã転移ããå¯èœæ§ãèæ
®ãã次ã®2éãã®è§£éãããããã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 37,
"tag": "p",
"text": "It+åè©+~(+for~)+toäžå®è©",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 38,
"tag": "p",
"text": "There+beåè©+~",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 39,
"tag": "p",
"text": "There+beåè©ã¯ååšæãšãããçžæã«ãšã£ãŠã®æ°æ
å ±ã§ããç©ã人ã®ååšãç¥ãããã®ã«çšããããŸããäž»èªã¯beåè©ã®åŸãã«æ¥ãã®ã§ãäž»èªã¯åžžã«äžäººç§°ã§ããããããã«ãåæ°ã®ãã®ã®ååšã¯There is~ãè€æ°ã®ãã®ã®ååšã¯There are~ã§è¡šããŸããä»ã«ããéå»ã«ã€ããŠè¿°ã¹ãã®ã§ããã°ãThere was[were]~ ãThere used to be~ãšãªããŸãã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 40,
"tag": "p",
"text": "there is ã®ç瞮圢ã¯there'sã§ãthere are ã®ç瞮圢ã¯there'reã§ãã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 41,
"tag": "p",
"text": "ãªããçžæã«ãšã£ãŠã®æ°æ
å ±ã§ãªããã°ãã®æ§æ(ååšæ)ã¯äœ¿ããŸããããã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 42,
"tag": "p",
"text": "ã®ãããªæã¯äœããŸããã(å®å è©ã¯æ°æ
å ±ãè¡šããªã)",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 43,
"tag": "p",
"text": "ifç¯(if clause)ã«ãã£ãŠæ¡ä»¶ãä»®å®ãè¡šãã çŸå®ã«åããä»®å®(åå®ä»®æ³)ãããå Žåã«çšããããæ³(Mood)ãä»®å®æ³ãšããããã以å€ã§ããã°çŽèª¬æ³ã§ããã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 44,
"tag": "p",
"text": "ããã¯ãåã«ãææ¥éšãéãããšããæ¡ä»¶ã®äžã§ã¯è²·ãç©ã«è¡ããªããšããæ¡ä»¶ã瀺ããã«éããŸããããããããä»®å®æ³ã§ã¯ãããŸãããä»æ¹ã§ã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 45,
"tag": "p",
"text": "ãã®æã¯ããç§ãããªãã§ããããšããããšãæãåŸãªããã€ãŸãã©ãèããŠãçŸå®ã«åããã®ã§ãä»®å®æ³ã«ãã£ãŠæãèµ·ãã£ãŠããŸãã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 46,
"tag": "p",
"text": "",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 47,
"tag": "p",
"text": "ifç¯ã®ä»ã«ãunlessããããŸããã»ãšãã©ã®å Žåã§ã¯ãunless㯠if ~ notãšåãæå³ã«ãªããŸãããå
šãéãæå³ã«è§£éãããå ŽåããããŸããifãæ¡ä»¶ãªã®ã«å¯ŸããŠãunlessã¯åŠå®ã®æ¡ä»¶ãšãããã\"é€å€\"ãšèšã£ãã»ããæ£ç¢ºããç¥ããŸããã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 48,
"tag": "p",
"text": "äžèšã®ãããªçç±ã«ãããunlessã¯å¿
ãããif notã§æžãæããããããã§ã¯ãããŸããã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 49,
"tag": "p",
"text": "æ¡ä»¶ã瀺ãå Žåãéåžžã«éèŠãªèŠåãšããŠã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 50,
"tag": "p",
"text": "ãšããèŠåããããŸãã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 51,
"tag": "p",
"text": "ããããæ¡ä»¶ãè¡šãç¯ã ãããæãè¡šãç¯ã ããããå¯è©ç¯ã§ãªãåè©ç¯ã§ããã°åé¡ãªãæªæ¥è¡šçŸã¯äœ¿ãããŸãã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 52,
"tag": "p",
"text": "åè©ç¯ãšããŠæ±ãããå Žåã¯ãifã¯ã~ãã©ããããwhenã¯ããã€~ããã®ã(ãšããããš)ããšããæå³ã«ãªããŸãã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 53,
"tag": "p",
"text": "ãŸããå
ã»ã©ã®èŠåã¯ã次ã®ãããªå Žåã«ãã£ããªãç ŽããŸãã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 54,
"tag": "p",
"text": "ãŸãã1)ã®å ŽåããèŠãŸãã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 55,
"tag": "p",
"text": "ãã®æã§ã®willã¯äž»èªã®ææãè¡šãæææªæ¥ã§ããããå
ã»ã©ã®èŠåã¯é©çšãããŸããã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 56,
"tag": "p",
"text": "次ã«2)ã®å ŽåãèŠãŸãããã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 57,
"tag": "p",
"text": "(人質解æŸã«ç¹ãããã ã£ããã圌ã¯100äžãã«ã§ãã身代éãæ¯æãã ãã) ãã®æã®å Žåã¯ãäž»ç¯(he will ~)ããŸãèµ·ããããšã«ãã£ãŠããã®åŸã«äººè³ªè§£æŸãšããåºæ¥äºãèµ·ããã®ã§ãå
ã»ã©ã®èŠåãé©çšãããªãããã§ãã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 58,
"tag": "p",
"text": "",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 59,
"tag": "p",
"text": "çŸåšãäžå¿ãšããããšã«å¯Ÿããåå®ä»®æ³ã¯ä»®å®æ³éå»ã§è¡šãã ããšãã°ãI am in your position.ãä»®æ³ããå Žåãªã©ã åå®ä»®æ³ãªã®ã§ãçŸå®ã«åããŠããããšã倧åæã äžçªç°¡åãªåœ¢ãšããŠã¯ã If S V(éå»åœ¢) ~, S would[might/should/could] V(åå) ~.",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 60,
"tag": "p",
"text": "ãã®å Žåã¯ããå®éã«ã¯ããŒãã£ã«æ¥ãŠããªããããšãåæã«ãªããŸãã ä»ã«ãäŸãæããŸãã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 61,
"tag": "p",
"text": "ãã®æã¯ãäºã€ã®æç« ãé£çµãããŠããŸããã€ãŸããI had enough moneyã®æ¡ä»¶ãæºããããŠãããªãã°ãI could buy the new game.ã§ããã ããããšããä»®å®æ³ã®æã§ãã åœç¶ããã®ãããªæ¡ä»¶ãæºããããŠããªãããšãåæãšãªã£ãŠããŸãã ã€ãŸããçŸå®ã«ã¯ãããéãç¡ãã£ããããæ°ããã²ãŒã ã¯è²·ããªãã£ããããªã®ã§ãã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 62,
"tag": "p",
"text": "éèŠãªå®åè¡šçŸã«ã If it were not for ~, = ãããã~ããªãã£ããã ããããŸãã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 63,
"tag": "p",
"text": "ãã°ãã°ãwithout~ãBut for ~ã«ä»£çšãããŸãã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 64,
"tag": "p",
"text": "éå»ã«èµ·ãã£ãäºå®ã«åããä»®æ³ã»ä»®å®ãè¡šãå Žåã«ã¯ãä»®å®æ³éå»å®äºãçšããã åºæ¬çãªåœ¢ãšããŠã¯ã If S+had+P.P.~, S+would[should/might/could] have+P.P.~. ãšãªãã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 65,
"tag": "p",
"text": "å眮ãããšifãæ¶æ»
ããã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 66,
"tag": "p",
"text": "= Had it not been for your help, ~. = Without your help, ~. = But for your help, ~.",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 67,
"tag": "p",
"text": "äž»èª+tell,want,expectãªã©+ç®çèª+toäžå®è©",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 68,
"tag": "p",
"text": "make,let,have+ç®çèª+åè©ã®åå makeãletãªã©ã®èªã䜿ãããšã§ãä»äººãç©ã«åããããŠããåè©ã®å圢ãããããããšããæãäœãããšãã§ããŸãã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 69,
"tag": "p",
"text": "ããã¯åœä»€æã§ãæå¹ã§ããLet's~ã¯Let usã®çç¥åœ¢ã§ãçŽèš³ããã°ãæã
ã«~ãããããšãªããŸãããæ
£çšå¥ãªã®ã§ã~ãããããšèš³ãããŸãã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 70,
"tag": "p",
"text": "çåæã¯å©åè©ãæé ã«æã£ãŠããããšã§äœããŸããããããŠäœãããçåæã¯ãyes/noã§çããããçåæã§ããããšãããyes/no questionãããã¯äžè¬çåæãšãããŸãã beåè©ãçšããæã®å Žåã¯ãbeåè©ãæé ã«ç§»åããŸããæäžã«å©åè©ãå«ãŸãªãæã®å Žåã¯ãå©åè©do[does/did]ãæé ã«ãããŸãã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 71,
"tag": "p",
"text": "ãã®ä»ã«ããç¹æ®çåæ,ä»å çåæãªã©ããããŸãã ç¹æ®çåæã¯ãçåæã®æé ã«çåè©ãä»ããŸããçåè©ã¯æ¬¡ã®6çš®é¡ããããäžè¬çã«5W1HãšåŒã°ããŸãã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 72,
"tag": "p",
"text": "ãã®ä»",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 73,
"tag": "p",
"text": "Whatã¯ãäœããè¡šãçå代åè©/圢容è©ã§ããææ³çã«ã¯ä»£åè©/圢容è©ã®æ±ããšãªããŸãã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 74,
"tag": "p",
"text": "çå代åè©whatãè£èªã®å Žå",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 75,
"tag": "p",
"text": "çå代åè©whatãç®çèªã®å Žå",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 76,
"tag": "p",
"text": "çå代åè©whatãäž»èªã®å Žå",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 77,
"tag": "p",
"text": "çå圢容è©ãšããŠäœ¿ãå Žå",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 78,
"tag": "p",
"text": "What+åè©ã®åœ¢ã§äœ¿ããŸãã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 79,
"tag": "p",
"text": "Whoã¯ã誰ããè¡šãçå代åè©ã§ããWhatãç©äºã«å¯ŸããŠäœ¿ãããã®ã«å¯ŸããŠãWhoã¯äººç©ã«å¯ŸããŠäœ¿ããŸãã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 80,
"tag": "p",
"text": "whoãè£èªã®å Žå",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 81,
"tag": "p",
"text": "whoãç®çèªã®å Žå",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 82,
"tag": "p",
"text": "whomãšããçåè©ãååšãããããã»ã©formalãªè±èªä»¥å€ã§ã¯äœ¿ãããªãã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 83,
"tag": "p",
"text": "whoãäž»èªã®å Žå",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 84,
"tag": "p",
"text": "以äžã®ããã«ãé¢ä¿ä»£åè©whoã¯äž»æ Œã»ç®çæ Œã®ãããããšãããšãã§ãã(ãã ããformalãªè±èªã§ã¯ç®çæ Œã¯whomãšãã)ã®ã ããå±æ Œ(æææ Œ)ããšãããšã¯ã§ããªããwhoã®2æ Œ(å±æ Œ)ã¯whoseã§ãããæ¥æ¬èªã®ã誰ã®~ãã«å¯Ÿå¿ããã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 85,
"tag": "p",
"text": "Whereã¯ãã©ãããè¡šãåèªã§ããå Žæãå°ããã®ã«äœ¿ããŸãã çåå¯è©ã§ãããææ³çã«ã¯å¯è©ãšããŠæ±ãããŸãã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 86,
"tag": "p",
"text": "ææ³çã«ã¯å¯è©ã®æ±ãã§ãã®ã§ã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 87,
"tag": "p",
"text": "ã¯èª€æãšãªããŸãã(è¿çã\"It is åè©\"ã®åœ¢ã§ããã¹ããªã®ã§) ãã®å Žåã¯ãWhereãçå代åè©ã®Whatã«æããã¹ãã§ãã (æé ã®?ã¯ããã®æãäžèªç¶ããããã¯ææ³çã«èª€ã£ãæã§ããããšã瀺ããŠããŸãã)",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 88,
"tag": "p",
"text": "Whenã¯ããã€ããè¡šãçåå¯è©ã§ããæéãå°ããã®ã«äœ¿ããŸãã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 89,
"tag": "p",
"text": "Whyã¯ããªãããè¡šãçåå¯è©ã§ããçç±ãåãã®ã«äœ¿ãããŸãã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 90,
"tag": "p",
"text": "Howã¯ãã©ããã£ãŠ/ã©ã®ãããª/ã©ã®ãããããªã©ã®æå³ãè¡šãçåå¯è©ã§ããæ¹æ³ã»æ§æ
ã»çšåºŠãåãã®ã«äœ¿ãããŸãã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 91,
"tag": "p",
"text": "ãŸããæ°éãè¡šãåèªãªã©ãšçµã¿åãããããšã§ãéãèãããšãã§ããŸãã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 92,
"tag": "p",
"text": "Whichã¯ãã©ãããè¡šãçå代åè©ã§ããéžæè¢ãããããã®äžããéžã¶æã«äœ¿ããŸãã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 93,
"tag": "p",
"text": "ææ«ã«ã,å©åè©+äž»èª?ãä»å ããããšã«ãã£ãŠãã~ã§ããããããšãã確èªã®æå³ã®çåæãäœããã è¯å®æã«å¯ŸããŠã¯åŠå®åœ¢ã®å©åè©ããåŠå®æã«å¯ŸããŠã¯åŠå®åœ¢ã§ãªãå©åè©ãä»å ããã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 94,
"tag": "p",
"text": "ãã ããäžèŠè¯å®æã«èŠããŠãåŠå®ã®æå³ãè¡šãæããéã«äžèŠåŠå®æã ãè¯å®ã®æå³ãè¡šãæãããã®ã§æ³šæãããã ãªããä»å çåã¯ã以äžã®ãããªã~ã§ãããããšãã確èªã®æå³ã®çå以å€ã«ã誰ãã®èšèãç¹°ãè¿ãããã誰ãã®èšèããæšè«ããŠãã~ãšããããšã«ãªããŸããããšããçåãè¡šãããšãã§ãã(ç¹°ãè¿ãçå)ããã®å Žåã¯ã確èªçåã®å Žåãšã¯éã«ãåŠå®æã«å¯ŸããŠåŠå®åœ¢ã®å©åè©ãä»å ããã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 95,
"tag": "p",
"text": "",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 96,
"tag": "p",
"text": "åè©ã«ãã£ãŠæ修食ã®å¯è©å¥ãäœããæ¥ç¶è©+äž»èª+åè©~ãšåãåãããããæã®ããšã ããšãã°ã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 97,
"tag": "p",
"text": "ã¯ã次ã®åè©æ§æã«æžãæããããŸãã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 98,
"tag": "p",
"text": "",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 99,
"tag": "p",
"text": "conj.=æ¥ç¶è©, subj.=äž»èª, verb=åè©",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 100,
"tag": "p",
"text": "è€æ conj. + subj.1 + verb1 ~, subj.2 + verb2 ~. ãåè©æ§æã«æ¹ããå Žåã ãŸãã¯ãæ¥ç¶è©ãåããã€ã¥ããŠsubj.1ãšsubj.2ãäžèŽããŠããå Žåã¯subj.1ãåããæåŸã«ãverb1ãåè©ã«æžãæãããšããæ©æ¢°çãªæç¶ãã«ãã£ãŠåè©æ§æãäœãããšãã§ããã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 101,
"tag": "p",
"text": "",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 102,
"tag": "p",
"text": "è€æ conj. + subj.1 + verb1 ~, subj.2 + verb2 ~. ã«ãããsubj.1ãšsubj.2ãäžèŽããªãå Žåã subj.1ã¯åãããã«æ®ãããšã«ãªãããã®ãšãæ®çããsubj.1ã¯åè©ã®æå³äžã®äž»èªã«ãªã£ãŠããããã®ãããªåè©æ§æã®ããšãç¬ç«åè©æ§æ(absolute participial construction)ãšããã Weather permitting(倩åãèš±ãã°)ã®ãããªæ±ºãŸãæå¥ãããã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 103,
"tag": "p",
"text": "æ
£çšäžãæå³äžã®äž»èªãçç¥ããæ
£çšå¥çãªåè©æ§æãããã代衚çãªãã®ãäžã«èšããåŸè¿°ã®æžååè©ãšã¯éããééã£ãçšæ³ã§ã¯ãªãã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 104,
"tag": "p",
"text": "generally speaking(å
šè¬çã«ã¯)",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 105,
"tag": "p",
"text": "strictly speaking(å³å¯ã«èšãã°)",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 106,
"tag": "p",
"text": "judging from ~(~ããå€æããã°)",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 107,
"tag": "p",
"text": "taking ~ into consideration(~ãèæ
®ã«å
¥ãããš)",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 108,
"tag": "p",
"text": "all things considered(ãã¹ãŠãèæ
®ãããš)",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 109,
"tag": "p",
"text": "speaking of ~(~ãšèšãã°) ãªã©",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 110,
"tag": "p",
"text": "æå³äžã®äž»èªãå¿
èŠã§ããã«ãé¢ãããæå³äžã®äž»èªã«æ¬ ãåè©ãæžååè©(dangling particle)ãšããã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 111,
"tag": "p",
"text": "äžã®æã®å Žåãåè©ã®æå³äžã®äž»èªã¯heã§ãããhis expressionã§ã¯ãªãã®ã§ãHe being in ~ã®æ¹ãé©åãªã®ã§ããããã®æå³äžã®äž»èªãæãèœã¡ãŠããŸã£ãŠããŸãã æžååè©ã¯ææ³çã«æ£ãããªãã®ã§çšãã¬ããã«ãã¹ãã ãšèšãããŠããã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 112,
"tag": "p",
"text": "æäžã®èª(Word), å¥(Phrase), ç¯(Clause)ã匷調ããããã«ã¯ããã€ãã®æ¹æ³ãããã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 113,
"tag": "p",
"text": "åäžã®èªå¥ãç¹°ãè¿ãããšã«ãã£ãŠåŒ·èª¿ããæ¹æ³ã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 114,
"tag": "p",
"text": "",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 115,
"tag": "p",
"text": "å©åè©do[does; did]ãåè©ã®çŽåã«çœ®ãããšã«ãã匷調ãè¡šãããã®å Žåãdo[does; did]ã«åŒ·å¢(stress)ã眮ãããã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 116,
"tag": "p",
"text": "",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 117,
"tag": "p",
"text": "çåè©ã匷調ããåã°æ±ºãŸãæå¥ãšãªã£ãŠããèªå¥ããããæ¥æ¬èªã«èš³ããšãäžäœå
šäœ~ããšãã£ãèš³ã«ãªãã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 118,
"tag": "p",
"text": "not ... at all, not ... in the leastãªã©ã§åŠå®ã®æå³ã匷調ã§ããã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 119,
"tag": "p",
"text": "ç¯ã®äžã®åŒ·èª¿ãããèª, å¥, ç¯ã匷調ããªãèŠçŽ ãšåããŠãé¢ä¿è©ãthatç¯ãªã©ã䜿ãåè£ãããæã®ããšã匷調ããèŠçŽ ãšãã以å€ãåè£ããããåè£æ(cleft sentence)ãšãããé«æ ¡ã§ç¿ãIt is[was]+匷調ãããèŠçŽ +that~ã¯ãã®åè£æã®äžçš®ã§ãããåè£æã«ãã匷調ã®äŸãäžã«èšãã匷調ãããèªå¥,ç¯ãªã©ã¯ã€ã¿ãªãã¯ã§è¡šèšããã",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 120,
"tag": "p",
"text": "æåŸã®æã¯ãåè£æã䜿ããã«æžããšãThe key to success is will power.(æåã®éµã¯æå¿åã§ãã)",
"title": "è²ã
ãªæ§æ"
},
{
"paragraph_id": 121,
"tag": "p",
"text": "åŸè¿°ã",
"title": "è²ã
ãªæ§æ"
}
] | æ§æïŒããã§ã¯äž»ãªæ§æãåæããŸãã詳ããã¯ããããã®æ§æã®ããŒãžãèŠãŠãã ããã å¡äŸïŒèª¬æãç°¡ç¥åãããã以äžã®èšå·ãçšããã | '''æ§æ'''ïŒããã§ã¯äž»ãªæ§æãåæããŸãã詳ããã¯ããããã®æ§æã®ããŒãžãèŠãŠãã ããã
å¡äŸïŒèª¬æãç°¡ç¥åãããã以äžã®èšå·ãçšããã
{| border="0" cellpadding="10"
|-align=center
|bgcolor=#ff8080|SïŒäž»èªïŒSubjectïŒ
|bgcolor=#cccccc|VïŒåè©ïŒVerbïŒ
|bgcolor=#ccffcc|OïŒç®çèªïŒObjectïŒ
|bgcolor=#ffff99|CïŒè£èªïŒComplementïŒ
|bgcolor=#eeeeee|ïŒããïŒïŒå¯è©ãå¯è©å¥ãªã©
|}
==5æå==
è±èªã®æ§æã®åºæ¬ã¯ããäž»èªïŒåè©ãã®çµã¿åããã§ããã
æé ã«äž»èªããã®æ¬¡ã«è¿°èªãšãªãåè©ãæ¥ãŸãã
æ¥æ¬ã§ã®é«çåŠæ ¡ã§ã¯äŒçµ±çã«åºæ¬ïŒæåãšããïŒã€ã®è±æã®åãç¿ããŸãããªããSV,SVC,SVO,SVOO,SVOCã®ïŒã€ã«SVA,SVOAã®ïŒã€ãå ããïŒæåã«åé¡ããããšããç«å ŽããããŸããããã§ãAã¯å Žæãªã©ãè¡šãå¯è©å¥ã§ãã
===äž»èªïŒåè©===
[[SïŒV]]ïŒ
{| border="0" cellpadding="10"
|-align=center
|bgcolor=#ff8080|äž»èª
|bgcolor=#cccccc|åè©
|}
å¯è©å¥Mã䌎ããSVMã®åœ¢ã§äœ¿ãããããšãå€ãã
* I walk.ïŒç§ã¯æ©ãïŒ
* He always goes to school on foot.ïŒåœŒã¯æ¯æ¥åŸæ©ã§åŠæ ¡ã«è¡ãïŒ
* Buddhism spread to China from India.ïŒä»æã¯ã€ã³ãããäžåœã«åºãŸã£ãïŒ
* The plate broke into pieces.ïŒç¿ã¯ç²ã
ã«å²ããïŒ
===äž»èªïŒåè©ïŒè£èª===
[[SïŒVïŒC]]ïŒ
äž»èªïŒbeåè©ïŒ åè©/代åè©/圢容è©
* I am Alice.ïŒç§ã¯ã¢ãªã¹ã§ãïŒ
* I am happy. ïŒç§ã¯å¹žãã§ãïŒ
äž»èªïŒbeåè©ä»¥å€ã®åè©ïŒåè©/圢容è©
* It sounds nice.
* I feel happy.
===äž»èªïŒåè©ïŒç®çèª===
[[SïŒVïŒO]]ïŒ
Oã¯ç®çèªãšãããåäœã®å¯Ÿè±¡ãè¡šããŸããç®çèªãšãªãããã®ã¯ãåè©(Noun)ããã³ããã«ä»£ãããããã®ã§ã代åè©(Pronoun),ååè©,toäžå®è©(to-infinitive),thatç¯(that-clause),wh-ç¯ãªã©ã§ãã
ãã®æåããšãåè©ãå®å
šä»åè©ãšãããŸãã
äž»èªïŒåè©ïŒåè©/代åè©
* I eat bread.ïŒç§ã¯ãã³ãé£ã¹ãïŒ
äž»èªïŒåè©ïŒååè©/toäžå®è©/wh- + toäžå®è©/thatç¯
* I like singing.ïŒç§ã¯æãããšã奜ãïŒ
* I like there to be a large audience.
* I don't know which way to choose.
* I don't know how to operate this device.
* We know that the earth goes around the sun.
äž»èªïŒåè©ïŒwh-ç¯
* Please tell me when she will come.
===äž»èªïŒåè©ïŒéæ¥ç®çèªïŒçŽæ¥ç®çèª===
[[SïŒVïŒiOïŒdO]]ïŒ
ä»æ¥ã®é«çåŠæ ¡ã«ãããè±ææ³ã§ã¯ãåè©ã代åè©ã«ã¯'''äž»æ Œã»æææ Œã»ç®çæ Œ'''ã®ïŒã€ã®æ Œããããšç¿ãã
æŽå²çã«ã¯ç®çæ Œã¯æŽã«ïŒã€ã®æ Œã«åããããïœããã«ããããã®ã¯'''å¯Ÿæ Œ'''ããïœã«ãã«ããããã®ã¯'''èæ Œ'''('''äžæ Œ''')ãšããã
'''éæ¥ç®çèª'''iOã¯'''èæ Œ'''ãè¡šãã'''çŽæ¥ç®çèª'''dOã¯'''å¯Ÿæ Œ'''ãè¡šãã
ãã®æåããšãåè©ãæäžåè©ãšããã
ãªããaskã¯çŽæ¥ç®çèªãäºéã«åãåè©ã§ãããæäžåè©ã§ã¯ãªããšãããã
äž»èªïŒåè©ïŒéæ¥ç®çèªïŒ åè©/代åè©
*You make me a fool.
*Let me buy you a drink.
*I'll give you some money.
äž»èªïŒåè©ïŒéæ¥ç®çèªïŒçåè©ïŒwhat, howãªã©ïŒtoäžå®è©
*He teaches her how to dance.ïŒåœŒã¯åœŒå¥³ã«ãã³ã¹ã®ä»æ¹ãæããïŒ
äž»èªïŒåè©ïŒéæ¥ç®çèªïŒåè©ç¯
*My teacher taught us that the earth goes around the sun.
*Please tell me when she comes home.
第ïŒæåã®æã¯ãäžæ Œãto + nounãããã¯for + nounã«ãã£ãŠè¡šãããšã«ãã£ãŠã第ïŒæåã«æžãæããããšãå¯èœã ãšããã
* My father gave me a watch.ãâ My father gave a watch to me.
* She baked me cookies.ãâ She baked cookies for me.
toãšforã®ã©ã¡ããçšãããã¯ãåè©ã«ãã£ãŠæ±ºãŸã£ãŠãããã®ãšããŠãã»ã©åé¡ã¯çããªããããïœã«å¯ŸããŠããšããæ°æã¡ã§ã¯to,ãïœã®ããã«/ïœã«ä»£ãã£ãŠããšããæ°æã¡ã§ã¯forã䜿ããããããšãã°ãäžã®ïŒã€ã®äŸæã®ãã¡ãåŸè
ã¯ãïœã®ããã«ããšããæ°æã¡ã§äœ¿ãããŠãããšèããããããã®ãããªäžæ Œã®äœ¿ããæ¹ããæŽå²çã«ã¯'''å©çã®äžæ Œ'''ãšããã
ãªããSVOOã®æãšSVO to Oã®æã¯å
šãåãæå³ãªã®ããšããã°ãããã§ã¯ãªããçžæã«ãšã£ãŠæ°æ
å ±ã§ããæ
å ±ããç¹ã«çŠç¹ãããããæ
å ±ã®å Žåã¯ææ«ã«çœ®ãããåŸåã«ããã®ã§ãïŒã€ã®ç®çèªã®ãã¡ãã©ã¡ããæ°æ
å ±ã§ãã©ã¡ãã«éç¹ããããŠè©±ãã®ããèããé©åãªæ§æãéžã¶ã¹ãã§ããã
* What did your father give you? -My father gave me a watch. â
* What did your father give you? -My father gave a watch to me. Ã
ãŸããS V iO dOã¯ãdOãiOã®æã«æž¡ã£ãããšãŸã§å«æããäžæ¹ã§ãS V O to Nounã«ã¯ãã®ãããªæå³ã¯å«ãŸããªãã
===äž»èªïŒåè©ïŒç®çèªïŒè£èª===
[[SïŒVïŒOïŒC]]ïŒ
ãã®æåã«ãããè£èªã¯ãç®çèªã®ç¶æ
ãè¡šãã®ã§ãç®çæ Œè£èªãšåŒã°ããã
OïŒCã®éšåã ããOïŒé£çµåè©(linking verb:be,seem,appearãªã©)ïŒCãæãšããŠæå³ãæããäŸãã°ãThey named their first baby William.ã§ããã°ãTheir first baby ''is'' William.ãæãç«ã€ã
SVOCã®æã¯ãã€ãŸããOCã®éšåã«é£çµåè©ãè±èœãã第ïŒæåãçµã¿èŸŒãŸããŠãããšèããããã
äž»èªïŒåè©ïŒç®çèªïŒ åè©
*They made him president.
*My parents made me what I am.
äž»èªïŒåè©ïŒç®çèªïŒ 圢容è©
*I'll make you happy.
*Please leave the door open.
*You should keep your room clean.
äž»èªïŒåè©ïŒç®çèªïŒå¯è©
*I left a key on the table.
==è²ã
ãªæ§æ==
===åŠå®(negation)===
åŠå®ã¯ãæåŠå®ãšèªå¥åŠå®ãå
šäœåŠå®ãšéšååŠå®ãªã©ãšåããããšãã§ããã
====æåŠå®ãšèªå¥åŠå®====
'''æåŠå®'''
beåè©ãããã¯å©åè©ã®çŽåŸã«åŠå®ãè¡šãå¯è©notãããã«æºãããã®(hardlyãªã©)ãæ¿å
¥ããããšã§æå
šäœãåŠå®ããæãã§ãããå©åè©ãå«ãŸãªãäžè¬åè©ã®æã¯ãåè©ã®åã«å©åè©doãè£ã£ãŠããããã®çŽåŸã«notãšç¶ããã
* I am ''not'' angry.ïŒç§ã¯æã£ãŠããŸããïŒ
* I do not know that.ïŒããã¯ç¥ããªãã£ãïŒ
* I do not have a good pen.ïŒç§ã¯ãããã³ãæã£ãŠããªãïŒ
* I cannot swim.ïŒç§ã¯æ³³ããªãïŒ
ãŸããã¢ãã¹ãããã£(')ã䜿ãããšã§"ïœ not"ã"ïœn't"ãšçç¥ããããšãå¯èœã§ãã
* I don't like this book.ïŒãã®æ¬ã¯å¥œããããªãïŒ
* I can't believe it.ïŒä¿¡ããããªãïŒ
ãã ããwill notã¯willn'tã§ã¯ãªãwon'tãshall notã¯shan'tã§ããããŸããamn'tãšã¯ãããªãããšã«æ³šæããããã(ã©ãããŠãam notãçž®ãããå Žåã¯ãaren'tã§ä»£çšããããain'tãšãã)
æ§æã¯è¯å®çã§ããäž»èªãç®çèªã«åŠå®çãªèªãå
¥ããããšã§ãåŠå®æãäœãããšãã§ããŸãã
* I have no money.ïŒç§ã¯ãéãæã£ãŠããªãïŒ
* There is nothing.ïŒããã«ã¯äœããªãïŒ
* No one can do it.ïŒèª°ã«ãã§ããªãïŒ
'''èªå¥åŠå®'''
åŠå®ãããèªå¥(ãããã¯ç¯)ã®çŽåã«notã眮ãããšã«ããããã®èªå¥ãåŠå®ããããšãã§ããã
* I married her not because she was rich.(richã ãããšããããã§ã¯ãªããã)
* Be careful not to fall.
* Not everyone likes him.
====Notã®è»¢ç§»====
è«ççã«é©åãªäœçœ®ããä»ã®å Žæãžnotã移åããçŸè±¡ãããããããnotã®è»¢ç§»ãšããããäžã«äŸãæããã
* I don't want to fall asleep.
* I don't think that he is honest.
ãã®ïŒã€ã®æã¯ãè«ççã«ã¯æ¬¡ã®ããã«æžããæ¹ãæ£ããã
* I want to not fall asleep.
* I think that he is not honest.
ãªããªãã°ãI don't wantã®å Žåã¯ãå®éã«ã¯ãïœããªãããšãæããããã§ãããI don't thinkã®å Žåã¯ãïœã§ãªããšèããŠãããããã§ããã
ã²ãã£ãšããããã³ãšããªãããç¥ããªãããã©ã¡ãã"é¡ã£ãŠãã"ããšã"èããŠãã"ããšã¯äºå®ã§ããã
ãã ããã®é¡ã£ãŠããããšãèããŠããããšã®å
容ãåŠå®çãªã®ã§ããã
ãã®ïŒäŸã®å Žåã¯ãnotã®è»¢ç§»ãæèããã«èš³ããŠã解éã«æ··ä¹±ãçããããšã¯ãªãã
ãããã次ã®äŸã®å Žåã¯ãïŒéãã®è§£éãååšããæèãããã¯é³å£°ã«ãã匷å¢æãã«ã¯ãã©ã¡ããæ£ãããšããããªãã
* I didn't marry George because he was rich.
ããã¯ãnot becauseã®notã転移ããå¯èœæ§ãèæ
®ãã次ã®ïŒéãã®è§£éãããããã
* I married George not because he was rich.(ãžã§ãŒãžãšçµå©ãããã圌ãéæã¡ã ã£ãããã§ã¯ãªã)
* I did not marry George. This is because he was rich.(ãžã§ãŒãžãéæã¡ã§ããããããçµå©ããªãã£ã)
===Itã仮䞻èªãšããæ§æ===
'''ItïŒåè©ïŒïœïŒïŒforïœïŒïŒtoäžå®è©'''
*äŸæ1ïŒIt makes me happy to play soccer.ïŒãµãã«ãŒãããããšã§ç§ã¯å¹žãã«ãªãïŒ
:ãã®ãšãã®'''Itã¯ã仮䞻èªããšãããtoäžå®è©ã®å
容ãæããItèªäœã¯æå³ã¯æãããïŒãããããšèš³ããŠã¯ãããªãïŒæ¥æ¬èªã«èš³ãéã¯toäžå®è©ãæå
šäœã®äž»èªãšæããŠèš³ãã'''äŸæ1ã§ã¯ãto play soccerã®éšåãæå
šäœã®äž»èªã®åããããŠããã®ã§ãäž»èªãããµãã«ãŒãããããšããšããã
*äŸæ2ïŒIt is easy for me to understand English.ïŒç§ã¯è±èªãç解ããããšãç°¡åã ïŒ
:äŸæ2ã®å®è³ªäžã®äž»èªã¯ãã¡ããItã§ã¯ãªãto understand Englishã§ããã'''å眮è©forïŒäººïŒorç©ïŒ ãtoäžå®è©ã®åã«ãããšããã®äºº(orç©)ã¯toäžå®è©ã«å¯Ÿããæå³äžã®äž»èªã«ãªãã'''ã€ãŸããäŸæ2ã®å Žåãfor以äžã®éšåã¯ãI understand EnglishïŒç§ã¯è±èªãç解ããïŒãšåæã§ããã
===ThereïŒbeåè©===
'''ThereïŒbeåè©ïŒïœ'''
'''ThereïŒbeåè©'''ã¯'''ååšæ'''ãšãããçžæã«ãšã£ãŠã®'''æ°æ
å ±'''ã§ããç©ã人ã®ååšãç¥ãããã®ã«çšããããŸããäž»èªã¯beåè©ã®åŸãã«æ¥ãã®ã§ãäž»èªã¯åžžã«äžäººç§°ã§ããããããã«ãåæ°ã®ãã®ã®ååšã¯There isïœãè€æ°ã®ãã®ã®ååšã¯There areïœã§è¡šããŸããä»ã«ããéå»ã«ã€ããŠè¿°ã¹ãã®ã§ããã°ãThere was[were]ïœ ãThere used to beïœãšãªããŸãã
*There is an apple.ïŒããããããïŒ
*There are some people.ïŒäœäººã人ãããïŒ
*There used to be a castle on the hill.
*There will be an answer.
there is ã®ç瞮圢ã¯there'sã§ãthere are ã®ç瞮圢ã¯there'reã§ãã
ãªããçžæã«ãšã£ãŠã®æ°æ
å ±ã§ãªããã°ãã®æ§æ(ååšæ)ã¯äœ¿ããŸããããã
*There is ''the'' apple on the table.
ã®ãããªæã¯äœããŸããã(å®å è©ã¯æ°æ
å ±ãè¡šããªã)
===æ¯èŒæ§æ===
===æ¡ä»¶ã»ä»®å®===
ifç¯(if clause)ã«ãã£ãŠæ¡ä»¶ãä»®å®ãè¡šãã
çŸå®ã«åããä»®å®(åå®ä»®æ³)ãããå Žåã«çšããããæ³(Mood)ãä»®å®æ³ãšããããã以å€ã§ããã°çŽèª¬æ³ã§ããã
* If it rains tomorrow, I won't go shopping.
ããã¯ãåã«ãææ¥éšãéãããšããæ¡ä»¶ã®äžã§ã¯è²·ãç©ã«è¡ããªããšããæ¡ä»¶ã瀺ããã«éããŸããããããããä»®å®æ³ã§ã¯ãããŸãããä»æ¹ã§ã
* If I were[was] you, I wouldn't do that.(ç§ãããªãã ã£ããããããªãµãã«ã¯ããªãã®ã«ã)
ãã®æã¯ããç§ãããªãã§ããããšããããšãæãåŸãªããã€ãŸãã©ãèããŠãçŸå®ã«åããã®ã§ãä»®å®æ³ã«ãã£ãŠæãèµ·ãã£ãŠããŸãã
====çŽèª¬æ³ã«ãããŠæ¡ä»¶ã瀺ã====
ifç¯ã®ä»ã«ãunlessããããŸããã»ãšãã©ã®å Žåã§ã¯ãunless㯠if ïœ notãšåãæå³ã«ãªããŸãããå
šãéãæå³ã«è§£éãããå ŽåããããŸããifãæ¡ä»¶ãªã®ã«å¯ŸããŠãunlessã¯åŠå®ã®æ¡ä»¶ãšãããã"é€å€"ãšèšã£ãã»ããæ£ç¢ºããç¥ããŸããã
* You may watch this film unless you are under 16.(16æ³ä»¥äžã§ããå Žåãé€ããŠããã®æ ç»ãèŠãŠãã)
* You may watch this film if you are not under 16.(16æ³ä»¥äžã§ãªãã®ã§ããã°ããã®æ ç»ãèŠãŠãã)
äžèšã®ãããªçç±ã«ãããunlessã¯å¿
ãããif notã§æžãæããããããã§ã¯ãããŸããã
æ¡ä»¶ã瀺ãå Žåãéåžžã«éèŠãªèŠåãšããŠã
æ¡ä»¶ã»æãè¡šãå¯è©ç¯å
ã§ã¯æªæ¥è¡šçŸã¯äœ¿ããçŸåšæå¶ã§ä»£çšãã
ãšããèŠåããããŸãã
* If it rains tomorrow, I won't go shopping.(åæ²)
* Please tell me when she comes back.
ããããæ¡ä»¶ãè¡šãç¯ã ãããæãè¡šãç¯ã ããããå¯è©ç¯ã§ãªãåè©ç¯ã§ããã°åé¡ãªãæªæ¥è¡šçŸã¯äœ¿ãããŸãã
* I'll study if it will rain tomorrow.(ææ¥éšãéããã©ããã調ã¹ãã€ããã )
* Please tell me when she will come back.(圌女ããã€æ»ãã®ããæããŠãã ãã)
åè©ç¯ãšããŠæ±ãããå Žåã¯ãifã¯ãïœãã©ããããwhenã¯ããã€ïœããã®ã(ãšããããš)ããšããæå³ã«ãªããŸãã
ãŸããå
ã»ã©ã®èŠåã¯ã次ã®ãããªå Žåã«ãã£ããªãç ŽããŸãã
1) åçŽæªæ¥ã§ã¯ãªãæææªæ¥ãè¡šãå Žå
2) äž»ç¯ã®åºæ¥äºã«ãã£ãŠifç¯å
ã®åºæ¥äºãåŒãèµ·ããããå Žå
ãŸãã1)ã®å ŽåããèŠãŸãã
* If you will study abroad, I'll help you.
ãã®æã§ã®willã¯äž»èªã®ææãè¡šãæææªæ¥ã§ããããå
ã»ã©ã®èŠåã¯é©çšãããŸããã
次ã«2)ã®å ŽåãèŠãŸãããã
* If it will lead to the release of the hostages, he will pay even one million dollars in ransom.
(人質解æŸã«ç¹ãããã ã£ããã圌ã¯100äžãã«ã§ãã身代éãæ¯æãã ãã)
ãã®æã®å Žåã¯ãäž»ç¯(he will ïœ)ããŸãèµ·ããããšã«ãã£ãŠããã®åŸã«äººè³ªè§£æŸãšããåºæ¥äºãèµ·ããã®ã§ãå
ã»ã©ã®èŠåãé©çšãããªãããã§ãã
====ä»®å®æ³(1) ä»®å®æ³éå»====
çŸåšãäžå¿ãšããããšã«å¯Ÿããåå®ä»®æ³ã¯ä»®å®æ³éå»ã§è¡šãã
ããšãã°ãI am in your position.ãä»®æ³ããå Žåãªã©ã
åå®ä»®æ³ãªã®ã§ã'''çŸå®ã«åããŠãã'''ããšã倧åæã
äžçªç°¡åãªåœ¢ãšããŠã¯ã
If S V(éå»åœ¢) ïœ, S would[might/should/could] V(åå) ïœ.
* If you came to the party, you would have a good time.
ãã®å Žåã¯ããå®éã«ã¯ããŒãã£ã«æ¥ãŠããªããããšãåæã«ãªããŸãã
ä»ã«ãäŸãæããŸãã
*If I had enough money, I could buy the new game.ïŒãããéããã£ãããæ°ããã²ãŒã ãè²·ããã®ã«ïŒ
ãã®æã¯ãäºã€ã®æç« ãé£çµãããŠããŸããã€ãŸããI had enough moneyã®æ¡ä»¶ãæºããããŠãããªãã°ãI could buy the new game.ã§ããã ããããšããä»®å®æ³ã®æã§ãã
åœç¶ããã®ãããªæ¡ä»¶ãæºããããŠããªãããšãåæãšãªã£ãŠããŸãã
ã€ãŸããçŸå®ã«ã¯ãããéãç¡ãã£ããããæ°ããã²ãŒã ã¯è²·ããªãã£ããããªã®ã§ãã
éèŠãªå®åè¡šçŸã«ã
If it were not for ïœ, ïŒ ããããïœããªãã£ããã
ããããŸãã
* If it were not for water, no living thing could live.
ãã°ãã°ãwithoutïœãBut for ïœã«ä»£çšãããŸãã
* Without water,ïœ
* But for water,ïœ
====ä»®å®æ³(2) ä»®å®æ³éå»å®äº====
éå»ã«èµ·ãã£ãäºå®ã«åããä»®æ³ã»ä»®å®ãè¡šãå Žåã«ã¯ãä»®å®æ³éå»å®äºãçšããã
åºæ¬çãªåœ¢ãšããŠã¯ã
If S+had+P.P.ïœ, S+would[should/might/could] have+P.P.ïœ.
ãšãªãã
* If you had come to the party, you would have a good time.
å眮ãããšifãæ¶æ»
ããã
* Had you come to the party, you would have a good time.
* If it had not been for your help, I couldn't have finished the work.
= Had it not been for your help, ïœ.
= Without your help, ïœ. = But for your help, ïœ.
====ä»®å®æ³(3) ifç¯ã«ãããªãä»®å®====
===ç®çèªïŒtoäžå®è©===
äž»èªïŒtellïŒwantïŒexpectãªã©ïŒç®çèªïŒtoäžå®è©
===䜿圹æ§æ===
make,let,have+ç®çèª+åè©ã®åå
makeãletãªã©ã®èªã䜿ãããšã§ãä»äººãç©ã«åããããŠããåè©ã®å圢ãããããããšããæãäœãããšãã§ããŸãã
*I let him know.ïŒåœŒã«ç¥ãããïŒ
ããã¯åœä»€æã§ãæå¹ã§ããLet'sïœã¯Let usã®çç¥åœ¢ã§ãçŽèš³ããã°ãæã
ã«ïœãããããšãªããŸãããæ
£çšå¥ãªã®ã§ãïœãããããšèš³ãããŸãã
*Let's play tennis.ïŒããã¹ãããããïŒ
*Let me do it.ïŒç§ã«ãããŠäžãããïŒ
===çåæ===
====äžè¬çåæ(Yes/No question)====
çåæã¯å©åè©ãæé ã«æã£ãŠããããšã§äœããŸããããããŠäœãããçåæã¯ãyes/noã§çããããçåæã§ããããšãããyes/no questionãããã¯äžè¬çåæãšãããŸãã
beåè©ãçšããæã®å Žåã¯ãbeåè©ãæé ã«ç§»åããŸããæäžã«å©åè©ãå«ãŸãªãæã®å Žåã¯ãå©åè©do[does/did]ãæé ã«ãããŸãã
*Are you a student?
*Do you like coffee?
*Can you speak Japanese?
*Did you read my mail?
====ç¹æ®çåæ====
ãã®ä»ã«ããç¹æ®çåæ,ä»å çåæãªã©ããããŸãã
ç¹æ®çåæã¯ãçåæã®æé ã«çåè©ãä»ããŸããçåè©ã¯æ¬¡ã®6çš®é¡ããããäžè¬çã«5W1HãšåŒã°ããŸãã
*WhatïŒäœ/äœã®ïŒãããããçå代åè©/çå圢容è©
*WhoïŒèª°ã/誰ãïŒãããã çå代åè©
*WhereïŒã©ãã«[ã§/ãž]ïŒãçåå¯è©
*WhenïŒãã€ã«ïŒããããã çåå¯è©
*WhyïŒãªãïŒãããããããçåå¯è©
*HowïŒã©ããã£ãŠïŒããããçåå¯è©
ãã®ä»
*WhichïŒã©ãïŒ
*WhoseïŒèª°ã®ïŒ
=====çå代åè©/圢容è©what=====
Whatã¯ãäœããè¡šãçå代åè©/圢容è©ã§ããææ³çã«ã¯ä»£åè©/圢容è©ã®æ±ããšãªããŸãã
çå代åè©whatãè£èªã®å Žå
*What is that?ïŒããã¯äœïŒïŒ
*What are those?ïŒãããã¯äœã§ãããïŒ
çå代åè©whatãç®çèªã®å Žå
*What are you doing?ïŒäœãããŠããã®ïŒïŒ
*What does it mean?ïŒã©ãããæå³ïŒïŒ
*What can I do?ïŒäœãã§ããïŒïŒ
çå代åè©whatãäž»èªã®å Žå
*What made you think so?ïŒã©ãããŠããæãã®ããïŒ
çå圢容è©ãšããŠäœ¿ãå Žå
ãWhatïŒåè©ã®åœ¢ã§äœ¿ããŸãã
*What time is it?ïŒä»äœæïŒïŒ
*What sport[colour/season] do you like the best?ïŒã©ã®ã¹ããŒã[è²/å£ç¯]ãäžçªå¥œãã§ãããïŒ
=====çå代åè©who=====
Whoã¯ã誰ããè¡šãçå代åè©ã§ããWhatãç©äºã«å¯ŸããŠäœ¿ãããã®ã«å¯ŸããŠãWhoã¯äººç©ã«å¯ŸããŠäœ¿ããŸãã
whoãè£èªã®å Žå
*Who are you?ïŒããªãã¯èª°ïŒïŒ
*Who is it?
whoãç®çèªã®å Žå
ãwhomãšããçåè©ãååšãããããã»ã©formalãªè±èªä»¥å€ã§ã¯äœ¿ãããªãã
*Who did you send it to?
*Who do you work for?
*Who is she playing tennis with?
whoãäž»èªã®å Žå
*Who did it?ïŒèª°ãããïŒïŒ
以äžã®ããã«ãé¢ä¿ä»£åè©whoã¯äž»æ Œã»ç®çæ Œã®ãããããšãããšãã§ãã(ãã ããformalãªè±èªã§ã¯ç®çæ Œã¯whomãšãã)ã®ã ããå±æ Œ(æææ Œ)ããšãããšã¯ã§ããªããwhoã®ïŒæ Œ(å±æ Œ)ã¯whoseã§ãããæ¥æ¬èªã®ã誰ã®ïœãã«å¯Ÿå¿ããã
=====çåå¯è©where=====
Whereã¯ãã©ãããè¡šãåèªã§ããå Žæãå°ããã®ã«äœ¿ããŸãã
çåå¯è©ã§ãããææ³çã«ã¯å¯è©ãšããŠæ±ãããŸãã
*Where is my bag?ïŒç§ã®ããã°ã¯ã©ãïŒïŒ
*Where do you live?ïŒã©ãã«äœãã§ããã®ïŒïŒ
*Where are you going?ïŒã©ãã«è¡ãã®ïŒïŒ
ææ³çã«ã¯å¯è©ã®æ±ãã§ãã®ã§ã
*? ''Where'' is the capital of Japan?
ã¯èª€æãšãªããŸãã(è¿çã"It is åè©"ã®åœ¢ã§ããã¹ããªã®ã§)
ãã®å Žåã¯ãWhereãçå代åè©ã®Whatã«æããã¹ãã§ãã
(æé ã®?ã¯ããã®æãäžèªç¶ããããã¯ææ³çã«èª€ã£ãæã§ããããšã瀺ããŠããŸãã)
=====çåå¯è©when=====
Whenã¯ããã€ããè¡šãçåå¯è©ã§ããæéãå°ããã®ã«äœ¿ããŸãã
*When did you come to Japan?
*When will he leave for China?
=====çåå¯è©why=====
Whyã¯ããªãããè¡šãçåå¯è©ã§ããçç±ãåãã®ã«äœ¿ãããŸãã
*Why is that boy crying?
*Why didn't you send e-mail to me yesterday?
*Why do you want to go abroad?
=====çåå¯è©how=====
Howã¯ãã©ããã£ãŠ/ã©ã®ãããª/ã©ã®ãããããªã©ã®æå³ãè¡šãçåå¯è©ã§ããæ¹æ³ã»æ§æ
ã»çšåºŠãåãã®ã«äœ¿ãããŸãã
*How are you?
*How is the weather?
*How about tea?
*How do you go to school?
ãŸããæ°éãè¡šãåèªãªã©ãšçµã¿åãããããšã§ãéãèãããšãã§ããŸãã
*How many?
*How much?
=====çå代åè©which=====
Whichã¯ãã©ãããè¡šãçå代åè©ã§ããéžæè¢ãããããã®äžããéžã¶æã«äœ¿ããŸãã
*Which way to go to city hall?
*Which shoes do you like?
====ä»å çåæ(Tag question)====
ææ«ã«ã,å©åè©ïŒäž»èª?ãä»å ããããšã«ãã£ãŠããïœã§ããããããšãã確èªã®æå³ã®çåæãäœããã
è¯å®æã«å¯ŸããŠã¯åŠå®åœ¢ã®å©åè©ããåŠå®æã«å¯ŸããŠã¯åŠå®åœ¢ã§ãªãå©åè©ãä»å ããã
* You are a doctor, aren't you?
* You can see a myriad of stars, can't you?
* Your daughter will be sixteen next month, won't she?
* There isn't any light in that cave, is there?
ãã ããäžèŠè¯å®æã«èŠããŠãåŠå®ã®æå³ãè¡šãæããéã«äžèŠåŠå®æã ãè¯å®ã®æå³ãè¡šãæãããã®ã§æ³šæãããã
ãªããä»å çåã¯ã以äžã®ãããªãïœã§ãããããšãã確èªã®æå³ã®çå以å€ã«ã誰ãã®èšèãç¹°ãè¿ãããã誰ãã®èšèããæšè«ããŠããïœãšããããšã«ãªããŸããããšããçåãè¡šãããšãã§ãã(ç¹°ãè¿ãçå)ããã®å Žåã¯ã確èªçåã®å Žåãšã¯éã«ãåŠå®æã«å¯ŸããŠåŠå®åœ¢ã®å©åè©ãä»å ããã
===åè©æ§æ(Participial Construction)===
åè©ã«ãã£ãŠæ修食ã®å¯è©å¥ãäœããæ¥ç¶è©ïŒäž»èªïŒåè©ïœãšåãåãããããæã®ããšã
ããšãã°ã
* If you turn to the left, you will see the post office.
ã¯ã次ã®åè©æ§æã«æžãæããããŸãã
* Turning to the left, you will see the post office.
====åè©æ§æã®äœãæ¹====
''conj.''=æ¥ç¶è©, ''subj.''=äž»èª, ''verb''=åè©
è€æ ''conj.'' + ''subj.''1 + ''verb''1 ïœ, ''subj.''2 + ''verb''2 ïœ. ãåè©æ§æã«æ¹ããå Žåã
ãŸãã¯ãæ¥ç¶è©ãåããã€ã¥ããŠsubj.1ãšsubj.2ãäžèŽããŠããå Žåã¯''subj.''1ãåããæåŸã«ã''verb''1ãåè©ã«æžãæãããšããæ©æ¢°çãªæç¶ãã«ãã£ãŠåè©æ§æãäœãããšãã§ããã
* While I was waiting for a bus, I was spoken to by a stranger. â Waiting for a bus, I was spoken to by a stranger.
====ç¬ç«åè©æ§æ(Absolute Participial Construction)====
è€æ ''conj.'' + ''subj.''1 + ''verb''1 ïœ, ''subj.''2 + ''verb''2 ïœ. ã«ããã''subj.''1ãš''subj.''2ãäžèŽããªãå Žåã
''subj.''1ã¯åãããã«æ®ãããšã«ãªãããã®ãšãæ®çãã''subj.''1ã¯åè©ã®æå³äžã®äž»èªã«ãªã£ãŠããããã®ãããªåè©æ§æã®ããšã'''ç¬ç«åè©æ§æ'''(absolute participial construction)ãšããã
Weather permitting(倩åãèš±ãã°)ã®ãããªæ±ºãŸãæå¥ãããã
* It being very hot, I was reluctant to go to school.
æ
£çšäžãæå³äžã®äž»èªãçç¥ããæ
£çšå¥çãªåè©æ§æãããã代衚çãªãã®ãäžã«èšããåŸè¿°ã®æžååè©ãšã¯éããééã£ãçšæ³ã§ã¯ãªãã
generally speakingïŒå
šè¬çã«ã¯ïŒ
strictly speakingïŒå³å¯ã«èšãã°ïŒ
judging from ïœïŒïœããå€æããã°ïŒ
taking ïœ into considerationïŒïœãèæ
®ã«å
¥ãããšïŒ
all things consideredïŒãã¹ãŠãèæ
®ãããšïŒ
speaking of ïœïŒïœãšèšãã°ïŒããªã©
====æžååè©(Dangling Participle)====
æå³äžã®äž»èªãå¿
èŠã§ããã«ãé¢ãããæå³äžã®äž»èªã«æ¬ ãåè©ã'''æžååè©'''(dangling particle)ãšããã
* Being in times of trouble, his expression was bitter.
äžã®æã®å Žåãåè©ã®æå³äžã®äž»èªã¯heã§ãããhis expressionã§ã¯ãªãã®ã§ãHe being in ïœã®æ¹ãé©åãªã®ã§ããããã®æå³äžã®äž»èªãæãèœã¡ãŠããŸã£ãŠããŸãã
æžååè©ã¯ææ³çã«æ£ãããªãã®ã§çšãã¬ããã«ãã¹ãã ãšèšãããŠããã
===匷調æ§æ===
æäžã®èª(Word), å¥(Phrase), ç¯(Clause)ã匷調ããããã«ã¯ããã€ãã®æ¹æ³ãããã
====èªå¥ã«ãã匷調====
=====ç¹°ãè¿ãã«ãã匷調=====
åäžã®èªå¥ãç¹°ãè¿ãããšã«ãã£ãŠåŒ·èª¿ããæ¹æ³ã
* It grows '''colder and colder'''.
* I tried to persuade him into studying '''over and over again'''.
=====å©åè©doã«ãã匷調=====
å©åè©do[does; did]ãåè©ã®çŽåã«çœ®ãããšã«ãã匷調ãè¡šãããã®å Žåãdo[does; did]ã«åŒ·å¢(stress)ã眮ãããã
*He said he would come, and he '''did''' come.
=====çåè©ã®åŒ·èª¿=====
çåè©ã匷調ããåã°æ±ºãŸãæå¥ãšãªã£ãŠããèªå¥ããããæ¥æ¬èªã«èš³ããšãäžäœå
šäœïœããšãã£ãèš³ã«ãªãã
* Where '''on earth''' have you been?
* Who '''in the world''' did it?
* What '''the hell''' will happen?
=====åŠå®ã®æå³ã®åŒ·èª¿=====
not ⊠at all, not ⊠in the leastãªã©ã§åŠå®ã®æå³ã匷調ã§ããã
* I can'''not''' understand it '''at all'''.
* He is '''not in the least''' interested in Engilish literature.
====åè£æ(Cleft Sentence)====
ç¯ã®äžã®åŒ·èª¿ãããèª, å¥, ç¯ã匷調ããªãèŠçŽ ãšåããŠãé¢ä¿è©ãthatç¯ãªã©ã䜿ãåè£ãããæã®ããšã匷調ããèŠçŽ ãšãã以å€ãåè£ãããã'''åè£æ'''(cleft sentence)ãšãããé«æ ¡ã§ç¿ãIt is[was]ïŒåŒ·èª¿ãããèŠçŽ ïŒthatïœã¯ãã®åè£æã®äžçš®ã§ãããåè£æã«ãã匷調ã®äŸãäžã«èšãã匷調ãããèªå¥,ç¯ãªã©ã¯ã€ã¿ãªãã¯ã§è¡šèšããã
* '''It was''' John '''that[who]''' broke the window.(èªã®åŒ·èª¿)
* '''It was''' ''because he was rich'' '''that''' she didn't marry him.(ç¯ã®åŒ·èª¿)
* '''What holds''' ''the key to success'' is will power.
æåŸã®æã¯ãåè£æã䜿ããã«æžããšãThe key to success is will power.(æåã®éµã¯æå¿åã§ãã)
====å眮ã«ãã匷調====
åŸè¿°ã
[[ã«ããŽãª:è±èªææ³]] | null | 2022-11-22T17:24:50Z | [] | https://ja.wikibooks.org/wiki/%E8%8B%B1%E8%AA%9E/%E6%96%87%E6%B3%95/%E6%A7%8B%E6%96%87 |
1,704 | Perl/å€æ°ãããŒã¿æ§é | ããã§ã¯Perlã®å€æ°ãšããŒã¿æ§é ã«ã€ããŠã®åºæ¬çãªäºé
ãåŠã³ãŸããå¿çšçãªäºé
ã«ã€ããŠã¯ãªãã¡ã¬ã³ã¹ã§è§ŠããŸãã
Perlã§ã¯ãå€æ°ã¯ãããŒã¿ãæ ŒçŽããé å(ãªããžã§ã¯ã)ã«ä»ããããååãã§ãã åããªããžã§ã¯ãã2ã€ä»¥äžã®å€æ°ãæã瀺ãããšããããŸãããé
åã®èŠçŽ ã®ããã«ãåäœã§ã¯ååããªããªããžã§ã¯ãããããŸãã å€æ°ãçšããããšã«ãããããŒã¿ãããæè»ã«æ±ãããšãã§ããŸãã
å€æ°ã®å©çšã®åœ¢æ
ã¯å€§ããåããŠå®£èšã代å
¥ãåç
§ã®3çš®ã§ãã
Perlã«ã¯3ã€ã®çµã¿èŸŒã¿ããŒã¿åããããŸãã
å€æ°ã®ããŒã¿åã¯ãæ¥é èŸ( sigil ; ã·ãžã«)ã«ãã£ãŠåºå¥ããŸãã
ã¹ã«ã©ãŒã¯ãå
éšã«æ§é ããããªãããã äžã€ãã®å€ãä¿æã§ããããŒã¿åã§ãæ¥é èŸã¯ã$(ãã«ããŒã¯;Scalar ã® S)ã§ãã
Perlã¯ãæŒç®ååŒãè©äŸ¡ããã«åœãããæŒç®åããšã«ãªãã©ã³ãã®åã匷å¶çã«å€æããŸãã
次ã®ããã°ã©ã ã¯ãç䟡ãªä»£å
¥æŒç®åã«ããå®è£
ã§ãã
äŸå€çã«ãã€ã³ã¯ãªã¡ã³ãæŒç®åã¯æ°å€ã«ãæååã«ãäœçšããŸãã
ãã®ãããªæååããªãã©ã³ãã«åã£ããšãã®ã€ã³ã¯ãªã¡ã³ããããžã«ã«ã€ã³ã¯ãªã¡ã³ããšåŒã³ãŸãã
é
åã¯ã¹ã«ã©ãŒã®éåã§ãæŽæ°ã®ã€ã³ããã¯ã¹ã§ããããã®èŠçŽ ã¹ã«ã©ãŒãåç
§ã§ããããŒã¿åã§ãæ¥é èŸã¯ã@(ã¢ããããŒã¯;array ã® a)ã§ãã
åœããåã®ããã§ãããåçåä»ãã®èšèªã®äžã§ã¯ãæå€ãšå°æ°æŽŸã§ãã
ãã®ã»ããPythonãé
åã®ä»£å
¥ã¯å¥åäœæã§ããå°æ°æŽŸã§ãããPHPãPerlãšåãã§ãã
é
åã«ãªãã©ã«ã¯ãããŸããã é
åãªãã©ã«é¢šã«èŠãããã®ã¯ãªã¹ãã§ãã
ãªã¹ãã¯ãã¹ã«ã©ãŒã»é
åãããã·ã¥ã®ãããªããŒã¿åã§ã¯ãªãæžåŒã§ãã
é
åå€æ°ã®åæåã«ãªã¹ãã䜿ãããã®ã§çŽããããã®ã§ããã
ãªã¹ãã¯ãè€æ°ã®å€æ°ãäžæ¬å®£èšããããå€å€ä»£å
¥ã«ã€ããããŸãã
é
åãšãªã¹ãã¯äŒŒéã£ãŠããŸããåºå¥ããå¿
èŠããããŸãã
ãªãã
ã€ãã«
qwæŒç®åã䜿ã£ãŠ
qwæŒç®åã¯ã空çœã§åºåã£ãæåã®ã·ãŒã±ã³ã¹ãåãåããåºåãããæååãèŠçŽ ãšãããªã¹ããè¿ããŸãã
10,4,2ã®ããã«åºåãæåãã€ããŠåºåãããå ŽåãçµèŸŒã¿é¢æ° join ã䜿ãããç¹æ®å€æ°$,ã䜿ããŸãã
sorté¢æ°ã䜿ããšãé
åã䞊ã¹æ¿ããäºãã§ããŸãã 䞊ã¹æ¿ããããšãã§ããŸãããæ°å€ã®é
åã§ãã£ãŠãèŸæžé ã«äžŠã¹æ¿ããŠããŸããŸãã
ã¹ã©ã€ã¹ã¯ãé
åãããã·ã¥ã®éšåéåãžã®ã¢ã¯ã»ã¹æ¹æ³ãæäŸããŸãã
ããã·ã¥ã¯ãããŒãšãªãæååãšã¹ã«ã©ãŒã®å€ããã¢ã®éåã®ããŒã¿åã§ããããã·ã¥ã¯é
åãšã¯éã£ãŠãé åºã¯äžå®ã§ãªãããšãä¿èšŒãããŸãã ããã·ã¥å€æ°ã®æ¥é èŸã¯ % ã§ãã
Perlã§ã¯ãæŒç®åã«ãã£ãŠãªãã©ã³ãã®åã決ãŸãã®ã§ãããã«åãããŠæé»ã®åå€æãèµ·ãããŸãã ããã¯ãæ瀺çãªåå€æã®æéãçãäžæ¹ãããã°ã©ããŒã®æå³ãšã¯ç°ãªãå€æãè¡ãªãããå±ãããå«ãã§ããŸãã
ãHello Worldã ã®ãããªæååãPerl ã§æ±ãå Žåã"(ããã«ã¯ã©ãŒããŒã·ã§ã³)ã§å²ã¿ãŸãã
ã·ã³ã°ã«ã¯ã©ãŒããŒã·ã§ã³ ' ' ã§æååãå²ãããšãåºããŸããã
ãã®2ç¹ãããã«ã¯ã©ãŒããŒã·ã§ã³ã§å²ãã å Žåãšç°ãªããŸãã
ãã®ããã«ãPerlã§ã¯æŒç®åããªãã©ã³ããæé»ã«å€æããã®ã§ãæŒç®åããšã®ãªãã©ã³ãåã®ç解ã倧åã«ãªããŸãã
éåžžãåŒçšç¬Šã§å²ãŸããæååã¯ããªãã©ã«å€ãšããŠèããããŠããŸãããPerlã§ã¯æŒç®åãšããŠæ©èœããæ§ã
ãªçš®é¡ã®è£éããã¿ãŒã³ãããã®æ©èœãæäŸããŸãã Perlã§ã¯ããããã®åäœã®ããã«éåžžã®åŒçšç¬ŠãçšæãããŠããŸãããä»»æã®åŒçšç¬Šãéžæããæ¹æ³ãçšæãããŠããŸãã 次ã®è¡šã§ã¯ã{}ã¯åºåãæåã®ãã¢ãè¡šããŠããŸãã
Perlã®æ°å€ã¯ãå
éšçã«ã¯ãã€ãã£ããªæŽæ°ã»ãã€ãã£ããªæµ®åå°æ°ç¹æ°ã»æ°å€ã瀺ãæååã§èšæ¶ããŸãã æ°å€ãªãã©ã«ã¯ã10é²æ°ã2é²æ°(0bãå眮), 8é²æ°(0ãããã¯0oãå眮), 16é²æ°(0xãå眮)ã«ãã£ãŠæ°å€ãè¡šçŸã§ããŸãã ãŸããææ°è¡šçŸãå¯èœã§ãã
Perlã¯ãæ°å€ãšããŠã®éæ°(NaN)ãšç¡é倧(Inf)ããµããŒãããŠããŸãã ãã ãã倧æŠã®NaNãInfãè¿ããããªæŒç®ã§ã¯äŸå€ãäžãã£ãŠæ¥ãŸãããæ°å€ãªãã©ã«ãšããŠã® NaN ã Inf ã¯ãªãã"NaN" ãš "Inf" ãã€ãããŸãã ãã®ãšãã倧æåå°æåãåããåçŽãªå
é äžèŽãªã®ã§ã以äžã®ãããªå°ãé¢åãªç¶æ³ãããããŸãã
å€æ° $n ããããšãã $n != $n ãçãªã NaNãabs($n) == "Inf" ãçãªã Inf ãŸã㯠-Inf ã§ãã
Perlã«éãããæ°å€èšç®ã«ã¯èª€å·®ã䌎ããŸãã äŸãã°ã0.01 ã 100 å足ããŠã 1 ã«ã¯ãªããŸããã ãããä¿èšŒããæ¹æ³ã¯ããã€ããããŸãããããã§ã¯ã«ãã³ã®å ç®ã¢ã«ãŽãªãºã ã玹ä»ããŸãã
ããã°ã©ããŒãå€æ°ã宣èšããªããŠããããã€ãã®å€æ°ã¯æ©èœã決ãŸã£ãŠããŠãäºåã«Perlã«çšæãããŠããããã®ãããªå€æ°ãç¹æ®å€æ°ãããã¯åŠçç³»å®çŸ©æžã¿å€æ°ãšèšããŸãã
ããšãã°ç¹æ®å€æ° $0 ã¯ãããã°ã©ã åã代å
¥ãããŠããŸãã
å€æ°ãé¢æ°ãå®æ°ãªã©ããåŒã®äžã§ã©ã®ããã«è©äŸ¡ãããã決å®ãããã®ã§ãã 倧å¥ãããšã¹ã«ã©ãŒã»ã³ã³ããã¹ããšãªã¹ãã»ã³ã³ããã¹ãããããã¹ã«ã©ãŒã»ã³ã³ããã¹ãã«ããããå€ã¯ã¹ã«ã©ãŒãšããŠããªã¹ãã»ã³ã³ããã¹ãã«ããããå€ã¯ãªã¹ããšããŠè©äŸ¡ãããŸãã ã³ã³ããã¹ããšå®éã®ããŒã¿ãé£ãéã£ãŠããå Žåã次ã®ãããªèŠåã§è©äŸ¡ãããŸãã
ã©ã®ããã«ã³ã³ããã¹ããæäŸããããã以äžã«ããã€ãäŸã瀺ããŸãã
代å
¥åŒã¯å³èŸºã«ã巊蟺ãšåãã³ã³ããã¹ããæäŸããŸã:
é
åã¯ã¹ã«ã©ãŒã»ã³ã³ããã¹ãã§è©äŸ¡ããããšãã®èŠçŽ æ°ãè¿ãã®ã§ãçµæãšããŠ$numberã«ã¯3ã代å
¥ãããŸãã ãã ããã®ãããªçµæã«ãªãã®ã¯é
åã ãã§ãã åè¿°ãããšããããªã¹ããã¹ã«ã©ãŒã»ã³ã³ããã¹ãã§è©äŸ¡ããããšãæåŸã®èŠçŽ ãè¿ãããŸã:
ããã $foo ã«ä»£å
¥ãããŸãããæ®ãã®2ã€ã®å€æ°ã«ã€ããŠã¯ã察å¿ããå³èŸºå€ããªãçºæªå®çŸ©ãšãªããŸãã ãããã£ãŠãããã¯æ¬¡ã®ã³ãŒããšç䟡ã§ã:
ãã©ã¯ãŒã宣èšããããµãã«ãŒãã³ã¯ãããã©ã«ãã§åŒæ°ã«ãªã¹ãã»ã³ã³ããã¹ããæäŸããŸã:
ããã¯æ¬¡ã®ããã«è§£éãããŸãã
ã€ãŸããæ¬åŒ§ã®ãªããµãã«ãŒãã³åŒã³åºãã¯ãªã¹ãæŒç®åãšããŠæ±ãããŸãã
ãããããã
ãšè§£éããããã®ãªãããã©ã¯ãŒã宣èšã«ãããã¿ã€ããä»å ããããšã«ãã£ãŠåé
æŒç®åãšããŠè§£éãããããšãã§ããŸã:
ã¹ã«ã©ãŒã»ã³ã³ããã¹ãã¯ããã«
ã«çŽ°åãããè©äŸ¡ãããŸãã
é·ãã«å¶éã®ãªãæååãšããŠæ±ãããŸãã
æ°å€ã¯ãã®ãŸãŸæååã«å€æãããæªå®çŸ©å€ã¯ç©ºæååã«ãªããŸãããªãã¡ã¬ã³ã¹ãæååã«ãªããŸãããæååãšããŠåŠçããããªãã¡ã¬ã³ã¹ãåã³ãªãã¡ã¬ã³ã¹ã«æ»ãããšã¯ã§ããŸãã:
æ°å€ãªãã©ã«ãšããŠè§£éã§ããæååã¯æ°å€ãšããŠæ±ãããŸãããã以å€ã®æåããããšããã§è§£éãçµäºããŸãã
ifãwhileãªã©ã®å¶åŸ¡æ§æã修食æãandãorãªã©ã®è«çæŒç®åãæäŸããã³ã³ããã¹ãã§ãã
åœãšãªããã®ã¯:
ã§ãããæ®ãã¯å
šãŠçãšè§£éãããŸãã
ãæåå'0'ããšã¯'0'ãšããæååã®ããšã§ãããæ°å€ã³ã³ããã¹ãã§0ãšè§£éãããæååå
šãŠã®ããšã§ã¯ãªãã®ã§æ³šæããŠãã ããã 次ã®ãã®ã¯å
šãŠçãšãªããŸã:
è©äŸ¡ããçµæãæšãŠãããŠããŸãã®ã§ãå€ãæåŸ
ããªãã³ã³ããã¹ãã§ããæ»ãå€ã®ãªãé¢æ°åŒã³åºããªã©ãå¯äœçšãç®çãšããŠäœ¿ãããŸãã å¯äœçšããªãã³ãŒãã¯ãperlã«-wã¹ã€ãããã€ããŠå®è¡ãããšèŠåãçºããããŸã:
Perlã§ã¯ç°ãªãããŒã¿åã«å¯ŸããŠåãèå¥åãäžããããšãã§ããŸã:
PerlåŠçç³»ã¯å
éšã«èå¥åããŒãã«ãšåŒã°ããããã·ã¥ãæã£ãŠããŸãããã®ããŒã¯èå¥åã§ããã察å¿ããå€ã¯åã°ãããšããããŒã¿æ§é ã§ããåã°ããã¯åãèå¥åãæã€ãã¹ãŠã®ããŒã¿åãžã®ãªãã¡ã¬ã³ã¹ãæ ŒçŽããŠããŸããã€ãŸãäžèšã®äŸã ãšèå¥å'foo'ã®åã°ããã«ã¯ã¹ã«ã©ãŒãé
åãããã·ã¥ããµãã«ãŒãã³ãšãã4ã€ã®ããŒã¿åãžã®ãªãã¡ã¬ã³ã¹ãæ ŒçŽãããŠããŸããåã°ããã¯èå¥åã®åã«'*'ãšãããã¬ãã£ãã¯ã¹ãä»å ããŠè¡šçŸãããŸã:
åã°ããèªèº«ã¯ãªãã¡ã¬ã³ã¹ãæ ŒçŽããããã·ã¥ã§ãããããŒã¯ããŒã¿åã®ååã§ã:
åã°ãããããŒã¿æ§é ã®äžã€ã§ãããã代å
¥ãè©äŸ¡ãã§ããŸããåã°ããã«å¥ã®åã°ããã代å
¥ãããšãå€æ°ã®å¥å(ãšã€ãªã¢ã¹)ãå®çŸ©ããããšãåºæ¥ãŸã:
ããã¯ãã€ãŠPerlã«ãªãã¡ã¬ã³ã¹ããªãã£ãé ããµãã«ãŒãã³ã«åŒæ°ãåç
§æž¡ãããã®ã«å©çšãããŠããŸããããŸãããã¡ã€ã«ãã³ãã«ãšãã©ãŒãããã«ã¯ãã¬ãã£ãã¯ã¹ãååšããªãã®ã§ãããããåãæž¡ãããå Žåã®å¯äžã®æ段ã§ããããŸããã
çŸåšã§ã¯ãªãã¡ã¬ã³ã¹ãå©çšã§ããã®ã§ãåã°ããã䜿ãå¿
èŠã¯ãããŸããããã¡ã€ã«ãã³ãã«ããã©ãŒãããã«é¢ããŠãIOã¢ãžã¥ãŒã«ãªã©ã§ãªããžã§ã¯ããšããŠæ±ãããšãã§ããŸãã
ãªããåã°ããã¯èå¥åããŒãã«ã®å®äœãã®ãã®ã§ãããããããã¯ã«çµã³ä»ããããã¬ãã·ã«ã«ã¹ã³ãŒãã«ããããšã¯ã§ããŸãããèšãæãããšãlocalå€æ°ã«ã¯ã§ãããmyå€æ°ã«ã¯ã§ããŸããã
ãŸããç¹å®ã®ããŒã¿åã®ãªãã¡ã¬ã³ã¹ã代å
¥ãããšããã®ããŒã¿åã«éå®ããŠå¥åãå®çŸ©ã§ããŸã: | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ããã§ã¯Perlã®å€æ°ãšããŒã¿æ§é ã«ã€ããŠã®åºæ¬çãªäºé
ãåŠã³ãŸããå¿çšçãªäºé
ã«ã€ããŠã¯ãªãã¡ã¬ã³ã¹ã§è§ŠããŸãã",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "Perlã§ã¯ãå€æ°ã¯ãããŒã¿ãæ ŒçŽããé å(ãªããžã§ã¯ã)ã«ä»ããããååãã§ãã åããªããžã§ã¯ãã2ã€ä»¥äžã®å€æ°ãæã瀺ãããšããããŸãããé
åã®èŠçŽ ã®ããã«ãåäœã§ã¯ååããªããªããžã§ã¯ãããããŸãã å€æ°ãçšããããšã«ãããããŒã¿ãããæè»ã«æ±ãããšãã§ããŸãã",
"title": "å€æ°"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "å€æ°ã®å©çšã®åœ¢æ
ã¯å€§ããåããŠå®£èšã代å
¥ãåç
§ã®3çš®ã§ãã",
"title": "å€æ°"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "Perlã«ã¯3ã€ã®çµã¿èŸŒã¿ããŒã¿åããããŸãã",
"title": "å€æ°"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "å€æ°ã®ããŒã¿åã¯ãæ¥é èŸ( sigil ; ã·ãžã«)ã«ãã£ãŠåºå¥ããŸãã",
"title": "å€æ°"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ã¹ã«ã©ãŒã¯ãå
éšã«æ§é ããããªãããã äžã€ãã®å€ãä¿æã§ããããŒã¿åã§ãæ¥é èŸã¯ã$(ãã«ããŒã¯;Scalar ã® S)ã§ãã",
"title": "ããŒã¿åã®çš®é¡"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "Perlã¯ãæŒç®ååŒãè©äŸ¡ããã«åœãããæŒç®åããšã«ãªãã©ã³ãã®åã匷å¶çã«å€æããŸãã",
"title": "ããŒã¿åã®çš®é¡"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "次ã®ããã°ã©ã ã¯ãç䟡ãªä»£å
¥æŒç®åã«ããå®è£
ã§ãã",
"title": "ããŒã¿åã®çš®é¡"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "äŸå€çã«ãã€ã³ã¯ãªã¡ã³ãæŒç®åã¯æ°å€ã«ãæååã«ãäœçšããŸãã",
"title": "ããŒã¿åã®çš®é¡"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "ãã®ãããªæååããªãã©ã³ãã«åã£ããšãã®ã€ã³ã¯ãªã¡ã³ããããžã«ã«ã€ã³ã¯ãªã¡ã³ããšåŒã³ãŸãã",
"title": "ããŒã¿åã®çš®é¡"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "é
åã¯ã¹ã«ã©ãŒã®éåã§ãæŽæ°ã®ã€ã³ããã¯ã¹ã§ããããã®èŠçŽ ã¹ã«ã©ãŒãåç
§ã§ããããŒã¿åã§ãæ¥é èŸã¯ã@(ã¢ããããŒã¯;array ã® a)ã§ãã",
"title": "ããŒã¿åã®çš®é¡"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "åœããåã®ããã§ãããåçåä»ãã®èšèªã®äžã§ã¯ãæå€ãšå°æ°æŽŸã§ãã",
"title": "ããŒã¿åã®çš®é¡"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "ãã®ã»ããPythonãé
åã®ä»£å
¥ã¯å¥åäœæã§ããå°æ°æŽŸã§ãããPHPãPerlãšåãã§ãã",
"title": "ããŒã¿åã®çš®é¡"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "é
åã«ãªãã©ã«ã¯ãããŸããã é
åãªãã©ã«é¢šã«èŠãããã®ã¯ãªã¹ãã§ãã",
"title": "ããŒã¿åã®çš®é¡"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "ãªã¹ãã¯ãã¹ã«ã©ãŒã»é
åãããã·ã¥ã®ãããªããŒã¿åã§ã¯ãªãæžåŒã§ãã",
"title": "ããŒã¿åã®çš®é¡"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "é
åå€æ°ã®åæåã«ãªã¹ãã䜿ãããã®ã§çŽããããã®ã§ããã",
"title": "ããŒã¿åã®çš®é¡"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "ãªã¹ãã¯ãè€æ°ã®å€æ°ãäžæ¬å®£èšããããå€å€ä»£å
¥ã«ã€ããããŸãã",
"title": "ããŒã¿åã®çš®é¡"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "é
åãšãªã¹ãã¯äŒŒéã£ãŠããŸããåºå¥ããå¿
èŠããããŸãã",
"title": "ããŒã¿åã®çš®é¡"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "ãªãã",
"title": "ããŒã¿åã®çš®é¡"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "ã€ãã«",
"title": "ããŒã¿åã®çš®é¡"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "qwæŒç®åã䜿ã£ãŠ",
"title": "ããŒã¿åã®çš®é¡"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "qwæŒç®åã¯ã空çœã§åºåã£ãæåã®ã·ãŒã±ã³ã¹ãåãåããåºåãããæååãèŠçŽ ãšãããªã¹ããè¿ããŸãã",
"title": "ããŒã¿åã®çš®é¡"
},
{
"paragraph_id": 22,
"tag": "p",
"text": "10,4,2ã®ããã«åºåãæåãã€ããŠåºåãããå ŽåãçµèŸŒã¿é¢æ° join ã䜿ãããç¹æ®å€æ°$,ã䜿ããŸãã",
"title": "ããŒã¿åã®çš®é¡"
},
{
"paragraph_id": 23,
"tag": "p",
"text": "sorté¢æ°ã䜿ããšãé
åã䞊ã¹æ¿ããäºãã§ããŸãã 䞊ã¹æ¿ããããšãã§ããŸãããæ°å€ã®é
åã§ãã£ãŠãèŸæžé ã«äžŠã¹æ¿ããŠããŸããŸãã",
"title": "ããŒã¿åã®çš®é¡"
},
{
"paragraph_id": 24,
"tag": "p",
"text": "ã¹ã©ã€ã¹ã¯ãé
åãããã·ã¥ã®éšåéåãžã®ã¢ã¯ã»ã¹æ¹æ³ãæäŸããŸãã",
"title": "ããŒã¿åã®çš®é¡"
},
{
"paragraph_id": 25,
"tag": "p",
"text": "ããã·ã¥ã¯ãããŒãšãªãæååãšã¹ã«ã©ãŒã®å€ããã¢ã®éåã®ããŒã¿åã§ããããã·ã¥ã¯é
åãšã¯éã£ãŠãé åºã¯äžå®ã§ãªãããšãä¿èšŒãããŸãã ããã·ã¥å€æ°ã®æ¥é èŸã¯ % ã§ãã",
"title": "ããŒã¿åã®çš®é¡"
},
{
"paragraph_id": 26,
"tag": "p",
"text": "Perlã§ã¯ãæŒç®åã«ãã£ãŠãªãã©ã³ãã®åã決ãŸãã®ã§ãããã«åãããŠæé»ã®åå€æãèµ·ãããŸãã ããã¯ãæ瀺çãªåå€æã®æéãçãäžæ¹ãããã°ã©ããŒã®æå³ãšã¯ç°ãªãå€æãè¡ãªãããå±ãããå«ãã§ããŸãã",
"title": "Perlãæ±ãããŒã¿"
},
{
"paragraph_id": 27,
"tag": "p",
"text": "ãHello Worldã ã®ãããªæååãPerl ã§æ±ãå Žåã\"(ããã«ã¯ã©ãŒããŒã·ã§ã³)ã§å²ã¿ãŸãã",
"title": "Perlãæ±ãããŒã¿"
},
{
"paragraph_id": 28,
"tag": "p",
"text": "ã·ã³ã°ã«ã¯ã©ãŒããŒã·ã§ã³ ' ' ã§æååãå²ãããšãåºããŸããã",
"title": "Perlãæ±ãããŒã¿"
},
{
"paragraph_id": 29,
"tag": "p",
"text": "ãã®2ç¹ãããã«ã¯ã©ãŒããŒã·ã§ã³ã§å²ãã å Žåãšç°ãªããŸãã",
"title": "Perlãæ±ãããŒã¿"
},
{
"paragraph_id": 30,
"tag": "p",
"text": "ãã®ããã«ãPerlã§ã¯æŒç®åããªãã©ã³ããæé»ã«å€æããã®ã§ãæŒç®åããšã®ãªãã©ã³ãåã®ç解ã倧åã«ãªããŸãã",
"title": "Perlãæ±ãããŒã¿"
},
{
"paragraph_id": 31,
"tag": "p",
"text": "éåžžãåŒçšç¬Šã§å²ãŸããæååã¯ããªãã©ã«å€ãšããŠèããããŠããŸãããPerlã§ã¯æŒç®åãšããŠæ©èœããæ§ã
ãªçš®é¡ã®è£éããã¿ãŒã³ãããã®æ©èœãæäŸããŸãã Perlã§ã¯ããããã®åäœã®ããã«éåžžã®åŒçšç¬ŠãçšæãããŠããŸãããä»»æã®åŒçšç¬Šãéžæããæ¹æ³ãçšæãããŠããŸãã 次ã®è¡šã§ã¯ã{}ã¯åºåãæåã®ãã¢ãè¡šããŠããŸãã",
"title": "Perlãæ±ãããŒã¿"
},
{
"paragraph_id": 32,
"tag": "p",
"text": "Perlã®æ°å€ã¯ãå
éšçã«ã¯ãã€ãã£ããªæŽæ°ã»ãã€ãã£ããªæµ®åå°æ°ç¹æ°ã»æ°å€ã瀺ãæååã§èšæ¶ããŸãã æ°å€ãªãã©ã«ã¯ã10é²æ°ã2é²æ°(0bãå眮), 8é²æ°(0ãããã¯0oãå眮), 16é²æ°(0xãå眮)ã«ãã£ãŠæ°å€ãè¡šçŸã§ããŸãã ãŸããææ°è¡šçŸãå¯èœã§ãã",
"title": "Perlãæ±ãããŒã¿"
},
{
"paragraph_id": 33,
"tag": "p",
"text": "Perlã¯ãæ°å€ãšããŠã®éæ°(NaN)ãšç¡é倧(Inf)ããµããŒãããŠããŸãã ãã ãã倧æŠã®NaNãInfãè¿ããããªæŒç®ã§ã¯äŸå€ãäžãã£ãŠæ¥ãŸãããæ°å€ãªãã©ã«ãšããŠã® NaN ã Inf ã¯ãªãã\"NaN\" ãš \"Inf\" ãã€ãããŸãã ãã®ãšãã倧æåå°æåãåããåçŽãªå
é äžèŽãªã®ã§ã以äžã®ãããªå°ãé¢åãªç¶æ³ãããããŸãã",
"title": "Perlãæ±ãããŒã¿"
},
{
"paragraph_id": 34,
"tag": "p",
"text": "å€æ° $n ããããšãã $n != $n ãçãªã NaNãabs($n) == \"Inf\" ãçãªã Inf ãŸã㯠-Inf ã§ãã",
"title": "Perlãæ±ãããŒã¿"
},
{
"paragraph_id": 35,
"tag": "p",
"text": "Perlã«éãããæ°å€èšç®ã«ã¯èª€å·®ã䌎ããŸãã äŸãã°ã0.01 ã 100 å足ããŠã 1 ã«ã¯ãªããŸããã ãããä¿èšŒããæ¹æ³ã¯ããã€ããããŸãããããã§ã¯ã«ãã³ã®å ç®ã¢ã«ãŽãªãºã ã玹ä»ããŸãã",
"title": "Perlãæ±ãããŒã¿"
},
{
"paragraph_id": 36,
"tag": "p",
"text": "ããã°ã©ããŒãå€æ°ã宣èšããªããŠããããã€ãã®å€æ°ã¯æ©èœã決ãŸã£ãŠããŠãäºåã«Perlã«çšæãããŠããããã®ãããªå€æ°ãç¹æ®å€æ°ãããã¯åŠçç³»å®çŸ©æžã¿å€æ°ãšèšããŸãã",
"title": "ç¹æ®å€æ°"
},
{
"paragraph_id": 37,
"tag": "p",
"text": "ããšãã°ç¹æ®å€æ° $0 ã¯ãããã°ã©ã åã代å
¥ãããŠããŸãã",
"title": "ç¹æ®å€æ°"
},
{
"paragraph_id": 38,
"tag": "p",
"text": "å€æ°ãé¢æ°ãå®æ°ãªã©ããåŒã®äžã§ã©ã®ããã«è©äŸ¡ãããã決å®ãããã®ã§ãã 倧å¥ãããšã¹ã«ã©ãŒã»ã³ã³ããã¹ããšãªã¹ãã»ã³ã³ããã¹ãããããã¹ã«ã©ãŒã»ã³ã³ããã¹ãã«ããããå€ã¯ã¹ã«ã©ãŒãšããŠããªã¹ãã»ã³ã³ããã¹ãã«ããããå€ã¯ãªã¹ããšããŠè©äŸ¡ãããŸãã ã³ã³ããã¹ããšå®éã®ããŒã¿ãé£ãéã£ãŠããå Žåã次ã®ãããªèŠåã§è©äŸ¡ãããŸãã",
"title": "ã³ã³ããã¹ã"
},
{
"paragraph_id": 39,
"tag": "p",
"text": "ã©ã®ããã«ã³ã³ããã¹ããæäŸããããã以äžã«ããã€ãäŸã瀺ããŸãã",
"title": "ã³ã³ããã¹ã"
},
{
"paragraph_id": 40,
"tag": "p",
"text": "代å
¥åŒã¯å³èŸºã«ã巊蟺ãšåãã³ã³ããã¹ããæäŸããŸã:",
"title": "ã³ã³ããã¹ã"
},
{
"paragraph_id": 41,
"tag": "p",
"text": "é
åã¯ã¹ã«ã©ãŒã»ã³ã³ããã¹ãã§è©äŸ¡ããããšãã®èŠçŽ æ°ãè¿ãã®ã§ãçµæãšããŠ$numberã«ã¯3ã代å
¥ãããŸãã ãã ããã®ãããªçµæã«ãªãã®ã¯é
åã ãã§ãã åè¿°ãããšããããªã¹ããã¹ã«ã©ãŒã»ã³ã³ããã¹ãã§è©äŸ¡ããããšãæåŸã®èŠçŽ ãè¿ãããŸã:",
"title": "ã³ã³ããã¹ã"
},
{
"paragraph_id": 42,
"tag": "p",
"text": "ããã $foo ã«ä»£å
¥ãããŸãããæ®ãã®2ã€ã®å€æ°ã«ã€ããŠã¯ã察å¿ããå³èŸºå€ããªãçºæªå®çŸ©ãšãªããŸãã ãããã£ãŠãããã¯æ¬¡ã®ã³ãŒããšç䟡ã§ã:",
"title": "ã³ã³ããã¹ã"
},
{
"paragraph_id": 43,
"tag": "p",
"text": "ãã©ã¯ãŒã宣èšããããµãã«ãŒãã³ã¯ãããã©ã«ãã§åŒæ°ã«ãªã¹ãã»ã³ã³ããã¹ããæäŸããŸã:",
"title": "ã³ã³ããã¹ã"
},
{
"paragraph_id": 44,
"tag": "p",
"text": "ããã¯æ¬¡ã®ããã«è§£éãããŸãã",
"title": "ã³ã³ããã¹ã"
},
{
"paragraph_id": 45,
"tag": "p",
"text": "ã€ãŸããæ¬åŒ§ã®ãªããµãã«ãŒãã³åŒã³åºãã¯ãªã¹ãæŒç®åãšããŠæ±ãããŸãã",
"title": "ã³ã³ããã¹ã"
},
{
"paragraph_id": 46,
"tag": "p",
"text": "ãããããã",
"title": "ã³ã³ããã¹ã"
},
{
"paragraph_id": 47,
"tag": "p",
"text": "ãšè§£éããããã®ãªãããã©ã¯ãŒã宣èšã«ãããã¿ã€ããä»å ããããšã«ãã£ãŠåé
æŒç®åãšããŠè§£éãããããšãã§ããŸã:",
"title": "ã³ã³ããã¹ã"
},
{
"paragraph_id": 48,
"tag": "p",
"text": "ã¹ã«ã©ãŒã»ã³ã³ããã¹ãã¯ããã«",
"title": "ã³ã³ããã¹ã"
},
{
"paragraph_id": 49,
"tag": "p",
"text": "ã«çŽ°åãããè©äŸ¡ãããŸãã",
"title": "ã³ã³ããã¹ã"
},
{
"paragraph_id": 50,
"tag": "p",
"text": "é·ãã«å¶éã®ãªãæååãšããŠæ±ãããŸãã",
"title": "ã³ã³ããã¹ã"
},
{
"paragraph_id": 51,
"tag": "p",
"text": "æ°å€ã¯ãã®ãŸãŸæååã«å€æãããæªå®çŸ©å€ã¯ç©ºæååã«ãªããŸãããªãã¡ã¬ã³ã¹ãæååã«ãªããŸãããæååãšããŠåŠçããããªãã¡ã¬ã³ã¹ãåã³ãªãã¡ã¬ã³ã¹ã«æ»ãããšã¯ã§ããŸãã:",
"title": "ã³ã³ããã¹ã"
},
{
"paragraph_id": 52,
"tag": "p",
"text": "æ°å€ãªãã©ã«ãšããŠè§£éã§ããæååã¯æ°å€ãšããŠæ±ãããŸãããã以å€ã®æåããããšããã§è§£éãçµäºããŸãã",
"title": "ã³ã³ããã¹ã"
},
{
"paragraph_id": 53,
"tag": "p",
"text": "ifãwhileãªã©ã®å¶åŸ¡æ§æã修食æãandãorãªã©ã®è«çæŒç®åãæäŸããã³ã³ããã¹ãã§ãã",
"title": "ã³ã³ããã¹ã"
},
{
"paragraph_id": 54,
"tag": "p",
"text": "åœãšãªããã®ã¯:",
"title": "ã³ã³ããã¹ã"
},
{
"paragraph_id": 55,
"tag": "p",
"text": "ã§ãããæ®ãã¯å
šãŠçãšè§£éãããŸãã",
"title": "ã³ã³ããã¹ã"
},
{
"paragraph_id": 56,
"tag": "p",
"text": "ãæåå'0'ããšã¯'0'ãšããæååã®ããšã§ãããæ°å€ã³ã³ããã¹ãã§0ãšè§£éãããæååå
šãŠã®ããšã§ã¯ãªãã®ã§æ³šæããŠãã ããã 次ã®ãã®ã¯å
šãŠçãšãªããŸã:",
"title": "ã³ã³ããã¹ã"
},
{
"paragraph_id": 57,
"tag": "p",
"text": "è©äŸ¡ããçµæãæšãŠãããŠããŸãã®ã§ãå€ãæåŸ
ããªãã³ã³ããã¹ãã§ããæ»ãå€ã®ãªãé¢æ°åŒã³åºããªã©ãå¯äœçšãç®çãšããŠäœ¿ãããŸãã å¯äœçšããªãã³ãŒãã¯ãperlã«-wã¹ã€ãããã€ããŠå®è¡ãããšèŠåãçºããããŸã:",
"title": "ã³ã³ããã¹ã"
},
{
"paragraph_id": 58,
"tag": "p",
"text": "Perlã§ã¯ç°ãªãããŒã¿åã«å¯ŸããŠåãèå¥åãäžããããšãã§ããŸã:",
"title": "åã°ãã"
},
{
"paragraph_id": 59,
"tag": "p",
"text": "PerlåŠçç³»ã¯å
éšã«èå¥åããŒãã«ãšåŒã°ããããã·ã¥ãæã£ãŠããŸãããã®ããŒã¯èå¥åã§ããã察å¿ããå€ã¯åã°ãããšããããŒã¿æ§é ã§ããåã°ããã¯åãèå¥åãæã€ãã¹ãŠã®ããŒã¿åãžã®ãªãã¡ã¬ã³ã¹ãæ ŒçŽããŠããŸããã€ãŸãäžèšã®äŸã ãšèå¥å'foo'ã®åã°ããã«ã¯ã¹ã«ã©ãŒãé
åãããã·ã¥ããµãã«ãŒãã³ãšãã4ã€ã®ããŒã¿åãžã®ãªãã¡ã¬ã³ã¹ãæ ŒçŽãããŠããŸããåã°ããã¯èå¥åã®åã«'*'ãšãããã¬ãã£ãã¯ã¹ãä»å ããŠè¡šçŸãããŸã:",
"title": "åã°ãã"
},
{
"paragraph_id": 60,
"tag": "p",
"text": "åã°ããèªèº«ã¯ãªãã¡ã¬ã³ã¹ãæ ŒçŽããããã·ã¥ã§ãããããŒã¯ããŒã¿åã®ååã§ã:",
"title": "åã°ãã"
},
{
"paragraph_id": 61,
"tag": "p",
"text": "åã°ãããããŒã¿æ§é ã®äžã€ã§ãããã代å
¥ãè©äŸ¡ãã§ããŸããåã°ããã«å¥ã®åã°ããã代å
¥ãããšãå€æ°ã®å¥å(ãšã€ãªã¢ã¹)ãå®çŸ©ããããšãåºæ¥ãŸã:",
"title": "åã°ãã"
},
{
"paragraph_id": 62,
"tag": "p",
"text": "ããã¯ãã€ãŠPerlã«ãªãã¡ã¬ã³ã¹ããªãã£ãé ããµãã«ãŒãã³ã«åŒæ°ãåç
§æž¡ãããã®ã«å©çšãããŠããŸããããŸãããã¡ã€ã«ãã³ãã«ãšãã©ãŒãããã«ã¯ãã¬ãã£ãã¯ã¹ãååšããªãã®ã§ãããããåãæž¡ãããå Žåã®å¯äžã®æ段ã§ããããŸããã",
"title": "åã°ãã"
},
{
"paragraph_id": 63,
"tag": "p",
"text": "çŸåšã§ã¯ãªãã¡ã¬ã³ã¹ãå©çšã§ããã®ã§ãåã°ããã䜿ãå¿
èŠã¯ãããŸããããã¡ã€ã«ãã³ãã«ããã©ãŒãããã«é¢ããŠãIOã¢ãžã¥ãŒã«ãªã©ã§ãªããžã§ã¯ããšããŠæ±ãããšãã§ããŸãã",
"title": "åã°ãã"
},
{
"paragraph_id": 64,
"tag": "p",
"text": "ãªããåã°ããã¯èå¥åããŒãã«ã®å®äœãã®ãã®ã§ãããããããã¯ã«çµã³ä»ããããã¬ãã·ã«ã«ã¹ã³ãŒãã«ããããšã¯ã§ããŸãããèšãæãããšãlocalå€æ°ã«ã¯ã§ãããmyå€æ°ã«ã¯ã§ããŸããã",
"title": "åã°ãã"
},
{
"paragraph_id": 65,
"tag": "p",
"text": "ãŸããç¹å®ã®ããŒã¿åã®ãªãã¡ã¬ã³ã¹ã代å
¥ãããšããã®ããŒã¿åã«éå®ããŠå¥åãå®çŸ©ã§ããŸã:",
"title": "åã°ãã"
}
] | ããã§ã¯Perlã®å€æ°ãšããŒã¿æ§é ã«ã€ããŠã®åºæ¬çãªäºé
ãåŠã³ãŸããå¿çšçãªäºé
ã«ã€ããŠã¯ãªãã¡ã¬ã³ã¹ã§è§ŠããŸãã
| <noinclude>
{{Nav}}
:<small>[[ããã°ã©ãã³ã°]] > [[Perl]] > å€æ°ãããŒã¿æ§é </small>
ããã§ã¯Perlã®å€æ°ãšããŒã¿æ§é ã«ã€ããŠã®åºæ¬çãªäºé
ãåŠã³ãŸããå¿çšçãªäºé
ã«ã€ããŠã¯[[Perl/ãªãã¡ã¬ã³ã¹|ãªãã¡ã¬ã³ã¹]]ã§è§ŠããŸãã
</noinclude>
<includeonly>
= å€æ°ãšããŒã¿å =
{{å
é ã«æ»ã}}
</includeonly>
== å€æ° ==
Perlã§ã¯ãå€æ°ã¯ãããŒã¿ãæ ŒçŽããé åïŒãªããžã§ã¯ãïŒã«ä»ããããååãã§ãã
åããªããžã§ã¯ããïŒã€ä»¥äžã®å€æ°ãæã瀺ãããšããããŸãããé
åã®èŠçŽ ã®ããã«ãåäœã§ã¯ååããªããªããžã§ã¯ãããããŸãã
å€æ°ãçšããããšã«ãããããŒã¿ãããæè»ã«æ±ãããšãã§ããŸãã
å€æ°ã®å©çšã®åœ¢æ
ã¯å€§ããåããŠ'''宣èš'''ã'''代å
¥'''ã'''åç
§'''ã®3çš®ã§ãã
=== ããŒã¿å ===
Perlã«ã¯3ã€ã®çµã¿èŸŒã¿ããŒã¿åããããŸãã
;[[#ã¹ã«ã©ãŒ|ã¹ã«ã©ãŒ]]
:;æåå:ãµã€ãºã¯åããã䜿çšå¯èœãªã¡ã¢ãªéã«å¶éãããŸã
:;æ°å€
::;æŽæ°:åŠçç³»åºæã®ãã€ãã£ããªæŽæ°
::;æµ®åå°æ°ç¹æ°:åŠçç³»åºæã®ãã€ãã£ããªæŽæ°
::;æååã§è¡šçŸãããæ°å€:äžèšã®æŽæ°ã»æµ®åå°æ°ç¹æ°ãPerlã®æ°å€ãªãã©ã«ã§è¡šçŸãããã®ïŒâNaNâ âInfâ ãªã©ãå«ãŸããŸãïŒ
:;åç
§:ããã«ã€ããŠã¯ [[#ãªãã¡ã¬ã³ã¹|ãªãã¡ã¬ã³ã¹]] ã§èª¬æããŸã
;[[#é
å|é
å]]:ã«ã©ãŒã0ããå§ãŸãçªå·ã§ã€ã³ããã¯ã¹ä»ãããé åºä»ãã³ã¬ã¯ã·ã§ã³
;[[#ããã·ã¥|ããã·ã¥]]:ã¹ã«ã©ãŒå€ãé¢é£ããæååããŒã§ã€ã³ããã¯ã¹ä»ãããé åºä»ãã§ãªãã³ã¬ã¯ã·ã§ã³
=== æ¥é èŸ ===
å€æ°ã®ããŒã¿åã¯ãæ¥é èŸïŒ ''sigil'' ; ã·ãžã«ïŒã«ãã£ãŠåºå¥ããŸãã
:{| class="wikitable"
|+å€æ°ã®çš®é¡ãšæ¥é èŸ
|-
! çš®é¡ !! æ¥é èŸ !! 説æ
|-
| ã¹ã«ã©ãŒ ||style="text-align:center"| '''$''' || æ°å€ãæååãªã©ã®å€ãïŒã€ã ãä¿æããŸãã
|-
| é
å ||style="text-align:center"| '''@''' || è€æ°ã®å€ããé åºä»ãã§ä¿æããŸãã
|-
| ããã·ã¥ ||style="text-align:center"| '''%''' || è€æ°ã®å€ããéè€ããªãããŒã«çµã³ã€ãä¿æããŸãã
|-
| ãªãã¡ã¬ã³ã¹ ||style="text-align:center"| '''$''' || ã¹ã«ã©ãŒãé
åãããã¯ããã·ã¥ã®ã¡ã¢ãªäžã®ã¢ãã¬ã¹ãä¿æããŸãã
|-
|colspan=3 style="text-align:right;font-size: 0.7rem"|ãªãã¡ã¬ã³ã¹ã¯ãç¹æ®ãªã¹ã«ã©ãŒãªã®ã§æ¥é èŸã¯åã<code>$</code>ã§ãã
|}
== ããŒã¿åã®çš®é¡ ==
=== ã¹ã«ã©ãŒ ===
ã¹ã«ã©ãŒã¯ãå
éšã«æ§é ããããªãããã äžã€ãã®å€ãä¿æã§ããããŒã¿åã§ã[[#æ¥é èŸ|æ¥é èŸ]]ã¯ã<code>$</code>ïŒãã«ããŒã¯ïŒScalar ã® SïŒã§ãã
;[https://paiza.io/projects/2OElPALIaRY3LNpTYwho7g?language=perl äŸ]:<syntaxhighlight lang=perl>
#!/usr/bin/perl
use v5.12;
use warnings;
my $name = "倪é";# ã¬ãã·ã«ã«å€æ° $name ã "倪é" ã§åæå
my $age = 30; # ã¬ãã·ã«ã«å€æ° $age ã 30 ã§åæå
say $name;
say $age;
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
倪é
30
</syntaxhighlight>
:ã¹ã«ã©ãŒå€æ°ã®æ¥é èŸã¯ã<code>$</code>ïŒãã«ããŒã¯ïŒScalar ã® SïŒã§ãã
:æ°åŠã§ã¯ãã¹ã«ã©ãŒãã®å¯ŸçŸ©èªã¯ããã¯ãã«ãã§ãããPerlã§ã¯ãããªã¹ããããã¹ã«ã©ãŒãã®å¯ŸçŸ©èªã§ãã
:æ°åŠçã«ã¯ãã£ããããŸããããæååãã¹ã«ã©ãŒã§ãã
:å€æ°ã瀺ããŠããå€ãæ°å€ãæååãã¯ãå€åŽã«ããæ
å ±ãåãã«ãã決ãŸããŸãã
:äžèšã³ãŒãã§ã¯ããnameããšããå称ã®ã¹ã«ã©ãŒå€æ° $name ãšããageããšããå称ã®ã¹ã«ã©ãŒå€æ° $age ããããŸãã
::ã¹ã«ã©ãŒå€æ° $name ã¯ãæåå "倪é" ãä¿æãã
::ã¹ã«ã©ãŒå€æ° $age ã¯ãæ°å€ïŒæŽæ°ïŒ 30 ãä¿æããŸãã
:ãã®ããã«ãäžã€ã®å€æ°ã¯ãåäžã®å€ãä¿æã§ããŸãã
==== ã¹ã«ã©ãŒãªãã©ã«ã®è¡šèš ====
;æååãªãã©ã«:<code>âABC and Zâ</code> ã <code>'ABC and Z'</code>ã®ããã«ã<code>â</code>ïŒããã«ã¯ã©ãŒããŒã·ã§ã³ããŒã¯ïŒã<code>â</code>ïŒã·ã³ã°ã«ã¯ã©ãŒããŒã·ã§ã³ããŒã¯ïŒã§å²ã¿ãŸãã
;æ°å€:<code>â</code>ã<code>â</code>å²ãå¿
èŠã¯ãããŸããããå²ãã§ãå®è¡æã«æ°å€ãšããŠè§£éãããŸãããŸããNaN ã Inf ã®ãããªç¹æ®ãªå€ã¯ã<code>â</code>ã<code>â</code>å²ãå¿
èŠããããŸãã
==== å€æ°åãå«ãèå¥åã®èŠçŽ ====
#èå¥åã®å
é ã¯ãè±å€§æåã»è±å°æåããã㯠â_â
#èå¥åã®ïŒæåç®ä»¥éã¯ãè±å€§æåã»è±å°æåã»'0'..'9' ããã㯠â_â
#èå¥åã®é·ãã¯ã1æå以äž251æå以äž
#;èå¥åã®æ£èŠè¡šçŸ
#:<syntaxhighlight lang=text>
[A-Za-z_][A-Za-z_0-9]{0,250}
</syntaxhighlight>
;äžæ£ãªèå¥åã®äŸ:<syntaxhighlight lang=perl>
123age
new-word
ãã©ãã°
</syntaxhighlight>
#å
é ã«æ°åã¯äœ¿ããªã
#â-âã¯å€æ°åã«äœ¿ããªã
#è«å€
==== æŒç®åäž»å°ã®ååŒ·å¶ ====
Perlã¯ãæŒç®ååŒãè©äŸ¡ããã«åœãããæŒç®åããšã«ãªãã©ã³ãã®åã匷å¶çã«å€æããŸãã
;[https://paiza.io/projects/h3XUo9yP3z96UFLePJjLfQ?language=perl äŸ]:<syntaxhighlight lang=perl line>
#!/usr/bin/perl
use v5.12;
use warnings;
my $age = 30; say __LINE__ . ": $age";
$age = $age . "1"; say __LINE__ . ": $age";
$age = $age + 1; say __LINE__ . ": $age";
$age = $age x 3; say __LINE__ . ": $age";
$age = $age / 302; say __LINE__ . ": $age";
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
5: 30
6: 301
7: 302
8: 302302302
9: 1001001
</syntaxhighlight>
: ãã®ããã«ãæŒç®åã«ãã£ãŠãªãã©ã³ããæ°å€ãšè§£éããããæååãšè§£éããããããŸãã
: éã«èšããšãæŒç®åãèŠãã°ãªãã©ã³ãïŒãšåŒã®å€ïŒã®åãããããŸãã
次ã®ããã°ã©ã ã¯ãç䟡ãªä»£å
¥æŒç®åã«ããå®è£
ã§ãã
;[https://paiza.io/projects/w5aDaniOTJwoq-51B50UDQ?language=perl äŸ]:<syntaxhighlight lang=perl>
#!/usr/bin/perl
use v5.12;
use warnings;
my $age = 30; say __LINE__ . ": $age";
$age .= "1"; say __LINE__ . ": $age";
$age += 1; say __LINE__ . ": $age";
$age x= 3; say __LINE__ . ": $age";
$age /= 302; say __LINE__ . ": $age";
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
5: 30
6: 301
7: 302
8: 302302302
9: 1001001
</syntaxhighlight>
äŸå€çã«ãã€ã³ã¯ãªã¡ã³ãæŒç®åã¯æ°å€ã«ãæååã«ãäœçšããŸãã
;[https://paiza.io/projects/8y9G_F_piLGJyifRhOEDeA?language=perl äŸ]:<syntaxhighlight lang=perl>
#!/usr/bin/perl
use v5.12;
use warnings;
my $n = 3; say __LINE__ . ": $n";
$n++; say __LINE__ . ": $n";
$n++; say __LINE__ . ": $n";
my $s = "K";say __LINE__ . ": $s";
$s++; say __LINE__ . ": $s";
$s++; say __LINE__ . ": $s";
$s = "BY"; say __LINE__ . ": $s";
$s++; say __LINE__ . ": $s";
$s++; say __LINE__ . ": $s";
$s++; say __LINE__ . ": $s";
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
5: 3
6: 4
7: 5
9: K
10: L
11: M
13: BY
14: BZ
15: CA
16: CB
</syntaxhighlight>
: 5-7 ã®æ°å€ã®ã€ã³ã¯ãªã¡ã³ãã¯ãéåæãããŸããã
: 9-11 ã®ïŒæåã®æååã®ã€ã³ã¯ãªã¡ã³ãã¯ããã£ã©ã¯ã¿ãŒã³ãŒããå¢ããŠããïŒïŒïŒãšæããŸããã
: 14-16 ã®ïŒæåã®æååã®ã€ã³ã¯ãªã¡ã³ãã§ã¯ãæ¡äžããããŠããŸãïŒ
ãã®ãããªæååããªãã©ã³ãã«åã£ããšãã®ã€ã³ã¯ãªã¡ã³ããããžã«ã«ã€ã³ã¯ãªã¡ã³ããšåŒã³ãŸãã
{{ã³ã©ã |ã»ãã®ããã°ã©ãã³ã°èšèªãšã®éã|2=C/C++ãšéãPerlã§ã¯å€æ°å®£èšã§ã«ãint ã double ãªã©ã®åãæå®ããããšã¯ãããŸããã
Perlã§ã¯ãã¹ã«ã©ãŒå€æ°ã«æŽæ°ã»æµ®åå°æ°ç¹æ°ã»æååããªãã¡ã¬ã³ã¹ã®éã§æé»ã®å€æãåãããã§ãã
;ã¬ãã·ã«ã«ã¹ã³ãŒãã®ã¹ã«ã©ãŒå€æ°ã®å®£èš:<syntaxhighlight lang=perl>
my $å€æ°å = åæå€;
</syntaxhighlight>
: äŸãã°ãprint é¢æ°ã®åŒæ°ã«æŽæ°ãæž¡ãããã°ãèªåçã«åé²æ°ã®æååã«å€æãããŸãã
: ãã®ããã«ãæŒç®åã»é¢æ°ã»ãµãã«ãŒãã³ãã¡ãœãããé©å®å€æããŸãã
: ããã¯ãPerlãåèã«ããAWKãšåãç¹åŸŽã§ãã
ãŸããPerlã§ãããŒã¿åããšãããš
* ã¹ã«ã©ãŒ
* é
å
* ããã·ã¥
* ïŒã³ãŒãïŒ
* ïŒãã¡ã€ã«ãã³ãã«ïŒ
* ïŒãã©ãŒãããïŒ
ãªã©ã®ããšã§ãæ¥é èŸãªã©ã§åºå¥ãããŸãã
}}
=== é
å ===
é
åã¯ã¹ã«ã©ãŒã®éåã§ãæŽæ°ã®ã€ã³ããã¯ã¹ã§ããããã®èŠçŽ ã¹ã«ã©ãŒãåç
§ã§ããããŒã¿åã§ã[[#æ¥é èŸ|æ¥é èŸ]]ã¯ã<code>@</code>ïŒã¢ããããŒã¯ïŒarray ã® aïŒã§ãã
;[https://paiza.io/projects/sNyDvYypxngMQChjKmzQTw?language=perl äŸ]:<syntaxhighlight lang=perl>
#!/usr/bin/perl
use v5.12;
use warnings;
my @ary = ("倪é", 30); # é
åå€æ° @ary ãããªã¹ã ("倪é" 30) ã§åæå
say __LINE__ . ": $ary[0]"; # é
åå€æ° @ary ã® 0 çªç®ã®èŠçŽ ãåç
§
say __LINE__ . ": $ary[1]"; # é
åå€æ° @ary ã® 1 çªç®ã®èŠçŽ ãåç
§
say __LINE__ . ": $ary[-1]"; # é
åå€æ° @ary ã® -1 çªç®ïŒæåŸïŒã®èŠçŽ ãåç
§
say __LINE__ . ": $ary[-2]"; # é
åå€æ° @ary ã® -1 çªç®ïŒæåŸãã 2 çªç®ïŒã®èŠçŽ ãåç
§
say @ary; # ãã®ãŸãŸæåååãããšãèŠçŽ ãæåååãããã®ãåºåãæåãªãé£çµ
{ local $, = ";" ; say @ary; } # {} ã§ã¹ã³ãŒããåã£ãŠ local ã§åºåãæåã°ããŒãã«å€æ° $, ãããŒã«ã©ã€ãºããã®ã§
say @ary; # ã¹ã³ãŒããæãããšå
éã
say __LINE__ . ": \@ary = @ary"; # æååäžã§å±éãããšãåºåãæåã¯ïŒæåã®ç©ºçœ
say __LINE__ . ": \@ary = @{[@ary]}";# ãããŒã«ãŒæŒç®å @{[åŒ]} ã§ãåã
$ary[1] = 25; # ïŒçªãã®èŠçŽ ã« 25 ã代å
¥
say __LINE__ . ": \@ary = @ary"; # 眮æãã
$ary[1]++; # ã€ã³ã¯ãªã¡ã³ã
say __LINE__ . ": \@ary = @ary"; # å¢ãã
$ary[1] = "ABC"; # ïŒçªãã®èŠçŽ ã« "ABC" ã代å
¥
say __LINE__ . ": \@ary = @ary"; # 眮æãã
$ary[1]++; # ã€ã³ã¯ãªã¡ã³ã
say __LINE__ . ": \@ary = @ary"; # å¢ããïŒ
push @ary, "XYZ"; # push ã¯é
åã®æ«å°Ÿã«è¿œå
say __LINE__ . ": \@ary = @ary"; # å¢ããïŒéãæå³ã§ïŒ
unshift @ary, "UVW"; # unshift ã¯é
åã®å
é ã«è¿œå
say __LINE__ . ": \@ary = @ary"; # å¢ããïŒãŸãéãæå³ã§ïŒ
my $x = shift @ary; # shift ã¯å
é èŠçŽ ã®ååºã
say __LINE__ . ": $x"; # æ»å€ã¯ååºããå€
say __LINE__ . ": \@ary = @ary"; # å
é ããªããªã£ã
my $y = pop @ary; # pop ã¯æ«å°ŸèŠçŽ ã®ååºã
say $y; # æ»å€ã¯ååºããå€
say __LINE__ . ": \@ary = @ary"; # æ«å°Ÿããªããªã£ã
my $z = @ary; # ã¹ã«ã©å€æ°ãžé
åå€æ°ã代å
¥ãããš
say __LINE__ . ": \$z = $z"; # èŠçŽ æ°ãå
¥ã
push @ary, qw(A B C D); # ãªã¹ããpushïŒqw/STRING/ã®äŸïŒ
say __LINE__ . ": \@ary = @ary"; # å±éãããŠè¿œå ããã
foreach my $el(@ary) { # foreach ã«ãŒãã¯å
é ããé äœèŠçŽ ã«ãããã¯ãé©çš
say __LINE__ . ": \$el = $el";
}
foreach (@ary) { # ã«ãŒãå€æ°ã宣èšããªããŠã $_ ã§èŠçŽ ãåç
§ã§ãã
say __LINE__ . ": \$_ = $_";
}
say __LINE__ . ": \$_ = $_" foreach (@ary); # åãæå³
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
7: 倪é
8: 30
9: 30
10: 倪é
倪é30
倪é;30
倪é30
16: @ary = 倪é 30
17: @ary = 倪é 30
20: @ary = 倪é 25
23: @ary = 倪é 26
26: @ary = 倪é ABC
29: @ary = 倪é ABD
32: @ary = 倪é ABD XYZ
35: @ary = UVW 倪é ABD XYZ
38: UVW
39: @ary = 倪é ABD XYZ
XYZ
43: @ary = 倪é ABD
46: $z = 2
49: @ary = 倪é ABD A B C D
52: $el = 倪é
52: $el = ABD
52: $el = A
52: $el = B
52: $el = C
52: $el = D
56: $_ = 倪é
56: $_ = ABD
56: $_ = A
56: $_ = B
56: $_ = C
56: $_ = D
59: $_ = 倪é
59: $_ = ABD
59: $_ = A
59: $_ = B
59: $_ = C
59: $_ = D
</syntaxhighlight>
:[[#æ¥é èŸ|æ¥é èŸ]]ã¯ã<code>@</code>ïŒã¢ããããŒã¯ïŒarray ã® aïŒã§ãã
:é
åã®èŠçŽ ã«ã¯ã¹ã«ã©ãŒãå
¥ããïŒã€ã®é
åã«æååãæ°å€ããªãã¡ã¬ã³ã¹ãæ··åšããããšãã§ããŸãã
==== é
åå€æ°ã®ä»£å
¥ã®æå³è« ====
;[https://paiza.io/projects/p8KNkM1toBAaE-FDrQB-Yg?language=perl äŸ]:<syntaxhighlight lang=perl line>
#!/usr/bin/perl
use v5.30.0;
use warnings;
my @x = 1..10;
say __LINE__ . ":\@x --> @x";
my @y = @x;
say __LINE__ . ":\@y --> @y";
$y[$_] *= 2 foreach (0..$#y);
say __LINE__ . ":\@x --> @x";
say __LINE__ . ":\@y --> @y";
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
6:@x --> 1 2 3 4 5 6 7 8 9 10
9:@y --> 1 2 3 4 5 6 7 8 9 10
12:@x --> 1 2 3 4 5 6 7 8 9 10
13:@y --> 2 4 6 8 10 12 14 16 18 20
</syntaxhighlight>
: Perlã§ãé
åå€æ°å士ã®ã³ããŒã¯ãå
šãŠã®èŠçŽ ã®äžå¯Ÿäžã®è€è£œã§ãã
åœããåã®ããã§ãããåçåä»ãã®èšèªã®äžã§ã¯ãæå€ãšå°æ°æŽŸã§ãã
;[https://paiza.io/projects/XtC3FJgpWRmvjsDT7XZ5xQ?language=ruby Rubyã®äŸ]:<syntaxhighlight lang=ruby line>
x = Array(1..10)
puts "#{__LINE__}:x --> #{x}"
y = x
puts "#{__LINE__}:y --> #{y}"
y.map!{|i| i * 2}
puts "#{__LINE__}:x --> #{x}"
puts "#{__LINE__}:y --> #{y}"
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
2:x --> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
5:y --> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
8:x --> [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]
9:y --> [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]
</syntaxhighlight>
: Rubyã§ã¯ãé
åã®ä»£å
¥ã¯å¥åãäœãããšã«ãªããåããªããžã§ã¯ãã瀺ããŸãã
: ãã®ãããçæ¹ã®å€æ°ãã€ããé
åèŠçŽ ã®å€ãæžæãããšãä»æ¹ããåç
§ããŠãæžæãããŸãã
: è€è£œã欲ããå Žåã¯ãArray$clone ãã€ãããŸãã
;[https://paiza.io/projects/k7MsUa_QJF7FK2CqX2uO6A?language=javascript JavaScriptã®äŸ]:<syntaxhighlight lang=js>
let x = [...Array(10)].map((_, i) => i + 1)
console.log(`x --> ${x}`)
let y = x
console.log(`y --> ${y}`)
for (let i = 0, len = y.length; i < len; i++)
y[i] *= 2
console.log(`x' --> ${x}`)
console.log(`y' --> ${y}`)
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
x --> 1,2,3,4,5,6,7,8,9,10
y --> 1,2,3,4,5,6,7,8,9,10
x' --> 2,4,6,8,10,12,14,16,18,20
y' --> 2,4,6,8,10,12,14,16,18,20
</syntaxhighlight>
: JavaScriptãé
åã®ä»£å
¥ã¯å¥åãäœãããšã«ãªããåããªããžã§ã¯ãã瀺ããŸãã
: ãã¯ããçæ¹ã®å€æ°ãã€ããé
åèŠçŽ ã®å€ãæžæãããšãä»æ¹ããåç
§ããŠãæžæãããŸãã
: è€è£œã欲ããå Žåã¯ãArray$concat ãç¡åŒæ°ã§ã€ãããŸãã
ãã®ã»ããPythonãé
åã®ä»£å
¥ã¯å¥åäœæã§ããå°æ°æŽŸã§ãããPHPãPerlãšåãã§ãã
==== é
åãªãã©ã« ====
é
åã«ãªãã©ã«ã¯ãããŸããã
é
åãªãã©ã«é¢šã«èŠãããã®ã¯[[#ãªã¹ã|ãªã¹ã]]ã§ãã
=== ãªã¹ã ===
ãªã¹ãã¯ãã¹ã«ã©ãŒã»é
åãããã·ã¥ã®ãããªããŒã¿åã§ã¯ãªãæžåŒã§ãã
é
åå€æ°ã®åæåã«ãªã¹ãã䜿ãããã®ã§çŽããããã®ã§ããã
:*ãé
åå€æ°ãã¯ããããªã¹ãå€æ°ãã¯ãããŸããã
:*ããªã¹ããè¿ãé¢æ°ããšã¯ãããŸããããé
åãè¿ãé¢æ°ããšã¯ãããŸããã
:*ããªã¹ãã³ã³ããã¹ãããšã¯ãããŸãããé
åã³ã³ããã¹ããšã¯ãããŸããã
ãªã¹ãã¯ãè€æ°ã®å€æ°ãäžæ¬å®£èšããããå€å€ä»£å
¥ã«ã€ããããŸãã
é
åãšãªã¹ãã¯äŒŒéã£ãŠããŸããåºå¥ããå¿
èŠããããŸãã
;[https://paiza.io/projects/wYmelul05QQHTPX0s65TIA?language=perl äŸ]:<syntaxhighlight lang=perl>
use v5.12; # v5.12 㯠use strict ã®æ©èœãå«ãã§ããŸãã
use warnings;
my @name = ("倪é", "次é");
my ($name1, $name2) = @name;
say $name[1];
say "$name[1]";
say @name;
say "@name";
my ($x, $y) = (123, 999);
say "$x $y"
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
次é
次é
倪é次é
倪é 次é
123 999
</syntaxhighlight>
ãªãã
:<syntaxhighlight lang=perl>
my @name = ("倪é", "次é");
print ">$name<\n";
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
><
</syntaxhighlight>
:ãšã©ãŒã«ã¯ãªããŸãããã<code>$name</code>ã¯è¡šç€ºãããŸããã
ã€ãã«
:<syntaxhighlight lang=perl highlight="1,2">
use v5.12; # v5.12 㯠use strict ã®æ©èœãå«ãã§ããŸãã
use warnings;
my @name = ("倪é", "次é");
print ">$name<\n";
</syntaxhighlight>
;ãšã©ãŒè¡šç€º:<syntaxhighlight lang=text>
Global symbol "$name" requires explicit package name (did you forget to declare "my $name"?) at Main.pl line 5.
Execution of Main.pl aborted due to compilation errors.
</syntaxhighlight>
:ãšïŒã€ã®ãã©ã°ããè£ããšããšã©ãŒãçºèŠããŠãããŸãã
::<syntaxhighlight lang=perl>
use v5.12;
use warnings;
</syntaxhighlight>
:ã®ïŒã€ã¯å¿
ãæå®ããŸãããã
::<code>use v5.12;</code>ã®<code>v5.12</code>ã¯ããã®ããŒãžã§ã³ããstrictããã£ãã©ã«ãåãããã®ã§äœ¿ããŸãããã2010/04/16 ãªãªãŒã¹ãªã®ã§ã³ã¬ããå€ããªãªãŒã¹ã䜿ã£ãŠããå¯èœæ§ã¯2022幎11æçŸåšãªããšæããŸãããŸãã<code>use v5.12;</code>ããã° say ã䜿ããããã«ãªããŸãã
[[#qw|qw]]æŒç®åã䜿ã£ãŠ
:<syntaxhighlight lang=perl>
my @name = qw(倪é 次é);
say $name[1];
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
次é
</syntaxhighlight>
qwæŒç®åã¯ã空çœã§åºåã£ãæåã®ã·ãŒã±ã³ã¹ãåãåããåºåãããæååãèŠçŽ ãšãããªã¹ããè¿ããŸãã
;ãªã¹ãã®æååå:<syntaxhighlight lang=perl>
my @ary = (10,4,2);
say @ary ;
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
1042
</syntaxhighlight>
:ãã®ããã«ããªã¹ãã®èŠçŽ ã¯æåååãããåŸãåºåãæåãªãã«é£çµãããŸãã
==== åºåãæå ====
<code>10,4,2</code>ã®ããã«åºåãæåãã€ããŠåºåãããå ŽåãçµèŸŒã¿é¢æ° [[#join|join]] ã䜿ãããç¹æ®å€æ°<var>$,</var>ã䜿ããŸãã
;[https://paiza.io/projects/y9Qw_wFxNW2qXe2UAUu6AQ?language=perl join ãš $,]:<syntaxhighlight lang=perl>
use v5.12; # v5.12 㯠use strict ã®æ©èœãå«ãã§ããŸãã
use warnings;
my @ary = (10, 4, 2, 8);
say join "," , @ary;
{
local $, = "'";
say @ary;
}
say @ary;
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
10,4,2,8
10'4'2'8
10428
</syntaxhighlight>
: $, ã¯ã°ããŒãã«ãªç¹æ®å€æ°ãªã®ã§ãäžæŠå€ãå€ãããšèªåçã«ã¯å
ã«æ»ããªãã®ã§ãã³ãŒããããã¯ã§ã¹ã³ãŒããåã£ãŠlocal宣èšããããšã§å€ã埩垰ã§ããããã«ããŸãã
==== sorté¢æ°ã«ãã䞊ã¹æã ====
sorté¢æ°ã䜿ããšãé
åã䞊ã¹æ¿ããäºãã§ããŸãã
䞊ã¹æ¿ããããšãã§ããŸãããæ°å€ã®é
åã§ãã£ãŠãèŸæžé ã«äžŠã¹æ¿ããŠããŸããŸãã
;[https://paiza.io/projects/H1YiOKjiF1FyAD0ARDBrsA?language=perl èŸæžé ã«ãœãŒã]:<syntaxhighlight lang=perl>
use v5.12; # v5.12 㯠use strict ã®æ©èœãå«ãã§ããŸãã
use warnings;
my @ary = (10, 4, 2, 8);
say "0: @ary";
say "1: @{[ sort @ary ]}";
say "2: @{[ sort { $a <=> $b } @ary ]}";
say "3: @{[ sort { $b <=> $a } @ary ]}";
say "4: @{[ sort { $b cmp $a } @ary ]}";
say "5: @{[ sort { $a cmp $b } @ary ]}";</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
0: 10 4 2 8
1: 10 2 4 8
2: 2 4 8 10
3: 10 8 4 2
4: 8 4 2 10
5: 10 2 4 8
</syntaxhighlight>
:<code>1:</code>ãèŸæžé ã«ãªãçç±ã¯ãæ¯èŒãæååãšããŠè¡ãªãããããã§ãã
:<code>2:</code>ã®<code>{$a <=> $b}</code>ãè¿œå éšåã§ããã<var>$a</var>? <code><=></code>? <var>$b</var> ãä»ãŸã§ãšæ°é
ãéããŸãã
: sorté¢æ°ã¯Perl4ã®é ãããããããŸãªã<var>@_</var>ã䜿ããšããã§ãããéå»ã®ã³ãŒããšã®åŸæ¹äºææ§ãããã®åœ¢åŒã§æ®ã£ãŠããŸãã
:: ãããã¿ã€ã($$)ã䜿ãæ¹æ³ãçšæãããŸããããç¡åé¢æ°ã䜿ããªãã®ã§åé·ãªè¡šçŸã«ãªããåå空éæ±æãšããæå³ã§ã¯ $a $b ãšããåè² ã§ãã
: <var>$a</var>ãš<var>$b</var>ã¯ãããã±ãŒãžå
ã«æå±ããŠããã°ããŒãã«å€æ°ã§ãïŒsub ã®ããã« @_ ã§åŒæ°ãåãåãã®ã§ã¯ãªãã°ããŒãã«å€æ°ã䜿ã£ãŠããŸãïŒã
: <code><=></code> ã¯å®å®è¹æŒç®åãšããããäºé
æŒç®åã§ã倧ãªãïŒ1ïŒã»çããïŒ0ïŒã»å°ãªãïŒ-1ïŒãè¿ããŸãã
: sort ã¯äžŠã¹æ¿ãã®ã¢ã«ãŽãªãºã ã®ãæ¯èŒãã®éšåã«ãã®ãããã¯ã䜿ããŸãã
:: <var>$a</var>ãš<var>$b</var>ã¯ããã®ãããªåºèªã§ãã use strict ã®ãã°ããŒãã«å€æ°ã䜿ãããŠããŸããã®ãã§ãã¯ãããæããŠããŸããŸãã
:: <var>$a</var>ãš<var>$b</var>ã¯ãsort 以å€ã§ã¯äœ¿ã£ãŠã¯ãããŸããã
:: <var>$a</var>ãš<var>$b</var>ã¯ãsort 以å€ã§ã¯äœ¿ã£ãŠã¯ãããŸããã
:<code>3:</code>ã®<code>{$b <=> $a}</code>ãå€æŽéšåã§ããå·Šå³ã®é
ãå
¥ãæ¿ããã®ã§éé ã«ãœãŒããããŸãã
:<code>4:</code>ã®<code>{$b cmp $a}</code>ãå€æŽéšåã§ããæ¯èŒæŒç®åãæååæ¯èŒæŒç®åãšããã®ã§ãèŸæžéé ã«ãœãŒããããŸãã
:<code>5:</code>ã®<code>{$a cmp $b}</code>ãå€æŽéšåã§ããå·Šå³ã®é
ãå
¥ãæ¿ããŸããããããã³ãŒããããã¯ãæž¡ããªãã£ããšãã®ãã£ãã©ã«ãåäœã§ãã
=== ã¹ã©ã€ã¹ ===
ã¹ã©ã€ã¹ã¯ãé
åãããã·ã¥ã®éšåéåãžã®ã¢ã¯ã»ã¹æ¹æ³ãæäŸããŸãã
;[https://paiza.io/projects/L-0XdL9AI2_uwxFw2wsskw?language=perl ã¹ã©ã€ã¹ã®äŸ]:<syntaxhighlight lang=perl line>
use v5.12; # v5.12 㯠use strict ã®æ©èœãå«ãã§ããŸãã
use warnings;
my @ary = map { $_ * 10 } 0..9;
my %hash;
$hash{$_} = uc $_ foreach "a".."f";
print <<EOS;
\@ary --> @ary
\@ary[1,4] --> @ary[1,4]
\@ary[1..4] --> @ary[1..4]
\@ary[0,1,4..6] --> @ary[0,1,4..6]
\@ary[9,0] --> @ary[9,0]
\%hash --> @{[ map {"$_=>$hash{$_},"} sort keys %hash ]}
\@hash{"a","b"} --> @{[ @hash{"a","b"} ]}
\@hash{"d".."f"} --> @{[ @hash{"d".."f"} ]}
\@hash{"f","a"} --> @{[ @hash{"f", "a"} ]}
\@hash{qw(b e e f)} --> @{[ @hash{qw(b e e f)} ]}
\@hash{"f","a"} --> @{[ @hash{"f","a"} ]}
EOS
say __LINE__ . ": \@ary --> @ary";
@ary[3..5] = 5..7;
say __LINE__ . ": \@ary --> @ary";
@ary[5..9] = 5..100;
say __LINE__ . ": \@ary --> @ary";
say __LINE__ . qq(: \%hash --> @{[ map {"$_=>$hash{$_},"} sort keys %hash ]});
@hash{"a".."c"} = "AA".."AC";
say __LINE__ . qq(: \%hash --> @{[ map {"$_=>$hash{$_},"} sort keys %hash ]});
delete @hash{"b", "e"};
say __LINE__ . qq(: \%hash --> @{[ map {"$_=>$hash{$_},"} sort keys %hash ]});
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
@ary --> 0 10 20 30 40 50 60 70 80 90
@ary[1,4] --> 10 40
@ary[1..4] --> 10 20 30 40
@ary[0,1,4..6] --> 0 10 40 50 60
@ary[9,0] --> 90 0
%hash --> a=>A, b=>B, c=>C, d=>D, e=>E, f=>F,
@hash{"a","b"} --> A B
@hash{"d".."f"} --> D E F
@hash{"f","a"} --> F A
@hash{qw(b e e f)} --> B E E F
@hash{"f","a"} --> F A
24: @ary --> 0 10 20 30 40 50 60 70 80 90
26: @ary --> 0 10 20 5 6 7 60 70 80 90
28: @ary --> 0 10 20 5 6 5 6 7 8 9
30: %hash --> a=>A, b=>B, c=>C, d=>D, e=>E, f=>F,
32: %hash --> a=>AA, b=>AB, c=>AC, d=>D, e=>E, f=>F,
34: %hash --> a=>AA, c=>AC, d=>D, f=>F,
</syntaxhighlight>
:é
åã®å Žåã¯ã<code>@ é
åå€æ° [ ãªã¹ã ]</code>ã®åœ¢åŒã§ããªã¹ãã®èŠçŽ ãæ·»åãšããŠå¯Ÿå¿ããå€ãªã¹ããããããŸãã
:ããã·ã¥ã®å Žåã¯ã<code>@ ããã·ã¥å€æ° { ãªã¹ã }</code>ã®åœ¢åŒã§ããªã¹ãã®èŠçŽ ãããŒãšããŠå¯Ÿå¿ããå€ã®ãªã¹ããããããŸãã
:é
åãããã·ã¥ããã¹ã©ã€ã¹ã¯å·ŠèŸºå€ã®ãªã¹ãã§ãã¹ã©ã€ã¹ã巊蟺ã«ãªã¹ãã代å
¥ãããšãé
åãããã·ã¥ã®å
容ãæžãæããããšãã§ããŸãã
:ã¹ã©ã€ã¹ã®åŒæ°ã®ãªã¹ãã¯ã<code>,</code>ã§åºåã£ãå€ã<code>..</code>ã§ç€ºããç¯å²ïŒããžã«ã«ã€ã³ã¯ãªã¡ã³ããå«ãïŒãqw//ãé¢æ°ã®æ»å€ãªã©æ§ã
ãªããªãšãŒã·ã§ã³ãããããã®ã§ã匷åãªè¡šçŸåãæã¡ãŸãããåæã«ããºã«çã«é£è§£ãªã³ãŒããæžããããšãæå³ããŠããŸãã
=== ããã·ã¥ ===
ããã·ã¥ã¯ãããŒãšãªãæååãšã¹ã«ã©ãŒã®å€ããã¢ã®éåã®ããŒã¿åã§ããããã·ã¥ã¯é
åãšã¯éã£ãŠãé åºã¯äžå®'''ã§ãªã'''ããšãä¿èšŒãããŸãã
ããã·ã¥å€æ°ã®æ¥é èŸã¯ <code>%</code> ã§ãã
;æ§æ:<syntaxhighlight lang=perl>
%ããã·ã¥å€æ° = (
"ããŒ1" => å€1,
"ããŒ2" => å€2,
ïŒ
ïŒ
"ããŒn" => å€n,
);
</syntaxhighlight>
: ããŒããPerlã®èå¥åãšããŠæå¹ãªãã°
;æ§æ:<syntaxhighlight lang=perl>
%ããã·ã¥å€æ° = (
ããŒ1 => å€1,
ããŒ2 => å€2,
ïŒ
ïŒ
ããŒn => å€n,
);
</syntaxhighlight>
:ãšæžããŸãã
: ããŒããPerlã®èå¥åãšããŠæå¹ã«ããã°
:<syntaxhighlight lang=perl>
my %myHash = ("Key1" => 3, "Key2" => 4);
say $myHash{"Key1"};
</syntaxhighlight>
:ã¯
:<syntaxhighlight lang=perl>
my %myHash = (Key1 => 3, Key2 => 4);
say $myHash{Key1};
</syntaxhighlight>
: ãšæžãããšãã§ããŸãã
;[https://paiza.io/projects/9t_u-eXFuIh5QHinLgQu6Q?language=perl ã³ãŒãäŸ]:<syntaxhighlight lang=perl>
#!/usr/bin/perl
use v5.12;
use warnings;
my %hash = (
Tom => 18,
Joe => 16,
);
say __LINE__ . qq(: \$hash{Tom} -> $hash{Tom});
say __LINE__ . qq(: \$hash{Joe} -> $hash{Joe});
##say __LINE__ . qq(: \$hash{Sam} -> $hash{Sam});
$hash{Tom}++;
say __LINE__ . qq(: \$hash{Tom} -> $hash{Tom});
$hash{Joe}++;
say __LINE__ . qq(: \$hash{Joe} -> $hash{Joe});
say __LINE__ . qq(: \%hash -> %hash);
say __LINE__ . qq(: \@{[%hash]} -> @{[%hash]});
$hash{Sam} = 0;
say __LINE__ . qq(: \@{[%hash]} -> @{[%hash]});
say __LINE__ . qq(: \@{[keys %hash]} -> @{[keys %hash]});
say __LINE__ . qq(: \@{[values %hash]} -> @{[values %hash]});
say __LINE__ . qq!: \@{[map { "\$_:\$hash{\$_}" } keys %hash]} -> @{[map { "$_:$hash{$_}" } keys %hash]}!;
foreach my $k(keys %hash) {
$hash{$k}++;
}
say __LINE__ . qq!: \@{[map { "\$_:\$hash{\$_}" } keys %hash]} -> @{[map { "$_:$hash{$_}" } keys %hash]}!;
foreach (keys %hash) {
$hash{$_}++;
}
say __LINE__ . qq!: \@{[map { "\$_:\$hash{\$_}" } keys %hash]} -> @{[map { "$_:$hash{$_}" } keys %hash]}!;
$hash{$_}++ foreach (keys %hash);
say __LINE__ . qq!: \@{[map { "\$_:\$hash{\$_}" } keys %hash]} -> @{[map { "$_:$hash{$_}" } keys %hash]}!;
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
10: $hash{Tom} -> 18
11: $hash{Joe} -> 16
15: $hash{Tom} -> 19
17: $hash{Joe} -> 17
19: %hash -> %hash
20: @{[%hash]} -> Joe 17 Tom 19
23: @{[%hash]} -> Tom 19 Sam 0 Joe 17
24: @{[keys %hash]} -> Tom Sam Joe
25: @{[values %hash]} -> 19 0 17
26: @{[map { "$_:$hash{$_}" } keys %hash]} -> Tom:19 Sam:0 Joe:17
31: @{[map { "$_:$hash{$_}" } keys %hash]} -> Tom:20 Sam:1 Joe:18
36: @{[map { "$_:$hash{$_}" } keys %hash]} -> Tom:21 Sam:2 Joe:19
39: @{[map { "$_:$hash{$_}" } keys %hash]} -> Tom:22 Sam:3 Joe:20
</syntaxhighlight>
: ãã®ããã«ãããŒã«å¯Ÿå¿ããå€ãè¿ããŸãã
: <code> => </code> æŒç®åã¯ã³ã³ãæŒç®åãšåãåããããŸãããå·Šãªãã©ã³ãã®å€ãå¿
ãæååãšããŠæ±ããããããã·ã¥ãçæãããšãã«å€ãçšããããŸãããŸããã³ã³ãã䜿ããããããŒãšå€ã®å¯Ÿå¿ãæ確ã«ãªããšããå©ç¹ããããŸãã
: ããã·ã¥ã¯ããŒãšå€ãé¢é£ä»ãããããªã¹ãã§ãã
:; å€ã®åç
§: <code>$ããã·ã¥å€æ° { ã㌠}</code>
:: å€ã®åç
§ã巊蟺å€ã«ãããšãæ¢åã®ããã·ã¥ãšã³ããªãŒã®å€ã®æŽæ°ããããã¯ååšããªãããŒãæã£ããšã³ããªãŒãè¿œå ã§ããŸãã
:; ãšã³ããªãŒã®åé€: <code>delete $ããã·ã¥å€æ° { ã㌠}</code>
;ããã·ã¥ã®é åº:<syntaxhighlight lang=perl>
%age = (
Tom => 30,
Joe => 20,
);
print <<EOS;
@{[%age]}
EOS
</syntaxhighlight>
;å®è¡çµæ(1):<syntaxhighlight lang=text>
Tom 30 Joe 20
</syntaxhighlight>
;å®è¡çµæ(2):<syntaxhighlight lang=text>
Joe 20 Tom 30
</syntaxhighlight>
: å®è¡ãããã³ã«ã'''å®è¡çµæ(1)'''ãš'''å®è¡çµæ(2)'''ãã©ã³ãã ã«åºåãããŸãã
: é
åã¯ããŒã¿ã®äžŠã³é ã決ãŸã£ãŠããŸãããããŒãšå€ããã¢ã«ãªã£ãŠãããšããããšã®ã¿ãä¿èšŒãããããŒã¿ã®é çªã¯ä¿èšŒãããŸããïŒä¿èšŒãããªãã©ããããã»ãã¥ãªãã£åŒ·åã®ãããåç
§ãããã³ã«é åºãå€ãããŸã<ref>PHPãRubyã§ã¯ããã·ã¥ãé åºã¯ä¿èšŒãããŸããPerlã§ã¯ããã®ãããªçšéã« Tie::Hash ã¢ãžã¥ãŒã«ã䜿ããŸã</ref>ïŒã
: ç¹ã« Perl 5.18.0 以éã¯ãããã·ã¥å®è£
ã«å¯Ÿãããã¢ã«ãŽãªãºã è€éåæ»æã( ''Algorithmic Complexity Attacks'' )ã«å¯ŸããŠååãªåŒ·åºŠãåŸããããããã·ã¥ã·ãŒãã®ã©ã³ãã åããããã·ã¥ãã©ããŒãµã«ã®ã©ã³ãã åãããã±ããé åºã®æ¹ä¹±ããæ°ããããã©ã«ãã®ããã·ã¥é¢æ°ãã代æ¿ããã·ã¥é¢æ° Siphashããªã©ã®ã»ãã¥ãªãã£åŒ·åãè¡ãªãããŠããŸã<ref>[https://perldoc.perl.org/perlsec#Algorithmic-Complexity-Attacks Algorithmic Complexity Attacks]</ref>ã
* ä»èšèªã®é¡äŒŒæ©èœ
*;JsvaScript:Objectãªããžã§ã¯ãïŒã«ãŒããªããžã§ã¯ãïŒãããã·ã¥ïŒé£æ³é
åïŒã§ããããobjectã¯ãããã¿ã€ããå«ãã®ã§ Mapãªããžã§ã¯ãã®ã»ããããè¿ãã§ãã
*;Python:èŸæžå
*;Ruby:Hashã¯ã©ã¹
*;AWK:AWKã®é
åã¯é£æ³é
åã§ãã
{{See also|[[W:é£æ³é
å|é£æ³é
å]]}}
== Perlãæ±ãããŒã¿ ==
Perlã§ã¯ãæŒç®åã«ãã£ãŠãªãã©ã³ãã®åã決ãŸãã®ã§ãããã«åãããŠæé»ã®åå€æãèµ·ãããŸãã
ããã¯ãæ瀺çãªåå€æã®æéãçãäžæ¹ãããã°ã©ããŒã®æå³ãšã¯ç°ãªãå€æãè¡ãªãããå±ãããå«ãã§ããŸãã
<!-- UNIXæéå士ã æ¯èŒãããšã > ã§ãªã gt ã§æ¯èŒããŠããã³ãŒããUNIXæéã®æ¡äžãã§è
ã£ãäºäŸ -->
;[https://paiza.io/projects/UqA5AgE_a4ozEEiu9eORwA?language=perl äŸ]:<syntaxhighlight lang=perl>
use v5.12; # v5.12 㯠use strict ã®æ©èœãå«ãã§ããŸãã
use warnings;
my $x = 52;
my $y = "nd street";
say $x + $y;
say $x . $y;
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
52
52nd street
</syntaxhighlight>
;å®è¡æãšã©ãŒ:<syntaxhighlight lang=text>
Argument "nd street" isn't numeric in addition (+) at Main.pl line 6.
</syntaxhighlight>
: <code>use warnings;</code>ã§èŠåãæå¹ã«ããã®ã§ãæååã0ã«æé»å€æãããããšãææãããŠããŸãã
=== æååãªãã©ã« ===
ãHello Worldã ã®ãããªæååãPerl ã§æ±ãå Žåã<code>"</code>ïŒããã«ã¯ã©ãŒããŒã·ã§ã³ïŒã§å²ã¿ãŸãã
;äŸ:<syntaxhighlight lang=perl>
"Hello World"
</syntaxhighlight>
ã·ã³ã°ã«ã¯ã©ãŒããŒã·ã§ã³ <nowiki>' '</nowiki> ã§æååãå²ãããšãåºããŸããã
# <code>\n</code>ãªã©ã®ããã¯ã¹ã©ãã·ã¥ãšã¹ã±ãŒãã·ãŒã±ã³ã¹ã眮æãããªãã
# å€æ°ãåŒãå±éãããªãã
ãã®ïŒç¹ãããã«ã¯ã©ãŒããŒã·ã§ã³ã§å²ãã å Žåãšç°ãªããŸãã
=== ååŒ·å¶ ===
;[https://paiza.io/projects/qxauxcep2Ky84CdIPvuvWw?language=perl äŸ]:<syntaxhighlight lang=perl>
use v5.30.0;
use warnings;
my $x = "123";
my $y = 654;
say $x . $y;
say $x + $y;
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
123654
777
</syntaxhighlight>
: <code>.</code>(ããªãªã ; æååé£çµæŒç®å) ã¯ã䞡蟺ãæååã«æé»ã®ãã¡ã«å€æããŠé£çµããæååãè¿ããŸãã
: <code>+</code>(ãã©ã¹ ; æ°å€å ç®æŒç®å) ã¯ã䞡蟺ãæ°å€ã«æé»ã®ãã¡ã«å€æããŠåãè¿ããŸãã
ãã®ããã«ãPerlã§ã¯æŒç®åããªãã©ã³ããæé»ã«å€æããã®ã§ãæŒç®åããšã®ãªãã©ã³ãåã®ç解ã倧åã«ãªããŸãã
=== åŒçšç¬ŠãšåŒçšç¬Šé¡äŒŒæŒç®å ===
éåžžãåŒçšç¬Šã§å²ãŸããæååã¯ããªãã©ã«å€ãšããŠèããããŠããŸãããPerlã§ã¯æŒç®åãšããŠæ©èœããæ§ã
ãªçš®é¡ã®è£éããã¿ãŒã³ãããã®æ©èœãæäŸããŸãã
Perlã§ã¯ããããã®åäœã®ããã«éåžžã®åŒçšç¬ŠãçšæãããŠããŸãããä»»æã®åŒçšç¬Šãéžæããæ¹æ³ãçšæãããŠããŸãã
次ã®è¡šã§ã¯ã{}ã¯åºåãæåã®ãã¢ãè¡šããŠããŸãã
:{| class=wikitable
|+ åŒçšç¬ŠãšåŒçšç¬Šé¡äŒŒæŒç®å
|- style="text-align:center"
! æ
£çšè¡šèš !! æ±çšè¡šèš !! æå³ !! å€æ°ãåŒã®å±é
|- style="text-align:center"
| <nowiki>''</nowiki> || q{} || ãªãã©ã« || äžå¯
|- style="text-align:center"
| "" || qq{} || ãªãã©ã« || å¯
|- style="text-align:center"
| `` || qx{} || ã³ãã³ã || å¯<sup>â </sup>
|- style="text-align:center"
| || qw{} || åèªãªã¹ã || äžå¯
|- style="text-align:center"
| // || m{} || ãã¿ãŒã³ããã || å¯<sup>â </sup>
|- style="text-align:center"
| || qr{} || ãã¿ãŒã³ || å¯<sup>â </sup>
|- style="text-align:center"
| || s{}{} || 眮æ || å¯<sup>â </sup>
|- style="text-align:center"
| || tr{}{} || å€æ || äžå¯<sup>â¡</sup>
|- style="text-align:center"
| || y{}{} || å€æ || äžå¯<sup>â¡</sup>
|- style="text-align:center"
| || <<EOF || ãã¢ããã¥ã¡ã³ã || å¯<sup>â </sup>
|- style="text-align:right;font-size:9pt"
| colspan=4|â :<nowiki>''</nowiki> ãããªãã¿ã§ãªãå Žåã«éããŸãã<hr>â¡:äžå®ã®æ¡ä»¶ã§å¯ tr ã®é
ç®åç
§ã
|}
=== æ°å€ ===
Perlã®æ°å€ã¯ãå
éšçã«ã¯ãã€ãã£ããªæŽæ°ã»ãã€ãã£ããªæµ®åå°æ°ç¹æ°ã»æ°å€ã瀺ãæååã§èšæ¶ããŸãã
æ°å€ãªãã©ã«ã¯ã10é²æ°ã2é²æ°ïŒ0bãå眮ïŒ, 8é²æ°ïŒ0ãããã¯0oãå眮ïŒ, 16é²æ°ïŒ0xãå眮ïŒã«ãã£ãŠæ°å€ãè¡šçŸã§ããŸãã
ãŸããææ°è¡šçŸãå¯èœã§ãã
;[https://www.mycompiler.io/view/IstR4leXqMQ äŸ]:<syntaxhighlight lang=perl>
use v5.34;
use warnings;
print <<EOS;
42\t--> @{[ 42 ]}
0b1101\t--> @{[ 0b1101 ]}
0177\t--> @{[ 0177 ]}
0o333\t--> @{[ 0o333 ]}
0xff\t--> @{[ 0xff ]}
3.14\t--> @{[ 3.14 ]}
5.00e3\t--> @{[ 5e3 ]}
EOS</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
42 --> 42
0b1101 --> 13
0177 --> 127
0o333 --> 219
0xff --> 255
3.14 --> 3.14
5.00e3 --> 5000
</syntaxhighlight>
==== éæ°:NaNãšç¡é倧:Inf ====
Perlã¯ãæ°å€ãšããŠã®éæ°(NaN)ãšç¡é倧(Inf)ããµããŒãããŠããŸãã
ãã ãã倧æŠã®NaNãInfãè¿ããããªæŒç®ã§ã¯äŸå€ãäžãã£ãŠæ¥ãŸãããæ°å€ãªãã©ã«ãšããŠã® NaN ã Inf ã¯ãªãã"NaN" ãš "Inf" ãã€ãããŸãã
ãã®ãšãã倧æåå°æåãåããåçŽãªå
é äžèŽãªã®ã§ã以äžã®ãããªå°ãé¢åãªç¶æ³ãããããŸãã
;[https://paiza.io/projects/D2Oj39_YCmTg8PB9fTj7Qw?language=perl äŸ]:<syntaxhighlight lang=perl line>
use v5.30.0; # v5.12 以é㯠use strict ã®æ©èœãå«ãã§ããŸãã
use warnings;
eval { my $x = 1.0/0.0 }; # JavaScript, Ruby ã§ã¯ç¡é倧ãããã
warn $@ if $@; # Perl ã§ã¯ãIllegal division by zero
eval { my $x = 0.0/0.0 }; # JavaScript, Ruby ã§ã¯éæ°ãããã
warn $@ if $@; # Perl ã§ã¯ãIllegal division by zero
say 0+"information";
say 0+"nano";
my $huge = 10**1010;
say $huge;
say -$huge;
say $huge - $huge;
</syntaxhighlight>
;å®è¡æã®èŠå:<syntaxhighlight lang=text>
Illegal division by zero at Main.pl line 4.
Illegal division by zero at Main.pl line 7.
Argument "information" isn't numeric in addition (+) at Main.pl line 10.
Argument "nano" isn't numeric in addition (+) at Main.pl line 11.
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
Inf
NaN
Inf
-Inf
NaN
</syntaxhighlight>
: æ°å€ãšããŠã®ç¡é倧㯠âInfâ ã«ãéæ°ã¯ âNaNâ ã«æ£èŠåãããŸãã
: åçŽãªæååããæ°å€ãžã®å€æïŒPerlãåžžã
è¡ãæé»ã®åŒ·å¶å€æã§ãïŒç¡é倧ãéæ°ã«è»¢ãã§ããŸãå±ããããããšã瀺ããŠããŸãã
å€æ° <code>$n</code> ããããšãã <code>$n != $n</code> ãçãªã NaNã<code>abs($n) == "Inf"</code> ãçãªã Inf ãŸã㯠-Inf ã§ãã
==== æŒç®èª€å·®ãšç²ŸåºŠä¿èšŒ ====
Perlã«éãããæ°å€èšç®ã«ã¯èª€å·®ã䌎ããŸãã
äŸãã°ã0.01 ã 100 å足ããŠã 1 ã«ã¯ãªããŸããã
ãããä¿èšŒããæ¹æ³ã¯ããã€ããããŸãããããã§ã¯[[W:ã«ãã³ã®å ç®ã¢ã«ãŽãªãºã |ã«ãã³ã®å ç®ã¢ã«ãŽãªãºã ]]ã玹ä»ããŸãã
;[https://paiza.io/projects/D2Oj39_YCmTg8PB9fTj7Qw?language=perl äŸ]:<syntaxhighlight lang=perl>
use v5.30; # v5.12 以é㯠use strict ã®æ©èœãå«ãã§ããŸãã
use warnings;
my ( $delta, $iter ) = ( 0.01, 100 );
my $sum = 0.0;
$sum += $delta foreach ( 1 .. $iter );
say sprintf "çŽ æŽãªå®è£
:\t\t%.55f", $sum;
$sum = 0;
my $c = 0;
foreach ( 1 .. $iter ) {
my $y = $delta - $c;
my $t = $sum + $y;
$c = ( $t - $sum ) - $y;
$sum = $t;
}
say sprintf "ã«ãã³ã®å ç®ã¢ã«ãŽãªãºã :\t%.55f", $sum;
use List::Util qw(sum);
my @v;
push @v, $delta foreach ( 1 .. $iter );
say sprintf "List::Util::sum:\t%.55f", List::Util::sum @v;
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
çŽ æŽãªå®è£
: 1.0000000000000006661338147750939242541790008544921875000
ã«ãã³ã®å ç®ã¢ã«ãŽãªãºã : 1.0000000000000000000000000000000000000000000000000000000
List::Util::sum: 1.0000000000000006661338147750939242541790008544921875000
</syntaxhighlight>
: List::Utilã¢ãžã¥ãŒã«ã®sumããçŽ æŽãªå®è£
ãšåãå€ãšããã®ã¯ãããã§ããã
== ç¹æ®å€æ° ==
{{Main|[https://perldoc.jp/docs/perl/5.36.0/perlvar.pod#SPECIAL32VARIABLES perlvar(ja) ç¹æ®å€æ°]}}
ããã°ã©ããŒãå€æ°ã宣èšããªããŠããããã€ãã®å€æ°ã¯æ©èœã決ãŸã£ãŠããŠãäºåã«Perlã«çšæãããŠããããã®ãããªå€æ°ãç¹æ®å€æ°ãããã¯åŠçç³»å®çŸ©æžã¿å€æ°ãšèšããŸãã
=== ããã°ã©ã å ===
ããšãã°ç¹æ®å€æ° $0 ã¯ãããã°ã©ã åã代å
¥ãããŠããŸãã
;[https://paiza.io/projects/M_V-0hGHWrCeTZn4CAU_Fg?language=perl äŸ]:<syntaxhighlight lang=perl>
use v5.12; # v5.12 㯠use strict ã®æ©èœãå«ãã§ããŸãã
use warnings;
say $0;
say `ps -x`;
$0 = "(secret)";
say $0;
say `ps -x`;
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
Main.pl
PID TTY STAT TIME COMMAND
10 ? S 0:00 /bin/sh ./exec_command
11 ? S 0:00 perl Main.pl
12 ? R 0:00 ps -x
(secret)
PID TTY STAT TIME COMMAND
10 ? S 0:00 /bin/sh ./exec_command
11 ? S 0:00 (secret)
13 ? R 0:00 ps -x
</syntaxhighlight>
: $0 ã¯ãå€ãåç
§ããã ãã§ãªãäžæžãããããšãã§ããŸãã
: å€ãäžæžããããšãPerlã®ã¹ã¯ãªããããåç
§ã§ããå€ãå€ããã ãã§ãªããç°å¢ãæžæããŸãã
=== $^O:OSå ===
=== $^T:ããã»ã¹éå§æå» ===
=== $^V:perlã€ã³ã¿ãŒããªã¿ããŒãžã§ã³ ===
=== $$:ããã»ã¹ID ===
;[https://paiza.io/projects/D2p_VZ75c-QrePGlXzyFkg?language=perl äŸ]:<syntaxhighlight lang=perl>
use v5.12; # v5.12 㯠use strict ã®æ©èœãå«ãã§ããŸãã
use warnings;
print <<EOS;
\$^O: $^O\t-- OSå
\$^T: $^T\t-- ããã»ã¹ã®éå§æå»ïŒãšããã¯ããã®éç®ç§ïŒ
\$^V: $^V\t-- perl ã€ã³ã¿ãŒããªã¿ãŒããŒãžã§ã³
\$\$: $$\t-- Process ID
EOS
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
$^O: linux -- OSå
$^T: 1668142037 -- ããã»ã¹ã®éå§æå»ïŒãšããã¯ããã®éç®ç§ïŒ
$^V: v5.30.0 -- perl ã€ã³ã¿ãŒããªã¿ãŒããŒãžã§ã³
$$: 11 -- Process ID
</syntaxhighlight>
== ã³ã³ããã¹ã ==
å€æ°ãé¢æ°ãå®æ°ãªã©ããåŒã®äžã§ã©ã®ããã«è©äŸ¡ãããã決å®ãããã®ã§ãã<br>
倧å¥ãããšã¹ã«ã©ãŒã»ã³ã³ããã¹ããšãªã¹ãã»ã³ã³ããã¹ãããããã¹ã«ã©ãŒã»ã³ã³ããã¹ãã«ããããå€ã¯ã¹ã«ã©ãŒãšããŠããªã¹ãã»ã³ã³ããã¹ãã«ããããå€ã¯ãªã¹ããšããŠè©äŸ¡ãããŸãã<br>
ã³ã³ããã¹ããšå®éã®ããŒã¿ãé£ãéã£ãŠããå Žåã次ã®ãããªèŠåã§è©äŸ¡ãããŸãã
* ã¹ã«ã©ãŒã»ã³ã³ããã¹ãã«ãªã¹ããããããå Žåããªã¹ãã®æåŸã®èŠçŽ ãè©äŸ¡ãããŸãïŒã³ã³ãæŒç®åã®çºïŒã
* ãªã¹ãã»ã³ã³ããã¹ãã«ã¹ã«ã©ãŒãããããå Žåããã®ã¹ã«ã©ãŒ1åã ããèŠçŽ ãšãããªã¹ãã§ãããšè§£éãããŸãã
ã©ã®ããã«ã³ã³ããã¹ããæäŸããããã以äžã«ããã€ãäŸã瀺ããŸãã
代å
¥åŒã¯å³èŸºã«ã巊蟺ãšåãã³ã³ããã¹ããæäŸããŸãïŒ
;[https://paiza.io/projects/-1wL6n-2U8mVA779Za8svw?language=perl ã³ãŒãäŸ]:<syntaxhighlight lang=perl>
my @array = qw(Foo Bar Baz);
my $var = @array;
print $var
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
3
</syntaxhighlight>
: qw ã¯ãã€ã¥ãäžžã«ãã³å
ãã¹ããŒã¹ã§åºåã£ãŠãªã¹ãåããæŒç®åã§ãã
<noinclude>
{{See also|[[Perl/æŒç®å#ã¯ãªãŒãæŒç®å]]}}
</noinclude>
<includeonly>
{{See also|[[#ã¯ãªãŒãæŒç®å]]}}
</includeonly>
é
åã¯ã¹ã«ã©ãŒã»ã³ã³ããã¹ãã§è©äŸ¡ããããšãã®èŠçŽ æ°ãè¿ãã®ã§ãçµæãšããŠ$numberã«ã¯3ã代å
¥ãããŸãã<br>
ãã ã'''ãã®ãããªçµæã«ãªãã®ã¯é
åã ã'''ã§ãã
åè¿°ãããšããããªã¹ããã¹ã«ã©ãŒã»ã³ã³ããã¹ãã§è©äŸ¡ããããšãæåŸã®èŠçŽ ãè¿ãããŸãïŒ
;[https://paiza.io/projects/RjdQUDGdP17kuN2nMeYSWA?language=perl ã³ãŒãäŸ]:<syntaxhighlight lang=perl>
my $var = qw(Foo Bar Baz);
my ($foo, $bar, $baz) = 'Foo';
print <<EOS;
$var
($foo), ($bar), ($baz)
EOS
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
Baz
(Foo), (), ()
</syntaxhighlight>
: å³èŸºã¯ã¹ã«ã©ãŒã§ããã巊蟺ããªã¹ãå€ãæåŸ
ããŠããçºã1ã€ã®èŠçŽ 'Foo'ã®ã¿ãæã€ãªã¹ããšè§£éãããŸãã
ããã $foo ã«ä»£å
¥ãããŸãããæ®ãã®2ã€ã®å€æ°ã«ã€ããŠã¯ã察å¿ããå³èŸºå€ããªãçºæªå®çŸ©ãšãªããŸãã<br>
ãããã£ãŠãããã¯æ¬¡ã®ã³ãŒããšç䟡ã§ãïŒ
:<syntaxhighlight lang=perl>
my ($foo, $bar, $baz) = ('Foo', undef, undef);
</syntaxhighlight>
ãã©ã¯ãŒã宣èšããããµãã«ãŒãã³ã¯ãããã©ã«ãã§åŒæ°ã«ãªã¹ãã»ã³ã³ããã¹ããæäŸããŸãïŒ
:<syntaxhighlight lang=perl>
sub user_func;
user_func 'foo', 'bar', 'baz';
</syntaxhighlight>
ããã¯æ¬¡ã®ããã«è§£éãããŸãã
:<syntaxhighlight lang=perl>
user_func('foo', 'bar', 'baz');
</syntaxhighlight>
ã€ãŸããæ¬åŒ§ã®ãªããµãã«ãŒãã³åŒã³åºãã¯ãªã¹ãæŒç®åãšããŠæ±ãããŸãã
ãããããã
:<syntaxhighlight lang=perl>
user_func('foo'), 'bar', 'baz'
</syntaxhighlight>
ãšè§£éããããã®ãªãããã©ã¯ãŒã宣èšã«ãããã¿ã€ããä»å ããããšã«ãã£ãŠåé
æŒç®åãšããŠè§£éãããããšãã§ããŸãïŒ
:<syntaxhighlight lang=perl>
sub user_func($); # å®è£
ã«ããããã¿ã€ããå¿
èŠ
user_func 'foo', 'bar', 'baz';
</syntaxhighlight>
<noinclude>
{{See also|[[Perl/é¢æ°#ãããã¿ã€ã]]}}
</noinclude>
<includeonly>
{{See also|[[#ãããã¿ã€ã]]}}
</includeonly>
ã¹ã«ã©ãŒã»ã³ã³ããã¹ãã¯ããã«
* [[#æååã³ã³ããã¹ã|æååã³ã³ããã¹ã]]
* [[#æ°å€ã³ã³ããã¹ã|æ°å€ã³ã³ããã¹ã]]
* [[#çåœå€ã³ã³ããã¹ã|çåœå€ã³ã³ããã¹ã]]
* [[#ç¡å¹ã³ã³ããã¹ã|ç¡å¹ã³ã³ããã¹ã]]
ã«çŽ°åãããè©äŸ¡ãããŸãã
=== æååã³ã³ããã¹ã ===
é·ãã«å¶éã®ãªãæååãšããŠæ±ãããŸãã
æ°å€ã¯ãã®ãŸãŸæååã«å€æãããæªå®çŸ©å€ã¯ç©ºæååã«ãªããŸãããªãã¡ã¬ã³ã¹ãæååã«ãªããŸãããæååãšããŠåŠçããããªãã¡ã¬ã³ã¹ãåã³ãªãã¡ã¬ã³ã¹ã«æ»ãããšã¯ã§ããŸããïŒ
:<syntaxhighlight lang=perl>
my ($var, $refvar, $refstr);
$var = 'foo';
$refvar = \$var; #$$refvar eq 'foo'
$refstr = "$refvar"; # æååãšããŠæ ŒçŽ
$$refstr; #ãšã©ãŒ; $refstrã¯ãã¯ããªãã¡ã¬ã³ã¹ã§ã¯ãªã
</syntaxhighlight>
=== æ°å€ã³ã³ããã¹ã ===
æ°å€ãªãã©ã«ãšããŠè§£éã§ããæååã¯æ°å€ãšããŠæ±ãããŸãããã以å€ã®æåããããšããã§è§£éãçµäºããŸãã
;[https://paiza.io/projects/qrQ43FcSOdswPr0C7otw1A?language=perl äŸ]:<syntaxhighlight lang=perl line highlight="6,8,10">
#!/usr/bin/perl
use v5.12;
use warnings;
say sprintf __LINE__ . ": %d", 0 + '12345';
say sprintf __LINE__ . ": %d", 0 + '12345abcde';
say sprintf __LINE__ . ": %d", 0 + '123.45e2';
say sprintf __LINE__ . ": %d", 0 + '0b11000000111001';
say sprintf __LINE__ . ": %d", 0 + '012345';
say sprintf __LINE__ . ": %#x", 0 + '0x12345';
say sprintf __LINE__ . ": %#o", oct '12345';
say sprintf __LINE__ . ": %#x", hex '12345';
</syntaxhighlight>
;å®è¡æãšã©ãŒ:<syntaxhighlight lang=text>
Argument "12345abcde" isn't numeric in addition (+) at Main.pl line 6.
Argument "0b11000000111001" isn't numeric in addition (+) at Main.pl line 8.
Argument "0x12345" isn't numeric in addition (+) at Main.pl line 10.
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
5: 12345
6: 12345
7: 12345
8: 0
9: 12345
10: 0x12345
11: 012345
12: 0x12345
</syntaxhighlight>
: å
é ã«'0'ããã£ãŠã8é²æ°ãšã¯è§£éãããŸãããâ0xâãå
é ã«ãããš16é²æ°ãšããŠè©äŸ¡ãããŸãã
: åºæ°ãæ瀺ããŠå€æããã«ã¯ oct() é¢æ°ã hex() é¢æ°ãå©çšããŸãã
{{See also|[[#oct|oct]]|[[#hex|hex]]|[[#sprintf|sprintf]]}}
=== çåœå€ã³ã³ããã¹ã ===
ifãwhileãªã©ã®å¶åŸ¡æ§æã修食æãandãorãªã©ã®è«çæŒç®åãæäŸããã³ã³ããã¹ãã§ãã
åœãšãªããã®ã¯ïŒ
* æ°å€ <code>0</code>
** èŠçŽ æ°0ã®é
å
** èŠçŽ æ°0ã®ãªã¹ã
** èŠçŽ æ°0ã®ããã·ã¥
* æåå <code>'0'</code>
* 空æåå <code><nowiki>''</nowiki></code>
* æªå®çŸ©å€ <code>undef</code>
ã§ãããæ®ãã¯å
šãŠçãšè§£éãããŸãã
'''ãæåå'0'ããšã¯'0'ãšããæååã®ããšã§ãããæ°å€ã³ã³ããã¹ãã§0ãšè§£éãããæååå
šãŠã®ããšã§ã¯ãªã'''ã®ã§æ³šæããŠãã ããã<br>
次ã®ãã®ã¯å
šãŠçãšãªããŸãïŒ
'0.0';
'aaa';
'0 but true';
=== ç¡å¹ã³ã³ããã¹ã ===
è©äŸ¡ããçµæãæšãŠãããŠããŸãã®ã§ãå€ãæåŸ
ããªãã³ã³ããã¹ãã§ããæ»ãå€ã®ãªãé¢æ°åŒã³åºããªã©ãå¯äœçšãç®çãšããŠäœ¿ãããŸãã<br>
å¯äœçšããªãã³ãŒãã¯ãperlã«-wã¹ã€ãããã€ããŠå®è¡ãããšèŠåãçºããããŸãïŒ
'literal';
== åã°ãã ==
Perlã§ã¯ç°ãªãããŒã¿åã«å¯ŸããŠåãèå¥åãäžããããšãã§ããŸã:
$foo = 'bar';
@foo = ( 'bar', 'baz' );
%foo = ( bar => 'baz' );
sub foo { return 'bar' };
PerlåŠçç³»ã¯å
éšã«èå¥åããŒãã«ãšåŒã°ããããã·ã¥ãæã£ãŠããŸãããã®ããŒã¯èå¥åã§ããã察å¿ããå€ã¯''åã°ãã''ãšããããŒã¿æ§é ã§ããåã°ããã¯åãèå¥åãæã€ãã¹ãŠã®ããŒã¿åãžã®ãªãã¡ã¬ã³ã¹ãæ ŒçŽããŠããŸããã€ãŸãäžèšã®äŸã ãšèå¥å'foo'ã®åã°ããã«ã¯ã¹ã«ã©ãŒãé
åãããã·ã¥ããµãã«ãŒãã³ãšãã4ã€ã®ããŒã¿åãžã®ãªãã¡ã¬ã³ã¹ãæ ŒçŽãããŠããŸããåã°ããã¯èå¥åã®åã«'*'ãšãããã¬ãã£ãã¯ã¹ãä»å ããŠè¡šçŸãããŸã:
*foo;
åã°ããèªèº«ã¯ãªãã¡ã¬ã³ã¹ãæ ŒçŽããããã·ã¥ã§ãããããŒã¯ããŒã¿åã®ååã§ã:
*foo{SCALAR}; # \$foo
*foo{ARRAY}; # \@foo
*foo{HASH]; # \%foo
*foo{CODE}; # \&foo
*foo{GLOB}; # \*foo; èªåèªèº«ãžã®ãªãã¡ã¬ã³ã¹
*foo{IO}; # ãã¡ã€ã«ãã³ãã«
*foo{FORMAT} # ãã©ãŒããã
=== åã°ãããžã®ä»£å
¥ ===
åã°ãããããŒã¿æ§é ã®äžã€ã§ãããã代å
¥ãè©äŸ¡ãã§ããŸããåã°ããã«å¥ã®åã°ããã代å
¥ãããšãå€æ°ã®å¥åïŒãšã€ãªã¢ã¹ïŒãå®çŸ©ããããšãåºæ¥ãŸã:
$foo = 'FOO';
@foo = ( 'FOO', 'BAR' );
*bar = *foo;
$bar = 'BAR';
push( @bar, 'BAZ' );
print $foo, "\n"; #BAR
print @foo, "\n"; #FOOBARBAZ
ããã¯ãã€ãŠPerlã«ãªãã¡ã¬ã³ã¹ããªãã£ãé ããµãã«ãŒãã³ã«åŒæ°ãåç
§æž¡ãããã®ã«å©çšãããŠããŸããããŸãããã¡ã€ã«ãã³ãã«ãšãã©ãŒãããã«ã¯ãã¬ãã£ãã¯ã¹ãååšããªãã®ã§ãããããåãæž¡ãããå Žåã®å¯äžã®æ段ã§ããããŸããã
for ( $i = 0; getline( *line ) != -1; $i++ ) {
print "line $i: $line";
}
sub getline {
local (*l) = @_;
return defined( $l = <STDIN> ) ? length( $l ) : -1;
}
çŸåšã§ã¯ãªãã¡ã¬ã³ã¹ãå©çšã§ããã®ã§ãåã°ããã䜿ãå¿
èŠã¯ãããŸããããã¡ã€ã«ãã³ãã«ããã©ãŒãããã«é¢ããŠãIOã¢ãžã¥ãŒã«ãªã©ã§ãªããžã§ã¯ããšããŠæ±ãããšãã§ããŸãã
ãªããåã°ããã¯èå¥åããŒãã«ã®å®äœãã®ãã®ã§ãããããããã¯ã«çµã³ä»ããããã¬ãã·ã«ã«ã¹ã³ãŒãã«ããããšã¯ã§ããŸãããèšãæãããšã'''localå€æ°ã«ã¯ã§ãããmyå€æ°ã«ã¯ã§ããŸããã'''
ãŸããç¹å®ã®ããŒã¿åã®ãªãã¡ã¬ã³ã¹ã代å
¥ãããšããã®ããŒã¿åã«éå®ããŠå¥åãå®çŸ©ã§ããŸã:
$foo = 'FOO';
@foo = ( 'FOO', 'BAR' );
*bar = \@foo; #é
åã®ã¿å¥åãå®çŸ©
$bar = 'BAR';
push( @bar, 'BAZ' );
print $foo, "\n"; #FOO
print @foo, "\n"; #FOOBARBAZ
*qux = \&Foo::Bar::baz; # Foo::Barã¢ãžã¥ãŒã«ã®bazé¢æ°ãquxé¢æ°ãšããŠã€ã³ããŒããã
{{Nav}}
<noinclude>
{{DEFAULTSORT:Perl ãžããã ãŠãããããã}}
[[Category:Perl|ãžããã ãŠãããããã]]
</noinclude> | 2005-03-05T14:57:24Z | 2024-03-03T10:50:35Z | [
"ãã³ãã¬ãŒã:Nav",
"ãã³ãã¬ãŒã:ã³ã©ã ",
"ãã³ãã¬ãŒã:See also",
"ãã³ãã¬ãŒã:Main"
] | https://ja.wikibooks.org/wiki/Perl/%E5%A4%89%E6%95%B0%E3%80%81%E3%83%87%E3%83%BC%E3%82%BF%E6%A7%8B%E9%80%A0 |
1,705 | çµ±èšåŠåºç€/確ç | 確çãšããèšèã¯, ä»æ¥ã§ã¯ãããããªå Žé¢ã§äœ¿ããã. é氎確çã, åæ Œç¢ºç, äºæ
ã®èµ·ãã確ç, å®ããã®åœéžç¢ºçãªã©ãã®äœ¿ããæ¹ã¯å€å²ã«æž¡ã. 倧æµã®å Žå確çäœ%(ããŒã»ã³ã)ãšããããã«, ããŒã»ã³ã衚瀺ãããã, %ãšã¯æ¬æ¥per centã€ãŸã100ããããããã?ãšããå€ã瀺ãèšå·ã§ãã. äŸãã°, é氎確çã§èããŠã¿ããš, é氎確ç40%ãšã¯, åããããªå€©æ°å³ã«ãªã£ãæ¥ã100æ¥ãã£ããšããã, ãã®å
40æ¥ã¯éšãéããšããããšã«ãªã. 100æ¥ããã40æ¥ãšããããšã¯, 1æ¥ããã 40/100=0. 4 ã®å²åã§èµ·ããŠããããšã«ãªã. å¿
ãéšãéããšèšãããŠãã100%ã§ããã°, 100÷100=1ã®å²åã§èµ·ãããšããããšã§, å¿
ãéããªããšèšããã0%ã§ããã°, 0÷100=0 ã®å²åã§èµ·ãããšããäºæž¬ã«ãªã. ã€ãŸã確çãšããã®ã¯0ãã1ãŸã§ã®å€ãåã.
確çãšããã®ã¯ãã®ããã«ãããç©äºãèµ·ããå²åããšããŠèãããã.
æšæ¬ç©ºéã§å®çŸ©ãããšãã, æšæ¬ç©ºéãäºè±¡ãšããã®ã¯ãèµ·ããããçµæ(æšæ¬ç¹)ã®éåãã ã£ã. ããäºè±¡Aãèµ·ãã確ç P(A) ãšã¯, å®éšã沢山繰ãè¿ããæã«, Aãèµ·ããå²åã®äºã§ãã.
äŸãã°, ã³ã€ã³æãã§ããã°, è¡šãåºã確çã¯1/2ã§ãã. 1åã³ã€ã³ãæããŠè¡šãåºããšãããš, å
š1åã®è©Šè¡äž, 1åè¡šãåºãã®ã§, è¡šãåºãå²åã¯1÷1=1ã«ãªã. ãã1åæããŠ, ãŸãè¡šãåºããšãããš, è¡šãåºãŠããå²åã¯2÷2=1ã§ãã. å
šç¶, 1/2ãšéãã®ã§ã¯ãªãã?ãšæãããããç¥ããªã. ãããéèŠãªã®ã¯ã沢山ãç¹°ãè¿ããæã«ãšããããšã§ãã. ã³ã€ã³æãã10å,100åãšç¹°ãè¿ããšãéããªã1/2ã«è¿ã¥ãã®ã§ããã
次ã®3ã€ã®åŒã®äºã確çã®å
¬çãšãã.
ãããã®æ§è³ªãæ〠P(x) ã®äºã確ç(確ç枬床)ãšãã. æåã«ã€ããŠã P1 , P2 , P3 ã¯, ãããã説æããããã®äŸ¿å®äžã®çªå·ã§ãã.
P1 ã®åŒã¯, 確ç㯠0 ãã 1 ãŸã§ã®å€ãåããšããæå³ã§ãã. 説æãããšãã確çãšããã®ã¯, å®éšåæ°ã«å¯ŸããŠãã®äºè±¡ãèµ·ããŠãããå²åãã§ãã. äžã®äžã«ã¯ãåæ Œç¢ºç 120 %ãã®ãããªå€ãªèšèãããã, åããããªå®åã®äººã 100 人éãŸã£ãŠå
¥åŠè©Šéšãªã©ãåéšã㊠120 人åæ Œãããªã©ãšããå€ãªããšã¯ãªã. 100 人ããåéšããŠããªãã®ãªã, åæ Œãã人æ°ã®æ倧å€ã 100 人ã§ãã, å²åã®æ倧å€ã 1 ã§ãã.
P2 ã®åŒãèŠãŠãã ãã. æšæ¬ç©ºé Ω ã¯èµ·ããåŸãå
šãŠã®çµæã®éåãªã®ã§, å®éšãäœåºŠç¹°ãè¿ããŠã, Ω ã«å«ãŸããæšæ¬ç¹ã®ãã¡ã®ã©ãã 1 ã€ããå¿
ããèµ·ããŠãã. ãããã£ãŠ, æšæ¬ç©ºéãšããäºè±¡ãèµ·ãã確ç㯠1 ãšãªã.
P3 ã®åŒãäžçªåããã«ãããããããªã. ã Ï -å æ³æ§(ãããŸãã»ããã)ããšããé£ããååãã€ããŠãã.
èåäºè±¡ãšã¯äœã ã£ããæãåºããš, Aj â© Ak = Ï ã®æ, å³ã¡, Ajãš Akã«éãªããç¡ããšã, ãã® Ajãš Akã¯èåäºè±¡ã«ãªã. äºãã«èåãšã¯ã©ãããæå³ãªã®ããšããã°, j â k ã®æ Ajãš Akãèåäºè±¡, å³ã¡, ã©ã® 2 ã€ã®äºè±¡ãåã£ããšããŠã, äºãã«éãªããªããšããæå³ã§ãã.
巊蟺ã«ãã â k = 1 â A k {\displaystyle \bigcup _{k=1}^{\infty }A_{k}} ã¯Akã«éãªããç¡ãã®ã§, ããããã®Akã«å«ãŸããæšæ¬ç¹ã¯, ãã®åéåãåããšããæäœã§éãªãç¡ã足ãã, â k = 1 â A k {\displaystyle \bigcup _{k=1}^{\infty }A_{k}} ãšããäžã€ã®éåã«ãªã. å³èŸºã¯, åAkã«äžãããã確çP(Ak)ããã®ãŸãŸè¶³ããªãããšããæå³ã§ãã. éãªããç¡ããããã足ããã®ã§ãã. éãªãããããšç°¡åã«ã¯è¶³ããªã.
ãã£ã3ã€ã®ç¢ºçã®å
¬çãããããããªäºãåãã.
ãŸã A1 = Ω ãšãšã, k ⥠2 ã®ãšã㯠Ak = Ï ãšãã. ãã®æ, P3 ã®åŒã¯
ã ãã, P1 , P2 ã®æ¡ä»¶ãã, P(Ï )=0 ãšããã.
ãŸãã¯, P(Ï )=0 ãšããåŒãåŸããã. ãããã, P3 ã®åŒã«ã€ããŠããå°ãæ¡ä»¶ãå³ããã㊠k > n ã®ãšã㯠Ak = Ï ãšãããš, P3 ã¯æ¬¡ã®ããã«æžãæãããã.
k > n ã®ãšãã¯, P(Ak )= P(Ï) =0 ã§ããããšã䜿ã£ã. ãªãã ãåããã©ãããšãããŠããšæããããããããªãã, æ°åŠã§ã¯æåã«æ±ºããŠããçŽæäºã¯å°ãªãæ¹ããã, ãã®å°ãªãçŽæäºããããã«å€ãã®äºå®ãå°ãåºããã?ãšããããšãæ°åŠã®é¢çœãã§ããã.
å·®äºè±¡ A - B ã«ã€ã㊠(A - B) ⪠(A â© B) = A ã〠(A - B) â© (A â© B) = Ï ãªã®ã§
ãšãªã.
ããã§, A â B ã§ããã° A â© B=B ãªã®ã§
ãšãªã.
ãŸã, A = Ω ã§ããã°, å·®äºè±¡ Ω - B ã¯, äºè±¡Bã®è£äºè±¡ B ã®äºãªã®ã§
ãšãªã. ãããŸã§æ¥ãŠ, åã®è¯ãæ¹ã¯æ°ä»ãããç¥ããªãã
ãã
ã§ãã. ãã®äžçåŒãå°ããŸã§, P1 ã®äžçåŒ 0 †P(A) †1 ã¯, å·ŠåŽã®äžçå·ãã䜿ã£ãŠãªãããšã«æ³šç®ãããš, P1 ã®å³åŽã®äžçå·ã¯äœåãšããããšã§, P1 ã¯æ¬¡ã®ããã«ãæžãæãããã.
A ⪠B = (A - B) ⪠B ã〠(A - B) â© B = Ï ã§ãããåäºè±¡ A ⪠B ã«ã€ããŠ
ãšãªã. ãã®åŒã¯å æ³å®çãšãåŒã°ãã.
P(A)>0 ã®ãšã
ãæ¡ä»¶ä»ã確çãšãã.
P(B|A)ã¯, å
šäºè±¡ãΩ ããAã«åãæ¿ãããšãã®äºè±¡Bã®èµ·ãã確çãšèããããšãã§ãã. å³ã¡, P(B|A)ã¯äºè±¡Aãå¿
ãèµ·ãããšããæ¡ä»¶ã®å
ã§ã®äºè±¡Bã®èµ·ãã確çã§ãã.
ãã®ãšã, Aã¯å
šäºè±¡ãšèããã®ã ãã
ã§ãã. ããã¯, 確çã®å
¬çã® P2 ã«åœããåŒã«ãªã. Aãåºå®ãããšã P(x|A)ãšããé¢æ°ã P1 ã P3 ãæºãã, 確çãšãªãããšãåãã.
å®çŸ©åŒã®åæ¯ãæã£ãçåŒ
ãä¹æ³å®çãšèšã. æ¡ä»¶ä»ã確çã®å®çŸ©ã§ã¯ P(A)>0 ãä»®å®ããã, ãã®ããã«èŠãŠã¿ããš P(A) ⥠0 ã«æ¡åŒµããŠãåé¡ãªããšåãã. å®çŸ©ã®é
ã§ã¯, äœæ
ãã®ãããªçŽ°ããæ¡ä»¶ãã€ãããããã®ããšèšãã°, å²ãç®ã«ãã㊠0 ã§å²ããšããæäœã¯èªããããŠãªãããã§ãã. åæ°ã®åæ¯ã« 0 ãæ¥ãããšã¯é¿ããªããã°ãªããªã.
äºè±¡AãšBã
ãæºãããšãAãšBã¯ç¬ç«ã§ãããšèšã.
0< P(A)<1 ã®ãšã
ãšãªã. ããã§,
ãšãªãã®ã§çµå±
ã€ãŸã, Bã®èµ·ãã確çã¯Aãèµ·ãããã©ããã«å¯ããªããšããããšã§ãã. P(A) = 1 or 0 ã®æã¯, A ãå¿
ãèµ·ããã, å¿
ãèµ·ããªãã£ããããã®ã§, ãã®å Žå B ã®èµ·ãã確çãš A ã¯é¢ä¿ããªã.
èŠãç®ãå
šãåãç®±ã 2 ã€ãã. ç®±1 ãš ç®±2ãšãã.
å
¥ã£ãŠãããšãã. ã©ã¡ãã®ç®±ãåãããªãã, æãå
¥ããŠçãäžã€ã ãåãã ããŠã¿ããšèµ€ãçã ã£ã. ãã®å Žå, éžãã ç®±ãç®±1ã§ãã確çã¯ããã€ã ããã?ç®±ãéžã¶ç¢ºçã¯ã©ã¡ããçãã(1/2) ã§ãããšãã. ç®±1ã®æ¹ãèµ€çãåºããããã§ããã®ã§, ç®±1ã®æ¹ãéžãã§ããå¯èœæ§ã¯é«ããã ãã. ããªãã¡, èµ€çãåºããšããäºã決å®ããåŸã§ã¯, ç®±1ãšç®±2ã®ã©ã¡ããéžãã ã?ãšãã確çã¯çãããªãããã§ãã. ãã®ãããªç¢ºçãã©ã®ããã«èª¿ã¹ããããã ããã?ãšããã®ããã®ç¯ã®ç®çã§ãã.
B1, B2, ... , Bn ãäºãã«èåäºè±¡ã§, B1âªB2âª...âªBn = Ωã§ãããšãã.
ã®2ã€ã®åŒãã,
ãšããã. ããããã€ãºã®å®çãšãã.
ãã®åŒã®å³èŸºã®ååã®æå³ã¯, Biãèµ·ããŠAãèµ·ãã確çã§ãã. ãããP(A)ã§å²ã£ãŠãã. ããªãã¡ A ãçµæãšããŠèµ·ãããšãã«, Bi ãèµ·ããŠãã確çãšããæå³ã§ãã. P(Bi)ãäºå確ç, P(Bi|A)ãäºåŸç¢ºçãšãã.
æåã®åé¡ã«æ»ããš, ç®±i ãéžã¶ãšããäºè±¡ã Bi, èµ€çãåºããšããäºè±¡ã A ãšãã.
ãšãªã, ç®±1ãéžãã§ãã確çã¯, ã»ãŒ 0.82 ããããšèšããã®ã§ãã.
ããäžã€ããã€ãºã®å®çãç¥ããªããšæ£ããå€æãåºæ¥ãªãäŸãæããŠãããã
ã10000人ã«1人ã®å²åã§ãããç
æ°ãããããŸãããã®ç
æ°ã«ããã£ãŠãããã©ãããå€å¥ããããã®ããæ€æ»ã¯ã99ããŒã»ã³ãã®ç²ŸåºŠãæã£ãŠããããããããªãããã®æ€æ»ã§ç
æ°ã«ããã£ãŠãããšãããããšããããªããç
æ°ã§ãã確çã¯ã©ã®ãããã ããã?ã
ããããããã€ãºã®å®çãç¥ããªããš99ããŒã»ã³ããšçããŠããŸãã®ã§ã¯ãªãã ããããããã§ãå®éã«ããã€ãºã®å®çãçšããŠèšç®ããŠã¿ãŠæ¬²ãããç
æ°ã«ããã£ãŠããªãã®ã«æ€æ»ãééãããšããå¯èœæ§ã®ã»ããé«ããæ£ããã¯1ããŒã»ã³ãã«ãæºããªããšããããšãåããã ããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "確çãšããèšèã¯, ä»æ¥ã§ã¯ãããããªå Žé¢ã§äœ¿ããã. é氎確çã, åæ Œç¢ºç, äºæ
ã®èµ·ãã確ç, å®ããã®åœéžç¢ºçãªã©ãã®äœ¿ããæ¹ã¯å€å²ã«æž¡ã. 倧æµã®å Žå確çäœ%(ããŒã»ã³ã)ãšããããã«, ããŒã»ã³ã衚瀺ãããã, %ãšã¯æ¬æ¥per centã€ãŸã100ããããããã?ãšããå€ã瀺ãèšå·ã§ãã. äŸãã°, é氎確çã§èããŠã¿ããš, é氎確ç40%ãšã¯, åããããªå€©æ°å³ã«ãªã£ãæ¥ã100æ¥ãã£ããšããã, ãã®å
40æ¥ã¯éšãéããšããããšã«ãªã. 100æ¥ããã40æ¥ãšããããšã¯, 1æ¥ããã 40/100=0. 4 ã®å²åã§èµ·ããŠããããšã«ãªã. å¿
ãéšãéããšèšãããŠãã100%ã§ããã°, 100÷100=1ã®å²åã§èµ·ãããšããããšã§, å¿
ãéããªããšèšããã0%ã§ããã°, 0÷100=0 ã®å²åã§èµ·ãããšããäºæž¬ã«ãªã. ã€ãŸã確çãšããã®ã¯0ãã1ãŸã§ã®å€ãåã.",
"title": "確çã®å°å
¥"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "確çãšããã®ã¯ãã®ããã«ãããç©äºãèµ·ããå²åããšããŠèãããã.",
"title": "確çã®å°å
¥"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "æšæ¬ç©ºéã§å®çŸ©ãããšãã, æšæ¬ç©ºéãäºè±¡ãšããã®ã¯ãèµ·ããããçµæ(æšæ¬ç¹)ã®éåãã ã£ã. ããäºè±¡Aãèµ·ãã確ç P(A) ãšã¯, å®éšã沢山繰ãè¿ããæã«, Aãèµ·ããå²åã®äºã§ãã.",
"title": "確çã®å°å
¥"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "äŸãã°, ã³ã€ã³æãã§ããã°, è¡šãåºã確çã¯1/2ã§ãã. 1åã³ã€ã³ãæããŠè¡šãåºããšãããš, å
š1åã®è©Šè¡äž, 1åè¡šãåºãã®ã§, è¡šãåºãå²åã¯1÷1=1ã«ãªã. ãã1åæããŠ, ãŸãè¡šãåºããšãããš, è¡šãåºãŠããå²åã¯2÷2=1ã§ãã. å
šç¶, 1/2ãšéãã®ã§ã¯ãªãã?ãšæãããããç¥ããªã. ãããéèŠãªã®ã¯ã沢山ãç¹°ãè¿ããæã«ãšããããšã§ãã. ã³ã€ã³æãã10å,100åãšç¹°ãè¿ããšãéããªã1/2ã«è¿ã¥ãã®ã§ããã",
"title": "確çã®å°å
¥"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "",
"title": "確çã®å°å
¥"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "次ã®3ã€ã®åŒã®äºã確çã®å
¬çãšãã.",
"title": "確çã®å°å
¥"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ãããã®æ§è³ªãæ〠P(x) ã®äºã確ç(確ç枬床)ãšãã. æåã«ã€ããŠã P1 , P2 , P3 ã¯, ãããã説æããããã®äŸ¿å®äžã®çªå·ã§ãã.",
"title": "確çã®å°å
¥"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "P1 ã®åŒã¯, 確ç㯠0 ãã 1 ãŸã§ã®å€ãåããšããæå³ã§ãã. 説æãããšãã確çãšããã®ã¯, å®éšåæ°ã«å¯ŸããŠãã®äºè±¡ãèµ·ããŠãããå²åãã§ãã. äžã®äžã«ã¯ãåæ Œç¢ºç 120 %ãã®ãããªå€ãªèšèãããã, åããããªå®åã®äººã 100 人éãŸã£ãŠå
¥åŠè©Šéšãªã©ãåéšã㊠120 人åæ Œãããªã©ãšããå€ãªããšã¯ãªã. 100 人ããåéšããŠããªãã®ãªã, åæ Œãã人æ°ã®æ倧å€ã 100 人ã§ãã, å²åã®æ倧å€ã 1 ã§ãã.",
"title": "確çã®å°å
¥"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "P2 ã®åŒãèŠãŠãã ãã. æšæ¬ç©ºé Ω ã¯èµ·ããåŸãå
šãŠã®çµæã®éåãªã®ã§, å®éšãäœåºŠç¹°ãè¿ããŠã, Ω ã«å«ãŸããæšæ¬ç¹ã®ãã¡ã®ã©ãã 1 ã€ããå¿
ããèµ·ããŠãã. ãããã£ãŠ, æšæ¬ç©ºéãšããäºè±¡ãèµ·ãã確ç㯠1 ãšãªã.",
"title": "確çã®å°å
¥"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "P3 ã®åŒãäžçªåããã«ãããããããªã. ã Ï -å æ³æ§(ãããŸãã»ããã)ããšããé£ããååãã€ããŠãã.",
"title": "確çã®å°å
¥"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "èåäºè±¡ãšã¯äœã ã£ããæãåºããš, Aj â© Ak = Ï ã®æ, å³ã¡, Ajãš Akã«éãªããç¡ããšã, ãã® Ajãš Akã¯èåäºè±¡ã«ãªã. äºãã«èåãšã¯ã©ãããæå³ãªã®ããšããã°, j â k ã®æ Ajãš Akãèåäºè±¡, å³ã¡, ã©ã® 2 ã€ã®äºè±¡ãåã£ããšããŠã, äºãã«éãªããªããšããæå³ã§ãã.",
"title": "確çã®å°å
¥"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "巊蟺ã«ãã â k = 1 â A k {\\displaystyle \\bigcup _{k=1}^{\\infty }A_{k}} ã¯Akã«éãªããç¡ãã®ã§, ããããã®Akã«å«ãŸããæšæ¬ç¹ã¯, ãã®åéåãåããšããæäœã§éãªãç¡ã足ãã, â k = 1 â A k {\\displaystyle \\bigcup _{k=1}^{\\infty }A_{k}} ãšããäžã€ã®éåã«ãªã. å³èŸºã¯, åAkã«äžãããã確çP(Ak)ããã®ãŸãŸè¶³ããªãããšããæå³ã§ãã. éãªããç¡ããããã足ããã®ã§ãã. éãªãããããšç°¡åã«ã¯è¶³ããªã.",
"title": "確çã®å°å
¥"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "",
"title": "確çã®å°å
¥"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "ãã£ã3ã€ã®ç¢ºçã®å
¬çãããããããªäºãåãã.",
"title": "確çã®å¿çš"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "ãŸã A1 = Ω ãšãšã, k ⥠2 ã®ãšã㯠Ak = Ï ãšãã. ãã®æ, P3 ã®åŒã¯",
"title": "確çã®å¿çš"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "ã ãã, P1 , P2 ã®æ¡ä»¶ãã, P(Ï )=0 ãšããã.",
"title": "確çã®å¿çš"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "ãŸãã¯, P(Ï )=0 ãšããåŒãåŸããã. ãããã, P3 ã®åŒã«ã€ããŠããå°ãæ¡ä»¶ãå³ããã㊠k > n ã®ãšã㯠Ak = Ï ãšãããš, P3 ã¯æ¬¡ã®ããã«æžãæãããã.",
"title": "確çã®å¿çš"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "k > n ã®ãšãã¯, P(Ak )= P(Ï) =0 ã§ããããšã䜿ã£ã. ãªãã ãåããã©ãããšãããŠããšæããããããããªãã, æ°åŠã§ã¯æåã«æ±ºããŠããçŽæäºã¯å°ãªãæ¹ããã, ãã®å°ãªãçŽæäºããããã«å€ãã®äºå®ãå°ãåºããã?ãšããããšãæ°åŠã®é¢çœãã§ããã.",
"title": "確çã®å¿çš"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "å·®äºè±¡ A - B ã«ã€ã㊠(A - B) ⪠(A â© B) = A ã〠(A - B) â© (A â© B) = Ï ãªã®ã§",
"title": "確çã®å¿çš"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "ãšãªã.",
"title": "確çã®å¿çš"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "ããã§, A â B ã§ããã° A â© B=B ãªã®ã§",
"title": "確çã®å¿çš"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "ãšãªã.",
"title": "確çã®å¿çš"
},
{
"paragraph_id": 22,
"tag": "p",
"text": "ãŸã, A = Ω ã§ããã°, å·®äºè±¡ Ω - B ã¯, äºè±¡Bã®è£äºè±¡ B ã®äºãªã®ã§",
"title": "確çã®å¿çš"
},
{
"paragraph_id": 23,
"tag": "p",
"text": "ãšãªã. ãããŸã§æ¥ãŠ, åã®è¯ãæ¹ã¯æ°ä»ãããç¥ããªãã",
"title": "確çã®å¿çš"
},
{
"paragraph_id": 24,
"tag": "p",
"text": "ãã",
"title": "確çã®å¿çš"
},
{
"paragraph_id": 25,
"tag": "p",
"text": "ã§ãã. ãã®äžçåŒãå°ããŸã§, P1 ã®äžçåŒ 0 †P(A) †1 ã¯, å·ŠåŽã®äžçå·ãã䜿ã£ãŠãªãããšã«æ³šç®ãããš, P1 ã®å³åŽã®äžçå·ã¯äœåãšããããšã§, P1 ã¯æ¬¡ã®ããã«ãæžãæãããã.",
"title": "確çã®å¿çš"
},
{
"paragraph_id": 26,
"tag": "p",
"text": "A ⪠B = (A - B) ⪠B ã〠(A - B) â© B = Ï ã§ãããåäºè±¡ A ⪠B ã«ã€ããŠ",
"title": "確çã®å¿çš"
},
{
"paragraph_id": 27,
"tag": "p",
"text": "ãšãªã. ãã®åŒã¯å æ³å®çãšãåŒã°ãã.",
"title": "確çã®å¿çš"
},
{
"paragraph_id": 28,
"tag": "p",
"text": "P(A)>0 ã®ãšã",
"title": "æ¡ä»¶ä»ã確ç"
},
{
"paragraph_id": 29,
"tag": "p",
"text": "ãæ¡ä»¶ä»ã確çãšãã.",
"title": "æ¡ä»¶ä»ã確ç"
},
{
"paragraph_id": 30,
"tag": "p",
"text": "P(B|A)ã¯, å
šäºè±¡ãΩ ããAã«åãæ¿ãããšãã®äºè±¡Bã®èµ·ãã確çãšèããããšãã§ãã. å³ã¡, P(B|A)ã¯äºè±¡Aãå¿
ãèµ·ãããšããæ¡ä»¶ã®å
ã§ã®äºè±¡Bã®èµ·ãã確çã§ãã.",
"title": "æ¡ä»¶ä»ã確ç"
},
{
"paragraph_id": 31,
"tag": "p",
"text": "ãã®ãšã, Aã¯å
šäºè±¡ãšèããã®ã ãã",
"title": "æ¡ä»¶ä»ã確ç"
},
{
"paragraph_id": 32,
"tag": "p",
"text": "ã§ãã. ããã¯, 確çã®å
¬çã® P2 ã«åœããåŒã«ãªã. Aãåºå®ãããšã P(x|A)ãšããé¢æ°ã P1 ã P3 ãæºãã, 確çãšãªãããšãåãã.",
"title": "æ¡ä»¶ä»ã確ç"
},
{
"paragraph_id": 33,
"tag": "p",
"text": "å®çŸ©åŒã®åæ¯ãæã£ãçåŒ",
"title": "æ¡ä»¶ä»ã確ç"
},
{
"paragraph_id": 34,
"tag": "p",
"text": "ãä¹æ³å®çãšèšã. æ¡ä»¶ä»ã確çã®å®çŸ©ã§ã¯ P(A)>0 ãä»®å®ããã, ãã®ããã«èŠãŠã¿ããš P(A) ⥠0 ã«æ¡åŒµããŠãåé¡ãªããšåãã. å®çŸ©ã®é
ã§ã¯, äœæ
ãã®ãããªçŽ°ããæ¡ä»¶ãã€ãããããã®ããšèšãã°, å²ãç®ã«ãã㊠0 ã§å²ããšããæäœã¯èªããããŠãªãããã§ãã. åæ°ã®åæ¯ã« 0 ãæ¥ãããšã¯é¿ããªããã°ãªããªã.",
"title": "æ¡ä»¶ä»ã確ç"
},
{
"paragraph_id": 35,
"tag": "p",
"text": "äºè±¡AãšBã",
"title": "æ¡ä»¶ä»ã確ç"
},
{
"paragraph_id": 36,
"tag": "p",
"text": "ãæºãããšãAãšBã¯ç¬ç«ã§ãããšèšã.",
"title": "æ¡ä»¶ä»ã確ç"
},
{
"paragraph_id": 37,
"tag": "p",
"text": "0< P(A)<1 ã®ãšã",
"title": "æ¡ä»¶ä»ã確ç"
},
{
"paragraph_id": 38,
"tag": "p",
"text": "ãšãªã. ããã§,",
"title": "æ¡ä»¶ä»ã確ç"
},
{
"paragraph_id": 39,
"tag": "p",
"text": "ãšãªãã®ã§çµå±",
"title": "æ¡ä»¶ä»ã確ç"
},
{
"paragraph_id": 40,
"tag": "p",
"text": "ã€ãŸã, Bã®èµ·ãã確çã¯Aãèµ·ãããã©ããã«å¯ããªããšããããšã§ãã. P(A) = 1 or 0 ã®æã¯, A ãå¿
ãèµ·ããã, å¿
ãèµ·ããªãã£ããããã®ã§, ãã®å Žå B ã®èµ·ãã確çãš A ã¯é¢ä¿ããªã.",
"title": "æ¡ä»¶ä»ã確ç"
},
{
"paragraph_id": 41,
"tag": "p",
"text": "èŠãç®ãå
šãåãç®±ã 2 ã€ãã. ç®±1 ãš ç®±2ãšãã.",
"title": "æ¡ä»¶ä»ã確ç"
},
{
"paragraph_id": 42,
"tag": "p",
"text": "å
¥ã£ãŠãããšãã. ã©ã¡ãã®ç®±ãåãããªãã, æãå
¥ããŠçãäžã€ã ãåãã ããŠã¿ããšèµ€ãçã ã£ã. ãã®å Žå, éžãã ç®±ãç®±1ã§ãã確çã¯ããã€ã ããã?ç®±ãéžã¶ç¢ºçã¯ã©ã¡ããçãã(1/2) ã§ãããšãã. ç®±1ã®æ¹ãèµ€çãåºããããã§ããã®ã§, ç®±1ã®æ¹ãéžãã§ããå¯èœæ§ã¯é«ããã ãã. ããªãã¡, èµ€çãåºããšããäºã決å®ããåŸã§ã¯, ç®±1ãšç®±2ã®ã©ã¡ããéžãã ã?ãšãã確çã¯çãããªãããã§ãã. ãã®ãããªç¢ºçãã©ã®ããã«èª¿ã¹ããããã ããã?ãšããã®ããã®ç¯ã®ç®çã§ãã.",
"title": "æ¡ä»¶ä»ã確ç"
},
{
"paragraph_id": 43,
"tag": "p",
"text": "B1, B2, ... , Bn ãäºãã«èåäºè±¡ã§, B1âªB2âª...âªBn = Ωã§ãããšãã.",
"title": "æ¡ä»¶ä»ã確ç"
},
{
"paragraph_id": 44,
"tag": "p",
"text": "",
"title": "æ¡ä»¶ä»ã確ç"
},
{
"paragraph_id": 45,
"tag": "p",
"text": "ã®2ã€ã®åŒãã,",
"title": "æ¡ä»¶ä»ã確ç"
},
{
"paragraph_id": 46,
"tag": "p",
"text": "ãšããã. ããããã€ãºã®å®çãšãã.",
"title": "æ¡ä»¶ä»ã確ç"
},
{
"paragraph_id": 47,
"tag": "p",
"text": "ãã®åŒã®å³èŸºã®ååã®æå³ã¯, Biãèµ·ããŠAãèµ·ãã確çã§ãã. ãããP(A)ã§å²ã£ãŠãã. ããªãã¡ A ãçµæãšããŠèµ·ãããšãã«, Bi ãèµ·ããŠãã確çãšããæå³ã§ãã. P(Bi)ãäºå確ç, P(Bi|A)ãäºåŸç¢ºçãšãã.",
"title": "æ¡ä»¶ä»ã確ç"
},
{
"paragraph_id": 48,
"tag": "p",
"text": "æåã®åé¡ã«æ»ããš, ç®±i ãéžã¶ãšããäºè±¡ã Bi, èµ€çãåºããšããäºè±¡ã A ãšãã.",
"title": "æ¡ä»¶ä»ã確ç"
},
{
"paragraph_id": 49,
"tag": "p",
"text": "ãšãªã, ç®±1ãéžãã§ãã確çã¯, ã»ãŒ 0.82 ããããšèšããã®ã§ãã.",
"title": "æ¡ä»¶ä»ã確ç"
},
{
"paragraph_id": 50,
"tag": "p",
"text": "ããäžã€ããã€ãºã®å®çãç¥ããªããšæ£ããå€æãåºæ¥ãªãäŸãæããŠãããã",
"title": "æ¡ä»¶ä»ã確ç"
},
{
"paragraph_id": 51,
"tag": "p",
"text": "ã10000人ã«1人ã®å²åã§ãããç
æ°ãããããŸãããã®ç
æ°ã«ããã£ãŠãããã©ãããå€å¥ããããã®ããæ€æ»ã¯ã99ããŒã»ã³ãã®ç²ŸåºŠãæã£ãŠããããããããªãããã®æ€æ»ã§ç
æ°ã«ããã£ãŠãããšãããããšããããªããç
æ°ã§ãã確çã¯ã©ã®ãããã ããã?ã",
"title": "æ¡ä»¶ä»ã確ç"
},
{
"paragraph_id": 52,
"tag": "p",
"text": "ããããããã€ãºã®å®çãç¥ããªããš99ããŒã»ã³ããšçããŠããŸãã®ã§ã¯ãªãã ããããããã§ãå®éã«ããã€ãºã®å®çãçšããŠèšç®ããŠã¿ãŠæ¬²ãããç
æ°ã«ããã£ãŠããªãã®ã«æ€æ»ãééãããšããå¯èœæ§ã®ã»ããé«ããæ£ããã¯1ããŒã»ã³ãã«ãæºããªããšããããšãåããã ããã",
"title": "æ¡ä»¶ä»ã確ç"
}
] | null | ==確çã®å°å
¥==
===確çãšã¯===
確çãšããèšèã¯, ä»æ¥ã§ã¯ãããããªå Žé¢ã§äœ¿ããã. é氎確çã, åæ Œç¢ºç, äºæ
ã®èµ·ãã確ç, å®ããã®åœéžç¢ºçãªã©ãã®äœ¿ããæ¹ã¯å€å²ã«æž¡ã. 倧æµã®å Žå確çäœïŒ
ïŒããŒã»ã³ãïŒãšããããã«, ããŒã»ã³ã衚瀺ãããã, ïŒ
ãšã¯æ¬æ¥per centã€ãŸã100ãããããããïŒãšããå€ã瀺ãèšå·ã§ãã. äŸãã°, é氎確çã§èããŠã¿ããš, é氎確ç40ïŒ
ãšã¯, åããããªå€©æ°å³ã«ãªã£ãæ¥ã100æ¥ãã£ããšããã, ãã®å
40æ¥ã¯éšãéããšããããšã«ãªã. 100æ¥ããã40æ¥ãšããããšã¯, 1æ¥ããã 40/100=0. 4 ã®å²åã§èµ·ããŠããããšã«ãªã. å¿
ãéšãéããšèšãããŠãã100ïŒ
ã§ããã°, 100÷100=1ã®å²åã§èµ·ãããšããããšã§, å¿
ãéããªããšèšããã0ïŒ
ã§ããã°, 0÷100=0 ã®å²åã§èµ·ãããšããäºæž¬ã«ãªã. ã€ãŸã確çãšããã®ã¯0ãã1ãŸã§ã®å€ãåã.
確çãšããã®ã¯ãã®ããã«ãããç©äºãèµ·ãã'''å²å'''ããšããŠèãããã.
===å²åãšç¢ºç===
[[çµ±èšåŠ_åºç€_æšæ¬ç©ºé|æšæ¬ç©ºé]]ã§å®çŸ©ãããšãã, æšæ¬ç©ºéãäºè±¡ãšããã®ã¯ãèµ·ããããçµæïŒæšæ¬ç¹ïŒã®éåãã ã£ã. ããäºè±¡''A''ãèµ·ãã'''確ç''' ''P''(''A'') ãšã¯, å®éšã沢山繰ãè¿ããæã«, ''A''ãèµ·ããå²åã®äºã§ãã.
äŸãã°, ã³ã€ã³æãã§ããã°, è¡šãåºã確çã¯1/2ã§ãã. 1åã³ã€ã³ãæããŠè¡šãåºããšãããš, å
š1åã®è©Šè¡äž, 1åè¡šãåºãã®ã§, è¡šãåºãå²åã¯1÷1=1ã«ãªã. ãã1åæããŠ, ãŸãè¡šãåºããšãããš, è¡šãåºãŠããå²åã¯2÷2=1ã§ãã. å
šç¶, 1/2ãšéãã®ã§ã¯ãªããïŒãšæãããããç¥ããªã. ãããéèŠãªã®ã¯ã沢山ãç¹°ãè¿ããæã«ãšããããšã§ãã. ã³ã€ã³æãã10å,100åãšç¹°ãè¿ããšãéããªã1/2ã«è¿ã¥ãã®ã§ããã
===確çã®å
===
====èšå·ã®å®çŸ©====
: Ωãæšæ¬ç©ºé, ''A''ãäºè±¡ãšãã.
: ''P''(''x'') ã¯, äºè±¡ ''x'' ãç¬ç«å€æ°ãšã, å®æ°å€ãåãé¢æ°ãšãã.
: ''A''<sub>1</sub>, ''A''<sub>2</sub>, âŠã¯äºè±¡ã®åãšãã.
====確çã®å
====
次ã®3ã€ã®åŒã®äºã'''確çã®å
¬ç'''ãšãã.
: ''P''<sub>1</sub> : ä»»æã®äºè±¡''A''ã«å¯Ÿã 0 ≤ ''P''(''A'') ≤ 1
: ''P''<sub>2</sub> : ''P''(Ω)=1
: ''P''<sub>3</sub> : ''A''<sub>1</sub>, ''A''<sub>2</sub>, ⊠ãäºãã«èåäºè±¡ã§ãããšã <math> P(\bigcup^{\infty}_{k=1} A_k)=\sum^{\infty}_{k=1} P(A_k)</math>( σ-å æ³æ§)
ãããã®æ§è³ªãæ〠''P''(''x'') ã®äºã'''確çïŒç¢ºç枬床ïŒ'''ãšãã. æåã«ã€ããŠã ''P''<sub>1</sub> , ''P''<sub>2</sub> , ''P''<sub>3</sub> ã¯, ãããã説æããããã®äŸ¿å®äžã®çªå·ã§ãã.
''P''<sub>1</sub> ã®åŒã¯, 確ç㯠0 ãã 1 ãŸã§ã®å€ãåããšããæå³ã§ãã. 説æãããšãã確çãšããã®ã¯, å®éšåæ°ã«å¯ŸããŠãã®äºè±¡ãèµ·ããŠãããå²åãã§ãã. äžã®äžã«ã¯ãåæ Œç¢ºç 120 ïŒ
ãã®ãããªå€ãªèšèãããã, åããããªå®åã®äººã 100 人éãŸã£ãŠå
¥åŠè©Šéšãªã©ãåéšã㊠120 人åæ Œãããªã©ãšããå€ãªããšã¯ãªã. 100 人ããåéšããŠããªãã®ãªã, åæ Œãã人æ°ã®æ倧å€ã 100 人ã§ãã, å²åã®æ倧å€ã 1 ã§ãã.
''P''<sub>2</sub> ã®åŒãèŠãŠãã ãã. æšæ¬ç©ºé Ω ã¯èµ·ããåŸãå
šãŠã®çµæã®éåãªã®ã§, å®éšãäœåºŠç¹°ãè¿ããŠã, Ω ã«å«ãŸããæšæ¬ç¹ã®ãã¡ã®ã©ãã 1 ã€ããå¿
ããèµ·ããŠãã. ãããã£ãŠ, æšæ¬ç©ºéãšããäºè±¡ãèµ·ãã確ç㯠1 ãšãªã.
''P''<sub>3</sub> ã®åŒãäžçªåããã«ãããããããªã. ã σ -å æ³æ§ïŒãããŸãã»ãããïŒããšããé£ããååãã€ããŠãã.
:ç·åèšå·ãåããã«ãããšæã人ã¯
: ''P''(''A''<sub>1</sub> ∪ ''A''<sub>2</sub> ∪ ⊠)=''P''(''A''<sub>1</sub>)+''P''(''A''<sub>2</sub>)+âŠ
:ãšããåŒã ãšæããšãã.
èåäºè±¡ãšã¯äœã ã£ããæãåºããš, ''A''<sub>j</sub> ∩ ''A''<sub>k</sub> = φ ã®æ, å³ã¡, ''A''<sub>j</sub>ãš ''A''<sub>k</sub>ã«éãªããç¡ããšã, ãã® ''A''<sub>j</sub>ãš ''A''<sub>k</sub>ã¯èåäºè±¡ã«ãªã. äºãã«èåãšã¯ã©ãããæå³ãªã®ããšããã°, j ≠ k ã®æ
''A''<sub>j</sub>ãš ''A''<sub>k</sub>ãèåäºè±¡, å³ã¡, ã©ã® 2 ã€ã®äºè±¡ãåã£ããšããŠã, äºãã«éãªããªããšããæå³ã§ãã.
巊蟺ã«ãã<math>\bigcup^{\infty}_{k=1} A_k </math>ã¯''A''<sub>k</sub>ã«éãªããç¡ãã®ã§, ããããã®''A''<sub>k</sub>ã«å«ãŸããæšæ¬ç¹ã¯, ãã®åéåãåããšããæäœã§éãªãç¡ã足ãã, <math>\bigcup^{\infty}_{k=1} A_k </math>ãšããäžã€ã®éåã«ãªã. å³èŸºã¯, å''A''<sub>k</sub>ã«äžãããã確ç''P''(''A''<sub>k</sub>)ããã®ãŸãŸè¶³ããªãããšããæå³ã§ãã. éãªããç¡ããããã足ããã®ã§ãã. éãªãããããšç°¡åã«ã¯è¶³ããªã.
:èåäºè±¡ã§ç¡ãå Žåã®ç¢ºçã®åã®åãæ¹ã¯, ãŸãåŸã»ã©èª¬æãã.
==確çã®å¿çš==
ãã£ã''3''ã€ã®ç¢ºçã®å
¬çãããããããªäºãåãã.
===空äºè±¡ã®ç¢ºç===
ãŸã ''A''<sub>1</sub> = Ω ãšãšã, k ≥ 2 ã®ãšã㯠''A''<sub>k</sub> = φ ãšãã. ãã®æ, ''P''<sub>3</sub> ã®åŒã¯
:''P''(Ω)=''P''(Ω)+''P''(φ)+''P''(φ) âŠ
ã ãã, ''P''<sub>1</sub> , ''P''<sub>2</sub> ã®æ¡ä»¶ãã, ''P''(φ )=0 ãšããã.
: ''P''<sub>3</sub> ã®æ¡ä»¶ã«ã€ããŠå°ãè£è¶³ãã. ä»»æã®äºè±¡''x''ã«å¯Ÿã㊠''x'' ∩ φ = φ ã§ãã. ã€ãŸã, 空äºè±¡ãšä»ã®äºè±¡ã®å
±ééšåïŒç©äºè±¡ïŒã¯, 空äºè±¡ã§ãã. 空äºè±¡å士ã®å
±ééšåã空äºè±¡ã§ãã. ããã¯, 空äºè±¡ãšä»»æã®äºè±¡''x''ã¯èåäºè±¡ã§ããããšã瀺ããŠãã. ãããã£ãŠ, ''P''<sub>3</sub> ã®æ¡ä»¶ãæºãã, ''P''<sub>3</sub> ã®åŒã䜿ãããšããããšã«ãªã.
===æéå æ³æ§===
ãŸãã¯, ''P''(φ )=0 ãšããåŒãåŸããã. ãããã, ''P''<sub>3</sub> ã®åŒã«ã€ããŠããå°ãæ¡ä»¶ãå³ããã㊠k > n ã®ãšã㯠''A''<sub>k</sub> = φ ãšãããš, ''P''<sub>3</sub> ã¯æ¬¡ã®ããã«æžãæãããã.
: ''P''<sub>4</sub> : ''A''<sub>1</sub>, ''A''<sub>2</sub>, ⊠, ''A''<sub>n</sub> ãäºãã«èåäºè±¡ã§ãããšã <math> P(\bigcup^n_{k=1} A_k)=\sum^n_{k=1} P(A_k)</math>ïŒæéå æ³æ§ïŒ
''k'' > ''n'' ã®ãšãã¯, ''P''(''A''<sub>k</sub> )= ''P''(φ) =0 ã§ããããšã䜿ã£ã.
ãªãã ãåããã©ãããšãããŠããšæããããããããªãã, æ°åŠã§ã¯æåã«æ±ºããŠããçŽæäºã¯å°ãªãæ¹ããã, ãã®å°ãªãçŽæäºããããã«å€ãã®äºå®ãå°ãåºãããïŒãšããããšãæ°åŠã®é¢çœãã§ããã.
===å·®äºè±¡ãšè£äºè±¡===
å·®äºè±¡ ''A'' - ''B'' ã«ã€ã㊠(''A'' - ''B'') ⪠(''A'' â© ''B'') = ''A'' ã〠(''A'' - ''B'') ∩ (''A'' ∩ ''B'') = φ ãªã®ã§
:''P''(''A'')=''P''(''A'' - ''B'')+''P''(''A'' ∩ ''B'')
:''P''(''A'' - ''B'')=''P''(''A'')-''P''(''A'' ∩ ''B'')
ãšãªã.
ããã§, ''A'' â ''B'' ã§ããã° ''A'' ∩ ''B''=''B'' ãªã®ã§
:''P''(''A'')=''P''(''A'' - ''B'')+''P''(''B'') ≥ ''P''(''B'')
ãšãªã.
ãŸã, ''A'' = Ω ã§ããã°, å·®äºè±¡ Ω - ''B'' ã¯, äºè±¡''B''ã®è£äºè±¡ ''B''<sup>c</sup> ã®äºãªã®ã§
:''P''(''B''<sup>c</sup>)=''P''(Ω)-''P''(''B'') = 1-''P''(''B'')
ãšãªã.
ãããŸã§æ¥ãŠ, åã®è¯ãæ¹ã¯æ°ä»ãããç¥ããªãã
:''P''(''B''<sup>c</sup>)= 1-''P''(''B'') ≥ 0
ãã
:''P''(''B'') ≤ 1
ã§ãã. ãã®äžçåŒãå°ããŸã§, ''P''<sub>1</sub> ã®äžçåŒ 0 ≤ ''P''(''A'') ≤ 1 ã¯, å·ŠåŽã®äžçå·ãã䜿ã£ãŠãªãããšã«æ³šç®ãããš, ''P''<sub>1</sub> ã®å³åŽã®äžçå·ã¯äœåãšããããšã§, ''P''<sub>1</sub> ã¯æ¬¡ã®ããã«ãæžãæãããã.
:P<sub>1</sub>′: ä»»æã®äºè±¡''A''ã«å¯Ÿã ''P''(''A'') ≥ 0
===åäºè±¡===
''A'' ∪ ''B'' = (''A'' - ''B'') ∪ ''B'' ã〠(''A'' - ''B'') ∩ ''B'' = φ ã§ãããåäºè±¡ ''A'' ∪ ''B'' ã«ã€ããŠ
:''P''(''A'' ∪ ''B'') = ''P''(''A'' - ''B'')+''P''(''B'') = ''P''(''A'')+''P''(''B'')-''P''(''A'' ∩ ''B'')
ãšãªã. ãã®åŒã¯å æ³å®çãšãåŒã°ãã.
:ç¹ã«''A''ãš''B''ãèåäºè±¡ã§ãããšãã«''P''(''A''∩''B'')=''P''(φ)=0 ãªã®ã§, ããã¯æéå æ³æ§ ''P''<sub>4</sub> ã®åŒã«ãªã.
==æ¡ä»¶ä»ã確ç==
===å®çŸ©===
''P''(''A'')>0 ã®ãšã
:<math>P(B|A)=\frac{P(A\cap B)}{P(A)}</math>
ã'''æ¡ä»¶ä»ã確ç'''ãšãã.
''P''(''B''|''A'')ã¯, å
šäºè±¡ãΩ ãã''A''ã«åãæ¿ãããšãã®äºè±¡''B''ã®èµ·ãã確çãšèããããšãã§ãã. å³ã¡, ''P''(''B''|''A'')ã¯äºè±¡''A''ãå¿
ãèµ·ãããšããæ¡ä»¶ã®å
ã§ã®äºè±¡''B''ã®èµ·ãã確çã§ãã.
ãã®ãšã, ''A''ã¯å
šäºè±¡ãšèããã®ã ãã
:<math>P(A|A)=\frac{P(A \cap A)}{P(A)}=\frac{P(A)}{P(A)}=1</math>
ã§ãã. ããã¯, 確çã®å
¬çã® ''P''<sub>2</sub> ã«åœããåŒã«ãªã. ''A''ãåºå®ãããšã ''P''(''x''|''A'')ãšããé¢æ°ã ''P''<sub>1</sub> ã ''P''<sub>3</sub> ãæºãã, 確çãšãªãããšãåãã.
===ä¹æ³å®ç===
å®çŸ©åŒã®åæ¯ãæã£ãçåŒ
:''P''(''A''∩ ''B'') = ''P''(''A'')''P''(''B''|''A'')
ã'''ä¹æ³å®ç'''ãšèšã. æ¡ä»¶ä»ã確çã®å®çŸ©ã§ã¯ ''P''(''A'')>0 ãä»®å®ããã, ãã®ããã«èŠãŠã¿ããš ''P''(''A'') ≥ 0 ã«æ¡åŒµããŠãåé¡ãªããšåãã. å®çŸ©ã®é
ã§ã¯, äœæ
ãã®ãããªçŽ°ããæ¡ä»¶ãã€ãããããã®ããšèšãã°, å²ãç®ã«ãã㊠0 ã§å²ããšããæäœã¯èªããããŠãªãããã§ãã. åæ°ã®åæ¯ã« 0 ãæ¥ãããšã¯é¿ããªããã°ãªããªã.
===ç¬ç«æ§===
äºè±¡''A''ãš''B''ã
:''P''(''A'' ∩ ''B'')=''P''(''A'')''P''(''B'')
ãæºãããšã''A''ãš''B''ã¯'''ç¬ç«'''ã§ãããšèšã.
0< ''P''(''A'')<1 ã®ãšã
:<math>P(B|A)=\frac{P(A\cap B)}{P(A)}=P(B)</math>
ãšãªã.
ããã§,
:''P''(''A''<sup>c</sup>∩ ''B'') = ''P''(''B'')-''P''(''A''∩ ''B'')
:= ''P''(''B'')-''P''(''A'')''P''(''B'') = (1-''P''(''A'')'')''P''(''B'')
:= ''P''(''A''<sup>c</sup>)''P''(''B'')
ãšãªãã®ã§çµå±
:<math>P(B|A^c)=\frac{P(A^c \cap B)}{P(A^c)}=P(B)</math>
ã€ãŸã, ''B''ã®èµ·ãã確çã¯''A''ãèµ·ãããã©ããã«å¯ããªããšããããšã§ãã.
''P''(''A'') = 1 or 0 ã®æã¯, ''A'' ãå¿
ãèµ·ããã, å¿
ãèµ·ããªãã£ããããã®ã§, ãã®å Žå ''B'' ã®èµ·ãã確çãš ''A'' ã¯é¢ä¿ããªã.
===ãã€ãºã®å®ç===
èŠãç®ãå
šãåãç®±ã 2 ã€ãã. ç®±1 ãš ç®±2ãšãã.
:ç®±1ã«ã¯èµ€çã 9 å, çœçã 1å
:ç®±2ã«ã¯èµ€çã 2 å, çœçã 8å
å
¥ã£ãŠãããšãã. ã©ã¡ãã®ç®±ãåãããªãã, æãå
¥ããŠçãäžã€ã ãåãã ããŠã¿ããšèµ€ãçã ã£ã. ãã®å Žå, éžãã ç®±ãç®±1ã§ãã確çã¯ããã€ã ãããïŒç®±ãéžã¶ç¢ºçã¯ã©ã¡ããçãã(1/2) ã§ãããšãã.
ç®±1ã®æ¹ãèµ€çãåºããããã§ããã®ã§, ç®±1ã®æ¹ãéžãã§ããå¯èœæ§ã¯é«ããã ãã. ããªãã¡, èµ€çãåºããšããäºã決å®ããåŸã§ã¯, ç®±1ãšç®±2ã®ã©ã¡ããéžãã ãïŒãšãã確çã¯çãããªãããã§ãã.
ãã®ãããªç¢ºçãã©ã®ããã«èª¿ã¹ããããã ãããïŒãšããã®ããã®ç¯ã®ç®çã§ãã.
''B''<sub>1</sub>, ''B''<sub>2</sub>, ⊠, ''B''<sub>n</sub> ãäºãã«èåäºè±¡ã§,
''B''<sub>1</sub>∪''B''<sub>2</sub>∪âŠ∪''B''<sub>n</sub> = Ωã§ãããšãã.
:<math>P(B_i|A)=\frac{P(A\cap B_i)}{P(A)}=\frac{P(B_i\cap A)}{P(A)}=\frac{P(B_i)P(A|B_i)}{P(A)} </math>
:<math>P(A)=P(A\cap\Omega) = P(A\cap (\bigcup^{n}_{k=1}B_i)) = \sum^{n}_{i=1} P(A \cap B_i) =\sum^{n}_{i=1} P(B_i)P(A |B_i) </math>
ã®2ã€ã®åŒãã,
:<math>P(B_i|A)= \frac{P(B_i)P(A|B_i)}{\sum^{n}_{i=1} P(B_i)P(A |B_i)}</math>
ãšããã. ããã'''ãã€ãºã®å®ç'''ãšãã.
ãã®åŒã®å³èŸºã®ååã®æå³ã¯, ''B''<sub>i</sub>ãèµ·ããŠ''A''ãèµ·ãã確çã§ãã. ããã''P''(''A'')ã§å²ã£ãŠãã.
ããªãã¡ ''A'' ãçµæãšããŠèµ·ãããšãã«, ''B''<sub>i</sub> ãèµ·ããŠãã確çãšããæå³ã§ãã.
''P''(''B''<sub>i</sub>)ã'''äºå確ç''', ''P''(''B''<sub>i</sub>|A)ã'''äºåŸç¢ºç'''ãšãã.
æåã®åé¡ã«æ»ããš, ç®±i ãéžã¶ãšããäºè±¡ã ''B''<sub>i</sub>, èµ€çãåºããšããäºè±¡ã A ãšãã.
:<math>P(A)= \frac{1}{2} \cdot \frac{9}{10}+\frac{1}{2}\cdot\frac{2}{10}= \frac{11}{20}</math>
:<math>P(B_1|A)= \frac{(1/2)\cdot (9/10)}{(11/20)}= \frac{9}{11}=0.8181\cdots</math>
ãšãªã, ç®±1ãéžãã§ãã確çã¯, ã»ãŒ 0.82 ããããšèšããã®ã§ãã.
ããäžã€ããã€ãºã®å®çãç¥ããªããšæ£ããå€æãåºæ¥ãªãäŸãæããŠãããã
ã10000人ã«1人ã®å²åã§ãããç
æ°ãããããŸãããã®ç
æ°ã«ããã£ãŠãããã©ãããå€å¥ããããã®ããæ€æ»ã¯ã99ããŒã»ã³ãã®ç²ŸåºŠãæã£ãŠããããããããªãããã®æ€æ»ã§ç
æ°ã«ããã£ãŠãããšãããããšããããªããç
æ°ã§ãã確çã¯ã©ã®ãããã ãããïŒã
ããããããã€ãºã®å®çãç¥ããªããš99ããŒã»ã³ããšçããŠããŸãã®ã§ã¯ãªãã ããããããã§ãå®éã«ããã€ãºã®å®çãçšããŠèšç®ããŠã¿ãŠæ¬²ãããç
æ°ã«ããã£ãŠããªãã®ã«æ€æ»ãééãããšããå¯èœæ§ã®ã»ããé«ããæ£ããã¯1ããŒã»ã³ãã«ãæºããªããšããããšãåããã ããã
[[Category:çµ±èšåŠ|ãããã€]]
[[ã«ããŽãª:確ç]] | null | 2022-11-26T06:55:21Z | [] | https://ja.wikibooks.org/wiki/%E7%B5%B1%E8%A8%88%E5%AD%A6%E5%9F%BA%E7%A4%8E/%E7%A2%BA%E7%8E%87 |
1,714 | èªç¥å¿çåŠ | èªç¥å¿çåŠãçºå±ããåã¯è¡å䞻矩å¿çåŠãå
šçã§ãã£ãã è¡å䞻矩å¿çåŠã¯åºæ¿ãšåå¿ã«ãã£ãŠçç©ã®è¡åãæããå¿çåŠã§ããã ã³ã³ãã¥ãŒã¿ã®æ
å ±åŠçã®èãæ¹ãå¿çåŠã«åãå
¥ããããŠãèªç¥å¿çåŠãšããåéãæç«ããã
èšæ¶ã¯æèŠèšæ¶ãçæèšæ¶ãé·æèšæ¶ã®3ã€ã«å€§ããåé¡ãããã
æèŠèšæ¶ã¯æèŠåšå®ã«ä¿åããããã¹ããŒãªã³ã°ã®å®éšã«ãã£ãŠæããã«ãããã
çæèšæ¶ã®å®¹éã¯7±2ãããªããšããããšããžã§ãŒãžã»ãã©ãŒã«ãã£ãŠçºèŠãããããã®çºèŠã¯èªç¥å¿çåŠã®å
é§ããšãªã£ããçæèšæ¶ã¯æŸã£ãŠãããšããã«å¿åŽããŠããŸãã
èšæ¶ãããé
ç®ãäœåºŠãå£ã«åºããŠå埩ããããšããªããŒãµã«ãšããã ãªããŒãµã«ã¯ç¶æãªããŒãµã«ãšç²Ÿç·»åãªããŒãµã«ã«åé¡ãããã çæèšæ¶ã®èšæ¶ã¯ç¶æãªããŒãµã«ã«ãã£ãŠç¶æãããã çæèšæ¶ã®èšæ¶ã¯ç²Ÿç·»åãªããŒãµã«ã«ãã£ãŠé·æèšæ¶ã«è»¢éãããã
é·æèšæ¶ã¯å®£èšçèšæ¶ãšæç¶ãèšæ¶ã«åé¡ãããã 宣èšçèšæ¶ã¯ãäœãã©ãããã What isãã«ã€ããŠã®èšæ¶ã§ããã
宣èšçèšæ¶ã¯æå³èšæ¶ãšãšããœãŒãèšæ¶ã«åé¡ãããã æŽå²ã®å¹Žå·ãªã©ã®å匷ããŠèº«ã«ä»ãç¥èãæå³èšæ¶ãšããã å人çãªæãåºãåºæ¥äºã«ã€ããŠã®èšæ¶ããšããœãŒãèšæ¶ãšããã
æç¶ãèšæ¶ã¯ãã©ãããã How toãã«ã€ããŠã®èšæ¶ã§ãããããããäœã§èŠããèšæ¶ãããã«ããããæç¶ãèšæ¶ã¯å®£èšçèšæ¶ã«æ¯ã¹ãŠå¿åŽãã«ããã10幎éæ°Žæ³³ãããªããŠãæ³³ããããšãªã©ãäŸãšããŠæããããã
æè¿ã§ã¯çæèšæ¶ã«ä»£ãã£ãŠã泚æãªã©ãå«ããäœæ¥èšæ¶ãšããæŠå¿µãæå±ãããŠãããäœæ¥èšæ¶ã¯äœåèšæ¶ãšãããã äœæ¥èšæ¶ã¯èŠç©ºéã¹ã±ããããããšé³é»ã«ãŒããšäžå€®åŠçç³»ã«åé¡ãããã èŠç©ºéã¹ã±ãããããã¯èŠèŠçãªæ
å ±ãä¿åããå¿ã®ç®ãšãããã é³é»ã«ãŒãã¯èŽèŠçãªæ
å ±ãä¿åããå¿ã®è³ãšãããã äžå€®åŠçç³»ã¯äœæ¥èšæ¶å
éšã®èŠç©ºéã¹ã±ããããããé³é»ã«ãŒããšé·æèšæ¶ã®éã§æ
å ±ã®ãããšããè¡ãã
æè¿ã§ã¯åŠçæ°Žæºèª¬ãšãã説ãæå±ãããŠããã ÏUniversal Production Group | [
{
"paragraph_id": 0,
"tag": "p",
"text": "èªç¥å¿çåŠãçºå±ããåã¯è¡å䞻矩å¿çåŠãå
šçã§ãã£ãã è¡å䞻矩å¿çåŠã¯åºæ¿ãšåå¿ã«ãã£ãŠçç©ã®è¡åãæããå¿çåŠã§ããã ã³ã³ãã¥ãŒã¿ã®æ
å ±åŠçã®èãæ¹ãå¿çåŠã«åãå
¥ããããŠãèªç¥å¿çåŠãšããåéãæç«ããã",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "èšæ¶ã¯æèŠèšæ¶ãçæèšæ¶ãé·æèšæ¶ã®3ã€ã«å€§ããåé¡ãããã",
"title": "èšæ¶"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "æèŠèšæ¶ã¯æèŠåšå®ã«ä¿åããããã¹ããŒãªã³ã°ã®å®éšã«ãã£ãŠæããã«ãããã",
"title": "èšæ¶"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "çæèšæ¶ã®å®¹éã¯7±2ãããªããšããããšããžã§ãŒãžã»ãã©ãŒã«ãã£ãŠçºèŠãããããã®çºèŠã¯èªç¥å¿çåŠã®å
é§ããšãªã£ããçæèšæ¶ã¯æŸã£ãŠãããšããã«å¿åŽããŠããŸãã",
"title": "èšæ¶"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "èšæ¶ãããé
ç®ãäœåºŠãå£ã«åºããŠå埩ããããšããªããŒãµã«ãšããã ãªããŒãµã«ã¯ç¶æãªããŒãµã«ãšç²Ÿç·»åãªããŒãµã«ã«åé¡ãããã çæèšæ¶ã®èšæ¶ã¯ç¶æãªããŒãµã«ã«ãã£ãŠç¶æãããã çæèšæ¶ã®èšæ¶ã¯ç²Ÿç·»åãªããŒãµã«ã«ãã£ãŠé·æèšæ¶ã«è»¢éãããã",
"title": "èšæ¶"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "é·æèšæ¶ã¯å®£èšçèšæ¶ãšæç¶ãèšæ¶ã«åé¡ãããã 宣èšçèšæ¶ã¯ãäœãã©ãããã What isãã«ã€ããŠã®èšæ¶ã§ããã",
"title": "èšæ¶"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "宣èšçèšæ¶ã¯æå³èšæ¶ãšãšããœãŒãèšæ¶ã«åé¡ãããã æŽå²ã®å¹Žå·ãªã©ã®å匷ããŠèº«ã«ä»ãç¥èãæå³èšæ¶ãšããã å人çãªæãåºãåºæ¥äºã«ã€ããŠã®èšæ¶ããšããœãŒãèšæ¶ãšããã",
"title": "èšæ¶"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "æç¶ãèšæ¶ã¯ãã©ãããã How toãã«ã€ããŠã®èšæ¶ã§ãããããããäœã§èŠããèšæ¶ãããã«ããããæç¶ãèšæ¶ã¯å®£èšçèšæ¶ã«æ¯ã¹ãŠå¿åŽãã«ããã10幎éæ°Žæ³³ãããªããŠãæ³³ããããšãªã©ãäŸãšããŠæããããã",
"title": "èšæ¶"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "æè¿ã§ã¯çæèšæ¶ã«ä»£ãã£ãŠã泚æãªã©ãå«ããäœæ¥èšæ¶ãšããæŠå¿µãæå±ãããŠãããäœæ¥èšæ¶ã¯äœåèšæ¶ãšãããã äœæ¥èšæ¶ã¯èŠç©ºéã¹ã±ããããããšé³é»ã«ãŒããšäžå€®åŠçç³»ã«åé¡ãããã èŠç©ºéã¹ã±ãããããã¯èŠèŠçãªæ
å ±ãä¿åããå¿ã®ç®ãšãããã é³é»ã«ãŒãã¯èŽèŠçãªæ
å ±ãä¿åããå¿ã®è³ãšãããã äžå€®åŠçç³»ã¯äœæ¥èšæ¶å
éšã®èŠç©ºéã¹ã±ããããããé³é»ã«ãŒããšé·æèšæ¶ã®éã§æ
å ±ã®ãããšããè¡ãã",
"title": "èšæ¶"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "æè¿ã§ã¯åŠçæ°Žæºèª¬ãšãã説ãæå±ãããŠããã ÏUniversal Production Group",
"title": "èšæ¶"
}
] | å¿çåŠ > èªç¥å¿çåŠ èªç¥å¿çåŠãçºå±ããåã¯è¡å䞻矩å¿çåŠãå
šçã§ãã£ãã
è¡å䞻矩å¿çåŠã¯åºæ¿ãšåå¿ã«ãã£ãŠçç©ã®è¡åãæããå¿çåŠã§ããã
ã³ã³ãã¥ãŒã¿ã®æ
å ±åŠçã®èãæ¹ãå¿çåŠã«åãå
¥ããããŠãèªç¥å¿çåŠãšããåéãæç«ããã | *[[å¿çåŠ]] > èªç¥å¿çåŠ
èªç¥å¿çåŠãçºå±ããåã¯è¡å䞻矩å¿çåŠãå
šçã§ãã£ãã
[[w:è¡å䞻矩å¿çåŠ|è¡å䞻矩å¿çåŠ]]ã¯åºæ¿ãšåå¿ã«ãã£ãŠçç©ã®è¡åãæããå¿çåŠã§ããã
ã³ã³ãã¥ãŒã¿ã®[[w:æ
å ±åŠç|æ
å ±åŠç]]ã®èãæ¹ãå¿çåŠã«åãå
¥ããããŠãèªç¥å¿çåŠãšããåéãæç«ããã
== åŠç¿ ==
== èšæ¶ ==
èšæ¶ã¯[[w:æèŠèšæ¶|æèŠèšæ¶]]ã[[w:çæèšæ¶|çæèšæ¶]]ã[[w:é·æèšæ¶|é·æèšæ¶]]ã®3ã€ã«å€§ããåé¡ãããã
æèŠèšæ¶ã¯[[w:æèŠåšå®|æèŠåšå®]]ã«ä¿åãããã[[w:ã¹ããŒãªã³ã°|ã¹ããŒãªã³ã°]]ã®å®éšã«ãã£ãŠæããã«ãããã
çæèšæ¶ã®å®¹éã¯7±2ãããªããšããããšã[[w:ãžã§ãŒãžã»ãã©ãŒ|ãžã§ãŒãžã»ãã©ãŒ]]ã«ãã£ãŠçºèŠãããããã®çºèŠã¯èªç¥å¿çåŠã®å
é§ããšãªã£ããçæèšæ¶ã¯æŸã£ãŠãããšããã«å¿åŽããŠããŸãã
èšæ¶ãããé
ç®ãäœåºŠãå£ã«åºããŠå埩ããããšã[[w:ãªããŒãµã«|ãªããŒãµã«]]ãšããã
ãªããŒãµã«ã¯ç¶æãªããŒãµã«ãšç²Ÿç·»åãªããŒãµã«ã«åé¡ãããã
çæèšæ¶ã®èšæ¶ã¯[[w:ç¶æãªããŒãµã«|ç¶æãªããŒãµã«]]ã«ãã£ãŠç¶æãããã
çæèšæ¶ã®èšæ¶ã¯[[w:粟緻åãªããŒãµã«|粟緻åãªããŒãµã«]]ã«ãã£ãŠé·æèšæ¶ã«è»¢éãããã
é·æèšæ¶ã¯å®£èšçèšæ¶ãšæç¶ãèšæ¶ã«åé¡ãããã
[[w:宣èšçèšæ¶|宣èšçèšæ¶]]ã¯ãäœãã©ãããã What isãã«ã€ããŠã®èšæ¶ã§ããã
宣èšçèšæ¶ã¯[[w:æå³èšæ¶|æå³èšæ¶]]ãš[[w:ãšããœãŒãèšæ¶|ãšããœãŒãèšæ¶]]ã«åé¡ãããã
æŽå²ã®å¹Žå·ãªã©ã®å匷ããŠèº«ã«ä»ãç¥èãæå³èšæ¶ãšããã
å人çãªæãåºãåºæ¥äºã«ã€ããŠã®èšæ¶ããšããœãŒãèšæ¶ãšããã
[[w:æç¶ãèšæ¶|æç¶ãèšæ¶]]ã¯ãã©ãããããHow toãã«ã€ããŠã®èšæ¶ã§ãããããããäœã§èŠããèšæ¶ãããã«ããããæç¶ãèšæ¶ã¯å®£èšçèšæ¶ã«æ¯ã¹ãŠå¿åŽãã«ããã10幎éæ°Žæ³³ãããªããŠãæ³³ããããšãªã©ãäŸãšããŠæããããã
æè¿ã§ã¯çæèšæ¶ã«ä»£ãã£ãŠã泚æãªã©ãå«ãã[[w:äœæ¥èšæ¶|äœæ¥èšæ¶]]ãšããæŠå¿µãæå±ãããŠãããäœæ¥èšæ¶ã¯äœåèšæ¶ãšãããã
äœæ¥èšæ¶ã¯èŠç©ºéã¹ã±ããããããšé³é»ã«ãŒããšäžå€®åŠçç³»ã«åé¡ãããã
èŠç©ºéã¹ã±ãããããã¯èŠèŠçãªæ
å ±ãä¿åããå¿ã®ç®ãšãããã
é³é»ã«ãŒãã¯èŽèŠçãªæ
å ±ãä¿åããå¿ã®è³ãšãããã
äžå€®åŠçç³»ã¯äœæ¥èšæ¶å
éšã®èŠç©ºéã¹ã±ããããããé³é»ã«ãŒããšé·æèšæ¶ã®éã§æ
å ±ã®ãããšããè¡ãã
æè¿ã§ã¯åŠçæ°Žæºèª¬ãšãã説ãæå±ãããŠããã
ÏUniversal Production Group
== æè ==
{{stub}}
[[Category:å¿çåŠ|ã«ãã¡ããããã]] | null | 2022-08-31T03:09:51Z | [
"ãã³ãã¬ãŒã:Stub"
] | https://ja.wikibooks.org/wiki/%E8%AA%8D%E7%9F%A5%E5%BF%83%E7%90%86%E5%AD%A6 |
1,719 | è±èª/æ§æ | è±èªææ¬ã®æ§æ(æ¡)ã§ãã
察象:å°åŠçã®ãåœéç解ããšè±èªã«åææŠããã倧ãã人åãã®åŸ©ç¿çš
察象:å°åŠæ ¡2-3åŠå¹Žã
察象:å°åŠæ ¡3-4åŠå¹Ž
察象:å°åŠæ ¡5-6幎
察象:äžåŠç åæ©è±èªã®æŽçãç°¡åãªææ³ãèªåœ(Basic English)
察象:é«æ ¡1ã»2幎ç
å¿çš1:æ¥æ¬ã玹ä»ããè±äŒè©±
å¿çš2:ããŒã ã¹ãã£ã®è±äŒè©±
察象:é«æ ¡3幎çãã倧åŠçã瀟äŒäºº | [
{
"paragraph_id": 0,
"tag": "p",
"text": "è±èªææ¬ã®æ§æ(æ¡)ã§ãã",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "察象:å°åŠçã®ãåœéç解ããšè±èªã«åææŠããã倧ãã人åãã®åŸ©ç¿çš",
"title": "è±èªå
¥é"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "察象:å°åŠæ ¡2-3åŠå¹Žã",
"title": "è±èªå
¥é"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "察象:å°åŠæ ¡3-4åŠå¹Ž",
"title": "è±èªå
¥é"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "察象:å°åŠæ ¡5-6幎",
"title": "è±èªå
¥é"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "察象:äžåŠç åæ©è±èªã®æŽçãç°¡åãªææ³ãèªåœ(Basic English)",
"title": "è±èªåçŽ"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "察象:é«æ ¡1ã»2幎ç",
"title": "è±èªäžçŽ"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "å¿çš1:æ¥æ¬ã玹ä»ããè±äŒè©±",
"title": "è±èªäžçŽ"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "å¿çš2:ããŒã ã¹ãã£ã®è±äŒè©±",
"title": "è±èªäžçŽ"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "察象:é«æ ¡3幎çãã倧åŠçã瀟äŒäºº",
"title": "è±èªäžçŽ"
}
] | è±èªææ¬ã®æ§æïŒæ¡ïŒã§ãã | è±èªææ¬ã®æ§æïŒæ¡ïŒã§ãã
==è±èªå
¥é==
察象ïŒå°åŠçã®ãåœéç解ããšè±èªã«åææŠããã倧ãã人åãã®åŸ©ç¿çš
*åºç€çèªåœãšæç« ãæå¶ã¯çŸåšæå¶ãšé²è¡åœ¢ãŸã§ã
<!--ãã£ã¬ã¯ãã¡ãœããã»ã»ã»ãšä»ã§ãèšãã®ã ãããïŒ-->
=== åæ©ã®è±èª1 ===
察象ïŒå°åŠæ ¡2-3åŠå¹Žã
*身è¿ãªèšè
*ç°¡åãªæšæ¶
*æ
=== åæ©ã®è±èª2 ===
察象ïŒå°åŠæ ¡3-4åŠå¹Žã
*ç°¡åãªäŒè©±
*åºæ¬çãªåè©ãå·ã蟌ã
*ã¢ã«ãã¡ãããã®ãã©ãã·ã¥ã«ãŒã
*æ
=== åæ©ã®è±èª3 ===
察象ïŒå°åŠæ ¡5-6幎ã
*çåè©ãïŒW1Hãã€ãã®åç
*幎ã»æã»æ¥æã»ææ¥ã»æå»
*代åè©ãchantã§æå±
*幎霢
*æ
==è±èªåçŽ==
察象ïŒäžåŠç
åæ©è±èªã®æŽçãç°¡åãªææ³ãèªåœïŒBasic EnglishïŒ
*äŒè©±ïŒè±èªã§è©±ããŠã¿ãã
*è±èªã®çµµæ¬ãèªãã§ã¿ãã
*è±èªã§æçŽãæžããŠã¿ãã
==è±èªäžçŽ==
察象ïŒé«æ ¡1ã»2幎ç
*å
åãªlisteningãšæå±ãéããŠãèªåœãè±å¯ã«ãã䜿ããè±èªã身ã«ä»ãã
*åèš³ã¯ç解ãå©ããããã«è£å©çã«çšãã
*speakingïŒåºæ¬æã®æå±ã«ãããã³ãã¥ãã±ãŒã·ã§ã³èœåãã€ãã
*reading:èŸæžãåŒããªããŠã倧æãã€ãããããã«ãã
*writingïŒåºæ¬æã®äœæãèªåšã«ã§ããããã«ãããé·æã®èŠçŽãæžããããã«ãã
å¿çš1ïŒæ¥æ¬ã玹ä»ããè±äŒè©±
å¿çš2ïŒããŒã ã¹ãã£ã®è±äŒè©±
==è±èªäžçŽ==
察象ïŒé«æ ¡3幎çãã倧åŠçã瀟äŒäºº
=== ãªãŒãã£ã³ã° ===
==== ãã©ã°ã©ããªãŒãã£ã³ã° ====
==== ãªãµãŒã ====
*è«æã®èªã¿æ¹
*æ
å ±æ€çŽ¢æ³
===ã¬ããªãã¯===
==== ãã©ã°ã©ãã©ã€ãã£ã³ã° ====
===== è«æã®æžãæ¹ïŒæç³»ïŒ =====
===== è«æã®æžãæ¹ïŒçç³»ïŒ =====
=== ã¹ããŒã ===
==== çåŠã®ããã®äŒè©± ====
==== ç 究çºè¡šã®ããã®è©±è¡ ====
==è±èªå¯ææ==
=== åæ© ===
*ãã©ãã·ã¥ã«ãŒãïŒçµµãšé æåãçµµãšåèªã
*
=== åçŽã»äžçŽ ===
*ææ³æž
*åèªåž³
*dictation note
*listening ææ
=== äžçŽ ===
*è±è±èŸå
ž
*
[[Category:è±èª|ãããã]] | null | 2016-03-10T11:49:30Z | [] | https://ja.wikibooks.org/wiki/%E8%8B%B1%E8%AA%9E/%E6%A7%8B%E6%88%90 |
1,723 | é«çåŠæ ¡çç© | 90幎代ããã®èª²çš | [
{
"paragraph_id": 0,
"tag": "p",
"text": "90幎代ããã®èª²çš",
"title": "æ§èª²çš"
}
] | null | {{Pathnav|é«çåŠæ ¡ã®åŠç¿|é«çåŠæ ¡çç§|frame=1}}
{{é²æç¶æ³}}
== 2015ã»2016幎以éã®èª²çš ==
* [[é«çåŠæ ¡ çç©åºç€|çç©åºç€]] {{é²æ|50%|2022-07-08}}
* [[é«çåŠæ ¡ çç©|çç©]] 4åäœ {{é²æ|25%|2022-11-15}}
== æ§èª²çš ==
* [[é«çåŠæ ¡çç©/çç©I]] {{é²æ|75%|2015-05-06}}
* [[é«çåŠæ ¡çç©/çç©II]] {{é²æ|75%|2015-05-06}}
* [[é«çåŠæ ¡çç§/çç§åºç€ãçç©åé]] {{é²æ|00%|2015-05-06}}
* [[é«çåŠæ ¡çç§/çç§ç·åBãçç©åé]] {{é²æ|00%|2015-05-06}}
90幎代ããã®èª²çš
* [[é«çåŠæ ¡çç§/çç©IB]] {{é²æ|75%|2015-05-06}}
== åèæžãªã© ==
* é«çåŠæ ¡çç©åèæž ïŒæªäœæïŒ
* [[æ€å®å€é«æ ¡çç©|ç¯å²å€é«æ ¡çç©]]
== åè ==
* [[åŠç¿æ¹æ³/é«æ ¡çç©]]
[[Category:é«çåŠæ ¡æè²|ç]]
[[Category:çç§æè²|é«ãããµã€]]
[[Category:çç©åŠ|é«]]
[[category:é«æ ¡çç§|ãããµã€ãã]] | null | 2022-11-14T13:56:59Z | [
"ãã³ãã¬ãŒã:Pathnav",
"ãã³ãã¬ãŒã:é²æç¶æ³",
"ãã³ãã¬ãŒã:é²æ"
] | https://ja.wikibooks.org/wiki/%E9%AB%98%E7%AD%89%E5%AD%A6%E6%A0%A1%E7%94%9F%E7%89%A9 |
1,724 | ç掻ãšé²è·¯ | ç掻ãšé²è·¯(ãããã€ãšããã)ã§ã¯ãæ¥æ¬ã®æè²å¶åºŠã«ã€ããŠèª¬æããããã ããåçš®åéšã«ã€ããŠã¯ããã§ã¯è§Šããªãã
åŠæ ¡æè²ã¯ã倧ããå°±åŠåæè²ãåçæè²ãäžçæè²ãé«çæè²ã«åããããã
é«æ ¡ãäžçæè²ã§ãããåçæè²ãšäžçæè²åæ課çšãåãããŠçŸ©åæè²ãšããã
äžè¬çã«æ¥æ¬äººã¯åŠæ ¡æè²ãã
(å°±åŠåæè²â)å°åŠæ ¡âäžåŠæ ¡âé«æ ¡â倧åŠã»ç倧ãªã©
ãšããé åºã§åããã
ãåçæè²ããªã©ã®çšèªã§èšãæãããšã (å°±åŠåæè²â)åçæè²(=å°åŠæ ¡)âäžçæè²(=äžåŠã»é«æ ¡)âé«çæè²(=倧åŠã»ç倧ãªã©) ãšãªãã
äžçæè²ã«ãããŠã¯ãåæäžçæè²ãçµããåŸã«åŸæäžçæè²ã«é²åŠããããã ãåæäžçæè²ãçµããªããŠããåŸæäžçæè²ã«é²åŠã§ããããšãããã詳ããã¯ãéœéåºçã®æè²å§å¡äŒãªã©ã«åãåããããšåããããªããæ¥æ¬åœæ°ã¯ãæäœéãåæäžçæè²ãŸã§ãåããæš©å©ãæãããã€ãŸããä¿è·è
ã¯åãããã矩åãæãã
æº3æ³ãã(ãã ãå Žåã«ãã£ãŠç°ãªã)å°åŠæ ¡ã®å°±åŠã®å§æã«éãããŸã§ã®äººãå
¥åŠã§ããã
æº6æ³ä»¥äžã®äººãå
¥åŠã§ããã
矩åæè²æé(6æ³ãã15æ³ãŸã§)ã®äººã¯ãå°åŠæ ¡ãªã©ã®èª²çšãä¿®äºãã人ã®ã¿ãå
¥åŠã§ããã矩åæè²æãéãã人ã¯ãå°åŠæ ¡ãªã©ãä¿®äºããŠããªããŠãå
¥åŠã§ããã
ååãšããŠäžåŠæ ¡ã®èª²çšãªã©ãä¿®äºãã人ã®ã¿ãå
¥åŠã§ãããåæ¥ããŠããªã人ã¯ãäžåŠæ ¡ãåæ¥ãã人ãšåç以äžã®åŠåããããå
¥åŠå
ã®åŠæ ¡ã«æ€æ»ããŠãããããæéšç§åŠçã®è¡ãäžåŠæ ¡åæ¥çšåºŠèªå®è©Šéšã«åæ Œããããšã§å
¥åŠããããšãã§ããã
ååãšããŠé«çåŠæ ¡ã®èª²çšãªã©ãä¿®äºãã人ã®ã¿ãå
¥åŠã§ãããåæ¥ããŠããªã人ã¯ãé«çåŠæ ¡ãåæ¥ãã人ãšåç以äžã®åŠåããããå
¥åŠå
ã®åŠæ ¡ã«æ€æ»ããŠãããããæéšç§åŠçã®è¡ãé«çåŠæ ¡åæ¥çšåºŠèªå®è©Šéšã«åæ Œããããšã§å
¥åŠããããšãã§ããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ç掻ãšé²è·¯(ãããã€ãšããã)ã§ã¯ãæ¥æ¬ã®æè²å¶åºŠã«ã€ããŠèª¬æããããã ããåçš®åéšã«ã€ããŠã¯ããã§ã¯è§Šããªãã",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "åŠæ ¡æè²ã¯ã倧ããå°±åŠåæè²ãåçæè²ãäžçæè²ãé«çæè²ã«åããããã",
"title": "åŠæ ¡å¶åºŠã®æŠèŠ"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "é«æ ¡ãäžçæè²ã§ãããåçæè²ãšäžçæè²åæ課çšãåãããŠçŸ©åæè²ãšããã",
"title": "åŠæ ¡å¶åºŠã®æŠèŠ"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "äžè¬çã«æ¥æ¬äººã¯åŠæ ¡æè²ãã",
"title": "åŠæ ¡å¶åºŠã®æŠèŠ"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "(å°±åŠåæè²â)å°åŠæ ¡âäžåŠæ ¡âé«æ ¡â倧åŠã»ç倧ãªã©",
"title": "åŠæ ¡å¶åºŠã®æŠèŠ"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ãšããé åºã§åããã",
"title": "åŠæ ¡å¶åºŠã®æŠèŠ"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ãåçæè²ããªã©ã®çšèªã§èšãæãããšã (å°±åŠåæè²â)åçæè²(=å°åŠæ ¡)âäžçæè²(=äžåŠã»é«æ ¡)âé«çæè²(=倧åŠã»ç倧ãªã©) ãšãªãã",
"title": "åŠæ ¡å¶åºŠã®æŠèŠ"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "äžçæè²ã«ãããŠã¯ãåæäžçæè²ãçµããåŸã«åŸæäžçæè²ã«é²åŠããããã ãåæäžçæè²ãçµããªããŠããåŸæäžçæè²ã«é²åŠã§ããããšãããã詳ããã¯ãéœéåºçã®æè²å§å¡äŒãªã©ã«åãåããããšåããããªããæ¥æ¬åœæ°ã¯ãæäœéãåæäžçæè²ãŸã§ãåããæš©å©ãæãããã€ãŸããä¿è·è
ã¯åãããã矩åãæãã",
"title": "ååŠæ ¡ãšåŠã¹ãããš"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "æº3æ³ãã(ãã ãå Žåã«ãã£ãŠç°ãªã)å°åŠæ ¡ã®å°±åŠã®å§æã«éãããŸã§ã®äººãå
¥åŠã§ããã",
"title": "ååŠæ ¡ã®å
¥åŠè³æ Œ"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "æº6æ³ä»¥äžã®äººãå
¥åŠã§ããã",
"title": "ååŠæ ¡ã®å
¥åŠè³æ Œ"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "矩åæè²æé(6æ³ãã15æ³ãŸã§)ã®äººã¯ãå°åŠæ ¡ãªã©ã®èª²çšãä¿®äºãã人ã®ã¿ãå
¥åŠã§ããã矩åæè²æãéãã人ã¯ãå°åŠæ ¡ãªã©ãä¿®äºããŠããªããŠãå
¥åŠã§ããã",
"title": "ååŠæ ¡ã®å
¥åŠè³æ Œ"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "ååãšããŠäžåŠæ ¡ã®èª²çšãªã©ãä¿®äºãã人ã®ã¿ãå
¥åŠã§ãããåæ¥ããŠããªã人ã¯ãäžåŠæ ¡ãåæ¥ãã人ãšåç以äžã®åŠåããããå
¥åŠå
ã®åŠæ ¡ã«æ€æ»ããŠãããããæéšç§åŠçã®è¡ãäžåŠæ ¡åæ¥çšåºŠèªå®è©Šéšã«åæ Œããããšã§å
¥åŠããããšãã§ããã",
"title": "ååŠæ ¡ã®å
¥åŠè³æ Œ"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "ååãšããŠé«çåŠæ ¡ã®èª²çšãªã©ãä¿®äºãã人ã®ã¿ãå
¥åŠã§ãããåæ¥ããŠããªã人ã¯ãé«çåŠæ ¡ãåæ¥ãã人ãšåç以äžã®åŠåããããå
¥åŠå
ã®åŠæ ¡ã«æ€æ»ããŠãããããæéšç§åŠçã®è¡ãé«çåŠæ ¡åæ¥çšåºŠèªå®è©Šéšã«åæ Œããããšã§å
¥åŠããããšãã§ããã",
"title": "ååŠæ ¡ã®å
¥åŠè³æ Œ"
}
] | ç掻ãšé²è·¯ïŒãããã€ãšãããïŒã§ã¯ãæ¥æ¬ã®æè²å¶åºŠã«ã€ããŠèª¬æããããã ããåçš®åéšã«ã€ããŠã¯ããã§ã¯è§Šããªãã | {{Pathnav|ã¡ã€ã³ããŒãž|å°åŠæ ¡ã»äžåŠæ ¡ã»é«çåŠæ ¡ã®åŠç¿|frame=1}}
'''{{FULLPAGENAME}}'''ïŒãããã€ãšãããïŒã§ã¯ãæ¥æ¬ã®æè²å¶åºŠã«ã€ããŠèª¬æããããã ããåçš®åéšã«ã€ããŠã¯ããã§ã¯è§Šããªãã
== åŠæ ¡å¶åºŠã®æŠèŠ ==
åŠæ ¡æè²ã¯ã倧ããå°±åŠåæè²ãåçæè²ãäžçæè²ãé«çæè²ã«åããããã
* å°±åŠåæè²ãšã¯ã幌çšåã®ããšãæãã
* åçæè²ãšã¯ãå°åŠæ ¡ã®ããšãæãã
* äžçæè²ãšã¯ãäžåŠæ ¡ã»é«çåŠæ ¡ã»äžçæè²åŠæ ¡ã®ããšãæãã
* é«çæè²ãšã¯ã倧åŠã»çæ倧åŠã»å€§åŠé¢ã»é«çå°éåŠæ ¡ãå°ä¿®åŠæ ¡ã®å°é課çš(å°éåŠæ ¡)ã該åœããã
* åŠæ ¡ã§å匷ããææã¯ïŒæäœã§ãã - äžåŠãŸã§ããšãªãããã以éã¯ïŒé²ãè·¯ã»åŠãã決ããã®ã§ïŒãœã¬ã€ã«ãªãã
* æè²ïŒå¶åºŠã¯çŸ©åæéãïŒå¹Žéãäžãå®ãïŒãã®äžã§åãããšããã
é«æ ¡ãäžçæè²ã§ãããåçæè²ãšäžçæè²åæ課çšãåãããŠçŸ©åæè²ãšããã
äžè¬çã«æ¥æ¬äººã¯åŠæ ¡æè²ãã
(å°±åŠåæè²â)å°åŠæ ¡âäžåŠæ ¡âé«æ ¡â倧åŠã»ç倧ãªã©
ãšããé åºã§åããã
ãåçæè²ããªã©ã®çšèªã§èšãæãããšã
ïŒå°±åŠåæè²âïŒåçæè²ïŒïŒå°åŠæ ¡ïŒâäžçæè²ïŒïŒäžåŠã»é«æ ¡ïŒâé«çæè²ïŒïŒå€§åŠã»ç倧ãªã©ïŒ
ãšãªãã
== ååŠæ ¡ãšåŠã¹ãããš ==
=== å°±åŠåæè² ===
;幌çšå
:幌çšåã¯ãç°¡åã«ããã°éã¶ãšããã§ãããéã³ãªãããçµéšãç©ãã§åŠã¶ãšããææ³ãæ ¹åºã«ããã®ã§ãææ¥ã¯ãªã<ref>ãã ããå·¥äœãªã©ã®æéãããå Žåãå€ãããŸãããææ¥ãã®ãããªããšãè¡ããšããããã</ref>ã幌çšåã®å
çã¯ãå°åŠæ ¡ãšåãã{{ruby|æè«|ãããã}}ããšããè·ã§ãããæè²äººã§ãããå€ãã¯3幎å¶ã ãã2幎å¶ã4幎å¶ãªã©ã®ãã®ãããã管èœã¯æéšç§åŠçã§ããã
; ä¿è²å
:äžè¬ã«ä¿è²åãšåŒã°ããŠããããæ£åŒã«ã¯ä¿è²æã§ãããä¿è²æã¯æ³çã«ã¯åŠæ ¡ã§ã¯ãªããå
ç«¥çŠç¥æœèšã§ãããå¿ãã芪ã«ä»£ããåå®ãããæœèšã§ããããã ããä¿è²æã§ãåéãäœããã®ã§ãåŠã¶ããšã¯å€ããä¿è²æã®å
çã¯ããä¿è²å£«ãã§ãããçŠç¥äººã§ããã管èœã¯åçåŽåçã§ããã幎æ°ã¯æ±ºãŸã£ãŠããªããã3幎å¶ã6幎å¶ã®ãã®ãå€ãã
;ç²åŠæ ¡ã®å¹ŒçšéšãèŸåŠæ ¡ã®å¹Œçšéšãé€è·åŠæ ¡ã®å¹Œçšéš
:ç®ãèŠããªããè³ãèãããªãããã®ã»ãã®é害ããã人ã«å¯ŸããŠã幌çšåã«æºããæè²ãè¡ãåŠæ ¡ã§ãããæ®éã®å¹Œçšåã§ã¯ããŸããµããŒãã§ããªãããšããµããŒãããŠããããã幌çšéšã®å
çã¯ãããæè«ããŸãã¯ãä¿è²å£«ããã§ããããæè²äºº ãŸã㯠çŠç¥äººãã§ããã
;èªå®ãã©ãå
:幌çšåã®æ©èœãšä¿è²æã®æ©èœã®äž¡æ¹ããããæã€æœèšãã幌ä¿é£æºåãã幌çšååããä¿è²ååããå°åè£éåãã«åé¡ãããã管èœã¯å
é£åºã§ããã
=== åçæè² ===
;å°åŠæ ¡
:å°åŠæ ¡ã§ã¯ãå®ç掻ã«å¿
èŠãªããšãäžå¿ã«åŠã¶ããã®ãããªããšãæããããšã¯ãåçæ®éæè²ããšåŒã°ããã6幎å¶ã§ãããåœèªïŒæžåïŒã瀟äŒãç®æ°ãçç§ãç掻ãé³æ¥œãå³ç»å·¥äœ[å³å·¥]ã家åºãäœè²ãå€åœèªïŒååãšããŠè±èªïŒãé埳<ref name="moral">é埳ã«ã€ããŠã¯ãç¹å¥ã®æç§ããšããæ±ãã§ããããŸããç§ç«åŠæ ¡ã§ã¯ãé埳ã®ä»£ããã«å®æã®ææ¥ãè¡ãããšãããã</ref>ã®æç§ããããç掻ã¯2幎ãŸã§ãçç§ãšç€ŸäŒã¯3幎ããã家åºãšå€åœèªã¯5幎ããåŠã¶ãä»ã«ãç¹å¥æŽ»åïŒåŠçŽæŽ»å[åŠæŽ»]ïŒãç·åçãªåŠç¿ã®æéïŒ3 - 6幎ïŒãå€åœèªæŽ»åïŒ3ã»4幎ïŒãã¯ã©ã掻åãå
ç«¥äŒæŽ»åãå§å¡äŒæŽ»åãããã
;ç²åŠæ ¡ã®å°åŠéšãèŸåŠæ ¡ã®å°åŠéšãé€è·åŠæ ¡ã®å°åŠéš
:ç®ãèŠããªããè³ãèãããªãããã®ã»ãã®é害ããã人ã«å¯ŸããŠãå°åŠæ ¡ã«æºããæè²ãè¡ãåŠæ ¡ã§ãããæ®éã®å°åŠæ ¡ã§ã¯ããŸããµããŒãã§ããªãããšããµããŒãããŠããããã
;矩åæè²åŠæ ¡ã®åæ課çš
:åŠã¹ãããšã¯å°åŠæ ¡ãšã»ãŒåäžã§ãããåæ課çšãçµãããšååçã«ãåäžåŠæ ¡ã®åŸæ課çšã«ãã®ãŸãŸé²çŽããããšãã§ããã
=== äžçæè² ===
äžçæè²ã«ãããŠã¯ãåæäžçæè²ãçµããåŸã«åŸæäžçæè²ã«é²åŠããããã ãåæäžçæè²ãçµããªããŠããåŸæäžçæè²ã«é²åŠã§ããããšãããã詳ããã¯ãéœéåºçã®æè²å§å¡äŒãªã©ã«åãåããããšåããããªããæ¥æ¬åœæ°ã¯ãæäœéãåæäžçæè²ãŸã§ãåããæš©å©ãæãããã€ãŸããä¿è·è
ã¯åãããã矩åãæãã
==== åæèª²çš ====
;äžåŠæ ¡
:å°åŠæ ¡ã®å
容ãããã«çºå±ãããå
容ãªã©ãåŠã³ã瀟äŒã®äžå¡ãšãªã£ãŠãèªåèªèº«ã{{Ruby|掻|ã}}ãããããã«ãªãããšãåŠã¶ããã®ãããªããšãæããããšã¯ãäžçæ®éæè²ããšåŒã°ããã3幎å¶ã§ãããåœèªïŒæžåïŒã瀟äŒãæ°åŠãçç§ãé³æ¥œãçŸè¡ãä¿å¥ã»äœè²ãæè¡ã»å®¶åºãå€åœèªïŒååãšããŠè±èªïŒãé埳<ref name="moral"/>ã®æç§ãããããã®ã»ãã«ãç¹å¥æŽ»åïŒåŠçŽæŽ»å[åŠæŽ»]ïŒãç·åçãªåŠç¿ã®æéãçåŸäŒæŽ»åãå§å¡äŒæŽ»åãããã
;ç²åŠæ ¡ã®äžåŠéšãèŸåŠæ ¡ã®äžåŠéšãé€è·åŠæ ¡ã®äžåŠéš
:ç®ãèŠããªããè³ãèãããªãããã®ã»ãã®é害ããã人ã«å¯ŸããŠãäžåŠæ ¡ã«æºããæè²ãè¡ãåŠæ ¡ã§ãããæ®éã®äžåŠæ ¡ã§ã¯ããŸããµããŒãã§ããªãããšããµããŒãããŠããããã
;äžçæè²åŠæ ¡ã®åæ課çš
:åŠã¹ãããšã¯äžåŠæ ¡ãšã»ãŒåäžã§ãããåæ課çšãçµãããšååçã«ãåäžåŠæ ¡ã®åŸæ課çšã«ãã®ãŸãŸé²çŽããããšãã§ããã
;矩åæè²åŠæ ¡ã®åŸæ課çš
:åŠã¹ãããšã¯äžåŠæ ¡ãšã»ãŒåäžã§ãããåŸæ課çšãçµãããšãé«çåŠæ ¡ã«é²åŠããã
==== åŸæèª²çš ====
;é«çåŠæ ¡ïŒé«æ ¡ïŒ
:äžåŠæ ¡ã®å
容ãããã«çºå±ãããå
容ãªã©ãåŠã¶ã3幎å¶ã§ããã倧ãŸãã«åãããšã倧åŠæè²ã®åºç€ãšãªãæ®éç§ãšãè·æ¥ãå°éåéã®åºç€ãåŠã¶å°éåŠç§ã®2çš®é¡ãããããããã®åŠç§ããšã«ãåŠæ ¡ã§åŠã¶å
容ã倧ããå€ãã£ãŠããã
:ãŸãé«çåŠæ ¡ã«ã¯ãããã«æããå€æ¹åãŸã§ææ¥ãåããå
šæ¥å¶ã®èª²çšãšãå€ãªã©ã®ç¹å¥ã®æéãç¹å¥ã®ææã«ææ¥ãåããå®æå¶ã®èª²çšãšãèªæžãã¬ããŒããªã©ãäžå¿ãšããéä¿¡å¶ã®èª²çšã®3çš®é¡ããããèªåã®éœåã奜ã¿ã«ãã£ãŠéžæããŠå
¥åŠããã矩åæè²ã«ã¯å«ãŸããŠããªããããé²åŠãããããªããã¯èªç±ã§ããããäžåŠçã®çŽ98.8ïŒ
ãé«æ ¡ã«é²åŠããŠãã<ref>æéšç§åŠçãåŠæ ¡åºæ¬èª¿æ»ãããã</ref>ãé²åŠã¯åœç¶ã®ããšã®ããã«ãªã£ãŠããã
;ç²åŠæ ¡ã®é«çéšãèŸåŠæ ¡ã®é«çéšãé€è·åŠæ ¡ã®é«çéš
:ç®ãèŠããªããè³ãèãããªãããã®ã»ãã®é害ããã人ã«å¯ŸããŠãé«çåŠæ ¡ã«æºããæè²ãè¡ãåŠæ ¡ã§ãããæ®éã®é«çåŠæ ¡ã§ã¯ããŸããµããŒãã§ããªãããšããµããŒãããŠããããã
;äžçæè²åŠæ ¡ã®åŸæ課çš
:åŠã¹ãããšã¯é«çåŠæ ¡ãšã»ãŒåäžã§ãããåäžåŠæ ¡ã®åæ課çšãçµãã人ãååçã«å
¥åŠããŠããã
;é«çå°éåŠæ ¡
:ïŒ[[#é«çæè²]]ã®ç¯ã«èšèŒãïŒ
;å°ä¿®åŠæ ¡ã®é«ç課çš
:1幎å¶ä»¥äžã®åŠæ ¡ã§ãäœå¹Žå¶ãã¯åŠæ ¡ã«ãã£ãŠéãããããããªåŠæ ¡ãããããç容垫ãçè·åž«ãªã©ã®è·æ¥äººãè²ãŠãåŠæ ¡ãå€ããé«çåŠæ ¡ã®éä¿¡å¶ã®èª²çšãšäœµä¿®ããåŠæ ¡ãããããã®ãããªå°ä¿®åŠæ ¡ã§ã¯ã3 - 4幎éã§é«çåŠæ ¡ã®åæ¥ãåæã«ãããã
;åçš®åŠæ ¡
:å°ä¿®åŠæ ¡ãããèšçœ®åºæºãç·©ãåŠæ ¡ã§ãåŠã¶æéã¯3ãæ以äžã§ããã
;è·æ¥èšç·Žæœèš
:åŠæ ¡ã§ã¯ãªããåçåŽåçãªã©ãæ管ããŠãããå°±è·ããåŸã«å
¥ããã®ãåæ¥åŸã«å°±è·ããããšã決ãŸã£ãŠããæœèšãªã©ããããåŠã¶ããšã¯ãç¹å®ã®è·æ¥ã«ã€ããŠã®äžç¹ã«çµãããŠãããäžäººåã®è·æ¥äººãããã課çšã§ããã
=== é«çæè² ===
;倧åŠïŒå€§åŠæ ¡ïŒ
:äžçæè²ã®å
šãŠããã¹ã¿ãŒããŠããããšãåæã«ãæé«ã¬ãã«ã®åŠåãè¡ãå ŽæïŒæé«åŠåºïŒã§ãããåæ¥ãããšåŠå£«ã®åŠäœãæäžãããå°ãã¯å®åã«ã觊ããŠãããšããããšãããåçš®ã®åœå®¶è³æ Œè©Šéšãªã©ã§æå©ãªåãã¯ããããåããããšããããå€ãã¯4幎å¶ã§ãå»åŠãç£å»åŠãæ¯åŠãäžéšã®è¬åŠã¯6幎å¶ã§ããããæè¿ã®åœéåã®æµãã®äžã§å°±åŠå¹Žæ°ã¯å»¶ã³ãåŸåã«ãããæéšç§åŠçã®ç®¡èœäžã«ãããã®ã倧åŠããã以å€ã®ãã®ã倧åŠæ ¡ïŒäŸïŒé²è¡å€§åŠæ ¡ãèœåéçºå€§åŠæ ¡ãæ°è±¡å€§åŠæ ¡ãªã©ïŒãšåŒã¶ã
:倧åŠã§è¡ãããŠããåŠåã¯åºç€ããå¿çšãŸã§å€çš®å€æ§ã§ããã倧åŠã§åŠã¶ã«ã¯ããŸããèªåã®èœåã»é©æ§ãç¥ããåŠã³ããåéãæ確ã«ããããšãéèŠã§ããã瀟äŒã®è€éåãšç§åŠã®çºå±ãšã«ãããåŠååéã¯ååã»å°éåã®åŸåã«ããã
:å°ååã®æµãã®äžã§å€§åŠã¯æããåæ Œãããããªã£ããšä¿ã«èšãããããäžå
以äžã®å€§åŠã¯åæ Œãé£ããã®ãçŸå®ã§ããã
;çæ倧åŠïŒç倧ïŒ
:çæã®å€§åŠã§ããã2幎ãŸãã¯3幎ã®å€§åŠã§ãããåŠã¶ããšã¯ãçæã§è³æ ŒãåŸãããšãå¯èœãªåéãå€ãã
;é«çå°éåŠæ ¡ïŒé«å°ïŒ
:5幎å¶ã®åŠæ ¡ã§ãåæ¥ãããšå€§åŠ2幎ãŸã§ãä¿®äºããã®ãšåãã¬ãã«ïŒæºåŠå£«ïŒãšããããå·¥åŠãåè¹åŠãåŠã¹ãåŠæ ¡ãå€ããäžåŠåæ¥è
ãæ°å
¥åŠå¯Ÿè±¡ãšããŠããã1 - 3幎çã¯äžçæè²åŸæ課çšãšåã幎代ãšãªãããé«çæè²ã«åé¡ãããã
;å°ä¿®åŠæ ¡ïŒé«ç課çšã»å°é課çšã»äžè¬èª²çšïŒ
:åå¥ã®æ ¡åã«ã¯ããã®åŠæ ¡ã®æããéçšã«ãããå°ä¿®åŠæ ¡ãããå°éåŠæ ¡ãããé«çå°ä¿®åŠæ ¡ããªã©ã䜿ããããã¶ã€ã³ãäºåããèªåè»æŽåãé»æ°å·¥äºãªã©è·æ¥ãããã¯å®éç掻ã«å¿
èŠãªèœåãè²æãããŸãã¯æé€ã®åäžãå³ãããšãç®çãšããŠãå€æ§ãªåéã®åŠç§ãããã2幎以äžåŠã¶åŠæ ¡ã§ã¯ãå°é士ã®ç§°å·ãšå€§åŠãžã®ç·šå
¥åŠã®è³æ Œãä»äžããããšãããå€ãã
;åçš®åŠæ ¡
:å°ä¿®åŠæ ¡ãããèšçœ®åºæºãç·©ãåŠæ ¡ã§ãåŠã¶æéã¯3ãæ以äžã§ããã
==== ç 究è·æ°Žæº ====
;倧åŠé¢
:åŠåã倧åŠãããããã«æ·±ãåŠãã ããé«åºŠãªåŠåãçšããè·æ¥äžã®èœåã身ã«çããããã«ããã修士課çšã»å士åæ課çšãäžè²«å¶å士課çšãå士åŸæ課çšãå°éè·åŠäœèª²çšãªã©ãããããã®ãã¡ãå°éè·åŠäœèª²çšã§ã¯ãä¿®äºã«åœå®¶è³æ Œã®ååŸãæ±ããããŠããããä¿®äºãããšåœå®¶è©Šéšã®å
é€ãåããããããšãããã
== ååŠæ ¡ã®å
¥åŠè³æ Œ ==
=== 幌çšå ===
æº3æ³ããïŒãã ãå Žåã«ãã£ãŠç°ãªãïŒå°åŠæ ¡ã®å°±åŠã®å§æã«éãããŸã§ã®äººãå
¥åŠã§ããã
=== å°åŠæ ¡ ===
æº6æ³ä»¥äžã®äººãå
¥åŠã§ããã
=== äžåŠæ ¡ã»äžçæè²åŠæ ¡ã®åæèª²çš ===
矩åæè²æéïŒ6æ³ãã15æ³ãŸã§ïŒã®äººã¯ãå°åŠæ ¡ãªã©ã®èª²çšãä¿®äºãã人ã®ã¿ãå
¥åŠã§ããã矩åæè²æãéãã人ã¯ãå°åŠæ ¡ãªã©ãä¿®äºããŠããªããŠãå
¥åŠã§ããã
=== é«çåŠæ ¡ã»äžçæè²åŠæ ¡ã®åŸæ課çšã»å°ä¿®åŠæ ¡ã®é«çèª²çš ===
ååãšããŠäžåŠæ ¡ã®èª²çšãªã©ãä¿®äºãã人ã®ã¿ãå
¥åŠã§ãããåæ¥ããŠããªã人ã¯ãäžåŠæ ¡ãåæ¥ãã人ãšåç以äžã®åŠåããããå
¥åŠå
ã®åŠæ ¡ã«æ€æ»ããŠãããããæéšç§åŠçã®è¡ãäžåŠæ ¡åæ¥çšåºŠèªå®è©Šéšã«åæ Œããããšã§å
¥åŠããããšãã§ããã
=== 倧åŠã»çæå€§åŠ ===
ååãšããŠé«çåŠæ ¡ã®èª²çšãªã©ãä¿®äºãã人ã®ã¿ãå
¥åŠã§ãããåæ¥ããŠããªã人ã¯ãé«çåŠæ ¡ãåæ¥ãã人ãšåç以äžã®åŠåããããå
¥åŠå
ã®åŠæ ¡ã«æ€æ»ããŠãããããæéšç§åŠçã®è¡ãé«çåŠæ ¡åæ¥çšåºŠèªå®è©Šéšã«åæ Œããããšã§å
¥åŠããããšãã§ããã
=== å°ä¿®åŠæ ¡ã®å°éèª²çš ===
=== 倧åŠé¢ ===
== é¢é£é
ç® ==
* [[å°±è·æŽ»åã¬ã€ã]]
* [[è³æ Œè©Šéš|è³æ Œè©Šéšã¬ã€ã]]
{{DEFAULTSORT:ãããã€ãšããã}}
[[Category:ç掻]] | null | 2022-08-31T03:05:45Z | [
"ãã³ãã¬ãŒã:Ruby",
"ãã³ãã¬ãŒã:Pathnav"
] | https://ja.wikibooks.org/wiki/%E7%94%9F%E6%B4%BB%E3%81%A8%E9%80%B2%E8%B7%AF |
1,725 | æçæ¬/ç±³æç/ããšãªã£ | æçæ¬|ã¹ãã€ã³æç|æçç®æ¬¡
ããšãªã£ãã§ãããã£ããªãã°ãããšãªã£ãå
¥ã£ãããšãªã§ã©ãé£åã«æã£ãŠããŠçœ®ãã ãã®éé£åãç±ã«åŒ±ãçŽ æã§ãããªãã°éæ·ããçšæããããšãå¿ããŠã¯ãªããªãã ãããŠãã奜ã¿ã«å¿ããŠã¬ã¢ã³ææ±ãªã©ãæ¯ããããŠéæ³ã®åªæãbon profitã(å¬ãäžãã)ãå±ããã°å®ç§ã§ããã
ããšã¯ããšãªã§ã©ããçŽæ¥ã¹ããŒã³ã§æ¬ã£ãŠé£ã¹ãã ãã ã¹ãã€ã³ã§ã¯æ®éãã³ãçæã«ãã£ãŠããããšããŠããšãªã£ãé£ã¹ãããã®éã¯ããšãªã£ã®å¡©å³ããã匷ãã«ããã
ãã®æçã®èã¯ãµãã©ã³ã«ããã æ¥æ¬ã§ã¯æã«å
¥ãã«ããå
èãªã©ã¯å¿
èŠã«å¿ããŠå€æŽããå¿
èŠãããã ããã ãŸãããªãã¿ã®èãé£çšã«ã¿ãã ãªã¯ã¢ãµãªè²ãªã©ã§ä»£çšããããšãåºæ¥ãã ããã«ãã¿ããã«ããå°æµ·èãªã©ãå ããŠæµ·é®®é¢šã«ããããšãå¯èœã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "æçæ¬|ã¹ãã€ã³æç|æçç®æ¬¡",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ããšãªã£ãã§ãããã£ããªãã°ãããšãªã£ãå
¥ã£ãããšãªã§ã©ãé£åã«æã£ãŠããŠçœ®ãã ãã®éé£åãç±ã«åŒ±ãçŽ æã§ãããªãã°éæ·ããçšæããããšãå¿ããŠã¯ãªããªãã ãããŠãã奜ã¿ã«å¿ããŠã¬ã¢ã³ææ±ãªã©ãæ¯ããããŠéæ³ã®åªæãbon profitã(å¬ãäžãã)ãå±ããã°å®ç§ã§ããã",
"title": "é£ã¹æ¹"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ããšã¯ããšãªã§ã©ããçŽæ¥ã¹ããŒã³ã§æ¬ã£ãŠé£ã¹ãã ãã ã¹ãã€ã³ã§ã¯æ®éãã³ãçæã«ãã£ãŠããããšããŠããšãªã£ãé£ã¹ãããã®éã¯ããšãªã£ã®å¡©å³ããã匷ãã«ããã",
"title": "é£ã¹æ¹"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ãã®æçã®èã¯ãµãã©ã³ã«ããã æ¥æ¬ã§ã¯æã«å
¥ãã«ããå
èãªã©ã¯å¿
èŠã«å¿ããŠå€æŽããå¿
èŠãããã ããã ãŸãããªãã¿ã®èãé£çšã«ã¿ãã ãªã¯ã¢ãµãªè²ãªã©ã§ä»£çšããããšãåºæ¥ãã ããã«ãã¿ããã«ããå°æµ·èãªã©ãå ããŠæµ·é®®é¢šã«ããããšãå¯èœã",
"title": "ããªãšãŒã·ã§ã³"
}
] | æçæ¬|ã¹ãã€ã³æç|æçç®æ¬¡ | [[æçæ¬]]|[[ã¹ãã€ã³æç]]|[[æçç®æ¬¡]]
[[Image:Paella_hirviendo.jpg|thumb|åçã¯ã€ã¡ãŒãžã§ã|right]]
==ææïŒ4人åïŒ==
*ããšãªã§ã©ïŒããšãªã£çšã®éïŒâŠ1æ
*é¶èâŠ500g
*å
èâŠ500g
*é£çšã«ã¿ãã ãªâŠ24å¹
*ç±³âŠ3åïŒ480gïŒ
*ã€ã³ã²ã³ãèµ€åèŸåãèµ€ããŒãã³ããããªã«ãªã©ã®éèâŠ350g
*ãããâŠ120g
*æ°ŽâŠ1ãªããã«
*ãªãªãŒããªã€ã«âŠé©é
*å¡©ããµãã©ã³ãããŒãºããªãŒ
==äœãæ¹==
#æ°é®®ã§æž
æœãªé£çšã«ã¿ãã ãªãé¶èãå
èãæºåããèã¯äžå£å€§ã«åãã
#ããšãªã§ã©ã«ãªãªãŒããªã€ã«ã泚ãã
#èãçããŠããã€ãè²ã«ãªã£ããéèãããããå
¥ããŠçããã
#ããšãªã§ã©ã«æ°Žã泚ããµãã©ã³ãå
¥ããããã«å¡©ãå ããŠå³ã調ããã
#ããã«ã«ã¿ãã ãªãå ããŠ10åã»ã©ç
®èŸŒãã§ããã
#ç¶ããŠç±³ãå ããŠããæ··ãäžç«ã§10ç
®èŸŒã¿ãããã«ç«å æžã調ç¯ãã€ã€10åçšç
®èŸŒãã
#ç«ãæ¢ããŠããŒãºããªãŒã眮ããçŽã¶ããããŠ10åã»ã©çœ®ãã
#ãã¹ã¿ã§ããã¢ã«ãã³ãã®ããã«è¯ãå
ãã«æ®ãããã«çããããããã«ãçŠããäœãã®ãçæ³ã§ããã
==é£ã¹æ¹==
ããšãªã£ãã§ãããã£ããªãã°ãããšãªã£ãå
¥ã£ãããšãªã§ã©ãé£åã«æã£ãŠããŠçœ®ãã
ãã®éé£åãç±ã«åŒ±ãçŽ æã§ãããªãã°éæ·ããçšæããããšãå¿ããŠã¯ãªããªãã
ãããŠãã奜ã¿ã«å¿ããŠã¬ã¢ã³ææ±ãªã©ãæ¯ããããŠéæ³ã®åªæãbon profitãïŒå¬ãäžããïŒãå±ããã°å®ç§ã§ããã
ããšã¯ããšãªã§ã©ããçŽæ¥ã¹ããŒã³ã§æ¬ã£ãŠé£ã¹ãã ãã
ã¹ãã€ã³ã§ã¯æ®éãã³ãçæã«ãã£ãŠããããšããŠããšãªã£ãé£ã¹ãããã®éã¯ããšãªã£ã®å¡©å³ããã匷ãã«ããã
==ããªãšãŒã·ã§ã³==
ãã®æçã®èã¯ãµãã©ã³ã«ããã
æ¥æ¬ã§ã¯æã«å
¥ãã«ããå
èãªã©ã¯å¿
èŠã«å¿ããŠå€æŽããå¿
èŠãããã ããã
ãŸãããªãã¿ã®èãé£çšã«ã¿ãã ãªã¯ã¢ãµãªè²ãªã©ã§ä»£çšããããšãåºæ¥ãã
ããã«ãã¿ããã«ããå°æµ·èãªã©ãå ããŠæµ·é®®é¢šã«ããããšãå¯èœã
{{Wikipedia|ããšãªã¢}}
{{Commons|Paella|ããšãªã£}}
{{DEFAULTSORT:ã¯ããã}}
[[Category:ã¹ãã€ã³æç]]
[[Category:æçæ¬]]
[[Category:ç
®èŸŒã¿æç]]
[[category:é¶æç]]
[[category:å
æç]]
[[category:ç±³æç]]
[[de:Kochbuch/ Paella Valenciana]]
[[en:Cookbook:Mastering the Art of Cooking Paellas]]
[[es:Artes culinarias/Recetas/Paella tradicional]]
[[fr:Livre de cuisine/Paella]]
[[it:Libro di cucina/Ricette/Paella]] | 2005-03-08T18:02:19Z | 2023-10-25T11:33:52Z | [
"ãã³ãã¬ãŒã:Wikipedia",
"ãã³ãã¬ãŒã:Commons"
] | https://ja.wikibooks.org/wiki/%E6%96%99%E7%90%86%E6%9C%AC/%E7%B1%B3%E6%96%99%E7%90%86/%E3%83%91%E3%82%A8%E3%83%AA%E3%83%A3 |
1,728 | HTML | æ¬æžã¯ããŠã§ãããŒãžã®æšæºçãªããŒã¯ã¢ããèšèªã§ããHTMLã®è§£èª¬æžã§ãã ããã¹ããšãã£ã¿ãšãŠã§ããã©ãŠã¶ãããã°ããŠã§ãããŒãžãäœæããããäœæããããŒãžãé²èŠ§ããããäžçäžã®äººãšæ
å ±ãå
±æãããããããšãã§ããŸãã
æ¬æžã§ã¯ãç°¡åãªHTMLã®æ§æã説æããŠããŸãããŠã§ããµã€ãã®åçãªåäœã«ã€ããŠã¯ãJavaScriptã®WikiBookãã芧ãã ããã ãŸããå
šäœã®èŠæ ããã¹ã¿ã€ã«ã調æŽããCSS(Cascading Style Sheets)ã«ã€ããŠã¯å¥ã®æ¬ã§çŽ¹ä»ããŠããŸãããæ¬æžã§ã¯CSSã«ã€ããŠç°¡åã«èª¬æããŠããŸãã
HTMLã¯èŠåºãã段èœãªã©ã®åçš®èŠçŽ ãã¿ã°ãšåŒã°ããè¡šèšæ³ãçšãããŒã¯ã¢ããããããã¹ããã¡ã€ã«ã§ããããã¹ããã¡ã€ã«ãªã®ã§ããã¹ããšãã£ã¿(äŸãã°Windowsã®ã¡ã¢åž³)ã§ç·šéã§ãç·šéç°å¢ã¯æ¯èŒçå
¥æ容æã§ãã
äžæ¹ãMicrosoft Edgeã»Google Chromeã»Mozilla Firefoxã»OperaãSafariçã®ãŠã§ããã©ãŠã¶ã§ãŠã§ãããŒãžã衚瀺ãããšããã¹ããšãã£ã¿ã§éãããšããšã¯éããã¬ã€ã¢ãŠãã»æåçš®ã»è²ãªã©å€ã修食ãæ§é ã«å ãã衚瀺ãããŸãããããã¯HTMLãHTMLã¬ã³ããªã³ã°ãšã³ãžã³ã解éãã¬ã³ããªã³ã°ãããçµæã§ãã
ãã€ãŠãã©ãŠã¶æŠäºããããŸããããã®ããããŠã§ãæšæºã¯ãããŸããã競åå¢åãšã®å·®å¥åã®ããç©æ¥µçã«æšæºãšã¯ç°ãªãèŠçŽ ã»æšæºãšã¯ç°ãªã解éãè¡ãHTMLã¬ã³ããªã³ã°ãšã³ãžã³ãè€æ°åžå Žã«ååšããããšãšãªããŸããã
ãã®çµæãè€æ°ã®ãã©ãŠã¶ã§æã¿éãã®è¡šç€ºãè¡ãããšããŠã§ã補äœè
ã«ãšã£ãŠå°é£ãªããšãšãªãããã®ããŒãžã¯ XXXX ã® ããŒãžã§ã³ NNNN ã® 1024x768ãã¯ã»ã«ã§è¡šç€ºããŠäžãããã®æ§ã«ãããŒãžé²èŠ§è
åŽã«ãŠã§ãé²èŠ§ç°å¢ã匷å¶ããããæ¬æ¥ã¯è¡šçµã®ããã®TABLEèŠçŽ ãã€ãã£ãŠã¬ã€ã¢ãŠããããªã©ãHTMLææžã®æ¬æ¥ã®ç®çãææžã®æ§é åããšã¯éè¡ãããããããŠããŠãè延ããFONTèŠçŽ ã®æ§ãªæ¬è³ªçã«è£
食ãç®çã§æ§é ãšã¯ç¡é¢ä¿ãªèŠçŽ ãããŠã§ãæšæºãã«å«ãŸããäºæ
ã«ãŸã§ãªã£ãŠããŸããŸããã
æã¯æµã2021幎6æçŸåšãHTMLèŠæ Œã®ææ°ã¯W3Cããæšæºçå®ãåŒç¶ãã WHATWGãæšæºåããHTML Living Standardãšãªããé«ãæšæºãžã®æºæ 床ãå®çŸããã¢ãã³ãã©ãŠã¶ãäžè¬ã«äœ¿ãããã¯ã©ã€ã¢ã³ãã®äž»æµãPCããã¹ããŒããã©ã³ãã¿ãã¬ãããªã©ã®ã¢ãã€ã«ããã€ã¹ã«ç§»ããŸããã
æ¬æžã«ã¯ãHTML5ããæŽã«å€ãHTML4.01ã察象ãšããèšè¿°ããŸã å€ãæ®ã£ãŠããŸããå€ãã®ããŒãžã¯HTML Living Standardã§ããŒã¯ã¢ãããããŠããŸã(ãã®ããŒãžèªèº«ã2022幎7æçŸåšHTML Living Standardã§ããŒã¯ã¢ãããããŠããŸã)ã®ã§é©å®å·®ç°ã«ã€ããŠè§£èª¬ãå ããŸãã
ããã§ã¯2022幎10æçŸåšã®çŸè¡ã®èŠæ Œã§ãã HTML Living Standard ã§ã®ããŒã¯ã¢ããäŸã玹ä»ããŸãã
HTMLã¯ãèŠçŽ ãã¿ã°ãçšããŠéå±€çãªææžæ§é ãããŒã¯ã¢ããããŸãã
以äžã§ã¯ç°¡åãªäŸãçšããŠçŽ¹ä»ããããšã«ããŸãããã
äžèšã®htmlã®ã³ãŒãå
容ãæžãããã¡ã€ã«ã.htmlæ¡åŒµåã§ä¿åããæ°ããã®webãã©ãŠã¶ã§é²èŠ§ããã°ãäžèšã®ããã«è¡šç€ºã§ããã¯ãã§ãã
ãã®ææžã¯éåžžã«ç°¡åãªäŸã !
HTMLæç« ã®éåžžã«ç°¡åã§ãªããã€ãéèŠãªç¹ããã®äŸã¯ç€ºããŠããŸãã
ãã®äŸæããŠã§ããã©ãŠã¶ã§èŠããšæ¬¡ã®ãããªäºãåãããŸãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "æ¬æžã¯ããŠã§ãããŒãžã®æšæºçãªããŒã¯ã¢ããèšèªã§ããHTMLã®è§£èª¬æžã§ãã ããã¹ããšãã£ã¿ãšãŠã§ããã©ãŠã¶ãããã°ããŠã§ãããŒãžãäœæããããäœæããããŒãžãé²èŠ§ããããäžçäžã®äººãšæ
å ±ãå
±æãããããããšãã§ããŸãã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "æ¬æžã§ã¯ãç°¡åãªHTMLã®æ§æã説æããŠããŸãããŠã§ããµã€ãã®åçãªåäœã«ã€ããŠã¯ãJavaScriptã®WikiBookãã芧ãã ããã ãŸããå
šäœã®èŠæ ããã¹ã¿ã€ã«ã調æŽããCSS(Cascading Style Sheets)ã«ã€ããŠã¯å¥ã®æ¬ã§çŽ¹ä»ããŠããŸãããæ¬æžã§ã¯CSSã«ã€ããŠç°¡åã«èª¬æããŠããŸãã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "HTMLã¯èŠåºãã段èœãªã©ã®åçš®èŠçŽ ãã¿ã°ãšåŒã°ããè¡šèšæ³ãçšãããŒã¯ã¢ããããããã¹ããã¡ã€ã«ã§ããããã¹ããã¡ã€ã«ãªã®ã§ããã¹ããšãã£ã¿(äŸãã°Windowsã®ã¡ã¢åž³)ã§ç·šéã§ãç·šéç°å¢ã¯æ¯èŒçå
¥æ容æã§ãã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "äžæ¹ãMicrosoft Edgeã»Google Chromeã»Mozilla Firefoxã»OperaãSafariçã®ãŠã§ããã©ãŠã¶ã§ãŠã§ãããŒãžã衚瀺ãããšããã¹ããšãã£ã¿ã§éãããšããšã¯éããã¬ã€ã¢ãŠãã»æåçš®ã»è²ãªã©å€ã修食ãæ§é ã«å ãã衚瀺ãããŸãããããã¯HTMLãHTMLã¬ã³ããªã³ã°ãšã³ãžã³ã解éãã¬ã³ããªã³ã°ãããçµæã§ãã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ãã€ãŠãã©ãŠã¶æŠäºããããŸããããã®ããããŠã§ãæšæºã¯ãããŸããã競åå¢åãšã®å·®å¥åã®ããç©æ¥µçã«æšæºãšã¯ç°ãªãèŠçŽ ã»æšæºãšã¯ç°ãªã解éãè¡ãHTMLã¬ã³ããªã³ã°ãšã³ãžã³ãè€æ°åžå Žã«ååšããããšãšãªããŸããã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ãã®çµæãè€æ°ã®ãã©ãŠã¶ã§æã¿éãã®è¡šç€ºãè¡ãããšããŠã§ã補äœè
ã«ãšã£ãŠå°é£ãªããšãšãªãããã®ããŒãžã¯ XXXX ã® ããŒãžã§ã³ NNNN ã® 1024x768ãã¯ã»ã«ã§è¡šç€ºããŠäžãããã®æ§ã«ãããŒãžé²èŠ§è
åŽã«ãŠã§ãé²èŠ§ç°å¢ã匷å¶ããããæ¬æ¥ã¯è¡šçµã®ããã®TABLEèŠçŽ ãã€ãã£ãŠã¬ã€ã¢ãŠããããªã©ãHTMLææžã®æ¬æ¥ã®ç®çãææžã®æ§é åããšã¯éè¡ãããããããŠããŠãè延ããFONTèŠçŽ ã®æ§ãªæ¬è³ªçã«è£
食ãç®çã§æ§é ãšã¯ç¡é¢ä¿ãªèŠçŽ ãããŠã§ãæšæºãã«å«ãŸããäºæ
ã«ãŸã§ãªã£ãŠããŸããŸããã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "æã¯æµã2021幎6æçŸåšãHTMLèŠæ Œã®ææ°ã¯W3Cããæšæºçå®ãåŒç¶ãã WHATWGãæšæºåããHTML Living Standardãšãªããé«ãæšæºãžã®æºæ 床ãå®çŸããã¢ãã³ãã©ãŠã¶ãäžè¬ã«äœ¿ãããã¯ã©ã€ã¢ã³ãã®äž»æµãPCããã¹ããŒããã©ã³ãã¿ãã¬ãããªã©ã®ã¢ãã€ã«ããã€ã¹ã«ç§»ããŸããã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "æ¬æžã«ã¯ãHTML5ããæŽã«å€ãHTML4.01ã察象ãšããèšè¿°ããŸã å€ãæ®ã£ãŠããŸããå€ãã®ããŒãžã¯HTML Living Standardã§ããŒã¯ã¢ãããããŠããŸã(ãã®ããŒãžèªèº«ã2022幎7æçŸåšHTML Living Standardã§ããŒã¯ã¢ãããããŠããŸã)ã®ã§é©å®å·®ç°ã«ã€ããŠè§£èª¬ãå ããŸãã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "ããã§ã¯2022幎10æçŸåšã®çŸè¡ã®èŠæ Œã§ãã HTML Living Standard ã§ã®ããŒã¯ã¢ããäŸã玹ä»ããŸãã",
"title": "HTMLå
¥é"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "HTMLã¯ãèŠçŽ ãã¿ã°ãçšããŠéå±€çãªææžæ§é ãããŒã¯ã¢ããããŸãã",
"title": "HTMLå
¥é"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "以äžã§ã¯ç°¡åãªäŸãçšããŠçŽ¹ä»ããããšã«ããŸãããã",
"title": "HTMLå
¥é"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "äžèšã®htmlã®ã³ãŒãå
容ãæžãããã¡ã€ã«ã.htmlæ¡åŒµåã§ä¿åããæ°ããã®webãã©ãŠã¶ã§é²èŠ§ããã°ãäžèšã®ããã«è¡šç€ºã§ããã¯ãã§ãã",
"title": "HTMLå
¥é"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "ãã®ææžã¯éåžžã«ç°¡åãªäŸã !",
"title": "HTMLå
¥é"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "HTMLæç« ã®éåžžã«ç°¡åã§ãªããã€ãéèŠãªç¹ããã®äŸã¯ç€ºããŠããŸãã",
"title": "HTMLå
¥é"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "ãã®äŸæããŠã§ããã©ãŠã¶ã§èŠããšæ¬¡ã®ãããªäºãåãããŸãã",
"title": "HTMLå
¥é"
}
] | null | {{Pathnav|ã¡ã€ã³ããŒãž|æ
å ±æè¡|ããã°ã©ãã³ã°|small=1|frame=1}}
__NOTOC__
<div style="width:100%;border:#99f 1px solid;margin:0 0 1%;background:#eef">
== ç®æ¬¡ ==
{{é²æç¶æ³}}
* [[#ã¯ããã«|ã¯ããã«]]
* [[#HTMLå
¥é|HTMLå
¥é]]
=== åºç€ ===
* [[HTML/ããã|ããã]]{{é²æ|100%|2008-02-28}}ïŒæ
å ±ã®èšè¿°
* [[HTML/æ¬æ|æ¬æ]]{{é²æ|100%|2008-02-28}}ïŒæ¬æã®èšè¿°
* [[HTML/ãã€ããŒãªã³ã¯|ãã€ããŒãªã³ã¯]]{{é²æ|100%|2008-03-04}}ïŒãªã³ã¯ãäœæããæ¹æ³
* [[HTML/ãªã¹ã|ãªã¹ãïŒç®æ¡æžãïŒ]]{{é²æ|75%|2008-03-04}}ïŒç®æ¡æžãã«ããæ¹æ³
* [[HTML/ãªããžã§ã¯ã|ãªããžã§ã¯ã]]{{é²æ|50%|2008-03-07}}ïŒç»åãªã©ãæ¿å
¥ããæ¹æ³
* [[HTML/idãšclass|idãšclass]]{{é²æ|100%|2008-03-05}}ïŒèŠçŽ ã«ååãä»ããæ¹æ³
* [[HTML/ã¿ã°ã®çç¥|ã¿ã°ã®çç¥]]{{é²æ|25%|2008-05-11}}ïŒã¿ã°ãçç¥ããæ¹æ³
* [[HTML/ã©ãã«|ã©ãã«]]:ã©ãã«ãäœæããæ¹æ³âŠJavaScriptãšçµã¿åãããŠã€ãã³ãåŠç
* [[HTML/èŠçŽ äžèŠ§|èŠçŽ ã®äžèŠ§]]ïŒãã䜿ãããèŠçŽ ã®ç°¡åãªèª¬æ
=== å¿çš<!--ãšããã®ãå€ã--> ===
* [[HTML/ããŒãã«|ããŒãã«ïŒè¡šïŒ]]{{é²æ|50%|2007-12-12}}ïŒè¡šãäœæããæ¹æ³
* [[HTML/ãã©ãŒã |ãã©ãŒã ]]{{é²æ|100%|2008-02-28}}ïŒãŠã§ãããŒãžããæ
å ±ãéä¿¡ããæ¹æ³
* [[CSS|è£
食]]ïŒè²ã倧ãããæå®ããæ¹æ³
=== HTMLãšå
±ã«çšããããæè¡ ===
* [[CSS]]ïŒããŒãžã®è£
食
* [[JavaScript]]ïŒããŒãžã«åçå¹æãäžãã
* [[CGI]]ïŒãµãŒããŒãä»ã®ã³ã³ãã¥ãŒã¿ãšã®ããåã
* [[HTML/HTML5|HTML5]]{{é²æ|25%|2020-03-17}}ïŒHTML Living Standard ã«ãã£ãŠçœ®ãæãããããŸã§ã®ãŠã§ãæšæº
* [[HTML/å€éšãªã³ã¯|å€éšãªã³ã¯]]{{é²æ|50%|2005-05-25}}ïŒHTMLäœæã«åœ¹ç«ã€æ
å ±
* [[HTML ã©ãã«|ã©ãã«]]ïŒã©ãã«ãäœæããæ¹æ³
</div>
== ã¯ããã« ==
æ¬æžã¯ã[[w:ãŠã§ãããŒãž|ãŠã§ãããŒãž]]ã®æšæºçãª[[w:ããŒã¯ã¢ããèšèª|ããŒã¯ã¢ããèšèª]]ã§ãã'''HTML'''<ref>'''HyperText Markup Language'''ã»ãã€ããŒããã¹ãããŒã¯ã¢ããã©ã³ã²ãŒãž</ref>ã®è§£èª¬æžã§ãã
ããã¹ããšãã£ã¿ãšãŠã§ããã©ãŠã¶ãããã°ããŠã§ãããŒãžãäœæããããäœæããããŒãžãé²èŠ§ããããäžçäžã®äººãšæ
å ±ãå
±æãããããããšãã§ããŸãã
æ¬æžã§ã¯ãç°¡åãªHTMLã®æ§æã説æããŠããŸãããŠã§ããµã€ãã®åçãªåäœã«ã€ããŠã¯ã[[JavaScript]]ã®WikiBookãã芧ãã ããã
ãŸããå
šäœã®èŠæ ããã¹ã¿ã€ã«ã調æŽãã[[CSS]]ïŒCascading Style SheetsïŒã«ã€ããŠã¯å¥ã®æ¬ã§çŽ¹ä»ããŠããŸãããæ¬æžã§ã¯CSSã«ã€ããŠç°¡åã«èª¬æããŠããŸãã
HTMLã¯èŠåºãã段èœãªã©ã®åçš®èŠçŽ ã'''ã¿ã°'''ãšåŒã°ããè¡šèšæ³ãçšãããŒã¯ã¢ããããããã¹ããã¡ã€ã«ã§ããããã¹ããã¡ã€ã«ãªã®ã§ããã¹ããšãã£ã¿ïŒäŸãã°Windowsã®ã¡ã¢åž³ïŒã§ç·šéã§ãç·šéç°å¢ã¯æ¯èŒçå
¥æ容æã§ãã
äžæ¹ã[[w:Microsoft Edge|Microsoft Edge]]ã»[[w:Google Chrome|Google Chrome]]ã»[[w:Mozilla Firefox|Mozilla Firefox]]ã»[[w:Opera|Opera]]ã[[w:Safari|Safari]]çã®[[w:ãŠã§ããã©ãŠã¶|ãŠã§ããã©ãŠã¶]]ã§ãŠã§ãããŒãžã衚瀺ãããšããã¹ããšãã£ã¿ã§éãããšããšã¯éããã¬ã€ã¢ãŠãã»æåçš®ã»è²ãªã©å€ã修食ãæ§é ã«å ãã衚瀺ãããŸãããããã¯HTMLã[[w:HTMLã¬ã³ããªã³ã°ãšã³ãžã³|HTMLã¬ã³ããªã³ã°ãšã³ãžã³]]ã解éãã¬ã³ããªã³ã°ãããçµæã§ãã
===ãŠã§ãæšæº===
ãã€ãŠãã©ãŠã¶æŠäºããããŸããããã®ããã[[w:ãŠã§ãæšæº|ãŠã§ãæšæº]]ã¯ãããŸããã競åå¢åãšã®å·®å¥åã®ããç©æ¥µçã«æšæºãšã¯ç°ãªãèŠçŽ ã»æšæºãšã¯ç°ãªã解éãè¡ã[[w:HTMLã¬ã³ããªã³ã°ãšã³ãžã³|HTMLã¬ã³ããªã³ã°ãšã³ãžã³]]ãè€æ°åžå Žã«ååšããããšãšãªããŸããã
ãã®çµæãè€æ°ã®ãã©ãŠã¶ã§æã¿éãã®è¡šç€ºãè¡ãããšããŠã§ã補äœè
ã«ãšã£ãŠå°é£ãªããšãšãªãããã®ããŒãžã¯ XXXX ã® ããŒãžã§ã³ NNNN ã® 1024x768ãã¯ã»ã«ã§è¡šç€ºããŠäžãããã®æ§ã«ãããŒãžé²èŠ§è
åŽã«ãŠã§ãé²èŠ§ç°å¢ã匷å¶ããããæ¬æ¥ã¯è¡šçµã®ããã®TABLEèŠçŽ ãã€ãã£ãŠã¬ã€ã¢ãŠããããªã©ãHTMLææžã®æ¬æ¥ã®ç®çãææžã®æ§é åããšã¯éè¡ãããããããŠããŠãè延ããFONTèŠçŽ ã®æ§ãªæ¬è³ªçã«è£
食ãç®çã§æ§é ãšã¯ç¡é¢ä¿ãªèŠçŽ ãããŠã§ãæšæºãã«å«ãŸããäºæ
ã«ãŸã§ãªã£ãŠããŸããŸããã
æã¯æµã2021幎6æçŸåšãHTMLèŠæ Œã®ææ°ã¯W3Cããæšæºçå®ãåŒç¶ãã [[w:WHATWG|WHATWG]]ãæšæºåãã[https://html.spec.whatwg.org/multipage/ HTML Living Standard]ãšãªã<ref>W3Cãçå®ããŠããHTML5ã¯ã2021幎1æã«å»æ¢ãããHTML Living StandardãHTMLã®æšæºèŠæ ŒãšãªããŸããã</ref>ãé«ãæšæºãžã®æºæ 床ãå®çŸããã¢ãã³ãã©ãŠã¶ãäžè¬ã«äœ¿ãããã¯ã©ã€ã¢ã³ãã®äž»æµãPCããã¹ããŒããã©ã³ãã¿ãã¬ãããªã©ã®ã¢ãã€ã«ããã€ã¹ã«ç§»ããŸããã
æ¬æžã«ã¯ãHTML5ããæŽã«å€ãHTML4.01ã察象ãšããèšè¿°ããŸã å€ãæ®ã£ãŠããŸããå€ãã®ããŒãžã¯HTML Living Standardã§ããŒã¯ã¢ãããããŠããŸãïŒãã®ããŒãžèªèº«ã2022幎7æçŸåšHTML Living Standardã§ããŒã¯ã¢ãããããŠããŸãïŒã®ã§é©å®å·®ç°ã«ã€ããŠè§£èª¬ãå ããŸãã
== HTMLå
¥é ==
=== èŠçŽ ãšã¿ã° ===
ããã§ã¯2022幎10æçŸåšã®çŸè¡ã®èŠæ Œã§ãã HTML Living Standard ã§ã®ããŒã¯ã¢ããäŸã玹ä»ããŸãã
HTMLã¯ãèŠçŽ ãã¿ã°ãçšããŠéå±€çãªææžæ§é ãããŒã¯ã¢ããããŸãã
;èŠçŽ
:èŠçŽ ã¯ã'''éå§ã¿ã°'''ã'''å
容'''ã'''çµäºã¿ã°'''ã®3ã€ããæãç«ã¡ãŸãã
:METAèŠçŽ ã®ããã«ãå
容ãšçµäºã¿ã°ã䌎ããªããã®ããããŸãã
:ãŸãLIèŠçŽ ã®ããã«çµäºã¿ã°ãçç¥å¯èœãªãã®ããããŸãã
;éå§ã¿ã°
:éå§ã¿ã°ã¯ã''' <code><</code> '''ã§å§ãŸããèŠçŽ åãå±æ§ãªã¹ãïŒçç¥å¯èœïŒã''' <code>></code> '''ã§çµããŸãã
;å
容
:å
容ã¯ãïŒå以äžã®èŠçŽ ïŒåèŠçŽ ïŒãããã¯ããã¹ãã§ãã
:ããã¹ãã®æ¹è¡ã¯ïŒã€ã®ç©ºçœã«çœ®ãæããããè©°ã蟌ã¿åŠçãããŸãã
::ãããæ¥æ¬èªã®ããã«åãã¡æžããããªãèšèªã§ã¯äžéœåãçããã®ã§ãããæ¹è¡äœçœ®ã®å·¥å€«ãªã©ã§ãªãã¹ãéåæããªãããããŒã¯ã¢ããã§åé¿ããŠããŸãã
;çµäºã¿ã°
:çµäºã¿ã°ã¯ã''' <code></</code> '''ã§å§ãŸããèŠçŽ åã''' <code>></code> '''ã§çµããŸãã
::ãŸãèŠçŽ åã¯å€§æåå°æåãåºå¥ããŸããããHTML Living Standardã®XMLæ§æã§ã¯å°æåã«éãããŸãã
以äžã§ã¯ç°¡åãªäŸãçšããŠçŽ¹ä»ããããšã«ããŸãããã
;ããŒã¯ã¢ããäŸ:<syntaxhighlight lang="html5" line>
<!DOCTYPE html>
<html lang="ja">
<head>
<meta charset='utf-8'>
<title>ç°¡åãªäŸ</title>
</head>
<body>
<p>ãã®ææžã¯éåžžã«ç°¡åãªäŸã ïŒ</p>
</body>
</html>
</syntaxhighlight>
# HTML Living Standardã®[[w:ææžå宣èš#HTML5|DOCTYPE]]ã¯{{code|<!DOCTYPE html>}}ãšã·ã³ãã«ã§ããæè¡çã«èšããš[[w:Document Type Definition|DTD]]ã䌎ããªãã®ã§HTML5以éã¯ãã¯ã[[w:Standard Generalized Markup Language|SGML]]ã§ã¯ãªããªããŸããã
# HTMLæç« ã¯å¿
ã1ã€ã ãã®HTMLèŠçŽ ãæã¡ãŸããlangå±æ§ã§èšèªãæå®ããããšãæšå¥šãããŸãã
#:<code><html lang="ja"></code> 㯠<code><</code> ã§å§ãŸãã<code>></code> ã§çµããã®ã§ãéå§ã¿ã°ãã§ããæçµè¡ã® <code></html></code> 㯠<code></</code> ã§å§ãŸãã <code>></code> ã§çµããã®ã§ãçµäºã¿ã°ãã§ãã<code><html></code> ãšããéå§ã¿ã°ãš <code></html></code> ãšããçµäºã¿ã°ã§ãäžã€ã®å¯ŸããªããŠããããã®éã«æãŸãããã®ã¯å
容ã§ãã
#<code><head></code> ãš6è¡ç®ã® <code></head></code> ãåãé¢ä¿ã«ãããŸãã
#: HTMLèŠçŽ ã«ã¯ãå¿
ãHEADèŠçŽ ãšBODYèŠçŽ ããããã1ã€æã¡ãŸãã
# <meta charset='utf-8'>ã¯ããã£ã©ã¯ã¿ãŒã³ãŒããUTF-8ã«æå®ããŠããŸããæ¢å®å€ãUTF-8ãªã®ã§å¿
é ã§ã¯ãŸããããæå®ããªããšã¬ã³ããªã³ã°ã厩ããïŒæååãããïŒå ŽåããããŸãã
;衚瀺æ¹æ³
äžèšã®htmlã®ã³ãŒãå
容ãæžãããã¡ã€ã«ã.htmlæ¡åŒµåã§ä¿åããæ°ããã®webãã©ãŠã¶ã§é²èŠ§ããã°ãäžèšã®ããã«è¡šç€ºã§ããã¯ãã§ãã
;衚瀺äŸ:<p style="border:#000 1px dashed;padding:1rem;margin:1rem;width:fit-content;background-color:#eee">ãã®ææžã¯éåžžã«ç°¡åãªäŸã ïŒ</p>
HTMLæç« ã®éåžžã«ç°¡åã§ãªããã€ãéèŠãªç¹ããã®äŸã¯ç€ºããŠããŸãã
* HTMLæç« ã®ïŒè¡ç®ã¯ããã¥ã¡ã³ãã¿ã€ãã
* HTMLæç« ã®ã«ãŒãèŠçŽ ã¯HTMLèŠçŽ ã
** HTMLèŠçŽ ã®åèŠçŽ ã¯ãHEADèŠçŽ ãšBODYèŠçŽ ã
*** HEADèŠçŽ ã®äžã«ã¯ãå¿
ã1ã€ã®TITLEèŠçŽ ã
ãã®äŸæããŠã§ããã©ãŠã¶ã§èŠããšæ¬¡ã®ãããªäºãåãããŸãã
* TITLEèŠçŽ ã®å
容ãã¿ããªã©ã«è¡šç€ºãããã
* BODYèŠçŽ ã®äžã®æç« ã衚瀺ãããã
{{ã³ã©ã |HTMLã®Scaffolding|2=
HTMLã®Scaffoldingã¯ããŠã§ããµã€ãã®åºæ¬æ§é ãç°¡åã«èšå®ããæ¹æ³ã§ããScaffoldingã䜿çšããããšã§ãHTMLææžã®åºæ¬çãªæ§é ãçŽ æ©ãèšå®ããããšãã§ããŸãã
以äžã¯ãHTMLã®Scaffoldingã«å¿
èŠãªèŠçŽ ã®äŸã§ãã
;DOCTYPE宣èš
:DOCTYPE宣èšã¯ãHTMLææžã®ããŒãžã§ã³ãšåãæå®ããå¿
èŠããããŸãã以äžã¯ãHTML5ã®DOCTYPE宣èšã®äŸã§ãã
<!DOCTYPE html>
;<html>èŠçŽ
:<html>èŠçŽ ã¯ãHTMLææžã®ã«ãŒãèŠçŽ ã§ããããã¹ãŠã®èŠçŽ ãå«ãå¿
èŠããããŸãã
<html>
<head>
<!-- headèŠçŽ ã®äžèº«ãããã«å
¥å -->
</head>
<body>
<!-- bodyèŠçŽ ã®äžèº«ãããã«å
¥å -->
</body>
</html>
;<head>èŠçŽ
:<head>èŠçŽ ã¯ãHTMLææžã®ã¡ã¿ããŒã¿ãå«ãå¿
èŠããããŸããã¡ã¿ããŒã¿ã¯ãããŒãžã®ã¿ã€ãã«ãããŒã¯ãŒãã説æãªã©ã®æ
å ±ã§ãã
<head>
<meta charset="UTF-8">
<title>ããŒãžã®ã¿ã€ãã«</title>
</head>
;<body>èŠçŽ
:<body>èŠçŽ ã¯ããŠã§ãããŒãžã®å®éã®ã³ã³ãã³ããå«ãå¿
èŠããããŸãã
<body>
<header>
<!-- ããŒãžã®ããããŒãããã«å
¥å -->
</header>
<nav>
<!-- ããŒãžã®ããã²ãŒã·ã§ã³ãããã«å
¥å -->
</nav>
<main>
<!-- ããŒãžã®ã¡ã€ã³ã³ã³ãã³ããããã«å
¥å -->
</main>
<footer>
<!-- ããŒãžã®ããã¿ãŒãããã«å
¥å -->
</footer>
</body>
ãããã®èŠçŽ ãçµã¿åãããããšã§ããŠã§ããµã€ãã®åºæ¬æ§é ãçŽ æ©ãèšå®ããããšãã§ããŸãããã ããScaffoldingã¯ãããŸã§ãåºæ¬çãªæ§é ãèšå®ããããã®ãã®ã§ãããããŒãžã®ã¹ã¿ã€ã«ãæ©èœã«ã€ããŠã¯å¥éèšå®ããå¿
èŠããããŸãã
}}
== èèš» ==
<references />
== å€éšãªã³ã¯ ==
{{Wikipedia}}
{{wikiversity|Topic:HTML|HTML}}
{{stub}}
[[Category:HTML|*]]
[[Category:ããŒã¯ã¢ããèšèª]]
{{NDC|007.64}} | 2005-03-09T08:48:19Z | 2023-09-30T09:33:22Z | [
"ãã³ãã¬ãŒã:Code",
"ãã³ãã¬ãŒã:ã³ã©ã ",
"ãã³ãã¬ãŒã:Wikiversity",
"ãã³ãã¬ãŒã:Stub",
"ãã³ãã¬ãŒã:NDC",
"ãã³ãã¬ãŒã:Pathnav",
"ãã³ãã¬ãŒã:é²æç¶æ³",
"ãã³ãã¬ãŒã:é²æ",
"ãã³ãã¬ãŒã:Wikipedia"
] | https://ja.wikibooks.org/wiki/HTML |
1,732 | æçæ¬/ãã¹ã¿æç/ã¹ãã²ããã£ã»ã¢ãã©ã»ã«ã«ãããŒã© | æçæ¬|ã€ã¿ãªã¢æç|
ã¹ãã²ããã£ã»ã¢ãã©ã»ã«ã«ãããŒã©(è±èªSpaghetti alla Carbonara)ã¯ããççŒã®ãã¹ã¿ããæå³ããæçãååã®ç±æ¥ã«ã¯ãççŒäººãšããã€ã¿ãªã¢ã®ç§å¯çµç€Ÿã«ã«ãããªãšãããããŠããã
| [
{
"paragraph_id": 0,
"tag": "p",
"text": "æçæ¬|ã€ã¿ãªã¢æç|",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ã¹ãã²ããã£ã»ã¢ãã©ã»ã«ã«ãããŒã©(è±èªSpaghetti alla Carbonara)ã¯ããççŒã®ãã¹ã¿ããæå³ããæçãååã®ç±æ¥ã«ã¯ãççŒäººãšããã€ã¿ãªã¢ã®ç§å¯çµç€Ÿã«ã«ãããªãšãããããŠããã",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "",
"title": "æç"
}
] | æçæ¬|ã€ã¿ãªã¢æç| ã¹ãã²ããã£ã»ã¢ãã©ã»ã«ã«ãããŒã©ã¯ããççŒã®ãã¹ã¿ããæå³ããæçãååã®ç±æ¥ã«ã¯ãççŒäººãšããã€ã¿ãªã¢ã®ç§å¯çµç€Ÿã«ã«ãããªãšãããããŠããã | [[æçæ¬]]|[[æçæ¬/ã€ã¿ãªã¢æç|ã€ã¿ãªã¢æç]]|
'''ã¹ãã²ããã£ã»ã¢ãã©ã»ã«ã«ãããŒã©'''ïŒ[[è±èª]]Spaghetti alla CarbonaraïŒã¯ããççŒã®ãã¹ã¿ããæå³ããæçãååã®ç±æ¥ã«ã¯ãççŒäººãšããã€ã¿ãªã¢ã®ç§å¯çµç€Ÿã«ã«ãããªãšãããããŠããã
==ææïŒ4人åïŒ==
*[[w:ãã³ãã§ãã¿|ãã³ãã§ãã¿]]ïŒ[[w:ããŒã³ã³|ããŒã³ã³]]ã§ä»£çšå¯ïŒâŠ150g
*[[w:ã©ãŒã|ã¹ãã¥ã«ãã]]ïŒ[[w:ãªãªãŒããªã€ã«|ãªãªãŒããªã€ã«]]ã§ä»£çšå¯ïŒâŠå€§ãã1
*倪ç®ã®[[w:ã¹ãã²ããã£|ã¹ãã²ããã£]]ïŒ[[w:ãã§ããããŒã|ãã§ããããŒã]]ã[[w:ãªã³ã°ã€ã|ãªã³ã°ã£ã]]ããæšå¥šïŒâŠ600g
*é¶åµâŠ4å(åµé»ã®ã¿)
*[[w:ãã«ããžã£ãŒãã»ã¬ããžã£ãŒã|ãã«ããžã£ãŒãã»ã¬ããžã£ãŒã]]([[w:ã°ã©ãã»ãããŒã|ã°ã©ãã»ãããŒã]])âŠå€§ãã6
*[[w:ãã³ãªãŒãã»ãããŒã|ãã³ãªãŒãã»ãããŒã]](çŸä¹³ã®ç¡¬è³ªããŒãº)âŠå€§ãã6
*å¡©âŠå€§ãã2
*æ°ŽâŠ6ãªããã«
*é»è¡æ€âŠç²æœããã奜ã¿ã§
==䜿çšåšå
·==
*èãçããå¹³åºãã©ã€ãã³
*ãã¹ã¿éïŒãã¹ã¿ãããïŒ
==æç==
#ãã³ãã§ãã¿ã¯åãã«ã¹ã©ã€ã¹ããŠããã
#ã¹ãã¥ã«ãããå¹³åºã®ãã©ã€ãã³ã«æŸã蟌ã¿äžç«ã§å ç±ãã次ã«ãã³ãã§ãã¿ãã«ãªã«ãªã«ãªããŸã§çŠãããªãããã«ãã©ã€ãã³ããµãããªããçããã
#ãã¹ã¿éã«æ°Ž6ãªããã«ãšå¡©ããããŠæ²žéš°ãããã
#ãã¹ã¿ãéã«æŸã蟌ã¿ãã¢ã«ãã³ãã«ãªãããã«è¹ã§æããã
#éã®ã湯ãæšãŠãããã®éãã§æ±ã100ccã»ã©æ®ããŠçœ®ãã
#éã«ãã¹ã¿ãæ»ãå·ããªãããã«æ¥µåŒ±ç«ã§éã«ç±ãå ãã€ã€ãçŽ æ©ãäºãããæ··ããŠãããåµé»ãããŒãºã®ååãããŒã³ã³ãæŸã蟌ã¿ããã¹ã¿ã®è¹ã§æ±ã泚ãã€ã€ä¹³åãããããã«ãã£ããããæ··ããã
#æåŸã«æ®ãã®ããŒãºãšè¡æ€ããããŠåºæ¥äžããã
==åè==
*çŸä¹³ã®ããŒãºã¯çã匷ãããã奜ã¿ã«äœµããŠå¢æžããã
*åµé»ã«ç±ãå ããããŠçãåµç¶ã«ãªããªãããã«æ³šæã
{{Wikipedia|ã«ã«ãããŒã©}}
[[category:ãã¹ã¿æç]]
[[en:Cookbook:Spaghetti alla Carbonara]]
[[it:Libro di cucina/Ricette/Spaghetti alla carbonara]] | null | 2020-07-29T11:42:30Z | [
"ãã³ãã¬ãŒã:Wikipedia"
] | https://ja.wikibooks.org/wiki/%E6%96%99%E7%90%86%E6%9C%AC/%E3%83%91%E3%82%B9%E3%82%BF%E6%96%99%E7%90%86/%E3%82%B9%E3%83%91%E3%82%B2%E3%83%83%E3%83%86%E3%82%A3%E3%83%BB%E3%82%A2%E3%83%83%E3%83%A9%E3%83%BB%E3%82%AB%E3%83%AB%E3%83%9C%E3%83%8A%E3%83%BC%E3%83%A9 |
1,734 | æçæ¬ | 倧åŠã®æç§æž èªç¶ç§åŠ: æ°åŠ - ç©çåŠ; å€å
žååŠ éåååŠ - ååŠ; ç¡æ©ååŠ ææ©ååŠ - çç©åŠ; æ€ç©åŠ ç 究æè¡ - å°çç§åŠ - å»åŠ; 解ååŠ èªåŠ: æ¥æ¬èª è±èª ãšã¹ãã©ã³ã æé®®èª ãã³ããŒã¯èª ãã€ãèª ãã©ã³ã¹èª ã©ãã³èª ã«ãŒããã¢èª 人æç§åŠ: æŽå²åŠ; æ¥æ¬å² äžåœå² äžçå² æŽå²èŠ³ - å¿çåŠ - å²åŠ - èžè¡; é³æ¥œ çŸè¡ - æåŠ; å€å
žæåŠ æŒ¢è©© 瀟äŒç§åŠ: æ³åŠ - çµæžåŠ - å°çåŠ - æè²åŠ; åŠæ ¡æè² æè²å² æ
å ±æè¡: æ
å ±å·¥åŠ; MS-DOS/PC DOS UNIX/Linux TeX/LaTeX CGI - ããã°ã©ãã³ã°; BASIC Cèšèª C++ Dèšèª HTML Java JavaScript Lisp Mizar Perl PHP Python Ruby Scheme SVG å°ã»äžã»é«æ ¡ã®æç§æž å°åŠ: åœèª ç€ŸäŒ ç®æ° çç§ è±èª äžåŠ: åœèª ç€ŸäŒ æ°åŠ çç§ è±èª é«æ ¡: åœèª - å°æŽ - å
¬æ° - æ°åŠ; å
¬åŒé - çç§; ç©ç ååŠ å°åŠ çç© - å€åœèª - æ
å ± 解説æžã»å®çšæžã»åèæž è¶£å³: æçæ¬ - ã¹ããŒã - ã²ãŒã è©Šéš: è³æ Œè©Šéš - å
¥åŠè©Šéš ãã®ä»ã®æ¬: é²çœ - ç掻ãšé²è·¯ - ãŠã£ãããã£ã¢ã®æžãæ¹ - ãžã§ãŒã¯é
乳補åãšåµ (2005-07-10)ã ç©é¡ã 倧è±ã èé¡ã æ²¹ãšèèªã æå®ã éä»ã 調å³æã éŠèŸæã éèã ã¢ã«ã³ãŒã«é£²æ (2005-07-10)ã ãã§ã³ã¬ãŒãã ã³ãŒããŒã è±é¡ã ãžã£ã &ãžã§ãªãŒã éæ¹ã
é
žåé²æ¢å€ã ã«ããªãŒã çæ°Žåç©ã èèªã é£ç©ç¹ç¶ã ããã©ã«ã ææ©é£åããªãŒã¬ããã¯ã ãããã€ã³ãã¿ã³ãã¯è³ªã ãã¿ãã³é¡
éãšãã©ã€ãã³
çŒãã åããã è¹ã§ãã 湯éãã»ããŒãã³ã°ã ãã©ã³ãã³ã°ã èžãç
®ã éžé &çºé
µã çãã çããã æ²¹ã§æããã éå€ã§ã®èª¿çæ³ã»ã¢ãŠããã¢ã¯ããã³ã°ã 挬ããã ããŒã¹ãã ãœããŒã ãœãŒã©ãŒã¯ããã³ã°ã ç
®ãã ç»ããç»è£œã èžãã è©°ãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "倧åŠã®æç§æž èªç¶ç§åŠ: æ°åŠ - ç©çåŠ; å€å
žååŠ éåååŠ - ååŠ; ç¡æ©ååŠ ææ©ååŠ - çç©åŠ; æ€ç©åŠ ç 究æè¡ - å°çç§åŠ - å»åŠ; 解ååŠ èªåŠ: æ¥æ¬èª è±èª ãšã¹ãã©ã³ã æé®®èª ãã³ããŒã¯èª ãã€ãèª ãã©ã³ã¹èª ã©ãã³èª ã«ãŒããã¢èª 人æç§åŠ: æŽå²åŠ; æ¥æ¬å² äžåœå² äžçå² æŽå²èŠ³ - å¿çåŠ - å²åŠ - èžè¡; é³æ¥œ çŸè¡ - æåŠ; å€å
žæåŠ æŒ¢è©© 瀟äŒç§åŠ: æ³åŠ - çµæžåŠ - å°çåŠ - æè²åŠ; åŠæ ¡æè² æè²å² æ
å ±æè¡: æ
å ±å·¥åŠ; MS-DOS/PC DOS UNIX/Linux TeX/LaTeX CGI - ããã°ã©ãã³ã°; BASIC Cèšèª C++ Dèšèª HTML Java JavaScript Lisp Mizar Perl PHP Python Ruby Scheme SVG å°ã»äžã»é«æ ¡ã®æç§æž å°åŠ: åœèª ç€ŸäŒ ç®æ° çç§ è±èª äžåŠ: åœèª ç€ŸäŒ æ°åŠ çç§ è±èª é«æ ¡: åœèª - å°æŽ - å
¬æ° - æ°åŠ; å
¬åŒé - çç§; ç©ç ååŠ å°åŠ çç© - å€åœèª - æ
å ± 解説æžã»å®çšæžã»åèæž è¶£å³: æçæ¬ - ã¹ããŒã - ã²ãŒã è©Šéš: è³æ Œè©Šéš - å
¥åŠè©Šéš ãã®ä»ã®æ¬: é²çœ - ç掻ãšé²è·¯ - ãŠã£ãããã£ã¢ã®æžãæ¹ - ãžã§ãŒã¯é",
"title": "ã¬ã·ã"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "乳補åãšåµ (2005-07-10)ã ç©é¡ã 倧è±ã èé¡ã æ²¹ãšèèªã æå®ã éä»ã 調å³æã éŠèŸæã éèã ã¢ã«ã³ãŒã«é£²æ (2005-07-10)ã ãã§ã³ã¬ãŒãã ã³ãŒããŒã è±é¡ã ãžã£ã &ãžã§ãªãŒã éæ¹ã",
"title": "é£æïŒæ é€"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "é
žåé²æ¢å€ã ã«ããªãŒã çæ°Žåç©ã èèªã é£ç©ç¹ç¶ã ããã©ã«ã ææ©é£åããªãŒã¬ããã¯ã ãããã€ã³ãã¿ã³ãã¯è³ªã ãã¿ãã³é¡",
"title": "é£æïŒæ é€"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "éãšãã©ã€ãã³",
"title": "èšåïŒèª¿çæ³"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "çŒãã åããã è¹ã§ãã 湯éãã»ããŒãã³ã°ã ãã©ã³ãã³ã°ã èžãç
®ã éžé &çºé
µã çãã çããã æ²¹ã§æããã éå€ã§ã®èª¿çæ³ã»ã¢ãŠããã¢ã¯ããã³ã°ã 挬ããã ããŒã¹ãã ãœããŒã ãœãŒã©ãŒã¯ããã³ã°ã ç
®ãã ç»ããç»è£œã èžãã è©°ãã",
"title": "èšåïŒèª¿çæ³"
}
] | null | __NOTOC__ __NOEDITSECTION__
<!--INTRODUCTION-->
{{é²æç¶æ³}}{{èµæžäžèŠ§}}
<div style="margin: auto; display: table; text-align: center; border-spacing: 15px;">
<div style="display: table-cell; vertical-align: middle;">[[Image:Foodlogo.png|50px|]]</div>
<div style="display: table-cell; vertical-align: middle;"><span style="font-size: x-large;">Wikibooks æçæ¬</span><br />äžçã®ã¬ã·ãã³ã¬ã¯ã·ã§ã³</div>
<div style="display: table-cell; vertical-align: middle;">[[Image:Foodlogo.png|50px|]]</div>
</div>
<center><font color="#ff0000">'''çŸåšã¯èµ€ãªã³ã¯ãå€ãèŠéããæªãããã[[æçæ¬/ç°¡æç]]ãåç
§ããããšããå§ãããŸã'''</font></center>
<div style="padding-left:2em;">
<center>{{ãã³ãã¬ãŒã:ã¬ã·ãã«ããŽãªãŒ}}</center>
</div>
== æ¯æ¥ã®é£å ==
*[[/æé£|æé£]]
*[[/æŒé£|æŒé£]]
*[[/å€é£|å€é£]]
*[[/10æã®ããã€|10æã®ããã€]]
*[[3æã®ããã€|3æã®ããã€]]
*[[/å€é£|å€é£]]
== é£æïŒæ é€ ==
=== åºç€é£å矀 ===
=== [[æçæ¬/é£æ|é£æ]] ===
<div style="padding-left:2em;">
[[æçæ¬/乳補å|乳補åãšåµ]]{{é²æ|00%|2005-07-10}}ã
[[æçæ¬/ç©é¡|ç©é¡]]ã
[[æçæ¬/倧è±|倧è±]]ã
[[æçæ¬/èé¡|èé¡]]ã
[[æçæ¬/æ²¹|æ²¹ãšèèª]]ã
[[æçæ¬/æå®é¡|æå®]]ã
[[æçæ¬/éä»é¡|éä»]]ã
[[æçæ¬/調å³æ|調å³æ]]ã
[[æçæ¬/éŠèŸæ|éŠèŸæ]]ã
[[æçæ¬/éè|éè]]ã
[[æçæ¬/ã¢ã«ã³ãŒã«é£²æ|ã¢ã«ã³ãŒã«é£²æ]]{{é²æ|00%|2005-07-10}}ã
[[æçæ¬/ãã§ã³ã¬ãŒã|ãã§ã³ã¬ãŒã]]ã
[[æçæ¬/ã³ãŒããŒ|ã³ãŒããŒ]]ã
[[æçæ¬/è±é¡|è±é¡]]ã
[[æçæ¬/ãžã£ã ãšãžã§ãªãŒ|ãžã£ã ïŒãžã§ãªãŒ]]ã
[[æçæ¬/éæ¹|éæ¹]]ã
</div>
=== æ é€ ===
<div style="padding-left:2em;">
[[æçæ¬/é
žåé²æ¢å€|é
žåé²æ¢å€]]ã
[[æçæ¬/ã«ããªãŒ|ã«ããªãŒ]]ã
[[æçæ¬/çæ°Žåç©|çæ°Žåç©]]ã
[[æçæ¬/èèª|èèª]]ã
[[æçæ¬/é£ç©ç¹ç¶|é£ç©ç¹ç¶]]ã
[[æçæ¬/ããã©ã«|ããã©ã«]]ã
[[æçæ¬/ææ©é£å|ææ©é£åããªãŒã¬ããã¯]]ã
ãããã€ã³ãã¿ã³ãã¯è³ªã
[[æçæ¬/ãã¿ãã³|ãã¿ãã³é¡]]
</div>
== èšåïŒèª¿çæ³ ==
=== èšå ===
<div style="padding-left:2em;">
[[æçæ¬/é|éãšãã©ã€ãã³]]
</div>
=== 調çæ³ ===
<div style="padding-left:2em;">
[[æçæ¬/çŒã|çŒã]]ã
[[æçæ¬/åãã|åãã]]ã
[[æçæ¬/è¹ã§ã|è¹ã§ã]]ã
湯éãã»ããŒãã³ã°ã
ãã©ã³ãã³ã°ã
[[æçæ¬/èžãç
®|èžãç
®]]ã
[[æçæ¬/çºé
µ|éžé ïŒçºé
µ]]ã
[[æçæ¬/çã|çã]]ã
[[æçæ¬/çãã|çãã]]ã
[[æçæ¬/æãã|æ²¹ã§æãã]]ã
[[æçæ¬/éå€èª¿ç|éå€ã§ã®èª¿çæ³ã»ã¢ãŠããã¢ã¯ããã³ã°]]ã
[[æçæ¬/挬ãã|挬ãã]]ã
ããŒã¹ãã
[[æçæ¬/ãœããŒ|ãœããŒ]]ã
[[æçæ¬/ãœãŒã©ãŒã¯ããã³ã°|ãœãŒã©ãŒã¯ããã³ã°]]ã
[[æçæ¬/ç
®ã|ç
®ã]]ã
ç»ããç»è£œã
[[æçæ¬/èžã|èžã]]ã
è©°ãã
</div>
[[Category:æçæ¬|*]]
{{NDC|596|ããããã»ã}} | null | 2022-04-23T04:24:13Z | [
"ãã³ãã¬ãŒã:é²æç¶æ³",
"ãã³ãã¬ãŒã:èµæžäžèŠ§",
"ãã³ãã¬ãŒã:ã¬ã·ãã«ããŽãªãŒ",
"ãã³ãã¬ãŒã:é²æ",
"ãã³ãã¬ãŒã:NDC"
] | https://ja.wikibooks.org/wiki/%E6%96%99%E7%90%86%E6%9C%AC |
1,741 | å°åŠæ ¡ç·ååŠç¿/ã³ã³ãã¥ãŒã¿ | å°åŠæ ¡ã®åŠç¿ã§ãã³ã³ãã¥ãŒã¿ã«ã€ããŠåŠã¶ãšãã®æç§æžã§ãã
ã³ã³ãã¥ãŒã¿ã¯è²ã
ãªéšåã§ã§ããŠããŸããååãšã©ã®ããã«äœ¿ãã®ããèŠããŸãããã
ããŠã¹ã«ã¯2ã€ã®ãã¿ã³ãšããã®ãã¿ã³ã®éã«ãã€ãŒã«ãããããšãå€ãã§ããããŠã¹ãåãããšãç»é¢ã«åºãŠããå·Šäžã«åããç¢å°ãåãããã«åããŸãã
ã§ã¯å®éã«ããŒããŒãã§æåãå
¥åããŠã¿ãŸããããæã¡æ¹ã«ã¯ããŒãåå
¥åãšããªå
¥åã®2çš®é¡ããããŸãããèšèªããŒã(ãAãããããè¬ããªã©ãšããæåãæžããŠãã)ãšãããšããã®ãKANAãã®ãã¿ã³ãæŒãããŠããªããã°ããŒãåå
¥åãæŒãããŠããã°ããªå
¥åãšãªããŸãã
å°åŠæ ¡åœèª/ããŒãåãèŠãŠå
¥åããŠã¿ãŸããã(äžçªäžã®æ³šææžããã¿ãŠãã ãã)ãã¢ã«ãã¡ãããã¯ããŒããŒãã®ãã¿ã³ã®å·Šäžã«æžããŠãããŸããããšãã°ããããšå
¥åããæã¯ãkaããšå
¥åããŸããããããšå
¥åããæã¯ãnãã2åéããŸããæ°åã®å Žåã¯å·Šäžã«æ°åããããã¿ã³ãæŒãã°æŒãããã¿ã³ã®æ°åãå
¥åãããŸããããŒãåãšããŒããŒãã®ã¢ã«ãã¡ãããã®é
眮ãèŠããŠããã°ãã¡ãã®ã»ããéãæåãå
¥åããããšãã§ããŸãã
ãã ãå°æåã®ãã€ããå
¥åããå Žåã¯ãã£ãã®æ¬¡ã«ããæåã®åé³(aã»iã»uã»eã»o以å€ã®ã¢ã«ãã¡ããã)ã2åéããŸããããšãã°ããã£ãŠãâãkitteã/ããã£ããâãwakkaã/ããã£ã·ãâãsippuãã®ããã«ãªããŸãããããã¯ãltuã§ãã£ãã ãå
¥åã§ããŸãã
ããŒãåãèŠããŠããªãå Žåã¯ãã¡ãã®å
¥åæ¹æ³ã®ã»ããéãå
¥åããããšãã§ããŸããã²ãããªã¯ããŒããŒãã®ãã¿ã³ã®å³äžã«æžããŠãããŸããããããã¿ã³ã®ã²ãããªããã®ãŸãŸå
¥åãããŸããããšãã°ããããšå
¥åããå Žåã¯ããããšæžããããã¿ã³ããããŸãããããã»ãã£ããªã©ã®å°æåãå
¥åããå Žåã¯ã·ãã(Shift)ããŒããããªããå
¥åãããã²ãããªãæžããããã¿ã³ãå
¥åããŠãã ããã
ãã ããã®å
¥åã®ä»æ¹ã§ã¯ã:(ã³ãã³)ããã,(ã«ã³ã)ããªã©ã®èšå·ãæ°åãçŽæ¥å
¥åã§ããªããããäžæçã«ããŒãåå
¥åã«ãããèšå·ã»æ°åã®èªã¿ãå
¥åããŠå€æ(ã¹ããŒã¹ããŒãå€æããŒããã)ããªããã°ãªããŸãããããšãã°ã%ãâãã±ãŒãããšããšå
¥åããŠãžããã/ã3ãâãããããšå
¥åããŠãžããã/ã?ãâããããã¡ããããšå
¥åããŠãžãããã®ããã«ãªããŸãã
ãã¡ãã¯ãã»ãŒããŒãåå
¥åãšåãã§ããå
šè§ã¢ãŒãããªãã«ããŠå
¥åãããšãåè§ã®å°æåã¢ã«ãã¡ããããå
¥åããããšãã§ããŸãã倧æåãå
¥åããã«ã¯ãShiftããŒãæŒããªããå
¥åããŸãã
(èªè
ã»ç·šéè
ã®æ¹ãž:Windows 10ã®æšæºãã©ãŠã¶ãMicrosoft Edgeãã§ãGoogleãããããããŒãžã«ããŠãããšããŠèª¬æããŸãã)
æè¿ãã€ã³ã¿ãŒããã(ç¹ã«SNS)ãç¡æé話ã¢ããªãã²ãŒã ã¢ããªãªã©ã§ããéãè«æ±ããããå人æ
å ±ãæµåºãããæªå£ãæžããããªã©ã®è¢«å®³ã«ãã人ãå¢ããŠããŸããSNSã®è¢«å®³ã¯æ¯å¹Žå¢ããŠããŠã2019幎ã®18æ³æªæºã®è¢«å®³ä»¶æ°ã¯ã2082件ã«ã®ãŒã£ãŠããŸãã
ãã®ãããªè¢«å®³ã«ãããªãããã«ã¯ã次ã®ãããªããšã«æ°ãä»ããŸãããã
Scratchã¯ä»ã®èšèªãšã¯éã£ãŠããããã¯ãçµã¿åãããŠäœãã®ã§åå¿è
ãåäŸã§ãã§ãããããããæ§é ã«ãªã£ãŠããŸãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "å°åŠæ ¡ã®åŠç¿ã§ãã³ã³ãã¥ãŒã¿ã«ã€ããŠåŠã¶ãšãã®æç§æžã§ãã",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ã³ã³ãã¥ãŒã¿ã¯è²ã
ãªéšåã§ã§ããŠããŸããååãšã©ã®ããã«äœ¿ãã®ããèŠããŸãããã",
"title": "ã³ã³ãã¥ãŒã¿ã®éšå"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ããŠã¹ã«ã¯2ã€ã®ãã¿ã³ãšããã®ãã¿ã³ã®éã«ãã€ãŒã«ãããããšãå€ãã§ããããŠã¹ãåãããšãç»é¢ã«åºãŠããå·Šäžã«åããç¢å°ãåãããã«åããŸãã",
"title": "ã³ã³ãã¥ãŒã¿ã®éšå"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ã§ã¯å®éã«ããŒããŒãã§æåãå
¥åããŠã¿ãŸããããæã¡æ¹ã«ã¯ããŒãåå
¥åãšããªå
¥åã®2çš®é¡ããããŸãããèšèªããŒã(ãAãããããè¬ããªã©ãšããæåãæžããŠãã)ãšãããšããã®ãKANAãã®ãã¿ã³ãæŒãããŠããªããã°ããŒãåå
¥åãæŒãããŠããã°ããªå
¥åãšãªããŸãã",
"title": "æåã®å
¥å"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "å°åŠæ ¡åœèª/ããŒãåãèŠãŠå
¥åããŠã¿ãŸããã(äžçªäžã®æ³šææžããã¿ãŠãã ãã)ãã¢ã«ãã¡ãããã¯ããŒããŒãã®ãã¿ã³ã®å·Šäžã«æžããŠãããŸããããšãã°ããããšå
¥åããæã¯ãkaããšå
¥åããŸããããããšå
¥åããæã¯ãnãã2åéããŸããæ°åã®å Žåã¯å·Šäžã«æ°åããããã¿ã³ãæŒãã°æŒãããã¿ã³ã®æ°åãå
¥åãããŸããããŒãåãšããŒããŒãã®ã¢ã«ãã¡ãããã®é
眮ãèŠããŠããã°ãã¡ãã®ã»ããéãæåãå
¥åããããšãã§ããŸãã",
"title": "æåã®å
¥å"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ãã ãå°æåã®ãã€ããå
¥åããå Žåã¯ãã£ãã®æ¬¡ã«ããæåã®åé³(aã»iã»uã»eã»o以å€ã®ã¢ã«ãã¡ããã)ã2åéããŸããããšãã°ããã£ãŠãâãkitteã/ããã£ããâãwakkaã/ããã£ã·ãâãsippuãã®ããã«ãªããŸãããããã¯ãltuã§ãã£ãã ãå
¥åã§ããŸãã",
"title": "æåã®å
¥å"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ããŒãåãèŠããŠããªãå Žåã¯ãã¡ãã®å
¥åæ¹æ³ã®ã»ããéãå
¥åããããšãã§ããŸããã²ãããªã¯ããŒããŒãã®ãã¿ã³ã®å³äžã«æžããŠãããŸããããããã¿ã³ã®ã²ãããªããã®ãŸãŸå
¥åãããŸããããšãã°ããããšå
¥åããå Žåã¯ããããšæžããããã¿ã³ããããŸãããããã»ãã£ããªã©ã®å°æåãå
¥åããå Žåã¯ã·ãã(Shift)ããŒããããªããå
¥åãããã²ãããªãæžããããã¿ã³ãå
¥åããŠãã ããã",
"title": "æåã®å
¥å"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ãã ããã®å
¥åã®ä»æ¹ã§ã¯ã:(ã³ãã³)ããã,(ã«ã³ã)ããªã©ã®èšå·ãæ°åãçŽæ¥å
¥åã§ããªããããäžæçã«ããŒãåå
¥åã«ãããèšå·ã»æ°åã®èªã¿ãå
¥åããŠå€æ(ã¹ããŒã¹ããŒãå€æããŒããã)ããªããã°ãªããŸãããããšãã°ã%ãâãã±ãŒãããšããšå
¥åããŠãžããã/ã3ãâãããããšå
¥åããŠãžããã/ã?ãâããããã¡ããããšå
¥åããŠãžãããã®ããã«ãªããŸãã",
"title": "æåã®å
¥å"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "ãã¡ãã¯ãã»ãŒããŒãåå
¥åãšåãã§ããå
šè§ã¢ãŒãããªãã«ããŠå
¥åãããšãåè§ã®å°æåã¢ã«ãã¡ããããå
¥åããããšãã§ããŸãã倧æåãå
¥åããã«ã¯ãShiftããŒãæŒããªããå
¥åããŸãã",
"title": "æåã®å
¥å"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "(èªè
ã»ç·šéè
ã®æ¹ãž:Windows 10ã®æšæºãã©ãŠã¶ãMicrosoft Edgeãã§ãGoogleãããããããŒãžã«ããŠãããšããŠèª¬æããŸãã)",
"title": "ã€ã³ã¿ãŒãããã®äœ¿ãæ¹"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "æè¿ãã€ã³ã¿ãŒããã(ç¹ã«SNS)ãç¡æé話ã¢ããªãã²ãŒã ã¢ããªãªã©ã§ããéãè«æ±ããããå人æ
å ±ãæµåºãããæªå£ãæžããããªã©ã®è¢«å®³ã«ãã人ãå¢ããŠããŸããSNSã®è¢«å®³ã¯æ¯å¹Žå¢ããŠããŠã2019幎ã®18æ³æªæºã®è¢«å®³ä»¶æ°ã¯ã2082件ã«ã®ãŒã£ãŠããŸãã",
"title": "ã€ã³ã¿ãŒãããã®äœ¿ãæ¹"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "ãã®ãããªè¢«å®³ã«ãããªãããã«ã¯ã次ã®ãããªããšã«æ°ãä»ããŸãããã",
"title": "ã€ã³ã¿ãŒãããã®äœ¿ãæ¹"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "Scratchã¯ä»ã®èšèªãšã¯éã£ãŠããããã¯ãçµã¿åãããŠäœãã®ã§åå¿è
ãåäŸã§ãã§ãããããããæ§é ã«ãªã£ãŠããŸãã",
"title": "ããã°ã©ãã³ã°"
}
] | å°åŠæ ¡ã®åŠç¿ã§ãã³ã³ãã¥ãŒã¿ã«ã€ããŠåŠã¶ãšãã®æç§æžã§ãã | {{Pathnav|ã¡ã€ã³ããŒãž|å°åŠæ ¡ã»äžåŠæ ¡ã»é«çåŠæ ¡ã®åŠç¿|å°åŠæ ¡ã®åŠç¿|frame=1}}
å°åŠæ ¡ã®åŠç¿ã§ãã³ã³ãã¥ãŒã¿ã«ã€ããŠåŠã¶ãšãã®æç§æžã§ãã
== ã³ã³ãã¥ãŒã¿ã®éšå ==
[[File:IBM 5576 002 Keyboard.jpg|thumb|500px|ããŒããŒã]]
[[File:3-Tasten-Maus Microsoft.jpg|thumb|150px|ããŠã¹]]
ã³ã³ãã¥ãŒã¿ã¯è²ã
ãªéšåã§ã§ããŠããŸããååãšã©ã®ããã«äœ¿ãã®ããèŠããŸãããã
; ããŒããŒã :ãããããAããªã©è²ã
ãªãã¿ã³ãã€ããŠããæåãå
¥åããããã®ãã®ã§ãã
; ããŠã¹
:æã§æã€éšåã§ãã¢ã€ã³ã³ãªã©ãéžã¶æãªã©ã«äœ¿ãããã®ãã®ã§ããããŠã¹ãšã¯ãããã¿ãã®ããšã§ããããã¿ã®ãããªåœ¢ã§ããã®ã§ããããã°ããŠããŸãã
=== ããŠã¹ã䜿ã ===
ããŠã¹ã«ã¯2ã€ã®ãã¿ã³ãšããã®ãã¿ã³ã®éã«ãã€ãŒã«ãããããšãå€ãã§ããããŠã¹ãåãããšãç»é¢ã«åºãŠããå·Šäžã«åããç¢å°ãåãããã«åããŸãã
; ã¯ãªã㯠:å·Šã«ãããã¿ã³ã1å{{ruby|æŒ|ã}}ãããšã§ããã¢ã€ã³ã³ãããã¶æãªã©ã«äœ¿ããŸãã
; ããã«ã¯ãªã㯠:ããŠã¹ãåãããªãã§å·Šãã¿ã³ãçã2åæŒãããšã§ããã¢ã€ã³ã³ã«{{ruby|é¢é£|ãããã}}ã¥ãããã(ã³ã³ãã¥ãŒã¿)ããã°ã©ã ãå®è¡ããæãªã©ã«äœ¿ããŸãã
; ãã©ãã° :å·Šã«ãããã¿ã³ã1åæŒãããŸãŸããŠã¹ãåããããšã§ããã¢ã€ã³ã³ãåããæãªã©ã«äœ¿ããŸãã
; ãããã :ãã©ãã°ããŠããç¶æ
ã§å·Šãã¿ã³ãã¯ãªãããšã§ããã¢ã€ã³ã³ãç®çã®äœçœ®ã«çœ®ãæãªã©ã«äœ¿ããŸãã
; å³ã¯ãªã㯠:å³ã«ãããã¿ã³ã1åæŒãããšã§ããã¡ãã¥ãŒãéããŸãã
== æåã®å
¥å ==
ã§ã¯å®éã«ããŒããŒãã§æåãå
¥åããŠã¿ãŸããããæã¡æ¹ã«ã¯'''ããŒãåå
¥å'''ãš'''ããªå
¥å'''ã®2çš®é¡ããããŸãããèšèªããŒã(ãAãããããè¬ããªã©ãšããæåãæžããŠãã)ãšãããšããã®ãKANAãã®ãã¿ã³ãæŒãããŠããªããã°ããŒãåå
¥åãæŒãããŠããã°ããªå
¥åãšãªããŸãã
=== ããŒãåå
¥å ===
[[å°åŠæ ¡åœèª/ããŒãå]]ãèŠãŠå
¥åããŠã¿ãŸããã(äžçªäžã®æ³šææžããã¿ãŠãã ãã)ãã¢ã«ãã¡ãããã¯ããŒããŒãã®ãã¿ã³ã®å·Šäžã«æžããŠãããŸããããšãã°ããããšå
¥åããæã¯ãkaããšå
¥åããŸããããããšå
¥åããæã¯ãnãã2åéããŸããæ°åã®å Žåã¯å·Šäžã«æ°åããããã¿ã³ãæŒãã°æŒãããã¿ã³ã®æ°åãå
¥åãããŸããããŒãåãšããŒããŒãã®ã¢ã«ãã¡ãããã®é
眮ãèŠããŠããã°ãã¡ãã®ã»ããéãæåãå
¥åããããšãã§ããŸãã
ãã ãå°æåã®ãã€ããå
¥åããå Žåã¯ãã£ãã®æ¬¡ã«ããæåã®åé³(aã»iã»uã»eã»o以å€ã®ã¢ã«ãã¡ããã)ã2åéããŸããããšãã°ããã£ãŠãâãkitteãïŒããã£ããâãwakkaãïŒããã£ã·ãâãsippuãã®ããã«ãªããŸãããããã¯ãltuã§ãã£ãã ãå
¥åã§ããŸãã
=== ããªå
¥å ===
ããŒãåãèŠããŠããªãå Žåã¯ãã¡ãã®å
¥åæ¹æ³ã®ã»ããéãå
¥åããããšãã§ããŸããã²ãããªã¯ããŒããŒãã®ãã¿ã³ã®å³äžã«æžããŠãããŸããããããã¿ã³ã®ã²ãããªããã®ãŸãŸå
¥åãããŸããããšãã°ããããšå
¥åããå Žåã¯ããããšæžããããã¿ã³ããããŸãããããã»ãã£ããªã©ã®å°æåãå
¥åããå Žåã¯'''ã·ãã(Shift)ããŒããããªãã'''å
¥åãããã²ãããªãæžããããã¿ã³ãå
¥åããŠãã ããã
ãã ããã®å
¥åã®ä»æ¹ã§ã¯ã:(ã³ãã³)ããã,(ã«ã³ã)ããªã©ã®èšå·ãæ°åãçŽæ¥å
¥åã§ããªããããäžæçã«ããŒãåå
¥åã«ãããèšå·ã»æ°åã®èªã¿ãå
¥åããŠ{{ruby|å€æ|ãžããã}}(ã¹ããŒã¹ããŒãå€æããŒããã)ããªããã°ãªããŸãããããšãã°ã%ãâãã±ãŒãããšããšå
¥åããŠãžãããïŒã3ãâãããããšå
¥åããŠãžãããïŒã?ãâããããã¡ããããšå
¥åããŠãžãããã®ããã«ãªããŸãã
===ã¢ã«ãã¡ãããã®å
¥å===
ãã¡ãã¯ãã»ãŒããŒãåå
¥åãšåãã§ããå
šè§ã¢ãŒãããªãã«ããŠå
¥åãããšãåè§ã®å°æåã¢ã«ãã¡ããããå
¥åããããšãã§ããŸãã倧æåãå
¥åããã«ã¯ãShiftããŒãæŒããªããå
¥åããŸãã
== ã€ã³ã¿ãŒãããã®äœ¿ãæ¹ ==
=== {{ruby|æ€çŽ¢|ãããã}}ãšã³ãžã³ã§ã®æ€çŽ¢{{Ruby|æ¹æ³|ã»ãã»ã}} ===
(èªè
ã»ç·šéè
ã®æ¹ãžïŒWindows 10ã®æšæºãã©ãŠã¶ãMicrosoft Edgeãã§ãGoogleãããããããŒãžã«ããŠãããšããŠèª¬æããŸãã)
#{{ruby|æ€çŽ¢|ãããã}}ãšã³ãžã³ã®ãããç»é¢ã§ãã
#:[[File:Googlesearch1.png|900px]]
#{{ruby|æ€çŽ¢|ãããã}}ãããèšèãæ€çŽ¢ããŒã«å
¥åããŸãã
#:[[File:Googleseach2.png|900px]]
#{{ruby|挢å|ããã}}ã«{{ruby|å€æ|ãžããã}}ããããšãã¯ãå€æããŒããããŠå€æããããŒã¯ãŒããå
¥åãããæ€çŽ¢ãã¿ã³ãæŒããŸãã
#:[[File:Googlesearch3.png|900px]]
#æ€çŽ¢ããç»é¢ã§ããèŠãããµã€ããã¯ãªãã¯ããŸããããã§ã¯ãã{{Ruby|å¯å£«|ãµã}}å±±âWikipediaãã{{ruby|éžæ|ãããã}}ããŠããŸãã
#:[[File:Googlesearch4.png|900px]]
=== {{ruby|被害|ã²ãã}}ã«ãããªãããã« ===
æè¿ãã€ã³ã¿ãŒããã(ç¹ã«SNS)ãç¡æé話ã¢ããªãã²ãŒã ã¢ããªãªã©ã§ããéã{{ruby|è«æ±|ãããã
ã}}ãããã{{ruby|å人æ
å ±|ããããããã»ã}}ã{{ruby|æµåº|ãã
ããã
ã€}}ãããæªå£ãæžããããªã©ã®{{ruby|被害|ã²ãã}}ã«ãã人ã{{ruby|å¢|ãµ}}ããŠããŸããSNSã®è¢«å®³ã¯æ¯å¹Žå¢ããŠããŠã2019幎ã®18æ³æªæºã®è¢«å®³{{ruby|件æ°|ãããã}}ã¯ã2082件ã«ã®ãŒã£ãŠããŸã<ref>[https://www.jiji.com/jc/graphics?p=ve_soc_tyosa-jikenchildren-network ãå³è§£ã»ç€ŸäŒãSNSãªã©äº€æµãµã€ããéãç¯çœªè¢«å®³ã«éã£ãåã©ãã®æšç§»-æäºãããã³ã ãã¥ãŒã¹](2020幎3æ12æ¥),2020幎8æ3æ¥é²èŠ§.</ref>ã
ãã®ãããªè¢«å®³ã«ãããªãããã«ã¯ã次ã®ãããªããšã«æ°ãä»ããŸãããã
#SNSã®{{ruby|æçš¿|ãšããã}}ã®ãšããå人æ
å ±ã¯{{ruby|極å|ãããããã}}æžããªãã
#*äŸïŒãããã§ãïŒâ¡â¡åžã®å°5ã§ãïŒãâãããããâ¡â¡åžããå°5ãã¯ããã¹ãŠå人æ
å ±ã§ãã
#**é¡åçãå人æ
å ±ã«ãªããŸãã
#*åçã®{{ruby|èæ¯|ã¯ããã}}ã«ã{{ruby|ç¹åŸŽ|ãšãã¡ãã}}çãªå»ºç©ãåã£ãŠããã°ãããªãã®{{ruby|èªå®
|ããã}}ãªã©{{ruby|ç°¡å|ãããã}}ã«ç¹å®ã§ããŠããŸããŸãã
#*GPSæ©èœã«ãæ°ãä»ããŸãããã
#ã€ã³ã¿ãŒãããã§ç¥ãåã£ã人ãšäŒããªãã
#*ã€ã³ã¿ãŒãããã§ã¯ãããªãããŸãããããŠãã人ãããŸãã
#{{ruby|æé|ããã}}ã決ããŠå©çšããã
#*é·æéã®å©çšãç¶ããšããããã{{ruby|äŸå|ããã/ããã}}ãã«ãªã£ãŠããŸãå¯èœæ§ããããŸããæéã決ããŠå©çšããŸããã(ã²ãŒã ããã¬ããåãã§ã)ã
#ããããµãããããšãæžãããŸãªã
#*ããããµãããããšãæžããããšãå€æ°ã®äººã«ãããããããããŸãã
#*ããããµãããããšãæžããšãèŠå¯ã«æãŸããããããŸããã
== ããã°ã©ãã³ã° ==
===scratch===
; scratchã«ã€ããŠ
Scratchã¯ä»ã®èšèªãšã¯éã£ãŠããããã¯ãçµã¿åãããŠäœãã®ã§åå¿è
ãåäŸã§ãã§ãããããããæ§é ã«ãªã£ãŠããŸãã
; ã¯ãããŠã¿ãã
#ãŸãã[https://scratch.mit.edu/ Scratch]ã«è¡ããŸãã
#次ã«å·Šäžã«ãããäœãããæŒããŸãã
#ããã§ããã°ã©ãã³ã°ãããŸããç»é¢ã®æ§æã説æã¯æ¬¡ã®ãšããã§ãã
; ããã°ã©ã ãçµãã§ã¿ãã
#ãŸãã¯ãã®ããã«çµãã§ã¿ãŸãããããããã¯å士ã¯è¿ã¥ãããšãã£ã€ããŸãã
; ãã®ããã°ã©ã ã®ä»çµã¿
; çµããã«
==åè==
<references/>
{{stub}}
[[Category:å°åŠæ ¡æè²|ãããããããããããã²ããã]]
[[ã«ããŽãª:ã³ã³ãã¥ãŒã¿]] | null | 2022-12-09T13:28:21Z | [
"ãã³ãã¬ãŒã:Pathnav",
"ãã³ãã¬ãŒã:Ruby",
"ãã³ãã¬ãŒã:Stub"
] | https://ja.wikibooks.org/wiki/%E5%B0%8F%E5%AD%A6%E6%A0%A1%E7%B7%8F%E5%90%88%E5%AD%A6%E7%BF%92/%E3%82%B3%E3%83%B3%E3%83%94%E3%83%A5%E3%83%BC%E3%82%BF |
1,742 | OpenOffice.org ãããºããã¥ã¢ã« | OpenOffice.org(ãªãŒãã³ãªãã£ã¹ããããªã«ã°)ã¯ããªãã£ã¹ãœãããšèšãããŠããã³ã³ãã¥ãŒã¿ãœããã®äžã€ã§ãäŒç€Ÿã®äºåæãªã©ã§ãã䜿ããããœãããäžãŸãšãã«ãããã®ã§ãããªãŒãã³ãªãã£ã¹ããããªã«ã°ãšããã®ãæ£åŒãªååã§ããããªãŒãã³ãªãã£ã¹ãOOoãšç¥ãããŠåŒã°ããããšãæžãããããšããããŸãã
OOoã䜿ããšãããããªäºãã§ããŸãããæç« ããããã«æžãããã«ã¯ã¯ãŒãããã»ããµãŒã®Writer(ã©ã€ã¿ãŒ)ããã°ã©ããªã©ãã€ããã®ã«ã¯è¡šèšç®ãœããã®Calc(ã«ã«ã¯)ããçºè¡šã®è³æãã€ããã«ã¯ãã¬ãŒã³ããŒã·ã§ã³ãœããã®Impress(ã€ã³ãã¬ã¹)ããçµµãå³åœ¢ãããã«ã¯ãããŒããŒã«ã®Draw(ãããŒ)ãå©çšãããŸãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "OpenOffice.org(ãªãŒãã³ãªãã£ã¹ããããªã«ã°)ã¯ããªãã£ã¹ãœãããšèšãããŠããã³ã³ãã¥ãŒã¿ãœããã®äžã€ã§ãäŒç€Ÿã®äºåæãªã©ã§ãã䜿ããããœãããäžãŸãšãã«ãããã®ã§ãããªãŒãã³ãªãã£ã¹ããããªã«ã°ãšããã®ãæ£åŒãªååã§ããããªãŒãã³ãªãã£ã¹ãOOoãšç¥ãããŠåŒã°ããããšãæžãããããšããããŸãã",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "OOoã䜿ããšãããããªäºãã§ããŸãããæç« ããããã«æžãããã«ã¯ã¯ãŒãããã»ããµãŒã®Writer(ã©ã€ã¿ãŒ)ããã°ã©ããªã©ãã€ããã®ã«ã¯è¡šèšç®ãœããã®Calc(ã«ã«ã¯)ããçºè¡šã®è³æãã€ããã«ã¯ãã¬ãŒã³ããŒã·ã§ã³ãœããã®Impress(ã€ã³ãã¬ã¹)ããçµµãå³åœ¢ãããã«ã¯ãããŒããŒã«ã®Draw(ãããŒ)ãå©çšãããŸãã",
"title": ""
}
] | OpenOffice.orgïŒãªãŒãã³ãªãã£ã¹ããããªã«ã°ïŒã¯ããªãã£ã¹ãœãããšèšãããŠããã³ã³ãã¥ãŒã¿ãœããã®äžã€ã§ãäŒç€Ÿã®äºåæãªã©ã§ãã䜿ããããœãããäžãŸãšãã«ãããã®ã§ãããªãŒãã³ãªãã£ã¹ããããªã«ã°ãšããã®ãæ£åŒãªååã§ããããªãŒãã³ãªãã£ã¹ãOOoãšç¥ãããŠåŒã°ããããšãæžãããããšããããŸãã OOoã䜿ããšãããããªäºãã§ããŸãããæç« ããããã«æžãããã«ã¯ã¯ãŒãããã»ããµãŒã®WriterïŒã©ã€ã¿ãŒïŒããã°ã©ããªã©ãã€ããã®ã«ã¯è¡šèšç®ãœããã®CalcïŒã«ã«ã¯ïŒããçºè¡šã®è³æãã€ããã«ã¯ãã¬ãŒã³ããŒã·ã§ã³ãœããã®ImpressïŒã€ã³ãã¬ã¹ïŒããçµµãå³åœ¢ãããã«ã¯ãããŒããŒã«ã®DrawïŒãããŒïŒãå©çšãããŸãã | '''OpenOffice.org'''ïŒãªãŒãã³ãªãã£ã¹ããããªã«ã°ïŒã¯ããªãã£ã¹ãœãããšèšãããŠããã³ã³ãã¥ãŒã¿ãœããã®äžã€ã§ãäŒç€Ÿã®äºåæãªã©ã§ãã䜿ããããœãããäžãŸãšãã«ãããã®ã§ãããªãŒãã³ãªãã£ã¹ããããªã«ã°ãšããã®ãæ£åŒãªååã§ããããªãŒãã³ãªãã£ã¹ãOOoãšç¥ãããŠåŒã°ããããšãæžãããããšããããŸãã
OOoã䜿ããšãããããªäºãã§ããŸãããæç« ããããã«æžãããã«ã¯ã¯ãŒãããã»ããµãŒã®'''Writer'''ïŒã©ã€ã¿ãŒïŒããã°ã©ããªã©ãã€ããã®ã«ã¯è¡šèšç®ãœããã®'''Calc'''ïŒã«ã«ã¯ïŒããçºè¡šã®è³æãã€ããã«ã¯ãã¬ãŒã³ããŒã·ã§ã³ãœããã®'''Impress'''ïŒã€ã³ãã¬ã¹ïŒããçµµãå³åœ¢ãããã«ã¯ãããŒããŒã«ã®'''Draw'''ïŒãããŒïŒãå©çšãããŸãã
==ã¯ãŒããã§æç« ãæžã - Writerã䜿ã -==
#[[OOo_Writer_ã¯ãŒããã§äœãã§ããã®|ã¯ãŒããã§äœãã§ããã®]]
[[Category:OpenOffice.org]] | null | 2007-08-27T10:00:52Z | [] | https://ja.wikibooks.org/wiki/OpenOffice.org_%E3%82%AD%E3%83%83%E3%82%BA%E3%83%9E%E3%83%8B%E3%83%A5%E3%82%A2%E3%83%AB |
1,743 | OOo Writer ã¯ãŒããã§äœãã§ããã® | OpenOffice.org_ãããºããã¥ã¢ã« > Writerã䜿ã
Writer(ã©ã€ã¿ãŒ)ã¯ãäœæãåŠçŽæ°èãªã©ã®æç« ãããœã³ã³ã§æž
æžããããã®ãœããã§ããäžè¬ã«ã¯ãŒãã(ã¯ãŒãããã»ããµãŒ)ãšåŒã°ããŠãããœããã®äžã€ã§ãæžããæç« ãããªã³ã¿ãŒã§å°å·ãããšãããã§èªã¿ãããããªã³ããããããã«äœãäºãã§ããŸããã¯ãŒããã䜿ããšééã£ããšãã§ãç°¡åã«çŽãããšãã§ããã®ã§äœåã§ãæç« ãæçŽãã§ããŸãããŸããè¡šãæžãããçµµãã¯ãä»ããããšãã§ããã®ã§èŠãããããããªããªã³ããäœããŸãã
ããã§ã¯ãå®éã«Writerã§ããªã³ããäœã£ãŠã¿ãŸãããããŸããäžã®èŠæ¬ãèŠãŠãã ãããWriterã䜿ããšãã®ãããªããªã³ããç°¡åã«äœãããšãã§ããŸããç¢å°ã§ç€ºããäžžã¯Writerã§äœ¿ããæ©èœã®ååã§ããä»ã¯åãããªãèšèããããšæããŸãããäžã€ãã€äœæ¥ãããªãã䜿ãæ¹ãæ©èœãèŠããŠããã®ã§å®å¿ããŠãã ããã
ãŸãã¯æåã®å€§ãããäœçœ®ãªã©ãæ°ã«ããã«ãäžããé çªã«æç« ã®éšåãæã¡èŸŒãã§ãã ãããæã¡ééãã挢åã®å€æãã¹ããªãããã«æ³šæããŠæ£ç¢ºã«å
¥åããŸãããã
ãããã«ã¹ã¯ãªãŒã³ã·ã§ãããæ¿å
¥ã
æã¡çµãããšäžã®ãããªè¡šç€ºã«ãªãã¯ãã§ããèŠæ¬ã®åŠçŽæ°èãšã¯ããã¶ãéããŸããããããããã¯ãŒããã®æ©èœã䜿ã£ãŠæåã®ãµã€ãºãäœçœ®ãå€ããŠèŠãç®ãæŽããŠãããŸãããã®ãããªäœæ¥ãã¬ã€ã¢ãŠããšãããã¯ãŒãããäžçªåŸæã«ããŠããäœæ¥ã«ãªããŸãã
暪æžãã®æç« ã¯ãµã€ãå·Šã¯ãããé çªã«æžããŸãããã®æžãæ¹ãå·Šæã(ã²ã ãããã)ãŸãã¯å·Šè©°ã(ã²ã ãã¥ã)ãšèšããŸããã§ããå³åŽã«æç« ããããŠæžããããšãããããŸããããå³æã(ã¿ãããã)ãŸãã¯å³è©°ã(ã¿ãã¥ã)ãšèšãããæžãæ¹ã§ãã¹ããŒã¹ããŒãäœåºŠãæŒãã°æç« ãå³ã¯ãã«ãããäºãã§ããŸããã§ããäœåºŠãã¹ããŒã¹ããŒãæŒãã®ã¯ããã©ãã§ããããã§ãã¯ãŒããã«ã¯ç°¡åã«å³æãã«ã§ããæ©èœãä»ããŠããŸãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "OpenOffice.org_ãããºããã¥ã¢ã« > Writerã䜿ã",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "Writer(ã©ã€ã¿ãŒ)ã¯ãäœæãåŠçŽæ°èãªã©ã®æç« ãããœã³ã³ã§æž
æžããããã®ãœããã§ããäžè¬ã«ã¯ãŒãã(ã¯ãŒãããã»ããµãŒ)ãšåŒã°ããŠãããœããã®äžã€ã§ãæžããæç« ãããªã³ã¿ãŒã§å°å·ãããšãããã§èªã¿ãããããªã³ããããããã«äœãäºãã§ããŸããã¯ãŒããã䜿ããšééã£ããšãã§ãç°¡åã«çŽãããšãã§ããã®ã§äœåã§ãæç« ãæçŽãã§ããŸãããŸããè¡šãæžãããçµµãã¯ãä»ããããšãã§ããã®ã§èŠãããããããªããªã³ããäœããŸãã",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ããã§ã¯ãå®éã«Writerã§ããªã³ããäœã£ãŠã¿ãŸãããããŸããäžã®èŠæ¬ãèŠãŠãã ãããWriterã䜿ããšãã®ãããªããªã³ããç°¡åã«äœãããšãã§ããŸããç¢å°ã§ç€ºããäžžã¯Writerã§äœ¿ããæ©èœã®ååã§ããä»ã¯åãããªãèšèããããšæããŸãããäžã€ãã€äœæ¥ãããªãã䜿ãæ¹ãæ©èœãèŠããŠããã®ã§å®å¿ããŠãã ããã",
"title": "åŠçŽæ°èãäœãã"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "",
"title": "åŠçŽæ°èãäœãã"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "",
"title": "åŠçŽæ°èãäœãã"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ãŸãã¯æåã®å€§ãããäœçœ®ãªã©ãæ°ã«ããã«ãäžããé çªã«æç« ã®éšåãæã¡èŸŒãã§ãã ãããæã¡ééãã挢åã®å€æãã¹ããªãããã«æ³šæããŠæ£ç¢ºã«å
¥åããŸãããã",
"title": "åŠçŽæ°èãäœãã"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ãããã«ã¹ã¯ãªãŒã³ã·ã§ãããæ¿å
¥ã",
"title": "åŠçŽæ°èãäœãã"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "æã¡çµãããšäžã®ãããªè¡šç€ºã«ãªãã¯ãã§ããèŠæ¬ã®åŠçŽæ°èãšã¯ããã¶ãéããŸããããããããã¯ãŒããã®æ©èœã䜿ã£ãŠæåã®ãµã€ãºãäœçœ®ãå€ããŠèŠãç®ãæŽããŠãããŸãããã®ãããªäœæ¥ãã¬ã€ã¢ãŠããšãããã¯ãŒãããäžçªåŸæã«ããŠããäœæ¥ã«ãªããŸãã",
"title": "åŠçŽæ°èãäœãã"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "暪æžãã®æç« ã¯ãµã€ãå·Šã¯ãããé çªã«æžããŸãããã®æžãæ¹ãå·Šæã(ã²ã ãããã)ãŸãã¯å·Šè©°ã(ã²ã ãã¥ã)ãšèšããŸããã§ããå³åŽã«æç« ããããŠæžããããšãããããŸããããå³æã(ã¿ãããã)ãŸãã¯å³è©°ã(ã¿ãã¥ã)ãšèšãããæžãæ¹ã§ãã¹ããŒã¹ããŒãäœåºŠãæŒãã°æç« ãå³ã¯ãã«ãããäºãã§ããŸããã§ããäœåºŠãã¹ããŒã¹ããŒãæŒãã®ã¯ããã©ãã§ããããã§ãã¯ãŒããã«ã¯ç°¡åã«å³æãã«ã§ããæ©èœãä»ããŠããŸãã",
"title": "åŠçŽæ°èãäœãã"
}
] | OpenOffice.org_ãããºããã¥ã¢ã« > Writerã䜿ã WriterïŒã©ã€ã¿ãŒïŒã¯ãäœæãåŠçŽæ°èãªã©ã®æç« ãããœã³ã³ã§æž
æžããããã®ãœããã§ããäžè¬ã«ã¯ãŒããïŒã¯ãŒãããã»ããµãŒïŒãšåŒã°ããŠãããœããã®äžã€ã§ãæžããæç« ãããªã³ã¿ãŒã§å°å·ãããšãããã§èªã¿ãããããªã³ããããããã«äœãäºãã§ããŸããã¯ãŒããã䜿ããšééã£ããšãã§ãç°¡åã«çŽãããšãã§ããã®ã§äœåã§ãæç« ãæçŽãã§ããŸãããŸããè¡šãæžãããçµµãã¯ãä»ããããšãã§ããã®ã§èŠãããããããªããªã³ããäœããŸãã | [[OpenOffice.org_ãããºããã¥ã¢ã«]] > Writerã䜿ã
'''Writer'''ïŒã©ã€ã¿ãŒïŒã¯ãäœæãåŠçŽæ°èãªã©ã®æç« ãããœã³ã³ã§æž
æžããããã®ãœããã§ããäžè¬ã«ã¯ãŒããïŒã¯ãŒãããã»ããµãŒïŒãšåŒã°ããŠãããœããã®äžã€ã§ãæžããæç« ãããªã³ã¿ãŒã§å°å·ãããšãããã§èªã¿ãããããªã³ããããããã«äœãäºãã§ããŸããã¯ãŒããã䜿ããšééã£ããšãã§ãç°¡åã«çŽãããšãã§ããã®ã§äœåã§ãæç« ãæçŽãã§ããŸãããŸããè¡šãæžãããçµµãã¯ãä»ããããšãã§ããã®ã§èŠãããããããªããªã³ããäœããŸãã
==åŠçŽæ°èãäœãã==
ããã§ã¯ãå®éã«Writerã§ããªã³ããäœã£ãŠã¿ãŸãããããŸããäžã®èŠæ¬ãèŠãŠãã ãããWriterã䜿ããšãã®ãããªããªã³ããç°¡åã«äœãããšãã§ããŸããç¢å°ã§ç€ºããäžžã¯Writerã§äœ¿ããæ©èœã®ååã§ããä»ã¯åãããªãèšèããããšæããŸãããäžã€ãã€äœæ¥ãããªãã䜿ãæ¹ãæ©èœãèŠããŠããã®ã§å®å¿ããŠãã ããã
[[ç»å:OOo KidsManual Writer Smp001.png|center|550px|Writerã§äœã£ãæç« ã®èŠæ¬]]
===äœæ¥ã®é çª===
ãŸãã¯æåã®å€§ãããäœçœ®ãªã©ãæ°ã«ããã«ãäžããé çªã«æç« ã®éšåãæã¡èŸŒãã§ãã ãããæã¡ééãã挢åã®å€æãã¹ããªãããã«æ³šæããŠæ£ç¢ºã«å
¥åããŸãããã
ãããã«ã¹ã¯ãªãŒã³ã·ã§ãããæ¿å
¥ã
æã¡çµãããšäžã®ãããªè¡šç€ºã«ãªãã¯ãã§ããèŠæ¬ã®åŠçŽæ°èãšã¯ããã¶ãéããŸããããããããã¯ãŒããã®æ©èœã䜿ã£ãŠæåã®ãµã€ãºãäœçœ®ãå€ããŠèŠãç®ãæŽããŠãããŸãããã®ãããªäœæ¥ã'''ã¬ã€ã¢ãŠã'''ãšãããã¯ãŒãããäžçªåŸæã«ããŠããäœæ¥ã«ãªããŸãã
===å³æã===
暪æžãã®æç« ã¯ãµã€ãå·Šã¯ãããé çªã«æžããŸãããã®æžãæ¹ã'''å·Šæã'''ïŒã²ã ããããïŒãŸãã¯å·Šè©°ãïŒã²ã ãã¥ãïŒãšèšããŸããã§ããå³åŽã«æç« ããããŠæžããããšãããããŸãããã'''å³æã'''ïŒã¿ããããïŒãŸãã¯å³è©°ãïŒã¿ãã¥ãïŒãšèšãããæžãæ¹ã§ãã¹ããŒã¹ããŒãäœåºŠãæŒãã°æç« ãå³ã¯ãã«ãããäºãã§ããŸããã§ããäœåºŠãã¹ããŒã¹ããŒãæŒãã®ã¯ããã©ãã§ããããã§ãã¯ãŒããã«ã¯ç°¡åã«å³æãã«ã§ããæ©èœãä»ããŠããŸãã
[[Category:æ
å ±æè¡]] | null | 2015-09-06T02:30:09Z | [] | https://ja.wikibooks.org/wiki/OOo_Writer_%E3%83%AF%E3%83%BC%E3%83%97%E3%83%AD%E3%81%A7%E4%BD%95%E3%81%8C%E3%81%A7%E3%81%8D%E3%82%8B%E3%81%AE |
1,761 | çäœååã®ç ç©¶æ³ | ^çç©åŠã®ç 究æè¡^
çäœååã®ç 究æ³: çç©åŠã§ã¯ããããçäœç©è³ªããã®ç 究察象ãšãªããããäž»ç«ã£ããã®ãšããŠã¯ DNAãRNAãã¿ã³ãã¯è³ªãè質ãç³è³ªãããããããããã§ã¯ãããã®æ±ãæ¹ã«ã€ããŠè¿°ã¹ããããããæ±ãåéã¯ãçååŠãååçç©åŠãçç©ç©çåŠãççåŠãªã©ã§ããã
DNA 㯠RNA ãŠã€ã«ã¹ãé€ããå
šãŠã®çç©ã§éºäŒæ
å ±ãã³ãŒãããŠããããã®ããéºäŒæ
å ±ã調ã¹ãããã«ã¯ DNA ãæ±ãå¿
èŠãããããŸãåžžæ³ã§ã¯ DNA ã®åé¢ããå§ããããæ±ã察象ãã²ãã DNA ã§ããããã©ã¹ããã§ãããã«ãã£ãŠæäœãå€å°ç°ãªããé·ã DNA æçã¯ç©ççã«åãããããããçãç°ç¶ã®ãã©ã¹ãããããæäœã«æ³šæããå¿
èŠãããã
DNA ã®æœåºã¯ã¿ã³ãã¯è³ªãå解ãå€æ§ãããŠé å¿ã«ããåé¢ããRNA ã ãªããã¯ã¬ã¢ãŒãŒ( ribonuclease, RNase )ã«ãã£ãŠå解ããããšã§è¡ãã倧è
žèããã®ãã©ã¹ããæœåºã¯ãååçç©åŠã§ã¯ç¹ã«é »ç¹ã«è¡ããããããæ§ã
ãªåžè²©ã®ãããããæäœãèªååããããããã販売ãããŠãããåéã粟床ã«å¿ããŠæ§ã
ãªææ³ãããã
é
åç¹ç°æ§ããã£ãŠ DNA ãåæããå¶éé
µçŽ ã¯ãã£ãšãéèŠãªããŒã«ã®äžã€ã§ãããæ§ã
ãªå¶éé
µçŽ ãåé¢ãããåžè²©ãããŠãããéåžžã¯ãããã賌å
¥ããŠçšãããå¶éé
µçŽ ã¯ãé©åãªæ¡ä»¶äžã§ã¯ãç¹ç°çãªåæé
åãèªèããŠåæãããDNA ãªã¬ãŒãŒ( DNA ligase )ã¯éã« DNA æçãçµåãããé
µçŽ ã§ããããã®äºçš®é¡ã®é
µçŽ ã«ãã£ãŠ DNA ã®åã貌ããå¯èœãšãªãããããã®æäœã§ä»»æã® DNA æçã調補ãããã©ã¹ããã«çµã¿èŸŒãŸããããã倧è
žèã«åã蟌ãŸãå¹é€ããããšã§å¢å¹
ãããã®ããéºäŒåã¯ããŒãã³ã°ã®åºæ¬ã§ããã
ãŸãä»»æã®å¡©åºé
åãã〠DNA æçã調ã¹ãæ¹æ³ãšããŠãµã¶ã³è§£æãéçºãããŠããããµã¶ã³è§£æ㯠DNA ãå¶éé
µçŽ ã§åŠçããåŸãé»æ°æ³³åã§é·ãããšã«å±éããã¡ã³ãã¬ã³ã«åãåããã¡ã³ãã¬ã³ã«å¯ŸããæŸå°æ§åäœäœããã£ãŽãã·ãžã§ãã³ (DIG) ãªã©ã§ã©ãã«ããçžè£éããã€ããªãã€ãºãããããšã§ãä»»æã®æçãæ€åºããã
å¡©åºé
åã解æããå Žåã¯ãã·ãŒã±ã³ã·ã³ã°( Sequencing )ãè¡ãããã
RNA ã¯éºäŒåã®è»¢åç£ç©ã§ãããçºçŸããŠããéºäŒåã®æ
å ±ãåŸãæããããšãªããRNA ãå解ãã RNase ã¯ãçµç¹ã现èå
ã®ä»ãæ±ãåŸæ¶²ãªã©ããããšããã«ååšããŠãããå®éšæäœäžã«æ··å
¥ãããããããã倱掻ãã¥ããããšãã DNA ãæ±ãããã泚æãå¿
èŠã§ããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "^çç©åŠã®ç 究æè¡^",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "çäœååã®ç 究æ³: çç©åŠã§ã¯ããããçäœç©è³ªããã®ç 究察象ãšãªããããäž»ç«ã£ããã®ãšããŠã¯ DNAãRNAãã¿ã³ãã¯è³ªãè質ãç³è³ªãããããããããã§ã¯ãããã®æ±ãæ¹ã«ã€ããŠè¿°ã¹ããããããæ±ãåéã¯ãçååŠãååçç©åŠãçç©ç©çåŠãççåŠãªã©ã§ããã",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "DNA 㯠RNA ãŠã€ã«ã¹ãé€ããå
šãŠã®çç©ã§éºäŒæ
å ±ãã³ãŒãããŠããããã®ããéºäŒæ
å ±ã調ã¹ãããã«ã¯ DNA ãæ±ãå¿
èŠãããããŸãåžžæ³ã§ã¯ DNA ã®åé¢ããå§ããããæ±ã察象ãã²ãã DNA ã§ããããã©ã¹ããã§ãããã«ãã£ãŠæäœãå€å°ç°ãªããé·ã DNA æçã¯ç©ççã«åãããããããçãç°ç¶ã®ãã©ã¹ãããããæäœã«æ³šæããå¿
èŠãããã",
"title": "DNA"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "DNA ã®æœåºã¯ã¿ã³ãã¯è³ªãå解ãå€æ§ãããŠé å¿ã«ããåé¢ããRNA ã ãªããã¯ã¬ã¢ãŒãŒ( ribonuclease, RNase )ã«ãã£ãŠå解ããããšã§è¡ãã倧è
žèããã®ãã©ã¹ããæœåºã¯ãååçç©åŠã§ã¯ç¹ã«é »ç¹ã«è¡ããããããæ§ã
ãªåžè²©ã®ãããããæäœãèªååããããããã販売ãããŠãããåéã粟床ã«å¿ããŠæ§ã
ãªææ³ãããã",
"title": "DNA"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "é
åç¹ç°æ§ããã£ãŠ DNA ãåæããå¶éé
µçŽ ã¯ãã£ãšãéèŠãªããŒã«ã®äžã€ã§ãããæ§ã
ãªå¶éé
µçŽ ãåé¢ãããåžè²©ãããŠãããéåžžã¯ãããã賌å
¥ããŠçšãããå¶éé
µçŽ ã¯ãé©åãªæ¡ä»¶äžã§ã¯ãç¹ç°çãªåæé
åãèªèããŠåæãããDNA ãªã¬ãŒãŒ( DNA ligase )ã¯éã« DNA æçãçµåãããé
µçŽ ã§ããããã®äºçš®é¡ã®é
µçŽ ã«ãã£ãŠ DNA ã®åã貌ããå¯èœãšãªãããããã®æäœã§ä»»æã® DNA æçã調補ãããã©ã¹ããã«çµã¿èŸŒãŸããããã倧è
žèã«åã蟌ãŸãå¹é€ããããšã§å¢å¹
ãããã®ããéºäŒåã¯ããŒãã³ã°ã®åºæ¬ã§ããã",
"title": "DNA"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ãŸãä»»æã®å¡©åºé
åãã〠DNA æçã調ã¹ãæ¹æ³ãšããŠãµã¶ã³è§£æãéçºãããŠããããµã¶ã³è§£æ㯠DNA ãå¶éé
µçŽ ã§åŠçããåŸãé»æ°æ³³åã§é·ãããšã«å±éããã¡ã³ãã¬ã³ã«åãåããã¡ã³ãã¬ã³ã«å¯ŸããæŸå°æ§åäœäœããã£ãŽãã·ãžã§ãã³ (DIG) ãªã©ã§ã©ãã«ããçžè£éããã€ããªãã€ãºãããããšã§ãä»»æã®æçãæ€åºããã",
"title": "DNA"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "å¡©åºé
åã解æããå Žåã¯ãã·ãŒã±ã³ã·ã³ã°( Sequencing )ãè¡ãããã",
"title": "DNA"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "RNA ã¯éºäŒåã®è»¢åç£ç©ã§ãããçºçŸããŠããéºäŒåã®æ
å ±ãåŸãæããããšãªããRNA ãå解ãã RNase ã¯ãçµç¹ã现èå
ã®ä»ãæ±ãåŸæ¶²ãªã©ããããšããã«ååšããŠãããå®éšæäœäžã«æ··å
¥ãããããããã倱掻ãã¥ããããšãã DNA ãæ±ãããã泚æãå¿
èŠã§ããã",
"title": "RNA"
}
] | ^çç©åŠã®ç 究æè¡^ çäœååã®ç 究æ³: çç©åŠã§ã¯ããããçäœç©è³ªããã®ç 究察象ãšãªããããäž»ç«ã£ããã®ãšããŠã¯ DNAãRNAãã¿ã³ãã¯è³ªãè質ãç³è³ªãããããããããã§ã¯ãããã®æ±ãæ¹ã«ã€ããŠè¿°ã¹ããããããæ±ãåéã¯ãçååŠãååçç©åŠãçç©ç©çåŠãççåŠãªã©ã§ããã | ^[[çç©åŠã®ç 究æè¡]]^
'''çäœååã®ç 究æ³''': [[w:çç©åŠ|çç©åŠ]]ã§ã¯ããããçäœç©è³ªããã®ç 究察象ãšãªããããäž»ç«ã£ããã®ãšããŠã¯ DNAãRNAãã¿ã³ãã¯è³ªãè質ãç³è³ªãããããããããã§ã¯ãããã®æ±ãæ¹ã«ã€ããŠè¿°ã¹ããããããæ±ãåéã¯ã[[w:çååŠ|çååŠ]]ã[[w:ååçç©åŠ|ååçç©åŠ]]ã[[w:çç©ç©çåŠ|çç©ç©çåŠ]]ã[[w:ççåŠ|ççåŠ]]ãªã©ã§ããã
==DNA==
===æŠè«===
[[w:ããªãã·ãªãæ žé
ž|DNA]] 㯠[[W:RNA ãŠã€ã«ã¹|RNA ãŠã€ã«ã¹]]ãé€ããå
šãŠã®çç©ã§éºäŒæ
å ±ãã³ãŒãããŠããããã®ããéºäŒæ
å ±ã調ã¹ãããã«ã¯ DNA ãæ±ãå¿
èŠãããããŸãåžžæ³ã§ã¯ DNA ã®åé¢ããå§ããããæ±ã察象ãã²ãã DNA ã§ããã[[w:ãã©ã¹ãã|ãã©ã¹ãã]]ã§ãããã«ãã£ãŠæäœãå€å°ç°ãªããé·ã DNA æçã¯ç©ççã«åãããããããçãç°ç¶ã®ãã©ã¹ãããããæäœã«æ³šæããå¿
èŠãããã
DNA ã®æœåºã¯ã¿ã³ãã¯è³ªãå解ãå€æ§ãããŠé å¿ã«ããåé¢ããRNA ã ãªããã¯ã¬ã¢ãŒãŒ( ''ribonuclease'', RNase )ã«ãã£ãŠå解ããããšã§è¡ãã倧è
žèããã®ãã©ã¹ããæœåºã¯ãååçç©åŠã§ã¯ç¹ã«é »ç¹ã«è¡ããããããæ§ã
ãªåžè²©ã®ãããããæäœãèªååããããããã販売ãããŠãããåéã粟床ã«å¿ããŠæ§ã
ãªææ³ãããã
é
åç¹ç°æ§ããã£ãŠ DNA ãåæããå¶éé
µçŽ ã¯ãã£ãšãéèŠãªããŒã«ã®äžã€ã§ãããæ§ã
ãªå¶éé
µçŽ ãåé¢ãããåžè²©ãããŠãããéåžžã¯ãããã賌å
¥ããŠçšãããå¶éé
µçŽ ã¯ãé©åãªæ¡ä»¶äžã§ã¯ãç¹ç°çãªåæé
åãèªèããŠåæãããDNA ãªã¬ãŒãŒ( DNA ligase )ã¯éã« DNA æçãçµåãããé
µçŽ ã§ããããã®äºçš®é¡ã®é
µçŽ ã«ãã£ãŠ DNA ã®åã貌ããå¯èœãšãªãããããã®æäœã§ä»»æã® DNA æçã調補ãããã©ã¹ããã«çµã¿èŸŒãŸããããã倧è
žèã«åã蟌ãŸãå¹é€ããããšã§å¢å¹
ãããã®ããéºäŒåã¯ããŒãã³ã°ã®åºæ¬ã§ããã
ãŸãä»»æã®å¡©åºé
åãã〠DNA æçã調ã¹ãæ¹æ³ãšããŠãµã¶ã³è§£æãéçºãããŠããããµã¶ã³è§£æ㯠DNA ãå¶éé
µçŽ ã§åŠçããåŸãé»æ°æ³³åã§é·ãããšã«å±éããã¡ã³ãã¬ã³ã«åãåããã¡ã³ãã¬ã³ã«å¯ŸããæŸå°æ§åäœäœããã£ãŽãã·ãžã§ãã³ (DIG) ãªã©ã§ã©ãã«ããçžè£éããã€ããªãã€ãºãããããšã§ãä»»æã®æçãæ€åºããã
å¡©åºé
åã解æããå Žåã¯ãã·ãŒã±ã³ã·ã³ã°( ''Sequencing'' )ãè¡ãããã
===åè«===
*æœåº
**ãã©ã¹ããã®ãããã¬ãã
**现èããã®ã²ãã æœåº
**çµç¹ããã®ã²ãã æœåº
**ãã§ããŒã«ã¯ãããã«ã æ³
**ãããã®å©çš
**è¶
é å¿æ³
*å¶éåŠç
**å¶éé
µçŽ
*[[w:ã¢ã¬ããŒã¹ã²ã«é»æ°æ³³å|ã¢ã¬ããŒã¹ã²ã«é»æ°æ³³å]]
*ãµã¶ã³ããããã£ã³ã°
**ããããã£ã³ã°
**ãã€ããªãã€ãŒãŒã·ã§ã³
*PCR
*ã¯ããŒãã³ã°
**ãã©ã¹ãã
**ã©ã€ã²ãŒã·ã§ã³
**圢質転æ
**å¹é€
**ã³ã³ããã³ãã»ã«
*ã·ãŒã±ã³ã·ã³ã°
*ãããããªã³ãã£ã³ã°
*ã²ãã ã©ã€ãã©ãªãŒ
*åºæ¬è©Šè¬
==RNA==
===æŠè«===
[[w:ãªãæ žé
ž|RNA]] ã¯éºäŒåã®è»¢åç£ç©ã§ãããçºçŸããŠããéºäŒåã®æ
å ±ãåŸãæããããšãªããRNA ãå解ãã RNase ã¯ãçµç¹ã现èå
ã®ä»ãæ±ãåŸæ¶²ãªã©ããããšããã«ååšããŠãããå®éšæäœäžã«æ··å
¥ãããããããã倱掻ãã¥ããããšãã DNA ãæ±ãããã泚æãå¿
èŠã§ããã
===åè«===
*æœåº
*ãã¶ã³ããããã£ã³ã°
*RT-PCR
*cDNA ã©ã€ãã©ãªãŒã®äœæ
*ãã£ãã¡ã¬ã³ã·ã£ã«ãã£ã¹ãã¬ã€
==ã¿ã³ãã¯è³ª==
*æŠè«
*æœåº
*ãããã¢ãŒãŒãšãããã¢ãŒãŒé»å®³å€
*ãŠã§ã¹ã¿ã³ããããã£ã³ã°
*å
ç«æ²éæ³
*é
µæ¯ããŒãã€ããªããæ³
*ELIZA
*äºæ¬¡å
é»æ°æ³³å
*ã¢ããé
žé
åã®æ±ºå®
[[Category:çç©åŠ|ãããããµããã®ãããããã»ã]] | null | 2022-12-18T23:04:43Z | [] | https://ja.wikibooks.org/wiki/%E7%94%9F%E4%BD%93%E5%88%86%E5%AD%90%E3%81%AE%E7%A0%94%E7%A9%B6%E6%B3%95 |
1,762 | çç§ç·åB å°åŠåé | ãã®ããŒãžã¯é«çåŠæ ¡çç§ç·åBã®ãã¡å°åŠåéã®å
容ããŸãšãããã®ã§ããã
åå
å°çã®è¡šé¢ã¯ã倧æ°åãæ°Žåã岩ç³åã®3ã€ã«åããããšãã§ããã ãã®ãã¡ã倧æ°åãšæ°Žåãé€ãããã®ããåºäœå°çãšèšãã
ãã®ããã«ãå°åœ¢ã®å€åã«ã¯ãå°çå
éšã®ãšãã«ã®ãŒãã倪éœãšãã«ã®ãŒãæ·±ãé¢ãã£ãŠããããšããããã
å°çã®é«ã500mæ¯ã®é¢ç©ã枬ã£ãŠã¿ããšãæšé«0mãã500mã®é¢ç©ãš-4500mãã-5000mãããã®é¢ç©ãç®ç«ã£ãŠå€§ããããããã®é«ãå°åã倧éžå°åãäœããšããããæµ·æŽå°åã§ãããå¢çã¯ã海岞ç·ã§ã¯ãªããæ°Žæ·±1000mã®ãšããã§ããã
å°çã®å
éšã¯ãå°æ®»ããã³ãã«ãæ žã®äžã€ã«åããããã
å°äž70kmããå
ã«ãå°éæ³¢ã®éããé
ããªãå Žæããããããããäœé床局ãšããã äœé床局ã¯ãå°äž250kmãŸã§ç¶ããŠãããäœé床局ãšãæ·±ã600kmããããŸã§ã®ãã³ãã«äžéšã®æãããå±€ãåãããŠã¢ã»ãã¹ãã§ã¢ãšãããäœé床局ã®äžã®ãããå±€ããªãœã¹ãã§ã¢ãšããããã¬ãŒãã«ããããšãããŠãããå°çè¡šé¢ã¯ããã€ãã®ãã¬ãŒãã«ããããŠããããã¬ãŒãã¯åžžã«åããŠããããããã®å¢çã§ã¯ãã¬ãŒãå士ãæŒãåã£ãããé¢ããŠæ¡å€§ããããããéã£ããããŠããã
ãã¬ãŒããæŒãåã£ãŠããå¢çã§ã¯ããã¬ãŒããæ²ã¿èŸŒãã§æµ·æºãã§ãããã倧éžãè¡çªããŠå±±èãã§ãããããããã®èãæ¹ããã¬ãŒããã¯ããã¯ã¹ãšããã
æµ·æŽãã¬ãŒããæ²ã¿èŸŒããšããã§ã¯ãæµ·æºãã§ããç«å±±æŽ»åãçãã§ã島匧ãçºéããããã®ä»è¿ã§ã¯ãå°éããå°æ®»ã®å€åãçãã§ããããã®ãããªãšããã島匧-æµ·æºç³»ãšãããæ¥æ¬å島ããã®1ã€ã§ããã 島匧-æµ·æºç³»ã®ç«å±±ã¯ãæµ·æºãã100~300km以äžé¢ããŠãããç«å±±ååžã®æµ·æºåŽã®éçç·ãç«å±±åç·ãšãããæµ·æºãšã»ãŒå¹³è¡ããŠããããã¬ãŒãã®æ²ã¿èŸŒã¿ã«ãã匷ãå§åã®ãããéèµ·ããå°åºã§ãã°ããã§ããŠã倧山èãã§ãããåã¢ã¡ãªã«ã®ã¢ã³ãã¹å±±èã¯ããã®ããã«åœ¢æããããã€ã³ã倧éžãããã¬ãŒãã®åãã«ãã£ãŠããŠãŒã©ã·ã¢å€§éžãšè¡çªãããã©ã€å±±èãã§ãããããã©ã€å±±èã§ã¯ãæ°åã¡ãŒãã«ã®é«å°ããã¢ã³ã¢ãã€ããªã©ã®åç³ãçºèŠããããã€ã³ãã¯ãçŸåšããŠãŒã©ã·ã¢å€§éžãæŒãç¶ããããã©ã€å±±èã¯éèµ·ãç¶ããŠããã
çŽ46å幎åãå®å®ç©ºéã®äžã«ãããæéã¬ã¹ã®æ¿ããããŸãããåçž®ããåå§å€ªéœã圢æããããåå§å€ªéœã®åšãã«ã¯ãæéç©è³ªããåå§å€ªéœãšãšãã«å転ããŠãããããããåå§å€ªéœç³»æé²ã§ããããã®äžã®åäœåŸ®ç²åã埮ææãšãã°ãã1~10kmã圢æããã埮ææããè¡çªããåäœãç¹°ãè¿ãã倧ãããªã£ãŠãåå§ææãèªçãããåå§å°çããã®ããã«èªçããã埮ææãè¡çªããå°çã§ã¯ã枩床ãäžæããæ°Žèžæ°ãäºé
žåççŽ ãçªçŽ ãäž»æåãšãããåå§å€§æ°ãèªçããã倧æ°ãçºçããå°çã®è¡šé¢ã¯ããŸããŸãé«æž©ã«ãªãã1500~4700°Cã«ãéããããã岩ç³ã溶ãããã°ããªãŒã·ã£ã³ã圢æãããããã°ããªãŒã·ã£ã³å
ã§ã¯ãéãç©è³ªãšè»œãç©è³ªãåãããããã±ã«ãéã§ã§ãããã³ãã«ãšå²©ç³è³ªã®ãã³ãã«ãã§ãããå°çã«è¡çªãã埮ææã®æ°ãæžã£ãŠãè¡šé¢ãå·åŽããŠãå°æ®»ãã§ããããŸããæ°Žèžæ°ãå·ããŠãéšã«ãªããåå§æµ·æŽã圢æãããå°è¡šã®æž©åºŠã100~200°CçšåºŠã«å·ãããããäºé
žåççŽ ã¯ãåå§æµ·æŽäžã«æº¶ã蟌ãã ã
çåœã®èªçã«ã€ããŠã¯ããã£ãŠããªãéšåãå€ããããã©ãŒã®å®éšãããã¿ã³ãã¯è³ªãªã©ããçåœãèªçãããšèããããã
ææã¯ãåºäœè¡šé¢ãæã€å°çåææãšãã¬ã¹ç¶ã®è¡šé¢ãæã€æšæåææã«åããããããããã¯ãææãèªçãããšãã®åå§å€ªéœããã®è·é¢ãé¢ä¿ããŠãããšèããããã
ååŸ2400kmã®å°ããªææã§ãæŒéã¯300~400°Cãå€ã¯ãæ°·ç¹äž170°Cã§ãããæ°Žã倧æ°ã¯ãªãã浞é£äœçšããªãã®ã§ãã¯ã¬ãŒã¿ãŒãªã©ãèªçåœæã®å§¿ããã®ãŸãŸæ®ã£ãŠããã
ååŸ6000kmã§ãå°çãšã»ãŒåã倧ããã§ããã倧æ°ã®96%ãäºé
žåççŽ ãå ããŠããŠãæ°å§ã¯90æ°å§ã§ãããäºé
žåççŽ ã®æž©å®€å¹æã«ãããè¡šé¢æž©åºŠã¯æ°Žæããé«ã460°Cã«ããªã£ãŠããããã®ãããªç°å¢ã§ã¯ã液äœã®æ°Žã¯ååšã§ãããæ°äœã®æ°Žã玫å€ç·ã«ãã£ãŠæ°ŽçŽ ãšé
žçŽ ã«å解ãããå®å®ç©ºéã«éããŠãã£ãŠããŸããç«å±±æŽ»åã«ããå°åœ¢ã¯èŠãããããå°çã®ãããªãã¬ãŒã掻åã¯ååšããªããšèããããŠããã
ååŸ3400kmã§ãå°çã®çŽååã§ãããéåãå°ãããããæ°å§ã¯0.006æ°å§çšåºŠã§ããã倧æ°ã®ã»ãšãã©ãäºé
žåççŽ ã§ããããå
ããªããã枩宀å¹æãå°ããããŸãã倪éœããé ããããå¹³åæ°æž©ã¯-58°Cã§ãããèªè»¢è»žã®åŸããèªè»¢åšæãå°çãšã»ãŒåããªã®ã§ãå£ç¯å€åãã¿ããããç«æã«ã¯ãäºé
žåççŽ ãåã£ã極å ãšããããå Žæãããã極å ã¯å£ç¯ã«ãã£ãŠå€§ãããç°ãªãã ãŸããç«æã®å°åœ¢ã«ã¯ã浞é£ã®è·¡ãã¿ãããéå»ã«ã¯æ¶²äœã®æ°Žãååšãããšèããããã
倪éœç³»æ倧ã®ææã§ãããååŸãå°çã®11å以äžã§ã倧æ°ã®90%ãæ°ŽçŽ ã10%ãããªãŠã ã§ãããããã¯ã倪éœã®ååŠçµæã«è¿ããæšæã®ãããªæšæåææã¯å²©ç³ãæ°·ã®åšãã«ããªãŠã ãäž»æåãšããã¬ã¹ãåãå²ãã§ããã®ãç¹åŸŽã§ãããæšæã«ã¯çžæš¡æ§ãèŠãããæãããšãããäžææ°æµãæããšãããäžéæ°æµã§ãããæšæã«ã¯å€§èµ€æãšãã倧ããªæžŠãããã160幎è¿ãååšãç¶ããŠããã
倪éœç³»ã§æãå¯åºŠã®å°ããææãååŸãå°çã®9åã»ã©ãã倧ããªææã ããæ°ŽçŽ ã96%ãå ãããããããåæãæ°Žã«æµ®ãã¹ããæµ®ããŠããŸãã»ã©ã§ãããåæã«ãæšæã®ãããªçžæš¡æ§ãèŠãããããŸããæ°·ã岩ç³ã§ã§ãããªã³ã°ãããããã®ãããªãªã³ã°ã¯ãæšæåææã§ã¯ã©ã®ææã§ã芳枬ãããŠããããåæã®ããã¯ç¹ã«é¡èã§ãããåæã®è¡æã®ã²ãšã€ã«ã¿ã€ã¿ã³ãšããè¡æããããæ¿ã倧æ°ãæã£ãŠããããã®è¡šé¢ã«ã¯ã¡ã¿ã³ã®æµ·ãåºãã£ãŠãããšæšæž¬ãããŠããã
ååŸãå°çã®4åçšåºŠã§ã倧æ°ã¯æ°ŽçŽ ãããå°ãªããã¡ã¿ã³ãããªãŠã ãå€ãããã®ããããéã£ãœãèŠããã倪éœç³»ã®æãå€åŽã®å¥çæã¯ãå°çåææã«ãæšæåææã«ãå±ããŠããªãææã§ãã£ãããä»ã§ã¯æºææãšããŠæ±ãããã倪éœç³»ã§å¯äžæææ¢æ»æ©ãè¿ã¥ããŠããªãã®ã§ã詳ããããŒã¿ã¯ããããªãããã¡ã¿ã³ã®åã£ãè¡šé¢ãæã£ãŠããããšãããã£ãŠããããŸããè»éãå€åçã§ãããæµ·çæã®å
åŽã«ããããšããããªã©ãä»ã®ææãšã¯ãç°ãªã£ãç¹åŸŽãæã£ãŠãããå¥çæã®å€åŽã«ã¯ææãæ§æã§ããªãã£ã埮ææã沢山ååšããŠãããšèããããŠããã
çŸåšãŸã§ãå°çãçåœã®ååšã確èªã§ããŠããå¯äžã®ææã§ããã倪éœç³»ã®äžã§ã¯ãéæãšç«æã䌌ããããªç¹åŸŽãæã£ãŠããããéæã¯æž©å®€å¹æã§æ°Žãèžçºãã倱ãããŠããŸã£ããéã«ç«æã¯æž©å®€å¹æãå°ãªã倪éœããé ãããæ°Žãæ°·ã«ãªã£ãŠããŸã£ããäžæ¹ã倪éœããé©åºŠãªè·é¢ã«ããå°çã¯æ°Žã液äœãšããŠååšããäºé
žåççŽ ã液äžã«æº¶ã蟌ã¿ãé©åºŠã«æž©æãªç°å¢ãç¶æã§ããã®ã ã
å°çã®åšãã®å€§æ°ã®å±€ã倧æ°åãšãããäžã«è¡ãã«é£ããŠèããªããå®å®ç©ºéãŸã§ã€ãªãã£ãŠãããåäœé¢ç©ã«ä¿ã倧æ°ã®éããæ°å§ãšããã1æ°å§ã¯1013hPaã§ãæ°Žéæ±760mmã®å§åã«åœããã倧æ°ã¯ã700kmã»ã©äžç©ºãŸã§åºãã£ãŠãããããããäžã¯ã ãã ãåžèã«ãªããå®å®ç©ºéãšãªãã倧æ°ã®å¯åºŠã¯å°è¡šä»è¿ã§æãé«ããé«ãå±±ãªã©ã§ã¯äœããªãããŸãã倧æ°åã¯æž©åºŠå€åã®æ§åã«ãã£ãŠãããã€ãã«åããããã
çªçŽ ã78%ãå ããé
žçŽ ã21%ã§ãããæ®ãã¯ã¢ã«ãŽã³ã0.9%ã0.03%ãäºé
žåççŽ ã0.002%ãããªã³ã0.0005%ãããªãŠã ãå ããããŸããæ°Žèžæ°ã¯å Žæã«ãã£ãŠå€åãã空æ°äžã®3ããŒã»ã³ããå ããããšãããã
倪éœãšã¯ãååŸ696000kmã®ææã§ãããäžå¿ã¯éåžžã«é«å§ã§ãæ°ŽçŽ ååæ žãããªãŠã ååæ žã«å€åããæ žèååå¿ãèµ·ãããŠãããè¡šé¢æž©åºŠã¯6000KçšåºŠã§ããã倪éœããåºãŠããæŸå°ãšãã«ã®ãŒã¯ãå¯èŠå
ç·(æ³¢é·0.4ã0.7ãã€ã¯ãã¡ãŒãã«ã®é»ç£æ³¢)ãäžå¿ã§ã玫å€ç·ãèµ€å€ç·ããããªãã«ããããããã ãXç·ããã€ã¯ãæ³¢ãªã©ãæ··ãã£ãŠãããå°çãåãã倪éœæŸå°ã®ãšãã«ã®ãŒãæ¥å°ãšããã倧æ°åäžé¢ã§å€ªéœã«çŽè§ãª1å¹³æ¹ã¡ãŒãã«ã®é¢ãåäœæéã«åããæ¥å°é(çŽéæ¥å°éãšãã)ã倪éœå®æ°ãšããããã®å€ã¯ã1.4kW/1å¹³æ¹ã¡ãŒãã«ã§ããããã®ååã¯ã倧æ°äžã§åžåããããåå°ããããããå°çå
šäœãåããæ¥å°éãEãšãããšãEã¯ã倪éœå®æ°Ãå°çã®æé¢ç©(4Ïr^2)ã§ãã(å°çã®ååŸãrãååšçãÏãšãã)ãå
·äœçã«ã¯ãE=1.77Ã10^14kWã§ããã
ç±ã倧æ°åå€ã«éããªãç¶æ
ã枩宀å¹æãšãããè¿å¹Žã¯æž©å®€å¹æã«ããå¹³åæ°æž©ãäžããã€ã€ããã
倪éœæŸå°ã®ãã¡ãå°è¡šã«å°éããã®ã¯çŽ50%ã§ãããå°è¡šã§åžåããããšãã«ã®ãŒã®å
ãèµ€å€æŸå°ã«ãã£ãŠçŽæ¥å€§æ°åã«æ»ãããã®ã¯ããäžéšã«éããªãã倧éšåã¯æž©å®€å¹æã§å€§æ°äžã«æ»ãããããçµå±å€§æ°åå€ã«æŸå°ãããããããã£ãŠãå°çå
šäœãšãããåŸããšãã«ã®ãŒãšæŸåºããããšãã«ã®ãŒã¯é£ãåã£ãŠãããããããå±å°çã«èŠããèµ€éä»è¿ã¯æ¥å°éã¯å€ãã極ä»è¿ã¯ãå°ãªãã¯ãã ããèµ€éä»è¿ã¯éåžžã«æãã極ä»è¿ã§ã¯ãå¯ããªããªããã°ãªããªãã(å°è¡šã®1å¹³æ¹ã¡ãŒãã«ãåããæ¥å°éãIãšããçŽéæ¥å°éãIoãšãããšãã®é¢ä¿ã¯ãI=IoÃsinΞãšãªãã)ãããããã®ããã«ã¯ãªã£ãŠããªããããã¯ãç±ã®èŒžéãèµ·ãã£ãŠããããã ããã ã
é«ç·¯åºŠãšäœç·¯åºŠã§ã¯ãæ¥å°éãšå°çæŸå°éãé転ããã®ã§ãç±ã®èŒžéãèµ·ãããèµ€éä»è¿ãšæ¥µã§ã®å¯Ÿæµãèµ·ãããšèããããããå®éã¯è»¢åå(ã³ãªãªãªã®åãšããã)ãåããŠããããã倧ããåããŠ3ã€ã®åŸªç°ãã§ããã
ã³ãªãªãªã®åãšã¯ãäžåŠã§ç¿ã£ã転ååãšåçã¯åãã§ãå°çãèªè»¢ããŠããããã«ãå°çã®èªè»¢ãšäžç·ã«å°è¡šã«ãã芳枬è
ã«ãšã£ãŠã¯ãååçã®å ŽåãéåããŠããç©äœãé²è¡æ¹åã«å¯ŸããŠå³åãã«æ²ããæ§ã«èŠããã(ãç©çãç§ç®ã§ãããšããã®)èŠããã®å ã®çŸè±¡ã®äžçš®ã§ããã
ãªããå³å³ã§ã¯åç€ã«ãã£ãŠã³ãªãªãªã®åã®åçã説æããããå®éã®å°çã¯åç€ã§ã¯ãªããŠç圢ã«è¿ãç«äœç©ãªã®ã§ãå極ã»å極ã«è¿ãé«ç·¯åºŠå°æ¹ã»ã©ã³ãªãªãªã®åã匷ããèµ€éã§ã¯ã³ãªãªãªã®åã¯0(ãŒã)ã«ãªãã
ãªããã³ãªãªãªã®åã®åãã¯ãååçã®å Žåã«ãé²è¡æ¹åã«å¯ŸããŠå³åãã§ãããååçã§ã¯ãã³ãªãªãªã®åã¯ãé²è¡æ¹åã«å¯ŸããŠå·Šåãã«ãªãã
ãŸããªããã³ãªãªãªã®åã®å€§ããã¯ãé床ã«ãæ¯äŸããããŸãããã®ãããäžç©ºã§ã¯äžè¬çã«é¢šéã倧ãããªãã®ã§ãäžç©ºã®é¢šã«ã€ããŠã¯ã³ãªãªãªã®åãç¡èŠã§ããªãã
äžç©ºã®é¢šãåŒãèµ·ããåã¯ãæ°å§ã®å·®ã«ããå(ãæ°å§åŸåºŠåããšãã)ãšãã³ãªãªãªã®åãšã®ã2ã€ã®åã§ãããäžç©ºã§ã¯ãå°é¢ã®æ©æŠã®åœ±é¿ãç¡ããããäžç©ºã®é¢šã«ã¯æ©æŠåã¯æãããªãã
éèŠãªäºãšããŠããã®2ã€ã®å(æ°å§åŸåºŠåãšã³ãªãªãªå)ã®åããšã颚éã®åããšã¯ãã»ãŒéã£ãŠãããåºæ¬çã«ãæ°å§åŸåºŠåãšã³ãªãªãªåã®åã®å€§ããã¯é£ãåã£ãŠããã颚éã¯ããã2ã€ã®åã®åãã«åçŽã§ããã
ãã®ãããªé¢šãå°è¡¡é¢š(ã¡ãããµã)ãšããã
ãã£ãœããå°äžä»è¿ã§ã¯ãæ©æŠåã®åœ±é¿ã«ãããå°äžé¢šãšããã«æããåãšã¯å³å³ã®ãããªé¢ä¿ã«ãªã£ãŠããã
å°äžã®é¢šã¯ãå£ç¯ã«ãã£ãŠå€åããããšãå€ããå¬ã¯å€§éžãå€ã¯æµ·æŽã«é«æ°å§ãçºéãããååçã¯éžå°ãå€ããå£ç¯å€åãã¯ã£ããããŠãããéžãšæµ·ã®ãã©ã³ã¹ã«ãã£ãŠå£ç¯é¢šã®å€§ãããéãã
ãããã£ãŠãæµ·æŽããéžå°ã«å£ç¯é¢šãå¹ãã
1æ¥åšæã§å¹ã颚ã§ãããæŒã¯ãéžå°ãé«æž©ã§ãæµ·ãäœæž©ã®ããã海颚ãå¹ããå€ã¯ãéžå°ãäœæž©ã§æµ·ãé«æž©ã«ãªããããéžé¢šããµãã海颚ãšéžé¢šãå€ãããšããäžæçã«é¢šãæ¢ãŸãããšãããããããæåªãå€åªãšããã
ç§ãã¡ã®æ¥åžžç掻ã«æ·±ãé¢ãã£ãŠããæ°è±¡ã«ã€ããŠèããŠã¿ããã
空æ°ã¯æãããããšäžæããŠãå·ãããšäžéããã空æ°ã®å¡(空æ°å¡)ãäžæãããšãäžç©ºã¯æ°å§ãäœãã®ã§ç©ºæ°å¡ã¯èšåŒµããŠå·ããããã®æž©åºŠãäžããå²åã¯ã -1°C/100mã§ãããã也ç¥æç±æžçãšãããäžæããŠã枩床ãäžãããšããããŠé²ç¹ã«éãã氎滎ãã§ãã¯ãããé²ãã§ããããã®ãšãç±ãæŸåºãããã®ã§ãå²åã¯ã-0.5°C/100mãšãªããããã湿最æç±æžçãšããããã®ããã«é²ã¯äžææ°æµã®ãããšããã«çºçããããã¯äœæ°å§ãšãªããéã«ç©ºæ°å¡ãäžéãããšé²ã¯æ¶ããŠããŸãããã®å Žæã¯æŽå€©ã§ããããšãå€ããããã¯é«æ°å§ãšãªãã
空æ°ãäžæããå Žåã¯ã
é²ç²ãæé·ãã1mmååŸã®éšç²ãéªã®çµæ¶ãšãªããæ°·æ¶ãå«ãé²ãå·ããéšãå«ãŸãªãé²ãæããéšãšããã
æ¥æ¬ã«ã¯äžå¹ŽãéããŠãå€åã«å¯ãã§ããã
å¬ãã·ããªã¢é«æ°å§ããå島æ¹é¢ã«çºéããŠãã枩垯äœæ°å§ã«å¯æ°ãå¹ã蟌ããããããå西å£ç¯é¢šã§ããããã®ãšãã®ç¶æ
ã西é«æ±äœãšããã也ç¥ãã空æ°ã¯ãæ¥æ¬æµ·ã§æ¹¿æ°ãå«ã¿ãæ¥æ¬æµ·åŽã«éªãéãããããããŠã倪平æŽåŽã§ä¹Ÿç¥ããã
2æããã«ãªããšæµ·æŽãšå€§éžã®æž©åºŠå·®ãå°ãããªããå£ç¯é¢šã匱ãŸãããããŠã3æäžæ¬é äœæ°å§ãšé«æ°å§(移åæ§é«æ°å§)ã亀äºã«ééãããäœæ°å§ãæ¥æ¬æµ·åŽãééããå颚ãå¹ãããã«ãªããç¹ã«æ¥å
ã«å¹ã匷ãå颚ãæ¥äžçªãšããã
æ¢
éšã¯ãæ±ã¢ãžã¢ã«ç¹åŸŽçãªçŸè±¡ã§ãããæ¢
éšåç·ãšããåæ»åç·ã®äžçš®ãééããããªããŒãã¯æµ·æ°å£ãåªå¢ãšãªãã
å倪平æŽé«æ°å§ãæ¥æ¬å
šäœãèŠãã倩æ°ã¯å¿«æŽãå€ãããã®ãšã匱ãå颚ãå¹ããåé«åäœåã®æ°å§é
眮ãšãªãã
å€ããç§ã«ãããŠçºçããç±åž¯äœæ°å§ã§ã颚éã17.2mæ¯ç§ä»¥äžã®ç©ã§ããã å°é¢šã®æžŠå·»ãã¯ååçã§ã¯å·Šå·»ããååçã§ã¯å³å·»ãã§ããããã®ããé²è¡æ¹åã®å³åŽã§ã¯é¢šéã«å ããŠé²è¡é床ãå ããã®ã§é¢šéã¯å€§ãããªãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ãã®ããŒãžã¯é«çåŠæ ¡çç§ç·åBã®ãã¡å°åŠåéã®å
容ããŸãšãããã®ã§ããã",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "åå
",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "å°çã®è¡šé¢ã¯ã倧æ°åãæ°Žåã岩ç³åã®3ã€ã«åããããšãã§ããã ãã®ãã¡ã倧æ°åãšæ°Žåãé€ãããã®ããåºäœå°çãšèšãã",
"title": "å°è¡šã®æ§å"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ãã®ããã«ãå°åœ¢ã®å€åã«ã¯ãå°çå
éšã®ãšãã«ã®ãŒãã倪éœãšãã«ã®ãŒãæ·±ãé¢ãã£ãŠããããšããããã",
"title": "å°è¡šã®æ§å"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "å°çã®é«ã500mæ¯ã®é¢ç©ã枬ã£ãŠã¿ããšãæšé«0mãã500mã®é¢ç©ãš-4500mãã-5000mãããã®é¢ç©ãç®ç«ã£ãŠå€§ããããããã®é«ãå°åã倧éžå°åãäœããšããããæµ·æŽå°åã§ãããå¢çã¯ã海岞ç·ã§ã¯ãªããæ°Žæ·±1000mã®ãšããã§ããã",
"title": "倧éžãšæµ·æŽã®å§¿"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "å°çã®å
éšã¯ãå°æ®»ããã³ãã«ãæ žã®äžã€ã«åããããã",
"title": "ãã¬ãŒãã®åã"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "å°äž70kmããå
ã«ãå°éæ³¢ã®éããé
ããªãå Žæããããããããäœé床局ãšããã äœé床局ã¯ãå°äž250kmãŸã§ç¶ããŠãããäœé床局ãšãæ·±ã600kmããããŸã§ã®ãã³ãã«äžéšã®æãããå±€ãåãããŠã¢ã»ãã¹ãã§ã¢ãšãããäœé床局ã®äžã®ãããå±€ããªãœã¹ãã§ã¢ãšããããã¬ãŒãã«ããããšãããŠãããå°çè¡šé¢ã¯ããã€ãã®ãã¬ãŒãã«ããããŠããããã¬ãŒãã¯åžžã«åããŠããããããã®å¢çã§ã¯ãã¬ãŒãå士ãæŒãåã£ãããé¢ããŠæ¡å€§ããããããéã£ããããŠããã",
"title": "ãã¬ãŒãã®åã"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ãã¬ãŒããæŒãåã£ãŠããå¢çã§ã¯ããã¬ãŒããæ²ã¿èŸŒãã§æµ·æºãã§ãããã倧éžãè¡çªããŠå±±èãã§ãããããããã®èãæ¹ããã¬ãŒããã¯ããã¯ã¹ãšããã",
"title": "ãã¬ãŒãã®åã"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "æµ·æŽãã¬ãŒããæ²ã¿èŸŒããšããã§ã¯ãæµ·æºãã§ããç«å±±æŽ»åãçãã§ã島匧ãçºéããããã®ä»è¿ã§ã¯ãå°éããå°æ®»ã®å€åãçãã§ããããã®ãããªãšããã島匧-æµ·æºç³»ãšãããæ¥æ¬å島ããã®1ã€ã§ããã 島匧-æµ·æºç³»ã®ç«å±±ã¯ãæµ·æºãã100~300km以äžé¢ããŠãããç«å±±ååžã®æµ·æºåŽã®éçç·ãç«å±±åç·ãšãããæµ·æºãšã»ãŒå¹³è¡ããŠããããã¬ãŒãã®æ²ã¿èŸŒã¿ã«ãã匷ãå§åã®ãããéèµ·ããå°åºã§ãã°ããã§ããŠã倧山èãã§ãããåã¢ã¡ãªã«ã®ã¢ã³ãã¹å±±èã¯ããã®ããã«åœ¢æããããã€ã³ã倧éžãããã¬ãŒãã®åãã«ãã£ãŠããŠãŒã©ã·ã¢å€§éžãšè¡çªãããã©ã€å±±èãã§ãããããã©ã€å±±èã§ã¯ãæ°åã¡ãŒãã«ã®é«å°ããã¢ã³ã¢ãã€ããªã©ã®åç³ãçºèŠããããã€ã³ãã¯ãçŸåšããŠãŒã©ã·ã¢å€§éžãæŒãç¶ããããã©ã€å±±èã¯éèµ·ãç¶ããŠããã",
"title": "ãã¬ãŒãã®åã"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "çŽ46å幎åãå®å®ç©ºéã®äžã«ãããæéã¬ã¹ã®æ¿ããããŸãããåçž®ããåå§å€ªéœã圢æããããåå§å€ªéœã®åšãã«ã¯ãæéç©è³ªããåå§å€ªéœãšãšãã«å転ããŠãããããããåå§å€ªéœç³»æé²ã§ããããã®äžã®åäœåŸ®ç²åã埮ææãšãã°ãã1~10kmã圢æããã埮ææããè¡çªããåäœãç¹°ãè¿ãã倧ãããªã£ãŠãåå§ææãèªçãããåå§å°çããã®ããã«èªçããã埮ææãè¡çªããå°çã§ã¯ã枩床ãäžæããæ°Žèžæ°ãäºé
žåççŽ ãçªçŽ ãäž»æåãšãããåå§å€§æ°ãèªçããã倧æ°ãçºçããå°çã®è¡šé¢ã¯ããŸããŸãé«æž©ã«ãªãã1500~4700°Cã«ãéããããã岩ç³ã溶ãããã°ããªãŒã·ã£ã³ã圢æãããããã°ããªãŒã·ã£ã³å
ã§ã¯ãéãç©è³ªãšè»œãç©è³ªãåãããããã±ã«ãéã§ã§ãããã³ãã«ãšå²©ç³è³ªã®ãã³ãã«ãã§ãããå°çã«è¡çªãã埮ææã®æ°ãæžã£ãŠãè¡šé¢ãå·åŽããŠãå°æ®»ãã§ããããŸããæ°Žèžæ°ãå·ããŠãéšã«ãªããåå§æµ·æŽã圢æãããå°è¡šã®æž©åºŠã100~200°CçšåºŠã«å·ãããããäºé
žåççŽ ã¯ãåå§æµ·æŽäžã«æº¶ã蟌ãã ã",
"title": "å°çã®åœ¢æ"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "çåœã®èªçã«ã€ããŠã¯ããã£ãŠããªãéšåãå€ããããã©ãŒã®å®éšãããã¿ã³ãã¯è³ªãªã©ããçåœãèªçãããšèããããã",
"title": "å°çã®åœ¢æ"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "ææã¯ãåºäœè¡šé¢ãæã€å°çåææãšãã¬ã¹ç¶ã®è¡šé¢ãæã€æšæåææã«åããããããããã¯ãææãèªçãããšãã®åå§å€ªéœããã®è·é¢ãé¢ä¿ããŠãããšèããããã",
"title": "ææã®ç¹åŸŽ"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "ååŸ2400kmã®å°ããªææã§ãæŒéã¯300~400°Cãå€ã¯ãæ°·ç¹äž170°Cã§ãããæ°Žã倧æ°ã¯ãªãã浞é£äœçšããªãã®ã§ãã¯ã¬ãŒã¿ãŒãªã©ãèªçåœæã®å§¿ããã®ãŸãŸæ®ã£ãŠããã",
"title": "ææã®ç¹åŸŽ"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "ååŸ6000kmã§ãå°çãšã»ãŒåã倧ããã§ããã倧æ°ã®96%ãäºé
žåççŽ ãå ããŠããŠãæ°å§ã¯90æ°å§ã§ãããäºé
žåççŽ ã®æž©å®€å¹æã«ãããè¡šé¢æž©åºŠã¯æ°Žæããé«ã460°Cã«ããªã£ãŠããããã®ãããªç°å¢ã§ã¯ã液äœã®æ°Žã¯ååšã§ãããæ°äœã®æ°Žã玫å€ç·ã«ãã£ãŠæ°ŽçŽ ãšé
žçŽ ã«å解ãããå®å®ç©ºéã«éããŠãã£ãŠããŸããç«å±±æŽ»åã«ããå°åœ¢ã¯èŠãããããå°çã®ãããªãã¬ãŒã掻åã¯ååšããªããšèããããŠããã",
"title": "ææã®ç¹åŸŽ"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "ååŸ3400kmã§ãå°çã®çŽååã§ãããéåãå°ãããããæ°å§ã¯0.006æ°å§çšåºŠã§ããã倧æ°ã®ã»ãšãã©ãäºé
žåççŽ ã§ããããå
ããªããã枩宀å¹æãå°ããããŸãã倪éœããé ããããå¹³åæ°æž©ã¯-58°Cã§ãããèªè»¢è»žã®åŸããèªè»¢åšæãå°çãšã»ãŒåããªã®ã§ãå£ç¯å€åãã¿ããããç«æã«ã¯ãäºé
žåççŽ ãåã£ã極å ãšããããå Žæãããã極å ã¯å£ç¯ã«ãã£ãŠå€§ãããç°ãªãã ãŸããç«æã®å°åœ¢ã«ã¯ã浞é£ã®è·¡ãã¿ãããéå»ã«ã¯æ¶²äœã®æ°Žãååšãããšèããããã",
"title": "ææã®ç¹åŸŽ"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "倪éœç³»æ倧ã®ææã§ãããååŸãå°çã®11å以äžã§ã倧æ°ã®90%ãæ°ŽçŽ ã10%ãããªãŠã ã§ãããããã¯ã倪éœã®ååŠçµæã«è¿ããæšæã®ãããªæšæåææã¯å²©ç³ãæ°·ã®åšãã«ããªãŠã ãäž»æåãšããã¬ã¹ãåãå²ãã§ããã®ãç¹åŸŽã§ãããæšæã«ã¯çžæš¡æ§ãèŠãããæãããšãããäžææ°æµãæããšãããäžéæ°æµã§ãããæšæã«ã¯å€§èµ€æãšãã倧ããªæžŠãããã160幎è¿ãååšãç¶ããŠããã",
"title": "ææã®ç¹åŸŽ"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "倪éœç³»ã§æãå¯åºŠã®å°ããææãååŸãå°çã®9åã»ã©ãã倧ããªææã ããæ°ŽçŽ ã96%ãå ãããããããåæãæ°Žã«æµ®ãã¹ããæµ®ããŠããŸãã»ã©ã§ãããåæã«ãæšæã®ãããªçžæš¡æ§ãèŠãããããŸããæ°·ã岩ç³ã§ã§ãããªã³ã°ãããããã®ãããªãªã³ã°ã¯ãæšæåææã§ã¯ã©ã®ææã§ã芳枬ãããŠããããåæã®ããã¯ç¹ã«é¡èã§ãããåæã®è¡æã®ã²ãšã€ã«ã¿ã€ã¿ã³ãšããè¡æããããæ¿ã倧æ°ãæã£ãŠããããã®è¡šé¢ã«ã¯ã¡ã¿ã³ã®æµ·ãåºãã£ãŠãããšæšæž¬ãããŠããã",
"title": "ææã®ç¹åŸŽ"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "ååŸãå°çã®4åçšåºŠã§ã倧æ°ã¯æ°ŽçŽ ãããå°ãªããã¡ã¿ã³ãããªãŠã ãå€ãããã®ããããéã£ãœãèŠããã倪éœç³»ã®æãå€åŽã®å¥çæã¯ãå°çåææã«ãæšæåææã«ãå±ããŠããªãææã§ãã£ãããä»ã§ã¯æºææãšããŠæ±ãããã倪éœç³»ã§å¯äžæææ¢æ»æ©ãè¿ã¥ããŠããªãã®ã§ã詳ããããŒã¿ã¯ããããªãããã¡ã¿ã³ã®åã£ãè¡šé¢ãæã£ãŠããããšãããã£ãŠããããŸããè»éãå€åçã§ãããæµ·çæã®å
åŽã«ããããšããããªã©ãä»ã®ææãšã¯ãç°ãªã£ãç¹åŸŽãæã£ãŠãããå¥çæã®å€åŽã«ã¯ææãæ§æã§ããªãã£ã埮ææã沢山ååšããŠãããšèããããŠããã",
"title": "ææã®ç¹åŸŽ"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "çŸåšãŸã§ãå°çãçåœã®ååšã確èªã§ããŠããå¯äžã®ææã§ããã倪éœç³»ã®äžã§ã¯ãéæãšç«æã䌌ããããªç¹åŸŽãæã£ãŠããããéæã¯æž©å®€å¹æã§æ°Žãèžçºãã倱ãããŠããŸã£ããéã«ç«æã¯æž©å®€å¹æãå°ãªã倪éœããé ãããæ°Žãæ°·ã«ãªã£ãŠããŸã£ããäžæ¹ã倪éœããé©åºŠãªè·é¢ã«ããå°çã¯æ°Žã液äœãšããŠååšããäºé
žåççŽ ã液äžã«æº¶ã蟌ã¿ãé©åºŠã«æž©æãªç°å¢ãç¶æã§ããã®ã ã",
"title": "ææã®ç¹åŸŽ"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "å°çã®åšãã®å€§æ°ã®å±€ã倧æ°åãšãããäžã«è¡ãã«é£ããŠèããªããå®å®ç©ºéãŸã§ã€ãªãã£ãŠãããåäœé¢ç©ã«ä¿ã倧æ°ã®éããæ°å§ãšããã1æ°å§ã¯1013hPaã§ãæ°Žéæ±760mmã®å§åã«åœããã倧æ°ã¯ã700kmã»ã©äžç©ºãŸã§åºãã£ãŠãããããããäžã¯ã ãã ãåžèã«ãªããå®å®ç©ºéãšãªãã倧æ°ã®å¯åºŠã¯å°è¡šä»è¿ã§æãé«ããé«ãå±±ãªã©ã§ã¯äœããªãããŸãã倧æ°åã¯æž©åºŠå€åã®æ§åã«ãã£ãŠãããã€ãã«åããããã",
"title": "倧æ°ãšç±åæ¯"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "çªçŽ ã78%ãå ããé
žçŽ ã21%ã§ãããæ®ãã¯ã¢ã«ãŽã³ã0.9%ã0.03%ãäºé
žåççŽ ã0.002%ãããªã³ã0.0005%ãããªãŠã ãå ããããŸããæ°Žèžæ°ã¯å Žæã«ãã£ãŠå€åãã空æ°äžã®3ããŒã»ã³ããå ããããšãããã",
"title": "倧æ°ãšç±åæ¯"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "倪éœãšã¯ãååŸ696000kmã®ææã§ãããäžå¿ã¯éåžžã«é«å§ã§ãæ°ŽçŽ ååæ žãããªãŠã ååæ žã«å€åããæ žèååå¿ãèµ·ãããŠãããè¡šé¢æž©åºŠã¯6000KçšåºŠã§ããã倪éœããåºãŠããæŸå°ãšãã«ã®ãŒã¯ãå¯èŠå
ç·(æ³¢é·0.4ã0.7ãã€ã¯ãã¡ãŒãã«ã®é»ç£æ³¢)ãäžå¿ã§ã玫å€ç·ãèµ€å€ç·ããããªãã«ããããããã ãXç·ããã€ã¯ãæ³¢ãªã©ãæ··ãã£ãŠãããå°çãåãã倪éœæŸå°ã®ãšãã«ã®ãŒãæ¥å°ãšããã倧æ°åäžé¢ã§å€ªéœã«çŽè§ãª1å¹³æ¹ã¡ãŒãã«ã®é¢ãåäœæéã«åããæ¥å°é(çŽéæ¥å°éãšãã)ã倪éœå®æ°ãšããããã®å€ã¯ã1.4kW/1å¹³æ¹ã¡ãŒãã«ã§ããããã®ååã¯ã倧æ°äžã§åžåããããåå°ããããããå°çå
šäœãåããæ¥å°éãEãšãããšãEã¯ã倪éœå®æ°Ãå°çã®æé¢ç©(4Ïr^2)ã§ãã(å°çã®ååŸãrãååšçãÏãšãã)ãå
·äœçã«ã¯ãE=1.77Ã10^14kWã§ããã",
"title": "倧æ°ãšç±åæ¯"
},
{
"paragraph_id": 22,
"tag": "p",
"text": "ç±ã倧æ°åå€ã«éããªãç¶æ
ã枩宀å¹æãšãããè¿å¹Žã¯æž©å®€å¹æã«ããå¹³åæ°æž©ãäžããã€ã€ããã",
"title": "倧æ°ãšç±åæ¯"
},
{
"paragraph_id": 23,
"tag": "p",
"text": "倪éœæŸå°ã®ãã¡ãå°è¡šã«å°éããã®ã¯çŽ50%ã§ãããå°è¡šã§åžåããããšãã«ã®ãŒã®å
ãèµ€å€æŸå°ã«ãã£ãŠçŽæ¥å€§æ°åã«æ»ãããã®ã¯ããäžéšã«éããªãã倧éšåã¯æž©å®€å¹æã§å€§æ°äžã«æ»ãããããçµå±å€§æ°åå€ã«æŸå°ãããããããã£ãŠãå°çå
šäœãšãããåŸããšãã«ã®ãŒãšæŸåºããããšãã«ã®ãŒã¯é£ãåã£ãŠãããããããå±å°çã«èŠããèµ€éä»è¿ã¯æ¥å°éã¯å€ãã極ä»è¿ã¯ãå°ãªãã¯ãã ããèµ€éä»è¿ã¯éåžžã«æãã極ä»è¿ã§ã¯ãå¯ããªããªããã°ãªããªãã(å°è¡šã®1å¹³æ¹ã¡ãŒãã«ãåããæ¥å°éãIãšããçŽéæ¥å°éãIoãšãããšãã®é¢ä¿ã¯ãI=IoÃsinΞãšãªãã)ãããããã®ããã«ã¯ãªã£ãŠããªããããã¯ãç±ã®èŒžéãèµ·ãã£ãŠããããã ããã ã",
"title": "倧æ°ãšç±åæ¯"
},
{
"paragraph_id": 24,
"tag": "p",
"text": "é«ç·¯åºŠãšäœç·¯åºŠã§ã¯ãæ¥å°éãšå°çæŸå°éãé転ããã®ã§ãç±ã®èŒžéãèµ·ãããèµ€éä»è¿ãšæ¥µã§ã®å¯Ÿæµãèµ·ãããšèããããããå®éã¯è»¢åå(ã³ãªãªãªã®åãšããã)ãåããŠããããã倧ããåããŠ3ã€ã®åŸªç°ãã§ããã",
"title": "倧æ°ãšç±åæ¯"
},
{
"paragraph_id": 25,
"tag": "p",
"text": "ã³ãªãªãªã®åãšã¯ãäžåŠã§ç¿ã£ã転ååãšåçã¯åãã§ãå°çãèªè»¢ããŠããããã«ãå°çã®èªè»¢ãšäžç·ã«å°è¡šã«ãã芳枬è
ã«ãšã£ãŠã¯ãååçã®å ŽåãéåããŠããç©äœãé²è¡æ¹åã«å¯ŸããŠå³åãã«æ²ããæ§ã«èŠããã(ãç©çãç§ç®ã§ãããšããã®)èŠããã®å ã®çŸè±¡ã®äžçš®ã§ããã",
"title": "倧æ°ãšç±åæ¯"
},
{
"paragraph_id": 26,
"tag": "p",
"text": "ãªããå³å³ã§ã¯åç€ã«ãã£ãŠã³ãªãªãªã®åã®åçã説æããããå®éã®å°çã¯åç€ã§ã¯ãªããŠç圢ã«è¿ãç«äœç©ãªã®ã§ãå極ã»å極ã«è¿ãé«ç·¯åºŠå°æ¹ã»ã©ã³ãªãªãªã®åã匷ããèµ€éã§ã¯ã³ãªãªãªã®åã¯0(ãŒã)ã«ãªãã",
"title": "倧æ°ãšç±åæ¯"
},
{
"paragraph_id": 27,
"tag": "p",
"text": "ãªããã³ãªãªãªã®åã®åãã¯ãååçã®å Žåã«ãé²è¡æ¹åã«å¯ŸããŠå³åãã§ãããååçã§ã¯ãã³ãªãªãªã®åã¯ãé²è¡æ¹åã«å¯ŸããŠå·Šåãã«ãªãã",
"title": "倧æ°ãšç±åæ¯"
},
{
"paragraph_id": 28,
"tag": "p",
"text": "ãŸããªããã³ãªãªãªã®åã®å€§ããã¯ãé床ã«ãæ¯äŸããããŸãããã®ãããäžç©ºã§ã¯äžè¬çã«é¢šéã倧ãããªãã®ã§ãäžç©ºã®é¢šã«ã€ããŠã¯ã³ãªãªãªã®åãç¡èŠã§ããªãã",
"title": "倧æ°ãšç±åæ¯"
},
{
"paragraph_id": 29,
"tag": "p",
"text": "",
"title": "倧æ°ãšç±åæ¯"
},
{
"paragraph_id": 30,
"tag": "p",
"text": "äžç©ºã®é¢šãåŒãèµ·ããåã¯ãæ°å§ã®å·®ã«ããå(ãæ°å§åŸåºŠåããšãã)ãšãã³ãªãªãªã®åãšã®ã2ã€ã®åã§ãããäžç©ºã§ã¯ãå°é¢ã®æ©æŠã®åœ±é¿ãç¡ããããäžç©ºã®é¢šã«ã¯æ©æŠåã¯æãããªãã",
"title": "倧æ°ãšç±åæ¯"
},
{
"paragraph_id": 31,
"tag": "p",
"text": "éèŠãªäºãšããŠããã®2ã€ã®å(æ°å§åŸåºŠåãšã³ãªãªãªå)ã®åããšã颚éã®åããšã¯ãã»ãŒéã£ãŠãããåºæ¬çã«ãæ°å§åŸåºŠåãšã³ãªãªãªåã®åã®å€§ããã¯é£ãåã£ãŠããã颚éã¯ããã2ã€ã®åã®åãã«åçŽã§ããã",
"title": "倧æ°ãšç±åæ¯"
},
{
"paragraph_id": 32,
"tag": "p",
"text": "ãã®ãããªé¢šãå°è¡¡é¢š(ã¡ãããµã)ãšããã",
"title": "倧æ°ãšç±åæ¯"
},
{
"paragraph_id": 33,
"tag": "p",
"text": "",
"title": "倧æ°ãšç±åæ¯"
},
{
"paragraph_id": 34,
"tag": "p",
"text": "",
"title": "倧æ°ãšç±åæ¯"
},
{
"paragraph_id": 35,
"tag": "p",
"text": "ãã£ãœããå°äžä»è¿ã§ã¯ãæ©æŠåã®åœ±é¿ã«ãããå°äžé¢šãšããã«æããåãšã¯å³å³ã®ãããªé¢ä¿ã«ãªã£ãŠããã",
"title": "倧æ°ãšç±åæ¯"
},
{
"paragraph_id": 36,
"tag": "p",
"text": "",
"title": "倧æ°ãšç±åæ¯"
},
{
"paragraph_id": 37,
"tag": "p",
"text": "å°äžã®é¢šã¯ãå£ç¯ã«ãã£ãŠå€åããããšãå€ããå¬ã¯å€§éžãå€ã¯æµ·æŽã«é«æ°å§ãçºéãããååçã¯éžå°ãå€ããå£ç¯å€åãã¯ã£ããããŠãããéžãšæµ·ã®ãã©ã³ã¹ã«ãã£ãŠå£ç¯é¢šã®å€§ãããéãã",
"title": "倧æ°ãšç±åæ¯"
},
{
"paragraph_id": 38,
"tag": "p",
"text": "ãããã£ãŠãæµ·æŽããéžå°ã«å£ç¯é¢šãå¹ãã",
"title": "倧æ°ãšç±åæ¯"
},
{
"paragraph_id": 39,
"tag": "p",
"text": "1æ¥åšæã§å¹ã颚ã§ãããæŒã¯ãéžå°ãé«æž©ã§ãæµ·ãäœæž©ã®ããã海颚ãå¹ããå€ã¯ãéžå°ãäœæž©ã§æµ·ãé«æž©ã«ãªããããéžé¢šããµãã海颚ãšéžé¢šãå€ãããšããäžæçã«é¢šãæ¢ãŸãããšãããããããæåªãå€åªãšããã",
"title": "倧æ°ãšç±åæ¯"
},
{
"paragraph_id": 40,
"tag": "p",
"text": "ç§ãã¡ã®æ¥åžžç掻ã«æ·±ãé¢ãã£ãŠããæ°è±¡ã«ã€ããŠèããŠã¿ããã",
"title": "æ°è±¡å€åãšãã®èŠå "
},
{
"paragraph_id": 41,
"tag": "p",
"text": "空æ°ã¯æãããããšäžæããŠãå·ãããšäžéããã空æ°ã®å¡(空æ°å¡)ãäžæãããšãäžç©ºã¯æ°å§ãäœãã®ã§ç©ºæ°å¡ã¯èšåŒµããŠå·ããããã®æž©åºŠãäžããå²åã¯ã -1°C/100mã§ãããã也ç¥æç±æžçãšãããäžæããŠã枩床ãäžãããšããããŠé²ç¹ã«éãã氎滎ãã§ãã¯ãããé²ãã§ããããã®ãšãç±ãæŸåºãããã®ã§ãå²åã¯ã-0.5°C/100mãšãªããããã湿最æç±æžçãšããããã®ããã«é²ã¯äžææ°æµã®ãããšããã«çºçããããã¯äœæ°å§ãšãªããéã«ç©ºæ°å¡ãäžéãããšé²ã¯æ¶ããŠããŸãããã®å Žæã¯æŽå€©ã§ããããšãå€ããããã¯é«æ°å§ãšãªãã",
"title": "æ°è±¡å€åãšãã®èŠå "
},
{
"paragraph_id": 42,
"tag": "p",
"text": "空æ°ãäžæããå Žåã¯ã",
"title": "æ°è±¡å€åãšãã®èŠå "
},
{
"paragraph_id": 43,
"tag": "p",
"text": "é²ç²ãæé·ãã1mmååŸã®éšç²ãéªã®çµæ¶ãšãªããæ°·æ¶ãå«ãé²ãå·ããéšãå«ãŸãªãé²ãæããéšãšããã",
"title": "æ°è±¡å€åãšãã®èŠå "
},
{
"paragraph_id": 44,
"tag": "p",
"text": "æ¥æ¬ã«ã¯äžå¹ŽãéããŠãå€åã«å¯ãã§ããã",
"title": "æ¥æ¬ã®å€©æ°"
},
{
"paragraph_id": 45,
"tag": "p",
"text": "å¬ãã·ããªã¢é«æ°å§ããå島æ¹é¢ã«çºéããŠãã枩垯äœæ°å§ã«å¯æ°ãå¹ã蟌ããããããå西å£ç¯é¢šã§ããããã®ãšãã®ç¶æ
ã西é«æ±äœãšããã也ç¥ãã空æ°ã¯ãæ¥æ¬æµ·ã§æ¹¿æ°ãå«ã¿ãæ¥æ¬æµ·åŽã«éªãéãããããããŠã倪平æŽåŽã§ä¹Ÿç¥ããã",
"title": "æ¥æ¬ã®å€©æ°"
},
{
"paragraph_id": 46,
"tag": "p",
"text": "2æããã«ãªããšæµ·æŽãšå€§éžã®æž©åºŠå·®ãå°ãããªããå£ç¯é¢šã匱ãŸãããããŠã3æäžæ¬é äœæ°å§ãšé«æ°å§(移åæ§é«æ°å§)ã亀äºã«ééãããäœæ°å§ãæ¥æ¬æµ·åŽãééããå颚ãå¹ãããã«ãªããç¹ã«æ¥å
ã«å¹ã匷ãå颚ãæ¥äžçªãšããã",
"title": "æ¥æ¬ã®å€©æ°"
},
{
"paragraph_id": 47,
"tag": "p",
"text": "æ¢
éšã¯ãæ±ã¢ãžã¢ã«ç¹åŸŽçãªçŸè±¡ã§ãããæ¢
éšåç·ãšããåæ»åç·ã®äžçš®ãééããããªããŒãã¯æµ·æ°å£ãåªå¢ãšãªãã",
"title": "æ¥æ¬ã®å€©æ°"
},
{
"paragraph_id": 48,
"tag": "p",
"text": "å倪平æŽé«æ°å§ãæ¥æ¬å
šäœãèŠãã倩æ°ã¯å¿«æŽãå€ãããã®ãšã匱ãå颚ãå¹ããåé«åäœåã®æ°å§é
眮ãšãªãã",
"title": "æ¥æ¬ã®å€©æ°"
},
{
"paragraph_id": 49,
"tag": "p",
"text": "å€ããç§ã«ãããŠçºçããç±åž¯äœæ°å§ã§ã颚éã17.2mæ¯ç§ä»¥äžã®ç©ã§ããã å°é¢šã®æžŠå·»ãã¯ååçã§ã¯å·Šå·»ããååçã§ã¯å³å·»ãã§ããããã®ããé²è¡æ¹åã®å³åŽã§ã¯é¢šéã«å ããŠé²è¡é床ãå ããã®ã§é¢šéã¯å€§ãããªãã",
"title": "æ¥æ¬ã®å€©æ°"
}
] | ãã®ããŒãžã¯é«çåŠæ ¡çç§ç·åBã®ãã¡å°åŠåéã®å
容ããŸãšãããã®ã§ããã åå
å°è¡šã®æ§å
倧éžãšæµ·æŽã®å§¿
ãã¬ãŒãã®åã
å°çã®åœ¢æ
ææã®ç¹åŸŽ
倧æ°ãšç±åæ¯
æ°è±¡å€åãšãã®èŠå
æ¥æ¬ã®å€©æ° | {{Pathnav|é«çåŠæ ¡ã®åŠç¿|[[é«çåŠæ ¡çç§|çç§]]|[[é«çåŠæ ¡å°åŠ|å°åŠ]]|frame=1}}
ãã®ããŒãžã¯[[é«çåŠæ ¡çç§ç·åB]]ã®ãã¡å°åŠåéã®å
容ããŸãšãããã®ã§ããã
----
åå
#[[çç§ç·åB å°åŠåé#å°è¡šã®æ§å|å°è¡šã®æ§å]]
#[[çç§ç·åB å°åŠåé#倧éžãšæµ·æŽã®å§¿|倧éžãšæµ·æŽã®å§¿]]
#[[çç§ç·åB å°åŠåé#ãã¬ãŒãã®åã|ãã¬ãŒãã®åã]]
#[[çç§ç·åB å°åŠåé#å°çã®åœ¢æ|å°çã®åœ¢æ]]
#[[çç§ç·åB å°åŠåé#ææã®ç¹åŸŽ|ææã®ç¹åŸŽ]]
#[[çç§ç·åB å°åŠåé#倧æ°ãšç±åæ¯|倧æ°ãšç±åæ¯]]
#[[çç§ç·åB å°åŠåé#æ°è±¡å€åãšãã®èŠå |æ°è±¡å€åãšãã®èŠå ]]
#[[çç§ç·åB å°åŠåé#æ¥æ¬ã®å€©æ°|æ¥æ¬ã®å€©æ°]]
----
==å°è¡šã®æ§å==
å°çã®è¡šé¢ã¯ã'''倧æ°å'''ã'''æ°Žå'''ã'''岩ç³å'''ã®3ã€ã«åããããšãã§ããã
ãã®ãã¡ã倧æ°åãšæ°Žåãé€ãããã®ãã'''åºäœå°ç'''ãšèšãã
===ããŸããŸãªå°åœ¢===
*æµ·åºã®å°åœ¢
**[[w:æµ·æº|æµ·æº]]
**æµ·å±±
**[[w:海嶺|海嶺]]
**倧æŽåº
**[[w:倧éžæ£|倧éžæ£]]
*éžäžã®å°åœ¢
**[[w:Våè°·|Våè°·]] -ãæ²³å·ã®æµžé£ã«ãã圢æ
**Uåè°· - æ°·æ²³ã®æµžé£ã«ãã圢æ
**[[w:ç«å±±|ç«å±±]] -ããã³ãã«ãè解ããå°äžã«åŽåº
**[[w:æç¶å°|æç¶å°]] -ãå±±å°ãšå¹³å°ã®éã«ãããç ãå ç©
**[[w:äžè§å·|äžè§å·]] - æ²³å£ã«ç ãæ³¥ãå ç©
**æå±€åŽ - å°æ®»å€åã«ãã£ãŠåœ¢æ
ãã®ããã«ãå°åœ¢ã®å€åã«ã¯ãå°çå
éšã®ãšãã«ã®ãŒãã倪éœãšãã«ã®ãŒãæ·±ãé¢ãã£ãŠããããšããããã
==倧éžãšæµ·æŽã®å§¿==
å°çã®é«ã500mæ¯ã®é¢ç©ã枬ã£ãŠã¿ããšãæšé«0mãã500mã®é¢ç©ãš-4500mãã-5000mãããã®é¢ç©ãç®ç«ã£ãŠå€§ããããããã®é«ãå°åã'''倧éžå°å'''ãäœããšãããã'''æµ·æŽå°å'''ã§ãããå¢çã¯ã海岞ç·ã§ã¯ãªããæ°Žæ·±1000mã®ãšããã§ããã
===倧éžå°åã®å§¿===
[[Image:Le mont Collon, derriÚre Arolla.jpg|thumb|150px|æ°ããå±±èïŒã¢ã«ãã¹å±±èãéºããå±±ã
ãç¶ããŠããã]]
*å®å®å€§éž - å
ã«ã³ããªã¢æ代ããå°æ®»å€åãèµ·ãã£ãŠããªããçŸç¶å°ãšããã°ããã
*å°å° - çŸç¶å°åšèŸºã®æµ
ãæµ·ãäžæ
*å€ãå±±è([[w:å€æé 山垯|å€æé 山垯]]) - [[w:å€ç代|å€ç代]]ã«åœ¢æãããå±±è
*æ°ããå±±è([[w:æ°æé 山垯|æ°æé 山垯]]) - [[w:äžç代|äžç代]]ã»[[w:æ°ç代|æ°ç代]]ã«åœ¢æ
===æµ·æŽå°åã®å§¿===
*海嶺 - åºããå¢ç
*æ·±æµ·åº - æ°Žæ·±4000ïœ5000mã®å¹³ããªå°å
*æµ·å±± - æµ·åºã«åœ¢æãããå±±
*ã®ãšãŒ - å±±é éšã浞é£ãããå¹³ãã«ãªã£ãæµ·å±±ã
*æµ·æº - 倧éžå°åãšæµ·æŽå°åã®å¢ã«ããæ·±ãããŒã¿ã
==ãã¬ãŒãã®åã==
[[File:Earth-crust-cutaway-japanese.svg|thumb|350px|å°çã®å
éšæ§é ]]
å°çã®å
éšã¯ãå°æ®»ããã³ãã«ãæ žã®äžã€ã«åããããã
*[[w:å°æ®»|å°æ®»]] - 岩ç³ã§ã§ããŠããã
*[[w:ãã³ãã«|ãã³ãã«]] - å°æ®»ããéã岩ç³ã§ã§ããŠããã
*æ ž - ããã±ã«ãªã©ã®éå±ã§æ§æãããã
===ãã¬ãŒããšã¢ã»ãã¹ãã§ã¢===
å°äž70kmããå
ã«ãå°éæ³¢ã®éããé
ããªãå Žæãããããããã'''äœé床局'''ãšããã
äœé床局ã¯ãå°äž250kmãŸã§ç¶ããŠãããäœé床局ãšãæ·±ã600kmããããŸã§ã®ãã³ãã«äžéšã®æãããå±€ãåãããŠ'''ã¢ã»ãã¹ãã§ã¢'''ãšãããäœé床局ã®äžã®ãããå±€ã'''ãªãœã¹ãã§ã¢'''ãšããã'''ãã¬ãŒã'''ã«ããããšãããŠãããå°çè¡šé¢ã¯ããã€ãã®ãã¬ãŒãã«ããããŠããããã¬ãŒãã¯åžžã«åããŠããããããã®å¢çã§ã¯ãã¬ãŒãå士ãæŒãåã£ãããé¢ããŠæ¡å€§ããããããéã£ããããŠããã
ãã¬ãŒããæŒãåã£ãŠããå¢çã§ã¯ããã¬ãŒããæ²ã¿èŸŒãã§æµ·æºãã§ãããã倧éžãè¡çªããŠå±±èãã§ãããããããã®èãæ¹ããã¬ãŒããã¯ããã¯ã¹ãšããã
===å°åœ¢ãšå°è³ªæ§é ===
*æ®µäž - 海岞ãå·å²žã®éèµ·ã«ãã£ãŠåœ¢æãããé段ç¶ã®å°åœ¢
*ãªã¢ã¹åŒæµ·å²ž - Våè°·ã®æ²éã§åœ¢æãããè€éãªæµ·å²žç·
*å€å³¶æµ· - æ²éã§åœ¢æ
*äžæŽå - éèµ·ããå°è¡šã§äŸµé£ãªã©ãåããå°å±€ã«ãåã³å ç©ãèµ·ããããšã§çããå°å±€ã®äžé£ç¶
*è€¶æ² - å°å±€ãå§çž®ã«ãã£ãŠæªãã ãã®
*[[w:æå±€|æå±€]] - å°å±€ãå§çž®ã«ãã£ãŠãããå Žæ
===島匧-æµ·æºç³»ã®å°åœ¢===
[[image:Tectonic plates (empty).svg|thumb|300px|ãã¬ãŒãã®ååž]]
æµ·æŽãã¬ãŒããæ²ã¿èŸŒããšããã§ã¯ãæµ·æºãã§ããç«å±±æŽ»åãçãã§ã島匧ãçºéããããã®ä»è¿ã§ã¯ãå°éããå°æ®»ã®å€åãçãã§ããããã®ãããªãšããã'''島匧-æµ·æºç³»'''ãšãããæ¥æ¬å島ããã®1ã€ã§ããã
島匧-æµ·æºç³»ã®ç«å±±ã¯ãæµ·æºãã100~300km以äžé¢ããŠãããç«å±±ååžã®æµ·æºåŽã®éçç·ã'''ç«å±±åç·'''ãšãããæµ·æºãšã»ãŒå¹³è¡ããŠããããã¬ãŒãã®æ²ã¿èŸŒã¿ã«ãã匷ãå§åã®ãããéèµ·ããå°åºã§ãã°ããã§ããŠã倧山èãã§ãããåã¢ã¡ãªã«ã®[[w:ã¢ã³ãã¹å±±è|ã¢ã³ãã¹å±±è]]ã¯ããã®ããã«åœ¢æããããã€ã³ã倧éžãããã¬ãŒãã®åãã«ãã£ãŠã[[w:ãŠãŒã©ã·ã¢å€§éž|ãŠãŒã©ã·ã¢å€§éž]]ãšè¡çªã[[w:ããã©ã€å±±è|ããã©ã€å±±è]]ãã§ãããããã©ã€å±±èã§ã¯ãæ°åã¡ãŒãã«ã®é«å°ãã[[w:ã¢ã³ã¢ãã€ã|ã¢ã³ã¢ãã€ã]]ãªã©ã®åç³ãçºèŠããããã€ã³ãã¯ãçŸåšããŠãŒã©ã·ã¢å€§éžãæŒãç¶ããããã©ã€å±±èã¯éèµ·ãç¶ããŠããã
[[Image:Everest-fromKalarPatar.jpg|thumb|150px|ããã©ã€å±±èã®æé«å³°ãšãã¬ã¹ãå±±ïŒæšé«8848mïŒ]]
*海嶺
**海嶺ã¯ããã¬ãŒããäºãã«ãé¢ãããšããã§åœ¢æãããããã°ããäžæãã溶岩ãç±æ°ŽãåŽåºããŠããã
*æµ·å±±å
**[[w:ãã¯ã€è«žå³¶|ãã¯ã€è«žå³¶]]ã§ã¯ã島ãããã€ãåã«ãªã£ãŠããŠããã®å
ã«ã¯ãæµ·å±±ãåç¶ã«äžŠãã§ãããïŒå€©çæµ·å±±åïŒãã®ãããªåã'''æµ·å±±å'''ãšããããã¯ã€å³¶ã®å°äžã®ã¢ã»ãã¹ãã§ã¢ã«ã¯ã'''ãããã¹ããã'''ãšããé«æž©ãªå Žæããããããããããªãœã¹ãã§ã¢ãã€ããã¶ã£ãŠããã°ããåŽåºããç«å±±å³¶ã圢æããããç«å±±å³¶ã¯ãã¬ãŒãã«ä¹ã£ãŠç§»åãããããããã¹ãããã¯ç§»åããªãã®ã§ããããŠç«å±±å³¶ã¯ãããã¹ãããããå€ããæ°ããªç«å±±å³¶ã圢æãããããã®ããã«ããŠç«å±±å³¶ã®åã«ãªããç«å±±å³¶ã¯æµžé£ããããããŠãæµ·å±±ã«ãªãã
==å°çã®åœ¢æ==
===å°çã®åœ¢æ===
çŽ46å幎åãå®å®ç©ºéã®äžã«ããã'''æéã¬ã¹'''ã®æ¿ããããŸãããåçž®ããåå§å€ªéœã圢æããããåå§å€ªéœã®åšãã«ã¯ãæéç©è³ªããåå§å€ªéœãšãšãã«å転ããŠãããããããåå§å€ªéœç³»æé²ã§ããããã®äžã®åäœåŸ®ç²åã埮ææãšãã°ãã1~10kmã圢æããã埮ææããè¡çªããåäœãç¹°ãè¿ãã倧ãããªã£ãŠãåå§ææãèªçãããåå§å°çããã®ããã«èªçããã埮ææãè¡çªããå°çã§ã¯ã枩床ãäžæããæ°Žèžæ°ãäºé
žåççŽ ãçªçŽ ãäž»æåãšãããåå§å€§æ°ãèªçããã倧æ°ãçºçããå°çã®è¡šé¢ã¯ããŸããŸãé«æž©ã«ãªãã1500~4700âã«ãéããããã岩ç³ã溶ãã'''ãã°ããªãŒã·ã£ã³'''ã圢æãããããã°ããªãŒã·ã£ã³å
ã§ã¯ãéãç©è³ªãšè»œãç©è³ªãåãããããã±ã«ãéã§ã§ãããã³ãã«ãšå²©ç³è³ªã®ãã³ãã«ãã§ãããå°çã«è¡çªãã埮ææã®æ°ãæžã£ãŠãè¡šé¢ãå·åŽããŠãå°æ®»ãã§ããããŸããæ°Žèžæ°ãå·ããŠãéšã«ãªããåå§æµ·æŽã圢æãããå°è¡šã®æž©åºŠã100~200âçšåºŠã«å·ãããããäºé
žåççŽ ã¯ãåå§æµ·æŽäžã«æº¶ã蟌ãã ã
===çåœã®èªç===
çåœã®èªçã«ã€ããŠã¯ããã£ãŠããªãéšåãå€ããããã©ãŒã®å®éšãããã¿ã³ãã¯è³ªãªã©ããçåœãèªçãããšèããããã
==ææã®ç¹åŸŽ==
ææã¯ãåºäœè¡šé¢ãæã€'''å°çåææ'''ãšãã¬ã¹ç¶ã®è¡šé¢ãæã€'''æšæåææ'''ã«åããããããããã¯ãææãèªçãããšãã®åå§å€ªéœããã®è·é¢ãé¢ä¿ããŠãããšèããããã
===å°çåææã®ç¹åŸŽ===
[[Image:Planet Mercury - GPN-2000-000465.jpg|thumb|50px|æ°Žæ]]
*æ°Žæ
ååŸ2400kmã®å°ããªææã§ãæŒéã¯300ïœ400âãå€ã¯ãæ°·ç¹äž170âã§ãããæ°Žã倧æ°ã¯ãªãã浞é£äœçšããªãã®ã§ã[[w:ã¯ã¬ãŒã¿ãŒ|ã¯ã¬ãŒã¿ãŒ]]ãªã©ãèªçåœæã®å§¿ããã®ãŸãŸæ®ã£ãŠããã
[[Image:Venus globe.jpg|thumb|125px|éæ]]
*éæ
ååŸ6000kmã§ãå°çãšã»ãŒåã倧ããã§ããã倧æ°ã®96ïŒ
ã[[w:äºé
žåççŽ |äºé
žåççŽ ]]ãå ããŠããŠãæ°å§ã¯90æ°å§ã§ãããäºé
žåççŽ ã®æž©å®€å¹æã«ãããè¡šé¢æž©åºŠã¯æ°Žæããé«ã460âã«ããªã£ãŠããããã®ãããªç°å¢ã§ã¯ã液äœã®æ°Žã¯ååšã§ãããæ°äœã®æ°Žã[[w:玫å€ç·|玫å€ç·]]ã«ãã£ãŠæ°ŽçŽ ãšé
žçŽ ã«å解ãããå®å®ç©ºéã«éããŠãã£ãŠããŸããç«å±±æŽ»åã«ããå°åœ¢ã¯èŠãããããå°çã®ãããªãã¬ãŒã掻åã¯ååšããªããšèããããŠããã
[[Image:Mars Valles Marineris.jpeg|thumb|150px|ç«æ]]
[[Image:VallesMarinerisHuge.jpg|thumb|150px|ç«æè¡šé¢ã®å°åœ¢]]
*ç«æ
ååŸ3400kmã§ãå°çã®çŽååã§ãããéåãå°ãããããæ°å§ã¯0.006æ°å§çšåºŠã§ããã倧æ°ã®ã»ãšãã©ãäºé
žåççŽ ã§ããããå
ããªããã枩宀å¹æãå°ããããŸãã倪éœããé ããããå¹³åæ°æž©ã¯ïŒ58âã§ãããèªè»¢è»žã®åŸããèªè»¢åšæãå°çãšã»ãŒåããªã®ã§ãå£ç¯å€åãã¿ããããç«æã«ã¯ãäºé
žåççŽ ãåã£ã極å ãšããããå Žæãããã極å ã¯å£ç¯ã«ãã£ãŠå€§ãããç°ãªãã
ãŸããç«æã®å°åœ¢ã«ã¯ã浞é£ã®è·¡ãã¿ãããéå»ã«ã¯æ¶²äœã®æ°Žãååšãããšèããããã
<br clear = "all">
===æšæåææã®ç¹åŸŽ===
[[Image:Jupiter.jpg|thumb|150px|æšæ]]
*æšæ
倪éœç³»æ倧ã®ææã§ãããååŸãå°çã®11å以äžã§ã倧æ°ã®90ïŒ
ã[[w:æ°ŽçŽ |æ°ŽçŽ ]]ã10ïŒ
ã[[w:ããªãŠã |ããªãŠã ]]ã§ãããããã¯ã倪éœã®ååŠçµæã«è¿ããæšæã®ãããªæšæåææã¯å²©ç³ãæ°·ã®åšãã«ããªãŠã ãäž»æåãšããã¬ã¹ãåãå²ãã§ããã®ãç¹åŸŽã§ãããæšæã«ã¯çžæš¡æ§ãèŠãããæãããšãããäžææ°æµãæããšãããäžéæ°æµã§ãããæšæã«ã¯å€§èµ€æãšãã倧ããªæžŠãããã160幎è¿ãååšãç¶ããŠããã
[[Image:Saturn (planet) large.jpg|thumb|150px|åæ]]
*åæ
倪éœç³»ã§æãå¯åºŠã®å°ããææãååŸãå°çã®9åã»ã©ãã倧ããªææã ããæ°ŽçŽ ã96ïŒ
ãå ãããããããåæãæ°Žã«æµ®ãã¹ããæµ®ããŠããŸãã»ã©ã§ãããåæã«ãæšæã®ãããªçžæš¡æ§ãèŠãããããŸããæ°·ã岩ç³ã§ã§ãããªã³ã°ãããããã®ãããªãªã³ã°ã¯ãæšæåææã§ã¯ã©ã®ææã§ã芳枬ãããŠããããåæã®ããã¯ç¹ã«é¡èã§ãããåæã®è¡æã®ã²ãšã€ã«ã¿ã€ã¿ã³ãšããè¡æããããæ¿ã倧æ°ãæã£ãŠããããã®è¡šé¢ã«ã¯ã¡ã¿ã³ã®æµ·ãåºãã£ãŠãããšæšæž¬ãããŠããã
{|
| [[Image:Uranus.jpg|thumb|150px|倩çæ]]
| [[Image:Neptune.jpg|thumb|150px|æµ·çæ]]
|-
|}
*倩çæãšæµ·çæãå¥çæ
ååŸãå°çã®4åçšåºŠã§ã倧æ°ã¯æ°ŽçŽ ãããå°ãªããã¡ã¿ã³ãããªãŠã ãå€ãããã®ããããéã£ãœãèŠããã倪éœç³»ã®æãå€åŽã®å¥çæã¯ãå°çåææã«ãæšæåææã«ãå±ããŠããªãææã§ãã£ãããä»ã§ã¯æºææãšããŠæ±ãããã倪éœç³»ã§å¯äžæææ¢æ»æ©ãè¿ã¥ããŠããªãã®ã§ã詳ããããŒã¿ã¯ããããªãããã¡ã¿ã³ã®åã£ãè¡šé¢ãæã£ãŠããããšãããã£ãŠããããŸããè»éãå€åçã§ãããæµ·çæã®å
åŽã«ããããšããããªã©ãä»ã®ææãšã¯ãç°ãªã£ãç¹åŸŽãæã£ãŠãããå¥çæã®å€åŽã«ã¯ææãæ§æã§ããªãã£ã埮ææã沢山ååšããŠãããšèããããŠããã
===çåœã®çãŸããç°å¢===
çŸåšãŸã§ãå°çãçåœã®ååšã確èªã§ããŠããå¯äžã®ææã§ããã倪éœç³»ã®äžã§ã¯ãéæãšç«æã䌌ããããªç¹åŸŽãæã£ãŠããããéæã¯æž©å®€å¹æã§æ°Žãèžçºãã倱ãããŠããŸã£ããéã«ç«æã¯æž©å®€å¹æãå°ãªã倪éœããé ãããæ°Žãæ°·ã«ãªã£ãŠããŸã£ããäžæ¹ã倪éœããé©åºŠãªè·é¢ã«ããå°çã¯æ°Žã液äœãšããŠååšããäºé
žåççŽ ã液äžã«æº¶ã蟌ã¿ãé©åºŠã«æž©æãªç°å¢ãç¶æã§ããã®ã ã
[[Image:The_Earth_seen_from_Apollo_17.jpg|thumb|150px|å°ç]]
==倧æ°ãšç±åæ¯==
å°çã®åšãã®å€§æ°ã®å±€ã'''倧æ°å'''ãšãããäžã«è¡ãã«é£ããŠèããªããå®å®ç©ºéãŸã§ã€ãªãã£ãŠãããåäœé¢ç©ã«ä¿ã倧æ°ã®éããæ°å§ãšããã1æ°å§ã¯1013hPaã§ãæ°Žéæ±760mmã®å§åã«åœããã倧æ°ã¯ã700kmã»ã©äžç©ºãŸã§åºãã£ãŠãããããããäžã¯ã ãã ãåžèã«ãªããå®å®ç©ºéãšãªãã倧æ°ã®å¯åºŠã¯å°è¡šä»è¿ã§æãé«ããé«ãå±±ãªã©ã§ã¯äœããªãããŸãã倧æ°åã¯æž©åºŠå€åã®æ§åã«ãã£ãŠãããã€ãã«åããããã
*'''察æµå''' - é«åºŠçŽ11kmããããŸã§ãæ°è±¡å€åãèµ·ãããé«åºŠãäžããã«ã€ããŠæ°æž©ã¯äžãããæå±€åãšã®å¢ãåçé¢ãšããã
*'''æå±€å''' - é«åºŠ11kmããé«åºŠ50kmããããŸã§ããžã§ããæ©ãªã©ã¯ãããé£ãã§ãããããã«ã¯ãªãŸã³å±€ãããã玫å€ç·ãåžåããŠããããã®æå±€åãã枩床ã¯åŸã
ã«ãããã
*'''äžéå''' - æå±€åã®äž80kmããããŸã§ã®å Žæã§ããããã®å±€ã§ãå®å®ããã®å¡µãçããŠæµãæãšããŠèŠ³æž¬ãããã
**å€å
é² - ç±åãšã®å¢ç®ä»è¿ã«ã¯ãå€å
é²ãšããé²ã芳枬ãããããšãããé²ãéåžžçºçããã®ã¯ã察æµåã ãããã®é²ã¯ãç±åãšã®å¢ç®ä»è¿ã®æ°Žèžæ°ã«å€ªéœå
ãåå°ããç©ã§ãããçºèŠãããã®ã¯19äžçŽã§ã人éã®æŽ»åã«ãã£ãŠã¡ã¿ã³ãäºé
žåççŽ ãå¢ããç±åãšã®å¢ç®ä»è¿ã®æž©åºŠãéåžžã«äžãã£ãŠçºçããã
*'''ç±å''' - 玫å€ç·ãåžåãã枩床ã¯é«ãããã®å€ã¯å€æ°åãšãã°ããã
**ãªãŒãã© - ç±åã«çºçã倪éœããã®åž¯é»åŸ®ç²åã空æ°äžã®ååãååã«åœãã£ãŠçºå
ããçŸè±¡ã
===倧æ°ã®æå===
çªçŽ ã78ïŒ
ãå ããé
žçŽ ã21ïŒ
ã§ãããæ®ãã¯ã¢ã«ãŽã³ã0.9ïŒ
ã0.03ïŒ
ãäºé
žåççŽ ã0.002ïŒ
ãããªã³ã0.0005ïŒ
ãããªãŠã ãå ããããŸããæ°Žèžæ°ã¯å Žæã«ãã£ãŠå€åãã空æ°äžã®3ããŒã»ã³ããå ããããšãããã
===倪éœããã®æŸå°===
倪éœãšã¯ãååŸ696000kmã®ææã§ãããäžå¿ã¯éåžžã«é«å§ã§ãæ°ŽçŽ ååæ žãããªãŠã ååæ žã«å€åãã'''æ žèååå¿'''ãèµ·ãããŠãããè¡šé¢æž©åºŠã¯6000KçšåºŠã§ããã倪éœããåºãŠããæŸå°ãšãã«ã®ãŒã¯ãå¯èŠå
ç·ïŒæ³¢é·0.4ã0.7ãã€ã¯ãã¡ãŒãã«ã®é»ç£æ³¢ïŒãäžå¿ã§ã玫å€ç·ãèµ€å€ç·ããããªãã«ããããããã ãXç·ããã€ã¯ãæ³¢ãªã©ãæ··ãã£ãŠãããå°çãåãã倪éœæŸå°ã®ãšãã«ã®ãŒãæ¥å°ãšããã倧æ°åäžé¢ã§å€ªéœã«çŽè§ãª1å¹³æ¹ã¡ãŒãã«ã®é¢ãåäœæéã«åããæ¥å°éïŒçŽéæ¥å°éãšããïŒã'''倪éœå®æ°'''ãšããããã®å€ã¯ã''1.4kW/1å¹³æ¹ã¡ãŒãã«''ã§ããããã®ååã¯ã倧æ°äžã§åžåããããåå°ããããããå°çå
šäœãåããæ¥å°éãEãšãããšãEã¯ã倪éœå®æ°Ãå°çã®æé¢ç©ïŒ4Ïr^2ïŒã§ããïŒå°çã®ååŸã''r''ãååšçã''Ï''ãšããïŒãå
·äœçã«ã¯ãE=1.77Ã10^14kWã§ããã
===å°çæŸå°ãšæž©å®€å¹æ===
*å°è¡šä»è¿ã®æž©åºŠ - 288k(15â)âå°çæŸå°ïŒèµ€å€ç·ïŒã¯å€§æ°äžã®æž©å®€å¹æã¬ã¹ïŒæ°Žèžæ°ãäºé
žåççŽ ãªã©ïŒã«ããã95ïŒ
ãåžåããããæ®ãã®5ïŒ
ã¯å€§æ°å€ã«éããã
ç±ã倧æ°åå€ã«éããªãç¶æ
ã'''枩宀å¹æ'''ãšãããè¿å¹Žã¯æž©å®€å¹æã«ããå¹³åæ°æž©ãäžããã€ã€ããã
===å°çã®ç±åæ¯===
倪éœæŸå°ã®ãã¡ãå°è¡šã«å°éããã®ã¯çŽ50ïŒ
ã§ãããå°è¡šã§åžåããããšãã«ã®ãŒã®å
ãèµ€å€æŸå°ã«ãã£ãŠçŽæ¥å€§æ°åã«æ»ãããã®ã¯ããäžéšã«éããªãã倧éšåã¯æž©å®€å¹æã§å€§æ°äžã«æ»ãããããçµå±å€§æ°åå€ã«æŸå°ãããããããã£ãŠãå°çå
šäœãšãããåŸããšãã«ã®ãŒãšæŸåºããããšãã«ã®ãŒã¯é£ãåã£ãŠãããããããå±å°çã«èŠããèµ€éä»è¿ã¯æ¥å°éã¯å€ãã極ä»è¿ã¯ãå°ãªãã¯ãã ããèµ€éä»è¿ã¯éåžžã«æãã極ä»è¿ã§ã¯ãå¯ããªããªããã°ãªããªããïŒå°è¡šã®1å¹³æ¹ã¡ãŒãã«ãåããæ¥å°éã''I''ãšããçŽéæ¥å°éã''Io''ãšãããšãã®é¢ä¿ã¯ã''I=IoÃsinΞ''ãšãªããïŒãããããã®ããã«ã¯ãªã£ãŠããªããããã¯ãç±ã®èŒžéãèµ·ãã£ãŠããããã ããã ã
=== 倧æ°ã®å€§åŸªç° ===
é«ç·¯åºŠãšäœç·¯åºŠã§ã¯ãæ¥å°éãšå°çæŸå°éãé転ããã®ã§ãç±ã®èŒžéãèµ·ãããèµ€éä»è¿ãšæ¥µã§ã®å¯Ÿæµãèµ·ãããšèããããããå®éã¯[[w:ã³ãªãªãªã®å|転åå]]ïŒã³ãªãªãªã®åãšãããïŒãåããŠããããã倧ããåããŠ3ã€ã®åŸªç°ãã§ããã
* 貿æé¢šåŸªç° - èµ€éä»è¿ã§å€§æ°ãäžæãã転ååã®ããã西ããã®é¢šã«ãªãã緯床30床ä»è¿ã§äžéããããã®äžéããå Žæãäºç±åž¯é«å§åž¯ãšãã¶ãäžéãã倧æ°ã¯ã2ã€ã«åãããŠæ¥µæ¹åãšèµ€éæ¹åã«åããã極æ¹åã®åã¯è»¢ååã«ãã£ãŠãæ±ããã®é¢šã«ãªããããã'''貿æ颚'''ãšããã
* æ¥µåŸªç° - 極å°æ¹ã§ã¯ã倧æ°ãå·ããŠäžéãã極é«å§åž¯ãã§ããããããå¹ãã颚ã¯ãã³ãªãªãªã®åã«ãã£ãŠæ±ããã«ãªããããã'''極åæ±é¢š'''ãšããã
* äžç·¯åºŠåŸªç° - äºç±åž¯é«å§åž¯ããå°è¡šä»è¿ã極æ¹åã«åãã颚ã¯ã転ååã«ãã£ãŠè¥¿é¢šã«ããããããããã'''å西颚'''ãšãããå西颚垯ã®äžç©ºã¯åŒ·ã西颚ããããã'''ãžã§ããæ°æµ'''ãå¹ããŠããŠãç¹ã«æ¥æ¬ä»è¿ã«11æé ãµããã®ã¯äžçã§ãæãéãç©ãšãªãã
=== ã³ãªãªãªã®å ===
[[File:Corioliskraftanimation.gif|thumb|ã³ãªãªãªã®å]]
ã³ãªãªãªã®åãšã¯ãäžåŠã§ç¿ã£ã転ååãšåçã¯åãã§ãå°çãèªè»¢ããŠããããã«ãå°çã®èªè»¢ãšäžç·ã«å°è¡šã«ãã芳枬è
ã«ãšã£ãŠã¯ãååçã®å ŽåãéåããŠããç©äœãé²è¡æ¹åã«å¯ŸããŠå³åãã«æ²ããæ§ã«èŠãããïŒãç©çãç§ç®ã§ãããšããã®ïŒèŠããã®å ã®çŸè±¡ã®äžçš®ã§ããã
ãªããå³å³ã§ã¯åç€ã«ãã£ãŠã³ãªãªãªã®åã®åçã説æããããå®éã®å°çã¯åç€ã§ã¯ãªããŠç圢ã«è¿ãç«äœç©ãªã®ã§ãå極ã»å極ã«è¿ãé«ç·¯åºŠå°æ¹ã»ã©ã³ãªãªãªã®åã匷ããèµ€éã§ã¯ã³ãªãªãªã®åã¯0ïŒãŒãïŒã«ãªãã
ãªããã³ãªãªãªã®åã®åãã¯ãååçã®å Žåã«ãé²è¡æ¹åã«å¯ŸããŠå³åãã§ãããååçã§ã¯ãã³ãªãªãªã®åã¯ãé²è¡æ¹åã«å¯ŸããŠå·Šåãã«ãªãã
ãŸããªããã³ãªãªãªã®åã®å€§ããã¯ãé床ã«ãæ¯äŸããããŸãããã®ãããäžç©ºã§ã¯äžè¬çã«é¢šéã倧ãããªãã®ã§ãäžç©ºã®é¢šã«ã€ããŠã¯ã³ãªãªãªã®åãç¡èŠã§ããªãã
* å°è¡¡é¢š
[[File:Geostrophic wind diagram japanese.svg|thumb|400px|]]
äžç©ºã®é¢šãåŒãèµ·ããåã¯ãæ°å§ã®å·®ã«ããåïŒãæ°å§åŸåºŠåããšããïŒãšãã³ãªãªãªã®åãšã®ã2ã€ã®åã§ãããäžç©ºã§ã¯ãå°é¢ã®æ©æŠã®åœ±é¿ãç¡ããããäžç©ºã®é¢šã«ã¯æ©æŠåã¯æãããªãã
éèŠãªäºãšããŠããã®2ã€ã®åïŒæ°å§åŸåºŠåãšã³ãªãªãªåïŒã®åããšã颚éã®åããšã¯ãã»ãŒéã£ãŠãããåºæ¬çã«ãæ°å§åŸåºŠåãšã³ãªãªãªåã®åã®å€§ããã¯é£ãåã£ãŠããã颚éã¯ããã2ã€ã®åã®åãã«åçŽã§ããã
ãã®ãããªé¢šã'''å°è¡¡é¢š'''ïŒã¡ãããµãïŒãšããã
{{-}}
[[File:å°äžé¢šã®åã.svg|thumb|400px|å°äžé¢šã®åã]]
ãã£ãœããå°äžä»è¿ã§ã¯ãæ©æŠåã®åœ±é¿ã«ãããå°äžé¢šãšããã«æããåãšã¯å³å³ã®ãããªé¢ä¿ã«ãªã£ãŠããã
{{-}}
=== å£ç¯é¢š ===
å°äžã®é¢šã¯ãå£ç¯ã«ãã£ãŠå€åããããšãå€ããå¬ã¯å€§éžãå€ã¯æµ·æŽã«é«æ°å§ãçºéãããååçã¯éžå°ãå€ããå£ç¯å€åãã¯ã£ããããŠãããéžãšæµ·ã®ãã©ã³ã¹ã«ãã£ãŠå£ç¯é¢šã®å€§ãããéãã
* å€
** éžå° -ãæ¯ç±ãå°ãã - é«æž© - äœæ°å§
** æµ·æŽ - æ¯ç±ã倧ãã - äœæž© - é«æ°å§
ãããã£ãŠãæµ·æŽããéžå°ã«å£ç¯é¢šãå¹ãã
* å¬ã¯éã«ãªãã
=== å±å°é¢š ===
1æ¥åšæã§å¹ã颚ã§ãããæŒã¯ãéžå°ãé«æž©ã§ãæµ·ãäœæž©ã®ããã海颚ãå¹ããå€ã¯ãéžå°ãäœæž©ã§æµ·ãé«æž©ã«ãªããããéžé¢šããµãã海颚ãšéžé¢šãå€ãããšããäžæçã«é¢šãæ¢ãŸãããšãããããããæåªãå€åªãšããã
== æ°è±¡å€åãšãã®èŠå ==
ç§ãã¡ã®æ¥åžžç掻ã«æ·±ãé¢ãã£ãŠããæ°è±¡ã«ã€ããŠèããŠã¿ããã
=== 空æ°ã®åããšé² ===
空æ°ã¯æãããããšäžæããŠãå·ãããšäžéããã空æ°ã®å¡ïŒç©ºæ°å¡ïŒãäžæãããšãäžç©ºã¯æ°å§ãäœãã®ã§ç©ºæ°å¡ã¯èšåŒµããŠå·ããããã®æž©åºŠãäžããå²åã¯ã
-1â/100mã§ãããã'''也ç¥æç±æžç'''ãšãããäžæããŠã枩床ãäžãããšããããŠé²ç¹ã«éãã氎滎ãã§ãã¯ãããé²ãã§ããããã®ãšãç±ãæŸåºãããã®ã§ãå²åã¯ã-0.5â/100mãšãªããããã'''湿最æç±æžç'''ãšããããã®ããã«é²ã¯äžææ°æµã®ãããšããã«çºçããããã¯'''äœæ°å§'''ãšãªããéã«ç©ºæ°å¡ãäžéãããšé²ã¯æ¶ããŠããŸãããã®å Žæã¯æŽå€©ã§ããããšãå€ããããã¯'''é«æ°å§'''ãšãªãã
[[File:Foehn-Fonh corrected2.png|thumb|400px|ãã§ãŒã³çŸè±¡]]
空æ°ãäžæããå Žåã¯ã
* æ¥å°ã«ãã£ãŠå°è¡šãæãŸããå Žå
* äœæ°å§ã®äžå¿ä»è¿
* 颚ãå±±ã«åœãã£ãå Žå - å±±ã®å察åŽã«å¹ãã颚ã也ç¥ããŠé«æž©ã«ãªãçŸè±¡ã'''ãã§ãŒã³çŸè±¡'''ãšããã
* åç·
=== åç·ãšãã®çš®é¡ ===
* '''æž©æåç·''' - æããæ°å£ããã®æ°æµãå¯å·ãªæ°å£ã«ã¶ã€ããå Žæã300ãã500ããã¡ãŒãã«ã«ããšããšããç©ãããªéšãéããããå±€é²ãªã©ã®é²ãã§ããã
* '''å¯å·åç·''' - å¯å·ãªæ°å£ããã®æ°æµãæããæ°å£ã«ã¶ã€ãããšããã70ããã¡ãŒãã«ã»ã©ã®ç¯å²ã«åŒ·ãã«ããéšãéããããç©é²ãªã©ã®é²ãã§ãããåç·ééåŸã¯å(ååçã§ã¯å)ããã®é¢šã«å€ãããæ°æž©ãäžããã
* éå¡åç· - å¯å·åç·ãæž©æåç·ã«è¿œãã€ãããšããã
* åæ»åç· - å¯å·ãªæ°å£ãšæããæ°å£ãã¶ã€ãã£ãæããã®å¢åãã€ããã£ãå Žåã«ã§ããåç·ãé·æã«ãããéšãéãããã
=== é²ãšéš ===
* é²ç² - é²ã®ç²åïŒæ°Žæ»Žã»æ°·æ¶ïŒ
** äžå¿æ ž - åå£åŸ®ç²åã»å¡©ã®åŸ®ç²å
é²ç²ãæé·ãã1mmååŸã®éšç²ãéªã®çµæ¶ãšãªããæ°·æ¶ãå«ãé²ãå·ããéšãå«ãŸãªãé²ãæããéšãšããã
== æ¥æ¬ã®å€©æ° ==
æ¥æ¬ã«ã¯äžå¹ŽãéããŠãå€åã«å¯ãã§ããã
=== æ°å£ã®çš®é¡ ===
* '''ã·ããªã¢æ°å£''' - ãŠãŒã©ã·ã¢å€§éžæ±éšã§çºçãå·ããã也ç¥ããŠãããäž»ã«å¬ã
* '''ãªããŒãã¯æµ·æ°å£''' - [[w:å島å島|å島å島]]ä»è¿ã§çºçãå·ããã湿ã£ãŠãããæ¢
éšãç§
* '''å°ç¬ åæ°å£''' - 倪平æŽã§çºçã湿ã£ãŠããŠãæãããäž»ã«å€ã
* '''æåæ±æ°å£''' - æåæ±ã§çºçãæãããŠä¹Ÿç¥ããŠãããäž»ã«æ¥ã
=== å¬ã®å€©æ° ===
å¬ãã·ããªã¢é«æ°å§ããå島æ¹é¢ã«çºéããŠãã枩垯äœæ°å§ã«å¯æ°ãå¹ã蟌ããããããå西å£ç¯é¢šã§ããããã®ãšãã®ç¶æ
ã西é«æ±äœãšããã也ç¥ãã空æ°ã¯ãæ¥æ¬æµ·ã§æ¹¿æ°ãå«ã¿ãæ¥æ¬æµ·åŽã«éªãéãããããããŠã倪平æŽåŽã§ä¹Ÿç¥ããã
=== æ¥ã®å€©æ° ===
2æããã«ãªããšæµ·æŽãšå€§éžã®æž©åºŠå·®ãå°ãããªããå£ç¯é¢šã匱ãŸãããããŠã3æäžæ¬é äœæ°å§ãšé«æ°å§ïŒ'''移åæ§é«æ°å§'''ïŒã亀äºã«ééãããäœæ°å§ãæ¥æ¬æµ·åŽãééããå颚ãå¹ãããã«ãªããç¹ã«æ¥å
ã«å¹ã匷ãå颚ã'''æ¥äžçª'''ãšããã
=== æ¢
éšã®å€©æ° ===
æ¢
éšã¯ãæ±ã¢ãžã¢ã«ç¹åŸŽçãªçŸè±¡ã§ãããæ¢
éšåç·ãšããåæ»åç·ã®äžçš®ãééããããªããŒãã¯æµ·æ°å£ãåªå¢ãšãªãã
<!--æ¥æ¬ã®æ¢
éšãšãšãã¬ã¹ããé¢ä¿æããšèããŸããããããã©ã®æ§ãªã«é¢ä¿ããŠããã®ãåãããŸããã-->
=== å€ã®å€©æ° ===
å倪平æŽé«æ°å§ãæ¥æ¬å
šäœãèŠãã倩æ°ã¯å¿«æŽãå€ãããã®ãšã匱ãå颚ãå¹ãã'''åé«åäœå'''ã®æ°å§é
眮ãšãªãã
==== å°é¢š ====
å€ããç§ã«ãããŠçºçããç±åž¯äœæ°å§ã§ã颚éã17.2mæ¯ç§ä»¥äžã®ç©ã§ããã
å°é¢šã®æžŠå·»ãã¯ååçã§ã¯å·Šå·»ããååçã§ã¯å³å·»ãã§ããããã®ããé²è¡æ¹åã®å³åŽã§ã¯é¢šéã«å ããŠé²è¡é床ãå ããã®ã§é¢šéã¯å€§ãããªãã
== åèæç® ==
ãã®èšäºã®äœæã«ããã£ãŠã¯ãäžèšã®æžç±ãåèã«ããã
* 倧ç°æ¬¡éã»å±±åŽå倫線ãæéšç§åŠçæ€å®æžæç§æžãé«çåŠæ ¡çç§ç·åB - çåœãšå°çã - åæ通ã2004幎床ç
[[Category:é«çåŠæ ¡æè²|å°ããããããã²ãã¡ãããµãã]]
[[Category:å°çç§åŠ|é«ããããããã²ã]] | null | 2019-07-18T22:53:26Z | [
"ãã³ãã¬ãŒã:-",
"ãã³ãã¬ãŒã:Pathnav"
] | https://ja.wikibooks.org/wiki/%E7%90%86%E7%A7%91%E7%B7%8F%E5%90%88B_%E5%9C%B0%E5%AD%A6%E5%88%86%E9%87%8E |
1,767 | ãã€ãèª åçŽç¬¬16課 | <第15課 | 第17課>
Vielen Dank fÃŒr deine BemÃŒhungen im Voraus!
Wir werden morgen ins Kino gehen.
Seine Tochter wird in Wien Kunstgeschichte studieren.
Ich werde in das Stadtzentrum umziehen.
Mehrere Leute werden in das Ausland reisen.
Woerter åèª:
Bemerkungen: Jede Zeile hat einziges Wort und seine Uebersetzung(en).
æªæ¥ã®åºæ¥äºãè¡šãã«ã¯ãæªæ¥æå¶ãçšããã æªæ¥åœ¢ã¯ã話æ³ã®å©åè© werden ã®çŸåšåœ¢ãšæ¬åè©ã®äžå®åœ¢ã«ãã£ãŠåœ¢æããã
æªæ¥ã®æç¹ãè¡šãèšèã䌎ã£ãçŸåšåœ¢ã®æã«ãã£ãŠãå°æ¥ã®ããšãè¡šçŸããããšãå€ãã
話æ³ã®å©åè©ãçšããæã®æªæ¥åœ¢ã¯ã次ã®åœ¢ããšãã
æéã«ããããè¡šçŸã以äžã«ç€ºã
frÃŒh æ©ããæ©ãã« spÀt é
ããé
ãã« gleich ã¡ããã© ebenfalls ãã€ã immer ãã€ã irgendwann ãã€ã jetzt ããŸãçŸåš nun ã㟠schon ãã noch ãŸã
Er stand immer frÃŒh auf.
Die Kinder dÃŒrfen nicht so spÀt drauÃen sein.
Diese Idee kam mir gleich.
Sie macht noch die Hausaufgabe.
Irgendwann können wir uns wiedersehen.
Ich rufe jetzt den Chef an.
Nun habe ich keinen Spaà mit seiner Rede.
Wir haben dieses Buch schon zweimal gelesen.
Unsere Nachbarn machen ab heute Urlaub. Sie werden nach Spanien fahren.
<第15課 | 第17課> | [
{
"paragraph_id": 0,
"tag": "p",
"text": "<第15課 | 第17課>",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "Vielen Dank fÃŒr deine BemÃŒhungen im Voraus!",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "Wir werden morgen ins Kino gehen.",
"title": ""
},
{
"paragraph_id": 3,
"tag": "p",
"text": "Seine Tochter wird in Wien Kunstgeschichte studieren.",
"title": ""
},
{
"paragraph_id": 4,
"tag": "p",
"text": "Ich werde in das Stadtzentrum umziehen.",
"title": ""
},
{
"paragraph_id": 5,
"tag": "p",
"text": "Mehrere Leute werden in das Ausland reisen.",
"title": ""
},
{
"paragraph_id": 6,
"tag": "p",
"text": "Woerter åèª:",
"title": ""
},
{
"paragraph_id": 7,
"tag": "p",
"text": "Bemerkungen: Jede Zeile hat einziges Wort und seine Uebersetzung(en).",
"title": ""
},
{
"paragraph_id": 8,
"tag": "p",
"text": "æªæ¥ã®åºæ¥äºãè¡šãã«ã¯ãæªæ¥æå¶ãçšããã æªæ¥åœ¢ã¯ã話æ³ã®å©åè© werden ã®çŸåšåœ¢ãšæ¬åè©ã®äžå®åœ¢ã«ãã£ãŠåœ¢æããã",
"title": "åè©ïŒæªæ¥æå¶"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "æªæ¥ã®æç¹ãè¡šãèšèã䌎ã£ãçŸåšåœ¢ã®æã«ãã£ãŠãå°æ¥ã®ããšãè¡šçŸããããšãå€ãã",
"title": "åè©ïŒæªæ¥æå¶"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "話æ³ã®å©åè©ãçšããæã®æªæ¥åœ¢ã¯ã次ã®åœ¢ããšãã",
"title": "åè©ïŒæªæ¥æå¶"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "",
"title": "åè©ïŒæªæ¥æå¶"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "æéã«ããããè¡šçŸã以äžã«ç€ºã",
"title": "è¡šçŸïŒæéã«ããããè¡šçŸ"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "frÃŒh æ©ããæ©ãã« spÀt é
ããé
ãã« gleich ã¡ããã© ebenfalls ãã€ã immer ãã€ã irgendwann ãã€ã jetzt ããŸãçŸåš nun ã㟠schon ãã noch ãŸã ",
"title": "è¡šçŸïŒæéã«ããããè¡šçŸ"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "Er stand immer frÃŒh auf.",
"title": "è¡šçŸïŒæéã«ããããè¡šçŸ"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "Die Kinder dÃŒrfen nicht so spÀt drauÃen sein.",
"title": "è¡šçŸïŒæéã«ããããè¡šçŸ"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "Diese Idee kam mir gleich.",
"title": "è¡šçŸïŒæéã«ããããè¡šçŸ"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "Sie macht noch die Hausaufgabe.",
"title": "è¡šçŸïŒæéã«ããããè¡šçŸ"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "Irgendwann können wir uns wiedersehen.",
"title": "è¡šçŸïŒæéã«ããããè¡šçŸ"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "Ich rufe jetzt den Chef an.",
"title": "è¡šçŸïŒæéã«ããããè¡šçŸ"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "Nun habe ich keinen Spaà mit seiner Rede.",
"title": "è¡šçŸïŒæéã«ããããè¡šçŸ"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "Wir haben dieses Buch schon zweimal gelesen.",
"title": "è¡šçŸïŒæéã«ããããè¡šçŸ"
},
{
"paragraph_id": 22,
"tag": "p",
"text": "Unsere Nachbarn machen ab heute Urlaub. Sie werden nach Spanien fahren.",
"title": "è¡šçŸïŒæéã«ããããè¡šçŸ"
},
{
"paragraph_id": 23,
"tag": "p",
"text": "<第15課 | 第17課>",
"title": "è¡šçŸïŒæéã«ããããè¡šçŸ"
}
] | ïŒç¬¬15課 | 第17èª²ïŒ Vielen Dank fÃŒr deine BemÃŒhungen im Voraus! Wir werden morgen ins Kino gehen. Seine Tochter wird in Wien Kunstgeschichte studieren. Ich werde in das Stadtzentrum umziehen. Mehrere Leute werden in das Ausland reisen. Woerterãåèª: Bemerkungen:ãJede Zeile hat einziges Wort und seine Uebersetzung(en). | [[ãã€ãèª/åçŽ/第15課|ïŒç¬¬15課]] | [[ãã€ãèª/åçŽ/第17課|第17課ïŒ]]
'''Vielen Dank fÃŒr deine BemÃŒhungen im Voraus!'''
Wir werden morgen ins Kino gehen.<!-- Lietionssubtitel -->
Seine Tochter wird in Wien Kunstgeschichte studieren.
Ich werde in das Zentrum umziehen.
Mehrere Leute werden in das Ausland reisen.
Wir werden morgen ins Kino gehen.
:ç§ãã¡ã¯ææ¥æ ç»é€šã«è¡ãã
Seine Tochter wird in Wien Kunstgeschichte studieren.
:圌ã®åšã¯ãŠã£ãŒã³ïŒã®å€§åŠïŒã§çŸè¡å²ãå匷ããã
Ich werde in das Stadtzentrum umziehen.
:ç§ã¯è¡ã®äžå¿ã«åŒè¶ããããã
Mehrere Leute werden in das Ausland reisen.
:ããå€ãã®äººãã¡ãå€åœãžæ
è¡ããã§ãããã
Woerterãåèª:
Bemerkungen:ãJede Zeile hat einziges Wort und seine Uebersetzung(en).
==åè©ïŒæªæ¥æå¶==
æªæ¥ã®åºæ¥äºãè¡šãã«ã¯ãæªæ¥æå¶ãçšããã
æªæ¥åœ¢ã¯ã話æ³ã®å©åè© werden ã®çŸåšåœ¢ãšæ¬åè©ã®äžå®åœ¢ã«ãã£ãŠåœ¢æããã
:ich '''werde kommen'''ãwir '''werden kommen'''
:du '''wirst kommen'''ãihr '''werdet kommen'''
:er/sie/es '''wird kommen'''ãsie '''werden kommen'''
æªæ¥ã®æç¹ãè¡šãèšèã䌎ã£ãçŸåšåœ¢ã®æã«ãã£ãŠãå°æ¥ã®ããšãè¡šçŸããããšãå€ãã
:Wir besuchen morgen die Oper. ç§ãã¡ã¯ææ¥ãªãã©åº§ã«è¡ããŸãã
:In einigen Tagen wird unser Vater nach Hause zurÃŒckkehren.ãæ°æ¥åŸã«ã¯ç§ãã¡ã®ç¶ã¯å®¶ãžåž°ã£ãŠããŸãã
:Besuchst du in diesem Sommer Frankfurt am Main?ãåã¯ä»å¹Žã®å€ãã©ã³ã¯ãã«ãã»ã¢ã ã»ãã€ã³ãžè¡ãã®ïŒ
=== å©åè©ãçšããæã®æªæ¥åœ¢ ===
話æ³ã®å©åè©ãçšããæã®æªæ¥åœ¢ã¯ã次ã®åœ¢ããšãã
werden ã®çŸåšåœ¢ãâŠâŠãïŒãæ¬åè©ã®äžå®åœ¢ãïŒã話æ³ã®å©åè©ã®äžå®åœ¢
:Ich werde ..... machen können.
:Du wirst ..... machen können
:Er/Sie/Es wird ..... machen können
:Wir werden ..... machen können.
:Ihr werdet ..... machen können
:Sie werden ..... machen können
<!--
Deine Werke werden bekannter werden.ãããªãã®äœåã¯ããç¥ãããããã«ãªãã§ãããã
-->
==è¡šçŸïŒæéã«ããããè¡šçŸ==
æéã«ããããè¡šçŸã以äžã«ç€ºã
frÃŒh æ©ããæ©ãã«
spÀtãé
ããé
ãã«
gleichãã¡ããã©
ebenfallsããã€ã
immerããã€ã
irgendwannããã€ã
jetztãããŸãçŸåš
nunãããŸ
schonããã
nochããŸã
Er stand immer frÃŒh auf.
:
Die Kinder dÃŒrfen nicht so spÀt drauÃen sein.
:
Diese Idee kam mir gleich.
:
Sie macht noch die Hausaufgabe.
:
Irgendwann können wir uns wiedersehen.
:
Ich rufe jetzt den Chef an.
:
Nun habe ich keinen Spaà mit seiner Rede.
:
Wir haben dieses Buch schon zweimal gelesen.
:
Unsere Nachbarn machen ab heute Urlaub. Sie werden nach Spanien fahren.
:
[[ãã€ãèª/åçŽ/第15課|ïŒç¬¬15課]] | [[ãã€ãèª/åçŽ/第17課|第17課ïŒ]]
[[Category:ãã€ãèª åçŽ|16]] | null | 2015-08-09T02:32:21Z | [] | https://ja.wikibooks.org/wiki/%E3%83%89%E3%82%A4%E3%83%84%E8%AA%9E_%E5%88%9D%E7%B4%9A%E7%AC%AC16%E8%AA%B2 |
1,768 | ãã€ãèª åçŽç¬¬18課 | <第17課 | 第19課>
Vielen Dank fÃŒr deine BemÃŒhungen im Voraus!
FÌge hier den Satz ein, der dir gefÀllt!
...
Wörter åèª:
neue und grundlegende Wörter in unserem Kursbuch, etwa 20 fÌr jede Lektion.
Welche Idee hast du, welche Wörter man hier angeben muss? Was ist dein Vorschlag? Bitte fÌge ihn ein!
Bemerkungen: Jede Zeile hat ein einziges Wort und seine Ãbersetzung(en).
Grammatik ææ³:
ãã€ãèªã®æã§ã¯äžè¬ã«äž»èªãçç¥ããããšã¯ã§ããªã(ãã®äŸå€ãåœä»€æ³ã§ãã)ããããã£ãŠãç¹ã«åäœäž»ãããªãæãææ³äžã®äž»èªãå¿
èŠãšããããã®ãããªãšããäžæ§åæ°ä»£åè© es ãäž»èªãšããŠäœ¿ãããããã®ãã㪠es ããé人称㮠es ãšããã
é人称㮠es ã¯ã倩åãææ
ãäºæ
ãªã©ãè¡šçŸãããšãã«äœ¿ãããããã® es ã¯å
·äœçãªãã®ãæãã®ã§ã¯ãªãã匷ããŠèšãã°ããäœãããããããªããã®ããšã§ãããã¹ããã®ã§ããã
<第17課 | 第19課> | [
{
"paragraph_id": 0,
"tag": "p",
"text": "<第17課 | 第19課>",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "Vielen Dank fÃŒr deine BemÃŒhungen im Voraus!",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "FÌge hier den Satz ein, der dir gefÀllt!",
"title": ""
},
{
"paragraph_id": 3,
"tag": "p",
"text": "...",
"title": ""
},
{
"paragraph_id": 4,
"tag": "p",
"text": "Wörter åèª:",
"title": ""
},
{
"paragraph_id": 5,
"tag": "p",
"text": "neue und grundlegende Wörter in unserem Kursbuch, etwa 20 fÌr jede Lektion.",
"title": ""
},
{
"paragraph_id": 6,
"tag": "p",
"text": "Welche Idee hast du, welche Wörter man hier angeben muss? Was ist dein Vorschlag? Bitte fÌge ihn ein!",
"title": ""
},
{
"paragraph_id": 7,
"tag": "p",
"text": "Bemerkungen: Jede Zeile hat ein einziges Wort und seine Ãbersetzung(en).",
"title": ""
},
{
"paragraph_id": 8,
"tag": "p",
"text": "Grammatik ææ³:",
"title": ""
},
{
"paragraph_id": 9,
"tag": "p",
"text": "ãã€ãèªã®æã§ã¯äžè¬ã«äž»èªãçç¥ããããšã¯ã§ããªã(ãã®äŸå€ãåœä»€æ³ã§ãã)ããããã£ãŠãç¹ã«åäœäž»ãããªãæãææ³äžã®äž»èªãå¿
èŠãšããããã®ãããªãšããäžæ§åæ°ä»£åè© es ãäž»èªãšããŠäœ¿ãããããã®ãã㪠es ããé人称㮠es ãšããã",
"title": "é人称æ§æ"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "é人称㮠es ã¯ã倩åãææ
ãäºæ
ãªã©ãè¡šçŸãããšãã«äœ¿ãããããã® es ã¯å
·äœçãªãã®ãæãã®ã§ã¯ãªãã匷ããŠèšãã°ããäœãããããããªããã®ããšã§ãããã¹ããã®ã§ããã",
"title": "é人称æ§æ"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "<第17課 | 第19課>",
"title": "é人称æ§æ"
}
] | ïŒç¬¬17課 | 第19èª²ïŒ Vielen Dank fÃŒr deine BemÃŒhungen im Voraus! FÃŒge hier den Satz ein, der dir gefÀllt! Kapiteltitelsatzãç« ã®å¯é¡ ... Wörterãåèª: neue und grundlegende Wörter in unserem Kursbuch, etwa 20 fÃŒr jede Lektion. Welche Idee hast du, welche Wörter man hier angeben muss? Was ist dein Vorschlag? Bitte fÃŒge ihn ein! Bemerkungen:ãJede Zeile hat ein einziges Wort und seine Ãbersetzung(en). Grammatik ææ³: | [[ãã€ãèª/åçŽ/第17課|ïŒç¬¬17課]] | [[ãã€ãèª/åçŽ/第19課|第19課ïŒ]]
'''Vielen Dank fÃŒr deine BemÃŒhungen im Voraus!'''
<pre>
Es regnet.
Es tut mir leid.
Es gibt viele Gelegenheiten fÃŒr junge Leute.
+1
</pre>
'''FÌge hier den Satz ein, der dir gefÀllt!'''
:ïŒæåïŒ
* Kapiteltitelsatzãç« ã®å¯é¡
*
*
*
...
Wörterãåèª:
<pre>
der Regen éš
der Schneeãéª
der Sonnenscheinãæ¥å
die Wolkeãé²
der Regenschauer éãéš
der Hagelãé¹
bewölktãæã
heiterãæŽãã
das Wetterãã倩æ°
regnenãéšãéã
schneienãéªãéã
scheinenãïŒå€ªéœãïŒèŒã
hagelnãé¹ãéã
der Regenschirmãå
der Regenbogenãã«ã
gutes / schlechtes Wetterãããå€©æ° /ãæªã倩æ°
Wind 颚
wehenãå¹ã
blasenãå¹ã
windstillãç¡é¢šã®ã/ 颚ããªã
</pre>
neue und grundlegende Wörter in unserem Kursbuch, etwa 20 fÌr jede Lektion.
Welche Idee hast du, welche Wörter man hier angeben muss? Was ist dein Vorschlag? '''Bitte fÌge ihn ein!'''
Bemerkungen:ãJede Zeile hat ein einziges Wort und seine Ãbersetzung(en).
Grammatik ææ³:
:ErklÀrung mit BeispielsÀtzen. Wir bedanken uns bei dir fÌr deine BeispielsatzvorschlÀge.
==é人称æ§æ==
ãã€ãèªã®æã§ã¯äžè¬ã«äž»èªãçç¥ããããšã¯ã§ããªãïŒãã®äŸå€ãåœä»€æ³ã§ããïŒããããã£ãŠãç¹ã«åäœäž»ãããªãæãææ³äžã®äž»èªãå¿
èŠãšããããã®ãããªãšããäžæ§åæ°ä»£åè© es ãäž»èªãšããŠäœ¿ãããããã®ãã㪠es ãã'''é人称㮠es''' ãšããã
é人称㮠es ã¯ã倩åãææ
ãäºæ
ãªã©ãè¡šçŸãããšãã«äœ¿ãããããã® es ã¯å
·äœçãªãã®ãæãã®ã§ã¯ãªãã匷ããŠèšãã°ããäœãããããããªããã®ããšã§ãããã¹ããã®ã§ããã
:Es schneit. éªãéã£ãŠãããâãããéªãéããã
:Es tut mir leid. ãæ°ã®æ¯ã§ãïŒæ®å¿µã§ããâãããç§ãã€ããããã
:Es gibt Möglichkeiten. å¯èœæ§ããããâãããå¯èœæ§ãäžããã
[[ãã€ãèª/åçŽ/第17課|ïŒç¬¬17課]] | [[ãã€ãèª/åçŽ/第19課|第19課ïŒ]]
[[Category:ãã€ãèª åçŽ|18]] | null | 2015-08-09T02:37:04Z | [] | https://ja.wikibooks.org/wiki/%E3%83%89%E3%82%A4%E3%83%84%E8%AA%9E_%E5%88%9D%E7%B4%9A%E7%AC%AC18%E8%AA%B2 |
1,772 | é«çåŠæ ¡ååŠ | ååŠãå匷ãããšãã«æäœéç¥ã£ãŠãããªããã°ãªããªãããš | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ååŠãå匷ãããšãã«æäœéç¥ã£ãŠãããªããã°ãªããªãããš",
"title": "è³æ"
}
] | null | {{pathnav|é«çåŠæ ¡ã®åŠç¿|é«çåŠæ ¡çç§|frame=1}}
== çŸè¡èª²çš ==
* [[é«çåŠæ ¡ ååŠåºç€]]
* [[é«çåŠæ ¡ ååŠ]]
== æ§èª²çš ==
* [[é«çåŠæ ¡ååŠI]] {{é²æ|50%|2015-12-06}}
* [[é«çåŠæ ¡ååŠII]] {{é²æ|25%|2015-12-06}}
* [[é«çåŠæ ¡çç§åºç€]] {{é²æ|00%|2015-12-06}}
== è³æ ==
ååŠãå匷ãããšãã«æäœéç¥ã£ãŠãããªããã°ãªããªãããš
* [[å
çŽ èšå·]]ïŒåšæè¡šïŒ {{é²æ|100%|2015-12-06}}
* [[åååŒ]] {{é²æ|75%|2015-12-06}}
* [[ååŠåŒé]] {{é²æ|25%|2015-12-06}}
== å匷æ³ãªã© ==
* [[åŠç¿æ¹æ³/é«æ ¡ååŠ]]{{é²æ|25%|2015-12-06}}
* [[倧åŠåéšååŠ]]ïŒæªå®æïŒ {{é²æ|00%|2015-12-06}}
[[ã«ããŽãª:é«çåŠæ ¡ååŠ|*]]
[[Category:çç§æè²|é«ããã]]
[[Category:ååŠ|é«ããã]]
[[category:é«æ ¡çç§|ããã]] | 2005-03-21T19:58:42Z | 2023-07-27T16:34:50Z | [
"ãã³ãã¬ãŒã:Pathnav",
"ãã³ãã¬ãŒã:é²æ"
] | https://ja.wikibooks.org/wiki/%E9%AB%98%E7%AD%89%E5%AD%A6%E6%A0%A1%E5%8C%96%E5%AD%A6 |
1,773 | é«çåŠæ ¡çç©/çç©I/现èã®æ§é ãšã¯ããã | é«çåŠæ ¡çç© > çç©I > 现è
å°çã«ããçç©ã®çš®é¡ã¯ãååã®ä»ããããŠããçš®ã175äžçš®ã»ã©ã§ããã ãã®å
šãŠã®çç©ã¯çŽ°è(ãããŒã)ããæãç«ã£ãŠããã 现èã¯çç©ã®æ©èœäžã»æ§é äžã®åºæ¬åäœã§ããã äŸãã°ããã®äœã¯200çš®é¡ä»¥äž60å
åã®çŽ°èããã§ããŠãããšããããŠããã ãã®çŽ°èã¯æ¶å管ãªãé£ã¹ç©ã®æ¶ååžåããã现èãããã 骚ãªã骚ãäœãåºã现èãããã
ãã®ããŒãžã§ã¯ã 现èã®åºæ¬çãªæ©èœãšæ§é ã 现èãäœçŽ°èåè£(somatic mitosis)ã«ãã£ãŠååããŠããããšã 现èãåäœãäœã£ãŠããããšã ãªã©ãæ±ãã
现èã®å€§ããã¯ãã®ã»ãšãã©ãèçŒã§ã¯èŠããªãã»ã©å°ããã é¡åŸ®é¡ã®çºéã«ãã£ãŠèŠ³å¯ã§ããå解èœãé«ãŸãã 现èã®å
éšæ§é ãåŸã
ã«æããã«ãªã£ãŠãã£ãã
现èã¯çç©ã®çš®é¡ãããã ã®éšäœã«ãã£ãŠããŸããŸãªå€§ããã§ååšããŠããã 以äžã«é¡åŸ®é¡ã®å解èœãšçŽ°èãªã©ã®å€§ãããæããã â»å解èœ(æ¥è¿ãã2ç¹ãèŠåããããšã®ã§ããæå°è·é¢)
现èã®èŠãç®ãåãã¯ããŸããŸã«ç°ãªãããåºæ¬çãªæ©èœãæ§é ã¯åãã§ããã 现èã¯æ ž(ãããnucleus)ãšçŽ°è質(ãããŒããã€ãcytoplasm)ãããããå²ã现èè(ãããŒããŸããcell membrane)ãããªãã现èèã«å
ãŸããå
éšã®ç©è³ªã®ãã¡ããæ žãé€ããéšåã®ããšã现è質ãšããã ãŸããæ žãšçŽ°è質ãåãããŠå圢質(ãããããã€ãprotoplasm)ãšãåŒã¶ãã€ãŸãã现èèã«å
ãŸããå
éšã®ç©è³ªã®ããšãå圢質ãšããã 现è質ã«ã¯ãæ žãå§ããšããŠãããã³ã³ããªã¢ãªã©ãããŸããŸãªæ©èœãšæ§é ããã€å°ããªåšå®ãããããããã现èå°åšå®(ãããŒããããããããorganelle)ãšåŒã¶ã 现èå°åšå®ã©ããã®éã¯ãæ°Žã»ã¿ã³ãã¯è³ªãªã©ã§æºããããŠãããããã现è質åºè³ª(ãããŒãã〠ããã€ãcytoplasmic matrix)ãšåŒã¶ããã®çŽ°è質åºè³ªã«ã¯ãé
µçŽ ãªã©ã®ã¿ã³ãã¯è³ªãã¢ããé
žãã°ã«ã³ãŒã¹ãªã©ãå«ãŸããŠããã
æ žã¯ã1ã€ã®çŽ°èããµã€ã1ã€ãã£ãŠãããå
éšã«æè²äœ(chromosome)ãããã æè²äœã¯ãDNAãšã¿ã³ãã¯è³ªãããªãã DNAãéºäŒåã®æ
å ±ãæã£ãŠããã 现èåè£(cell division)ã®éã«DNAã¯è€è£œãããæ°ãã现èã«åé
ãããã é¡åŸ®é¡ã§æ žã芳å¯ããå Žåã¯ãé
¢é
žã«ãŒãã³ãé
¢é
žãªã«ã»ã€ã³æ¶²ãªã©ã®è²çŽ ã§ãæè²äœãèµ€è²ã«æè²ã§ããã ããããããã®æè²çŸè±¡ããããæè²äœããšããååã®ç±æ¥ã§ããã æ žã¯ã1~æ°åã®æ žå°äœ(nucleolus)ãå«ã¿ããã®éãæ žæ¶²(nuclear sap)ãæºãããŠããã æ žã®è¡šé¢ã«ã¯æ žè(ãããŸããnuclear membrane)ãããã æ žèã¯ãäºéã®èãèã§ã§ããŠãããæ žèå(ãããŸããããnuclear pore)ãšåŒã°ããå€æ°ã®åããããæ žãžã®ç©è³ªã®åºå
¥ãã«é¢ãã£ãŠããã DNAãéºäŒåã®æ¬äœã§ããããæè²äœã¯DNAãå«ãã§ãããæ žãæè²äœãå«ãã§ãããããæ žãéºäŒã«æ·±ãé¢ãã£ãŠããã®ã§ããã åºæ¬çã«ã¯1ã€ã®çŽ°èã1ã€ã®æ žããã€ãã äŸå€ãšããŠãããšãã°ããã®èµ€è¡çã®ããã«æ žããããªã现èãããã ãŸãããã®éªšæ Œçã®ç现èã®ããã«1ã€ã®çŽ°èãè€æ°ã®æ žããã€ãã®ãããã æ žã¯çŽ°èå°åšå®ã®åããå¶åŸ¡ããŠããããã®ãã现èã®çåãå¢æ®ã«å¿
èŠãªãã®ã§ããã ãªã®ã§ãèµ€è¡çã®ããã«æ žã倱ã£ã现èã¯é·ãçãç¶ããããšã¯ã§ãããåè£ããããšãã§ããªãã æ žã®äžã«ããDNAãããã®ãããªã现èå°åšå®ã®å¶åŸ¡ãè¡ã£ãŠããã
ã¢ã¡ãŒããã¬ã©ã¹æ¿ã§æ žãããç(ãžã)ãšãæ žããªãçãšã«åæãããšãæ žãããçã¯å¢æ®ã§ããæ žããªãçã¯æ»ã¬ã(ã¢ã¡ãŒãã®åæå®éš1)
ã¢ã¡ãŒãã®æ žãã¬ã©ã¹ç®¡ã§åžãåããæ žãšçŽ°è質ãšã«åãããšãäž¡æ¹ãšãæ»ã¬ã(ã¢ã¡ãŒãã®åæå®éš2)
ãã®ããã«æ žã¯çŽ°èã®çåãå¢æ®ã«å¿
èŠã§ããã
çç©ã®çŽ°èã«ã¯ãæ žããããªãåæ žçŽ°èãšãæ žããã€çæ žçŽ°èãšãããã
倧è
žèãªã©ã®çŽ°èé¡ãããŠã¬ã¢ãªã©ã®ã·ã¢ããã¯ããªã¢(ã©ã³è»é¡)ã®çŽ°èã¯ãæ žãæããªãã ãããã®çç©ã®çŽ°èãæè²äœãšããã«å«ãŸããDNAã¯ãã£ãŠãããããããå
ãæ žèããã£ãŠããªãã®ã§ãæ žããªãã ãã®ãããªãæ žã®ãªã现èã®ããšãåæ žçŽ°è(prokaryotic cell)ãšåŒã¶ã ãŸããåæ žçŽ°èã§ã§ããçç©ãåæ žçç©(prokaryote)ãšåŒã¶ã åæ žçŽ°èã®æè²äœãšããã«å«ãŸããDNAã¯çŽ°è質åºè³ªã®äžã«ããã
åæ žçŽ°èã¯ãããã³ã³ããªã¢ãèç·äœãªã©ãæããªãã åæ žçŽ°èã¯ãçæ žçŽ°èãããå°ããå
éšæ§é ãåçŽã§ããã ã·ã¢ããã¯ããªã¢ã¯ãããã³ã³ããªã¢ãšèç·äœãæããªãåæ žçç©ã§ããããå
åæãè¡ãã
ããã«å¯ŸããŠãæè²äœãæ žèã«å
ãŸããŠãã现èãçæ žçŽ°è(eukaryotic cell)ãšåŒã¶ã ãŸããçæ žçŽ°èã§ã§ããçç©ãçæ žçç©(eukaryote)ãšåŒã¶ã ã»ãŒãã¹ãŠã®çæ žçç©ã§ã¯çæ žçŽ°èã«ããã³ã³ããªã¢ãèŠãããã ãŸããæ€ç©ã®å Žåãçæ žçŽ°èã«èç·äœãèŠãããã ããã³ã³ããªã¢ããã³èç·äœã¯ãç¬èªã®DNAãæã¡ããããå«ã现èã®æ žã®DNAãšã¯éºäŒæ
å ±ãç°ãªãã
ãã®ãããããããããã³ã³ããªã¢ããã³èç·äœã¯ã å®ã¯ããšããšããã®åãå
¥ãå
ã®çŽ°èãšã¯å¥ã®çç©ã ã£ããã åãå
¥ãå
ã®çŽ°èã«å
¥ã蟌ã¿å
±çããããã«ãªã£ãã®ã ããããšæãããŠããã ãããŠãããã³ã³ããªã¢ãŸãã¯èç·äœãåã蟌ãã çµæãçç©çã«çæ žçŽ°èãåºãŠãããã®ã ãšæãããŠãã 现èãããã³ã³ããªã¢ãŸãã¯èç·äœãåã蟌ãåã¯ããã®çŽ°èã¯åæ žçŽ°èã ã£ãã®ã ãããšæãããŠããããã®ãããªèª¬ãã现èå
å
±ç説ãŸãã¯åã«å
±ç説ãšããã
ããã³ã³ããªã¢(mitochondria)ã¯åç©ãšæ€ç©ã®çŽ°èã«ååšãã é·ã1ÎŒm~æ°ÎŒmãå¹
0.5ÎŒmçšåºŠã®ç²ç¶ã®çŽ°èå°åšå®ã§ãã ååŠåå¿ã«ãã£ãŠé
žçŽ ãæ¶è²»ããŠææ©ç©ãå解ããšãã«ã®ãŒãåŸãåŒåž(respiration)ãè¡ãã ããã³ã³ããªã¢ã®åœ¢ã¯ç圢ãŸãã¯åç圢ã®æ§é äœã§ã å€åŽã«ããå€èãšå
åŽã«ããã²ã ç¶ã®å
èãšã®2éèããã€ã å
èãã²ã ç¶ã«ãªã£ãéšåãã¯ãªã¹ã(cristae)ãå
èã«å²ãŸãã空éãæºãã液äœããããªãã¯ã¹(matrix)ãšåŒã¶ã åŒåžã«é¢ããé
µçŽ ãã¯ãªã¹ããšãããªãã¯ã¹ã«ãµããŸããŠããããã®é
µçŽ ã§ææ©ç©ãå解ããã ããã³ã³ããªã¢ã®å
èã§ATPãšããç©è³ªãåæããã åæ žçç©ãåŒåžãè¡ããããããåæ žçŽ°èã®åŒåžã¯ããã£ããŠããã³ã³ããªã¢ã«ãããã®ã§ã¯ãªãã
(â» æç§æžã®ç¯å²å€:)芳å¯æã®ããã³ã³ããªã¢ã®æè²ã¯ãã€ãã¹ã°ãªãŒã³ã«ãã£ãŠç·è²ã«æè²ã§ããã
èç·äœ(chloroplast)ã¯æ€ç©ã®çŽ°èã«ååšããçŽåŸ5~10ÎŒmãåã2~3ÎŒmã®åžã¬ã³ãºåœ¢ã®åšå®ã§ããã å
ãšãã«ã®ãŒã䜿ã£ãŠæ°Žãšäºé
žåççŽ ããçæ°Žåç©ãåæããå
åæ(photosynthesis)ãè¡ãã èç·äœã«ã¯ãã©ã³ã€ã(thylakoid)ãšåŒã°ããæå¹³(ãžããºã)ãªè¢ç¶ã®æ§é äœãããã ãã©ã³ã€ããç©ã¿éãªã£ãŠã°ã©ã(grana)ãšåŒã°ãããŸãšãŸããäœã£ãŠããã äžéšã®çŽ°é·ã延ã³ããã©ã³ã€ããè€æ°ã®ã°ã©ãéãçµãã§ããã ãã®éãã¹ããã(stroma)ãšåŒã°ãã液äœãæºãããŠããã ããã«ããã®åšããå
èãšå€èã®2éèãå²ãã§ããã
ãŸããèç·äœã¯ã¯ãããã£ã«(chlorophyll)ãšããç·è²ã®è²çŽ ããµããã§ããã æ£ç¢ºã«èšããšãã¯ãããã£ã«ã¯ç·è²ã®å
ãåå°ããŠãã»ãã®è²ã®å
ãåžåããè²çŽ ã§ããã ãã®ã¯ãããã£ã«ã®åå°ç¹æ§ã®ãããæ€ç©ã¯ç·è²ã«èŠããã ãã©ã³ã€ãã®èããã¯ãããã£ã«ãªã©ã®è²çŽ ããµããã§ãããããã«ãã£ãŠå
ãšãã«ã®ãŒãåžåããŠããã ãããŠãã¹ãããã«ããé
µçŽ ã®åãã«ãã£ãŠãå
åæã®ææ©ç©åæãè¡ã£ãŠããã èç·äœã¯ãã¹ãããã«ç¬èªã®DNAãæã£ãŠããã
液è(ããã»ããvacuole)ã¯äž»ã«æ€ç©çŽ°èã«ã¿ãããç©è³ªã貯èµããã浞éå§ã調ç¯ãããããã äžéã®æ¶²èèã§å
ãŸããå
éšã现è液(cell sap)ãæºãããŠããã äžéšã®æ€ç©çŽ°èã¯ã¢ã³ãã·ã¢ã³(anthocyan)ãšåŒã°ããèµ€ã»éã»çŽ«è²ã®è²çŽ ãå«ãã
现èèã¯çŽ°è質ã®å€åŽã«ããåã5nm~10nmçšåºŠã®èãèã§ãããäž»ã«ãªã³è質ãšã¿ã³ãã¯è³ªã§æ§æãããå
žåçãªçäœèã§ããã现èãžã®ç©è³ªã®åºå
¥ãã®èª¿ç¯ãè¡ãããªã³è質ã«ã¯æ°Žã«æº¶ãããã芪氎æ§ã®éšåãšãæ°Žã«æº¶ãã«ããçæ°Žæ§ã®éšåããããçæ°Žæ§ã®éšåãå
åŽã«åããåã£ããäºéè(ã«ãã
ããŸããbilayer)ã«ãªã£ãŠããã
ãæ°Žãšæ²¹ããšããèšèãã仲ã®æªãããšã®è¡šçŸãšããŠçšããããããã«ãæ°Žãšæ²¹ã¯æº¶ãåããªãã
ãã®ããã«çŽ°èèãå€éšã«å¯ŸããŠçæ°Žæ§(ããããã)ã®éšåã ããåºããŠãããã现èèã¯çæ°Žç(ããããŠã)ã§ããããã®ããã现èèã¯ãæ°Žã«æº¶ããªãããã®ããã现èèã«ãã£ãŠã现èããŸããããä»åãããããããã®çŽ°èã溶ãåããªãããã«ãªã£ãŠããã
现èèã®ãšããã©ããã«ã¿ã³ãã¯è³ªãååžããŠããããã®(现èèã«ãã)ã¿ã³ãã¯è³ªãã现èãžã®ç©è³ªã®åºå
¥ãã®èª¿ç¯ã«é¢ãã£ãŠããã现èèã¯ãç¹å®ã®ç©è³ªã®ã¿ãééãšããæ§è³ªãããããã®æ§è³ªã®ããšãéžæçééæ§(ãããããŠã ãšãããã)ãšããã(åæãæ°ç ã®å°éãçç©ãã«ãéžæçééæ§ãã®çšèªããã)
ã¹ã¯ããŒã¹æº¶æ¶²ãªã©ã«å¯ŸããŠã¯ã现èèã¯åéæ§ (â»ã现èãžã®ç©è³ªã®åºå
¥ãããåç
§) ã«è¿ãæ§è³ªã瀺ãã
现èèã«ã¯ããšããã©ããã«ã€ãªã³ãã£ãã«(ion channel)ãããããããªãŠã Naãã«ãªãŠã Kãªã©ç¹å®ã®ã€ãªã³ã®ã¿ãéžæçã«ééãããã(â» çç©IIã§ã€ãªã³ãã£ãã«ãç¿ãã®ã§ãã€ãã§ã«å€ªåã)
ãŸãã现èã®ãšããã©ããã«ã¯å容äœ(ãã
ãããããreceptor)ããããç¹å®ã®ç©è³ªããã®åºæ¿ãåãåããå容äœã®çš®é¡ããšã«åãåããç©è³ªã®çš®é¡ãéãããã®ããåãåããåºæ¿ã®çš®é¡ãã¡ãããå容äœã®æ質ã¯ã¿ã³ãã¯è³ªã§ããã
ãŸãã现èèäžã®ã¿ã³ãã¯è³ªã«ããªãªãŽç³ãªã©ã®å€ç³é¡ã§åºæ¥ãŠããç³é(ãšãããsugar chain)ãä»ããŠããå Žåãããã现èã©ããã®èå¥(ããã¹ã€)ãªã©ã®æ
å ±äº€æãã现èã©ããã®çµåãªã©ã«åœ¹ç«ã£ãŠããããªããããã®ABOåŒè¡æ¶²åã®éãã¯ãèµ€è¡çã®çŽ°èèã®ç³éã®éãã«ãããã®ã§ããã
现èãç°ç©ãæ¶ååžåããé£äœçš(ãããããã)ã®éã«ãã现èèãé¢ãã£ãŠãããç°ç©ã«çŽ°èèãåãä»ãããšã§ãç°ç©ãå
ãã§åã蟌ããé£äœçšã®ããšã飲é£äœçšãšãèšã£ããããšã³ããµã€ããŒã·ã¹ãšãããããã¯ããã¡ãŒãžãã¢ã¡ãŒããªã©ã®é£äœçšã¯ããã®ãããªçŽ°èèã®åãã«ãããã®ã§ããã
现èå£(ãããŒããžããcell wall)ã¯æ€ç©çŽ°èãèé¡ãåæ žçç©ã«èŠããã现èèã®å€åŽã§çŽ°èãå®ãåºãèã§ããã圢ãä¿ã€åããæã€ãåç©çŽ°èã«ã¯èŠãããªãã 现èå£ã¯ãã»ã«ããŒã¹ãäž»æåãšããŠãããã»ã«ããŒã¹ãšãã¯ãã³ãªã©ã®çæ°Žåç©ã«ãã£ãŠãªããã€å
šéæ§ (â»ã现èãžã®ç©è³ªã®åºå
¥ãããåç
§) ã®æ§é ã§ããã
现èã¯ã1665幎ãã€ã®ãªã¹ã®ãããŒãã»ããã¯ã«ãã£ãŠçºèŠãããã 圌ã¯ãèªäœã®é¡åŸ®é¡ãçšããŠã軜ããŠåŒŸåã®ããã³ã«ã¯ã®èçã芳å¯ãããšããã å€æ°ã®äžç©ºã®æ§é ãããããšãç¥ã£ãããããä¿®éé¢ã®å°éšå±(cellãã»ã«)ã«ã¿ããŠã现è(cell)ãšåŒãã ã 圌ã芳å¯ããã®ã¯ãæ»ãã æ€ç©çŽ°èã®çŽ°èå£(ãããŒããžããcell wall)ã§ãã£ããã ãã®åŸã1674幎ããªã©ã³ãã®ã¬ãŒãŠã§ã³ããã¯ã«ããã¯ãããŠçãã现èã®çŽ°èã芳å¯ãããã
19äžçŽã«å
¥ããšã现èãšçåœæŽ»åã®é¢é£æ§ãæ°ä»ãããã¯ãããã ãŸã1838幎ããã€ãã®ã·ã¥ã©ã€ãã³ãæ€ç©ã«ã€ããŠã ç¿1839幎ããã€ãã®ã·ã¥ã¯ã³ãåç©ã«ã€ããŠã ãå
šãŠã®çç©ã¯çŽ°èããæãç«ã€ããšãã现è説(cell theory)ãæå±ããã
ããã«åŸããã€ãã®ãŠã£ã«ãã§ãŒã®ãå
šãŠã®çŽ°èã¯ä»ã®çŽ°èã«ç±æ¥ããããšããèãã«ããã现è説ã¯æµžéããŠãã£ãã
ã¬ãŒãŠã§ã³ããã¯ã现èãçºèŠããŠããåœæã®çç©åŠã®æ¥çã§ã¯ããã°ããã埮çç©ã®çºçã«ã€ããŠã¯ã芪ãªãã«ç¡çç©ããèªç¶ã«åŸ®çç©ãçºçããã ãããšããèªç¶çºç説ãä¿¡ããããŠããã
ããã19äžçŽã«ãã©ã³ã¹ã®çååŠè
ãã¹ããŒã«ããå³ã®ãããªSåç¶ã«å£ã®æ²ã£ããã©ã¹ã³(äžè¬ã«ãçœé³¥ã®éŠãã©ã¹ã³ããšãã)ã䜿ã£ãå®éšã§èªç¶çºç説ãééã£ãŠããäºã蚌æããã
ã察ç
§å®éšãã
现è質åºè³ªã«ã¯ãäžèŠãããšæ¶²äœä»¥å€ã«äœãç¡ãããã«èŠããããå®ã¯ç¹ç¶ç¶ã®æ§é ãããããã®çŽ°è質åºè³ªã«ååšããŠããç¹ç¶ç¶ã®æ§é ã现èéªšæ Œ(ãããŒã ãã£ãããcytoskeleton)ãšããã
现èéªšæ Œã«ã¯ã埮å°ç®¡(ã³ããããããmicrotubule)ãäžéåŸãã£ã©ã¡ã³ã(intermadiate filament)ãã¢ã¯ãã³ãã£ã©ã¡ã³ã(actin filament)ã®3çš®é¡ãããã ãã®çŽ°èéªšæ Œã«ãã£ãŠã现èå°åšå®ã¯åºå®ãããŠããã
ãŸãã现èå°åšå®ã液èãªã©ã现èå
ã§éåããŠå圢質ãæµåããŠããããã«èŠããçç±ã¯ã现èéªšæ ŒãåããŠçŽ°èå°åšå®ãªã©ãéãã§ããããã§ããããšãè¿å¹Žã«åãã£ãã
现èå°åšå®ã«ãããŠãå°ããããŠå
åŠé¡åŸ®é¡ã§ã¯èŠãããªãããé»åé¡åŸ®é¡ã§ãªãèŠãããæ§é ããããã€ãååšããŠããã
ãŽã«ãžäœãäžå¿äœã¯ãå°ãããããããå
åŠé¡åŸ®é¡ã§ã¯èŠãããªãããé»åé¡åŸ®é¡ã§èŠãããšãã§ããã
ãŽã«ãžäœ(Golgi body)ã¯é
µçŽ ããã«ã¢ã³ãªã©ã®åæ³ã«é¢äžããã»ãã现èå
ã§å©çšãããã¿ã³ãã¯è³ªã®ä¿®é£Ÿãè¡ãã äžéèã®å¹³ããªè¢ç¶ã®å±€ãããã€ãéãªã£ãæ§é ãããŠããã
äžå¿äœ(centrosome)ã¯äž»ã«åç©çŽ°èã«ã¿ãããã¹ãæ¯ãç¹æ¯ã圢æãããã现èåè£ã®éã®çŽ¡éäœåœ¢æã®èµ·ç¹ãšãªãã 埮å°ç®¡ãšãã管ç¶ã®æ§é äœã3ã€éãŸãããããç°ç¶ã«9ã€éãŸãäžå¿å°äœãäœãã ãã®äžå¿å°äœã2ã€LåçŽäº€ããŠäžå¿äœãäœãã
ã€ã³ãã«ãšã³ã¶ãªã©ã®ãããªããŠã€ã«ã¹ããšããçš®é¡ã®ç©ãååšããããŠã€ã«ã¹ã¯çç©ãšéçç©ãšã®äžéçãªååšã§ãããã»ãšãã©ã®ãŠã€ã«ã¹ã¯0.3ÎŒm以äžã®å€§ããã§ããã倧è
žè (çŽ3ÎŒm)ãªã©ã®çŽ°èã®å€§ãããšæ¯ã¹ãŠããšãŠãå°ããããŠã€ã«ã¹ã¯ãã¿ã³ãã¯è³ªã®æ®»ãšããã®æ®»ã«ã€ã€ãŸããæ žé
žããã€æ§é ã§ã现èãæã£ãŠããªãããŠã€ã«ã¹ã¯éºäŒç©è³ªãšããŠæ žé
žããã¡ãåç¬ã§ã¯å¢æ®ã§ããªãããŠã€ã«ã¹ã®å¢æ®ã¯ãä»ã®çç©ã®çãã现èã®äžã«äŸµå
¥ããŠããã®çŽ°èã®äžã«ããç©è³ªãå©çšããŠè¡ããæ»ãã 现è(äŸ:å ç±åŠçãªã©ãã现è)ã®äžã§ã¯ããŠã€ã«ã¹ã¯å¢æ®ã§ããªãã
ãŠã€ã«ã¹èªäœã¯æŽå²çã«ã¯ã次ã®ããã«çºèŠãããã(ç§ç®ãç§åŠãšäººéç掻ãã®ç¯å²)
ãŸãçŽ çŒãã®é¶åšã®æ¿ã䜿ã£ãŠæ°Žãæ¿Ÿéãããšããã®é¶æ¿ã«ã¯çŽ°èããã埮ç¬ãªç©Žã空ããŠããã®ã§ã现èã®ãµããŸããæ°Žãæµããšã现èãé€ããŠæ°Žã ããééãããŠæ¿Ÿéã§ããçºèŠãããããã®æ¿Ÿéåšã«ãããèµ€ç¢èãªã©ã®ç
åèãæ¿Ÿéã§ããäºãçºèŠããããããããã¿ãã³ã¢ã¶ã€ã¯ç
ã®ç
åäœã¯ãæ°Žãšãã£ããã«ãã®é¶æ¿ãééããäºããã·ã¢ã®ç§åŠè
ã€ã¯ããã¹ããŒã«ãã1980幎代ã«çºèŠãããã
ãã®äºããã现èããã埮å°ãªååšãä¿¡ããããããã«ãªã£ãã
ãã®åŸã1930幎代ã«ãã€ãã®ç§åŠè
ã«ã¹ã«ãªã©ã«ãã£ãŠçºæãããé»åé¡åŸ®é¡ã®çºéã«ããã现èãæ åçã«èŠ³å¯ã§ããããã«ãªã£ãã
ãŸãã1930幎代ãã¢ã¡ãªã«ã®ç§åŠè
ã¹ã¿ã³ã¬ãŒãã¿ãã³ã¢ã¶ã€ã¯ãŠã€ã«ã¹ã®çµæ¶åã«æåããŠããã
现è質åºè³ªã¯ã现èå°åšå®ã®éãæºãããæ°Žã»ã¿ã³ãã¯è³ªãªã©ãå«ãŸããæ§ã
ãªååŠåå¿ãè¡ãããŠããã
ãªãªã«ããã¢ã®èã®çŽ°èã芳å¯ãããšã现è質åºè³ªã®äžãé¡ç²ãæµåããŠããããããå圢質æµå(ãããããã€ãã
ãã©ããprotoplasmic streamingã现è質æµå)ãšåŒã¶ãå圢質æµåã¯çããŠãã现èã§ã®ã¿èŠãããã
现èã¯ããã®äžã«æ°Žãæ é€åãåãå
¥ã䜿ããªããšçããŠãããªãã 以äžã§ã¯çŽ°èãžã®ç©è³ªã®åºå
¥ãã«ã€ããŠæ±ãã
å°æã§éèãå»ãã§å¡©ãããããšãæ°ŽãåºãŠããŠéèããããªãããããŸãããã¡ã¯ãžã«å¡©ãããããšçž®ãã§ãããšãã話ãèããããå®éã«èŠãããšãããã ãããå®ã¯ããã®äºã€ã¯åãçŸè±¡ã§ããã
äžå®ä»¥äžã®å€§ããã®ååã®ã¿ãééãããæ§è³ªãåéæ§(ã¯ããšããããsemipermeability)ãšåŒã¶ã ãŸããåéæ§ã瀺ãèãåéè(ã¯ããšããŸããsemipermeable membrane)ãšåŒã¶ã溶質ã§ãã£ãŠããäžå®ä»¥äžã®å€§ãããªããåéèã¯éããªãã现èèã¯åéèã®æ§è³ªããã£ãŠãããã»ããã³èãåéèã§ããã溶åªãæ°Žã®å Žåã¯ãåéèã¯æ°Žååãéããäžè¬ã«ãã·ã§ç³ã¯çŽ°èèãéããªãã®ãæ®éã§ãããå°¿çŽ ãã°ãªã»ãªã³ã¯çŽ°èèãéãã®ãæ®éã
ããã«å¯ŸããŠãååã®å€§å°ã«ãããå
šãŠééãããæ§è³ªãå
šéæ§(ãããšããããnon-selective permeability)ãšåŒã¶ã ãŸããå
šéæ§ã瀺ãèã'å
šéè(ãããšããŸããpermiable membrane)ãšåŒã¶ããçŽã¯å
šéèã§ãããæ€ç©ã®çŽ°èå£ã¯å
šéèã§ããã现èèãšçŽ°èå£ãééããªãããã«ã现èèã¯åç©ã»æ€ç©ã®äž¡æ¹ã«ãããåéèã§ããã现èå£ã¯æ€ç©ã«ãããªãã
æ¿åºŠã®ç°ãªã氎溶液ããããããšãç©è³ªãé«ãæ¿åºŠããäœãæ¿åºŠã®æº¶æ¶²ãžç§»åããæ¿åºŠãåäžã«ãªãçŸè±¡ãæ¡æ£(ãããããdiffusion)ãšåŒã¶ã
åéèãã¯ããã§æ¿åºŠã®äœã溶液ãšæ¿åºŠã®é«ã溶液ãæ¥è§Šããããšãæ¡æ£ã«ãã£ãŠã溶åªã®æ°Žã¯ç§»åããåéèãéã£ãŠæ¿åºŠã®äœãæ¹ããé«ãæ¹ãžãšæ°Žã¯ç§»åããããã®çŸè±¡ã浞é(ãããšããosmosis)ãšåŒã¶ã䞡液ã®æ¿åºŠãåãã«ãªããŸã§ã溶åªã®æ°Žãèãéã£ãŠç§»åããã倧ããã®å€§ãã溶質ã¯åéèãéããªãã®ã§ããããã«å€§ããã®å°ããååã§ããæ°Žååã移åããã®ã§ããã 説æã®ç°¡ååã®ããã溶質ååã¯å€§ãããåéèãéããªãå Žåã§ãããšããã
浞éã®ãããæ¿åºŠã®äœã溶液ããæ¿åºŠã®é«ã溶液ãžæº¶åªã移åãããããã«åãå§åã浞éå§(ãããšããã€ãosmotic pressure)ãšåŒã¶ã溶液ã®æ¿åºŠã®å·®ã倧ããã»ã©ã浞éå§ã¯å€§ããã
浞éå§ãåŒã§è¡šãã°ã浞éå§ãP(åäœ[Pa]ãã¹ã«ã«ãªã©)ãæ¿åºŠå·®ãC(åäœ[mol/L]ãªã©)ãšãããš(ãmolããšã¯ãã¢ã«ãã§ååæ°ã®åäœã§ã6.02Ã10å)ãåŒã¯
ã§ããã
â» çç©Iã®ç¯å²ãè¶
ãããããã詳ããã¯ã枩床ãTãKããšããŠ(ãKããšã¯ã±ã«ãã³ãšããã枩床ã®åäœ)ãæ°äœå®æ°(ããããŠããã)ãšããæ¯äŸä¿æ°ãRãšããŠã
(ããã¡ã³ããããã®åŒããšããã)
ã§ãããR=0.082 (Lã»æ°å§)/(Kã»mol)ã (ç©çãååŠãªã©ã§ãæ°äœã®ç¶æ
æ¹çšåŒã PV = nRT ãšããã®ãç¿ããã±ã«ãã³ãšã¯ã絶察é¶åºŠãã€ãã¹273°Cã0Kãšãã絶察枩床ã®ããšã§ããããã®ããšãããåããããã«ãèªè
ã¯é«æ ¡ç©çãé«æ ¡ååŠãå匷ããªããã°ãªããªãªãã)
å
ã®æ°Žæº¶æ¶²ã®æ°Žé¢ã®é«ããåãã ã£ãå Žåãåéèã«ããæ¥è§Šã§ã¯æµžéã«ãšã£ãŠçæ¹ã®æ°Žãå¢ããã¶ãããããŠããçæ¹ã®æ°Žãæžã£ãã¶ããæ°Žé¢ã®é«ãã«éããçããã®ã§ãã€ãŸãæ°Žäœå·®ãçããã®ã§ããã®æ°Žäœå·®ãã浞éå§ã®å€§ããã枬ãããæ°Žé¢ã®é«ããåãã«ããããã«ã¯ãå€éšããããããå ããªããšãããªãããã®ãããã®éåã«ããåã®å€§ããããããã¯ãã®ãããã®åãå§åã«æç®ãããã®ãã浞éå§ã®å€§ããã§ããããã®ãšãã®ããããã®åã«çžåœããå§åã§ã浞éå§ã枬ããã
åéèã§ãªããèãªãã§ããã®ãŸãŸæ¿åºŠã®ãã氎溶液ãæ¥è§Šããå Žåã¯ãæ°Žäœå·®ã¯çããªãã
现èã溶液ã«æµžãããšãã现èãžã®æ°Žã®åºå
¥ããçãããããæ¿åºŠãåè¡¡ãã现èã®äœç©ãå€åããªããªãã°ããã®æº¶æ¶²ãç匵液(ãšãã¡ãããããisotonic solution)ãšåŒã¶ã ããã«å¯Ÿãã现èããæ°ŽãåºãŠããè±æ°ŽããŠã现èã®äœç©ãæžå°ãããããªæº¶æ¶²ãé«åŒµæ¶²(ããã¡ãããããHypertonic solution)ãšåŒã³ã éã«ã现èãžæ°Žãå
¥ã£ãŠããã现èã®äœç©ãå¢å ãããããªæº¶æ¶²ãäœåŒµæ¶²(ãŠãã¡ãããããhypotonic solution)ãšåŒã¶ã
ããã®èµ€è¡çã¯ã0.9%(=9g/L)ã®é£å¡©æ°Žãšç匵ã§ãããã0.9%ãã®ã%ããšã¯è³ªéããŒã»ã³ãã§ããã
æ€ç©çŽ°èã§ã¯çŽ°èèã®ãŸãããå
šéæ§ã®çŽ°èå£ãå²ãã§ããã
现èãæ°Žãåžåããåã®ããšããåžæ°Žåããšããããã®å§åã®ããšãåžæ°Žå§(ãã
ããããã€)ãšãããåžæ°Žå§ã®åŒã¯ã
ã§ããã
å€ãã®æ€ç©çŽ°èã¯éåžžæãããé«åŒµã§ããããã®ãããéåžžæã§ãæ€ç©çŽ°èã§ã¯å圢質ãèšåŒµããŠããã现èå£ããã®èšå§ãçããŠããã
现èå£ãã现è質ãé¢ããçŽåã»çŽåŸã®ããšãéçå圢質åé¢ãšããããã®ãšãã®å€æ¶²ã®æº¶æ¶²æ¿åºŠã®ããšãéçæ¿åºŠãšããã ãªããå圢質ããã³å圢質ããå
åŽã®éšåã®ããšãããããã©ã¹ããšãããããããã©ã¹ãã现èå£ããé¢ããŠããŸãçŸè±¡ã®ããšããå圢質åé¢ã®ããšã§ããã
现èèã¯ãç¹å®ã®ç©è³ªã®ã¿ãééãããŠããããã®ãããªæ§è³ªãéžæçééæ§(ãããããŠã ãšãããããSelective permeability)ãšåŒã¶ã现èèã«ååšãã茞éã¿ã³ãã¯è³ªããã©ã®ç©è³ªãééãããŠãã©ã®ç©è³ªãééãããªããã®éžæãè¡ã£ãŠããã
茞éã¿ã³ãã¯è³ªã«ã¯ãã©ãããçš®é¡ãããããšãããšãåŸè¿°ããããã£ãã«ããããã³ãããããã
ããŠãéžæçééæ§ã«ã¯ãæ¿åºŠåŸé
ã«åŸã£ãŠæ¡æ£ã«ããç©è³ªãééãããåå茞é(ãã
ã©ãããããpassive transport)ãšã ãã£ãœããæ¿åºŠåŸé
ã«éãã£ãŠç©è³ªãééãããèœå茞é(ã®ãã©ãããããactive transport)ãšããã2çš®é¡ã®èŒžéãããã
èœå茞éã®äŸãšããŠã¯ãåŸè¿°ãããããªãŠã ãã³ããªã©ãããããªãããããªãŠã ãã³ãã«ãã£ãŠã€ãªã³ã茞éããããšããATPã®ãšãã«ã®ãŒãæ¶è²»ããããã®ããã«ãèœå茞éã§ã¯ããªã«ãã®ãšãã«ã®ãŒãæ¶è²»ããã
ãã£ãœãã(èœå茞éã§ã¯ãªã)åå茞éã®äŸãšããŠã¯ãåŸè¿°ãããã€ãªã³ãã£ãã«ã«ããåå茞éãªã©ãããã
å€çŽ°èçç©ã§ã¯ãã»ãšãã©ã®çŽ°èã§ãã©ã®çŽ°èãã现èã®å
å€ã®ãããªãŠã æ¿åºŠãæ¯ã¹ãŠã¿ããšã现èå
ã®ãããªãŠã æ¿åºŠã¯äœãã现èå€ã®ãããªãŠã æ¿åºŠã¯é«ãã
ããã¯ã€ãŸãã现èã®åãã«ãã£ãŠããããªãŠã ãæåºãããŠããããã§ããã
ãŸããå€çŽ°èåç©ã§ã¯ããã¹ãŠã®çŽ°èã§ãã©ã®çŽ°èãã现èå
å€ã®ã«ãªãŠã æ¿åºŠãæ¯ã¹ãŠã¿ããšã现èå
ã®ã«ãªãŠã æ¿åºŠãé«ãã现èå€ã®ã«ãªãŠã æ¿åºŠãäœãã
ããã¯ã€ãŸãã现èã®åãã«ãã£ãŠãã«ãªãŠã ãæåºãããŠããããã§ããã
现èèã«ããATPå解é
µçŽ (ãããªãŠã -ã«ãªãŠã ATPã¢ãŒãŒ)ãšããé
µçŽ ãã现èå
ã«å
¥ãããã ãããªãŠã ã现èå€ã«æåºããŠããã£ãœãã现èå€æ¶²ããã«ãªãŠã ã现èå
ã«åã蟌ãã§ããã®ã§ããããªãããã®é
µçŽ (ãããªãŠã -ã«ãªãŠã ATPã¢ãŒãŒ)ã¯ã现èèã貫éããŠããã
â» æ€å®æç§æžã«ãã£ãŠã¯ãããããªãŠã -ã«ãªãŠã ATPã¢ãŒãŒãã®ããšããNa-K ATPã¢ãŒãŒããšãèšè¿°ããŠããã
ã§ã¯ãã©ãããåçãªã®ãã説æã®ããããŸãã现èå
ã®ãããªãŠã ãæŸåºããåã®ç¶æ
ã ãšãããã(ä»®ã«ãã®ç¶æ
ããç¶æ
1ããšããã)
ãã®ãããªãŠã -ã«ãªãŠã ATPã¢ãŒãŒã¯ã现èå
ã®Naãçµåãããšããã®ãšãå¥ã®ATPã®ãšãã«ã®ãŒãæŸåºãããŠãATPããADPã«ãªãããã®ãšãã«ã®ãŒããã®é
µçŽ (ãããªãŠã -ã«ãªãŠã ATPã¢ãŒãŒ)ã䜿ã£ãŠããã®é
µçŽ (ãããªãŠã -ã«ãªãŠã ATPã¢ãŒãŒ)ã®ç«äœæ§é ãå€ããããã®çµæããããªãŠã ã现èå€ã«æŸåºããŠããŸãã(ä»®ã«ãã®ãããªãŠã æŸåºåŸã®ç¶æ
ããç¶æ
2ããšããã)
次ã«ã现èå€ã®ã«ãªãŠã ãçµåãããšããŸãç«äœæ§é ãå€ããããã®çµæãã«ãªãŠã ã现èå
ã«åã蟌ãã(ä»®ã«ãã®ã«ãªãŠã åã蟌ã¿åŸã®ç¶æ
ããç¶æ
3ããšããã)
ãããŠãŸããé
µçŽ ã¯ãæåã®ç¶æ
ã«ãã©ãã(ã€ãŸããç¶æ
1ã«æ»ãããã ããATPã¯æ¶èããŠADPã«ãªã£ããŸãŸã§ããã)
çµæçã«ããã®é
µçŽ (ãããªãŠã -ã«ãªãŠã ATPã¢ãŒãŒ)ã¯ãATPã®ãšãã«ã®ãŒãæ¶èããäºã«ããããããªãŠã ã现èå€ã«æŸåºããã«ãªãŠã ã现èå
ã«åã蟌ãã§ããã
ãã®ãããªä»çµã¿ãããããªãŠã ãã³ããšããã
ãŸãããã®èŒžéã¯ããšãã«ã®ãŒã䜿ã£ãŠãããããã®ã€ãªã³ã®æ¿åºŠå·®ã«ãããã£ãŠèŒžéããã®ã§ããã®ãããªèŒžéãèœå茞éãšããã
ãããŠããã®ãããªãŠã ãã³ãã®çµæããããªãŠã ã€ãªã³ã¯çŽ°èå€(è¡ããã ãªã©)ã§æ¿åºŠãé«ãã(è¡ããã ãªã©ãšæ¯èŒããŠ)ã«ãªãŠã ã€ãªã³ã¯çŽ°èå
ã§æ¿åºŠãé«ããªãã(â» åæã®å°éçç©ã®æç§æžã«ãæ¯èŒå¯Ÿè±¡ãšããŠãè¡ãããããšæžãããŠããã)
ããšãã°ããã®èµ€è¡çã§ã¯ãèœå茞éã«ãã£ãŠãå€æ¶²(è¡ããã)ãããèµ€è¡çå
ã®ã«ãªãŠã ã€ãªã³Kæ¿åºŠãé«ããèµ€è¡çå
ã®ãããªãŠã ã€ãªã³Naæ¿åºŠãäœãããã£ãœããè¡ãããã§ã¯ãã«ãªãŠã æ¿åºŠKãäœãããããªãŠã æ¿åºŠNaãé«ããã€ãŸãèµ€è¡çã§ã¯ãèœå茞éã«ãã£ãŠNaã现èå€ãžãšæåºããŠãèœå茞éã«ãã£ãŠKã现èå
ãžãšåãå
¥ããŠããã
ãã®ãããªãèœå茞éã«ãã£ãŠã现èå
å€ã§NaãKã®èŒžéããã³æ¿åºŠèª¿ç¯ãããæ©æ§ã®ããšãããããªãŠã ãã³ãããšããã ãã®çµæã现èå
å€ã§NaãKã®æ¿åºŠå·®ããããããçããŠããã
èœå茞éã«ã¯ãšãã«ã®ãŒãå¿
èŠã§ãããATPãããšãã«ã®ãŒãäŸçµŠãããŠããã现èèã«ããATPå解é
µçŽ (Na/K-ATPã¢ãŒãŒ)ãããããªãŠã ãã³ããªã©ã®èœå茞éã®æ£äœã§ããã(â» åèæžã«ãã£ãŠã¯ããããªãŠã ãã³ããšATPå解é
µçŽ ãåäžèŠããŠãã€ãã£ãŠããæ¬ãããã)
ãªãããã®ãããªçŽ°èã«ããèœå茞éã§ãã€ãªã³ã茞éãããã³ãã®ããšããã€ãªã³ãã³ãããšããã(æ±äº¬æžç±ã®å°éçç©(çç©IIçžåœ)ã®æ€å®æç§æžã«ãã€ãªã³ãã³ããã®èšèŒãã ) ããããªãŠã ãã³ããããã€ãªã³ãã³ãã®äžçš®ã§ããã
ãããªãŠã ãã³ãã®æ©æ§ã§ã¯ã ATPå解é
µçŽ ã«ã现èå
ã®3ã€ã®ãããªãŠã ã€ãªã³(Na)ããã³ããšçµåããŠãããATPã®ãšãã«ã®ãŒã«ãã£ãŠATPå解é
µçŽ ã®åœ¢ãå€ããããã©ã¯çŽ°èå€ã«3ã€ã®NaãæåºããããããŠçŽ°èå€ã®ã«ãªãŠã (K)ãATPå解é
µçŽ ã«çµåãããšã圢ãå€ããã现èå
ãžãšKãåºãããããŠããŸãATPå解é
µçŽ ã«ã现èå
ã®3ã€ã®Naããã³ããšçµåããŠãåãããã«ç¹°ãè¿ããŠãã£ãŠã现èå
å€ã§ã€ãªã³ã茞éããŠããã
现èèã«ã¯ããšããã©ããã«ã€ãªã³ãã£ãã«(ion channel)ãšããééãã管ã®ãããªéè·¯ç¶ã®ã¿ã³ãã¯è³ªã现èè(è質äºéå±€)ããšããã©ãã貫éããŠãããã€ãªã³ãã£ãã«ã®éããéã«ãããªãŠã Naãã«ãªãŠã Kãªã©ç¹å®ã®ã€ãªã³ã®ã¿ãéžæçã«ééãããã(â» çç©IIã§ã€ãªã³ãã£ãã«ããç¿ãã®ã§ãã€ãã§ã«å€ªåã)
ééã®æ¹æ³ã¯ãã¿ã³ãã¯è³ªååã®ç«äœæ§é ãååçã«å€åããããšã§ãééãè¡ãããŠããã
ã€ãªã³ãã£ãã«ã®éãããšãã«ããããªãŠã ãªã©å¯Ÿè±¡ã®ã€ãªã³ãééãããã€ãªã³ãã£ãã«ãéããã°ã察象ã€ãªã³ã¯éããªãã
(ãããªãŠã ãã³ããªã©ã®)èœå茞éãšã¯éããã€ãªã³ãã£ãã«ã§ã¯ãæ¿åºŠã®é«äœã«éãã£ãŠãŸã§èŒžéãããèœåã¯ç¡ãã
æ°Žã¯ãªã³è質ã®éãééã§ããããããšã¯å¥ã«ããã£ãšå€§éã«ãæ°Žååãšäžéšã®(é»æ°çã«)äžæ§å°åå(ã°ãªã»ããŒã«ãªã©)ã ããééãããã£ãã«ããããã¢ã¯ã¢ããªã³(aquaporinãAQP)ãšãããã¢ã¯ã¢ããªã³ã¯ãæ°Žåå以å€ã®æ°Žæº¶æ¶²äžã®ã€ãªã³ã¯é®æããã(ã°ãªã»ããŒã«ã®ééã«ã€ããŠã¯ã â» åèæç®: â» åèæç®: LODISHãªã©èãåå现èçç©åŠ 第7çãã翻蚳åºç:æ±äº¬ååŠå人ã翻蚳:ç³æµŠç« äžãªã©ã2016幎第7çã415ããŒãž)
èµ€è¡çãè
èã®çŽ°å°¿ç®¡äžç®çŽ°èãªã©ã«ã¢ã¯ã¢ããªã³ã¯ããã
ãã£ãœããã«ãšã«ã®åµã«ã¯ã¢ã¯ã¢ããªã³ãç¡ããããæ°Žãééãããäœèª¿æ¶²ã®äžã§ãèšåŒµããªãã(ããæ£ç¢ºã«ãããšãã«ãšã«ã®åµã«ããã¢ã¯ã¢ããªã³ãšåœ¢ã®äŒŒãé«ååããããããããããã®é«ååããæ°Žãééããäœçšããããªãã(â» åèæç®: â» åèæç®: LODISHãªã©èãåå现èçç©åŠ 第7çãã翻蚳åºç:æ±äº¬ååŠå人ã翻蚳:ç³æµŠç« äžãªã©ã2016幎第7çã415ããŒãž) ãã®ãããæ¥æ¬ã®é«æ ¡çç©ã®æç§æžã§ã¯ããã®ã«ãšã«åµã«ããé«ååã¯ãã¢ã¯ã¢ããªã³ã§ã¯ãªãããšåé¡ãããŠããã )
ã¢ã¯ã¢ããªã³ãçºèŠããããŒã¿ãŒ ã¢ã°ã¬ã2003幎ã®ããŒãã«ååŠè³ãåè³ããã
å现èçç©ãéãŸã£ãŠããããã1ã€ã®åäœã®ãããªç©ãäœã£ãŠç掻ããŠããå Žåãããã现è矀äœ(ãããŒã ãããããcell colony)ãšããã 现è矀äœã®çç©ã«ã¯ãã¯ã³ã·ã§ãŠã¢ããŠãŒããªãããã«ããã¯ã¹ãããã ãã«ããã¯ã¹(ãªãªãã²ãã¯ãª)ã¯ãã¯ã©ããã¢ãã¹ã®ãããªçŽ°èãæ°çŸåããã€ãŸã£ã矀äœã§ããã
ãã«ããã¯ã¹ã§ã¯ãåãã®åæ¥åãèµ·ããŠãããå
åæããã现èãææ§çæ®ãããçæ®çŽ°èãç¡æ§çæ®ãããçæ®çŽ°èãªã©ãåæ¥ãããŠããã 现èã©ããã¯å圢質ã®ç³žã§é£çµ¡ããã£ãŠããã
现è矀äœã®åæ¥åããå€çŽ°èçç©ã®åšå®ã«äŒŒãŠããç¹ããããããã矀äœã¯ãã»ãã®çŽ°èãšå¥ããŠããæ é€ããããã°çããŠãããç¹ãç°ãªãã
çŸåšã®å€çŽ°èçç©ã®èµ·æºã¯ãããããããã®ãããªçŽ°è矀äœã§ããããšãã説ããDNAãªã©ååã®ç³»çµ±ã®è§£æããæåã§ããã
ã¿ããã³ãªã«ãã¯ãå现èçç©ãšå€çŽ°èçç©ã®ãäž¡æ¹ã®ç¹åŸŽããã€ãã¿ããã³ãªã«ãã®äžçã«ã¯ãå现èçç©ã®ææãšãå€çŽ°èçç©ã®ææãããã芪ã®åå®äœããæŸåºãããèåãåºèœããã¢ã¡ãŒãã®ãããªå现èã®çç©ã«ãªããã¢ã¡ãŒãç¶ã®çŽ°èã¯ã现èãªã©ãé£ã¹ãŠæé·ãããé£ã¹ç©ãç¡ããªããªã©ããŠçåãé£ãããªããšããã®ã¢ã¡ãŒãç¶ã®å现èã©ãããéåããŠäžã€ã®äœãã€ãããå°ããªãã¡ã¯ãžã®ããã«ãªã£ãŠã移åããã
å¢æ®ãããšãã¯ããã®ãç¶ã®åå®äœã圢æããŠãèåãæŸåºããã
çç©ã®é²åã®ç 究ã«ãã¿ããã³ãªã«ãããããçšãããããå现èçç©ããå€çŽ°èçç©ãžã®é²åã®åèã«ãªãããšèããããŠããã
ç¹å®ã®æ©èœã圢æ
ã«åãããåã®çŽ°èããæªåå()ã®çŽ°èãšåŒã¶ã æªååã®çŽ°èã¯ãããã ã®éšäœã«ãã£ãŠç¹å®ã®æ©èœã圢æ
ãæã€ããã«ãªãããããåå(differentiation)ãšåŒã¶ã
ååãã现èã¯ããããäžèŠåã«æ··ãã£ãŠããã®ã§ã¯ãªãã åã圢æ
ãæ©èœããã€çŽ°èãèŠåçã«éãŸã£ãŠããããããçµç¹(tissue)ãšåŒã¶ã ãŸããããã€ãã®çš®é¡ã®çµç¹ãç¹å®ã®æ©èœãæããããã«éãŸã£ãŠããããããåšå®(organ)ãšåŒã¶ã ããã«ãããã®åšå®ãããã€ãéãŸã£ãŠ1ã€ã®çç©ãããªãã¡åäœ(individual)ã圢æããŠããã
çµç¹ã圢æãã现èã¯ãåãçš®é¡ã®çŽ°èã©ããã§æ¥çããããããšãã°è€æ°ã®çµç¹ãå解ããããšã«å¹é€ãããšãåãçµç¹ã©ããã§éåãããã
æ€ç©ã®çµç¹ã¯ãåè£çµç¹(meristem)ãšæ°žä¹
çµç¹(permanent tissue)ãšã«åããããšãã§ããã
åè£çµç¹ã«ã¯ãèé éšãæ ¹ç«¯éšã§ãããããªçŽ°èãžã®ååã䌞é·æé·ãè¡ãé 端åè£çµç¹(ã¡ãããã ã¶ããã€ããããapical meristem)ãç¶ç®¡æã®å
éšã§å°ç®¡ã垫管ãªã©ãžã®ååãè¥å€§æé·ãè¡ã圢æå±€(ãããããããcambium)ããããã
æ°žä¹
çµç¹ã¯è¡šç®ç³»(epidermal system)ãç¶ç®¡æç³»(vascular system)ãåºæ¬çµç¹ç³»(ground tissue system)ã®3ã€ã®çµç¹ç³»ãããªãã
è¡šç®ç³»ã«ã¯ãè¡šç®ãæ°åãæ ¹æ¯(root hair)ãªã©ãããã è¡šç®ã¯ãäžå±€ã®è¡šç®çŽ°èãããªãã现èå£ã®è¡šé¢ãã¯ãã¯ã©()ãšåŒã°ããåºãå±€ãèŠã£ãŠãããå
éšãä¿è·ãããæ°Žã®èžçºãé²ãã§ããã æ°å(stoma)ã¯ãèãèã«ã¿ããã2ã€ã®å蟺现èã察ã«ãªã£ãŠã§ããŠãããèžæ£ãè¡ã£ãŠããã æ ¹æ¯(root hair)ã¯ãæ ¹ã§æ°Žåãé€åã®åžåãè¡ã£ãŠããã
ç¶ç®¡æç³»ã¯æšéš(xylem)ãšåž«éš(phloem)ãããªãã æšéšã«ã¯å°ç®¡(vessel)ãŸãã¯ä»®å°ç®¡(tracheid)ããããæ ¹ã§åžåãããæ°Žåãé€åã®éãéãšãªã£ãŠããã åž«éšã«ã¯åž«ç®¡(sieve tube)ããããèã§å
åæãããçæ°Žåç©ã®éãéãšãªã£ãŠããã
è¡šç®ç³»ãšç¶ç®¡æ系以å€ã¯ãã¹ãŠåºæ¬çµç¹ç³»ãšåŒã°ããã èã§ã¯çŽ°é·ã现èãå¯éããæµç¶çµç¹(ãããããããããpalisade parenchyma)ãããŸãã¯çŽ°èã©ããã®éé(ãããŸ)ããããŠããŠæ°äœã®éãéãšãªã£ãŠãã海綿ç¶çµç¹(spongy tissue)ãªã©ãã¿ãããã èãæ ¹ã§ã¯äžå¿éšã§é€åã®è²¯èµãè¡ãé«(ãããpith)ããåšèŸºéšã§å
åæãè¡ã£ããåè§ã»åå£ãšãªãæ€ç©ãæ¯ããç®å±€(cortex)ãªã©ãã¿ãããã
åç©ã®çµç¹ã¯äžç®çµç¹(epithelium tissue)ãçµåçµç¹(connective tissue)ãççµç¹(muscle tissue)ãç¥çµçµç¹(neural tissue)ãããã
äžç®çµç¹ã¯äœã®å€é¢ãäœè¡šé¢ãæ¶å管ã®å
è¡šé¢ãªã©ãããã£ãŠããçµç¹ã§ãããå现èã¯çŽ°èæ¥ç(cell adhesion)ã«ããçµåãããäœå
ã®çµç¹ãä¿è·ããŠãããæ¯ã»ã€ãã»çŸœæ¯ãªã©ãäžç®çµç¹ã§ãããäžç®çµç¹ã«ã¯ç®èã®è¡šç®(epidermis)ãå°è
žã®å
å£ãªã©ã®åžåäžç®ãæ¯çŽ°è¡ç®¡()ãæ±è
ºã»èè
ºãªã©ã®è
ºäžç®ããªã©ããããããã
çµåçµç¹ã¯çµç¹ãåšå®ã®éãæºãããŠãããããçµåãããæ¯æãããããã骚(Bone)ãè
±(tendon)ãè¡æ¶²(blood)ãç®èã®çç®(dermis)ãªã©ãçµåçµç¹ã§ããã çµåçµç¹ã®åé¡ã§ã¯ã倧ããåé¡ãããšãè 質æ§(ãããã€ãã)çµåçµç¹ãç¹ç¶æ§çµåçµç¹ã骚çµç¹ãè»éªšçµç¹ãè¡æ¶²ãªã©ã«åé¡ãããã
骚(⻠硬骚(ãããã€))ã¯éªšçµç¹ã§ããã骚çµç¹ã¯ãªã³é
žã«ã«ã·ãŠã ãšã¿ã³ãã¯è³ªãªã©ãåºè³ªãšããŠã§ããŠããã骚ã®åºè³ªã骚åºè³ªãšããã垰宀äœå
ã®çµç¹ãåšå®ãæ¯æããŠããã骚现èããã€ã骚質äžã«è¡ç®¡ãšç¥çµã®éãããŒããŒã¹ç®¡ãäœæ¬ãæã¡ããã®ãŸããã«éªšçŽ°èãããã
è»éªšã¯ã«ã«ã·ãŠã ã«ä¹ããã
骚ã®ãã¡ãã«ã«ã·ãŠã ãè±å¯ãªã®ã¯ã硬骚ã®ã»ãã§ãããé«æ ¡çç©ã§ã¯ã硬骚ã®ããšãåã«ã骚ããšãã£ãŠããã
è»éªšã¯è»éªšçµç¹ã§ãããè»éªšè³ªãšè»éªšçŽ°èããã§ããŠããã匟åãããã
è
±(ãã)ã¯ç¹ç¶æ§çµåçµç¹ã§ãããè
±ã¯éªšãšçèãã€ãªãåãããããèèªçŽ°èãç¹ç¶æ§çµåçµç¹ã§ãããè¡æ¶²ã¯ãè¡ããã(plasma)ãšè¡ç(blood cell)ãããã
è 質æ§(ãããã€ãã)çµåçµç¹ã«ã¯ããžãã®ç·ããããè 質æ§(ãããã€ãã)çµåçµç¹ã®åºè³ªã¯ãŒã©ãã³ç¶ã§ããã
ççµç¹ã¯çèã圢äœãç¹ç¶ç¶ã®çµç¹ã§ãããçèã¯äŒžã³ããçž®ãã ããããéªšæ Œãåããéªšæ Œç(skeletal muscle)ãå¿èãåããå¿ç(cardiac muscle)ã¯æšªçŽç(striated muscle)ã§æ§æãããå
èãåããå
èç(visceral muscle)ã¯å¹³æ»ç(smooth muscle)ã§æ§æãããã
å¹³æ»çã¯ãäžã€ã®ç¹ç¶ãäžã€ã®çŽ°èã§ãããäžã€ã®æ žããã¡ãç¹ç¶ã¯çŽ¡é圢ãããŠãããå¹³æ»çã¯äžéæçã§ããæå¿ã§ã¯åãã¯å€ãããªããå¹³æ»çã®åçž®é床ã¯ããããæç¶æ§ããããç²åŽãã«ãããå¹³æ»çã«ã暪ããŸã¯ãªãã
éªšæ Œçã¯åçž®é床ã倧ãããç²åŽãããããéªšæ Œçã¯æå¿ã§åãããéæçã§ãããéªšæ Œçã«ã¯æšªçŽãããã®ã§ã暪çŽçã«åé¡ãããã
å¿çã¯äžéæçã§ãããæå¿ã§ã¯åãã¯å€ãããªããå¿çã«ã¯æšªçŽãããã®ã§ã暪çŽçã«åé¡ãããã
暪çŽçã«ã¯ææã®æšªããŸããããããããèŠããã»ããæ垯ãšãããæãèŠããã»ããæ垯ãšãããã¢ã¯ãã³ãšããªã·ã³ãšãã2çš®é¡ã®ã¿ã³ãã¯è³ªããã§ããŠãããæ垯ã®äžå€®ã¯Zèã§ä»åãããŠããã
ç¥çµçµç¹ã¯ãã¥ãŒãã³(neuron)ãšãã现èã§æ§æãããŠããããã¥ãŒãã³ã¯æ žã®ãã现èäœ(cell body)ãšã现èäœãã䌞ã³ãäžæ¬ã®é·ã軞玢(ãããããaxon)ã现èäœããçãæåããããæš¹ç¶çªèµ·(ãã
ããããšã£ããdendrite)ãããªãã軞玢ã«ã¯éãã€ããŠãããç¥çµé(ããããããã)ãšãããç¥çµéã¯æ žãæã£ãŠãããã·ã¥ã¯ã³çŽ°èãšããäžã€ã®çŽ°èã§ããã
ãã¥ãŒãã³å
ãä¿¡å·ãäŒããæ¹åã¯ã现èäœã®ã»ãããå§ãŸãã軞玢ã®æ«ç«¯ãžãšä¿¡å·ãåããããã¥ãŒãã³å
ã®ä¿¡å·äŒéã®æ¹æ³ã¯é»æ°ã«ãããã®ã§ããã现èèãšãããªãŠã ãã³ããªã©ã®ã€ãªã³ã®åãã«ãããã®ã§ããããã®ãããäžè¬ã®éå±å°ç·ãªã©ã®é»æ°åè·¯ãšã¯éãããã¥ãŒãã³ã§ã®ä¿¡å·ã®æ¹åã¯äžæ¹åã«ããäŒãããªãã
äžã€ã®ãã¥ãŒãã³ã®è»žçŽ¢ã®å
端ãšãä»ã®ãã¥ãŒãã³ãšã®éã®æ¥åéšãã·ããã¹ãšãããäžã€ã®ç¥çµã®ä¿¡å·ã¯ãã·ããã¹ãçµãŠãã€ãã®ç¥çµãžãšäŒããããŸããç¥çµãšçèãšã®éã®ããšãã·ããã¹ãšããã
ã·ããã¹ã«ã¯ãå°ããªéé(ãããŸããããã)ããããã·ããã¹éé(ãããã)ãšããã
ã·ããã¹ãã次ã®ãã¥ãŒãã³ãžãšä¿¡å·ãäŒããæ¹æ³ã¯ãååŠç©è³ªã®åæ³ã«ããããã®ã·ããã¹ã§ã®åæ³ç©ãç¥çµäŒéç©è³ªãšããã軞玢ã®æ«ç«¯ããåæ³ããããã«ã¢ãã¬ããªã³ãã¢ã»ãã«ã³ãªã³ãåæ³ãããã軞玢ã®æ«ç«¯ã«ã·ããã¹å°è(ãããã»ã)ãšããèšããã éšåããããããã«äŒéç©è³ªãå«ãŸããŠãããååãåŽã§ãã次ã®ãã¥ãŒãã³ã®çŽ°èèã«ã¯ãäŒéç©è³ªãåãåãå容äœãããããã®ããå容äœãšäŒéç©è³ªãåå¿ããŠãä¿¡å·ã次ã®ãã¥ãŒãã³ã«äŒããã
亀æç¥çµã®æ«ç«¯ããã¯ãã«ã¢ãã¬ããªã³ãåæ³ããããå¯äº€æç¥çµã®æ«ç«¯ããã¯ã¢ã»ãã«ã³ãªã³ãåæ³ããããçèãåããç¥çµã§ããéåç¥çµã®æ«ç«¯ããã¯ã¢ã»ãã«ã³ãªã³ãåæ³ãããã
| [
{
"paragraph_id": 0,
"tag": "p",
"text": "é«çåŠæ ¡çç© > çç©I > 现è",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "å°çã«ããçç©ã®çš®é¡ã¯ãååã®ä»ããããŠããçš®ã175äžçš®ã»ã©ã§ããã ãã®å
šãŠã®çç©ã¯çŽ°è(ãããŒã)ããæãç«ã£ãŠããã 现èã¯çç©ã®æ©èœäžã»æ§é äžã®åºæ¬åäœã§ããã äŸãã°ããã®äœã¯200çš®é¡ä»¥äž60å
åã®çŽ°èããã§ããŠãããšããããŠããã ãã®çŽ°èã¯æ¶å管ãªãé£ã¹ç©ã®æ¶ååžåããã现èãããã 骚ãªã骚ãäœãåºã现èãããã",
"title": "å°å
¥"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ãã®ããŒãžã§ã¯ã 现èã®åºæ¬çãªæ©èœãšæ§é ã 现èãäœçŽ°èåè£(somatic mitosis)ã«ãã£ãŠååããŠããããšã 现èãåäœãäœã£ãŠããããšã ãªã©ãæ±ãã",
"title": "å°å
¥"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "现èã®å€§ããã¯ãã®ã»ãšãã©ãèçŒã§ã¯èŠããªãã»ã©å°ããã é¡åŸ®é¡ã®çºéã«ãã£ãŠèŠ³å¯ã§ããå解èœãé«ãŸãã 现èã®å
éšæ§é ãåŸã
ã«æããã«ãªã£ãŠãã£ãã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 4,
"tag": "p",
"text": "现èã¯çç©ã®çš®é¡ãããã ã®éšäœã«ãã£ãŠããŸããŸãªå€§ããã§ååšããŠããã 以äžã«é¡åŸ®é¡ã®å解èœãšçŽ°èãªã©ã®å€§ãããæããã â»å解èœ(æ¥è¿ãã2ç¹ãèŠåããããšã®ã§ããæå°è·é¢)",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 5,
"tag": "p",
"text": "现èã®èŠãç®ãåãã¯ããŸããŸã«ç°ãªãããåºæ¬çãªæ©èœãæ§é ã¯åãã§ããã 现èã¯æ ž(ãããnucleus)ãšçŽ°è質(ãããŒããã€ãcytoplasm)ãããããå²ã现èè(ãããŒããŸããcell membrane)ãããªãã现èèã«å
ãŸããå
éšã®ç©è³ªã®ãã¡ããæ žãé€ããéšåã®ããšã现è質ãšããã ãŸããæ žãšçŽ°è質ãåãããŠå圢質(ãããããã€ãprotoplasm)ãšãåŒã¶ãã€ãŸãã现èèã«å
ãŸããå
éšã®ç©è³ªã®ããšãå圢質ãšããã 现è質ã«ã¯ãæ žãå§ããšããŠãããã³ã³ããªã¢ãªã©ãããŸããŸãªæ©èœãšæ§é ããã€å°ããªåšå®ãããããããã现èå°åšå®(ãããŒããããããããorganelle)ãšåŒã¶ã 现èå°åšå®ã©ããã®éã¯ãæ°Žã»ã¿ã³ãã¯è³ªãªã©ã§æºããããŠãããããã现è質åºè³ª(ãããŒãã〠ããã€ãcytoplasmic matrix)ãšåŒã¶ããã®çŽ°è質åºè³ªã«ã¯ãé
µçŽ ãªã©ã®ã¿ã³ãã¯è³ªãã¢ããé
žãã°ã«ã³ãŒã¹ãªã©ãå«ãŸããŠããã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 6,
"tag": "p",
"text": "",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 7,
"tag": "p",
"text": "æ žã¯ã1ã€ã®çŽ°èããµã€ã1ã€ãã£ãŠãããå
éšã«æè²äœ(chromosome)ãããã æè²äœã¯ãDNAãšã¿ã³ãã¯è³ªãããªãã DNAãéºäŒåã®æ
å ±ãæã£ãŠããã 现èåè£(cell division)ã®éã«DNAã¯è€è£œãããæ°ãã现èã«åé
ãããã é¡åŸ®é¡ã§æ žã芳å¯ããå Žåã¯ãé
¢é
žã«ãŒãã³ãé
¢é
žãªã«ã»ã€ã³æ¶²ãªã©ã®è²çŽ ã§ãæè²äœãèµ€è²ã«æè²ã§ããã ããããããã®æè²çŸè±¡ããããæè²äœããšããååã®ç±æ¥ã§ããã æ žã¯ã1~æ°åã®æ žå°äœ(nucleolus)ãå«ã¿ããã®éãæ žæ¶²(nuclear sap)ãæºãããŠããã æ žã®è¡šé¢ã«ã¯æ žè(ãããŸããnuclear membrane)ãããã æ žèã¯ãäºéã®èãèã§ã§ããŠãããæ žèå(ãããŸããããnuclear pore)ãšåŒã°ããå€æ°ã®åããããæ žãžã®ç©è³ªã®åºå
¥ãã«é¢ãã£ãŠããã DNAãéºäŒåã®æ¬äœã§ããããæè²äœã¯DNAãå«ãã§ãããæ žãæè²äœãå«ãã§ãããããæ žãéºäŒã«æ·±ãé¢ãã£ãŠããã®ã§ããã åºæ¬çã«ã¯1ã€ã®çŽ°èã1ã€ã®æ žããã€ãã äŸå€ãšããŠãããšãã°ããã®èµ€è¡çã®ããã«æ žããããªã现èãããã ãŸãããã®éªšæ Œçã®ç现èã®ããã«1ã€ã®çŽ°èãè€æ°ã®æ žããã€ãã®ãããã æ žã¯çŽ°èå°åšå®ã®åããå¶åŸ¡ããŠããããã®ãã现èã®çåãå¢æ®ã«å¿
èŠãªãã®ã§ããã ãªã®ã§ãèµ€è¡çã®ããã«æ žã倱ã£ã现èã¯é·ãçãç¶ããããšã¯ã§ãããåè£ããããšãã§ããªãã æ žã®äžã«ããDNAãããã®ãããªã现èå°åšå®ã®å¶åŸ¡ãè¡ã£ãŠããã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 8,
"tag": "p",
"text": "ã¢ã¡ãŒããã¬ã©ã¹æ¿ã§æ žãããç(ãžã)ãšãæ žããªãçãšã«åæãããšãæ žãããçã¯å¢æ®ã§ããæ žããªãçã¯æ»ã¬ã(ã¢ã¡ãŒãã®åæå®éš1)",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 9,
"tag": "p",
"text": "ã¢ã¡ãŒãã®æ žãã¬ã©ã¹ç®¡ã§åžãåããæ žãšçŽ°è質ãšã«åãããšãäž¡æ¹ãšãæ»ã¬ã(ã¢ã¡ãŒãã®åæå®éš2)",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 10,
"tag": "p",
"text": "ãã®ããã«æ žã¯çŽ°èã®çåãå¢æ®ã«å¿
èŠã§ããã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 11,
"tag": "p",
"text": "",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 12,
"tag": "p",
"text": "",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 13,
"tag": "p",
"text": "çç©ã®çŽ°èã«ã¯ãæ žããããªãåæ žçŽ°èãšãæ žããã€çæ žçŽ°èãšãããã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 14,
"tag": "p",
"text": "倧è
žèãªã©ã®çŽ°èé¡ãããŠã¬ã¢ãªã©ã®ã·ã¢ããã¯ããªã¢(ã©ã³è»é¡)ã®çŽ°èã¯ãæ žãæããªãã ãããã®çç©ã®çŽ°èãæè²äœãšããã«å«ãŸããDNAã¯ãã£ãŠãããããããå
ãæ žèããã£ãŠããªãã®ã§ãæ žããªãã ãã®ãããªãæ žã®ãªã现èã®ããšãåæ žçŽ°è(prokaryotic cell)ãšåŒã¶ã ãŸããåæ žçŽ°èã§ã§ããçç©ãåæ žçç©(prokaryote)ãšåŒã¶ã åæ žçŽ°èã®æè²äœãšããã«å«ãŸããDNAã¯çŽ°è質åºè³ªã®äžã«ããã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 15,
"tag": "p",
"text": "åæ žçŽ°èã¯ãããã³ã³ããªã¢ãèç·äœãªã©ãæããªãã åæ žçŽ°èã¯ãçæ žçŽ°èãããå°ããå
éšæ§é ãåçŽã§ããã ã·ã¢ããã¯ããªã¢ã¯ãããã³ã³ããªã¢ãšèç·äœãæããªãåæ žçç©ã§ããããå
åæãè¡ãã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 16,
"tag": "p",
"text": "ããã«å¯ŸããŠãæè²äœãæ žèã«å
ãŸããŠãã现èãçæ žçŽ°è(eukaryotic cell)ãšåŒã¶ã ãŸããçæ žçŽ°èã§ã§ããçç©ãçæ žçç©(eukaryote)ãšåŒã¶ã ã»ãŒãã¹ãŠã®çæ žçç©ã§ã¯çæ žçŽ°èã«ããã³ã³ããªã¢ãèŠãããã ãŸããæ€ç©ã®å Žåãçæ žçŽ°èã«èç·äœãèŠãããã ããã³ã³ããªã¢ããã³èç·äœã¯ãç¬èªã®DNAãæã¡ããããå«ã现èã®æ žã®DNAãšã¯éºäŒæ
å ±ãç°ãªãã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 17,
"tag": "p",
"text": "ãã®ãããããããããã³ã³ããªã¢ããã³èç·äœã¯ã å®ã¯ããšããšããã®åãå
¥ãå
ã®çŽ°èãšã¯å¥ã®çç©ã ã£ããã åãå
¥ãå
ã®çŽ°èã«å
¥ã蟌ã¿å
±çããããã«ãªã£ãã®ã ããããšæãããŠããã ãããŠãããã³ã³ããªã¢ãŸãã¯èç·äœãåã蟌ãã çµæãçç©çã«çæ žçŽ°èãåºãŠãããã®ã ãšæãããŠãã 现èãããã³ã³ããªã¢ãŸãã¯èç·äœãåã蟌ãåã¯ããã®çŽ°èã¯åæ žçŽ°èã ã£ãã®ã ãããšæãããŠããããã®ãããªèª¬ãã现èå
å
±ç説ãŸãã¯åã«å
±ç説ãšããã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 18,
"tag": "p",
"text": "ããã³ã³ããªã¢(mitochondria)ã¯åç©ãšæ€ç©ã®çŽ°èã«ååšãã é·ã1ÎŒm~æ°ÎŒmãå¹
0.5ÎŒmçšåºŠã®ç²ç¶ã®çŽ°èå°åšå®ã§ãã ååŠåå¿ã«ãã£ãŠé
žçŽ ãæ¶è²»ããŠææ©ç©ãå解ããšãã«ã®ãŒãåŸãåŒåž(respiration)ãè¡ãã ããã³ã³ããªã¢ã®åœ¢ã¯ç圢ãŸãã¯åç圢ã®æ§é äœã§ã å€åŽã«ããå€èãšå
åŽã«ããã²ã ç¶ã®å
èãšã®2éèããã€ã å
èãã²ã ç¶ã«ãªã£ãéšåãã¯ãªã¹ã(cristae)ãå
èã«å²ãŸãã空éãæºãã液äœããããªãã¯ã¹(matrix)ãšåŒã¶ã åŒåžã«é¢ããé
µçŽ ãã¯ãªã¹ããšãããªãã¯ã¹ã«ãµããŸããŠããããã®é
µçŽ ã§ææ©ç©ãå解ããã ããã³ã³ããªã¢ã®å
èã§ATPãšããç©è³ªãåæããã åæ žçç©ãåŒåžãè¡ããããããåæ žçŽ°èã®åŒåžã¯ããã£ããŠããã³ã³ããªã¢ã«ãããã®ã§ã¯ãªãã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 19,
"tag": "p",
"text": "(â» æç§æžã®ç¯å²å€:)芳å¯æã®ããã³ã³ããªã¢ã®æè²ã¯ãã€ãã¹ã°ãªãŒã³ã«ãã£ãŠç·è²ã«æè²ã§ããã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 20,
"tag": "p",
"text": "èç·äœ(chloroplast)ã¯æ€ç©ã®çŽ°èã«ååšããçŽåŸ5~10ÎŒmãåã2~3ÎŒmã®åžã¬ã³ãºåœ¢ã®åšå®ã§ããã å
ãšãã«ã®ãŒã䜿ã£ãŠæ°Žãšäºé
žåççŽ ããçæ°Žåç©ãåæããå
åæ(photosynthesis)ãè¡ãã èç·äœã«ã¯ãã©ã³ã€ã(thylakoid)ãšåŒã°ããæå¹³(ãžããºã)ãªè¢ç¶ã®æ§é äœãããã ãã©ã³ã€ããç©ã¿éãªã£ãŠã°ã©ã(grana)ãšåŒã°ãããŸãšãŸããäœã£ãŠããã äžéšã®çŽ°é·ã延ã³ããã©ã³ã€ããè€æ°ã®ã°ã©ãéãçµãã§ããã ãã®éãã¹ããã(stroma)ãšåŒã°ãã液äœãæºãããŠããã ããã«ããã®åšããå
èãšå€èã®2éèãå²ãã§ããã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 21,
"tag": "p",
"text": "ãŸããèç·äœã¯ã¯ãããã£ã«(chlorophyll)ãšããç·è²ã®è²çŽ ããµããã§ããã æ£ç¢ºã«èšããšãã¯ãããã£ã«ã¯ç·è²ã®å
ãåå°ããŠãã»ãã®è²ã®å
ãåžåããè²çŽ ã§ããã ãã®ã¯ãããã£ã«ã®åå°ç¹æ§ã®ãããæ€ç©ã¯ç·è²ã«èŠããã ãã©ã³ã€ãã®èããã¯ãããã£ã«ãªã©ã®è²çŽ ããµããã§ãããããã«ãã£ãŠå
ãšãã«ã®ãŒãåžåããŠããã ãããŠãã¹ãããã«ããé
µçŽ ã®åãã«ãã£ãŠãå
åæã®ææ©ç©åæãè¡ã£ãŠããã èç·äœã¯ãã¹ãããã«ç¬èªã®DNAãæã£ãŠããã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 22,
"tag": "p",
"text": "",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 23,
"tag": "p",
"text": "",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 24,
"tag": "p",
"text": "液è(ããã»ããvacuole)ã¯äž»ã«æ€ç©çŽ°èã«ã¿ãããç©è³ªã貯èµããã浞éå§ã調ç¯ãããããã äžéã®æ¶²èèã§å
ãŸããå
éšã现è液(cell sap)ãæºãããŠããã äžéšã®æ€ç©çŽ°èã¯ã¢ã³ãã·ã¢ã³(anthocyan)ãšåŒã°ããèµ€ã»éã»çŽ«è²ã®è²çŽ ãå«ãã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 25,
"tag": "p",
"text": "",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 26,
"tag": "p",
"text": "现èèã¯çŽ°è質ã®å€åŽã«ããåã5nm~10nmçšåºŠã®èãèã§ãããäž»ã«ãªã³è質ãšã¿ã³ãã¯è³ªã§æ§æãããå
žåçãªçäœèã§ããã现èãžã®ç©è³ªã®åºå
¥ãã®èª¿ç¯ãè¡ãããªã³è質ã«ã¯æ°Žã«æº¶ãããã芪氎æ§ã®éšåãšãæ°Žã«æº¶ãã«ããçæ°Žæ§ã®éšåããããçæ°Žæ§ã®éšåãå
åŽã«åããåã£ããäºéè(ã«ãã
ããŸããbilayer)ã«ãªã£ãŠããã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 27,
"tag": "p",
"text": "ãæ°Žãšæ²¹ããšããèšèãã仲ã®æªãããšã®è¡šçŸãšããŠçšããããããã«ãæ°Žãšæ²¹ã¯æº¶ãåããªãã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 28,
"tag": "p",
"text": "ãã®ããã«çŽ°èèãå€éšã«å¯ŸããŠçæ°Žæ§(ããããã)ã®éšåã ããåºããŠãããã现èèã¯çæ°Žç(ããããŠã)ã§ããããã®ããã现èèã¯ãæ°Žã«æº¶ããªãããã®ããã现èèã«ãã£ãŠã现èããŸããããä»åãããããããã®çŽ°èã溶ãåããªãããã«ãªã£ãŠããã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 29,
"tag": "p",
"text": "现èèã®ãšããã©ããã«ã¿ã³ãã¯è³ªãååžããŠããããã®(现èèã«ãã)ã¿ã³ãã¯è³ªãã现èãžã®ç©è³ªã®åºå
¥ãã®èª¿ç¯ã«é¢ãã£ãŠããã现èèã¯ãç¹å®ã®ç©è³ªã®ã¿ãééãšããæ§è³ªãããããã®æ§è³ªã®ããšãéžæçééæ§(ãããããŠã ãšãããã)ãšããã(åæãæ°ç ã®å°éãçç©ãã«ãéžæçééæ§ãã®çšèªããã)",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 30,
"tag": "p",
"text": "ã¹ã¯ããŒã¹æº¶æ¶²ãªã©ã«å¯ŸããŠã¯ã现èèã¯åéæ§ (â»ã现èãžã®ç©è³ªã®åºå
¥ãããåç
§) ã«è¿ãæ§è³ªã瀺ãã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 31,
"tag": "p",
"text": "现èèã«ã¯ããšããã©ããã«ã€ãªã³ãã£ãã«(ion channel)ãããããããªãŠã Naãã«ãªãŠã Kãªã©ç¹å®ã®ã€ãªã³ã®ã¿ãéžæçã«ééãããã(â» çç©IIã§ã€ãªã³ãã£ãã«ãç¿ãã®ã§ãã€ãã§ã«å€ªåã)",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 32,
"tag": "p",
"text": "ãŸãã现èã®ãšããã©ããã«ã¯å容äœ(ãã
ãããããreceptor)ããããç¹å®ã®ç©è³ªããã®åºæ¿ãåãåããå容äœã®çš®é¡ããšã«åãåããç©è³ªã®çš®é¡ãéãããã®ããåãåããåºæ¿ã®çš®é¡ãã¡ãããå容äœã®æ質ã¯ã¿ã³ãã¯è³ªã§ããã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 33,
"tag": "p",
"text": "ãŸãã现èèäžã®ã¿ã³ãã¯è³ªã«ããªãªãŽç³ãªã©ã®å€ç³é¡ã§åºæ¥ãŠããç³é(ãšãããsugar chain)ãä»ããŠããå Žåãããã现èã©ããã®èå¥(ããã¹ã€)ãªã©ã®æ
å ±äº€æãã现èã©ããã®çµåãªã©ã«åœ¹ç«ã£ãŠããããªããããã®ABOåŒè¡æ¶²åã®éãã¯ãèµ€è¡çã®çŽ°èèã®ç³éã®éãã«ãããã®ã§ããã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 34,
"tag": "p",
"text": "现èãç°ç©ãæ¶ååžåããé£äœçš(ãããããã)ã®éã«ãã现èèãé¢ãã£ãŠãããç°ç©ã«çŽ°èèãåãä»ãããšã§ãç°ç©ãå
ãã§åã蟌ããé£äœçšã®ããšã飲é£äœçšãšãèšã£ããããšã³ããµã€ããŒã·ã¹ãšãããããã¯ããã¡ãŒãžãã¢ã¡ãŒããªã©ã®é£äœçšã¯ããã®ãããªçŽ°èèã®åãã«ãããã®ã§ããã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 35,
"tag": "p",
"text": "",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 36,
"tag": "p",
"text": "现èå£(ãããŒããžããcell wall)ã¯æ€ç©çŽ°èãèé¡ãåæ žçç©ã«èŠããã现èèã®å€åŽã§çŽ°èãå®ãåºãèã§ããã圢ãä¿ã€åããæã€ãåç©çŽ°èã«ã¯èŠãããªãã 现èå£ã¯ãã»ã«ããŒã¹ãäž»æåãšããŠãããã»ã«ããŒã¹ãšãã¯ãã³ãªã©ã®çæ°Žåç©ã«ãã£ãŠãªããã€å
šéæ§ (â»ã现èãžã®ç©è³ªã®åºå
¥ãããåç
§) ã®æ§é ã§ããã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 37,
"tag": "p",
"text": "",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 38,
"tag": "p",
"text": "现èã¯ã1665幎ãã€ã®ãªã¹ã®ãããŒãã»ããã¯ã«ãã£ãŠçºèŠãããã 圌ã¯ãèªäœã®é¡åŸ®é¡ãçšããŠã軜ããŠåŒŸåã®ããã³ã«ã¯ã®èçã芳å¯ãããšããã å€æ°ã®äžç©ºã®æ§é ãããããšãç¥ã£ãããããä¿®éé¢ã®å°éšå±(cellãã»ã«)ã«ã¿ããŠã现è(cell)ãšåŒãã ã 圌ã芳å¯ããã®ã¯ãæ»ãã æ€ç©çŽ°èã®çŽ°èå£(ãããŒããžããcell wall)ã§ãã£ããã ãã®åŸã1674幎ããªã©ã³ãã®ã¬ãŒãŠã§ã³ããã¯ã«ããã¯ãããŠçãã现èã®çŽ°èã芳å¯ãããã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 39,
"tag": "p",
"text": "19äžçŽã«å
¥ããšã现èãšçåœæŽ»åã®é¢é£æ§ãæ°ä»ãããã¯ãããã ãŸã1838幎ããã€ãã®ã·ã¥ã©ã€ãã³ãæ€ç©ã«ã€ããŠã ç¿1839幎ããã€ãã®ã·ã¥ã¯ã³ãåç©ã«ã€ããŠã ãå
šãŠã®çç©ã¯çŽ°èããæãç«ã€ããšãã现è説(cell theory)ãæå±ããã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 40,
"tag": "p",
"text": "ããã«åŸããã€ãã®ãŠã£ã«ãã§ãŒã®ãå
šãŠã®çŽ°èã¯ä»ã®çŽ°èã«ç±æ¥ããããšããèãã«ããã现è説ã¯æµžéããŠãã£ãã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 41,
"tag": "p",
"text": "",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 42,
"tag": "p",
"text": "",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 43,
"tag": "p",
"text": "ã¬ãŒãŠã§ã³ããã¯ã现èãçºèŠããŠããåœæã®çç©åŠã®æ¥çã§ã¯ããã°ããã埮çç©ã®çºçã«ã€ããŠã¯ã芪ãªãã«ç¡çç©ããèªç¶ã«åŸ®çç©ãçºçããã ãããšããèªç¶çºç説ãä¿¡ããããŠããã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 44,
"tag": "p",
"text": "ããã19äžçŽã«ãã©ã³ã¹ã®çååŠè
ãã¹ããŒã«ããå³ã®ãããªSåç¶ã«å£ã®æ²ã£ããã©ã¹ã³(äžè¬ã«ãçœé³¥ã®éŠãã©ã¹ã³ããšãã)ã䜿ã£ãå®éšã§èªç¶çºç説ãééã£ãŠããäºã蚌æããã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 45,
"tag": "p",
"text": "",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 46,
"tag": "p",
"text": "ã察ç
§å®éšãã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 47,
"tag": "p",
"text": "现è質åºè³ªã«ã¯ãäžèŠãããšæ¶²äœä»¥å€ã«äœãç¡ãããã«èŠããããå®ã¯ç¹ç¶ç¶ã®æ§é ãããããã®çŽ°è質åºè³ªã«ååšããŠããç¹ç¶ç¶ã®æ§é ã现èéªšæ Œ(ãããŒã ãã£ãããcytoskeleton)ãšããã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 48,
"tag": "p",
"text": "现èéªšæ Œã«ã¯ã埮å°ç®¡(ã³ããããããmicrotubule)ãäžéåŸãã£ã©ã¡ã³ã(intermadiate filament)ãã¢ã¯ãã³ãã£ã©ã¡ã³ã(actin filament)ã®3çš®é¡ãããã ãã®çŽ°èéªšæ Œã«ãã£ãŠã现èå°åšå®ã¯åºå®ãããŠããã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 49,
"tag": "p",
"text": "ãŸãã现èå°åšå®ã液èãªã©ã现èå
ã§éåããŠå圢質ãæµåããŠããããã«èŠããçç±ã¯ã现èéªšæ ŒãåããŠçŽ°èå°åšå®ãªã©ãéãã§ããããã§ããããšãè¿å¹Žã«åãã£ãã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 50,
"tag": "p",
"text": "现èå°åšå®ã«ãããŠãå°ããããŠå
åŠé¡åŸ®é¡ã§ã¯èŠãããªãããé»åé¡åŸ®é¡ã§ãªãèŠãããæ§é ããããã€ãååšããŠããã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 51,
"tag": "p",
"text": "ãŽã«ãžäœãäžå¿äœã¯ãå°ãããããããå
åŠé¡åŸ®é¡ã§ã¯èŠãããªãããé»åé¡åŸ®é¡ã§èŠãããšãã§ããã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 52,
"tag": "p",
"text": "ãŽã«ãžäœ(Golgi body)ã¯é
µçŽ ããã«ã¢ã³ãªã©ã®åæ³ã«é¢äžããã»ãã现èå
ã§å©çšãããã¿ã³ãã¯è³ªã®ä¿®é£Ÿãè¡ãã äžéèã®å¹³ããªè¢ç¶ã®å±€ãããã€ãéãªã£ãæ§é ãããŠããã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 53,
"tag": "p",
"text": "äžå¿äœ(centrosome)ã¯äž»ã«åç©çŽ°èã«ã¿ãããã¹ãæ¯ãç¹æ¯ã圢æãããã现èåè£ã®éã®çŽ¡éäœåœ¢æã®èµ·ç¹ãšãªãã 埮å°ç®¡ãšãã管ç¶ã®æ§é äœã3ã€éãŸãããããç°ç¶ã«9ã€éãŸãäžå¿å°äœãäœãã ãã®äžå¿å°äœã2ã€LåçŽäº€ããŠäžå¿äœãäœãã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 54,
"tag": "p",
"text": "",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 55,
"tag": "p",
"text": "ã€ã³ãã«ãšã³ã¶ãªã©ã®ãããªããŠã€ã«ã¹ããšããçš®é¡ã®ç©ãååšããããŠã€ã«ã¹ã¯çç©ãšéçç©ãšã®äžéçãªååšã§ãããã»ãšãã©ã®ãŠã€ã«ã¹ã¯0.3ÎŒm以äžã®å€§ããã§ããã倧è
žè (çŽ3ÎŒm)ãªã©ã®çŽ°èã®å€§ãããšæ¯ã¹ãŠããšãŠãå°ããããŠã€ã«ã¹ã¯ãã¿ã³ãã¯è³ªã®æ®»ãšããã®æ®»ã«ã€ã€ãŸããæ žé
žããã€æ§é ã§ã现èãæã£ãŠããªãããŠã€ã«ã¹ã¯éºäŒç©è³ªãšããŠæ žé
žããã¡ãåç¬ã§ã¯å¢æ®ã§ããªãããŠã€ã«ã¹ã®å¢æ®ã¯ãä»ã®çç©ã®çãã现èã®äžã«äŸµå
¥ããŠããã®çŽ°èã®äžã«ããç©è³ªãå©çšããŠè¡ããæ»ãã 现è(äŸ:å ç±åŠçãªã©ãã现è)ã®äžã§ã¯ããŠã€ã«ã¹ã¯å¢æ®ã§ããªãã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 56,
"tag": "p",
"text": "ãŠã€ã«ã¹èªäœã¯æŽå²çã«ã¯ã次ã®ããã«çºèŠãããã(ç§ç®ãç§åŠãšäººéç掻ãã®ç¯å²)",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 57,
"tag": "p",
"text": "ãŸãçŽ çŒãã®é¶åšã®æ¿ã䜿ã£ãŠæ°Žãæ¿Ÿéãããšããã®é¶æ¿ã«ã¯çŽ°èããã埮ç¬ãªç©Žã空ããŠããã®ã§ã现èã®ãµããŸããæ°Žãæµããšã现èãé€ããŠæ°Žã ããééãããŠæ¿Ÿéã§ããçºèŠãããããã®æ¿Ÿéåšã«ãããèµ€ç¢èãªã©ã®ç
åèãæ¿Ÿéã§ããäºãçºèŠããããããããã¿ãã³ã¢ã¶ã€ã¯ç
ã®ç
åäœã¯ãæ°Žãšãã£ããã«ãã®é¶æ¿ãééããäºããã·ã¢ã®ç§åŠè
ã€ã¯ããã¹ããŒã«ãã1980幎代ã«çºèŠãããã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 58,
"tag": "p",
"text": "ãã®äºããã现èããã埮å°ãªååšãä¿¡ããããããã«ãªã£ãã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 59,
"tag": "p",
"text": "ãã®åŸã1930幎代ã«ãã€ãã®ç§åŠè
ã«ã¹ã«ãªã©ã«ãã£ãŠçºæãããé»åé¡åŸ®é¡ã®çºéã«ããã现èãæ åçã«èŠ³å¯ã§ããããã«ãªã£ãã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 60,
"tag": "p",
"text": "ãŸãã1930幎代ãã¢ã¡ãªã«ã®ç§åŠè
ã¹ã¿ã³ã¬ãŒãã¿ãã³ã¢ã¶ã€ã¯ãŠã€ã«ã¹ã®çµæ¶åã«æåããŠããã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 61,
"tag": "p",
"text": "",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 62,
"tag": "p",
"text": "现è質åºè³ªã¯ã现èå°åšå®ã®éãæºãããæ°Žã»ã¿ã³ãã¯è³ªãªã©ãå«ãŸããæ§ã
ãªååŠåå¿ãè¡ãããŠããã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 63,
"tag": "p",
"text": "ãªãªã«ããã¢ã®èã®çŽ°èã芳å¯ãããšã现è質åºè³ªã®äžãé¡ç²ãæµåããŠããããããå圢質æµå(ãããããã€ãã
ãã©ããprotoplasmic streamingã现è質æµå)ãšåŒã¶ãå圢質æµåã¯çããŠãã现èã§ã®ã¿èŠãããã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 64,
"tag": "p",
"text": "现èã¯ããã®äžã«æ°Žãæ é€åãåãå
¥ã䜿ããªããšçããŠãããªãã 以äžã§ã¯çŽ°èãžã®ç©è³ªã®åºå
¥ãã«ã€ããŠæ±ãã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 65,
"tag": "p",
"text": "å°æã§éèãå»ãã§å¡©ãããããšãæ°ŽãåºãŠããŠéèããããªãããããŸãããã¡ã¯ãžã«å¡©ãããããšçž®ãã§ãããšãã話ãèããããå®éã«èŠãããšãããã ãããå®ã¯ããã®äºã€ã¯åãçŸè±¡ã§ããã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 66,
"tag": "p",
"text": "äžå®ä»¥äžã®å€§ããã®ååã®ã¿ãééãããæ§è³ªãåéæ§(ã¯ããšããããsemipermeability)ãšåŒã¶ã ãŸããåéæ§ã瀺ãèãåéè(ã¯ããšããŸããsemipermeable membrane)ãšåŒã¶ã溶質ã§ãã£ãŠããäžå®ä»¥äžã®å€§ãããªããåéèã¯éããªãã现èèã¯åéèã®æ§è³ªããã£ãŠãããã»ããã³èãåéèã§ããã溶åªãæ°Žã®å Žåã¯ãåéèã¯æ°Žååãéããäžè¬ã«ãã·ã§ç³ã¯çŽ°èèãéããªãã®ãæ®éã§ãããå°¿çŽ ãã°ãªã»ãªã³ã¯çŽ°èèãéãã®ãæ®éã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 67,
"tag": "p",
"text": "ããã«å¯ŸããŠãååã®å€§å°ã«ãããå
šãŠééãããæ§è³ªãå
šéæ§(ãããšããããnon-selective permeability)ãšåŒã¶ã ãŸããå
šéæ§ã瀺ãèã'å
šéè(ãããšããŸããpermiable membrane)ãšåŒã¶ããçŽã¯å
šéèã§ãããæ€ç©ã®çŽ°èå£ã¯å
šéèã§ããã现èèãšçŽ°èå£ãééããªãããã«ã现èèã¯åç©ã»æ€ç©ã®äž¡æ¹ã«ãããåéèã§ããã现èå£ã¯æ€ç©ã«ãããªãã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 68,
"tag": "p",
"text": "æ¿åºŠã®ç°ãªã氎溶液ããããããšãç©è³ªãé«ãæ¿åºŠããäœãæ¿åºŠã®æº¶æ¶²ãžç§»åããæ¿åºŠãåäžã«ãªãçŸè±¡ãæ¡æ£(ãããããdiffusion)ãšåŒã¶ã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 69,
"tag": "p",
"text": "åéèãã¯ããã§æ¿åºŠã®äœã溶液ãšæ¿åºŠã®é«ã溶液ãæ¥è§Šããããšãæ¡æ£ã«ãã£ãŠã溶åªã®æ°Žã¯ç§»åããåéèãéã£ãŠæ¿åºŠã®äœãæ¹ããé«ãæ¹ãžãšæ°Žã¯ç§»åããããã®çŸè±¡ã浞é(ãããšããosmosis)ãšåŒã¶ã䞡液ã®æ¿åºŠãåãã«ãªããŸã§ã溶åªã®æ°Žãèãéã£ãŠç§»åããã倧ããã®å€§ãã溶質ã¯åéèãéããªãã®ã§ããããã«å€§ããã®å°ããååã§ããæ°Žååã移åããã®ã§ããã 説æã®ç°¡ååã®ããã溶質ååã¯å€§ãããåéèãéããªãå Žåã§ãããšããã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 70,
"tag": "p",
"text": "浞éã®ãããæ¿åºŠã®äœã溶液ããæ¿åºŠã®é«ã溶液ãžæº¶åªã移åãããããã«åãå§åã浞éå§(ãããšããã€ãosmotic pressure)ãšåŒã¶ã溶液ã®æ¿åºŠã®å·®ã倧ããã»ã©ã浞éå§ã¯å€§ããã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 71,
"tag": "p",
"text": "浞éå§ãåŒã§è¡šãã°ã浞éå§ãP(åäœ[Pa]ãã¹ã«ã«ãªã©)ãæ¿åºŠå·®ãC(åäœ[mol/L]ãªã©)ãšãããš(ãmolããšã¯ãã¢ã«ãã§ååæ°ã®åäœã§ã6.02Ã10å)ãåŒã¯",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 72,
"tag": "p",
"text": "ã§ããã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 73,
"tag": "p",
"text": "â» çç©Iã®ç¯å²ãè¶
ãããããã詳ããã¯ã枩床ãTãKããšããŠ(ãKããšã¯ã±ã«ãã³ãšããã枩床ã®åäœ)ãæ°äœå®æ°(ããããŠããã)ãšããæ¯äŸä¿æ°ãRãšããŠã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 74,
"tag": "p",
"text": "(ããã¡ã³ããããã®åŒããšããã)",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 75,
"tag": "p",
"text": "ã§ãããR=0.082 (Lã»æ°å§)/(Kã»mol)ã (ç©çãååŠãªã©ã§ãæ°äœã®ç¶æ
æ¹çšåŒã PV = nRT ãšããã®ãç¿ããã±ã«ãã³ãšã¯ã絶察é¶åºŠãã€ãã¹273°Cã0Kãšãã絶察枩床ã®ããšã§ããããã®ããšãããåããããã«ãèªè
ã¯é«æ ¡ç©çãé«æ ¡ååŠãå匷ããªããã°ãªããªãªãã)",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 76,
"tag": "p",
"text": "å
ã®æ°Žæº¶æ¶²ã®æ°Žé¢ã®é«ããåãã ã£ãå Žåãåéèã«ããæ¥è§Šã§ã¯æµžéã«ãšã£ãŠçæ¹ã®æ°Žãå¢ããã¶ãããããŠããçæ¹ã®æ°Žãæžã£ãã¶ããæ°Žé¢ã®é«ãã«éããçããã®ã§ãã€ãŸãæ°Žäœå·®ãçããã®ã§ããã®æ°Žäœå·®ãã浞éå§ã®å€§ããã枬ãããæ°Žé¢ã®é«ããåãã«ããããã«ã¯ãå€éšããããããå ããªããšãããªãããã®ãããã®éåã«ããåã®å€§ããããããã¯ãã®ãããã®åãå§åã«æç®ãããã®ãã浞éå§ã®å€§ããã§ããããã®ãšãã®ããããã®åã«çžåœããå§åã§ã浞éå§ã枬ããã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 77,
"tag": "p",
"text": "åéèã§ãªããèãªãã§ããã®ãŸãŸæ¿åºŠã®ãã氎溶液ãæ¥è§Šããå Žåã¯ãæ°Žäœå·®ã¯çããªãã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 78,
"tag": "p",
"text": "现èã溶液ã«æµžãããšãã现èãžã®æ°Žã®åºå
¥ããçãããããæ¿åºŠãåè¡¡ãã现èã®äœç©ãå€åããªããªãã°ããã®æº¶æ¶²ãç匵液(ãšãã¡ãããããisotonic solution)ãšåŒã¶ã ããã«å¯Ÿãã现èããæ°ŽãåºãŠããè±æ°ŽããŠã现èã®äœç©ãæžå°ãããããªæº¶æ¶²ãé«åŒµæ¶²(ããã¡ãããããHypertonic solution)ãšåŒã³ã éã«ã现èãžæ°Žãå
¥ã£ãŠããã现èã®äœç©ãå¢å ãããããªæº¶æ¶²ãäœåŒµæ¶²(ãŠãã¡ãããããhypotonic solution)ãšåŒã¶ã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 79,
"tag": "p",
"text": "",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 80,
"tag": "p",
"text": "ããã®èµ€è¡çã¯ã0.9%(=9g/L)ã®é£å¡©æ°Žãšç匵ã§ãããã0.9%ãã®ã%ããšã¯è³ªéããŒã»ã³ãã§ããã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 81,
"tag": "p",
"text": "",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 82,
"tag": "p",
"text": "æ€ç©çŽ°èã§ã¯çŽ°èèã®ãŸãããå
šéæ§ã®çŽ°èå£ãå²ãã§ããã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 83,
"tag": "p",
"text": "现èãæ°Žãåžåããåã®ããšããåžæ°Žåããšããããã®å§åã®ããšãåžæ°Žå§(ãã
ããããã€)ãšãããåžæ°Žå§ã®åŒã¯ã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 84,
"tag": "p",
"text": "ã§ããã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 85,
"tag": "p",
"text": "å€ãã®æ€ç©çŽ°èã¯éåžžæãããé«åŒµã§ããããã®ãããéåžžæã§ãæ€ç©çŽ°èã§ã¯å圢質ãèšåŒµããŠããã现èå£ããã®èšå§ãçããŠããã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 86,
"tag": "p",
"text": "现èå£ãã现è質ãé¢ããçŽåã»çŽåŸã®ããšãéçå圢質åé¢ãšããããã®ãšãã®å€æ¶²ã®æº¶æ¶²æ¿åºŠã®ããšãéçæ¿åºŠãšããã ãªããå圢質ããã³å圢質ããå
åŽã®éšåã®ããšãããããã©ã¹ããšãããããããã©ã¹ãã现èå£ããé¢ããŠããŸãçŸè±¡ã®ããšããå圢質åé¢ã®ããšã§ããã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 87,
"tag": "p",
"text": "",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 88,
"tag": "p",
"text": "现èèã¯ãç¹å®ã®ç©è³ªã®ã¿ãééãããŠããããã®ãããªæ§è³ªãéžæçééæ§(ãããããŠã ãšãããããSelective permeability)ãšåŒã¶ã现èèã«ååšãã茞éã¿ã³ãã¯è³ªããã©ã®ç©è³ªãééãããŠãã©ã®ç©è³ªãééãããªããã®éžæãè¡ã£ãŠããã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 89,
"tag": "p",
"text": "茞éã¿ã³ãã¯è³ªã«ã¯ãã©ãããçš®é¡ãããããšãããšãåŸè¿°ããããã£ãã«ããããã³ãããããã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 90,
"tag": "p",
"text": "ããŠãéžæçééæ§ã«ã¯ãæ¿åºŠåŸé
ã«åŸã£ãŠæ¡æ£ã«ããç©è³ªãééãããåå茞é(ãã
ã©ãããããpassive transport)ãšã ãã£ãœããæ¿åºŠåŸé
ã«éãã£ãŠç©è³ªãééãããèœå茞é(ã®ãã©ãããããactive transport)ãšããã2çš®é¡ã®èŒžéãããã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 91,
"tag": "p",
"text": "èœå茞éã®äŸãšããŠã¯ãåŸè¿°ãããããªãŠã ãã³ããªã©ãããããªãããããªãŠã ãã³ãã«ãã£ãŠã€ãªã³ã茞éããããšããATPã®ãšãã«ã®ãŒãæ¶è²»ããããã®ããã«ãèœå茞éã§ã¯ããªã«ãã®ãšãã«ã®ãŒãæ¶è²»ããã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 92,
"tag": "p",
"text": "ãã£ãœãã(èœå茞éã§ã¯ãªã)åå茞éã®äŸãšããŠã¯ãåŸè¿°ãããã€ãªã³ãã£ãã«ã«ããåå茞éãªã©ãããã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 93,
"tag": "p",
"text": "å€çŽ°èçç©ã§ã¯ãã»ãšãã©ã®çŽ°èã§ãã©ã®çŽ°èãã现èã®å
å€ã®ãããªãŠã æ¿åºŠãæ¯ã¹ãŠã¿ããšã现èå
ã®ãããªãŠã æ¿åºŠã¯äœãã现èå€ã®ãããªãŠã æ¿åºŠã¯é«ãã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 94,
"tag": "p",
"text": "ããã¯ã€ãŸãã现èã®åãã«ãã£ãŠããããªãŠã ãæåºãããŠããããã§ããã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 95,
"tag": "p",
"text": "ãŸããå€çŽ°èåç©ã§ã¯ããã¹ãŠã®çŽ°èã§ãã©ã®çŽ°èãã现èå
å€ã®ã«ãªãŠã æ¿åºŠãæ¯ã¹ãŠã¿ããšã现èå
ã®ã«ãªãŠã æ¿åºŠãé«ãã现èå€ã®ã«ãªãŠã æ¿åºŠãäœãã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 96,
"tag": "p",
"text": "ããã¯ã€ãŸãã现èã®åãã«ãã£ãŠãã«ãªãŠã ãæåºãããŠããããã§ããã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 97,
"tag": "p",
"text": "",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 98,
"tag": "p",
"text": "现èèã«ããATPå解é
µçŽ (ãããªãŠã -ã«ãªãŠã ATPã¢ãŒãŒ)ãšããé
µçŽ ãã现èå
ã«å
¥ãããã ãããªãŠã ã现èå€ã«æåºããŠããã£ãœãã现èå€æ¶²ããã«ãªãŠã ã现èå
ã«åã蟌ãã§ããã®ã§ããããªãããã®é
µçŽ (ãããªãŠã -ã«ãªãŠã ATPã¢ãŒãŒ)ã¯ã现èèã貫éããŠããã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 99,
"tag": "p",
"text": "â» æ€å®æç§æžã«ãã£ãŠã¯ãããããªãŠã -ã«ãªãŠã ATPã¢ãŒãŒãã®ããšããNa-K ATPã¢ãŒãŒããšãèšè¿°ããŠããã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 100,
"tag": "p",
"text": "ã§ã¯ãã©ãããåçãªã®ãã説æã®ããããŸãã现èå
ã®ãããªãŠã ãæŸåºããåã®ç¶æ
ã ãšãããã(ä»®ã«ãã®ç¶æ
ããç¶æ
1ããšããã)",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 101,
"tag": "p",
"text": "ãã®ãããªãŠã -ã«ãªãŠã ATPã¢ãŒãŒã¯ã现èå
ã®Naãçµåãããšããã®ãšãå¥ã®ATPã®ãšãã«ã®ãŒãæŸåºãããŠãATPããADPã«ãªãããã®ãšãã«ã®ãŒããã®é
µçŽ (ãããªãŠã -ã«ãªãŠã ATPã¢ãŒãŒ)ã䜿ã£ãŠããã®é
µçŽ (ãããªãŠã -ã«ãªãŠã ATPã¢ãŒãŒ)ã®ç«äœæ§é ãå€ããããã®çµæããããªãŠã ã现èå€ã«æŸåºããŠããŸãã(ä»®ã«ãã®ãããªãŠã æŸåºåŸã®ç¶æ
ããç¶æ
2ããšããã)",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 102,
"tag": "p",
"text": "次ã«ã现èå€ã®ã«ãªãŠã ãçµåãããšããŸãç«äœæ§é ãå€ããããã®çµæãã«ãªãŠã ã现èå
ã«åã蟌ãã(ä»®ã«ãã®ã«ãªãŠã åã蟌ã¿åŸã®ç¶æ
ããç¶æ
3ããšããã)",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 103,
"tag": "p",
"text": "ãããŠãŸããé
µçŽ ã¯ãæåã®ç¶æ
ã«ãã©ãã(ã€ãŸããç¶æ
1ã«æ»ãããã ããATPã¯æ¶èããŠADPã«ãªã£ããŸãŸã§ããã)",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 104,
"tag": "p",
"text": "çµæçã«ããã®é
µçŽ (ãããªãŠã -ã«ãªãŠã ATPã¢ãŒãŒ)ã¯ãATPã®ãšãã«ã®ãŒãæ¶èããäºã«ããããããªãŠã ã现èå€ã«æŸåºããã«ãªãŠã ã现èå
ã«åã蟌ãã§ããã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 105,
"tag": "p",
"text": "ãã®ãããªä»çµã¿ãããããªãŠã ãã³ããšããã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 106,
"tag": "p",
"text": "ãŸãããã®èŒžéã¯ããšãã«ã®ãŒã䜿ã£ãŠãããããã®ã€ãªã³ã®æ¿åºŠå·®ã«ãããã£ãŠèŒžéããã®ã§ããã®ãããªèŒžéãèœå茞éãšããã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 107,
"tag": "p",
"text": "ãããŠããã®ãããªãŠã ãã³ãã®çµæããããªãŠã ã€ãªã³ã¯çŽ°èå€(è¡ããã ãªã©)ã§æ¿åºŠãé«ãã(è¡ããã ãªã©ãšæ¯èŒããŠ)ã«ãªãŠã ã€ãªã³ã¯çŽ°èå
ã§æ¿åºŠãé«ããªãã(â» åæã®å°éçç©ã®æç§æžã«ãæ¯èŒå¯Ÿè±¡ãšããŠãè¡ãããããšæžãããŠããã)",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 108,
"tag": "p",
"text": "ããšãã°ããã®èµ€è¡çã§ã¯ãèœå茞éã«ãã£ãŠãå€æ¶²(è¡ããã)ãããèµ€è¡çå
ã®ã«ãªãŠã ã€ãªã³Kæ¿åºŠãé«ããèµ€è¡çå
ã®ãããªãŠã ã€ãªã³Naæ¿åºŠãäœãããã£ãœããè¡ãããã§ã¯ãã«ãªãŠã æ¿åºŠKãäœãããããªãŠã æ¿åºŠNaãé«ããã€ãŸãèµ€è¡çã§ã¯ãèœå茞éã«ãã£ãŠNaã现èå€ãžãšæåºããŠãèœå茞éã«ãã£ãŠKã现èå
ãžãšåãå
¥ããŠããã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 109,
"tag": "p",
"text": "ãã®ãããªãèœå茞éã«ãã£ãŠã现èå
å€ã§NaãKã®èŒžéããã³æ¿åºŠèª¿ç¯ãããæ©æ§ã®ããšãããããªãŠã ãã³ãããšããã ãã®çµæã现èå
å€ã§NaãKã®æ¿åºŠå·®ããããããçããŠããã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 110,
"tag": "p",
"text": "èœå茞éã«ã¯ãšãã«ã®ãŒãå¿
èŠã§ãããATPãããšãã«ã®ãŒãäŸçµŠãããŠããã现èèã«ããATPå解é
µçŽ (Na/K-ATPã¢ãŒãŒ)ãããããªãŠã ãã³ããªã©ã®èœå茞éã®æ£äœã§ããã(â» åèæžã«ãã£ãŠã¯ããããªãŠã ãã³ããšATPå解é
µçŽ ãåäžèŠããŠãã€ãã£ãŠããæ¬ãããã)",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 111,
"tag": "p",
"text": "ãªãããã®ãããªçŽ°èã«ããèœå茞éã§ãã€ãªã³ã茞éãããã³ãã®ããšããã€ãªã³ãã³ãããšããã(æ±äº¬æžç±ã®å°éçç©(çç©IIçžåœ)ã®æ€å®æç§æžã«ãã€ãªã³ãã³ããã®èšèŒãã ) ããããªãŠã ãã³ããããã€ãªã³ãã³ãã®äžçš®ã§ããã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 112,
"tag": "p",
"text": "",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 113,
"tag": "p",
"text": "ãããªãŠã ãã³ãã®æ©æ§ã§ã¯ã ATPå解é
µçŽ ã«ã现èå
ã®3ã€ã®ãããªãŠã ã€ãªã³(Na)ããã³ããšçµåããŠãããATPã®ãšãã«ã®ãŒã«ãã£ãŠATPå解é
µçŽ ã®åœ¢ãå€ããããã©ã¯çŽ°èå€ã«3ã€ã®NaãæåºããããããŠçŽ°èå€ã®ã«ãªãŠã (K)ãATPå解é
µçŽ ã«çµåãããšã圢ãå€ããã现èå
ãžãšKãåºãããããŠããŸãATPå解é
µçŽ ã«ã现èå
ã®3ã€ã®Naããã³ããšçµåããŠãåãããã«ç¹°ãè¿ããŠãã£ãŠã现èå
å€ã§ã€ãªã³ã茞éããŠããã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 114,
"tag": "p",
"text": "现èèã«ã¯ããšããã©ããã«ã€ãªã³ãã£ãã«(ion channel)ãšããééãã管ã®ãããªéè·¯ç¶ã®ã¿ã³ãã¯è³ªã现èè(è質äºéå±€)ããšããã©ãã貫éããŠãããã€ãªã³ãã£ãã«ã®éããéã«ãããªãŠã Naãã«ãªãŠã Kãªã©ç¹å®ã®ã€ãªã³ã®ã¿ãéžæçã«ééãããã(â» çç©IIã§ã€ãªã³ãã£ãã«ããç¿ãã®ã§ãã€ãã§ã«å€ªåã)",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 115,
"tag": "p",
"text": "ééã®æ¹æ³ã¯ãã¿ã³ãã¯è³ªååã®ç«äœæ§é ãååçã«å€åããããšã§ãééãè¡ãããŠããã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 116,
"tag": "p",
"text": "ã€ãªã³ãã£ãã«ã®éãããšãã«ããããªãŠã ãªã©å¯Ÿè±¡ã®ã€ãªã³ãééãããã€ãªã³ãã£ãã«ãéããã°ã察象ã€ãªã³ã¯éããªãã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 117,
"tag": "p",
"text": "(ãããªãŠã ãã³ããªã©ã®)èœå茞éãšã¯éããã€ãªã³ãã£ãã«ã§ã¯ãæ¿åºŠã®é«äœã«éãã£ãŠãŸã§èŒžéãããèœåã¯ç¡ãã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 118,
"tag": "p",
"text": "æ°Žã¯ãªã³è質ã®éãééã§ããããããšã¯å¥ã«ããã£ãšå€§éã«ãæ°Žååãšäžéšã®(é»æ°çã«)äžæ§å°åå(ã°ãªã»ããŒã«ãªã©)ã ããééãããã£ãã«ããããã¢ã¯ã¢ããªã³(aquaporinãAQP)ãšãããã¢ã¯ã¢ããªã³ã¯ãæ°Žåå以å€ã®æ°Žæº¶æ¶²äžã®ã€ãªã³ã¯é®æããã(ã°ãªã»ããŒã«ã®ééã«ã€ããŠã¯ã â» åèæç®: â» åèæç®: LODISHãªã©èãåå现èçç©åŠ 第7çãã翻蚳åºç:æ±äº¬ååŠå人ã翻蚳:ç³æµŠç« äžãªã©ã2016幎第7çã415ããŒãž)",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 119,
"tag": "p",
"text": "èµ€è¡çãè
èã®çŽ°å°¿ç®¡äžç®çŽ°èãªã©ã«ã¢ã¯ã¢ããªã³ã¯ããã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 120,
"tag": "p",
"text": "ãã£ãœããã«ãšã«ã®åµã«ã¯ã¢ã¯ã¢ããªã³ãç¡ããããæ°Žãééãããäœèª¿æ¶²ã®äžã§ãèšåŒµããªãã(ããæ£ç¢ºã«ãããšãã«ãšã«ã®åµã«ããã¢ã¯ã¢ããªã³ãšåœ¢ã®äŒŒãé«ååããããããããããã®é«ååããæ°Žãééããäœçšããããªãã(â» åèæç®: â» åèæç®: LODISHãªã©èãåå现èçç©åŠ 第7çãã翻蚳åºç:æ±äº¬ååŠå人ã翻蚳:ç³æµŠç« äžãªã©ã2016幎第7çã415ããŒãž) ãã®ãããæ¥æ¬ã®é«æ ¡çç©ã®æç§æžã§ã¯ããã®ã«ãšã«åµã«ããé«ååã¯ãã¢ã¯ã¢ããªã³ã§ã¯ãªãããšåé¡ãããŠããã )",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 121,
"tag": "p",
"text": "ã¢ã¯ã¢ããªã³ãçºèŠããããŒã¿ãŒ ã¢ã°ã¬ã2003幎ã®ããŒãã«ååŠè³ãåè³ããã",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 122,
"tag": "p",
"text": "",
"title": "现èã®æ©èœãšæ§é "
},
{
"paragraph_id": 123,
"tag": "p",
"text": "",
"title": "ã»ãŒç¯å²å€"
},
{
"paragraph_id": 124,
"tag": "p",
"text": "å现èçç©ãéãŸã£ãŠããããã1ã€ã®åäœã®ãããªç©ãäœã£ãŠç掻ããŠããå Žåãããã现è矀äœ(ãããŒã ãããããcell colony)ãšããã 现è矀äœã®çç©ã«ã¯ãã¯ã³ã·ã§ãŠã¢ããŠãŒããªãããã«ããã¯ã¹ãããã ãã«ããã¯ã¹(ãªãªãã²ãã¯ãª)ã¯ãã¯ã©ããã¢ãã¹ã®ãããªçŽ°èãæ°çŸåããã€ãŸã£ã矀äœã§ããã",
"title": "ã»ãŒç¯å²å€"
},
{
"paragraph_id": 125,
"tag": "p",
"text": "ãã«ããã¯ã¹ã§ã¯ãåãã®åæ¥åãèµ·ããŠãããå
åæããã现èãææ§çæ®ãããçæ®çŽ°èãç¡æ§çæ®ãããçæ®çŽ°èãªã©ãåæ¥ãããŠããã 现èã©ããã¯å圢質ã®ç³žã§é£çµ¡ããã£ãŠããã",
"title": "ã»ãŒç¯å²å€"
},
{
"paragraph_id": 126,
"tag": "p",
"text": "现è矀äœã®åæ¥åããå€çŽ°èçç©ã®åšå®ã«äŒŒãŠããç¹ããããããã矀äœã¯ãã»ãã®çŽ°èãšå¥ããŠããæ é€ããããã°çããŠãããç¹ãç°ãªãã",
"title": "ã»ãŒç¯å²å€"
},
{
"paragraph_id": 127,
"tag": "p",
"text": "çŸåšã®å€çŽ°èçç©ã®èµ·æºã¯ãããããããã®ãããªçŽ°è矀äœã§ããããšãã説ããDNAãªã©ååã®ç³»çµ±ã®è§£æããæåã§ããã",
"title": "ã»ãŒç¯å²å€"
},
{
"paragraph_id": 128,
"tag": "p",
"text": "",
"title": "ã»ãŒç¯å²å€"
},
{
"paragraph_id": 129,
"tag": "p",
"text": "ã¿ããã³ãªã«ãã¯ãå现èçç©ãšå€çŽ°èçç©ã®ãäž¡æ¹ã®ç¹åŸŽããã€ãã¿ããã³ãªã«ãã®äžçã«ã¯ãå现èçç©ã®ææãšãå€çŽ°èçç©ã®ææãããã芪ã®åå®äœããæŸåºãããèåãåºèœããã¢ã¡ãŒãã®ãããªå现èã®çç©ã«ãªããã¢ã¡ãŒãç¶ã®çŽ°èã¯ã现èãªã©ãé£ã¹ãŠæé·ãããé£ã¹ç©ãç¡ããªããªã©ããŠçåãé£ãããªããšããã®ã¢ã¡ãŒãç¶ã®å现èã©ãããéåããŠäžã€ã®äœãã€ãããå°ããªãã¡ã¯ãžã®ããã«ãªã£ãŠã移åããã",
"title": "ã»ãŒç¯å²å€"
},
{
"paragraph_id": 130,
"tag": "p",
"text": "å¢æ®ãããšãã¯ããã®ãç¶ã®åå®äœã圢æããŠãèåãæŸåºããã",
"title": "ã»ãŒç¯å²å€"
},
{
"paragraph_id": 131,
"tag": "p",
"text": "çç©ã®é²åã®ç 究ã«ãã¿ããã³ãªã«ãããããçšãããããå现èçç©ããå€çŽ°èçç©ãžã®é²åã®åèã«ãªãããšèããããŠããã",
"title": "ã»ãŒç¯å²å€"
},
{
"paragraph_id": 132,
"tag": "p",
"text": "",
"title": "ã»ãŒç¯å²å€"
},
{
"paragraph_id": 133,
"tag": "p",
"text": "ç¹å®ã®æ©èœã圢æ
ã«åãããåã®çŽ°èããæªåå()ã®çŽ°èãšåŒã¶ã æªååã®çŽ°èã¯ãããã ã®éšäœã«ãã£ãŠç¹å®ã®æ©èœã圢æ
ãæã€ããã«ãªãããããåå(differentiation)ãšåŒã¶ã",
"title": "ã»ãŒç¯å²å€"
},
{
"paragraph_id": 134,
"tag": "p",
"text": "ååãã现èã¯ããããäžèŠåã«æ··ãã£ãŠããã®ã§ã¯ãªãã åã圢æ
ãæ©èœããã€çŽ°èãèŠåçã«éãŸã£ãŠããããããçµç¹(tissue)ãšåŒã¶ã ãŸããããã€ãã®çš®é¡ã®çµç¹ãç¹å®ã®æ©èœãæããããã«éãŸã£ãŠããããããåšå®(organ)ãšåŒã¶ã ããã«ãããã®åšå®ãããã€ãéãŸã£ãŠ1ã€ã®çç©ãããªãã¡åäœ(individual)ã圢æããŠããã",
"title": "ã»ãŒç¯å²å€"
},
{
"paragraph_id": 135,
"tag": "p",
"text": "çµç¹ã圢æãã现èã¯ãåãçš®é¡ã®çŽ°èã©ããã§æ¥çããããããšãã°è€æ°ã®çµç¹ãå解ããããšã«å¹é€ãããšãåãçµç¹ã©ããã§éåãããã",
"title": "ã»ãŒç¯å²å€"
},
{
"paragraph_id": 136,
"tag": "p",
"text": "æ€ç©ã®çµç¹ã¯ãåè£çµç¹(meristem)ãšæ°žä¹
çµç¹(permanent tissue)ãšã«åããããšãã§ããã",
"title": "ã»ãŒç¯å²å€"
},
{
"paragraph_id": 137,
"tag": "p",
"text": "åè£çµç¹ã«ã¯ãèé éšãæ ¹ç«¯éšã§ãããããªçŽ°èãžã®ååã䌞é·æé·ãè¡ãé 端åè£çµç¹(ã¡ãããã ã¶ããã€ããããapical meristem)ãç¶ç®¡æã®å
éšã§å°ç®¡ã垫管ãªã©ãžã®ååãè¥å€§æé·ãè¡ã圢æå±€(ãããããããcambium)ããããã",
"title": "ã»ãŒç¯å²å€"
},
{
"paragraph_id": 138,
"tag": "p",
"text": "æ°žä¹
çµç¹ã¯è¡šç®ç³»(epidermal system)ãç¶ç®¡æç³»(vascular system)ãåºæ¬çµç¹ç³»(ground tissue system)ã®3ã€ã®çµç¹ç³»ãããªãã",
"title": "ã»ãŒç¯å²å€"
},
{
"paragraph_id": 139,
"tag": "p",
"text": "è¡šç®ç³»ã«ã¯ãè¡šç®ãæ°åãæ ¹æ¯(root hair)ãªã©ãããã è¡šç®ã¯ãäžå±€ã®è¡šç®çŽ°èãããªãã现èå£ã®è¡šé¢ãã¯ãã¯ã©()ãšåŒã°ããåºãå±€ãèŠã£ãŠãããå
éšãä¿è·ãããæ°Žã®èžçºãé²ãã§ããã æ°å(stoma)ã¯ãèãèã«ã¿ããã2ã€ã®å蟺现èã察ã«ãªã£ãŠã§ããŠãããèžæ£ãè¡ã£ãŠããã æ ¹æ¯(root hair)ã¯ãæ ¹ã§æ°Žåãé€åã®åžåãè¡ã£ãŠããã",
"title": "ã»ãŒç¯å²å€"
},
{
"paragraph_id": 140,
"tag": "p",
"text": "ç¶ç®¡æç³»ã¯æšéš(xylem)ãšåž«éš(phloem)ãããªãã æšéšã«ã¯å°ç®¡(vessel)ãŸãã¯ä»®å°ç®¡(tracheid)ããããæ ¹ã§åžåãããæ°Žåãé€åã®éãéãšãªã£ãŠããã åž«éšã«ã¯åž«ç®¡(sieve tube)ããããèã§å
åæãããçæ°Žåç©ã®éãéãšãªã£ãŠããã",
"title": "ã»ãŒç¯å²å€"
},
{
"paragraph_id": 141,
"tag": "p",
"text": "è¡šç®ç³»ãšç¶ç®¡æ系以å€ã¯ãã¹ãŠåºæ¬çµç¹ç³»ãšåŒã°ããã èã§ã¯çŽ°é·ã现èãå¯éããæµç¶çµç¹(ãããããããããpalisade parenchyma)ãããŸãã¯çŽ°èã©ããã®éé(ãããŸ)ããããŠããŠæ°äœã®éãéãšãªã£ãŠãã海綿ç¶çµç¹(spongy tissue)ãªã©ãã¿ãããã èãæ ¹ã§ã¯äžå¿éšã§é€åã®è²¯èµãè¡ãé«(ãããpith)ããåšèŸºéšã§å
åæãè¡ã£ããåè§ã»åå£ãšãªãæ€ç©ãæ¯ããç®å±€(cortex)ãªã©ãã¿ãããã",
"title": "ã»ãŒç¯å²å€"
},
{
"paragraph_id": 142,
"tag": "p",
"text": "",
"title": "ã»ãŒç¯å²å€"
},
{
"paragraph_id": 143,
"tag": "p",
"text": "åç©ã®çµç¹ã¯äžç®çµç¹(epithelium tissue)ãçµåçµç¹(connective tissue)ãççµç¹(muscle tissue)ãç¥çµçµç¹(neural tissue)ãããã",
"title": "ç¯å²å€: åç©ã®çµç¹"
},
{
"paragraph_id": 144,
"tag": "p",
"text": "äžç®çµç¹ã¯äœã®å€é¢ãäœè¡šé¢ãæ¶å管ã®å
è¡šé¢ãªã©ãããã£ãŠããçµç¹ã§ãããå现èã¯çŽ°èæ¥ç(cell adhesion)ã«ããçµåãããäœå
ã®çµç¹ãä¿è·ããŠãããæ¯ã»ã€ãã»çŸœæ¯ãªã©ãäžç®çµç¹ã§ãããäžç®çµç¹ã«ã¯ç®èã®è¡šç®(epidermis)ãå°è
žã®å
å£ãªã©ã®åžåäžç®ãæ¯çŽ°è¡ç®¡()ãæ±è
ºã»èè
ºãªã©ã®è
ºäžç®ããªã©ããããããã",
"title": "ç¯å²å€: åç©ã®çµç¹"
},
{
"paragraph_id": 145,
"tag": "p",
"text": "çµåçµç¹ã¯çµç¹ãåšå®ã®éãæºãããŠãããããçµåãããæ¯æãããããã骚(Bone)ãè
±(tendon)ãè¡æ¶²(blood)ãç®èã®çç®(dermis)ãªã©ãçµåçµç¹ã§ããã çµåçµç¹ã®åé¡ã§ã¯ã倧ããåé¡ãããšãè 質æ§(ãããã€ãã)çµåçµç¹ãç¹ç¶æ§çµåçµç¹ã骚çµç¹ãè»éªšçµç¹ãè¡æ¶²ãªã©ã«åé¡ãããã",
"title": "ç¯å²å€: åç©ã®çµç¹"
},
{
"paragraph_id": 146,
"tag": "p",
"text": "骚(⻠硬骚(ãããã€))ã¯éªšçµç¹ã§ããã骚çµç¹ã¯ãªã³é
žã«ã«ã·ãŠã ãšã¿ã³ãã¯è³ªãªã©ãåºè³ªãšããŠã§ããŠããã骚ã®åºè³ªã骚åºè³ªãšããã垰宀äœå
ã®çµç¹ãåšå®ãæ¯æããŠããã骚现èããã€ã骚質äžã«è¡ç®¡ãšç¥çµã®éãããŒããŒã¹ç®¡ãäœæ¬ãæã¡ããã®ãŸããã«éªšçŽ°èãããã",
"title": "ç¯å²å€: åç©ã®çµç¹"
},
{
"paragraph_id": 147,
"tag": "p",
"text": "è»éªšã¯ã«ã«ã·ãŠã ã«ä¹ããã",
"title": "ç¯å²å€: åç©ã®çµç¹"
},
{
"paragraph_id": 148,
"tag": "p",
"text": "骚ã®ãã¡ãã«ã«ã·ãŠã ãè±å¯ãªã®ã¯ã硬骚ã®ã»ãã§ãããé«æ ¡çç©ã§ã¯ã硬骚ã®ããšãåã«ã骚ããšãã£ãŠããã",
"title": "ç¯å²å€: åç©ã®çµç¹"
},
{
"paragraph_id": 149,
"tag": "p",
"text": "è»éªšã¯è»éªšçµç¹ã§ãããè»éªšè³ªãšè»éªšçŽ°èããã§ããŠããã匟åãããã",
"title": "ç¯å²å€: åç©ã®çµç¹"
},
{
"paragraph_id": 150,
"tag": "p",
"text": "è
±(ãã)ã¯ç¹ç¶æ§çµåçµç¹ã§ãããè
±ã¯éªšãšçèãã€ãªãåãããããèèªçŽ°èãç¹ç¶æ§çµåçµç¹ã§ãããè¡æ¶²ã¯ãè¡ããã(plasma)ãšè¡ç(blood cell)ãããã",
"title": "ç¯å²å€: åç©ã®çµç¹"
},
{
"paragraph_id": 151,
"tag": "p",
"text": "è 質æ§(ãããã€ãã)çµåçµç¹ã«ã¯ããžãã®ç·ããããè 質æ§(ãããã€ãã)çµåçµç¹ã®åºè³ªã¯ãŒã©ãã³ç¶ã§ããã",
"title": "ç¯å²å€: åç©ã®çµç¹"
},
{
"paragraph_id": 152,
"tag": "p",
"text": "",
"title": "ç¯å²å€: åç©ã®çµç¹"
},
{
"paragraph_id": 153,
"tag": "p",
"text": "ççµç¹ã¯çèã圢äœãç¹ç¶ç¶ã®çµç¹ã§ãããçèã¯äŒžã³ããçž®ãã ããããéªšæ Œãåããéªšæ Œç(skeletal muscle)ãå¿èãåããå¿ç(cardiac muscle)ã¯æšªçŽç(striated muscle)ã§æ§æãããå
èãåããå
èç(visceral muscle)ã¯å¹³æ»ç(smooth muscle)ã§æ§æãããã",
"title": "ç¯å²å€: åç©ã®çµç¹"
},
{
"paragraph_id": 154,
"tag": "p",
"text": "å¹³æ»çã¯ãäžã€ã®ç¹ç¶ãäžã€ã®çŽ°èã§ãããäžã€ã®æ žããã¡ãç¹ç¶ã¯çŽ¡é圢ãããŠãããå¹³æ»çã¯äžéæçã§ããæå¿ã§ã¯åãã¯å€ãããªããå¹³æ»çã®åçž®é床ã¯ããããæç¶æ§ããããç²åŽãã«ãããå¹³æ»çã«ã暪ããŸã¯ãªãã",
"title": "ç¯å²å€: åç©ã®çµç¹"
},
{
"paragraph_id": 155,
"tag": "p",
"text": "éªšæ Œçã¯åçž®é床ã倧ãããç²åŽãããããéªšæ Œçã¯æå¿ã§åãããéæçã§ãããéªšæ Œçã«ã¯æšªçŽãããã®ã§ã暪çŽçã«åé¡ãããã",
"title": "ç¯å²å€: åç©ã®çµç¹"
},
{
"paragraph_id": 156,
"tag": "p",
"text": "å¿çã¯äžéæçã§ãããæå¿ã§ã¯åãã¯å€ãããªããå¿çã«ã¯æšªçŽãããã®ã§ã暪çŽçã«åé¡ãããã",
"title": "ç¯å²å€: åç©ã®çµç¹"
},
{
"paragraph_id": 157,
"tag": "p",
"text": "暪çŽçã«ã¯ææã®æšªããŸããããããããèŠããã»ããæ垯ãšãããæãèŠããã»ããæ垯ãšãããã¢ã¯ãã³ãšããªã·ã³ãšãã2çš®é¡ã®ã¿ã³ãã¯è³ªããã§ããŠãããæ垯ã®äžå€®ã¯Zèã§ä»åãããŠããã",
"title": "ç¯å²å€: åç©ã®çµç¹"
},
{
"paragraph_id": 158,
"tag": "p",
"text": "",
"title": "ç¯å²å€: åç©ã®çµç¹"
},
{
"paragraph_id": 159,
"tag": "p",
"text": "ç¥çµçµç¹ã¯ãã¥ãŒãã³(neuron)ãšãã现èã§æ§æãããŠããããã¥ãŒãã³ã¯æ žã®ãã现èäœ(cell body)ãšã现èäœãã䌞ã³ãäžæ¬ã®é·ã軞玢(ãããããaxon)ã现èäœããçãæåããããæš¹ç¶çªèµ·(ãã
ããããšã£ããdendrite)ãããªãã軞玢ã«ã¯éãã€ããŠãããç¥çµé(ããããããã)ãšãããç¥çµéã¯æ žãæã£ãŠãããã·ã¥ã¯ã³çŽ°èãšããäžã€ã®çŽ°èã§ããã",
"title": "ç¯å²å€: åç©ã®çµç¹"
},
{
"paragraph_id": 160,
"tag": "p",
"text": "ãã¥ãŒãã³å
ãä¿¡å·ãäŒããæ¹åã¯ã现èäœã®ã»ãããå§ãŸãã軞玢ã®æ«ç«¯ãžãšä¿¡å·ãåããããã¥ãŒãã³å
ã®ä¿¡å·äŒéã®æ¹æ³ã¯é»æ°ã«ãããã®ã§ããã现èèãšãããªãŠã ãã³ããªã©ã®ã€ãªã³ã®åãã«ãããã®ã§ããããã®ãããäžè¬ã®éå±å°ç·ãªã©ã®é»æ°åè·¯ãšã¯éãããã¥ãŒãã³ã§ã®ä¿¡å·ã®æ¹åã¯äžæ¹åã«ããäŒãããªãã",
"title": "ç¯å²å€: åç©ã®çµç¹"
},
{
"paragraph_id": 161,
"tag": "p",
"text": "äžã€ã®ãã¥ãŒãã³ã®è»žçŽ¢ã®å
端ãšãä»ã®ãã¥ãŒãã³ãšã®éã®æ¥åéšãã·ããã¹ãšãããäžã€ã®ç¥çµã®ä¿¡å·ã¯ãã·ããã¹ãçµãŠãã€ãã®ç¥çµãžãšäŒããããŸããç¥çµãšçèãšã®éã®ããšãã·ããã¹ãšããã",
"title": "ç¯å²å€: åç©ã®çµç¹"
},
{
"paragraph_id": 162,
"tag": "p",
"text": "ã·ããã¹ã«ã¯ãå°ããªéé(ãããŸããããã)ããããã·ããã¹éé(ãããã)ãšããã",
"title": "ç¯å²å€: åç©ã®çµç¹"
},
{
"paragraph_id": 163,
"tag": "p",
"text": "ã·ããã¹ãã次ã®ãã¥ãŒãã³ãžãšä¿¡å·ãäŒããæ¹æ³ã¯ãååŠç©è³ªã®åæ³ã«ããããã®ã·ããã¹ã§ã®åæ³ç©ãç¥çµäŒéç©è³ªãšããã軞玢ã®æ«ç«¯ããåæ³ããããã«ã¢ãã¬ããªã³ãã¢ã»ãã«ã³ãªã³ãåæ³ãããã軞玢ã®æ«ç«¯ã«ã·ããã¹å°è(ãããã»ã)ãšããèšããã éšåããããããã«äŒéç©è³ªãå«ãŸããŠãããååãåŽã§ãã次ã®ãã¥ãŒãã³ã®çŽ°èèã«ã¯ãäŒéç©è³ªãåãåãå容äœãããããã®ããå容äœãšäŒéç©è³ªãåå¿ããŠãä¿¡å·ã次ã®ãã¥ãŒãã³ã«äŒããã",
"title": "ç¯å²å€: åç©ã®çµç¹"
},
{
"paragraph_id": 164,
"tag": "p",
"text": "亀æç¥çµã®æ«ç«¯ããã¯ãã«ã¢ãã¬ããªã³ãåæ³ããããå¯äº€æç¥çµã®æ«ç«¯ããã¯ã¢ã»ãã«ã³ãªã³ãåæ³ããããçèãåããç¥çµã§ããéåç¥çµã®æ«ç«¯ããã¯ã¢ã»ãã«ã³ãªã³ãåæ³ãããã",
"title": "ç¯å²å€: åç©ã®çµç¹"
},
{
"paragraph_id": 165,
"tag": "p",
"text": "",
"title": "ç¯å²å€: åç©ã®çµç¹"
}
] | é«çåŠæ ¡çç© > çç©I > 现è | <small> [[é«çåŠæ ¡çç©]] > çç©I > 现è </small>
== å°å
¥ ==
å°çã«ããçç©ã®çš®é¡ã¯ãååã®ä»ããããŠããçš®ã175äžçš®ã»ã©ã§ããã
ãã®å
šãŠã®çç©ã¯'''现è'''ïŒãããŒãïŒããæãç«ã£ãŠããã
现èã¯çç©ã®æ©èœäžã»æ§é äžã®åºæ¬åäœã§ããã
äŸãã°ããã®äœã¯200çš®é¡ä»¥äž60å
åã®çŽ°èããã§ããŠãããšããããŠããã
ãã®çŽ°èã¯æ¶å管ãªãé£ã¹ç©ã®æ¶ååžåããã现èãããã
骚ãªã骚ãäœãåºã现èãããã
ãã®ããŒãžã§ã¯ã
现èã®åºæ¬çãªæ©èœãšæ§é ã
现èãäœçŽ°èåè£ïŒsomatic mitosisïŒã«ãã£ãŠååããŠããããšã
现èãåäœãäœã£ãŠããããšã
ãªã©ãæ±ãã
== 现èã®æ©èœãšæ§é ==
=== 现èã®å€§ãããšé¡åŸ®é¡ã®åè§£èœ ===
现èã®å€§ããã¯ãã®ã»ãšãã©ãèçŒã§ã¯èŠããªãã»ã©å°ããã
é¡åŸ®é¡ã®çºéã«ãã£ãŠèŠ³å¯ã§ããå解èœãé«ãŸãã
现èã®å
éšæ§é ãåŸã
ã«æããã«ãªã£ãŠãã£ãã
现èã¯çç©ã®çš®é¡ãããã ã®éšäœã«ãã£ãŠããŸããŸãªå€§ããã§ååšããŠããã
以äžã«é¡åŸ®é¡ã®å解èœãšçŽ°èãªã©ã®å€§ãããæããã
â»å解èœïŒæ¥è¿ãã2ç¹ãèŠåããããšã®ã§ããæå°è·é¢ïŒ
<!--â»äŸãå€ãããŠãç
©éãªã ããªã®ã§ãçç©åŠã§ããæ±ããããã®ã«ãšã©ãããã-->
* èçŒã§èŠ³å¯ã§ãããã® (å解èœ: çŽ0.2mm â»1mm=10<sup>-3</sup>m)
** æ°m:ããã®åº§éªšç¥çµ (é·ã1m以äž)<ref name="ã¹ã¯ãšã¢ææ°å³èª¬çç©">åéåå©ç£ä¿®ãã¹ã¯ãšã¢ææ°å³èª¬çç©ã第äžåŠç¿ç€Ÿã2004幎1æ10æ¥åççºè¡ãp.11</ref>
** æ°cm:ããã§ãŠã®åµã®åµé»(çŽåŸçŽ7.5cm)<ref name="ã¹ã¯ãšã¢ææ°å³èª¬çç©" />ããã¯ããªã®åµã®åµé» (çŽåŸçŽ3cm)<ref name="ã¹ã¯ãšã¢ææ°å³èª¬çç©" />ããã«ã³ã®ã€ã¶ã€ã¶ïŒâ»çŽ°èã§ã¯ãªãïŒ<ref>http://ci.nii.ac.jp/naid/110003732441</ref>
** æ°mm:ã¡ãã«ã®åµ (çŽ1.5mm)<ref>http://www3.famille.ne.jp/~ochi/medaka/07-sanran.html</ref>ããã«ã
ãã¢(çŽ0.2mm)<ref name="é«çåŠæ ¡çç©I">ç°äžéèã»ããé«çåŠæ ¡çç©Iã第äžåŠç¿ç€Ÿã2004幎2æ10æ¥çºè¡ãp.21</ref>
*å
åŠé¡åŸ®é¡ã§èŠ³å¯ã§ãããã® (å解èœ: çŽ0.2ÎŒm â»1ÎŒm=10<sup>-6</sup>m)
** æ°ÎŒm:ããã®åµ (çŽ140ÎŒm)<ref name="ã¹ã¯ãšã¢ææ°å³èª¬çç©" />ãããã®ç²ŸåïŒçŽ60ÎŒmïŒ<ref name="ã¹ã¯ãšã¢ææ°å³èª¬çç©" />ãã¹ã®ã®è±ç² (çŽ30ÎŒm)ãããã®è现è (çŽ20ÎŒm)<ref name="é«çåŠæ ¡çç©I" />ãããã®èµ€è¡ç (çŽ7.5ÎŒm)<ref name="é«çåŠæ ¡çç©I" />ã倧è
žè (çŽ3ÎŒm)<ref name="é«çåŠæ ¡çç©I" />
* é»åé¡åŸ®é¡ã§èŠ³å¯ã§ãããã® (å解èœ: çŽ0.2nm â»1nm=10<sup>-9</sup>m)
** æ°nm:HIV (çŽ100nmâ»ãšã€ãºã®ãŠã€ã«ã¹ã§çŽ°èã§ã¯ãªã)<ref name="ã¹ã¯ãšã¢ææ°å³èª¬çç©" />ãã¿ã³ãã¯è³ªåå (çŽ1ïœ10nmâ»çŽ°èã§ã¯ãªã)<ref name="é«çåŠæ ¡çç©I" />
<pre>
ÎŒïŒãã€ã¯ãïŒ1ÎŒïœïŒ1,000åã®1ïœïœ
ïœïŒããïŒãã1ïœïœïŒ1,000åã®1ÎŒïœ
</pre>
<pre>
芳å¯ããŠã¿ããïŒ
ã»ã»ã®å
åŽã®çŽ°èã¯æ¯èŒçç°¡åã«èŠ³å¯ã§ããã
ã»ã»ã®å
åŽã綿æ£ã§è»œãããã£ãŠã
ã¯ããã现èãå
åŠé¡åŸ®é¡ã§èŠ³å¯ããŠã¿ããã
</pre>
=== 现èã®æ©èœãšæ§é ===
==== 现èã®åºæ¬æ§é ====
[[ãã¡ã€ã«:Biological cell.svg|thumb|right|450px|'''å
žåçãªåç©çŽ°èã®æš¡åŒå³'''<br/>1.æ žå°äœã2.æ žã3.ãªããœãŒã ã4.å°èäœã5.ç²é¢å°èäœã6.ãŽã«ãžäœã7.现èéªšæ Œã8.æ»é¢å°èäœã9.ããã³ã³ããªã¢ã10.液èã11.现è質åºè³ªã12.ãªãœãœãŒã ã13.äžå¿äœ]]
[[ãã¡ã€ã«:Plant_cell_structure_svg_labels.svg|thumb|right|450px|'''å
žåçãªæ€ç©çŽ°èã®æš¡åŒå³'''<br/>a.å圢質é£çµ¡ãb.现èèãc.现èå£ã1.èç·äœïŒd.ãã©ã³ã€ãèãe.ãã³ãã³ç²ïŒã2.液èãïŒf.液èãg.液èèïŒãh.ããã³ã³ããªã¢ãi.ãã«ãªãã·ãœãŒã ãj.现è質ãk.å°ããªèå°èãl.ç²é¢å°èäœ ã3.æ žïŒm.æ žèåãn.æ žèão.æ žå°äœïŒãp.ãªããœãŒã ãq.æ»é¢å°èäœãr.ãŽã«ãžå°èãs.ãŽã«ãžäœãt.ç¹ç¶ç¶ã®çŽ°èéªšæ Œ]]
现èã®èŠãç®ãåãã¯ããŸããŸã«ç°ãªãããåºæ¬çãªæ©èœãæ§é ã¯åãã§ããã
现èã¯'''æ ž'''(ãããnucleus)ãš'''现è質'''(ãããŒããã€ãcytoplasm)ãããããå²ã'''现èè'''(ãããŒããŸããcell membrane)ãããªãã现èèã«å
ãŸããå
éšã®ç©è³ªã®ãã¡ããæ žãé€ããéšåã®ããšã现è質ãšããã
ãŸããæ žãšçŽ°è質ãåãããŠ'''å圢質'''(ãããããã€ãprotoplasm)ãšãåŒã¶ãã€ãŸãã现èèã«å
ãŸããå
éšã®ç©è³ªã®ããšãå圢質ãšããã
现è質ã«ã¯ãæ žãå§ããšããŠãããã³ã³ããªã¢ãªã©ãããŸããŸãªæ©èœãšæ§é ããã€å°ããªåšå®ãããããããã'''现èå°åšå®'''(ãããŒããããããããorganelle)ãšåŒã¶ã
现èå°åšå®ã©ããã®éã¯ãæ°Žã»ã¿ã³ãã¯è³ªãªã©ã§æºããããŠãããããã'''现è質åºè³ª'''(ãããŒãã〠ããã€ãcytoplasmic matrix)ãšåŒã¶ããã®çŽ°è質åºè³ªã«ã¯ãé
µçŽ ãªã©ã®ã¿ã³ãã¯è³ªãã¢ããé
žãã°ã«ã³ãŒã¹ãªã©ãå«ãŸããŠããã
{{-}}
==== 现èå°åšå® ====
[[ãã¡ã€ã«:nucleus_ER.png|thumb|right|320px|'''现èæ žã®æŠèŠ'''<br/>1.æ žèã2.ãªããœãŒã ã3.æ žèåã4.æ žå°äœã5.ã¯ãããã³ã6.现èæ žã7.å°èäœã8.æ žè³ª]]
'''æ ž'''ã¯ã1ã€ã®çŽ°èããµã€ã1ã€ãã£ãŠãããå
éšã«'''æè²äœ'''(chromosome)ãããã
æè²äœã¯ã'''DNA'''ãšã¿ã³ãã¯è³ªãããªãã
DNAã'''éºäŒå'''ã®æ
å ±ãæã£ãŠããã
现èåè£ïŒcell divisionïŒã®éã«DNAã¯è€è£œãããæ°ãã现èã«åé
ãããã
é¡åŸ®é¡ã§æ žã芳å¯ããå Žåã¯ãé
¢é
žã«ãŒãã³ãé
¢é
žãªã«ã»ã€ã³æ¶²ãªã©ã®è²çŽ ã§ãæè²äœãèµ€è²ã«æè²ã§ããã
ããããããã®æè²çŸè±¡ããããæè²äœããšããååã®ç±æ¥ã§ããã
æ žã¯ã1ïœæ°åã®'''æ žå°äœ'''(nucleolus)ãå«ã¿ããã®éã'''æ žæ¶²'''(nuclear sap)ãæºãããŠããã
æ žã®è¡šé¢ã«ã¯'''æ žè'''(ãããŸããnuclear membrane)ãããã
æ žèã¯ãäºéã®èãèã§ã§ããŠãããæ žèåïŒãããŸããããnuclear poreïŒãšåŒã°ããå€æ°ã®åããããæ žãžã®ç©è³ªã®åºå
¥ãã«é¢ãã£ãŠããã
DNAãéºäŒåã®æ¬äœã§ããããæè²äœã¯DNAãå«ãã§ãããæ žãæè²äœãå«ãã§ãããããæ žãéºäŒã«æ·±ãé¢ãã£ãŠããã®ã§ããã
åºæ¬çã«ã¯1ã€ã®çŽ°èã1ã€ã®æ žããã€ãã
äŸå€ãšããŠãããšãã°ããã®èµ€è¡çã®ããã«æ žããããªã现èãããã
ãŸãããã®éªšæ Œçã®ç现èã®ããã«1ã€ã®çŽ°èãè€æ°ã®æ žããã€ãã®ãããã
æ žã¯çŽ°èå°åšå®ã®åããå¶åŸ¡ããŠããããã®ãã现èã®çåãå¢æ®ã«å¿
èŠãªãã®ã§ããã
ãªã®ã§ãèµ€è¡çã®ããã«æ žã倱ã£ã现èã¯é·ãçãç¶ããããšã¯ã§ãããåè£ããããšãã§ããªãã
æ žã®äžã«ããDNAãããã®ãããªã现èå°åšå®ã®å¶åŸ¡ãè¡ã£ãŠããã
{{-}}
* ã¢ã¡ãŒãã®å®éš
[[ãã¡ã€ã«:ã¢ã¡ãŒãã®åæå®éš 2.svg|thumb|right|320px|ã¢ã¡ãŒãã®åæå®éš1]]
[[ãã¡ã€ã«:ã¢ã¡ãŒãã®åæå®éš 1.svg|thumb|right|320px|ã¢ã¡ãŒãã®åæå®éš2]]
ã¢ã¡ãŒããã¬ã©ã¹æ¿ã§æ žãããçïŒãžãïŒãšãæ žããªãçãšã«åæãããšãæ žãããçã¯å¢æ®ã§ããæ žããªãçã¯æ»ã¬ãïŒã¢ã¡ãŒãã®åæå®éš1ïŒ
ã¢ã¡ãŒãã®æ žãã¬ã©ã¹ç®¡ã§åžãåããæ žãšçŽ°è質ãšã«åãããšãäž¡æ¹ãšãæ»ã¬ãïŒã¢ã¡ãŒãã®åæå®éš2ïŒ
ãã®ããã«æ žã¯çŽ°èã®çåãå¢æ®ã«å¿
èŠã§ããã
{{-}}
* ã«ãµããªã®å®éš
:ïŒâ»æªå·çãå·çè
ãåéäžïŒ
* åæ žçŽ°èãšçæ žçŽ°è
çç©ã®çŽ°èã«ã¯ãæ žããããªã'''åæ žçŽ°è'''ãšãæ žããã€'''çæ žçŽ°è'''ãšãããã
倧è
žèãªã©ã®[[w:现èé¡|现èé¡]]ãããŠã¬ã¢ãªã©ã®ã·ã¢ããã¯ããªã¢([[w:ã©ã³è»|ã©ã³è»é¡]])ã®çŽ°èã¯ãæ žãæããªãã
ãããã®çç©ã®çŽ°èãæè²äœãšããã«å«ãŸããDNAã¯ãã£ãŠãããããããå
ãæ žèããã£ãŠããªãã®ã§ãæ žããªãã
ãã®ãããªãæ žã®ãªã现èã®ããšã'''åæ žçŽ°è'''(prokaryotic cell)ãšåŒã¶ã
ãŸããåæ žçŽ°èã§ã§ããçç©ã'''åæ žçç©'''(prokaryote)ãšåŒã¶ã
åæ žçŽ°èã®æè²äœãšããã«å«ãŸããDNAã¯çŽ°è質åºè³ªã®äžã«ããã
åæ žçŽ°èã¯ãããã³ã³ããªã¢ãèç·äœãªã©ãæããªãã
åæ žçŽ°èã¯ãçæ žçŽ°èãããå°ããå
éšæ§é ãåçŽã§ããã
ã·ã¢ããã¯ããªã¢ã¯ãããã³ã³ããªã¢ãšèç·äœãæããªãåæ žçç©ã§ããããå
åæãè¡ãã
ããã«å¯ŸããŠãæè²äœãæ žèã«å
ãŸããŠãã现èã'''çæ žçŽ°è'''(eukaryotic cell)ãšåŒã¶ã
ãŸããçæ žçŽ°èã§ã§ããçç©ã'''çæ žçç©'''(eukaryote)ãšåŒã¶ã
ã»ãŒãã¹ãŠã®çæ žçç©ã§ã¯çæ žçŽ°èã«ããã³ã³ããªã¢ãèŠãããã
ãŸããæ€ç©ã®å Žåãçæ žçŽ°èã«èç·äœãèŠãããã
ããã³ã³ããªã¢ããã³èç·äœã¯ãç¬èªã®DNAãæã¡ããããå«ã现èã®æ žã®DNAãšã¯éºäŒæ
å ±ãç°ãªãã
ãã®ãããããããããã³ã³ããªã¢ããã³èç·äœã¯ã
å®ã¯ããšããšããã®åãå
¥ãå
ã®çŽ°èãšã¯å¥ã®çç©ã ã£ããã
åãå
¥ãå
ã®çŽ°èã«å
¥ã蟌ã¿å
±çããããã«ãªã£ãã®ã ããããšæãããŠããã
ãããŠãããã³ã³ããªã¢ãŸãã¯èç·äœãåã蟌ãã çµæãçç©çã«çæ žçŽ°èãåºãŠãããã®ã ãšæãããŠãã
现èãããã³ã³ããªã¢ãŸãã¯èç·äœãåã蟌ãåã¯ããã®çŽ°èã¯åæ žçŽ°èã ã£ãã®ã ãããšæãããŠããããã®ãããªèª¬ãã'''现èå
å
±ç説'''ãŸãã¯åã«'''å
±ç説'''ãšããã
[[ãã¡ã€ã«:Mitochondrie.svg|thumb|right|320px|'''ããã³ã³ããªã¢ã®æ§é '''<br/>1.å
è 2.å€è 3.ã¯ãªã¹ã 4.ãããªã¯ã¹]]
'''ããã³ã³ããªã¢'''(mitochondria)ã¯åç©ãšæ€ç©ã®çŽ°èã«ååšãã
é·ã1ÎŒmïœæ°ÎŒmãå¹
0.5ÎŒmçšåºŠã®ç²ç¶ã®çŽ°èå°åšå®ã§ãã
ååŠåå¿ã«ãã£ãŠé
žçŽ ãæ¶è²»ããŠææ©ç©ãå解ããšãã«ã®ãŒãåŸãåŒåž(respiration)ãè¡ãã
ããã³ã³ããªã¢ã®åœ¢ã¯ç圢ãŸãã¯åç圢ã®æ§é äœã§ã
å€åŽã«ããå€èãšå
åŽã«ããã²ã ç¶ã®å
èãšã®2éèããã€ã
å
èãã²ã ç¶ã«ãªã£ãéšåãã¯ãªã¹ã(cristae)ãå
èã«å²ãŸãã空éãæºãã液äœããããªãã¯ã¹(matrix)ãšåŒã¶ã
åŒåžã«é¢ããé
µçŽ ãã¯ãªã¹ããšãããªãã¯ã¹ã«ãµããŸããŠããããã®é
µçŽ ã§ææ©ç©ãå解ããã
ããã³ã³ããªã¢ã®å
èã§ATPãšããç©è³ªãåæããã
åæ žçç©ãåŒåžãè¡ããããããåæ žçŽ°èã®åŒåžã¯ããã£ããŠããã³ã³ããªã¢ã«ãããã®ã§ã¯ãªãã
ïŒâ» æç§æžã®ç¯å²å€:ïŒèŠ³å¯æã®ããã³ã³ããªã¢ã®æè²ã¯ãã€ãã¹ã°ãªãŒã³ã«ãã£ãŠç·è²ã«æè²ã§ããã
{{-}}
[[File:Chloroplast-japanese.jpg|thumb|right|320px|'''èç·äœã®æ§é ''']]
'''èç·äœ'''(chloroplast)ã¯æ€ç©ã®çŽ°èã«ååšããçŽåŸ5ïœ10ÎŒmãåã2ïœ3ÎŒmã®åžã¬ã³ãºåœ¢ã®åšå®ã§ããã
å
ãšãã«ã®ãŒã䜿ã£ãŠæ°Žãšäºé
žåççŽ ããçæ°Žåç©ãåæãã'''å
åæ'''(photosynthesis)ãè¡ãã
èç·äœã«ã¯ãã©ã³ã€ã(thylakoid)ãšåŒã°ããæå¹³ïŒãžããºãïŒãªè¢ç¶ã®æ§é äœãããã
ãã©ã³ã€ããç©ã¿éãªã£ãŠã°ã©ã(grana)ãšåŒã°ãããŸãšãŸããäœã£ãŠããã
äžéšã®çŽ°é·ã延ã³ããã©ã³ã€ããè€æ°ã®ã°ã©ãéãçµãã§ããã
ãã®éãã¹ããã(stroma)ãšåŒã°ãã液äœãæºãããŠããã
ããã«ããã®åšããå
èãšå€èã®2éèãå²ãã§ããã
[[ãã¡ã€ã«:Chlorophyll spectrum.png|thumb|right|320px|ã¯ãããã£ã«''a''ïŒéïŒããã³ã¯ãããã£ã«''b''ïŒèµ€ïŒã®åžåã¹ãã¯ãã«]]
ãŸããèç·äœã¯'''ã¯ãããã£ã«'''ïŒchlorophyllïŒãšããç·è²ã®è²çŽ ããµããã§ããã
æ£ç¢ºã«èšããšãã¯ãããã£ã«ã¯ç·è²ã®å
ãåå°ããŠãã»ãã®è²ã®å
ãåžåããè²çŽ ã§ããã
ãã®ã¯ãããã£ã«ã®åå°ç¹æ§ã®ãããæ€ç©ã¯ç·è²ã«èŠããã
ãã©ã³ã€ãã®èããã¯ãããã£ã«ãªã©ã®è²çŽ ããµããã§ãããããã«ãã£ãŠå
ãšãã«ã®ãŒãåžåããŠããã
ãããŠãã¹ãããã«ããé
µçŽ ã®åãã«ãã£ãŠãå
åæã®ææ©ç©åæãè¡ã£ãŠããã
èç·äœã¯ãã¹ãããã«ç¬èªã®DNAãæã£ãŠããã
<pre>
調ã¹ãŠã¿ããïŒ
å
åæãè¡ãä»ã®çç©ãèªåã®çŽ°èã®äžã«åã蟌ãããããšããçç©ãããã
ãã®ãããã«ã€ããŠèª¿ã¹ãŠã¿ããã
</pre>
{{-}}
[[ãã¡ã€ã«:Plant_cell_structure_svg_vacuole.svg|thumb|right|320px|'''液èã®æ§é ''']]
'''液è'''(ããã»ããvacuole)ã¯äž»ã«æ€ç©çŽ°èã«ã¿ãããç©è³ªã貯èµããã浞éå§ã調ç¯ãããããã
äžéã®æ¶²èèã§å
ãŸããå
éšã'''现è液'''(cell sap)ãæºãããŠããã
äžéšã®æ€ç©çŽ°èã¯'''ã¢ã³ãã·ã¢ã³'''(anthocyan)ãšåŒã°ããèµ€ã»éã»çŽ«è²ã®è²çŽ ãå«ãã
{{-}}
==== 现èè ====
[[ãã¡ã€ã«:Cell_membrane_detailed_diagram_en.svg|thumb|center|640px|'''现èèã®æ§é ''']]
[[ãã¡ã€ã«:现èäºéèã®æš¡åŒå³.svg|thumb|right|320px|现èäºéèã®æš¡åŒå³]]
[[ãã¡ã€ã«:ã€ãªã³ãã£ãã«ã®æš¡åŒå³.svg|thumb|right|320px|ã€ãªã³ãã£ãã«ã®æš¡åŒå³]]
现èèã¯çŽ°è質ã®å€åŽã«ããåã5nmïœ10nmçšåºŠã®èãèã§ãããäž»ã«'''ãªã³è質'''ãšã¿ã³ãã¯è³ªã§æ§æãããå
žåçãªçäœèã§ããã现èãžã®ç©è³ªã®åºå
¥ãã®èª¿ç¯ãè¡ãããªã³è質ã«ã¯æ°Žã«æº¶ãããã芪氎æ§ã®éšåãšãæ°Žã«æº¶ãã«ããçæ°Žæ§ã®éšåããããçæ°Žæ§ã®éšåãå
åŽã«åããåã£ãã'''äºéè'''ïŒã«ãã
ããŸããbilayerïŒã«ãªã£ãŠããã
ãæ°Žãšæ²¹ããšããèšèãã仲ã®æªãããšã®è¡šçŸãšããŠçšããããããã«ãæ°Žãšæ²¹ã¯æº¶ãåããªãã
ãã®ããã«çŽ°èèãå€éšã«å¯ŸããŠçæ°Žæ§ïŒãããããïŒã®éšåã ããåºããŠãããã现èèã¯çæ°ŽçïŒããããŠãïŒã§ããããã®ããã现èèã¯ãæ°Žã«æº¶ããªãããã®ããã现èèã«ãã£ãŠã现èããŸããããä»åãããããããã®çŽ°èã溶ãåããªãããã«ãªã£ãŠããã
现èèã®ãšããã©ããã«ã¿ã³ãã¯è³ªãååžããŠããããã®ïŒçŽ°èèã«ããïŒã¿ã³ãã¯è³ªãã现èãžã®ç©è³ªã®åºå
¥ãã®èª¿ç¯ã«é¢ãã£ãŠããã现èèã¯ãç¹å®ã®ç©è³ªã®ã¿ãééãšããæ§è³ªãããããã®æ§è³ªã®ããšã'''éžæçééæ§'''ïŒãããããŠã ãšããããïŒãšãããïŒåæãæ°ç ã®å°éãçç©ãã«ãéžæçééæ§ãã®çšèªãããïŒ
ã¹ã¯ããŒã¹æº¶æ¶²ãªã©ã«å¯ŸããŠã¯ã现èèã¯åéæ§ (â»ã现èãžã®ç©è³ªã®åºå
¥ãããåç
§) ã«è¿ãæ§è³ªã瀺ãã
* çºå±
现èèã«ã¯ããšããã©ããã«'''ã€ãªã³ãã£ãã«'''ïŒion channelïŒãããããããªãŠã Na<sup>+</sup>ãã«ãªãŠã K<sup>+</sup>ãªã©ç¹å®ã®ã€ãªã³ã®ã¿ãéžæçã«ééããããïŒâ» çç©IIã§ã€ãªã³ãã£ãã«ãç¿ãã®ã§ãã€ãã§ã«å€ªåãïŒ
ãŸãã现èã®ãšããã©ããã«ã¯'''å容äœ'''ïŒãã
ãããããreceptorïŒããããç¹å®ã®ç©è³ªããã®åºæ¿ãåãåããå容äœã®çš®é¡ããšã«åãåããç©è³ªã®çš®é¡ãéãããã®ããåãåããåºæ¿ã®çš®é¡ãã¡ãããå容äœã®æ質ã¯ã¿ã³ãã¯è³ªã§ããã
ãŸãã现èèäžã®ã¿ã³ãã¯è³ªã«ããªãªãŽç³ãªã©ã®å€ç³é¡ã§åºæ¥ãŠããç³éïŒãšãããsugar chainïŒãä»ããŠããå Žåãããã现èã©ããã®èå¥ïŒããã¹ã€ïŒãªã©ã®æ
å ±äº€æãã现èã©ããã®çµåãªã©ã«åœ¹ç«ã£ãŠããããªããããã®ABOåŒè¡æ¶²åã®éãã¯ãèµ€è¡çã®çŽ°èèã®ç³éã®éãã«ãããã®ã§ããã
现èãç°ç©ãæ¶ååžåãã'''é£äœçš'''ïŒããããããïŒã®éã«ãã现èèãé¢ãã£ãŠãããç°ç©ã«çŽ°èèãåãä»ãããšã§ãç°ç©ãå
ãã§åã蟌ããé£äœçšã®ããšã飲é£äœçšãšãèšã£ããããšã³ããµã€ããŒã·ã¹ãšãããããã¯ããã¡ãŒãžãã¢ã¡ãŒããªã©ã®é£äœçšã¯ããã®ãããªçŽ°èèã®åãã«ãããã®ã§ããã
{{-}}
==== 现èå£ ====
[[File:Eukaryota_cell_strucutre.PNG|thumb|right|320px|'''现èå£ã®æ§é '''ïŒç·ã现èå£ïŒ]]
'''现èå£'''(ãããŒããžããcell wall)ã¯æ€ç©çŽ°èãèé¡ãåæ žçç©ã«èŠããã现èèã®å€åŽã§çŽ°èãå®ãåºãèã§ããã圢ãä¿ã€åããæã€ãåç©çŽ°èã«ã¯èŠãããªãã
现èå£ã¯ãã»ã«ããŒã¹ãäž»æåãšããŠãããã»ã«ããŒã¹ãšãã¯ãã³ãªã©ã®çæ°Žåç©ã«ãã£ãŠãªããã€å
šéæ§ (â»ã现èãžã®ç©è³ªã®åºå
¥ãããåç
§) ã®æ§é ã§ããã
{{-}}
==== çºå±çãªè©±é¡ ====
===== çºå±: 现èã®ç 究ã®æŽå² =====
[[ãã¡ã€ã«:Hooke-microscope.png|thumb|right|320px|ãããŒãã»ããã¯ã®é¡åŸ®é¡]]
[[ãã¡ã€ã«:RobertHookeMicrographia1665.jpg|thumb|right|320px|ãããŒãã»ããã¯ã«ããã³ã«ã¯ã®ã¹ã±ããã]]
现èã¯ã1665幎ãã€ã®ãªã¹ã®[[w:ãããŒãã»ããã¯|ãããŒãã»ããã¯]]ã«ãã£ãŠçºèŠãããã
圌ã¯ãèªäœã®é¡åŸ®é¡ãçšããŠã軜ããŠåŒŸåã®ããã³ã«ã¯ã®èçã芳å¯ãããšããã
å€æ°ã®äžç©ºã®æ§é ãããããšãç¥ã£ãããããä¿®éé¢ã®å°éšå±(cellãã»ã«)ã«ã¿ããŠã'''现è'''(cell)ãšåŒãã ã
圌ã芳å¯ããã®ã¯ãæ»ãã æ€ç©çŽ°èã®çŽ°èå£ïŒãããŒããžããcell wallïŒã§ãã£ããã
ãã®åŸã1674幎ããªã©ã³ãã®[[w:ã¢ã³ããã»ãã¡ã³ã»ã¬ãŒãŠã§ã³ããã¯|ã¬ãŒãŠã§ã³ããã¯]]ã«ããã¯ãããŠçãã现èã®çŽ°èã芳å¯ãããã
19äžçŽã«å
¥ããšã现èãšçåœæŽ»åã®é¢é£æ§ãæ°ä»ãããã¯ãããã
ãŸã1838幎ããã€ãã®[[w:ããã£ã¢ã¹ã»ã€ã³ãã»ã·ã¥ã©ã€ãã³|ã·ã¥ã©ã€ãã³]]ãæ€ç©ã«ã€ããŠã
ç¿1839幎ããã€ãã®[[w:ããªããŒã«ã»ã·ã¥ã¯ã³|ã·ã¥ã¯ã³]]ãåç©ã«ã€ããŠã
ãå
šãŠã®çç©ã¯çŽ°èããæãç«ã€ããšãã'''现è説'''(cell theory)ãæå±ããã
ããã«åŸããã€ãã®[[w:ã«ãã«ãã»ã«ãŒããŽã£ãã»ã«ãŒã«ã»ãŠã£ã«ãã§ãŒ|ãŠã£ã«ãã§ãŒ]]ã®ãå
šãŠã®çŽ°èã¯ä»ã®çŽ°èã«ç±æ¥ããããšããèãã«ããã现è説ã¯æµžéããŠãã£ãã
{{-}}
===== èªç¶çºç宀ã®åŠå® =====
:â» ãç§åŠãšäººéç掻ãã®ç¯å²ã
ã¬ãŒãŠã§ã³ããã¯ã现èãçºèŠããŠããåœæã®çç©åŠã®æ¥çã§ã¯ããã°ããã埮çç©ã®çºçã«ã€ããŠã¯ã芪ãªãã«ç¡çç©ããèªç¶ã«åŸ®çç©ãçºçããã ãããšããèªç¶çºç説ãä¿¡ããããŠããã
ããã19äžçŽã«ãã©ã³ã¹ã®çååŠè
ãã¹ããŒã«ããå³ã®ãããªSåç¶ã«å£ã®æ²ã£ããã©ã¹ã³ïŒäžè¬ã«ãçœé³¥ã®éŠãã©ã¹ã³ããšããïŒã䜿ã£ãå®éšã§èªç¶çºç説ãééã£ãŠããäºã蚌æããã
[[File:Swan neck falsk experiments japanese.svg|thumb|900px]]
[[File:Swan neck falsk experiments sealed japanese.svg|thumb|500px|]]
{{-}}
{{ã³ã©ã |ïŒâ» ç¯å²å€: ïŒå¯Ÿç
§å®éš |
:æç§æžã«ã¯çšèªãç¡ããããã®å®éšã®ããã«ãããåŠèª¬ã蚌æãããããããçŸè±¡ã®èµ·ããæ¡ä»¶ããããéã«ããããšäŒŒãŠãããæ¡ä»¶ã埮åŠã«å€ããå¥ã®å®éšãè¿œå ããŠãããªã£ãŠæ¯èŒããããšã«ãããçŸè±¡ã®èµ·ããæ¡ä»¶ãæ確ã«ããå®éšã®ããšã'''察ç
§å®éš'''ïŒããããããã£ããïŒãšããã
ããšãã°ã
ã€ãŸãã仮説ãå¯éããã¬ã©ã¹å®¹åšå
ã«ãå¯éã®çŽåãŸã§ã«ç
®æ²žããæ é€ç©ããå¯éåŸã«æ°æ¥ãæŸçœ®ããŠããè«ã¯çºçããªãããšãã仮説ãæ€èšŒããã«ã¯ãæ¯èŒã®ããã«ã¯ãããšãã°äžèšã®ä»®èª¬
:ããããããããã¬ã©ã¹å®¹åšã®æ質ãç¹å¥ã§ã埮çç©ãè«ãçºçããªãç¹å¥ãªã¬ã©ã¹ãªã®ã§ã¯ïŒããšã
:ããããããããæ é€ç©ã®æ¶²äœã®çµæãç¹å¥ã§ã人éã«ãšã£ãŠã¯æ é€ã ãã©ã埮çç©ãè«ã«ãšã£ãŠã¯æ é€ã§ã¯ãªãããã®ããè«ãèªç¶çºçããªãã®ã§ã¯ïŒããšãã®ä»®èª¬ãåŠå®ã§ãã蚌æ ãéããªããã°ãããªãã
ãã®ãããªãåŠå®ãããã¹ã仮説ãç°¡åã«åŠå®ããããã®å®éšæ¹æ³ã®ã²ãšã€ãšããŠå¯Ÿç
§å®éšããããããšãã°ãäžèšã®ãããªãããšã®å®éšããæ¡ä»¶ã1ã€ã2ã€ãªã©ãããå°æ°ã ãæ¡ä»¶ãå€ããŠã¿ãŠãå®éšãããã°ããã
:æ¯èŒã®å®éšãå¯é'''ããŠããªã'''ïŒåãæ質ã®ïŒã¬ã©ã¹å®¹åšå
ã«ãå¯éã®çŽåãŸã§ã«ç
®æ²žããïŒåãæåçµæã®ïŒæ é€ç©ããå¯éåŸã«ïŒåãæ¥æ°ã ãïŒæ°æ¥ãæŸçœ®ããŠãã埮çç©ãè«ã¯çºçããªããïŒããšãã
:æ¯èŒã®å®éšãå¯éããïŒåãæ質ã®ïŒã¬ã©ã¹å®¹åšå
ã«ãå¯éã®çŽåãŸã§ã«ç
®æ²ž'''ããŠããªã'''æ é€ç©ïŒâåãæåçµæïŒããå¯éåŸã«ïŒåãæ¥æ°ã ãïŒæ°æ¥ãæŸçœ®ããŠãã埮çç©ãè«ã¯çºçããªããïŒããšãã
ã®ããã«ãè¿œå ã®å®éšãããå¿
èŠãããã
ããããå®éšã®ææ³ã察ç
§å®éšã§ããã
ãã®ãã¹ããŒã«ã®å®éšãããã察ç
§å®éšã®äŸãšããŠåèæžãªã©ã§çŽ¹ä»ãããããããã察ç
§å®éšãšã¯ããªã«ããã®å®éšã ãã«éã£ãããšã§ã¯ãªãã
}}
;æ€çŽ¢çšããŒã¯ãŒã
ã察ç
§å®éšãã
:â» æ€çŽ¢çšã«å¯Ÿç
§å®éšã®çšèªãwikiã§ã¯çŽ¹ä»ãäžèšã³ã©ã ã¯wikiæ€çŽ¢ããã¯é€å€ãããã®ã§ãæ¬æäžã«ããŒã¯ãŒãèšèŒã
===== çºå±: 现èéªšæ Œ =====
现è質åºè³ªã«ã¯ãäžèŠãããšæ¶²äœä»¥å€ã«äœãç¡ãããã«èŠããããå®ã¯ç¹ç¶ç¶ã®æ§é ãããããã®çŽ°è質åºè³ªã«ååšããŠããç¹ç¶ç¶ã®æ§é ã'''现èéªšæ Œ'''ïŒãããŒã ãã£ãããcytoskeletonïŒãšããã
现èéªšæ Œã«ã¯ã埮å°ç®¡ïŒã³ããããããmicrotubuleïŒãäžéåŸãã£ã©ã¡ã³ãïŒintermadiate filamentïŒãã¢ã¯ãã³ãã£ã©ã¡ã³ãïŒactin filamentïŒã®3çš®é¡ãããã
ãã®çŽ°èéªšæ Œã«ãã£ãŠã现èå°åšå®ã¯åºå®ãããŠããã
ãŸãã现èå°åšå®ã液èãªã©ã现èå
ã§éåããŠå圢質ãæµåããŠããããã«èŠããçç±ã¯ã现èéªšæ ŒãåããŠçŽ°èå°åšå®ãªã©ãéãã§ããããã§ããããšãè¿å¹Žã«åãã£ãã
{{ã³ã©ã |
(⻠以éãçç©IIãå°éçç©ã®ç¯å²: )|
[[File:201704 microtubule.svg|thumb|埮å°ç®¡ãšãã¥ãŒããªã³]]
埮å°ç®¡ã¯ããã¥ãŒããªã³ãšããçç¶ã®ã¿ã³ãã¯è³ªããåºæ¥ãŠããã埮å°ç®¡å
šäœãšããŠã¯ç®¡ç¶ã«ãªã£ãŠããäžç©ºã®ç®¡ã§ããã埮å°ç®¡ã®çŽåŸã¯çŽ 25nm ã»ã©ã§ããããªãã埮å°ç®¡ã®ãã¥ãŒããªã³ã¯2çš®é¡ããæ§æãããŠãããαãã¥ãŒããªã³ãšÎ²ãã¥ãŒããªã³ãããªããå³ã®ããã«äžè¬ã«Î±ãã¥ãŒããªã³ãšÎ²ãã¥ãŒããªã³ã¯ããšãªããã£ãŠããã
[[File:Actin firament japanese.svg|thumb|400px|ã¢ã¯ãã³ãã£ã©ã¡ã³ã]]
ã¢ã¯ãã³ãã£ã©ã¡ã³ãã¯ãçŽåŸãçŽ7nmã®ç¹ç¶ã§ãããã¢ã¯ãã³ãšããçç¶ã®ã¿ã³ãã¯è³ªãã€ããªã£ãŠæ§æãããŠãããç¹ã«çèã«ãã¢ã¯ãã³ãã£ã©ã¡ã³ããå€ãå«ãŸããŠãããçè以å€ã®äžè¬ã®çŽ°èã«ãã¢ã¯ãã³ãã£ã©ã¡ã³ãã¯å«ãŸããŠããã
ã¢ã¯ãã³ãã£ã©ã¡ã³ãã«ãã£ãŠçŽ°èã®åãä»çµã¿ã¯ãçç¹ç¶ãåãä»çµã¿ãšãã»ãŒåãã§ããã
ã¢ã¯ãã³ãã£ã©ã¡ã³ãã¯å¥åã§ããã€ã¯ããã£ã©ã¡ã³ãããšãèšãïŒâ» æ°ç åºçïŒã
ã¢ã¯ãã³ã«çµåããããã¿ã³ãã¯è³ªãšããŠããªã·ã³ããããççµç¹ã§ã¯ããªã·ã³ãå€ãèŠãããã
[[File:Myosin transport on actin filament japanese.svg|thumb|400px|ã¢ãŒã¿ãŒã¿ã³ãã¯è³ªãšããŠã®ããªã·ã³]]
ã ããåç©ã®çèã ãã§ãªããïŒæ€ç©çŽ°èãªã©ã®ïŒå圢質æµåã§ããç¹æ®ãªèŠ³å¯æ³ã«ãã£ãŠãã¢ã¯ãã³ãšããªã·ã³ã芳å¯ããããïŒâ» åæ通ã®å°éãçç©ãã15ããŒãžã第äžåŠç¿ç€Ÿãå°éãçç©ãã53ããŒãžïŒå圢質æµåã®éã现èå°åšå®ã«çµåããããªã·ã³ãã¢ã¯ãã³ãã£ã©ã¡ã³ãã«æ²¿ã£ãŠåãäºãåãã£ãŠããã
ãŸãããã®ããªã·ã³ã®åããšãã«ã®ãŒæºã¯ATPã§ããã
ãã®ãããããªã·ã³ããã¢ãŒã¿ãŒã¿ã³ãã¯è³ªããšãããã®ã«åé¡ãããŠããã
ïŒâ» çèã«ã€ããŠã¯ãããããã¯ãçç©IIã§å匷ãããïŒ
埮å°ç®¡ã®äžã移åãã'''ãã€ãã³'''ãš'''ããã·ã³'''ãšããã¿ã³ãã¯è³ªãããããããã¢ãŒã¿ãŒã¿ã³ãã¯è³ªãšããŠåé¡ããããã€ãŸãããã€ãã³ã¯ã¢ãŒã¿ãŒã¿ã³ãã¯è³ªã§ãããããã·ã³ã¯ã¢ãŒã¿ãŒã¿ã³ãã¯è³ªã§ããã埮çç©ã®éæ¯ïŒã¹ãããïŒã粟åã®éæ¯ãªã©ãéæ¯ã®å±æ²ãèµ·ãããŠããã®ãããã®ãã€ãã³ãšããã·ã³ã«ããåãã§ããïŒâ» æ±äº¬æžç±ãæ°ç ïŒããã€ãã³ãšããã·ã³ããATPã®ãšãã«ã®ãŒãå©çšããããšã§ãã¢ãŒã¿ãŒã¿ã³ãã¯è³ªãšããŠåããŠããã
: â» ãããŸã§çç©II ã®ç¯å².
}}
===== çºå±: é»åé¡åŸ®é¡ã§èŠããã现èå°åšå® =====
[[ãã¡ã€ã«:Golgi_apparatus_(borderless_version)-en.svg|thumb|right|320px|'''ãŽã«ãžäœã®æ§é '']]
现èå°åšå®ã«ãããŠãå°ããããŠå
åŠé¡åŸ®é¡ã§ã¯èŠãããªãããé»åé¡åŸ®é¡ã§ãªãèŠãããæ§é ããããã€ãååšããŠããã
ãŽã«ãžäœãäžå¿äœã¯ãå°ãããããããå
åŠé¡åŸ®é¡ã§ã¯èŠãããªãããé»åé¡åŸ®é¡ã§èŠãããšãã§ããã
'''ãŽã«ãžäœ'''(Golgi body)ã¯é
µçŽ ããã«ã¢ã³ãªã©ã®åæ³ã«é¢äžããã»ãã现èå
ã§å©çšãããã¿ã³ãã¯è³ªã®ä¿®é£Ÿãè¡ãã
äžéèã®å¹³ããªè¢ç¶ã®å±€ãããã€ãéãªã£ãæ§é ãããŠããã
{{-}}
[[ãã¡ã€ã«:Centrosome_(borderless_version)-en.svg|thumb|right|320px|'''äžå¿äœã®æ§é ''']]
'''äžå¿äœ'''(centrosome)ã¯äž»ã«åç©çŽ°èã«ã¿ãããã¹ãæ¯ãç¹æ¯ã圢æãããã现èåè£ã®éã®çŽ¡éäœåœ¢æã®èµ·ç¹ãšãªãã
埮å°ç®¡ãšãã管ç¶ã®æ§é äœã3ã€éãŸãããããç°ç¶ã«9ã€éãŸãäžå¿å°äœãäœãã
ãã®äžå¿å°äœã2ã€LåçŽäº€ããŠäžå¿äœãäœãã
{{-}}
===== çºå±: ãŠã€ã«ã¹ =====
ã€ã³ãã«ãšã³ã¶ãªã©ã®ãããªããŠã€ã«ã¹ããšããçš®é¡ã®ç©ãååšããããŠã€ã«ã¹ã¯çç©ãšéçç©ãšã®äžéçãªååšã§ãããã»ãšãã©ã®ãŠã€ã«ã¹ã¯0.3ÎŒm以äžã®å€§ããã§ããã倧è
žè (çŽ3ÎŒm)ãªã©ã®çŽ°èã®å€§ãããšæ¯ã¹ãŠããšãŠãå°ããããŠã€ã«ã¹ã¯ãã¿ã³ãã¯è³ªã®æ®»ãšããã®æ®»ã«ã€ã€ãŸããæ žé
žããã€æ§é ã§ã现èãæã£ãŠããªãããŠã€ã«ã¹ã¯éºäŒç©è³ªãšããŠæ žé
žããã¡ãåç¬ã§ã¯å¢æ®ã§ããªãããŠã€ã«ã¹ã®å¢æ®ã¯ãä»ã®çç©ã®çãã现èã®äžã«äŸµå
¥ããŠããã®çŽ°èã®äžã«ããç©è³ªãå©çšããŠè¡ããæ»ãã 现èïŒäŸïŒå ç±åŠçãªã©ãã现èïŒã®äžã§ã¯ããŠã€ã«ã¹ã¯å¢æ®ã§ããªãã
:ïŒâ» æç§æžã«ã¯æžãããŠãªããããŠã€ã«ã¹ã®æ質ã»æåã¯ãã¿ã³ãã¯è³ªãšæ žé
žã®ã»ããæ¯èŒçã«å°éã ãå®ã¯ãã¹ãã€ã¯ããšèšãããç³ã¿ã³ãã¯è³ªã®çªèµ·ãããããŠã€ã«ã¹ã®éºäŒç©è³ªã®æ質ãæ žé
žã§ããããã®éºäŒç©è³ªã®æ®»ïŒã«ãã·ãïŒãã¿ã³ãã¯è³ªã§ããã®ã ããå®ã¯ãã®ã«ãã·ãã«ãç³ã¿ã³ãã¯è³ªã®ã¹ãã€ã¯ãçããŠããããã¹ãã€ã¯ãã䜿ã£ãŠãææå
ã®çŽ°èã«ææãããŠãããšæããããïŒããã¹ãã€ã¯ã®ç¡ãæ®»ã ãã ãšãã©ãã«ãææã§ããªãã ãããïŒ ãŠã€ã«ã¹ã«ãã£ãŠã¯ãããã«ãšã³ã¹ããŒããšããè質èãæã€ãã®ããããã€ã³ãã«ãšã³ã¶ãããã®ãããªãšã³ãããŒãç³»ã®ãŠã€ã«ã¹ã§ããããšã³ã¹ããŒãã¯è質ãªã®ã§ãã¢ã«ã³ãŒã«ãªã©ã§è質ãç Žå£ã§ããã®ã§ããšã³ã¹ããŒãç³»ã®ãŠã€ã«ã¹ã«ã¯ã¢ã«ã³ãŒã«æ¶æ¯ãæãããªãããšã³ã¹ããŒãåãŠã€ã«ã¹ã®ç³ã¿ã³ãã¯è³ªã¯ãã«ãã·ãã§ã¯ãªããšã³ãããŒãã«ãããäžæ¹ããããŠã€ã«ã¹ã¯ããšã³ãããŒããæããªããïŒ
:èŠããã«ããŠã€ã«ã¹ã®æ質ã¯ããã£ããŠæ žé
žãšã¿ã³ãã¯è³ªã ãã§ã¯ãªãã®ã§ãæ©åç¹ããªãããã«ã
ãŠã€ã«ã¹èªäœã¯æŽå²çã«ã¯ã次ã®ããã«çºèŠããããïŒç§ç®ãç§åŠãšäººéç掻ãã®ç¯å²ïŒ
ãŸãçŽ çŒãã®é¶åšã®æ¿ã䜿ã£ãŠæ°Žãæ¿Ÿéãããšããã®é¶æ¿ã«ã¯çŽ°èããã埮ç¬ãªç©Žã空ããŠããã®ã§ã现èã®ãµããŸããæ°Žãæµããšã现èãé€ããŠæ°Žã ããééãããŠæ¿Ÿéã§ããçºèŠãããããã®æ¿Ÿéåšã«ãããèµ€ç¢èãªã©ã®ç
åèãæ¿Ÿéã§ããäºãçºèŠããããããããã¿ãã³ã¢ã¶ã€ã¯ç
ã®ç
åäœã¯ãæ°Žãšãã£ããã«ãã®é¶æ¿ãééããäºããã·ã¢ã®ç§åŠè
ã€ã¯ããã¹ããŒã«ãã1980幎代ã«çºèŠãããã
ãã®äºããã现èããã埮å°ãªååšãä¿¡ããããããã«ãªã£ãã
ãã®åŸã1930幎代ã«ãã€ãã®ç§åŠè
ã«ã¹ã«ãªã©ã«ãã£ãŠçºæãããé»åé¡åŸ®é¡ã®çºéã«ããã现èãæ åçã«èŠ³å¯ã§ããããã«ãªã£ãã
ãŸãã1930幎代ãã¢ã¡ãªã«ã®ç§åŠè
ã¹ã¿ã³ã¬ãŒãã¿ãã³ã¢ã¶ã€ã¯ãŠã€ã«ã¹ã®çµæ¶åã«æåããŠããã
:ïŒâ» ç¯å²å€: ïŒãŠã€ã«ã¹ã«ã¯ååçã«ãªããœãŒã ã¯ç¡ã<ref>David P.Clark åèãã¯ã©ãŒã¯ååçç©åŠããç°æ²Œéäž ç£èš³ãå¹³æ19幎12æ10æ¥ çºè¡ãäžžåãP599</ref>ããããããªããœãŒã ã¯ã¿ã³ãã¯è³ªãã€ããããã®ãã®ã§ããããŠã€ã«ã¹ã¯èªèº«ã§ã¯ã¿ã³ãã¯è³ªãã€ãããªãããããä»ã®çäœã«ææããŠå¯çããããã§ããã
===== çºå±: 现è質åºè³ª =====
现è質åºè³ªã¯ã现èå°åšå®ã®éãæºãããæ°Žã»ã¿ã³ãã¯è³ªãªã©ãå«ãŸããæ§ã
ãªååŠåå¿ãè¡ãããŠããã
ãªãªã«ããã¢ã®èã®çŽ°èã芳å¯ãããšã现è質åºè³ªã®äžãé¡ç²ãæµåããŠãããããã'''å圢質æµå'''(ãããããã€ãã
ãã©ããprotoplasmic streamingã现è質æµå)ãšåŒã¶ãå圢質æµåã¯çããŠãã现èã§ã®ã¿èŠãããã
* [http://commons.wikimedia.org/w/index.php?title=Special%3ASearch&profile=default&search=Cytoplasmic+streaming&fulltext=Search å圢質æµåã®åç»]
=== 现èãžã®ç©è³ªã®åºå
¥ã ===
==== éæ§ãšæµžé ====
[[File:Osmose en.svg|thumb|right|320px|'''é£å¡©æ°Žã®åéèã«å¯Ÿãã浞é''']]
[[File:åéèãšæµžé 説æå³.svg|thumb|700px|åéèãšæµžé 説æå³]]
现èã¯ããã®äžã«æ°Žãæ é€åãåãå
¥ã䜿ããªããšçããŠãããªãã
以äžã§ã¯çŽ°èãžã®ç©è³ªã®åºå
¥ãã«ã€ããŠæ±ãã
å°æã§éèãå»ãã§å¡©ãããããšãæ°ŽãåºãŠããŠéèããããªãããããŸãããã¡ã¯ãžã«å¡©ãããããšçž®ãã§ãããšãã話ãèããããå®éã«èŠãããšãããã ãããå®ã¯ããã®äºã€ã¯åãçŸè±¡ã§ããã
äžå®ä»¥äžã®å€§ããã®ååã®ã¿ãééãããæ§è³ªã'''åéæ§'''(ã¯ããšããããsemipermeability)ãšåŒã¶ã
ãŸããåéæ§ã瀺ãèã'''åéè'''(ã¯ããšããŸããsemipermeable membrane)ãšåŒã¶ã溶質ã§ãã£ãŠããäžå®ä»¥äžã®å€§ãããªããåéèã¯éããªãã现èèã¯åéèã®æ§è³ªããã£ãŠãããã»ããã³èãåéèã§ããã溶åªãæ°Žã®å Žåã¯ãåéèã¯æ°Žååãéããäžè¬ã«ãã·ã§ç³ã¯çŽ°èèãéããªãã®ãæ®éã§ãããå°¿çŽ ãã°ãªã»ãªã³ã¯çŽ°èèãéãã®ãæ®éã
ããã«å¯ŸããŠãååã®å€§å°ã«ãããå
šãŠééãããæ§è³ªã'''å
šéæ§'''(ãããšããããnon-selective permeability)ãšåŒã¶ã
ãŸããå
šéæ§ã瀺ãèã'''å
šéè''ïŒãããšããŸããpermiable membraneïŒãšåŒã¶ããçŽã¯å
šéèã§ãããæ€ç©ã®çŽ°èå£ã¯å
šéèã§ããã现èèãšçŽ°èå£ãééããªãããã«ã现èèã¯åç©ã»æ€ç©ã®äž¡æ¹ã«ãããåéèã§ããã现èå£ã¯æ€ç©ã«ãããªãã
æ¿åºŠã®ç°ãªã氎溶液ããããããšãç©è³ªãé«ãæ¿åºŠããäœãæ¿åºŠã®æº¶æ¶²ãžç§»åããæ¿åºŠãåäžã«ãªãçŸè±¡ã'''æ¡æ£'''(ãããããdiffusion)ãšåŒã¶ã
åéèãã¯ããã§æ¿åºŠã®äœã溶液ãšæ¿åºŠã®é«ã溶液ãæ¥è§Šããããšãæ¡æ£ã«ãã£ãŠã溶åªã®æ°Žã¯ç§»åããåéèãéã£ãŠæ¿åºŠã®äœãæ¹ããé«ãæ¹ãžãšæ°Žã¯ç§»åããããã®çŸè±¡ã'''浞é'''(ãããšããosmosis)ãšåŒã¶ã䞡液ã®æ¿åºŠãåãã«ãªããŸã§ã溶åªã®æ°Žãèãéã£ãŠç§»åããã倧ããã®å€§ãã溶質ã¯åéèãéããªãã®ã§ããããã«å€§ããã®å°ããååã§ããæ°Žååã移åããã®ã§ããã
説æã®ç°¡ååã®ããã溶質ååã¯å€§ãããåéèãéããªãå Žåã§ãããšããã
浞éã®ãããæ¿åºŠã®äœã溶液ããæ¿åºŠã®é«ã溶液ãžæº¶åªã移åãããããã«åãå§åã'''浞éå§'''(ãããšããã€ãosmotic pressure)ãšåŒã¶ã溶液ã®æ¿åºŠã®å·®ã倧ããã»ã©ã浞éå§ã¯å€§ããã
浞éå§ãåŒã§è¡šãã°ã浞éå§ãPïŒåäœ[Pa]ãã¹ã«ã«ãªã©ïŒãæ¿åºŠå·®ãCïŒåäœ[mol/L]ãªã©ïŒãšãããšïŒãmolããšã¯ãã¢ã«ãã§ååæ°ã®åäœã§ã6.02Ã10<sup>23</sup>åïŒãåŒã¯
:P=kC
ã§ããã
â»ãçç©Iã®ç¯å²ãè¶
ãããããã詳ããã¯ã枩床ãTãKããšããŠïŒãKããšã¯ã±ã«ãã³ãšããã枩床ã®åäœïŒãæ°äœå®æ°ïŒããããŠãããïŒãšããæ¯äŸä¿æ°ãRãšããŠã
:P=RCT
ïŒããã¡ã³ããããã®åŒããšãããïŒ
ã§ãããïŒ0.082 (Lã»æ°å§)/(Kã»mol)ã
(ç©çãååŠãªã©ã§ãæ°äœã®ç¶æ
æ¹çšåŒã PV = nRT ãšããã®ãç¿ããã±ã«ãã³ãšã¯ã絶察é¶åºŠãã€ãã¹273âã0Kãšãã絶察枩床ã®ããšã§ããããã®ããšãããåããããã«ãèªè
ã¯é«æ ¡ç©çãé«æ ¡ååŠãå匷ããªããã°ãªããªãªãã)
å
ã®æ°Žæº¶æ¶²ã®æ°Žé¢ã®é«ããåãã ã£ãå Žåãåéèã«ããæ¥è§Šã§ã¯æµžéã«ãšã£ãŠçæ¹ã®æ°Žãå¢ããã¶ãããããŠããçæ¹ã®æ°Žãæžã£ãã¶ããæ°Žé¢ã®é«ãã«éããçããã®ã§ãã€ãŸãæ°Žäœå·®ãçããã®ã§ããã®æ°Žäœå·®ãã浞éå§ã®å€§ããã枬ãããæ°Žé¢ã®é«ããåãã«ããããã«ã¯ãå€éšããããããå ããªããšãããªãããã®ãããã®éåã«ããåã®å€§ããããããã¯ãã®ãããã®åãå§åã«æç®ãããã®ãã浞éå§ã®å€§ããã§ããããã®ãšãã®ããããã®åã«çžåœããå§åã§ã浞éå§ã枬ããã
åéèã§ãªããèãªãã§ããã®ãŸãŸæ¿åºŠã®ãã氎溶液ãæ¥è§Šããå Žåã¯ãæ°Žäœå·®ã¯çããªãã
现èã溶液ã«æµžãããšãã现èãžã®æ°Žã®åºå
¥ããçãããããæ¿åºŠãåè¡¡ãã现èã®äœç©ãå€åããªããªãã°ããã®æº¶æ¶²ã'''ç匵液'''(ãšãã¡ãããããisotonic solution)ãšåŒã¶ã
ããã«å¯Ÿãã现èããæ°ŽãåºãŠããè±æ°ŽããŠã现èã®äœç©ãæžå°ãããããªæº¶æ¶²ã'''é«åŒµæ¶²'''(ããã¡ãããããHypertonic solution)ãšåŒã³ã
éã«ã现èãžæ°Žãå
¥ã£ãŠããã现èã®äœç©ãå¢å ãããããªæº¶æ¶²ã'''äœåŒµæ¶²'''(ãŠãã¡ãããããhypotonic solution)ãšåŒã¶ã
{{-}}
==== åç©çŽ°èã®æµžé ====
[[File:Osmotic pressure on blood cells diagram.svg|thumb|right|420px|'''èµ€è¡çãžã®æµžéå§'''<br/>é«åŒµæ¶²ïŒhypertonicïŒãç匵液ïŒisotonicïŒãäœåŒµæ¶²ïŒhypotonicïŒã]]
ããã®èµ€è¡çã¯ã'''0.9ïŒ
ïŒïŒ9g/LïŒã®é£å¡©æ°Žãšç匵'''ã§ãããã0.9ïŒ
ãã®ãïŒ
ããšã¯è³ªéããŒã»ã³ãã§ããã
* èµ€è¡çããé«åŒµæ¶²ã«æµžããå ŽåâŠâŠèµ€è¡çããæ°Žã¯åºãŠããã现èã¯çž®ããçž®ã¿ããããšçŽ°èã¯æ©èœã倱ãã
* èµ€è¡çããç匵液ã«æµžããå ŽåâŠâŠèµ€è¡çãžã®æ°Žã®åºå
¥ãã¯åè¡¡ããèŠããã®å€åã¯ç¡ãããªããåç©çŽ°èãšç匵ãªé£å¡©æ°Žã®ããšã'''ççé£å¡©æ°Ž'''ïŒããããããããããïŒãšãããããã®çŽ°èã®ççé£å¡©æ°Žã¯0.9ïŒ
ã®é£å¡©æ°Žã§ãããç匵液ã«ã¯ççé£å¡©æ°Žã®ã»ãã«ãããªã³ã¬ãŒæ¶²ãããã现èãçµç¹ããã°ããä¿åããããšãã§ããããªã³ã¬ãŒæ¶²ãšã¯ãé£å¡©ã®ã»ãã«åçš®ã®å¡©é¡ãå
¥ããŠãããäœæ¶²ã«è¿ããã溶液ã§ãããç¹æ»Žãªã©ã«ãªã³ã¬ãŒæ¶²ã¯äœ¿ããããã«ãšã«ãªã©ã®äž¡çé¡ã§ã¯ççé£å¡©æ°Žã®æ¿åºŠã¯0.7ïŒ
ã§ããã
* èµ€è¡çããäœåŒµæ¶²ã«æµžããå ŽåâŠâŠèµ€è¡çãžæ°Žãå
¥ã£ãŠããã现èã¯ãµããããç Žè£ããå Žåããããããã'''溶è¡'''(ãããã€ãhemolysis)ãšããã
{{-}}
==== æ€ç©çŽ°èã®æµžé ====
[[File:Turgor pressure on plant cells diagram.svg|thumb|right|320px|'''æ€ç©çŽ°èãžã®æµžéå§'''<br/>é«åŒµæ¶²ïŒhypertonicïŒãç匵液ïŒisotonicïŒãäœåŒµæ¶²ïŒhypotonicïŒã]]
[[File:èšå§ã»æµžéå§ã»åžæ°Žå 説æå³.svg|thumb|400px|èšå§ã»æµžéå§ã»åžæ°Žåã®èª¬æå³]]
æ€ç©çŽ°èã§ã¯çŽ°èèã®ãŸãããå
šéæ§ã®çŽ°èå£ãå²ãã§ããã
* æ€ç©çŽ°èããé«åŒµæ¶²ã«æµžããå ŽåâŠâŠçŽ°èããæ°Žã¯åºãŠããã现èã®å圢質ã ããçž®ãã现èå£ã¯çž®ãŸãªããå圢質ãšã¯çŽ°èèå
ã®ããšãå圢質ãçž®ããšçŽ°èèã现èå£ããåé¢ããããã'''å圢質åé¢'''(ãããããã€ã¶ãããplasmolysis)ãšåŒã¶ãå圢質åé¢ãèµ·ããã现èãäœåŒµæ¶²ã«æµžããšã现èã¯åžæ°ŽããŠå圢質ã®å€§ãããå
ã«æ»ãã®ã§åé¢ãããªããªãã现èèãå
éãã«çŽ°èå£ã«æ¥è§Šããããã'''å圢質埩垰'''(ãããããã€ãµã£ããDeplasmolysis)ãšåŒã¶ã
:æ€ç©çŽ°èããç匵液ã«æµžããå ŽåâŠâŠçŽ°èãžã®æ°Žã®åºå
¥ãã¯åè¡¡ããã
:æ€ç©çŽ°èããäœåŒµæ¶²ã«æµžããå ŽåâŠâŠçŽ°èãžæ°Žãå
¥ã£ãŠããã现èã¯ãµããããã现èå£ããããã现èã®ãµããã¿ãæããããããã®ã现èå£ãããµããã¿ãããããããšããåã®ããšã'''èšå§'''ïŒãŒããã€ïŒãšããã
现èãæ°Žãåžåããåã®ããšããåžæ°Žåããšããããã®å§åã®ããšã'''åžæ°Žå§'''ïŒãã
ããããã€ïŒãšãããåžæ°Žå§ã®åŒã¯ã
:'''åžæ°Žå§ ïŒ æµžéå§ ãŒ èšå§'''
ã§ããã
å€ãã®æ€ç©çŽ°èã¯éåžžæãããé«åŒµã§ããããã®ãããéåžžæã§ãæ€ç©çŽ°èã§ã¯å圢質ãèšåŒµããŠããã现èå£ããã®èšå§ãçããŠããã
现èå£ãã现è質ãé¢ããçŽåã»çŽåŸã®ããšã'''éçå圢質åé¢'''ãšããããã®ãšãã®å€æ¶²ã®æº¶æ¶²æ¿åºŠã®ããšãéçæ¿åºŠãšããã
ãªããå圢質ããã³å圢質ããå
åŽã®éšåã®ããšãããããã©ã¹ããšãããããããã©ã¹ãã现èå£ããé¢ããŠããŸãçŸè±¡ã®ããšããå圢質åé¢ã®ããšã§ããã
{{-}}
==== éžæçééæ§ ====
现èèã¯ãç¹å®ã®ç©è³ªã®ã¿ãééãããŠããããã®ãããªæ§è³ªã'''éžæçééæ§'''(ãããããŠã ãšãããããSelective permeability)ãšåŒã¶ã现èèã«ååšãã'''茞éã¿ã³ãã¯è³ª'''ããã©ã®ç©è³ªãééãããŠãã©ã®ç©è³ªãééãããªããã®éžæãè¡ã£ãŠããã
茞éã¿ã³ãã¯è³ªã«ã¯ãã©ãããçš®é¡ãããããšãããšãåŸè¿°ããã'''ãã£ãã«'''ããã'''ãã³ã'''ããããã
ããŠãéžæçééæ§ã«ã¯ãæ¿åºŠåŸé
ã«åŸã£ãŠæ¡æ£ã«ããç©è³ªãééããã'''åå茞é'''(ãã
ã©ãããããpassive transport)ãšã
ãã£ãœããæ¿åºŠåŸé
ã«éãã£ãŠç©è³ªãééããã'''èœå茞é'''(ã®ãã©ãããããactive transport)ãšããã2çš®é¡ã®èŒžéãããã
èœå茞éã®äŸãšããŠã¯ãåŸè¿°ãã'''ãããªãŠã ãã³ã'''ãªã©ãããããªãããããªãŠã ãã³ãã«ãã£ãŠã€ãªã³ã茞éããããšããATPã®ãšãã«ã®ãŒãæ¶è²»ããããã®ããã«ãèœå茞éã§ã¯ããªã«ãã®ãšãã«ã®ãŒãæ¶è²»ããã
ãã£ãœããïŒèœå茞éã§ã¯ãªãïŒåå茞éã®äŸãšããŠã¯ãåŸè¿°ãããã€ãªã³ãã£ãã«ã«ããåå茞éãªã©ãããã
==== èœå茞é ====
å€çŽ°èçç©ã§ã¯ãã»ãšãã©ã®çŽ°èã§ãã©ã®çŽ°èãã现èã®å
å€ã®ãããªãŠã æ¿åºŠãæ¯ã¹ãŠã¿ããšã现èå
ã®ãããªãŠã æ¿åºŠã¯äœãã现èå€ã®ãããªãŠã æ¿åºŠã¯é«ãã
ããã¯ã€ãŸãã现èã®åãã«ãã£ãŠããããªãŠã ãæåºãããŠããããã§ããã
ãŸããå€çŽ°èåç©ã§ã¯ããã¹ãŠã®çŽ°èã§ãã©ã®çŽ°èãã现èå
å€ã®ã«ãªãŠã æ¿åºŠãæ¯ã¹ãŠã¿ããšã现èå
ã®ã«ãªãŠã æ¿åºŠãé«ãã现èå€ã®ã«ãªãŠã æ¿åºŠãäœãã
ããã¯ã€ãŸãã现èã®åãã«ãã£ãŠãã«ãªãŠã ãæåºãããŠããããã§ããã
{{-}}
[[File:ãããªãŠã ãã³ã.svg|thumb|800px|ãããªãŠã ãã³ã]]
{{-}}
现èèã«ãã'''ATPå解é
µçŽ '''(ãããªãŠã -ã«ãªãŠã ATPã¢ãŒãŒïŒãšããé
µçŽ ãã现èå
ã«å
¥ãããã ãããªãŠã ã现èå€ã«æåºããŠããã£ãœãã现èå€æ¶²ããã«ãªãŠã ã现èå
ã«åã蟌ãã§ããã®ã§ããããªãããã®é
µçŽ ïŒãããªãŠã -ã«ãªãŠã ATPã¢ãŒãŒïŒã¯ã现èèã貫éããŠããã
â» æ€å®æç§æžã«ãã£ãŠã¯ãããããªãŠã -ã«ãªãŠã ATPã¢ãŒãŒãã®ããšããNa<sup>+</sup>-K<sup>+</sup> ATPã¢ãŒãŒããšãèšè¿°ããŠããã
ã§ã¯ãã©ãããåçãªã®ãã説æã®ããããŸãã现èå
ã®ãããªãŠã ãæŸåºããåã®ç¶æ
ã ãšããããïŒä»®ã«ãã®ç¶æ
ããç¶æ
1ããšãããïŒ
ãã®ãããªãŠã -ã«ãªãŠã ATPã¢ãŒãŒã¯ã现èå
ã®Naãçµåãããšããã®ãšãå¥ã®ATPã®ãšãã«ã®ãŒãæŸåºãããŠãATPããADPã«ãªãããã®ãšãã«ã®ãŒããã®é
µçŽ ïŒãããªãŠã -ã«ãªãŠã ATPã¢ãŒãŒïŒã䜿ã£ãŠããã®é
µçŽ ïŒãããªãŠã -ã«ãªãŠã ATPã¢ãŒãŒïŒã®ç«äœæ§é ãå€ããããã®çµæããããªãŠã ã现èå€ã«æŸåºããŠããŸããïŒä»®ã«ãã®ãããªãŠã æŸåºåŸã®ç¶æ
ããç¶æ
2ããšãããïŒ
次ã«ã现èå€ã®ã«ãªãŠã ãçµåãããšããŸãç«äœæ§é ãå€ããããã®çµæãã«ãªãŠã ã现èå
ã«åã蟌ããïŒä»®ã«ãã®ã«ãªãŠã åã蟌ã¿åŸã®ç¶æ
ããç¶æ
3ããšãããïŒ
ãããŠãŸããé
µçŽ ã¯ãæåã®ç¶æ
ã«ãã©ããïŒã€ãŸããç¶æ
1ã«æ»ãããã ããATPã¯æ¶èããŠADPã«ãªã£ããŸãŸã§ãããïŒ
çµæçã«ããã®é
µçŽ ïŒãããªãŠã -ã«ãªãŠã ATPã¢ãŒãŒïŒã¯ãATPã®ãšãã«ã®ãŒãæ¶èããäºã«ããããããªãŠã ã现èå€ã«æŸåºããã«ãªãŠã ã现èå
ã«åã蟌ãã§ããã
ãã®ãããªä»çµã¿ãã'''ãããªãŠã ãã³ã'''ãšããã
ãŸãããã®èŒžéã¯ããšãã«ã®ãŒã䜿ã£ãŠãããããã®ã€ãªã³ã®æ¿åºŠå·®ã«ãããã£ãŠèŒžéããã®ã§ããã®ãããªèŒžéã'''èœå茞é'''ãšããã
ãããŠããã®ãããªãŠã ãã³ãã®çµæããããªãŠã ã€ãªã³ã¯çŽ°èå€ïŒè¡ããã ãªã©ïŒã§æ¿åºŠãé«ããïŒè¡ããã ãªã©ãšæ¯èŒããŠïŒã«ãªãŠã ã€ãªã³ã¯çŽ°èå
ã§æ¿åºŠãé«ããªããïŒâ» åæã®å°éçç©ã®æç§æžã«ãæ¯èŒå¯Ÿè±¡ãšããŠãè¡ãããããšæžãããŠãããïŒ
ããšãã°ããã®èµ€è¡çã§ã¯ãèœå茞éã«ãã£ãŠãå€æ¶²ïŒè¡ãããïŒãããèµ€è¡çå
ã®ã«ãªãŠã ã€ãªã³K<sup>+</sup>æ¿åºŠãé«ããèµ€è¡çå
ã®ãããªãŠã ã€ãªã³Na<sup>+</sup>æ¿åºŠãäœãããã£ãœããè¡ãããã§ã¯ãã«ãªãŠã æ¿åºŠK<sup>+</sup>ãäœãããããªãŠã æ¿åºŠNa<sup>+</sup>ãé«ããã€ãŸãèµ€è¡çã§ã¯ãèœå茞éã«ãã£ãŠNa<sup>+</sup>ã现èå€ãžãšæåºããŠãèœå茞éã«ãã£ãŠK<sup>+</sup>ã现èå
ãžãšåãå
¥ããŠããã
ãã®ãããªãèœå茞éã«ãã£ãŠã现èå
å€ã§Na<sup>+</sup>ãK<sup>+</sup>ã®èŒžéããã³æ¿åºŠèª¿ç¯ãããæ©æ§ã®ããšãããããªãŠã ãã³ãããšããã
ãã®çµæã现èå
å€ã§Na<sup>+</sup>ãK<sup>+</sup>ã®æ¿åºŠå·®ããããããçããŠããã
èœå茞éã«ã¯ãšãã«ã®ãŒãå¿
èŠã§ãããATPãããšãã«ã®ãŒãäŸçµŠãããŠããã现èèã«ãã'''ATPå解é
µçŽ '''(Na<sup>+</sup>/K<sup>+</sup>-ATPã¢ãŒãŒ)ãããããªãŠã ãã³ããªã©ã®èœå茞éã®æ£äœã§ãããïŒâ»ãåèæžã«ãã£ãŠã¯ããããªãŠã ãã³ããšATPå解é
µçŽ ãåäžèŠããŠãã€ãã£ãŠããæ¬ããããïŒ
* åè
ãªãããã®ãããªçŽ°èã«ããèœå茞éã§ãã€ãªã³ã茞éãããã³ãã®ããšããã€ãªã³ãã³ãããšãããïŒæ±äº¬æžç±ã®å°éçç©ïŒçç©IIçžåœïŒã®æ€å®æç§æžã«ãã€ãªã³ãã³ããã®èšèŒãã ïŒ ããããªãŠã ãã³ããããã€ãªã³ãã³ãã®äžçš®ã§ããã
* çºå±
ãããªãŠã ãã³ãã®æ©æ§ã§ã¯ã
ATPå解é
µçŽ ã«ã现èå
ã®3ã€ã®ãããªãŠã ã€ãªã³ïŒNa<sup>+</sup>ïŒããã³ããšçµåããŠãããATPã®ãšãã«ã®ãŒã«ãã£ãŠATPå解é
µçŽ ã®åœ¢ãå€ããããã©ã¯çŽ°èå€ã«ïŒã€ã®Na<sup>+</sup>ãæåºããããããŠçŽ°èå€ã®ã«ãªãŠã ïŒK<sup>+</sup>ïŒãATPå解é
µçŽ ã«çµåãããšã圢ãå€ããã现èå
ãžãšK<sup>+</sup>ãåºãããããŠããŸãATPå解é
µçŽ ã«ã现èå
ã®ïŒã€ã®Na<sup>+</sup>ããã³ããšçµåããŠãåãããã«ç¹°ãè¿ããŠãã£ãŠã现èå
å€ã§ã€ãªã³ã茞éããŠããã
:ïŒâ» ç¯å²å€:ïŒ å°ãªããšãã»ããã€åç©ã®å ŽåããããªãŠã ãã³ãã¯ãã»ãšãã©ã®çŽ°èã«ããããçç©åŠã§ã¯ãããªãŠã ãã³ã以å€ã«ããããã³ãã³ãïŒæ°ŽçŽ ã€ãªã³ã®H<sup>ïŒ</sup>ãã³ãã®ããšïŒãªã©ä»ã®èœå茞éãããããããããããªãŠã ãã³ããé«æ ¡çç©ã§ç¹å¥ã«æ±ãããã®ã¯ãããããèæ¯äºæ
ïŒã»ãšãã©ã®çŽ°èã«ãããªãŠã ãã³ãããããšèšãäºæ
ïŒãããããã§ããããã£ãœãããããã³ãã³ããªã©ä»ã®èœå茞éã¯ãç¹å¥ãªéããã现èã«ããç¡ããã®ãããã
==== åå茞é ====
[[ãã¡ã€ã«:ã€ãªã³ãã£ãã«ã®æš¡åŒå³.svg|thumb|right|320px|ã€ãªã³ãã£ãã«ã®æš¡åŒå³ïŒâ» åæ²ïŒ]]
:â» ç·šéè
ãž: å³ããåå茞éã®å°çšã®ãã®ã«å€ããŠãã ãããçŸç¶ã¯è質äºéèã®å³ã®æµçšã§ãã
现èèã«ã¯ããšããã©ããã«'''ã€ãªã³ãã£ãã«'''ïŒion channelïŒãšããééãã管ã®ãããªéè·¯ç¶ã®ã¿ã³ãã¯è³ªã现èèïŒè質äºéå±€ïŒããšããã©ãã貫éããŠãããã€ãªã³ãã£ãã«ã®éããéã«ãããªãŠã Na<sup>+</sup>ãã«ãªãŠã K<sup>+</sup>ãªã©ç¹å®ã®ã€ãªã³ã®ã¿ãéžæçã«ééããããïŒâ» çç©IIã§ã€ãªã³ãã£ãã«ããç¿ãã®ã§ãã€ãã§ã«å€ªåãïŒ
ééã®æ¹æ³ã¯ãã¿ã³ãã¯è³ªååã®ç«äœæ§é ãååçã«å€åããããšã§ãééãè¡ãããŠããã
ã€ãªã³ãã£ãã«ã®éãããšãã«ããããªãŠã ãªã©å¯Ÿè±¡ã®ã€ãªã³ãééãããã€ãªã³ãã£ãã«ãéããã°ã察象ã€ãªã³ã¯éããªãã
ïŒãããªãŠã ãã³ããªã©ã®ïŒèœå茞éãšã¯éããã€ãªã³ãã£ãã«ã§ã¯ãæ¿åºŠã®é«äœã«éãã£ãŠãŸã§èŒžéãããèœåã¯ç¡ãã
=== ãã®ä» ===
* ã¢ã¯ã¢ããªã³ ïŒçºå±ïŒ
[[Image:AQP-channel.png|thumb|500px|ã¢ã¯ã¢ããªã³ã«ããæ°Žã®åã蟌ã¿ã®æŠå¿µå³]]
æ°Žã¯ãªã³è質ã®éãééã§ããããããšã¯å¥ã«ããã£ãšå€§éã«ãæ°Žååãšäžéšã®ïŒé»æ°çã«ïŒäžæ§å°ååïŒã°ãªã»ããŒã«ãªã©ïŒã ããééãããã£ãã«ãããã'''ã¢ã¯ã¢ããªã³'''ïŒaquaporinãAQPïŒãšãããã¢ã¯ã¢ããªã³ã¯ãæ°Žåå以å€ã®æ°Žæº¶æ¶²äžã®ã€ãªã³ã¯é®æãããïŒã°ãªã»ããŒã«ã®ééã«ã€ããŠã¯ã â» åèæç®: â» åèæç®: LODISHãªã©èãåå现èçç©åŠ 第7çãã翻蚳åºç:æ±äº¬ååŠå人ã翻蚳:ç³æµŠç« äžãªã©ã2016幎第7çã415ããŒãžïŒ
èµ€è¡çãè
èã®çŽ°å°¿ç®¡äžç®çŽ°èãªã©ã«ã¢ã¯ã¢ããªã³ã¯ããã
ãã£ãœããã«ãšã«ã®åµã«ã¯ã¢ã¯ã¢ããªã³ãç¡ããããæ°Žãééãããäœèª¿æ¶²ã®äžã§ãèšåŒµããªããïŒããæ£ç¢ºã«ãããšãã«ãšã«ã®åµã«ããã¢ã¯ã¢ããªã³ãšåœ¢ã®äŒŒãé«ååããããããããããã®é«ååããæ°ŽãééããäœçšããããªããïŒâ» åèæç®: â» åèæç®: LODISHãªã©èãåå现èçç©åŠ 第7çãã翻蚳åºç:æ±äº¬ååŠå人ã翻蚳:ç³æµŠç« äžãªã©ã2016幎第7çã415ããŒãžïŒ ãã®ãããæ¥æ¬ã®é«æ ¡çç©ã®æç§æžã§ã¯ããã®ã«ãšã«åµã«ããé«ååã¯ãã¢ã¯ã¢ããªã³ã§ã¯ãªãããšåé¡ãããŠããã ïŒ
ã¢ã¯ã¢ããªã³ãçºèŠããããŒã¿ãŒ ã¢ã°ã¬ã2003幎ã®ããŒãã«ååŠè³ãåè³ããã
{{-}}
== ã»ãŒç¯å²å€ ==
:â» 1990幎代ããããšã«ãªãã¥ã©ã ãå€ããã2018幎çŸåšã§ã¯ãäžèšã®çŽ°è矀äœïŒãããŒã ããããïŒãªã©ã®è©±é¡ã¯ãã»ãŒç¯å²å€ã«ãªã£ãŠããã
:ãã¡ããã第äžåŠç¿ç€Ÿã®æç§æžã«ããŠãŒããªãã现è矀äœãªã©ã¯æžããŠããã
:ããšãè³æéãåèæžïŒãã£ãŒãåŒãªã©ïŒã«ã现è矀äœãæžããŠããã
:â» ãåå
ã®ç§»åã ãŸããäžèšã®çŽ°è矀äœãã¿ããã³ãªã«ããªã©ã®è©±é¡ã玹ä»ããå Žåã®åå
ãå€æŽãããŠããã2010幎代ã®æ€å®æç§æžã§ã¯ã[[é«çåŠæ ¡çç©/çç©II/çç©ã®ç³»çµ±]]ããªã©ã®çç©IIïŒå°éçç©ïŒãªã©çç©2ã®ç³»çµ±åé¡ã®åå
ã§çŽ¹ä»ãããå Žåãå€ãã
=== 现èçŸ€äœ ===
[[File:Eudorina sp.jpg|thumb|300px|left|ãŠãŒããªã]]
[[File:Chlamydomonas (10000x).jpg|thumb|ã¯ã©ããã¢ãã¹]]
å现èçç©ãéãŸã£ãŠããããã1ã€ã®åäœã®ãããªç©ãäœã£ãŠç掻ããŠããå Žåãããã'''现è矀äœ'''ïŒãããŒã ãããããcell colonyïŒãšããã
现è矀äœã®çç©ã«ã¯ãã¯ã³ã·ã§ãŠã¢ããŠãŒããªãããã«ããã¯ã¹ãããã
ãã«ããã¯ã¹ïŒãªãªãã²ãã¯ãªïŒã¯ãã¯ã©ããã¢ãã¹ã®ãããªçŽ°èãæ°çŸåããã€ãŸã£ã矀äœã§ããã
ãã«ããã¯ã¹ã§ã¯ãåãã®åæ¥åãèµ·ããŠãããå
åæããã现èãææ§çæ®ãããçæ®çŽ°èãç¡æ§çæ®ãããçæ®çŽ°èãªã©ãåæ¥ãããŠããã
现èã©ããã¯å圢質ã®ç³žã§é£çµ¡ããã£ãŠããã
现è矀äœã®åæ¥åããå€çŽ°èçç©ã®åšå®ã«äŒŒãŠããç¹ããããããã矀äœã¯ãã»ãã®çŽ°èãšå¥ããŠããæ é€ããããã°çããŠãããç¹ãç°ãªãã
çŸåšã®å€çŽ°èçç©ã®èµ·æºã¯ãããããããã®ãããªçŽ°è矀äœã§ããããšãã説ããDNAãªã©ååã®ç³»çµ±ã®è§£æããæåã§ããã
{{-}}
=== 现èæ§ç²è ===
[[File:Dicty Life Cycle H01.svg|thumb|400px|ã¿ããã³ãªã«ã]]
ã¿ããã³ãªã«ãã¯ãå现èçç©ãšå€çŽ°èçç©ã®ãäž¡æ¹ã®ç¹åŸŽããã€ãã¿ããã³ãªã«ãã®äžçã«ã¯ãå现èçç©ã®ææãšãå€çŽ°èçç©ã®ææãããã芪ã®åå®äœããæŸåºãããèåãåºèœããã¢ã¡ãŒãã®ãããªå现èã®çç©ã«ãªããã¢ã¡ãŒãç¶ã®çŽ°èã¯ã现èãªã©ãé£ã¹ãŠæé·ãããé£ã¹ç©ãç¡ããªããªã©ããŠçåãé£ãããªããšããã®ã¢ã¡ãŒãç¶ã®å现èã©ãããéåããŠäžã€ã®äœãã€ãããå°ããªãã¡ã¯ãžã®ããã«ãªã£ãŠã移åããã
å¢æ®ãããšãã¯ããã®ãç¶ã®åå®äœã圢æããŠãèåãæŸåºããã
çç©ã®é²åã®ç 究ã«ãã¿ããã³ãªã«ãããããçšãããããå现èçç©ããå€çŽ°èçç©ãžã®é²åã®åèã«ãªãããšèããããŠããã
{{-}}
=== çµç¹ãåšå®ãžã®åå ===
ç¹å®ã®æ©èœã圢æ
ã«åãããåã®çŽ°èãã'''æªåå'''()ã®çŽ°èãšåŒã¶ã
æªååã®çŽ°èã¯ãããã ã®éšäœã«ãã£ãŠç¹å®ã®æ©èœã圢æ
ãæã€ããã«ãªããããã'''åå'''(differentiation)ãšåŒã¶ã
ååãã现èã¯ããããäžèŠåã«æ··ãã£ãŠããã®ã§ã¯ãªãã
åã圢æ
ãæ©èœããã€çŽ°èãèŠåçã«éãŸã£ãŠãããããã'''çµç¹'''(tissue)ãšåŒã¶ã
ãŸããããã€ãã®çš®é¡ã®çµç¹ãç¹å®ã®æ©èœãæããããã«éãŸã£ãŠãããããã'''åšå®'''(organ)ãšåŒã¶ã
ããã«ãããã®åšå®ãããã€ãéãŸã£ãŠ1ã€ã®çç©ãããªãã¡åäœ(individual)ã圢æããŠããã
çµç¹ã圢æãã现èã¯ãåãçš®é¡ã®çŽ°èã©ããã§æ¥çããããããšãã°è€æ°ã®çµç¹ãå解ããããšã«å¹é€ãããšãåãçµç¹ã©ããã§éåãããã
=== æ€ç©ã®çµç¹ ===
æ€ç©ã®çµç¹ã¯ã'''åè£çµç¹'''(meristem)ãš'''æ°žä¹
çµç¹'''(permanent tissue)ãšã«åããããšãã§ããã
{| class="wikitable" style="float:left"
|+ æ€ç©ã®çµç¹ã®åé¡
|-
! åè£çµç¹
|
|-
! rowspan="4"|æ°žä¹
çµç¹
|è¡šç®çµç¹||è¡šç®ç³»
|-
|æçµç¹||rowspan="2"|åºæ¬çµç¹ç³»
|-
|æ©æ¢°çµç¹
|-
|ééçµç¹||ç¶ç®¡æç³»
|-
|}
{| class="wikitable" style="float:right"
|+ æ€ç©ã®çµç¹ã®åé¡
|-
! colspan="2" |åè£çµç¹
||'''é 端åè£çµç¹'''ãæ ¹ç«¯ã'''圢æå±€'''
|-
! rowspan="7"|æ°ž<br />ä¹
<br />çµ<br />ç¹
|è¡šç®çµç¹||è¡šç®ãæ°åãæ ¹æ¯ãªã©
|-
|rowspan="3"|æçµç¹
|'''ååçµç¹'''  å
åæãããå Žæã<br />äŸïŒèèïŒ'''ããç¶çµç¹'''ã'''海綿ç¶çµç¹''')ã
|-
|'''貯èµçµç¹'''  æ é€ã®è²¯èµãäŸïŒããã
|-
|'''åæ³çµç¹'''  è±ã®èè
ºãã¿ã³ããã®ä¹³ç®¡ãªã©
|-
|-
|rowspan="2"|æ©æ¢°çµç¹
|åå£çµç¹ 
|-
|åè§çµç¹ 
|-
|ééçµç¹||ç¶ç®¡æç³»ã<br />'''æšéš'''  é管ãä»®é管ã <br />'''åž«éš'''  垫管ã䌎现è
|-
|}
[[File:Leaf Tissue Structure jp.svg|thumb|512px|èã®çµç¹]]
[[File:Labeledstemforposter copy new.jpg|thumb|512px|èã®çµç¹]]
åè£çµç¹ã«ã¯ãèé éšãæ ¹ç«¯éšã§ãããããªçŽ°èãžã®ååã䌞é·æé·ãè¡ã'''é 端åè£çµç¹'''(ã¡ãããã ã¶ããã€ããããapical meristem)ãç¶ç®¡æã®å
éšã§å°ç®¡ã垫管ãªã©ãžã®ååãè¥å€§æé·ãè¡ã'''圢æå±€'''(ãããããããcambium)ããããã
æ°žä¹
çµç¹ã¯'''è¡šç®ç³»'''(epidermal system)ã'''ç¶ç®¡æç³»'''(vascular system)ã'''åºæ¬çµç¹ç³»'''(ground tissue system)ã®3ã€ã®'''çµç¹ç³»'''ãããªãã
è¡šç®ç³»ã«ã¯ãè¡šç®ãæ°åãæ ¹æ¯ïŒroot hairïŒãªã©ãããã
è¡šç®ã¯ãäžå±€ã®è¡šç®çŽ°èãããªãã现èå£ã®è¡šé¢ãã¯ãã¯ã©()ãšåŒã°ããåºãå±€ãèŠã£ãŠãããå
éšãä¿è·ãããæ°Žã®èžçºãé²ãã§ããã
æ°å(stoma)ã¯ãèãèã«ã¿ããã2ã€ã®å蟺现èã察ã«ãªã£ãŠã§ããŠãããèžæ£ãè¡ã£ãŠããã
æ ¹æ¯(root hair)ã¯ãæ ¹ã§æ°Žåãé€åã®åžåãè¡ã£ãŠããã
ç¶ç®¡æç³»ã¯'''æšéš'''(xylem)ãš'''åž«éš'''(phloem)ãããªãã
æšéšã«ã¯å°ç®¡(vessel)ãŸãã¯ä»®å°ç®¡(tracheid)ããããæ ¹ã§åžåãããæ°Žåãé€åã®éãéãšãªã£ãŠããã
åž«éšã«ã¯åž«ç®¡(sieve tube)ããããèã§å
åæãããçæ°Žåç©ã®éãéãšãªã£ãŠããã
è¡šç®ç³»ãšç¶ç®¡æ系以å€ã¯ãã¹ãŠ'''åºæ¬çµç¹ç³»'''ãšåŒã°ããã
èã§ã¯çŽ°é·ã现èãå¯éãã'''æµç¶çµç¹'''(ãããããããããpalisade parenchyma)ãããŸãã¯çŽ°èã©ããã®ééïŒãããŸïŒããããŠããŠæ°äœã®éãéãšãªã£ãŠãã'''海綿ç¶çµç¹'''(spongy tissue)ãªã©ãã¿ãããã
èãæ ¹ã§ã¯äžå¿éšã§é€åã®è²¯èµãè¡ã'''é«'''(ãããpith)ããåšèŸºéšã§å
åæãè¡ã£ããåè§ã»åå£ãšãªãæ€ç©ãæ¯ãã'''ç®å±€'''(cortex)ãªã©ãã¿ãããã
{{-}}
== ç¯å²å€: åç©ã®çµç¹ ==
:â» æ€å®æç§æžã§ã¯ã[[é«çåŠæ ¡çç©/çç©I/ç°å¢ãšåç©ã®åå¿]]ãã«çœ®ãæãã
:äžèšã®ãããªã解ååŠçãªåé¡ã¯ãæ€å®æç§æžã§ã¯ç¯å²å€ïŒ2010幎代ã§ã¯ïŒã
åç©ã®çµç¹ã¯'''äžç®çµç¹'''(epithelium tissue)ã'''çµåçµç¹'''(connective tissue)ã'''ççµç¹'''(muscle tissue)ã'''ç¥çµçµç¹'''(neural tissue)ãããã
[[ãã¡ã€ã«:Jpn skin layers.PNG|thumb|512px|ç®èïŒè¡šç®ãäžç®çµç¹ãçç®ãçµåçµç¹ïŒ]]
äžç®çµç¹ã¯äœã®å€é¢ãäœè¡šé¢ãæ¶å管ã®å
è¡šé¢ãªã©ãããã£ãŠããçµç¹ã§ãããå现èã¯çŽ°èæ¥ç(cell adhesion)ã«ããçµåãããäœå
ã®çµç¹ãä¿è·ããŠãããæ¯ã»ã€ãã»çŸœæ¯ãªã©ãäžç®çµç¹ã§ãããäžç®çµç¹ã«ã¯ç®èã®è¡šç®(epidermis)ãå°è
žã®å
å£ãªã©ã®åžåäžç®ãæ¯çŽ°è¡ç®¡()ãæ±è
ºã»èè
ºãªã©ã®è
ºäžç®ããªã©ããããããã
çµåçµç¹ã¯çµç¹ãåšå®ã®éãæºãããŠãããããçµåãããæ¯æãããããã骚(Bone)ãè
±(tendon)ãè¡æ¶²(blood)ãç®èã®çç®(dermis)ãªã©ãçµåçµç¹ã§ããã
çµåçµç¹ã®åé¡ã§ã¯ã倧ããåé¡ãããšãè 質æ§ïŒãããã€ããïŒçµåçµç¹ãç¹ç¶æ§çµåçµç¹ã骚çµç¹ãè»éªšçµç¹ãè¡æ¶²ãªã©ã«åé¡ãããã
骚ïŒâ» 硬骚ïŒãããã€ïŒïŒã¯éªšçµç¹ã§ããã骚çµç¹ã¯ãªã³é
žã«ã«ã·ãŠã ãšã¿ã³ãã¯è³ªãªã©ãåºè³ªãšããŠã§ããŠããã骚ã®åºè³ªã骚åºè³ªãšããã垰宀äœå
ã®çµç¹ãåšå®ãæ¯æããŠããã骚现èããã€ã骚質äžã«è¡ç®¡ãšç¥çµã®éãããŒããŒã¹ç®¡ãäœæ¬ãæã¡ããã®ãŸããã«éªšçŽ°èãããã
è»éªšã¯ã«ã«ã·ãŠã ã«ä¹ããã
:ïŒâ» ç¯å²å€:ïŒã§ã¯ãè»éªšã®äž»æåã¯äœããšãããšãã¿ã³ãã¯è³ªïŒãŸãã¯ç³ã¿ã³ãã¯è³ªïŒã§ããããããããªã°ãªã«ã³ããšããç³ã¿ã³ãã¯è³ªããè»éªšã®äž»æåã§ããããªããååã®äŒŒãŠãããããããã°ãªã«ã³ããšããç³ã¿ã³ãã¯è³ªã现èã®çŽ°èå£ãšããŠèªç¶çã«ããããå¥ç©è³ªãªã®ã§æ··åããªãããã«ã
骚ã®ãã¡ãã«ã«ã·ãŠã ãè±å¯ãªã®ã¯ã硬骚ã®ã»ãã§ãããé«æ ¡çç©ã§ã¯ã硬骚ã®ããšãåã«ã骚ããšãã£ãŠããã
è»éªšã¯è»éªšçµç¹ã§ãããè»éªšè³ªãšè»éªšçŽ°èããã§ããŠããã匟åãããã
è
±ïŒããïŒã¯ç¹ç¶æ§çµåçµç¹ã§ãããè
±ã¯éªšãšçèãã€ãªãåãããããèèªçŽ°èãç¹ç¶æ§çµåçµç¹ã§ãããè¡æ¶²ã¯ãè¡ããã(plasma)ãšè¡ç(blood cell)ãããã
è 質æ§ïŒãããã€ããïŒçµåçµç¹ã«ã¯ããžãã®ç·ããããè 質æ§ïŒãããã€ããïŒçµåçµç¹ã®åºè³ªã¯ãŒã©ãã³ç¶ã§ããã
{{-}}
[[File:Blausen 0801 SkeletalMuscle.png|thumb|512px|éªšæ Œç]]
ççµç¹ã¯çèã圢äœãç¹ç¶ç¶ã®çµç¹ã§ãããçèã¯äŒžã³ããçž®ãã ããããéªšæ Œãåããéªšæ Œç(skeletal muscle)ãå¿èãåããå¿ç(cardiac muscle)ã¯'''暪çŽç'''(striated muscle)ã§æ§æãããå
èãåããå
èç(visceral muscle)ã¯'''å¹³æ»ç'''(smooth muscle)ã§æ§æãããã
å¹³æ»çã¯ãäžã€ã®ç¹ç¶ãäžã€ã®çŽ°èã§ãããäžã€ã®æ žããã¡ãç¹ç¶ã¯çŽ¡é圢ãããŠãããå¹³æ»çã¯äžéæçã§ããæå¿ã§ã¯åãã¯å€ãããªããå¹³æ»çã®åçž®é床ã¯ããããæç¶æ§ããããç²åŽãã«ãããå¹³æ»çã«ã暪ããŸã¯ãªãã
éªšæ Œçã¯åçž®é床ã倧ãããç²åŽãããããéªšæ Œçã¯æå¿ã§åãããéæçã§ãããéªšæ Œçã«ã¯æšªçŽãããã®ã§ã暪çŽçã«åé¡ãããã
å¿çã¯äžéæçã§ãããæå¿ã§ã¯åãã¯å€ãããªããå¿çã«ã¯æšªçŽãããã®ã§ã暪çŽçã«åé¡ãããã
暪çŽçã«ã¯ææã®æšªããŸããããããããèŠããã»ããæ垯ãšãããæãèŠããã»ããæ垯ãšãããã¢ã¯ãã³ãšããªã·ã³ãšããïŒçš®é¡ã®ã¿ã³ãã¯è³ªããã§ããŠãããæ垯ã®äžå€®ã¯ïŒºèã§ä»åãããŠããã
{{-}}
[[File:Axon Hillock jp.png|400px|thumb|left|ãã¥ãŒãã³]]
[[File:Anatomy and physiology of animals Motor neuron jp.png|400px|thumb|ãã¥ãŒãã³]]
ç¥çµçµç¹ã¯'''ãã¥ãŒãã³'''(neuron)ãšãã现èã§æ§æãããŠããããã¥ãŒãã³ã¯æ žã®ãã现èäœ(cell body)ãšã现èäœãã䌞ã³ãäžæ¬ã®é·ã軞玢(ãããããaxon)ã现èäœããçãæåããããæš¹ç¶çªèµ·(ãã
ããããšã£ããdendrite)ãããªãã軞玢ã«ã¯éãã€ããŠãããç¥çµéïŒãããããããïŒãšãããç¥çµéã¯æ žãæã£ãŠãããã·ã¥ã¯ã³çŽ°èãšããäžã€ã®çŽ°èã§ããã
ãã¥ãŒãã³å
ãä¿¡å·ãäŒããæ¹åã¯ã现èäœã®ã»ãããå§ãŸãã軞玢ã®æ«ç«¯ãžãšä¿¡å·ãåããããã¥ãŒãã³å
ã®ä¿¡å·äŒéã®æ¹æ³ã¯é»æ°ã«ãããã®ã§ããã现èèãšãããªãŠã ãã³ããªã©ã®ã€ãªã³ã®åãã«ãããã®ã§ããããã®ãããäžè¬ã®éå±å°ç·ãªã©ã®é»æ°åè·¯ãšã¯éãããã¥ãŒãã³ã§ã®ä¿¡å·ã®æ¹åã¯äžæ¹åã«ããäŒãããªãã
[[Image:Synapse_diag1.svg|left|300px|thumb|'''ã·ããã¹å现è(A)ããã·ããã¹åŸçŽ°è(B)ãžã®ååŠã·ããã¹ãçµç±ããç¥çµäŒéã®æ§å''' <br>(1)ããã³ã³ããªã¢ã<br>(2)ç¥çµäŒéç©è³ªãè©°ãŸã£ãã·ããã¹å°èã<br>(3)èªå·±å容äœã<br>(4)ã·ããã¹ééãæ¡æ£ããç¥çµäŒéç©è³ªã<br>(5)åŸã·ããã¹çŽ°èã®å容äœã<br>(6)åã·ããã¹çŽ°èã®ã«ã«ã·ãŠã ã€ãªã³ãã£ãã«ã<br>(7)ã·ããã¹å°èã®éå£æŸåºã<br>(8)ç¥çµäŒéç©è³ªã®èœåçååžå]]
äžã€ã®ãã¥ãŒãã³ã®è»žçŽ¢ã®å
端ãšãä»ã®ãã¥ãŒãã³ãšã®éã®æ¥åéšã'''ã·ããã¹'''ãšãããäžã€ã®ç¥çµã®ä¿¡å·ã¯ãã·ããã¹ãçµãŠãã€ãã®ç¥çµãžãšäŒããããŸããç¥çµãšçèãšã®éã®ããšãã·ããã¹ãšããã
ã·ããã¹ã«ã¯ãå°ããªééïŒãããŸãããããïŒããããã·ããã¹ééïŒããããïŒãšããã
ã·ããã¹ãã次ã®ãã¥ãŒãã³ãžãšä¿¡å·ãäŒããæ¹æ³ã¯ãååŠç©è³ªã®åæ³ã«ããããã®ã·ããã¹ã§ã®åæ³ç©ãç¥çµäŒéç©è³ªãšããã軞玢ã®æ«ç«¯ããåæ³ããããã«ã¢ãã¬ããªã³ãã¢ã»ãã«ã³ãªã³ãåæ³ãããã軞玢ã®æ«ç«¯ã«ã·ããã¹å°èïŒãããã»ãïŒãšããèšããã éšåããããããã«äŒéç©è³ªãå«ãŸããŠãããååãåŽã§ãã次ã®ãã¥ãŒãã³ã®çŽ°èèã«ã¯ãäŒéç©è³ªãåãåãå容äœãããããã®ããå容äœãšäŒéç©è³ªãåå¿ããŠãä¿¡å·ã次ã®ãã¥ãŒãã³ã«äŒããã
亀æç¥çµã®æ«ç«¯ããã¯'''ãã«ã¢ãã¬ããªã³'''ãåæ³ããããå¯äº€æç¥çµã®æ«ç«¯ããã¯'''ã¢ã»ãã«ã³ãªã³'''ãåæ³ããããçèãåããç¥çµã§ããéåç¥çµã®æ«ç«¯ããã¯ã¢ã»ãã«ã³ãªã³ãåæ³ãããã
* ã¬ãŒãŠã£ã®å®éš
{{-}}
== è泚 ==
<references/>
== åèæç® ==
* ç°äžéèã»ããé«çåŠæ ¡çç©Iã第äžåŠç¿ç€Ÿã2004幎2æ10æ¥çºè¡ãpp.20-65
* [https://web.archive.org/web/20141016171612/http://www.nhk.or.jp/kokokoza/library/2013/tv/seibutsu/ ãNHKé«æ ¡è¬åº§ çç©ã第1-8å]
* [http://www.weblio.jp/cat/academic/sbtgy çç©åŠçšèªèŸå
ž - Weblio åŠå]
<!--== ããŒã¯ãŒãäžèŠ§ ==
现è説ãå现èçç©ãå€çŽ°èçç©ã现èé¡äœãæ žã现è質ã现èèãæè²äœãDNAãæ žæ¶²ãæ žå°äœãæ žèãåæ žçŽ°èãåæ žçç©ãçæ žçŽ°èãçæ žçç©ã现èå°åšå®ã现è質åºè³ªãå
åæãèç·äœãçœè²äœããŽã«ãžäœãããã³ã³ããªã¢ãäžå¿äœã现èå£ã液èã现è液ãå圢質æµåãé
µçŽ ãã«ã¿ã©ãŒãŒãæ¡æ£ãåéæ§ãåéèã浞éã浞éå§ãé«åŒµæ¶²ãäœåŒµæ¶²ãç匵液ãççé£å¡©æ°Žããªã³ã¬ãŒæ¶²ãå
šéæ§ãèšå§ãå圢質åé¢ãå圢質埩垰ãéžæçééæ§ãåå茞éãèœå茞éãäœçŽ°èåè£ãæ¯çŽ°èãåšçŽ°èãæ žåè£ã现è質åè£ãéæãåè£æãåæã»äžæã»åŸæã»çµæã玡é糞ã玡éäœãæç¶äœãååäœãåšæ žãçžåæè²äœãåºå®ã»è§£é¢ã»æè²ã»æŒãã€ã¶ããæªååãååãçµç¹ãåšå®ãè¡šç®ç³»ã»ç¶ç®¡æç³»ã»åºæ¬çµç¹ç³»ãé 端åè£çµç¹ã圢æå±€ãè¡šç®ãæšéšãåž«éšãããç¶çµç¹ã现èééã海綿ç¶çµç¹ãé«ãç®å±€ãäžç®çµç¹ãçµåçµç¹ãçç¹ç¶ã暪çŽçãå¹³æ»çãççµç¹ããã¥ãŒãã³ãç¥çµçµç¹ãåšå®ç³»-->
[[Category:é«çåŠæ ¡æè²|ç1ããã»ã]]
[[Category:çç©åŠ|é«1ããã»ã]] | 2005-03-22T13:21:06Z | 2024-03-29T15:49:16Z | [
"ãã³ãã¬ãŒã:-",
"ãã³ãã¬ãŒã:ã³ã©ã "
] | https://ja.wikibooks.org/wiki/%E9%AB%98%E7%AD%89%E5%AD%A6%E6%A0%A1%E7%94%9F%E7%89%A9/%E7%94%9F%E7%89%A9I/%E7%B4%B0%E8%83%9E%E3%81%AE%E6%A7%8B%E9%80%A0%E3%81%A8%E3%81%AF%E3%81%9F%E3%82%89%E3%81%8D |
1,781 | 解æåŠåºç€ | ãã®æ¬ã¯en:Calculusã翻蚳ããããšã«ããäœæãããŠããŸããããéäžã§æŸæ£ããã翻蚳ã«ããèšäºãšæ°èŠå·çããããã®ãæ··ãã£ãŠããŸãããŸã ãŸã æªå®æã§ãã®ã§ãæ°èŠç¿»èš³ã»æ°èŠå·çãšãã«æè¿ãããŸãã
æ°ããããŒãžãäœããšãã®ãåé
ç®åã®æåã«ã¯ã解æåŠåºç€/ããä»ããããšãæšå¥šãããŸãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ãã®æ¬ã¯en:Calculusã翻蚳ããããšã«ããäœæãããŠããŸããããéäžã§æŸæ£ããã翻蚳ã«ããèšäºãšæ°èŠå·çããããã®ãæ··ãã£ãŠããŸãããŸã ãŸã æªå®æã§ãã®ã§ãæ°èŠç¿»èš³ã»æ°èŠå·çãšãã«æè¿ãããŸãã",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "æ°ããããŒãžãäœããšãã®ãåé
ç®åã®æåã«ã¯ã解æåŠåºç€/ããä»ããããšãæšå¥šãããŸãã",
"title": ""
}
] | ãã®æ¬ã¯en:Calculusã翻蚳ããããšã«ããäœæãããŠããŸããããéäžã§æŸæ£ããã翻蚳ã«ããèšäºãšæ°èŠå·çããããã®ãæ··ãã£ãŠããŸãããŸã ãŸã æªå®æã§ãã®ã§ãæ°èŠç¿»èš³ã»æ°èŠå·çãšãã«æè¿ãããŸãã æ°ããããŒãžãäœããšãã®ãåé
ç®åã®æåã«ã¯ã解æåŠåºç€/ããä»ããããšãæšå¥šãããŸãã | {{åä¿è·S}}
{{Pathnav|ã¡ã€ã³ããŒãž|æ°åŠ|解æåŠ|frame=1|small=1}}
<div style="text-align:center; margin-top:2em;">ãŠã£ãããã¯ã¹ãžãããã
<div style="font-size:4em;margin:.5em">'''解æåŠåºç€'''</div>
</div>
ãã®æ¬ã¯[[:en:Calculus]]ã翻蚳ããããšã«ããäœæãããŠããŸããããéäžã§æŸæ£ããã翻蚳ã«ããèšäºãšæ°èŠå·çããããã®ãæ··ãã£ãŠããŸãããŸã ãŸã æªå®æã§ãã®ã§ãæ°èŠç¿»èš³ã»æ°èŠå·çãšãã«æè¿ãããŸãã
æ°ããããŒãžãäœããšãã®ãåé
ç®åã®æåã«ã¯ã解æåŠåºç€/ããä»ããããšãæšå¥šãããŸãã
==æºå==
===åæ©ã®åæ©===
*[[/é¢æ°|é¢æ°]]
*[[/å®æ°|å®æ°]]
===極é===
*[[/æ°åã®æ¥µé|æ°åã®æ¥µé]]
*[[/極é|極é]]
*[[/é£ç¶é¢æ°|é£ç¶é¢æ°]]
==解æåŠåºç€ïŒ&ïŒ==
===埮åæ³===
*[[/埮åïŒ|埮åã®å°å
¥]]
*[[/埮åïŒ|埮åã®å
¬åŒ]]
===埮åã®å¿çš===
*[[/äºé埮å|äºé埮å]]
*[[/埮åã®å¿çš|埮åã®äœ¿ãæ¹]]
*[[/埮åå¯èœé¢æ°|埮åå¯èœé¢æ°]]
*[[/ããã¿ã«ã®å®ç|ããã¿ã«ã®å®ç]]
===ç©åæ³===
*[[/ç·å|ç·å]]
*[[/ç©å|ç©å]]
===察æ°ãææ°ãè¶
è¶é¢æ°ãªã©===
*[[/ææ°é¢æ°ãšå¯Ÿæ°é¢æ°|ææ°é¢æ°ãšå¯Ÿæ°é¢æ°]]
*[[/äžè§é¢æ°|äžè§é¢æ°]]
*[[/åæ²ç·é¢æ°|åæ²ç·é¢æ°]]
===åºæ¬çãªç©åãåºçŸ©ç©å===
*[[/åºæ¬çãªç©å|åºæ¬çãªç©å]]
*[[/åºçŸ©ç©å|åºçŸ©ç©å]]
===ç¡éçŽæ°===
*[[/ãã€ã©ãŒçŽæ°|ãã€ã©ãŒçŽæ°]]
*[[/çŽæ°|çŽæ°]]
*[[/ã¹ãçŽæ°|ã¹ãçŽæ°]]
===ãã®ä»===
*[[/å€å€æ°é¢æ°ã®åŸ®ç©å|å€å€æ°é¢æ°ã®åŸ®ç©å]]
*[[/é¢æ°åã®æ¥µé|é¢æ°åã®æ¥µé]]
*[[/埮åæ¹çšåŒå
¥é|埮åæ¹çšåŒå
¥é]]
*[[/解ææŠè«|解ææŠè«]]
==ããé«åºŠãªè§£æåŠ==
===埮åæ¹çšåŒ===
*[[/垞埮åæ¹çšåŒ|垞埮åæ¹çšåŒ]]
*[[/å埮åæ¹çšåŒ|å埮åæ¹çšåŒ]]
*[[/ããŒãªãšå€æ|ããŒãªãšå€æ]]
*[[/ã©ãã©ã¹å€æ|ã©ãã©ã¹å€æ]]
===ãã¯ãã«è§£æ===
*[[ç·å代æ°åŠ/ãã¯ãã«|ç·å代æ°åŠ/ãã¯ãã«]]
*[[ç©çæ°åŠI ãã¯ãã«è§£æ]]
*[[/ãã¯ãã«å€é¢æ°|ãã¯ãã«å€é¢æ°]]
==解æåŠã®åœ¢åŒ==
*[[/圢åŒç極é|圢åŒç極é]]
*[[/å®æ°|å®æ°]]
*[[/æ°å|æ°å]]
== å€éšãªã³ã¯==
*[http://www.math.wisc.edu/~keisler/calc.html Elementary Calculus: An Approach Using Infinitesimals] a free text
*[http://www.math.umn.edu/~garrett/calculus/ First-Year Calculus Notes] a GPL'd text
*[http://math.furman.edu/~dcs/book/ Difference Equations to Differential Equations: An Introduction to Calculus] another GPL'd text
[[Category:解æåŠ|*]] | 2005-03-25T03:11:47Z | 2024-03-15T20:29:50Z | [
"ãã³ãã¬ãŒã:åä¿è·S",
"ãã³ãã¬ãŒã:Pathnav"
] | https://ja.wikibooks.org/wiki/%E8%A7%A3%E6%9E%90%E5%AD%A6%E5%9F%BA%E7%A4%8E |
1,782 | 解æåŠåºç€/極é | é¢æ°ã®é
ç®ã§ãé¢æ°ã«ã€ããŠã®åŸ©ç¿ãããŸãããããã§ã¯ã解æåŠã®æ ¹æ¬ãšãªã極é(limit)ã®æŠå¿µãåŠã³ãŸãã
é¢æ° f(x) = xãèããŸãããã®é¢æ°ã¯ãf(2)=4 ãšãªããŸãããã®é¢æ°ãå°ãããã£ãŠæ¬¡ã®ãããªé¢æ°ãèããŠã¿ãŸãã
ãã®é¢æ°ã¯ x â 2 ã®æã§ã¯ãæåã«å®çŸ©ããé¢æ° f(x) = x ãšåãå€ãåããŸãããšããã x = 2 ã®æã§ã¯ãåæ¯ã0ã«ãªã£ãŠããŸãã®ã§é¢æ°ã®å€ã¯å®çŸ©ãããŠããŸããã
x â 2ã§ããå®çŸ©ãããŠããªãé¢æ°ã§ãããäžã€ã ã確ããªäºããããŸããããã¯ãx ã 2ã«è¿ä»ãããš f(x)ã®å€ã 4ã«è¿ä»ããšããããšã§ãããã®äºã
ãšè¡šçŸããŸãã
f(x)ã® x=2ã§ã®å€ãèããŠããããã§ã¯ãªããx=2ã®è¿ãã§ã®å€ãèããŠããããšã«æ³šæããŠãã ãããä»ã®äŸã§ã¯ãx=2ã¯ãé¢æ°ãå®çŸ©ãããŠããªãç¹ã§ããããé¢æ°ãå®çŸ©ãããŠããç¹ x=15ã x=1000000ã§ãåãäºãèããããŸããxãããå€ã«è¿ä»ããæã«ãf(x)ããã©ã®ãããªåããèŠããã?ãšããåé¡ã§ããxãcã«è¿ä»ãããšããå¿
ããf(x)ãLã«è¿ä»ãå ŽåããLã¯xãcã«è¿ä»ããæã®é¢æ°f(x)ã®æ¥µéã§ãããããšãããŸãã
xã c ã«è¿ä»ããæã® f(x)ã®æ¥µéã Lã§ãããšããããšãæ°åŒã§
ãšè¡šçŸããŸãã
ç¹°ãè¿ãã«ãªããŸãããx=cã§ã® f(x)ã®å€ãèããŠããããã§ã¯ãªããxãcã«è¿ä»ããæã® f(x)ã®å€ã«æ³šç®ããŠããã®ã§ãx=cã§f(x)ãå®çŸ©ãããŠãããã©ããã¯é¢ä¿ãããŸãããçŽæçã«ã¯ãxãcã«éããªãè¿ä»ããŠãã£ãæã«ãf(x)㯠Lã«éããªãè¿ã¥ããŠãããšããããšã§ãã
ãã®æ¥µéã®æŠå¿µã¯ããããŸã§è¡šçŸãã«ããã£ãç¯å²ã§ã®é¢æ°ã®æ§è³ªãè¡šçŸã§ããããã«ãªããŸããäŸãã° é¢æ° f(x) = 1/xã«ã€ããŠèããŠã¿ãŸãããã®é¢æ°ã¯ xã倧ãããªãã°ãªãã»ã©ã1/xã¯å°ãããªã£ãŠããã0ã«è¿ä»ããŠãããŸãã1/x ã 0ã«ãªããšããããšã¯ãããŸããã®ã§ããããè¡šçŸããããšã¯é£ããã§ãããããã極éãšããèšèãçšããããšã«ãã£ãŠãxãéããªã倧ãããããšãã«ã1/xã®æ¥µé㯠0ã§ãããšããããšãã§ããããã«ãªããŸããéããªã倧ããªæ°ãšããæ°ã¯ãããŸããããxãéããªã倧ããããæã« xãã©ã®æ°ã«èŸ¿ãã€ãã®ã?ãšããå¿é
ãããå¿
èŠã¯ãããŸãããéèŠãªã®ã¯ãxãã©ããããšãã« f(x)ãã©ã®ããã«æ¯ãèãã?ã§ãã
xãéããªã倧ãããããšããããšã x â âã®ããã«è¡šããŸãããã®æã1/xã0ã«è¿ä»ããŠãããšããããšãæ°åŒã§æžããš
ãšãªããŸãã
解æåŠãç解ããäžã§æåã®é£é¢ã¯æ¥µéã®å®çŸ©ãç解ããããšã§ãã äœãç¡ãæ代ãè³¢ãæ°åŠè
éã§ããã極éã«ãã£ããããå®çŸ©ãäžãããŸã§ã«150幎ãã®æ³æãè²»ãããŸããã
æ®ã©ã®å Žåã極éã®å®çŸ©ã¯ãçŽæçãªãã®ã§ç¹ã«åé¡ãããŸããã ããããéããªãè¿ä»ããšã¯ã©ãããããšã§ãããã? ã©ã®ããã«è¿ä»ãããéããªãè¿ä»ããããšã«ãªãã®ã§ãããã? äŸãã°æ¬¡ã®é¢æ°ã®æ¥µéã¯ã©ããªãã§ãããã?
çŽæã§ã¯f(0) = 0/0ã ãšæããããããŸããããããããã®æ¥µé㯠1ã§ãããã®ããã«çŽæãšæ°åŠçãªçããç°ãªãå Žåãæ°åŠçãªçãã§çŽåŸããã«ã¯ã©ããããããã§ãããã?
(ã€ãã·ãã³ã»ãã«ã¿è«æ³)
ä»»æã®æ£ã®æ°Îµã«å¯Ÿããããæ°ÎŽãååšã
ãªãã°
ãšãªããšããLã¯ãxãcã«è¿ä»ããæã® f(x)ã®æ¥µé(limit)ãšãããŸãã ãŸãããã®ããã«ãäžçåŒãšä»»æã®æ°Îµããããæ°ÎŽãçšããŠãäžè¿°ã®åŒã§æ¥µéãå®çŸ©ããæ¹æ³ããã³ããã®å®çŸ©åŒãåºã«è§£æåŠãªã©ã§ã®ä»ã®å®çã蚌æããè«æ³ãã€ãã·ãã³ã»ãã«ã¿è«æ³(ε-ÎŽ logic)ãšèšããŸããäžè¬çã«ã¯ããε-ÎŽè«æ³ããšç¥èšããŸãã
çŽæçãªå®çŸ©ãšã圢åŒçãªå®çŸ©ã®éã®éããç解ããããšã¯ãšãŠãéèŠã§ããçŽæçãªå®çŸ©ã§ã¯f(x)ã¯Lã«è¿ããšè¡šçŸããéšåãã圢åŒçãªå®çŸ©ã§ã¯f(x)ãšLã®å·®ã¯ãä»»æã®æ£ã®æ°Îµãããå°ããããšãªã£ãŠããŸãã
å³å¯ãªæ°åŠçè°è«ãããéã«ã¯ãäžã«æãããããªãäžéè¿°èªè«çã®èšå·ã䜿ã£ã簡䟿ãªè¡šèšã䜿ãããšããããŸãã
ããã§ã â {\displaystyle \forall } ã¯å
šç§°èšå·(universal quantifier)ãšããããä»»æã®~ã«å¯ŸããŠããæå³ããèšå·ã§ãã â {\displaystyle \exists } ã¯ååšèšå·(existential quantifier)ãšãããããã~ãååšããããæå³ããèšå·ã§ãããs.t.ãã¯è±èªã®ãsuch thatãã®ç¥ã§ããã°ãã°ååšèšå·ãšçµã¿åãããŠçšããŸãã
1)次ã®åŒã§ãε = 0.01ã®æãÎŽã¯ããã€ã«ãããè¯ãã§ãããã?
ãŸãæåã«ã極éã®å®çŸ©ã®æåŸã®åŒã« f(x)㚠εã代å
¥ããŸãã
ãããæŽçãããš
ãšãªããŸãã極éã®å®çŸ©ã®æåã®åŒã«åœ¢ãåãããããã«å€åœ¢ããŸãã
ããã§ã|-0.04| ãš 0.04 ã®ãã¡å°ããæ¹ã ÎŽãšããŸãããã¡ããã0.04以äžã®æ£ã®æ°ã§ããã°äœãÎŽã«éžãã§ãæ§ããŸãããÎŽã«ã¯æ²¢å±±ã®éžã³æ¹ããããŸãã
å®çŸ©ã®åŒãããäžåºŠèªã¿è¿ããŠã¿ãŠãã ãã
ãªãã°
ã¯æãç«ã£ãŠããŸãããε = 0.01ã«å¯ŸããŠã確ãã«ãå°ãªããšã1ã€ã®ÎŽãååšããŠããããšã«ãªããŸããÎŽ=0.03ãšåã£ãŠããÎŽ=0.00001ãšåã£ãŠã
ã§ããããšã«æ³šæããŠãã ããã
2)xã4ã«è¿ä»ãããšãã®f(x) = x + 7 ã®æ¥µéã¯ããã€ã§ããã?
ãã®ãããªåé¡ã«çããå Žåã2ã®ããšãå¿
èŠã§ãããŸã第äžã«ããã®æ¥µéãããã€ã«ãªããã決ããªããã°ãªããŸãããããã¯ãçŽæçãªæ¥µéã®å®çŸ©ã®ãšãã®ããã«ãçŽæãæšæž¬ã圹ç«ã€éšåã§ãããã®åŸããã®æ°ã極éãšãªãããšã蚌æããªããã°ãªããŸããããã®åé¡ã§ã¯ãçãã¯11ã§ããã11ã«ãªãããšãã極éã®åœ¢åŒçãªå®çŸ©ãçšããŠãããã極éãšãªãããšã蚌æããªããã°ãªããªãã®ã§ãã
çŽæç: xã4ã«è¿ä»ãããšãf(x) = x + 7ã¯4 + 7 = 11ã«è¿ä»ãã®ã§ã極éã¯11ãšèšãããã§ãã
圢åŒç: ä»»æã®Îµã«å¯ŸããŠãÎŽãååšããŠ
ãªãã°
ãã®åé¡ã«é¢ããŠèšãã°ãÎŽ = εãšåãã°åé¡ãããŸããã(ÎŽã®éžã³æ¹ã«é¢ããŠã¯ÎŽã®éžã³æ¹ãåç
§ããŠãã ããã)ãããŠæ¬¡ã®ããšã蚌æããªããã°ãªããŸããã
ãªãã°
ãæãç«ã€ã
ã§ããã®ã§
ããªããã¡ãŸããããã§åœ¢åŒçãªå®çŸ©ã«æ²¿ã£ã蚌æãã§ããŸããã
3)xã4ã«è¿ä»ããæã® f(x) = x2ã®æ¥µéã¯ããã€ã§ããã?
圢åŒç: ãŸã2ã€ã®æé ãèžã¿ãŸãããçŽæçãªæ¹æ³ã§ f(x)ã®æ¥µé㯠16ã ãããšäºæ³ãã§ãã
ãšãªãããã«ÎŽãåããŸãããã®ÎŽã¯åžžã«0ãã倧ããäºã確èªããŠãã ããã
ããšã¯
ãªãã°
ãšãªãããšã瀺ãã°ããããšã«ãªããŸãã
äžè§äžçåŒãçšããããšã«ãã£ãŠ
ãšãªããŸãã®ã§
ãšãªãã蚌æãçµãããŸããã
4) xã 0ã«è¿ä»ãããšãã®sin(1/x)ã®æ¥µéãååšããªãããšã瀺ããŸãã
èçæ³ãçšããŸãã極éãååšãããšä»®å®ãããããpãšãççŸãå°ããŸããp < 0ã§ãããªãã°Îµ=1ãšãšããšãã©ã㪠Ύ > 0ãæã£ãŠããŠãã
ãšãšããšãã 0 < | x n | < ÎŽ {\displaystyle 0<|x_{n}|<\delta } ãæºãããããªèªç¶æ°nãååšããŸãããããã
ãšãªããŸããããε=1ã®ãšãã圢åŒçãªå®çŸ©ã®æ¡ä»¶ãæºãããããªÎŽã¯äžã€ãååšããªãããšã«ãªãã極éãå®çŸ©ã§ããªãããšã«ãªããŸãã®ã§ççŸãšããããšã«ãªããŸãããããã£ãŠãp <0ã§ã¯ãããŸããã
p ⥠0ã§ãããšä»®å®ããå Žåãåæ§ã«ãε=1ã®ãšã
ãšãšããšãã 0 < | x n | < ÎŽ {\displaystyle 0<|x_{n}|<\delta } ãæºãããããªèªç¶æ°nãååšã
ãšãªããŸãã
å³ã¡ p < 0ã§ããªãã p ⥠0ã§ããããŸãããã極épã¯ååšããªãããšã«ãªããŸãã
ãã®é¢æ° sin(1/x)ã¯ãäœçžæ°åŠè
ã®æ«(topologist's comb)ãšããŠç¥ãããæåãªé¢æ°ã§ãã
5)xã0ã«è¿ä»ãããšããx sin(1/x)ã®æ¥µéã¯ã©ããªãã§ãããã?
ããã¯0ã«ãªããŸããä»»æã®Îµ > 0ã«å¯ŸããŠã ÎŽ = ε ãšéžã¶ãš ä»»æã®xã«å¯ŸããŠã0 < |x| < ÎŽãªãã° |x sin(1/x) -0| †|x| < εãšãªãã蚌æãçµãããŸããã
è»ã®é転ãäŸã«ãšããŸããèµ°è¡è·é¢ãæéã«æ¯äŸããè»ã«ä¹ã£ãŠãããšããŸããæéã暪軞ã«ãšããèµ°è¡è·é¢ã瞊軞ã«åã£ãŠã°ã©ããæãã°çŽç·ãæžããŸãããã®è»ã®éããæ±ããããšãã¯ãèµ°è¡è·é¢Ã·æéãèšç®ããããšã«ããç°¡åã«æ±ãŸããŸããããã¯ãã°ã©ãã§èšãã°ãçŽç·ã®åŸãã«ããããŸãã
ããããæ®éã¯è»ãšãããã®ã¯éããªã£ããé
ããªã£ããããŠèµ°ããããã°ã©ãã¯çŽç·ã«ã¯ãªãããéããæ±ããããšã¯é£ãããªããŸãã ããã§ãç¬éã§ã®éããšãããã®ãæ±ãããšããããšãããŸããéããæ±ããã«ã¯äºç¹å¿
èŠã§ããäºã€ã®æå»ã§ã®äœçœ®ããéããæ±ããŸããã°ã©ãã§èšããšãã°ã©ãäžã®äºç¹ãåããã®äºç¹ãçµã¶çŽç·ã®åŸããæ±ãããšããããšã«ãªããŸããããã¯ããã®äºç¹éã§ã®å¹³åã®éããæ±ãããšããããšã«ãªããŸãã
ããã§åŸ®å(derivation)ã®åºæ¬çãªèãæ¹ã«è¡ãçããŸãã ãã®äºç¹éãéããªãè¿ä»ããæã«ãå¹³åã®éããã©ããªãããèããŸããã€ãŸãã2ã€ã®ç¹ããšãå¹³åã®éããæ±ãããã®äºç¹éãã2ã€ã®ç¹ãéžã³å¹³åã®éããæ±ããããã«ãã®äºç¹éãã2ã€ã®ç¹ãéžã³ãå¹³åã®éããæ±ã...ãšããããšãç¹°ãè¿ããŠãäºç¹éã®è·é¢ãéããªãè¿ä»ããæã«ãå¹³åã®éã(çŽç·ã®åŸã)ã®æ¥µéãã©ããªãããšããããšãèŠãŠãããŸãã
ãã®é
ç®ã§ã¯é¢æ°ã®é
ç®ã§çŽæçã«è¿°ã¹ãé£ç¶æ§ã®åœ¢åŒçãªå®çŸ©ãããŸãããšãŠãç°¡åãªå®çŸ©ã§ãã
f(x)ã cã§é£ç¶(continuous)ã§ãããšã¯ã
ãæãç«ã€ããšãšããŸãã
é¢æ°ãã極éã cã§å®çŸ©ã§ããªãã£ããããã®çåŒãæãç«ããªãå Žåãfã¯cã§é£ç¶ã«ã¯ãªããªãããšã«æ³šæããŠãã ããã
é£ç¶æ§ã®çŽæçãªèãæ¹ãšã©ã®ããã«å¯Ÿå¿ããŠããã®ããèããŠã¿ãŠãã ãããé£ç¶æ§ãç解ããããã«ãé¢æ°ã®ã°ã©ããæããŠèããŠã¿ãŠãã ããããããããåºéå
ã®ã©ãã§ãããã®çåŒãæãç«ã£ãŠãããªãã°ããã®åºéå
ã§ã¯éçãé¢ããã«ã°ã©ãããªããããšãã§ããããšãããããŸããéã«ãéäžã§é¢æ°fã®å€ãé£ãã§ããããããšããã®å Žæã§å®çŸ©ã®çåŒã¯æãç«ã¡ãŸããããéçãé¢ããã«ã°ã©ãããªããããšãã§ããŸããã
ããã§ã¯æ¥µéã§ããããšã®èšŒæããã極éå€ãã¿ã€ãããšããããšã«æ³šç®ããŸãããããŸã§ã®èšŒæã§ãããŸãæåã«ã極éã®å€ãèŠã€ããããšããå§ããŸãããã©ããã£ãŠæ¥µéå€ãèŠã€ããã®ã§ããã?
é¢æ°ãããç¹cã§é£ç¶ã§ãããªãã°ãé£ç¶æ§ã®å®çŸ©ããç¹cã«è¿ä»ããæã®é¢æ°ã®å€ã®æ¥µéã¯ãåã«cã§ã®é¢æ°ã®å€ã«çãããªããŸããå€é
åŒãäžè§é¢æ°ã察æ°é¢æ°ãææ°é¢æ°ãªã©ã¯ããã®å®çŸ©åå
šäœã§é£ç¶ã«ãªããŸãã
é¢æ°f(x)ãcã§é£ç¶ã§ãªãå Žåãæçé¢æ°ã ãš c ã®è¿ãã§ã¯é£ç¶ã§ãcã®æã ããå€ç«ããŠäžé£ç¶ã«ãªã£ãŠããäºãå€ãã§ãããããã£ãå Žåã¯ãcãé€ããŠå€ãäžèŽãããããªã䌌ããããªé¢æ°g(x)ãèŠã€ããããšæãããšããããŸãã極éã®å®çŸ©ãããããšãxãcã«è¿ä»ããæã®æ¥µéãååšãããªãã°
ãæºãããªããã°ãªããŸããã ãã®ãããªå Žåãäžé£ç¶ã«ãªã£ãŠããç¹ã®éšåãåããŠãå
ã®é¢æ°ã«è¿ãé£ç¶ãªé¢æ°ãæ¢ããããªããŸããé£ç¶ã®å®çŸ©ã«ããã°ãcã§ã®å€ããå
ã®é¢æ°ã®cã§ã®æ¥µéã«äžèŽããªããã°ãªããŸããã
é¢æ° g(x) ã¯ãcãé€ããŠãf(x)ãšçããé¢æ°ã§ãã f(x) ã®æ¥µéã®å®çŸ©ã¯ã0 < |x - c| < ÎŽ ãšããéåã®äžã§ãããŠããŸãããx = cã®æããã®äžçåŒã¯æãç«ããªãã®ã§ãcã§ã®æ¥µéã¯cã§ã®é¢æ°ã®å€ã«ãããŸããã ãããã£ãŠãc ã§ã®æ¥µé㯠f(x) ãš g(x) ã§çãããªããŸããã€ãŸããæ°ããé¢æ° g(x) ã¯é£ç¶ãªã®ã§ãcã§ã®å€ã¯ããã®æ¥µéã«çãããªããã°ãããªãã®ã§ãã
æåŸã«ã極éå€ãååšããªãäŸãããã€ããããŠãããŸãã
ã®ã£ãã: é¢æ°ãå®çŸ©ãããŠããªãå Žæã«(åºã)ã®ã£ãããããããšããããŸããäŸãã°
ã§ãf (x) 㯠-4 †x †4 ã§ã¯å®çŸ©ãããŠããªããšãããã®åºéã«å«ãŸããç¹ã«ã¯è¿ä»ãããããããŸãããåºéã®ç«¯ç¹ x = ±4 ã§ã極éãååšããªãããšã«æ³šæããŠãã ããã極éãååšããããã«ã¯ãäž¡åŽãããã®ç¹ã«è¿ä»ãå¿
èŠããããŸããã°ã©ãäžã§å€ç«ããç¹ãªã©ã§ã¯æ¥µéãååšããªãããšã«æ³šæããŠãã ããã
段差: ã°ã©ããéåããŠæ¥ã«é«ããå€ãããããªå Žåã§ãããã®ãããªç¹ã§ãé¢æ°ã¯é£ç¶ã§ã¯ãããŸãããã極éãååšããŸãããåº(floor)é¢æ°ã®ãããªã°ã©ãã«ãªããŸãã
çºæ£:
xã 0 ã«è¿ä»ãããšãå€ããããã§ã倧ãããªããŸãããã®å Žåã極éå€ã¯ãããŸããã
æ¯å: ããã°ã©ãããx軞ã«å¹³è¡ãªç·ãšäœåºŠã亀ãããäžãžè¡ã£ããäžã«è¡ã£ãããç¹°ãè¿ããããªå Žåã§ãã å®éã«ããèµ·ããã極éãç¡ãããšããããããŸããã°ã©ãã¯ããxã®å€ã«è¿ä»ãããšããŠããç¡éã«äžäžéåãç¹°ãè¿ããŸãã ããããªãããxãè¿ä»ããã«ã€ããæ¯åã®é«ã(æ·±ã)ãéããªãå°ãããªã£ãŠããæã¯æ¥µéãååšããŸãã ãã䜿ãããæ¯åã®äŸãšããŠãäžè§é¢æ°ãçšãããã®ããããŸãã極éã®ç¡ãæ¯åã®äŸãšããŠ
ãšããé¢æ°ãèããããŸãã
sin é¢æ°ã®ã°ã©ãã¯ãç¡éã«æ¯åããŸãããã®æ¯åã®èµ·ãã£ãŠãã (1, â) ãšããåºéã 1/x ãšããå€æãçšã㊠(0, 1) ã«å
¥ããŸãããããšããã®æéåºéã®äžã«ãç¡éåã®æ¯åãè©°ã蟌ãããšãã§ããããã«ãªããŸããå®éããã® f(x) 㧠x ã 0 ã«è¿ä»ããŠãããšãç¡éåã®æ¯åãèµ·ãããŸãã
ç
çãªã°ã©ã: ããã§ã¯ 2 ã€ã®äŸãèããŸãã
ãŸãã f ã ä»»æã®æçæ°qã«å¯Ÿãå®æ° f(q)=2 ãåãå Žåãf ã¯ãä»»æã® q0 ã§é£ç¶ã«ãªããŸããä»»æ㫠ε > 0 ãåããšãä»»æã® ÎŽ > 0 ã«å¯Ÿãã 0< |q-q0| < ÎŽ ãæºãã q 㯠| f(q) â f(q0) | = |2â2| = 0 < ε ãæºãããŸãããããã£ãŠã f 㯠q0 ã§é£ç¶ã§ãã
2 ã€ç®ã®äŸãšããŠã 次ã®ãããªé¢æ°ãèããŸãã
å
çšå®çŸ©ããã f ãšäŒŒãŠããŸãããä»åºŠã¯ç¡çæ°ã®æ㯠0 ãšããå€ãåãããã«å®çŸ©ãããŠããŸããgã«ã¯é£ç¶ãªç¹ã¯ãããŸããã x ãå®æ°ãšããŠã g ã x ã§é£ç¶ã§ãªãããšã瀺ããŸãã ε = 1 ãšããŸãã ãã g ã x ã§é£ç¶ãããšãããšã |x-y| < ÎŽ ãªãã° |g(x)â g(y)|<1 ãšãªããã㪠Ύãååšããçã§ãããããã ÎŽ ãã©ããªã«å°ãããšã£ãŠãã |g(x) â g(y)|=2 ãšãªããã㪠y ãååšããŸãã x ãæçæ°ãªãã°ã y ã«ç¡çæ°ããšãã x ãç¡çæ°ãªãã°ã y ã«æçæ°ãåãã°ããããã§ãããããã£ãŠã g ã¯å
šãŠã®å®æ°ã§é£ç¶ã§ã¯ãããŸããã
lim x â c f ( x ) , lim x â c g ( x ) {\displaystyle \lim _{x\rightarrow c}f(x),\ \lim _{x\rightarrow c}g(x)} ãååšãããšãã
ä»®å®ããã lim x â c f ( x ) = α , lim x â c g ( x ) = β {\displaystyle \lim _{x\rightarrow c}f(x)=\alpha ,\ \lim _{x\rightarrow c}g(x)=\beta } ãšããããã®ãšãã
ε > 0 {\displaystyle \epsilon >0} ãä»»æã«åã£ãŠããã ε 2 > 0 {\displaystyle {\frac {\epsilon }{2}}>0} ããã極éã®å®çŸ©ããããå®æ° ÎŽ 1 , ÎŽ 2 {\displaystyle \delta _{1},\delta _{2}} ãååšããŠ
0 < | x â c | < ÎŽ 1 â | f ( x ) â α | < ε 2 {\displaystyle 0<|x-c|<\delta _{1}\Rightarrow |f(x)-\alpha |<{\frac {\epsilon }{2}}}
0 < | x â c | < ÎŽ 2 â | g ( x ) â β | < ε 2 {\displaystyle 0<|x-c|<\delta _{2}\Rightarrow |g(x)-\beta |<{\frac {\epsilon }{2}}}
絶察å€ãå€ãã°ã â ε 2 < f ( x ) â α < ε 2 , â ε 2 < g ( x ) â β < ε 2 {\displaystyle -{\frac {\epsilon }{2}}<f(x)-\alpha <{\frac {\epsilon }{2}},\ -{\frac {\epsilon }{2}}<g(x)-\beta <{\frac {\epsilon }{2}}}
ãããã£ãŠ â ε < f ( x ) + g ( x ) â ( α + β ) < ε ⺠| { f ( x ) + g ( x ) } â ( α + β ) | < ε {\displaystyle -\epsilon <f(x)+g(x)-(\alpha +\beta )<\epsilon \iff |\{f(x)+g(x)\}-(\alpha +\beta )|<\epsilon }
ããã§ã ÎŽ = min ÎŽ 1 , ÎŽ 2 {\displaystyle \delta =\min {\delta _{1},\delta _{2}}} ãšããã°äžã®åŒãæãç«ã€ãããªãã¡ããå®æ° ÎŽ {\displaystyle \delta } ãååšããŠä»»æ㮠ε > 0 {\displaystyle \epsilon >0} ã«å¯Ÿã㊠0 < | x â c | < ÎŽ â | { f ( x ) + g ( x ) } â ( α + β ) | < ε . {\displaystyle 0<|x-c|<\delta \Rightarrow |\{f(x)+g(x)\}-(\alpha +\beta )|<\epsilon .}
ããªãã¡2çªç®ã®åŒã蚌æãããã®ã§ããã
ãæºããé¢æ°ãf(x), g(x), h(x) ããããx ã c ã«è¿ä»ããæã« f(x) ãš h(x) ã®æ¥µéãååšã
ã§ããã°ã g(x) ã®æ¥µéãååšã
ãšãªããŸãããããã¯ãã¿ãã¡ã®åç(Squeeze theorem)ãšãããŸããããã¯ãããããªå Žé¢ã§äœ¿ãããŸãã
å³å³ã®äžè§åœ¢ABCã«ãããŠâ ACBãçŽè§ãšããŸãã AC=AE=1ãšããC ãã E ãŸã§å匧ãæãããŠããŸãã E ãã AC ã«éãããåç·ã®è¶³ã D ã§ãã â BAC ã®å€§ããã x ãšããŸãã(匧床æ³ã§åäœã¯ã©ãžã¢ã³ã§ããx ã¯æ£ã§ããããšã«æ³šæããŠãã ããã)
ãããšãED = sin(x) ã BC = tan(x) ã§ããé¢ç©ãæ¯ã¹ããš
ã§ããã
ãšããäžçåŒãåŸãããŸãããããæŽçããŠ
ããŸã 0<x< Ï/2 ã§ããããã®äžçåŒã®å·ŠèŸºãšäžèŸºã¯å¶é¢æ°ãªã®ã§ããã®äžçåŒã¯ âÏ/2 < x <0ã§ãæãç«ã€ãšããããŸããå³ã¡ã 0<|x|<Ï/2ãšããåºéã§ãã®äžçåŒãèããŸãã
ããã§ãx â 0 ãšãããšã
ãªã®ã§ãã¯ãã¿ãã¡ã®åçãã
ãšãªããŸãã
ã¯ãã¿ãã¡ã®åçèªäœãšãŠã䟿å©ãªéå
·ã§ããããã® sin(x) ãš x ã®æ¯ã 1 ã«åæãããšããäºå®ããšãŠã圹ã«ç«ã€éå
·ã«ãªããŸãã
ãšããæ¡ä»¶ãããä»»æ㮠ε ã«å¯ŸããŠããã ÎŽ1 ã ÎŽ2 ãååšããŠã
ãšãªããŸããÎŽ1 ã ÎŽ2ã®ãã¡å°ããæ¹(çãããã°ãã®å€)ã ÎŽãšããŸãã
ãªãã°
ã§ããããšãã
ãšãªãã
ãèšããŸãããã€ãŸããg(x) ã αã«åæããŸãã
ã«ãããŠãx ãã0ã«è¿ã¥ãããšãã®æ¥µéã¯ã©ããªãã§ãããã?
ã¯ãåæ¯ã 0 ã«ãªã£ãŠããŸãããå®çŸ©ãããŠããŸããã
ããããçŽæçã«ã¯ xãå°ããéžã¹ã°ãgã¯ãããã§ã倧ããã§ãããšããããšãåããã§ããããäŸãã°ã g(x) ã 10 ã«ããããã°ãxã 10ã«åãã°ããã®ã§ãã ãã®å Žåã xãåå 0 ã«è¿ã(ããããxâ 0 ã§ããããšã«æ³šæããŠãã ããã)åãã°ãg(x) ããããã§ã倧ããã§ããŸãã
ããã
ãšæžããŸãã
ãã®èšæ³ã¯ã極éã®èšæ³ã«åãããã ãã®ãã®ã§ãå®éã«ã¯ x = 0 ã§ã®æ¥µéã¯ååšããªãããšã«æ³šæããŠãã ãããâ ãšãã極éãååšããããã§ã¯ãããŸããããâã¯æ°ã§ã¯ãããŸããã
äžé£ç¶(discontinuous)ãšã¯ãé¢æ°ãããç¹ã§é£ç¶ã§ç¡ãããšããããŸããäŸãã°ã
ã¯ãx = 3ã«é€å»å¯èœãªäžé£ç¶ç¹(removable discontinuity)ãæã¡ãŸãã
ãã®ãé€å»å¯èœã(removable)ãšããã®ã¯ãå°ãæãå ããã ãã§äžé£ç¶ãªãšãããé£ç¶ã«ããé¢æ°ãåŸããããšããæå³ã§ããç¹ã«ãã®é¢æ°ã®å Žåã¯ãxâ 3ã®æã¯ãçŽåããããšã§ f(x) = x+3 ã«ãªããŸãã ãããf(3)=6 ã§ãã£ããªãã°ãé£ç¶ãªé¢æ°ã«ãªããŸããå³ã¡ãæ°ããé¢æ°
ãå®çŸ©ããŸãããã¡ãã x=3 ã§ãx+3=6 ã§ãããããŸãšããŠãg(x) = x+3ãšæžãããšãã§ããŸããx=3 ã§ãå®çŸ©ãããŠããã®ã§ã f(x) ãšã¯å¥ã®é¢æ°ã§ããããšã«æ³šæããŠãã ããã f(x) ã® x=3 ã§ã®æ¥µéã§ãã 6 ã g(3) ã®å€ãšããŠãé£ç¶ãªé¢æ°ã«ãªããŸããã æçé¢æ°ã§ã¯ããã®ãããªäžé£ç¶æ§ã®é€å»ãå¯èœã§ããåæ¯ã0ã«ãªããªããšãã¯ããã®ãããªæäœã«ãããªããŠãé£ç¶é¢æ°ãåŸãããšãã§ããŸããåæ¯ã 0 ã«ãªããšãã«ã0 ã§å²ããšããããšãé¿ããããã«ããããã£ãæ°ããé¢æ° g(x) ãçšæããå¿
èŠããããŸãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "é¢æ°ã®é
ç®ã§ãé¢æ°ã«ã€ããŠã®åŸ©ç¿ãããŸãããããã§ã¯ã解æåŠã®æ ¹æ¬ãšãªã極é(limit)ã®æŠå¿µãåŠã³ãŸãã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "é¢æ° f(x) = xãèããŸãããã®é¢æ°ã¯ãf(2)=4 ãšãªããŸãããã®é¢æ°ãå°ãããã£ãŠæ¬¡ã®ãããªé¢æ°ãèããŠã¿ãŸãã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ãã®é¢æ°ã¯ x â 2 ã®æã§ã¯ãæåã«å®çŸ©ããé¢æ° f(x) = x ãšåãå€ãåããŸãããšããã x = 2 ã®æã§ã¯ãåæ¯ã0ã«ãªã£ãŠããŸãã®ã§é¢æ°ã®å€ã¯å®çŸ©ãããŠããŸããã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "x â 2ã§ããå®çŸ©ãããŠããªãé¢æ°ã§ãããäžã€ã ã確ããªäºããããŸããããã¯ãx ã 2ã«è¿ä»ãããš f(x)ã®å€ã 4ã«è¿ä»ããšããããšã§ãããã®äºã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ãšè¡šçŸããŸãã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "f(x)ã® x=2ã§ã®å€ãèããŠããããã§ã¯ãªããx=2ã®è¿ãã§ã®å€ãèããŠããããšã«æ³šæããŠãã ãããä»ã®äŸã§ã¯ãx=2ã¯ãé¢æ°ãå®çŸ©ãããŠããªãç¹ã§ããããé¢æ°ãå®çŸ©ãããŠããç¹ x=15ã x=1000000ã§ãåãäºãèããããŸããxãããå€ã«è¿ä»ããæã«ãf(x)ããã©ã®ãããªåããèŠããã?ãšããåé¡ã§ããxãcã«è¿ä»ãããšããå¿
ããf(x)ãLã«è¿ä»ãå ŽåããLã¯xãcã«è¿ä»ããæã®é¢æ°f(x)ã®æ¥µéã§ãããããšãããŸãã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "xã c ã«è¿ä»ããæã® f(x)ã®æ¥µéã Lã§ãããšããããšãæ°åŒã§",
"title": "ã¯ããã«"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ãšè¡šçŸããŸãã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "ç¹°ãè¿ãã«ãªããŸãããx=cã§ã® f(x)ã®å€ãèããŠããããã§ã¯ãªããxãcã«è¿ä»ããæã® f(x)ã®å€ã«æ³šç®ããŠããã®ã§ãx=cã§f(x)ãå®çŸ©ãããŠãããã©ããã¯é¢ä¿ãããŸãããçŽæçã«ã¯ãxãcã«éããªãè¿ä»ããŠãã£ãæã«ãf(x)㯠Lã«éããªãè¿ã¥ããŠãããšããããšã§ãã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "ãã®æ¥µéã®æŠå¿µã¯ããããŸã§è¡šçŸãã«ããã£ãç¯å²ã§ã®é¢æ°ã®æ§è³ªãè¡šçŸã§ããããã«ãªããŸããäŸãã° é¢æ° f(x) = 1/xã«ã€ããŠèããŠã¿ãŸãããã®é¢æ°ã¯ xã倧ãããªãã°ãªãã»ã©ã1/xã¯å°ãããªã£ãŠããã0ã«è¿ä»ããŠãããŸãã1/x ã 0ã«ãªããšããããšã¯ãããŸããã®ã§ããããè¡šçŸããããšã¯é£ããã§ãããããã極éãšããèšèãçšããããšã«ãã£ãŠãxãéããªã倧ãããããšãã«ã1/xã®æ¥µé㯠0ã§ãããšããããšãã§ããããã«ãªããŸããéããªã倧ããªæ°ãšããæ°ã¯ãããŸããããxãéããªã倧ããããæã« xãã©ã®æ°ã«èŸ¿ãã€ãã®ã?ãšããå¿é
ãããå¿
èŠã¯ãããŸãããéèŠãªã®ã¯ãxãã©ããããšãã« f(x)ãã©ã®ããã«æ¯ãèãã?ã§ãã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "xãéããªã倧ãããããšããããšã x â âã®ããã«è¡šããŸãããã®æã1/xã0ã«è¿ä»ããŠãããšããããšãæ°åŒã§æžããš",
"title": "ã¯ããã«"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "ãšãªããŸãã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "解æåŠãç解ããäžã§æåã®é£é¢ã¯æ¥µéã®å®çŸ©ãç解ããããšã§ãã äœãç¡ãæ代ãè³¢ãæ°åŠè
éã§ããã極éã«ãã£ããããå®çŸ©ãäžãããŸã§ã«150幎ãã®æ³æãè²»ãããŸããã",
"title": "極éã®åœ¢åŒçãªå®çŸ©"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "æ®ã©ã®å Žåã極éã®å®çŸ©ã¯ãçŽæçãªãã®ã§ç¹ã«åé¡ãããŸããã ããããéããªãè¿ä»ããšã¯ã©ãããããšã§ãããã? ã©ã®ããã«è¿ä»ãããéããªãè¿ä»ããããšã«ãªãã®ã§ãããã? äŸãã°æ¬¡ã®é¢æ°ã®æ¥µéã¯ã©ããªãã§ãããã?",
"title": "極éã®åœ¢åŒçãªå®çŸ©"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "çŽæã§ã¯f(0) = 0/0ã ãšæããããããŸããããããããã®æ¥µé㯠1ã§ãããã®ããã«çŽæãšæ°åŠçãªçããç°ãªãå Žåãæ°åŠçãªçãã§çŽåŸããã«ã¯ã©ããããããã§ãããã?",
"title": "極éã®åœ¢åŒçãªå®çŸ©"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "(ã€ãã·ãã³ã»ãã«ã¿è«æ³)",
"title": "極éã®åœ¢åŒçãªå®çŸ©"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "ä»»æã®æ£ã®æ°Îµã«å¯Ÿããããæ°ÎŽãååšã",
"title": "極éã®åœ¢åŒçãªå®çŸ©"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "ãªãã°",
"title": "極éã®åœ¢åŒçãªå®çŸ©"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "ãšãªããšããLã¯ãxãcã«è¿ä»ããæã® f(x)ã®æ¥µé(limit)ãšãããŸãã ãŸãããã®ããã«ãäžçåŒãšä»»æã®æ°Îµããããæ°ÎŽãçšããŠãäžè¿°ã®åŒã§æ¥µéãå®çŸ©ããæ¹æ³ããã³ããã®å®çŸ©åŒãåºã«è§£æåŠãªã©ã§ã®ä»ã®å®çã蚌æããè«æ³ãã€ãã·ãã³ã»ãã«ã¿è«æ³(ε-ÎŽ logic)ãšèšããŸããäžè¬çã«ã¯ããε-ÎŽè«æ³ããšç¥èšããŸãã",
"title": "極éã®åœ¢åŒçãªå®çŸ©"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "çŽæçãªå®çŸ©ãšã圢åŒçãªå®çŸ©ã®éã®éããç解ããããšã¯ãšãŠãéèŠã§ããçŽæçãªå®çŸ©ã§ã¯f(x)ã¯Lã«è¿ããšè¡šçŸããéšåãã圢åŒçãªå®çŸ©ã§ã¯f(x)ãšLã®å·®ã¯ãä»»æã®æ£ã®æ°Îµãããå°ããããšãªã£ãŠããŸãã",
"title": "極éã®åœ¢åŒçãªå®çŸ©"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "å³å¯ãªæ°åŠçè°è«ãããéã«ã¯ãäžã«æãããããªãäžéè¿°èªè«çã®èšå·ã䜿ã£ã簡䟿ãªè¡šèšã䜿ãããšããããŸãã",
"title": "極éã®åœ¢åŒçãªå®çŸ©"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "ããã§ã â {\\displaystyle \\forall } ã¯å
šç§°èšå·(universal quantifier)ãšããããä»»æã®~ã«å¯ŸããŠããæå³ããèšå·ã§ãã â {\\displaystyle \\exists } ã¯ååšèšå·(existential quantifier)ãšãããããã~ãååšããããæå³ããèšå·ã§ãããs.t.ãã¯è±èªã®ãsuch thatãã®ç¥ã§ããã°ãã°ååšèšå·ãšçµã¿åãããŠçšããŸãã",
"title": "極éã®åœ¢åŒçãªå®çŸ©"
},
{
"paragraph_id": 22,
"tag": "p",
"text": "1)次ã®åŒã§ãε = 0.01ã®æãÎŽã¯ããã€ã«ãããè¯ãã§ãããã?",
"title": "極éã®åœ¢åŒçãªå®çŸ©"
},
{
"paragraph_id": 23,
"tag": "p",
"text": "ãŸãæåã«ã極éã®å®çŸ©ã®æåŸã®åŒã« f(x)㚠εã代å
¥ããŸãã",
"title": "極éã®åœ¢åŒçãªå®çŸ©"
},
{
"paragraph_id": 24,
"tag": "p",
"text": "ãããæŽçãããš",
"title": "極éã®åœ¢åŒçãªå®çŸ©"
},
{
"paragraph_id": 25,
"tag": "p",
"text": "ãšãªããŸãã極éã®å®çŸ©ã®æåã®åŒã«åœ¢ãåãããããã«å€åœ¢ããŸãã",
"title": "極éã®åœ¢åŒçãªå®çŸ©"
},
{
"paragraph_id": 26,
"tag": "p",
"text": "ããã§ã|-0.04| ãš 0.04 ã®ãã¡å°ããæ¹ã ÎŽãšããŸãããã¡ããã0.04以äžã®æ£ã®æ°ã§ããã°äœãÎŽã«éžãã§ãæ§ããŸãããÎŽã«ã¯æ²¢å±±ã®éžã³æ¹ããããŸãã",
"title": "極éã®åœ¢åŒçãªå®çŸ©"
},
{
"paragraph_id": 27,
"tag": "p",
"text": "å®çŸ©ã®åŒãããäžåºŠèªã¿è¿ããŠã¿ãŠãã ãã",
"title": "極éã®åœ¢åŒçãªå®çŸ©"
},
{
"paragraph_id": 28,
"tag": "p",
"text": "ãªãã°",
"title": "極éã®åœ¢åŒçãªå®çŸ©"
},
{
"paragraph_id": 29,
"tag": "p",
"text": "ã¯æãç«ã£ãŠããŸãããε = 0.01ã«å¯ŸããŠã確ãã«ãå°ãªããšã1ã€ã®ÎŽãååšããŠããããšã«ãªããŸããÎŽ=0.03ãšåã£ãŠããÎŽ=0.00001ãšåã£ãŠã",
"title": "極éã®åœ¢åŒçãªå®çŸ©"
},
{
"paragraph_id": 30,
"tag": "p",
"text": "ã§ããããšã«æ³šæããŠãã ããã",
"title": "極éã®åœ¢åŒçãªå®çŸ©"
},
{
"paragraph_id": 31,
"tag": "p",
"text": "2)xã4ã«è¿ä»ãããšãã®f(x) = x + 7 ã®æ¥µéã¯ããã€ã§ããã?",
"title": "極éã®åœ¢åŒçãªå®çŸ©"
},
{
"paragraph_id": 32,
"tag": "p",
"text": "ãã®ãããªåé¡ã«çããå Žåã2ã®ããšãå¿
èŠã§ãããŸã第äžã«ããã®æ¥µéãããã€ã«ãªããã決ããªããã°ãªããŸãããããã¯ãçŽæçãªæ¥µéã®å®çŸ©ã®ãšãã®ããã«ãçŽæãæšæž¬ã圹ç«ã€éšåã§ãããã®åŸããã®æ°ã極éãšãªãããšã蚌æããªããã°ãªããŸããããã®åé¡ã§ã¯ãçãã¯11ã§ããã11ã«ãªãããšãã極éã®åœ¢åŒçãªå®çŸ©ãçšããŠãããã極éãšãªãããšã蚌æããªããã°ãªããªãã®ã§ãã",
"title": "極éã®åœ¢åŒçãªå®çŸ©"
},
{
"paragraph_id": 33,
"tag": "p",
"text": "çŽæç: xã4ã«è¿ä»ãããšãf(x) = x + 7ã¯4 + 7 = 11ã«è¿ä»ãã®ã§ã極éã¯11ãšèšãããã§ãã",
"title": "極éã®åœ¢åŒçãªå®çŸ©"
},
{
"paragraph_id": 34,
"tag": "p",
"text": "圢åŒç: ä»»æã®Îµã«å¯ŸããŠãÎŽãååšããŠ",
"title": "極éã®åœ¢åŒçãªå®çŸ©"
},
{
"paragraph_id": 35,
"tag": "p",
"text": "ãªãã°",
"title": "極éã®åœ¢åŒçãªå®çŸ©"
},
{
"paragraph_id": 36,
"tag": "p",
"text": "ãã®åé¡ã«é¢ããŠèšãã°ãÎŽ = εãšåãã°åé¡ãããŸããã(ÎŽã®éžã³æ¹ã«é¢ããŠã¯ÎŽã®éžã³æ¹ãåç
§ããŠãã ããã)ãããŠæ¬¡ã®ããšã蚌æããªããã°ãªããŸããã",
"title": "極éã®åœ¢åŒçãªå®çŸ©"
},
{
"paragraph_id": 37,
"tag": "p",
"text": "ãªãã°",
"title": "極éã®åœ¢åŒçãªå®çŸ©"
},
{
"paragraph_id": 38,
"tag": "p",
"text": "ãæãç«ã€ã",
"title": "極éã®åœ¢åŒçãªå®çŸ©"
},
{
"paragraph_id": 39,
"tag": "p",
"text": "",
"title": "極éã®åœ¢åŒçãªå®çŸ©"
},
{
"paragraph_id": 40,
"tag": "p",
"text": "ã§ããã®ã§",
"title": "極éã®åœ¢åŒçãªå®çŸ©"
},
{
"paragraph_id": 41,
"tag": "p",
"text": "ããªããã¡ãŸããããã§åœ¢åŒçãªå®çŸ©ã«æ²¿ã£ã蚌æãã§ããŸããã",
"title": "極éã®åœ¢åŒçãªå®çŸ©"
},
{
"paragraph_id": 42,
"tag": "p",
"text": "3)xã4ã«è¿ä»ããæã® f(x) = x2ã®æ¥µéã¯ããã€ã§ããã?",
"title": "極éã®åœ¢åŒçãªå®çŸ©"
},
{
"paragraph_id": 43,
"tag": "p",
"text": "圢åŒç: ãŸã2ã€ã®æé ãèžã¿ãŸãããçŽæçãªæ¹æ³ã§ f(x)ã®æ¥µé㯠16ã ãããšäºæ³ãã§ãã",
"title": "極éã®åœ¢åŒçãªå®çŸ©"
},
{
"paragraph_id": 44,
"tag": "p",
"text": "ãšãªãããã«ÎŽãåããŸãããã®ÎŽã¯åžžã«0ãã倧ããäºã確èªããŠãã ããã",
"title": "極éã®åœ¢åŒçãªå®çŸ©"
},
{
"paragraph_id": 45,
"tag": "p",
"text": "ããšã¯",
"title": "極éã®åœ¢åŒçãªå®çŸ©"
},
{
"paragraph_id": 46,
"tag": "p",
"text": "ãªãã°",
"title": "極éã®åœ¢åŒçãªå®çŸ©"
},
{
"paragraph_id": 47,
"tag": "p",
"text": "ãšãªãããšã瀺ãã°ããããšã«ãªããŸãã",
"title": "極éã®åœ¢åŒçãªå®çŸ©"
},
{
"paragraph_id": 48,
"tag": "p",
"text": "äžè§äžçåŒãçšããããšã«ãã£ãŠ",
"title": "極éã®åœ¢åŒçãªå®çŸ©"
},
{
"paragraph_id": 49,
"tag": "p",
"text": "ãšãªããŸãã®ã§",
"title": "極éã®åœ¢åŒçãªå®çŸ©"
},
{
"paragraph_id": 50,
"tag": "p",
"text": "ãšãªãã蚌æãçµãããŸããã",
"title": "極éã®åœ¢åŒçãªå®çŸ©"
},
{
"paragraph_id": 51,
"tag": "p",
"text": "4) xã 0ã«è¿ä»ãããšãã®sin(1/x)ã®æ¥µéãååšããªãããšã瀺ããŸãã",
"title": "極éã®åœ¢åŒçãªå®çŸ©"
},
{
"paragraph_id": 52,
"tag": "p",
"text": "èçæ³ãçšããŸãã極éãååšãããšä»®å®ãããããpãšãççŸãå°ããŸããp < 0ã§ãããªãã°Îµ=1ãšãšããšãã©ã㪠Ύ > 0ãæã£ãŠããŠãã",
"title": "極éã®åœ¢åŒçãªå®çŸ©"
},
{
"paragraph_id": 53,
"tag": "p",
"text": "ãšãšããšãã 0 < | x n | < ÎŽ {\\displaystyle 0<|x_{n}|<\\delta } ãæºãããããªèªç¶æ°nãååšããŸãããããã",
"title": "極éã®åœ¢åŒçãªå®çŸ©"
},
{
"paragraph_id": 54,
"tag": "p",
"text": "ãšãªããŸããããε=1ã®ãšãã圢åŒçãªå®çŸ©ã®æ¡ä»¶ãæºãããããªÎŽã¯äžã€ãååšããªãããšã«ãªãã極éãå®çŸ©ã§ããªãããšã«ãªããŸãã®ã§ççŸãšããããšã«ãªããŸãããããã£ãŠãp <0ã§ã¯ãããŸããã",
"title": "極éã®åœ¢åŒçãªå®çŸ©"
},
{
"paragraph_id": 55,
"tag": "p",
"text": "p ⥠0ã§ãããšä»®å®ããå Žåãåæ§ã«ãε=1ã®ãšã",
"title": "極éã®åœ¢åŒçãªå®çŸ©"
},
{
"paragraph_id": 56,
"tag": "p",
"text": "ãšãšããšãã 0 < | x n | < ÎŽ {\\displaystyle 0<|x_{n}|<\\delta } ãæºãããããªèªç¶æ°nãååšã",
"title": "極éã®åœ¢åŒçãªå®çŸ©"
},
{
"paragraph_id": 57,
"tag": "p",
"text": "ãšãªããŸãã",
"title": "極éã®åœ¢åŒçãªå®çŸ©"
},
{
"paragraph_id": 58,
"tag": "p",
"text": "å³ã¡ p < 0ã§ããªãã p ⥠0ã§ããããŸãããã極épã¯ååšããªãããšã«ãªããŸãã",
"title": "極éã®åœ¢åŒçãªå®çŸ©"
},
{
"paragraph_id": 59,
"tag": "p",
"text": "ãã®é¢æ° sin(1/x)ã¯ãäœçžæ°åŠè
ã®æ«(topologist's comb)ãšããŠç¥ãããæåãªé¢æ°ã§ãã",
"title": "極éã®åœ¢åŒçãªå®çŸ©"
},
{
"paragraph_id": 60,
"tag": "p",
"text": "5)xã0ã«è¿ä»ãããšããx sin(1/x)ã®æ¥µéã¯ã©ããªãã§ãããã?",
"title": "極éã®åœ¢åŒçãªå®çŸ©"
},
{
"paragraph_id": 61,
"tag": "p",
"text": "ããã¯0ã«ãªããŸããä»»æã®Îµ > 0ã«å¯ŸããŠã ÎŽ = ε ãšéžã¶ãš ä»»æã®xã«å¯ŸããŠã0 < |x| < ÎŽãªãã° |x sin(1/x) -0| †|x| < εãšãªãã蚌æãçµãããŸããã",
"title": "極éã®åœ¢åŒçãªå®çŸ©"
},
{
"paragraph_id": 62,
"tag": "p",
"text": "è»ã®é転ãäŸã«ãšããŸããèµ°è¡è·é¢ãæéã«æ¯äŸããè»ã«ä¹ã£ãŠãããšããŸããæéã暪軞ã«ãšããèµ°è¡è·é¢ã瞊軞ã«åã£ãŠã°ã©ããæãã°çŽç·ãæžããŸãããã®è»ã®éããæ±ããããšãã¯ãèµ°è¡è·é¢Ã·æéãèšç®ããããšã«ããç°¡åã«æ±ãŸããŸããããã¯ãã°ã©ãã§èšãã°ãçŽç·ã®åŸãã«ããããŸãã",
"title": "極éãã埮åãž"
},
{
"paragraph_id": 63,
"tag": "p",
"text": "ããããæ®éã¯è»ãšãããã®ã¯éããªã£ããé
ããªã£ããããŠèµ°ããããã°ã©ãã¯çŽç·ã«ã¯ãªãããéããæ±ããããšã¯é£ãããªããŸãã ããã§ãç¬éã§ã®éããšãããã®ãæ±ãããšããããšãããŸããéããæ±ããã«ã¯äºç¹å¿
èŠã§ããäºã€ã®æå»ã§ã®äœçœ®ããéããæ±ããŸããã°ã©ãã§èšããšãã°ã©ãäžã®äºç¹ãåããã®äºç¹ãçµã¶çŽç·ã®åŸããæ±ãããšããããšã«ãªããŸããããã¯ããã®äºç¹éã§ã®å¹³åã®éããæ±ãããšããããšã«ãªããŸãã",
"title": "極éãã埮åãž"
},
{
"paragraph_id": 64,
"tag": "p",
"text": "ããã§åŸ®å(derivation)ã®åºæ¬çãªèãæ¹ã«è¡ãçããŸãã ãã®äºç¹éãéããªãè¿ä»ããæã«ãå¹³åã®éããã©ããªãããèããŸããã€ãŸãã2ã€ã®ç¹ããšãå¹³åã®éããæ±ãããã®äºç¹éãã2ã€ã®ç¹ãéžã³å¹³åã®éããæ±ããããã«ãã®äºç¹éãã2ã€ã®ç¹ãéžã³ãå¹³åã®éããæ±ã...ãšããããšãç¹°ãè¿ããŠãäºç¹éã®è·é¢ãéããªãè¿ä»ããæã«ãå¹³åã®éã(çŽç·ã®åŸã)ã®æ¥µéãã©ããªãããšããããšãèŠãŠãããŸãã",
"title": "極éãã埮åãž"
},
{
"paragraph_id": 65,
"tag": "p",
"text": "ãã®é
ç®ã§ã¯é¢æ°ã®é
ç®ã§çŽæçã«è¿°ã¹ãé£ç¶æ§ã®åœ¢åŒçãªå®çŸ©ãããŸãããšãŠãç°¡åãªå®çŸ©ã§ãã",
"title": "é£ç¶æ§"
},
{
"paragraph_id": 66,
"tag": "p",
"text": "f(x)ã cã§é£ç¶(continuous)ã§ãããšã¯ã",
"title": "é£ç¶æ§"
},
{
"paragraph_id": 67,
"tag": "p",
"text": "ãæãç«ã€ããšãšããŸãã",
"title": "é£ç¶æ§"
},
{
"paragraph_id": 68,
"tag": "p",
"text": "é¢æ°ãã極éã cã§å®çŸ©ã§ããªãã£ããããã®çåŒãæãç«ããªãå Žåãfã¯cã§é£ç¶ã«ã¯ãªããªãããšã«æ³šæããŠãã ããã",
"title": "é£ç¶æ§"
},
{
"paragraph_id": 69,
"tag": "p",
"text": "é£ç¶æ§ã®çŽæçãªèãæ¹ãšã©ã®ããã«å¯Ÿå¿ããŠããã®ããèããŠã¿ãŠãã ãããé£ç¶æ§ãç解ããããã«ãé¢æ°ã®ã°ã©ããæããŠèããŠã¿ãŠãã ããããããããåºéå
ã®ã©ãã§ãããã®çåŒãæãç«ã£ãŠãããªãã°ããã®åºéå
ã§ã¯éçãé¢ããã«ã°ã©ãããªããããšãã§ããããšãããããŸããéã«ãéäžã§é¢æ°fã®å€ãé£ãã§ããããããšããã®å Žæã§å®çŸ©ã®çåŒã¯æãç«ã¡ãŸããããéçãé¢ããã«ã°ã©ãããªããããšãã§ããŸããã",
"title": "é£ç¶æ§"
},
{
"paragraph_id": 70,
"tag": "p",
"text": "",
"title": "é£ç¶æ§"
},
{
"paragraph_id": 71,
"tag": "p",
"text": "ããã§ã¯æ¥µéã§ããããšã®èšŒæããã極éå€ãã¿ã€ãããšããããšã«æ³šç®ããŸãããããŸã§ã®èšŒæã§ãããŸãæåã«ã極éã®å€ãèŠã€ããããšããå§ããŸãããã©ããã£ãŠæ¥µéå€ãèŠã€ããã®ã§ããã?",
"title": "極éãã¿ã€ãã"
},
{
"paragraph_id": 72,
"tag": "p",
"text": "é¢æ°ãããç¹cã§é£ç¶ã§ãããªãã°ãé£ç¶æ§ã®å®çŸ©ããç¹cã«è¿ä»ããæã®é¢æ°ã®å€ã®æ¥µéã¯ãåã«cã§ã®é¢æ°ã®å€ã«çãããªããŸããå€é
åŒãäžè§é¢æ°ã察æ°é¢æ°ãææ°é¢æ°ãªã©ã¯ããã®å®çŸ©åå
šäœã§é£ç¶ã«ãªããŸãã",
"title": "極éãã¿ã€ãã"
},
{
"paragraph_id": 73,
"tag": "p",
"text": "é¢æ°f(x)ãcã§é£ç¶ã§ãªãå Žåãæçé¢æ°ã ãš c ã®è¿ãã§ã¯é£ç¶ã§ãcã®æã ããå€ç«ããŠäžé£ç¶ã«ãªã£ãŠããäºãå€ãã§ãããããã£ãå Žåã¯ãcãé€ããŠå€ãäžèŽãããããªã䌌ããããªé¢æ°g(x)ãèŠã€ããããšæãããšããããŸãã極éã®å®çŸ©ãããããšãxãcã«è¿ä»ããæã®æ¥µéãååšãããªãã°",
"title": "極éãã¿ã€ãã"
},
{
"paragraph_id": 74,
"tag": "p",
"text": "ãæºãããªããã°ãªããŸããã ãã®ãããªå Žåãäžé£ç¶ã«ãªã£ãŠããç¹ã®éšåãåããŠãå
ã®é¢æ°ã«è¿ãé£ç¶ãªé¢æ°ãæ¢ããããªããŸããé£ç¶ã®å®çŸ©ã«ããã°ãcã§ã®å€ããå
ã®é¢æ°ã®cã§ã®æ¥µéã«äžèŽããªããã°ãªããŸããã",
"title": "極éãã¿ã€ãã"
},
{
"paragraph_id": 75,
"tag": "p",
"text": "é¢æ° g(x) ã¯ãcãé€ããŠãf(x)ãšçããé¢æ°ã§ãã f(x) ã®æ¥µéã®å®çŸ©ã¯ã0 < |x - c| < ÎŽ ãšããéåã®äžã§ãããŠããŸãããx = cã®æããã®äžçåŒã¯æãç«ããªãã®ã§ãcã§ã®æ¥µéã¯cã§ã®é¢æ°ã®å€ã«ãããŸããã ãããã£ãŠãc ã§ã®æ¥µé㯠f(x) ãš g(x) ã§çãããªããŸããã€ãŸããæ°ããé¢æ° g(x) ã¯é£ç¶ãªã®ã§ãcã§ã®å€ã¯ããã®æ¥µéã«çãããªããã°ãããªãã®ã§ãã",
"title": "極éãã¿ã€ãã"
},
{
"paragraph_id": 76,
"tag": "p",
"text": "æåŸã«ã極éå€ãååšããªãäŸãããã€ããããŠãããŸãã",
"title": "極éãã¿ã€ãã"
},
{
"paragraph_id": 77,
"tag": "p",
"text": "ã®ã£ãã: é¢æ°ãå®çŸ©ãããŠããªãå Žæã«(åºã)ã®ã£ãããããããšããããŸããäŸãã°",
"title": "極éãã¿ã€ãã"
},
{
"paragraph_id": 78,
"tag": "p",
"text": "ã§ãf (x) 㯠-4 †x †4 ã§ã¯å®çŸ©ãããŠããªããšãããã®åºéã«å«ãŸããç¹ã«ã¯è¿ä»ãããããããŸãããåºéã®ç«¯ç¹ x = ±4 ã§ã極éãååšããªãããšã«æ³šæããŠãã ããã極éãååšããããã«ã¯ãäž¡åŽãããã®ç¹ã«è¿ä»ãå¿
èŠããããŸããã°ã©ãäžã§å€ç«ããç¹ãªã©ã§ã¯æ¥µéãååšããªãããšã«æ³šæããŠãã ããã",
"title": "極éãã¿ã€ãã"
},
{
"paragraph_id": 79,
"tag": "p",
"text": "段差: ã°ã©ããéåããŠæ¥ã«é«ããå€ãããããªå Žåã§ãããã®ãããªç¹ã§ãé¢æ°ã¯é£ç¶ã§ã¯ãããŸãããã極éãååšããŸãããåº(floor)é¢æ°ã®ãããªã°ã©ãã«ãªããŸãã",
"title": "極éãã¿ã€ãã"
},
{
"paragraph_id": 80,
"tag": "p",
"text": "çºæ£:",
"title": "極éãã¿ã€ãã"
},
{
"paragraph_id": 81,
"tag": "p",
"text": "xã 0 ã«è¿ä»ãããšãå€ããããã§ã倧ãããªããŸãããã®å Žåã極éå€ã¯ãããŸããã",
"title": "極éãã¿ã€ãã"
},
{
"paragraph_id": 82,
"tag": "p",
"text": "æ¯å: ããã°ã©ãããx軞ã«å¹³è¡ãªç·ãšäœåºŠã亀ãããäžãžè¡ã£ããäžã«è¡ã£ãããç¹°ãè¿ããããªå Žåã§ãã å®éã«ããèµ·ããã極éãç¡ãããšããããããŸããã°ã©ãã¯ããxã®å€ã«è¿ä»ãããšããŠããç¡éã«äžäžéåãç¹°ãè¿ããŸãã ããããªãããxãè¿ä»ããã«ã€ããæ¯åã®é«ã(æ·±ã)ãéããªãå°ãããªã£ãŠããæã¯æ¥µéãååšããŸãã ãã䜿ãããæ¯åã®äŸãšããŠãäžè§é¢æ°ãçšãããã®ããããŸãã極éã®ç¡ãæ¯åã®äŸãšããŠ",
"title": "極éãã¿ã€ãã"
},
{
"paragraph_id": 83,
"tag": "p",
"text": "ãšããé¢æ°ãèããããŸãã",
"title": "極éãã¿ã€ãã"
},
{
"paragraph_id": 84,
"tag": "p",
"text": "sin é¢æ°ã®ã°ã©ãã¯ãç¡éã«æ¯åããŸãããã®æ¯åã®èµ·ãã£ãŠãã (1, â) ãšããåºéã 1/x ãšããå€æãçšã㊠(0, 1) ã«å
¥ããŸãããããšããã®æéåºéã®äžã«ãç¡éåã®æ¯åãè©°ã蟌ãããšãã§ããããã«ãªããŸããå®éããã® f(x) 㧠x ã 0 ã«è¿ä»ããŠãããšãç¡éåã®æ¯åãèµ·ãããŸãã",
"title": "極éãã¿ã€ãã"
},
{
"paragraph_id": 85,
"tag": "p",
"text": "ç
çãªã°ã©ã: ããã§ã¯ 2 ã€ã®äŸãèããŸãã",
"title": "極éãã¿ã€ãã"
},
{
"paragraph_id": 86,
"tag": "p",
"text": "ãŸãã f ã ä»»æã®æçæ°qã«å¯Ÿãå®æ° f(q)=2 ãåãå Žåãf ã¯ãä»»æã® q0 ã§é£ç¶ã«ãªããŸããä»»æ㫠ε > 0 ãåããšãä»»æã® ÎŽ > 0 ã«å¯Ÿãã 0< |q-q0| < ÎŽ ãæºãã q 㯠| f(q) â f(q0) | = |2â2| = 0 < ε ãæºãããŸãããããã£ãŠã f 㯠q0 ã§é£ç¶ã§ãã",
"title": "極éãã¿ã€ãã"
},
{
"paragraph_id": 87,
"tag": "p",
"text": "2 ã€ç®ã®äŸãšããŠã 次ã®ãããªé¢æ°ãèããŸãã",
"title": "極éãã¿ã€ãã"
},
{
"paragraph_id": 88,
"tag": "p",
"text": "å
çšå®çŸ©ããã f ãšäŒŒãŠããŸãããä»åºŠã¯ç¡çæ°ã®æ㯠0 ãšããå€ãåãããã«å®çŸ©ãããŠããŸããgã«ã¯é£ç¶ãªç¹ã¯ãããŸããã x ãå®æ°ãšããŠã g ã x ã§é£ç¶ã§ãªãããšã瀺ããŸãã ε = 1 ãšããŸãã ãã g ã x ã§é£ç¶ãããšãããšã |x-y| < ÎŽ ãªãã° |g(x)â g(y)|<1 ãšãªããã㪠Ύãååšããçã§ãããããã ÎŽ ãã©ããªã«å°ãããšã£ãŠãã |g(x) â g(y)|=2 ãšãªããã㪠y ãååšããŸãã x ãæçæ°ãªãã°ã y ã«ç¡çæ°ããšãã x ãç¡çæ°ãªãã°ã y ã«æçæ°ãåãã°ããããã§ãããããã£ãŠã g ã¯å
šãŠã®å®æ°ã§é£ç¶ã§ã¯ãããŸããã",
"title": "極éãã¿ã€ãã"
},
{
"paragraph_id": 89,
"tag": "p",
"text": "lim x â c f ( x ) , lim x â c g ( x ) {\\displaystyle \\lim _{x\\rightarrow c}f(x),\\ \\lim _{x\\rightarrow c}g(x)} ãååšãããšãã",
"title": "極éãæ±ããããã®éå
·"
},
{
"paragraph_id": 90,
"tag": "p",
"text": "ä»®å®ããã lim x â c f ( x ) = α , lim x â c g ( x ) = β {\\displaystyle \\lim _{x\\rightarrow c}f(x)=\\alpha ,\\ \\lim _{x\\rightarrow c}g(x)=\\beta } ãšããããã®ãšãã",
"title": "極éãæ±ããããã®éå
·"
},
{
"paragraph_id": 91,
"tag": "p",
"text": "ε > 0 {\\displaystyle \\epsilon >0} ãä»»æã«åã£ãŠããã ε 2 > 0 {\\displaystyle {\\frac {\\epsilon }{2}}>0} ããã極éã®å®çŸ©ããããå®æ° ÎŽ 1 , ÎŽ 2 {\\displaystyle \\delta _{1},\\delta _{2}} ãååšããŠ",
"title": "極éãæ±ããããã®éå
·"
},
{
"paragraph_id": 92,
"tag": "p",
"text": "0 < | x â c | < ÎŽ 1 â | f ( x ) â α | < ε 2 {\\displaystyle 0<|x-c|<\\delta _{1}\\Rightarrow |f(x)-\\alpha |<{\\frac {\\epsilon }{2}}}",
"title": "極éãæ±ããããã®éå
·"
},
{
"paragraph_id": 93,
"tag": "p",
"text": "0 < | x â c | < ÎŽ 2 â | g ( x ) â β | < ε 2 {\\displaystyle 0<|x-c|<\\delta _{2}\\Rightarrow |g(x)-\\beta |<{\\frac {\\epsilon }{2}}}",
"title": "極éãæ±ããããã®éå
·"
},
{
"paragraph_id": 94,
"tag": "p",
"text": "絶察å€ãå€ãã°ã â ε 2 < f ( x ) â α < ε 2 , â ε 2 < g ( x ) â β < ε 2 {\\displaystyle -{\\frac {\\epsilon }{2}}<f(x)-\\alpha <{\\frac {\\epsilon }{2}},\\ -{\\frac {\\epsilon }{2}}<g(x)-\\beta <{\\frac {\\epsilon }{2}}}",
"title": "極éãæ±ããããã®éå
·"
},
{
"paragraph_id": 95,
"tag": "p",
"text": "ãããã£ãŠ â ε < f ( x ) + g ( x ) â ( α + β ) < ε ⺠| { f ( x ) + g ( x ) } â ( α + β ) | < ε {\\displaystyle -\\epsilon <f(x)+g(x)-(\\alpha +\\beta )<\\epsilon \\iff |\\{f(x)+g(x)\\}-(\\alpha +\\beta )|<\\epsilon }",
"title": "極éãæ±ããããã®éå
·"
},
{
"paragraph_id": 96,
"tag": "p",
"text": "ããã§ã ÎŽ = min ÎŽ 1 , ÎŽ 2 {\\displaystyle \\delta =\\min {\\delta _{1},\\delta _{2}}} ãšããã°äžã®åŒãæãç«ã€ãããªãã¡ããå®æ° ÎŽ {\\displaystyle \\delta } ãååšããŠä»»æ㮠ε > 0 {\\displaystyle \\epsilon >0} ã«å¯Ÿã㊠0 < | x â c | < ÎŽ â | { f ( x ) + g ( x ) } â ( α + β ) | < ε . {\\displaystyle 0<|x-c|<\\delta \\Rightarrow |\\{f(x)+g(x)\\}-(\\alpha +\\beta )|<\\epsilon .}",
"title": "極éãæ±ããããã®éå
·"
},
{
"paragraph_id": 97,
"tag": "p",
"text": "ããªãã¡2çªç®ã®åŒã蚌æãããã®ã§ããã",
"title": "極éãæ±ããããã®éå
·"
},
{
"paragraph_id": 98,
"tag": "p",
"text": "ãæºããé¢æ°ãf(x), g(x), h(x) ããããx ã c ã«è¿ä»ããæã« f(x) ãš h(x) ã®æ¥µéãååšã",
"title": "極éãæ±ããããã®éå
·"
},
{
"paragraph_id": 99,
"tag": "p",
"text": "ã§ããã°ã g(x) ã®æ¥µéãååšã",
"title": "極éãæ±ããããã®éå
·"
},
{
"paragraph_id": 100,
"tag": "p",
"text": "ãšãªããŸãããããã¯ãã¿ãã¡ã®åç(Squeeze theorem)ãšãããŸããããã¯ãããããªå Žé¢ã§äœ¿ãããŸãã",
"title": "極éãæ±ããããã®éå
·"
},
{
"paragraph_id": 101,
"tag": "p",
"text": "å³å³ã®äžè§åœ¢ABCã«ãããŠâ ACBãçŽè§ãšããŸãã AC=AE=1ãšããC ãã E ãŸã§å匧ãæãããŠããŸãã E ãã AC ã«éãããåç·ã®è¶³ã D ã§ãã â BAC ã®å€§ããã x ãšããŸãã(匧床æ³ã§åäœã¯ã©ãžã¢ã³ã§ããx ã¯æ£ã§ããããšã«æ³šæããŠãã ããã)",
"title": "極éãæ±ããããã®éå
·"
},
{
"paragraph_id": 102,
"tag": "p",
"text": "ãããšãED = sin(x) ã BC = tan(x) ã§ããé¢ç©ãæ¯ã¹ããš",
"title": "極éãæ±ããããã®éå
·"
},
{
"paragraph_id": 103,
"tag": "p",
"text": "ã§ããã",
"title": "極éãæ±ããããã®éå
·"
},
{
"paragraph_id": 104,
"tag": "p",
"text": "ãšããäžçåŒãåŸãããŸãããããæŽçããŠ",
"title": "極éãæ±ããããã®éå
·"
},
{
"paragraph_id": 105,
"tag": "p",
"text": "ããŸã 0<x< Ï/2 ã§ããããã®äžçåŒã®å·ŠèŸºãšäžèŸºã¯å¶é¢æ°ãªã®ã§ããã®äžçåŒã¯ âÏ/2 < x <0ã§ãæãç«ã€ãšããããŸããå³ã¡ã 0<|x|<Ï/2ãšããåºéã§ãã®äžçåŒãèããŸãã",
"title": "極éãæ±ããããã®éå
·"
},
{
"paragraph_id": 106,
"tag": "p",
"text": "ããã§ãx â 0 ãšãããšã",
"title": "極éãæ±ããããã®éå
·"
},
{
"paragraph_id": 107,
"tag": "p",
"text": "ãªã®ã§ãã¯ãã¿ãã¡ã®åçãã",
"title": "極éãæ±ããããã®éå
·"
},
{
"paragraph_id": 108,
"tag": "p",
"text": "ãšãªããŸãã",
"title": "極éãæ±ããããã®éå
·"
},
{
"paragraph_id": 109,
"tag": "p",
"text": "ã¯ãã¿ãã¡ã®åçèªäœãšãŠã䟿å©ãªéå
·ã§ããããã® sin(x) ãš x ã®æ¯ã 1 ã«åæãããšããäºå®ããšãŠã圹ã«ç«ã€éå
·ã«ãªããŸãã",
"title": "極éãæ±ããããã®éå
·"
},
{
"paragraph_id": 110,
"tag": "p",
"text": "ãšããæ¡ä»¶ãããä»»æ㮠ε ã«å¯ŸããŠããã ÎŽ1 ã ÎŽ2 ãååšããŠã",
"title": "極éãæ±ããããã®éå
·"
},
{
"paragraph_id": 111,
"tag": "p",
"text": "ãšãªããŸããÎŽ1 ã ÎŽ2ã®ãã¡å°ããæ¹(çãããã°ãã®å€)ã ÎŽãšããŸãã",
"title": "極éãæ±ããããã®éå
·"
},
{
"paragraph_id": 112,
"tag": "p",
"text": "ãªãã°",
"title": "極éãæ±ããããã®éå
·"
},
{
"paragraph_id": 113,
"tag": "p",
"text": "ã§ããããšãã",
"title": "極éãæ±ããããã®éå
·"
},
{
"paragraph_id": 114,
"tag": "p",
"text": "ãšãªãã",
"title": "極éãæ±ããããã®éå
·"
},
{
"paragraph_id": 115,
"tag": "p",
"text": "ãèšããŸãããã€ãŸããg(x) ã αã«åæããŸãã",
"title": "極éãæ±ããããã®éå
·"
},
{
"paragraph_id": 116,
"tag": "p",
"text": "ã«ãããŠãx ãã0ã«è¿ã¥ãããšãã®æ¥µéã¯ã©ããªãã§ãããã?",
"title": "ç¡é倧 â ã«ã€ããŠ"
},
{
"paragraph_id": 117,
"tag": "p",
"text": "ã¯ãåæ¯ã 0 ã«ãªã£ãŠããŸãããå®çŸ©ãããŠããŸããã",
"title": "ç¡é倧 â ã«ã€ããŠ"
},
{
"paragraph_id": 118,
"tag": "p",
"text": "ããããçŽæçã«ã¯ xãå°ããéžã¹ã°ãgã¯ãããã§ã倧ããã§ãããšããããšãåããã§ããããäŸãã°ã g(x) ã 10 ã«ããããã°ãxã 10ã«åãã°ããã®ã§ãã ãã®å Žåã xãåå 0 ã«è¿ã(ããããxâ 0 ã§ããããšã«æ³šæããŠãã ããã)åãã°ãg(x) ããããã§ã倧ããã§ããŸãã",
"title": "ç¡é倧 â ã«ã€ããŠ"
},
{
"paragraph_id": 119,
"tag": "p",
"text": "ããã",
"title": "ç¡é倧 â ã«ã€ããŠ"
},
{
"paragraph_id": 120,
"tag": "p",
"text": "ãšæžããŸãã",
"title": "ç¡é倧 â ã«ã€ããŠ"
},
{
"paragraph_id": 121,
"tag": "p",
"text": "ãã®èšæ³ã¯ã極éã®èšæ³ã«åãããã ãã®ãã®ã§ãå®éã«ã¯ x = 0 ã§ã®æ¥µéã¯ååšããªãããšã«æ³šæããŠãã ãããâ ãšãã極éãååšããããã§ã¯ãããŸããããâã¯æ°ã§ã¯ãããŸããã",
"title": "ç¡é倧 â ã«ã€ããŠ"
},
{
"paragraph_id": 122,
"tag": "p",
"text": "äžé£ç¶(discontinuous)ãšã¯ãé¢æ°ãããç¹ã§é£ç¶ã§ç¡ãããšããããŸããäŸãã°ã",
"title": "äžé£ç¶ãªé¢æ°"
},
{
"paragraph_id": 123,
"tag": "p",
"text": "ã¯ãx = 3ã«é€å»å¯èœãªäžé£ç¶ç¹(removable discontinuity)ãæã¡ãŸãã",
"title": "äžé£ç¶ãªé¢æ°"
},
{
"paragraph_id": 124,
"tag": "p",
"text": "ãã®ãé€å»å¯èœã(removable)ãšããã®ã¯ãå°ãæãå ããã ãã§äžé£ç¶ãªãšãããé£ç¶ã«ããé¢æ°ãåŸããããšããæå³ã§ããç¹ã«ãã®é¢æ°ã®å Žåã¯ãxâ 3ã®æã¯ãçŽåããããšã§ f(x) = x+3 ã«ãªããŸãã ãããf(3)=6 ã§ãã£ããªãã°ãé£ç¶ãªé¢æ°ã«ãªããŸããå³ã¡ãæ°ããé¢æ°",
"title": "äžé£ç¶ãªé¢æ°"
},
{
"paragraph_id": 125,
"tag": "p",
"text": "ãå®çŸ©ããŸãããã¡ãã x=3 ã§ãx+3=6 ã§ãããããŸãšããŠãg(x) = x+3ãšæžãããšãã§ããŸããx=3 ã§ãå®çŸ©ãããŠããã®ã§ã f(x) ãšã¯å¥ã®é¢æ°ã§ããããšã«æ³šæããŠãã ããã f(x) ã® x=3 ã§ã®æ¥µéã§ãã 6 ã g(3) ã®å€ãšããŠãé£ç¶ãªé¢æ°ã«ãªããŸããã æçé¢æ°ã§ã¯ããã®ãããªäžé£ç¶æ§ã®é€å»ãå¯èœã§ããåæ¯ã0ã«ãªããªããšãã¯ããã®ãããªæäœã«ãããªããŠãé£ç¶é¢æ°ãåŸãããšãã§ããŸããåæ¯ã 0 ã«ãªããšãã«ã0 ã§å²ããšããããšãé¿ããããã«ããããã£ãæ°ããé¢æ° g(x) ãçšæããå¿
èŠããããŸãã",
"title": "äžé£ç¶ãªé¢æ°"
}
] | null | {{prevnext|prev=é¢æ°}}
==ã¯ããã«==
[[解æåŠåºç€/é¢æ°|é¢æ°]]ã®é
ç®ã§ãé¢æ°ã«ã€ããŠã®åŸ©ç¿ãããŸãããããã§ã¯ã解æåŠã®æ ¹æ¬ãšãªã'''極é'''ïŒlimitïŒã®æŠå¿µãåŠã³ãŸãã
é¢æ° f(x) = x<sup>2</sup>ãèããŸãããã®é¢æ°ã¯ãf(2)=4 ãšãªããŸãããã®é¢æ°ãå°ãããã£ãŠæ¬¡ã®ãããªé¢æ°ãèããŠã¿ãŸãã
<table WIDTH="75%"><tr><td style="background-color: #FFFFFF; border: solid 1px #D6D6FF; padding: 1em;" valign=top>
<center><math>f(x) = \frac{x^2(x-2)}{x-2}.</math></center></td></tr></table>
ãã®é¢æ°ã¯ x ≠ 2 ã®æã§ã¯ãæåã«å®çŸ©ããé¢æ° f(x) = x<sup>2</sup> ãšåãå€ãåããŸãããšããã x = 2 ã®æã§ã¯ãåæ¯ã0ã«ãªã£ãŠããŸãã®ã§é¢æ°ã®å€ã¯å®çŸ©ãããŠããŸããã
x ≠ 2ã§ããå®çŸ©ãããŠããªãé¢æ°ã§ãããäžã€ã ã確ããªäºããããŸããããã¯ãx ã 2ã«è¿ä»ãããš f(x)ã®å€ã 4ã«è¿ä»ããšããããšã§ãããã®äºã
<table WIDTH="75%"><tr><td style="background-color: #FFFFFF; border: solid 1px #D6D6FF; padding: 1em;" valign=top>
<center><math>\qquad\lim_{x\to 2} f(x) = 4.</math></center></td></tr></table>
ãšè¡šçŸããŸãã
f(x)ã® x=2ã§ã®å€ãèããŠããããã§ã¯ãªããx=2ã®è¿ãã§ã®å€ãèããŠããããšã«æ³šæããŠãã ãããä»ã®äŸã§ã¯ãx=2ã¯ãé¢æ°ãå®çŸ©ãããŠããªãç¹ã§ããããé¢æ°ãå®çŸ©ãããŠããç¹ x=15ã x=1000000ã§ãåãäºãèããããŸããxãããå€ã«è¿ä»ããæã«ãf(x)ããã©ã®ãããªåããèŠãããïŒãšããåé¡ã§ããxãcã«è¿ä»ãããšããå¿
ããf(x)ãLã«è¿ä»ãå ŽåããLã¯xãcã«è¿ä»ããæã®é¢æ°f(x)ã®'''極é'''ã§ãããããšãããŸãã
xã c ã«è¿ä»ããæã® f(x)ã®æ¥µéã Lã§ãããšããããšãæ°åŒã§
ã
:<math>\lim_{x\to c} f(x) = L.</math>
ãšè¡šçŸããŸãã
ç¹°ãè¿ãã«ãªããŸãããx=cã§ã® f(x)ã®å€ãèããŠããããã§ã¯ãªããxãcã«è¿ä»ããæã® f(x)ã®å€ã«æ³šç®ããŠããã®ã§ãx=cã§f(x)ãå®çŸ©ãããŠãããã©ããã¯é¢ä¿ãããŸãããçŽæçã«ã¯ãxãcã«éããªãè¿ä»ããŠãã£ãæã«ãf(x)㯠Lã«éããªãè¿ã¥ããŠãããšããããšã§ãã
ãã®æ¥µéã®æŠå¿µã¯ããããŸã§è¡šçŸãã«ããã£ãç¯å²ã§ã®é¢æ°ã®æ§è³ªãè¡šçŸã§ããããã«ãªããŸããäŸãã° é¢æ° f(x) = 1/xã«ã€ããŠèããŠã¿ãŸãããã®é¢æ°ã¯ xã倧ãããªãã°ãªãã»ã©ã1/xã¯å°ãããªã£ãŠããã0ã«è¿ä»ããŠãããŸãã1/x ã 0ã«ãªããšããããšã¯ãããŸããã®ã§ããããè¡šçŸããããšã¯é£ããã§ãããããã極éãšããèšèãçšããããšã«ãã£ãŠãxãéããªã倧ãããããšãã«ã1/xã®æ¥µé㯠0ã§ãããšããããšãã§ããããã«ãªããŸããéããªã倧ããªæ°ãšããæ°ã¯ãããŸããããxãéããªã倧ããããæã« xãã©ã®æ°ã«èŸ¿ãã€ãã®ãïŒãšããå¿é
ãããå¿
èŠã¯ãããŸãããéèŠãªã®ã¯ãxãã©ããããšãã« f(x)ãã©ã®ããã«æ¯ãèããïŒã§ãã
xãéããªã倧ãããããšããããšã x → ∞ã®ããã«è¡šããŸãããã®æã1/xã0ã«è¿ä»ããŠãããšããããšãæ°åŒã§æžããš
<table WIDTH="75%"><tr><td style="background-color: #FFFFFF; border: solid 1px #D6D6FF; padding: 1em;" valign=top>
<center><math>\qquad\lim_{x\to \infin} \frac{1}{x} = 0.</math></center></td></tr></table>
ãšãªããŸãã
=='''極é'''ã®åœ¢åŒçãªå®çŸ©==
解æåŠãç解ããäžã§æåã®é£é¢ã¯æ¥µéã®å®çŸ©ãç解ããããšã§ãã
äœãç¡ãæ代ãè³¢ãæ°åŠè
éã§ããã極éã«ãã£ããããå®çŸ©ãäžãããŸã§ã«150幎ãã®æ³æãè²»ãããŸããã
æ®ã©ã®å Žåã極éã®å®çŸ©ã¯ãçŽæçãªãã®ã§ç¹ã«åé¡ãããŸããã
ããããéããªãè¿ä»ããšã¯ã©ãããããšã§ããããïŒãã©ã®ããã«è¿ä»ããã'''éããªã'''è¿ä»ããããšã«ãªãã®ã§ããããïŒ
äŸãã°æ¬¡ã®é¢æ°ã®æ¥µéã¯ã©ããªãã§ããããïŒ
:<math>\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac {\sin(x)} {x}. </math>
çŽæã§ã¯''f''(0) = 0/0ã ãšæããããããŸããããããããã®æ¥µé㯠1ã§ãããã®ããã«çŽæãšæ°åŠçãªçããç°ãªãå Žåãæ°åŠçãªçãã§çŽåŸããã«ã¯ã©ããããããã§ããããïŒ
; 圢åŒçãªå®çŸ© :
ïŒã€ãã·ãã³ã»ãã«ã¿è«æ³ïŒ
ä»»æã®æ£ã®æ°εã«å¯Ÿããããæ°δãååšã
:<math>0 < \left| x - c \right| < \delta</math>
ãªãã°
:<math>\left| f(x) - L \right| < \varepsilon</math>
ãšãªããšãã''L''ã¯ã''x''ã''c''ã«è¿ä»ããæã® ''f(x)''ã®æ¥µéïŒlimitïŒãšãããŸãã
ãŸãããã®ããã«ãäžçåŒãšä»»æã®æ°εããããæ°δãçšããŠãäžè¿°ã®åŒã§æ¥µéãå®çŸ©ããæ¹æ³ããã³ããã®å®çŸ©åŒãåºã«è§£æåŠãªã©ã§ã®ä»ã®å®çã蚌æããè«æ³ãã€ãã·ãã³ã»ãã«ã¿è«æ³ïŒε-δ logicïŒãšèšããŸããäžè¬çã«ã¯ããε-δè«æ³ããšç¥èšããŸãã
çŽæçãªå®çŸ©ãšã圢åŒçãªå®çŸ©ã®éã®éããç解ããããšã¯ãšãŠãéèŠã§ããçŽæçãªå®çŸ©ã§ã¯''f(x)''ã¯''L''ã«è¿ããšè¡šçŸããéšåãã圢åŒçãªå®çŸ©ã§ã¯''f(x)''ãš''L''ã®å·®ã¯ãä»»æã®æ£ã®æ°εãããå°ããããšãªã£ãŠããŸãã
:ãä»»æã®ãïŒarbitraryïŒãšããèšèã¯ããæãã€ãããã®ãªãäœã§ãããšããæå³ã§ããä»»æã®æ£ã®æ°εã¯ãε=100ã§ãããã§ãããε=1ã§ãããã§ãããε=0.000001ã§ãããã§ããã©ããªæ£ã®æ°ãæã£ãŠããŠããå®çŸ©ã®æ¡ä»¶ãæºããå Žåã«ã''L''ã極éãšåŒã¶ã®ã§ãã
:ãä»»æã®ãã¯ãå
šãŠã®ããšåãæå³ã«ãªãã®ã§ããå
šãŠã®ããšè¡šçŸããããšãå€ãã§ãã
å³å¯ãªæ°åŠçè°è«ãããéã«ã¯ãäžã«æãããããªãäžéè¿°èªè«çã®èšå·ã䜿ã£ã簡䟿ãªè¡šèšã䜿ãããšããããŸãã
:<math>\lim_{x \to c} f(x) =L \Leftrightarrow (\forall \varepsilon >0 \ \exists \delta >0 \ s.t. \ 0 < \left| x - c \right| < \delta \Rightarrow \left| f(x) - L \right| < \varepsilon)</math>
ããã§ã<math>\forall</math>ã¯å
šç§°èšå·ïŒuniversal quantifierïŒãšããããä»»æã®ïœã«å¯ŸããŠããæå³ããèšå·ã§ãã<math>\exists</math>ã¯ååšèšå·ïŒexistential quantifierïŒãšããããããïœãååšããããæå³ããèšå·ã§ãããs.t.ãã¯è±èªã®ãsuch thatãã®ç¥ã§ããã°ãã°ååšèšå·ãšçµã¿åãããŠçšããŸãã
===äŸ===
1)次ã®åŒã§ãε = 0.01ã®æãδã¯ããã€ã«ãããè¯ãã§ããããïŒ
:<math>\lim_{x \to 8} \frac {x} {4}=2 </math>
ãŸãæåã«ã極éã®å®çŸ©ã®æåŸã®åŒã« f(x)ãš εã代å
¥ããŸãã
:<math>\left| \frac {x} {4} - 2 \right| < 0.01</math>
ãããæŽçãããš
:<math>7.96<x<8.04</math>
ãšãªããŸãã極éã®å®çŸ©ã®æåã®åŒã«åœ¢ãåãããããã«å€åœ¢ããŸãã
:<math>-0.04<x-8<0.04</math>
ããã§ã|-0.04| ãš 0.04 ã®ãã¡å°ããæ¹ã δãšããŸãããã¡ããã0.04以äžã®æ£ã®æ°ã§ããã°äœãδã«éžãã§ãæ§ããŸãããδã«ã¯æ²¢å±±ã®éžã³æ¹ããããŸãã
å®çŸ©ã®åŒãããäžåºŠèªã¿è¿ããŠã¿ãŠãã ãã
:<math>0 < \left| x - c \right| < 0.04</math>
ãªãã°
:<math>\left| f(x) - L \right| < 0.01</math>
ã¯æãç«ã£ãŠããŸãããε = 0.01ã«å¯ŸããŠã確ãã«ãå°ãªããšã1ã€ã®δãååšããŠããããšã«ãªããŸããδ=0.03ãšåã£ãŠããδ=0.00001ãšåã£ãŠã
:<math>\left| f(x) - L \right| < 0.01</math>
ã§ããããšã«æ³šæããŠãã ããã
2)''x''ã4ã«è¿ä»ãããšãã®''f(x)'' = ''x'' + 7 ã®æ¥µéã¯ããã€ã§ãããïŒ
ãã®ãããªåé¡ã«çããå Žåã2ã®ããšãå¿
èŠã§ãããŸã第äžã«ããã®æ¥µéãããã€ã«ãªããã決ããªããã°ãªããŸãããããã¯ãçŽæçãªæ¥µéã®å®çŸ©ã®ãšãã®ããã«ãçŽæãæšæž¬ã圹ç«ã€éšåã§ãããã®åŸããã®æ°ã極éãšãªãããšã蚌æããªããã°ãªããŸããããã®åé¡ã§ã¯ãçãã¯11ã§ããã11ã«ãªãããšãã極éã®åœ¢åŒçãªå®çŸ©ãçšããŠãããã極éãšãªãããšã蚌æããªããã°ãªããªãã®ã§ãã
çŽæç: ''x''ã4ã«è¿ä»ãããšã''f(x)'' = x + 7ã¯4 + 7 = 11ã«è¿ä»ãã®ã§ã極éã¯11ãšèšãããã§ãã
圢åŒç: ä»»æã®εã«å¯ŸããŠãδãååšããŠ
:<math>\left| x - 4 \right| < \delta</math>
ãªãã°
:<math>\left| f(x) - 11 \right| < \epsilon</math>
ãã®åé¡ã«é¢ããŠèšãã°ãδ = εãšåãã°åé¡ãããŸãããïŒδã®éžã³æ¹ã«é¢ããŠã¯[[解æåŠåºç€_ÎŽã®éžã³æ¹|ÎŽã®éžã³æ¹]]ãåç
§ããŠãã ãããïŒãããŠæ¬¡ã®ããšã蚌æããªããã°ãªããŸããã
:<math>\left| x - 4 \right| < \delta = \epsilon </math>
ãªãã°
:<math>\left| f(x) - 11 \right| < \epsilon </math>
ãæãç«ã€ã
:|''x'' - 4| < ε
ã§ããã®ã§
:|''f(x)'' - 11| = |''x'' + 7 - 11| = |''x'' - 4| < ε
ããªããã¡ãŸããããã§åœ¢åŒçãªå®çŸ©ã«æ²¿ã£ã蚌æãã§ããŸããã
3)''x''ã4ã«è¿ä»ããæã® ''f(x)'' = ''x''²ã®æ¥µéã¯ããã€ã§ãããïŒ
圢åŒç: ãŸã2ã€ã®æé ãèžã¿ãŸãããçŽæçãªæ¹æ³ã§ ''f(x)''ã®æ¥µé㯠16ã ãããšäºæ³ãã§ãã
:δ = <math> \sqrt{\epsilon+16}</math> −4
ãšãªãããã«δãåããŸãããã®δã¯åžžã«0ãã倧ããäºã確èªããŠãã ããã
ããšã¯
:<math>\left| x - 4 \right| < \delta = \sqrt{\epsilon + 16} - 4</math>
ãªãã°
:<math>\left| x^2 - 16 \right| < \epsilon</math>
ãšãªãããšã瀺ãã°ããããšã«ãªããŸãã
äžè§äžçåŒãçšããããšã«ãã£ãŠ
:|x + 4| = |(x - 4) + 8| ≤ |x - 4| + 8 < δ + 8
ãšãªããŸãã®ã§
:<math>\begin{matrix}
\left| x^2 - 16 \right| & = & \left| x - 4 \right| \cdot \left| x + 4 \right| \\ \\
\ & < & (\delta) \cdot (\delta + 8) \\ \\
\ & = & (\sqrt{16 + \epsilon} - 4) \cdot (\sqrt{16 + \epsilon} + 4) \\ \\
\ & = & (\sqrt{16 + \epsilon})^2 - 4^2 \\ \\
\ & = & \epsilon \end{matrix}</math>
ãšãªãã蚌æãçµãããŸããã
4) ''x''ã 0ã«è¿ä»ãããšãã®''sin(1/x)''ã®æ¥µéãååšããªãããšã瀺ããŸãã
èçæ³ãçšããŸãã極éãååšãããšä»®å®ããããã''p''ãšãççŸãå°ããŸãã''p'' < 0ã§ãããªãã°ε=1ãšãšããšãã©ã㪠δ > 0ãæã£ãŠããŠãã
:<math>x_n=\frac{2(-1)^{n-1}}{(2n-1)\pi}</math>
ãšãšããšãã
<math> 0 < |x_n| < \delta</math>
ãæºãããããªèªç¶æ°''n''ãååšããŸãããããã
:<math>\left|\sin\left( \frac{1}{x_n} \right) - p \right|=\left|1-p\right|=1-p > 1=\epsilon</math>
ãšãªããŸããããε=1ã®ãšãã圢åŒçãªå®çŸ©ã®æ¡ä»¶ãæºãããããªδã¯äžã€ãååšããªãããšã«ãªãã極éãå®çŸ©ã§ããªãããšã«ãªããŸãã®ã§ççŸãšããããšã«ãªããŸãããããã£ãŠã''p'' <0ã§ã¯ãããŸããã
''p'' ≥ 0ã§ãããšä»®å®ããå Žåãåæ§ã«ãε=1ã®ãšã
:<math>x_n=\frac{2(-1)^{n}}{(2n-1)\pi}</math>
ãšãšããšãã
<math> 0 < |x_n| < \delta</math>
ãæºãããããªèªç¶æ°''n''ãååšã
:<math>\left|\sin\left( \frac{1}{x_n} \right) - p \right|=\left|-1-p\right|=1+p \ge 1= \epsilon</math>
ãšãªããŸãã
å³ã¡ ''p'' < 0ã§ããªãã ''p'' ≥ 0ã§ããããŸãããã極é''p''ã¯ååšããªãããšã«ãªããŸãã
ãã®é¢æ° ''sin(1/x)''ã¯ãäœçžæ°åŠè
ã®æ«(topologist's comb)ãšããŠç¥ãããæåãªé¢æ°ã§ãã
5)''x''ã0ã«è¿ä»ãããšãã''x'' sin(1/''x'')ã®æ¥µéã¯ã©ããªãã§ããããïŒ
ããã¯0ã«ãªããŸããä»»æã®ε > 0ã«å¯ŸããŠã δ = ε ãšéžã¶ãš ä»»æã®''x''ã«å¯ŸããŠã0 < |x| < δãªãã° |x sin(1/x) -0| ≤ |x| < εãšãªãã蚌æãçµãããŸããã
:åžžã«|sin(x)| ≤ 1ã§ããããšã«æ³šæããŠãã ããã
==極éãã埮åãž==
<!-- è±èªçã§ã¯ã€ã³ããã§è»ã®äŸãæã¡åºããŠããŸããããŸã èš³ããŠãªãã®ã§ç¡ãã£ãäºã«ããŠæžããŠããŸãã -->
è»ã®é転ãäŸã«ãšããŸããèµ°è¡è·é¢ãæéã«æ¯äŸããè»ã«ä¹ã£ãŠãããšããŸããæéã暪軞ã«ãšããèµ°è¡è·é¢ã瞊軞ã«åã£ãŠã°ã©ããæãã°çŽç·ãæžããŸãããã®è»ã®éããæ±ããããšãã¯ãèµ°è¡è·é¢Ã·æéãèšç®ããããšã«ããç°¡åã«æ±ãŸããŸããããã¯ãã°ã©ãã§èšãã°ãçŽç·ã®åŸãã«ããããŸãã
ããããæ®éã¯è»ãšãããã®ã¯éããªã£ããé
ããªã£ããããŠèµ°ããããã°ã©ãã¯çŽç·ã«ã¯ãªãããéããæ±ããããšã¯é£ãããªããŸãã
ããã§ãç¬éã§ã®éããšãããã®ãæ±ãããšããããšãããŸããéããæ±ããã«ã¯äºç¹å¿
èŠã§ããäºã€ã®æå»ã§ã®äœçœ®ããéããæ±ããŸããã°ã©ãã§èšããšãã°ã©ãäžã®äºç¹ãåããã®äºç¹ãçµã¶çŽç·ã®åŸããæ±ãããšããããšã«ãªããŸããããã¯ããã®äºç¹éã§ã®å¹³åã®éããæ±ãããšããããšã«ãªããŸãã
ããã§'''埮å'''ïŒderivationïŒã®åºæ¬çãªèãæ¹ã«è¡ãçããŸãã
ãã®äºç¹éãéããªãè¿ä»ããæã«ãå¹³åã®éããã©ããªãããèããŸããã€ãŸããïŒã€ã®ç¹ããšãå¹³åã®éããæ±ãããã®äºç¹éããïŒã€ã®ç¹ãéžã³å¹³åã®éããæ±ããããã«ãã®äºç¹éããïŒã€ã®ç¹ãéžã³ãå¹³åã®éããæ±ãâŠãšããããšãç¹°ãè¿ããŠãäºç¹éã®è·é¢ãéããªãè¿ä»ããæã«ãå¹³åã®éãïŒçŽç·ã®åŸãïŒã®æ¥µéãã©ããªãããšããããšãèŠãŠãããŸãã
==é£ç¶æ§==
ãã®é
ç®ã§ã¯[[解æåŠåºç€/é¢æ°|é¢æ°]]ã®é
ç®ã§çŽæçã«è¿°ã¹ãé£ç¶æ§ã®åœ¢åŒçãªå®çŸ©ãããŸãããšãŠãç°¡åãªå®çŸ©ã§ãã
''f''(''x'')ã ''c''ã§é£ç¶ïŒcontinuousïŒã§ãããšã¯ã
<table WIDTH="75%"><tr><td style="background-color: #FFFFFF; border: solid 1px #D6D6FF; padding: 1em;" valign=top>
<center>'''é£ç¶æ§ã®å®çŸ©'''<br>
<math>\lim_{x \rightarrow c} f(x) = f(c)</math></center></td></tr></table>
ãæãç«ã€ããšãšããŸãã
é¢æ°ãã極éã ''c''ã§å®çŸ©ã§ããªãã£ããããã®çåŒãæãç«ããªãå Žåã''f''ã¯''c''ã§é£ç¶ã«ã¯ãªããªãããšã«æ³šæããŠãã ããã
é£ç¶æ§ã®çŽæçãªèãæ¹ãšã©ã®ããã«å¯Ÿå¿ããŠããã®ããèããŠã¿ãŠãã ãããé£ç¶æ§ãç解ããããã«ãé¢æ°ã®ã°ã©ããæããŠèããŠã¿ãŠãã ããããããããåºéå
ã®ã©ãã§ãããã®çåŒãæãç«ã£ãŠãããªãã°ããã®åºéå
ã§ã¯éçãé¢ããã«ã°ã©ãããªããããšãã§ããããšãããããŸããéã«ãéäžã§é¢æ°''f''ã®å€ãé£ãã§ããããããšããã®å Žæã§å®çŸ©ã®çåŒã¯æãç«ã¡ãŸããããéçãé¢ããã«ã°ã©ãããªããããšãã§ããŸããã
<!-- 解æåŠåºç€_é¢æ°ã®å
容ã«åãããŠå°ãæ¹çš¿ -->
==極éãã¿ã€ãã==
ããã§ã¯æ¥µéã§ããããšã®èšŒæããã極éå€ãã¿ã€ãããšããããšã«æ³šç®ããŸãããããŸã§ã®èšŒæã§ãããŸãæåã«ã極éã®å€ãèŠã€ããããšããå§ããŸãããã©ããã£ãŠæ¥µéå€ãèŠã€ããã®ã§ãããïŒ
é¢æ°ãããç¹''c''ã§é£ç¶ã§ãããªãã°ãé£ç¶æ§ã®å®çŸ©ããç¹''c''ã«è¿ä»ããæã®é¢æ°ã®å€ã®æ¥µéã¯ãåã«''c''ã§ã®é¢æ°ã®å€ã«çãããªããŸããå€é
åŒãäžè§é¢æ°ã察æ°é¢æ°ãææ°é¢æ°ãªã©ã¯ããã®å®çŸ©åå
šäœã§é£ç¶ã«ãªããŸãã
é¢æ°''f''(''x'')ã''c''ã§é£ç¶ã§ãªãå Žåãæçé¢æ°ã ãš ''c'' ã®è¿ãã§ã¯é£ç¶ã§ã''c''ã®æã ããå€ç«ããŠäžé£ç¶ã«ãªã£ãŠããäºãå€ãã§ãããããã£ãå Žåã¯ã''c''ãé€ããŠå€ãäžèŽãããããªã䌌ããããªé¢æ°''g''(''x'')ãèŠã€ããããšæãããšããããŸãã極éã®å®çŸ©ãããããšã''x''ã''c''ã«è¿ä»ããæã®æ¥µéãååšãããªãã°
:<math>\lim_{x \rightarrow c} f(x) = \lim_{x \rightarrow c} g(x)</math>
ãæºãããªããã°ãªããŸããã
ãã®ãããªå Žåãäžé£ç¶ã«ãªã£ãŠããç¹ã®éšåãåããŠãå
ã®é¢æ°ã«è¿ãé£ç¶ãªé¢æ°ãæ¢ããããªããŸããé£ç¶ã®å®çŸ©ã«ããã°ã''c''ã§ã®å€ããå
ã®é¢æ°ã®''c''ã§ã®æ¥µéã«äžèŽããªããã°ãªããŸããã
é¢æ° g(x) ã¯ã''c''ãé€ããŠãf(x)ãšçããé¢æ°ã§ãã
f(x) ã®æ¥µéã®å®çŸ©ã¯ã0 < |''x'' - ''c''| < δ ãšããéåã®äžã§ãããŠããŸããã''x'' = ''c''ã®æããã®äžçåŒã¯æãç«ããªãã®ã§ã''c''ã§ã®æ¥µéã¯''c''ã§ã®é¢æ°ã®å€ã«ãããŸããã
ãããã£ãŠã''c'' ã§ã®æ¥µé㯠f(x) ãš g(x) ã§çãããªããŸããã€ãŸããæ°ããé¢æ° g(x) ã¯é£ç¶ãªã®ã§ã''c''ã§ã®å€ã¯ããã®æ¥µéã«çãããªããã°ãããªãã®ã§ãã
æåŸã«ã極éå€ãååšããªãäŸãããã€ããããŠãããŸãã
<!-- ã°ã©ãã欲ãããšãã -->
'''ã®ã£ãã''': é¢æ°ãå®çŸ©ãããŠããªãå Žæã«ïŒåºãïŒã®ã£ãããããããšããããŸããäŸãã°
:<math>f(x) = \sqrt{x^2 - 16}</math>
ã§ã''f'' (''x'') 㯠-4 ≤ ''x'' ≤ 4 ã§ã¯å®çŸ©ãããŠããªããšãããã®åºéã«å«ãŸããç¹ã«ã¯è¿ä»ãããããããŸãããåºéã®ç«¯ç¹ x = ±4 ã§ã極éãååšããªãããšã«æ³šæããŠãã ããã極éãååšããããã«ã¯ã'''äž¡åŽ'''ãããã®ç¹ã«è¿ä»ãå¿
èŠããããŸããã°ã©ãäžã§å€ç«ããç¹ãªã©ã§ã¯æ¥µéãååšããªãããšã«æ³šæããŠãã ããã
:äœããçåŽã ãããè¿ä»ãå ŽåãäŸãã°ãå·ŠåŽããã ãè¿ä»ãããšãã®ã極éããèããããŸããããã'''巊極é'''ïŒ'''å·ŠåŽæ¥µé'''ãleft-hand limitïŒãå³åŽããã ãè¿ä»ãããšãã®ã極éãã'''å³æ¥µé'''ïŒ'''å³åŽæ¥µé'''ãright-hand limitïŒãšããããšããããŸãããã®å Žåãããã§å®çŸ©ããã極éãã¯ã'''䞡極é'''ïŒ'''äž¡åŽæ¥µé'''ïŒãšèšãããŸããå³æ¥µéãšå·Šæ¥µéããšãã«ååšããŠçããæããã®å€ã䞡極éãšããããšã«ãªããŸãã
'''段差''': ã°ã©ããéåããŠæ¥ã«é«ããå€ãããããªå Žåã§ãããã®ãããªç¹ã§ãé¢æ°ã¯é£ç¶ã§ã¯ãããŸãããã極éãååšããŸãããåºïŒ''floor''ïŒé¢æ°ã®ãããªã°ã©ãã«ãªããŸãã
:é段é¢æ°ãšããã®ã¯ãå
¥åå€ãè¶ããªãæŽæ°ãè¿ãé¢æ°ã®ããšã§ãã
'''çºæ£''':
:<math>f(x) = {1 \over x^2}</math>
''x''ã 0 ã«è¿ä»ãããšãå€ããããã§ã倧ãããªããŸãããã®å Žåã極éå€ã¯ãããŸããã
'''æ¯å''': ããã°ã©ãããx軞ã«å¹³è¡ãªç·ãšäœåºŠã亀ãããäžãžè¡ã£ããäžã«è¡ã£ãããç¹°ãè¿ããããªå Žåã§ãã
å®éã«ããèµ·ããã極éãç¡ãããšããããããŸããã°ã©ãã¯ãã''x''ã®å€ã«è¿ä»ãããšããŠããç¡éã«äžäžéåãç¹°ãè¿ããŸãã
ããããªããã''x''ãè¿ä»ããã«ã€ããæ¯åã®é«ãïŒæ·±ãïŒãéããªãå°ãããªã£ãŠããæã¯æ¥µéãååšããŸãã
ãã䜿ãããæ¯åã®äŸãšããŠãäžè§é¢æ°ãçšãããã®ããããŸãã極éã®ç¡ãæ¯åã®äŸãšããŠ
:<math>f(x) = \sin {1 \over x}</math>
ãšããé¢æ°ãèããããŸãã
''sin'' é¢æ°ã®ã°ã©ãã¯ãç¡éã«æ¯åããŸãããã®æ¯åã®èµ·ãã£ãŠãã (1, ∞) ãšããåºéã 1/x ãšããå€æãçšã㊠(0, 1) ã«å
¥ããŸãããããšããã®æéåºéã®äžã«ãç¡éåã®æ¯åãè©°ã蟌ãããšãã§ããããã«ãªããŸããå®éããã® f(x) 㧠''x'' ã 0 ã«è¿ä»ããŠãããšãç¡éåã®æ¯åãèµ·ãããŸãã
'''ç
çãªã°ã©ã''': ããã§ã¯ 2 ã€ã®äŸãèããŸãã
ãŸãã ''f'' ã ä»»æã®æçæ°qã«å¯Ÿãå®æ° ''f(q)=2'' ãåãå Žåã''f'' ã¯ãä»»æã® q<sub>0</sub> ã§é£ç¶ã«ãªããŸããä»»æã« ε > 0 ãåããšãä»»æã® δ > 0 ã«å¯Ÿãã 0< |q-q<sub>0</sub>| < δ ãæºãã q 㯠| f(q) − f(q<sub>0</sub>) | = |2−2| = 0 < ε ãæºãããŸãããããã£ãŠã ''f'' 㯠q<sub>0</sub> ã§é£ç¶ã§ãã
: ''f'' 㯠æçæ°äžã ãã§å®çŸ©ãããŠããŠãç¡çæ°ã®æã§ã¯å®çŸ©ãããŠããªãããšã«æ³šæããŠãã ããã ''f'' ã®å€ãè©äŸ¡ã§ããæã ãã æ¡ä»¶ã®å€å®ãã§ããŸãã ''f'' ã®å€ãå€å®ã§ããªãç¡çæ°ã®æã§ã¯ 極éãé£ç¶ã®å®çŸ©ã¯æå³ãæã¡ãŸããã
2 ã€ç®ã®äŸãšããŠã 次ã®ãããªé¢æ°ãèããŸãã
;<math>g(q)=\left\{\begin{matrix} 2, & q \in\mathbb{Q} \\ 0, & q \notin\mathbb{Q} \end{matrix}\right.</math>
å
çšå®çŸ©ããã ''f'' ãšäŒŒãŠããŸãããä»åºŠã¯ç¡çæ°ã®æ㯠0 ãšããå€ãåãããã«å®çŸ©ãããŠããŸãã''g''ã«ã¯é£ç¶ãªç¹ã¯ãããŸããã ''x'' ãå®æ°ãšããŠã ''g'' ã ''x'' ã§é£ç¶ã§ãªãããšã瀺ããŸãã ε = 1 ãšããŸãã ãã ''g'' ã ''x'' ã§é£ç¶ãããšãããšã |x-y| < δ ãªãã° |g(x)− g(y)|<1 ãšãªããã㪠δãååšããçã§ãããããã δ ãã©ããªã«å°ãããšã£ãŠãã |g(x) − g(y)|=2 ãšãªããã㪠''y'' ãååšããŸãã ''x'' ãæçæ°ãªãã°ã ''y'' ã«ç¡çæ°ããšãã ''x'' ãç¡çæ°ãªãã°ã ''y'' ã«æçæ°ãåãã°ããããã§ãããããã£ãŠã ''g'' ã¯å
šãŠã®å®æ°ã§é£ç¶ã§ã¯ãããŸããã
:ãã® 2 ã€ã®ç
çãªã°ã©ãã®äŸã¯éèŠã§ãããã£ãããªäŸã§ãçµæã¯éãªã®ã§ãã æçæ°ãšæçæ°ã®éã«ã¯å¿
ãç¡çæ°ããããç¡çæ°ãšç¡çæ°ã®éã«ã¯å¿
ãæçæ°ãããã®ã§ã°ã©ããæãããšããŠãæçæ°ãšç¡çæ°ã®åºå¥ãä»ããããã y=g(x) ã®ã°ã©ããªã©ã¯ãèŠèŠçã«è¡šçŸãããšããã° y=2 ãšããã°ã©ããš y=0 ãšããã°ã©ããåããããã®ã«ããããåŸãŸããã
==極éãæ±ããããã®éå
·==
=== ç·åœ¢æ§ ===
<math>\lim_{x \rightarrow c} f(x), \ \lim_{x \rightarrow c} g(x)</math> ãååšãããšãã
* <math>\lim_{x \rightarrow c} f(x)g(x) = \lim_{x \rightarrow c} f(x) \cdot \lim_{x \rightarrow c} g(x)</math>
* <math>\lim_{x \rightarrow c} \{ f(x) + g(x) \} = \lim_{x \rightarrow c} f(x) \ + \ \lim_{x \rightarrow c} g(x)</math>
* <math>\lim_{x \rightarrow c} kf(x) = k \, \lim_{x \rightarrow c} f(x)</math>
* <math>\lim_{x \rightarrow c} g(x) \neq 0 \Rightarrow \lim_{x \rightarrow c} \frac{f(x)}{g(x)} = \frac{ \displaystyle \lim_{x \rightarrow c} f(x) }{ \displaystyle \lim_{x \rightarrow c} g(x) }</math>
=== ç·åœ¢æ§ã®èšŒæ ===
ä»®å®ããã<math>\lim_{x \rightarrow c} f(x) = \alpha, \ \lim_{x \rightarrow c} g(x) = \beta</math> ãšããããã®ãšãã
<math>\epsilon > 0</math> ãä»»æã«åã£ãŠããã<math>\frac{\epsilon}{2} > 0</math> ããã極éã®å®çŸ©ããããå®æ° <math>\delta_1, \delta_2</math> ãååšããŠ
<math>0 < |x - c| < \delta_1 \Rightarrow |f(x) - \alpha| < \frac{\epsilon}{2}</math>
<math>0 < |x - c| < \delta_2 \Rightarrow |g(x) - \beta| < \frac{\epsilon}{2}</math>
絶察å€ãå€ãã°ã<math>- \frac{\epsilon}{2}< f(x) - \alpha < \frac{\epsilon}{2}, \ - \frac{\epsilon}{2} < g(x) - \beta < \frac{\epsilon}{2}</math>
ãããã£ãŠ <math>-\epsilon < f(x) + g(x) - (\alpha + \beta) < \epsilon \iff |\{ f(x) + g(x) \} - (\alpha + \beta)| < \epsilon</math>
ããã§ã<math>\delta = \min{ \delta_1, \delta_2 }</math> ãšããã°äžã®åŒãæãç«ã€ãããªãã¡ããå®æ° <math>\delta</math> ãååšããŠä»»æã® <math>\epsilon > 0</math> ã«å¯Ÿã㊠<math>0 < |x - c| < \delta \Rightarrow |\{ f(x) + g(x) \} - (\alpha + \beta)| < \epsilon.</math>
ããªãã¡2çªç®ã®åŒã蚌æãããã®ã§ããã
===ã¯ãã¿ãã¡ã®åç===
:<math>f(x) \le g(x) \le h(x) </math>
ãæºããé¢æ°ãf(x), g(x), h(x) ããããx ã c ã«è¿ä»ããæã« f(x) ãš h(x) ã®æ¥µéãååšã
:<math>\lim_{x \rightarrow c} f(x) = \lim_{x \rightarrow c} h(x) = \alpha </math>
ã§ããã°ã g(x) ã®æ¥µéãååšã
:<math> \lim_{x \rightarrow c} g(x) = \alpha </math>
ãšãªããŸããããã'''ã¯ãã¿ãã¡ã®åç'''ïŒSqueeze theoremïŒãšãããŸããããã¯ãããããªå Žé¢ã§äœ¿ãããŸãã
===ã¯ãã¿ãã¡ã®åçã®äœ¿çšäŸ===
[[ç»å:Harami sinx.jpg|right|350px|äžè§åœ¢ãšå匧]]
å³å³ã®äžè§åœ¢ABCã«ãããŠâ ACBãçŽè§ãšããŸãã AC=AE=1ãšããC ãã E ãŸã§å匧ãæãããŠããŸãã
E ãã AC ã«éãããåç·ã®è¶³ã D ã§ãã
â BAC ã®å€§ããã x ãšããŸããïŒåŒ§åºŠæ³ã§åäœã¯ã©ãžã¢ã³ã§ããx ã¯æ£ã§ããããšã«æ³šæããŠãã ãããïŒ
ãããšãED = sin(x) ã BC = tan(x) ã§ããé¢ç©ãæ¯ã¹ããš
:â³EAC < æ圢 ACE < â³ABC
ã§ããã
:<math>\frac{\sin(x)}{2} < \frac{x}{2} < \frac{\tan(x)}{2} </math>
ãšããäžçåŒãåŸãããŸãããããæŽçããŠ
:<math>\cos(x) < \frac{\sin(x)}{x} < 1 </math>
ããŸã 0<x< π/2 ã§ããããã®äžçåŒã®å·ŠèŸºãšäžèŸºã¯å¶é¢æ°ãªã®ã§ããã®äžçåŒã¯ −π/2 < x <0ã§ãæãç«ã€ãšããããŸããå³ã¡ã 0<|x|<π/2ãšããåºéã§ãã®äžçåŒãèããŸãã
ããã§ãx → 0 ãšãããšã
:<math>\lim_{x \rightarrow 0} \cos(x) = 1 </math>
ãªã®ã§ãã¯ãã¿ãã¡ã®åçãã
:<math>\lim_{x \rightarrow 0} \frac{\sin(x)}{x} = 1 </math>
ãšãªããŸãã
ã¯ãã¿ãã¡ã®åçèªäœãšãŠã䟿å©ãªéå
·ã§ããããã® sin(x) ãš x ã®æ¯ã 1 ã«åæãããšããäºå®ããšãŠã圹ã«ç«ã€éå
·ã«ãªããŸãã
===ã¯ãã¿ãã¡ã®åçã®èšŒæ===
:<math>\lim_{x \rightarrow c} f(x) = \lim_{x \rightarrow c} h(x) = \alpha </math>
ãšããæ¡ä»¶ãããä»»æã® ε ã«å¯ŸããŠããã δ<sub>1</sub> ã δ<sub>2</sub> ãååšããŠã
:0<|x-c|<δ<sub>1</sub> ãªãã°ã |f(x)-α|<ε
:0<|x-c|<δ<sub>2</sub> ãªãã°ã |h(x)-α|<ε
ãšãªããŸããδ<sub>1</sub> ã δ<sub>2</sub>ã®ãã¡å°ããæ¹ïŒçãããã°ãã®å€ïŒã δãšããŸãã
:0<|x−c|<δ
ãªãã°
: f(x)−α < g(x)−α < h(x)−α
: −ε < f(x)−α < ε
: −ε < h(x)−α < ε
ã§ããããšãã
:−ε < f(x)−α < g(x)−α < h(x)−α < ε
ãšãªãã
:|g(x)-α|<ε
ãèšããŸãããã€ãŸããg(x) ã αã«åæããŸãã
==ç¡é倧 ∞ ã«ã€ããŠ==
:<math> g(x) = \frac {1}{x^2} </math>
ã«ãããŠã''x'' ãã0ã«è¿ã¥ãããšãã®æ¥µéã¯ã©ããªãã§ããããïŒ
:<math>\qquad g(0) = \frac {1}{0^2} </math>
ã¯ãåæ¯ã 0 ã«ãªã£ãŠããŸãããå®çŸ©ãããŠããŸããã
ããããçŽæçã«ã¯ ''x''ãå°ããéžã¹ã°ã''g''ã¯ãããã§ã倧ããã§ãããšããããšãåããã§ããããäŸãã°ã g(x) ã 10<sup>6</sup> ã«ããããã°ãxã 10<sup>-3</sup>ã«åãã°ããã®ã§ãã
ãã®å Žåã ''x''ãåå 0 ã«è¿ãïŒãããã''x''≠0 ã§ããããšã«æ³šæããŠãã ãããïŒåãã°ã''g(x)'' ããããã§ã倧ããã§ããŸãã
ããã
:<math>\lim_{x\to 0} g(x) = \lim_{x\to 0} \frac {1}{x^2} = \infty</math>
ãšæžããŸãã
ãã®èšæ³ã¯ã極éã®èšæ³ã«åãããã ãã®ãã®ã§ãå®éã«ã¯ x = 0 ã§ã®æ¥µéã¯ååšããªãããšã«æ³šæããŠãã ããã∞ ãšãã極éãååšããããã§ã¯ãããŸãããã∞ã¯æ°ã§ã¯ãããŸããã
==äžé£ç¶ãªé¢æ°==
'''äžé£ç¶'''ïŒdiscontinuousïŒãšã¯ãé¢æ°ãããç¹ã§é£ç¶ã§ç¡ãããšããããŸããäŸãã°ã
:<math>f(x) = \frac {x^2-9} {x-3}</math>
ã¯ãx = 3ã«'''é€å»å¯èœ'''ãªäžé£ç¶ç¹ïŒremovable discontinuityïŒãæã¡ãŸãã
ãã®ãé€å»å¯èœãïŒremovableïŒãšããã®ã¯ãå°ãæãå ããã ãã§äžé£ç¶ãªãšãããé£ç¶ã«ããé¢æ°ãåŸããããšããæå³ã§ããç¹ã«ãã®é¢æ°ã®å Žåã¯ãx≠3ã®æã¯ãçŽåããããšã§ f(x) = x+3 ã«ãªããŸãã
ãããf(3)=6 ã§ãã£ããªãã°ãé£ç¶ãªé¢æ°ã«ãªããŸããå³ã¡ãæ°ããé¢æ°
:<math>g(x) = \left\{\begin{matrix} x + 3, & \mbox{if }x \ne 3 \\ 6, & \mbox{if }x = 3 \end{matrix}\right. </math>
ãå®çŸ©ããŸãããã¡ãã x=3 ã§ãx+3=6 ã§ãããããŸãšããŠãg(x) = x+3ãšæžãããšãã§ããŸããx=3 ã§ãå®çŸ©ãããŠããã®ã§ã f(x) ãšã¯å¥ã®é¢æ°ã§ããããšã«æ³šæããŠãã ããã
f(x) ã® x=3 ã§ã®æ¥µéã§ãã 6 ã g(3) ã®å€ãšããŠãé£ç¶ãªé¢æ°ã«ãªããŸããã
æçé¢æ°ã§ã¯ããã®ãããªäžé£ç¶æ§ã®é€å»ãå¯èœã§ããåæ¯ã0ã«ãªããªããšãã¯ããã®ãããªæäœã«ãããªããŠãé£ç¶é¢æ°ãåŸãããšãã§ããŸããåæ¯ã 0 ã«ãªããšãã«ã0 ã§å²ããšããããšãé¿ããããã«ããããã£ãæ°ããé¢æ° g(x) ãçšæããå¿
èŠããããŸãã
==å€éšãªã³ã¯==
*[http://wims.unice.fr/wims/wims.cgi?module=home&search_keywords=limit&search_category=X Online interactive exercises on limits]
{{prevnext|prev=é¢æ°}}
[[ã«ããŽãª:極é (æ°åŠ)|ãããããããã]] | 2005-03-25T03:37:56Z | 2024-02-06T05:10:25Z | [
"ãã³ãã¬ãŒã:Prevnext"
] | https://ja.wikibooks.org/wiki/%E8%A7%A3%E6%9E%90%E5%AD%A6%E5%9F%BA%E7%A4%8E/%E6%A5%B5%E9%99%90 |
1,783 | çµæžåŠ çŸä»£çµæžã®å€å®¹ çµæžã®å€å®¹ äžççµæžã®å€å®¹ è³æ¬äž»çŸ©çµæž | çµæžåŠ>çŸä»£çµæžã®å€å®¹>çµæžã®å€å®¹>äžççµæžã®å€å®¹>è³æ¬äž»çŸ©çµæž
è³æ¬äž»çŸ©ç€ŸäŒã§ãéã倧åãªã®ã¯ééããããŸããã
çŸåšãæ¥æ¬ããšãŒããããã¢ã¡ãªã«ãªã©ã®å€ãã®åœã§æ¡ãããŠããçµæžå¶åºŠãè³æ¬äž»çŸ©(Capitalism)çµæžã§ããè³æ¬äž»çŸ©çµæžã§ã¯åœå®¶ãçµæžã«ä»å
¥ããçµæžæŽ»åãåžå Žã«ä»»ããŠããŸãã
è³æ¬äž»çŸ©ã¯3ã€ã®åºç€ã®äžã«æãç«ã£ãŠããŸãã1ã€ã¯ããã¹ãŠã®è²¡ãšåŽååãååãšããå
šé¢çãªååçµæžç€ŸäŒã2ã€ç®ã¯çç£ã®ããã®å·¥å Žã»æ©æ¢°ã»åå°ãªã©ãç§æ財ç£ãšããç§æ財ç£å¶åºŠã§ãã3ã€ç®ã¯ãåžå Žã¯éèŠãšäŸçµŠã«ãã£ãŠèª¿æŽãããã®ã§ãå©æœ€ãè¿œæ±ããçµæžæŽ»åã¯èªç±ã«ããŠæ§ããªããšããèãæ¹ã§ãã
è³æ¬äž»çŸ©çµæžçºç¥¥ã®å°ã¯ã°ã¬ãŒãããªãã³ããã³åéšã¢ã€ã«ã©ã³ãé£åçåœãäžå¿ãšãã西ãšãŒãããã§ãããªã西ãšãŒãããã§è³æ¬äž»çŸ©çµæžãçºéããã®ã§ããããã
è³æ¬äž»çŸ©ä»¥åã®çµæžã¯èŸ²æ¥ãåºæ¬ãšããèªçµŠèªè¶³ãã€ãŸãå人ãšå°äž»ãäžå¿ãšããçµæžã§ããããã®ç€ŸäŒã®äžã§è³æ¬ãèç©ãã人ãçŸããŸããã西ãšãŒãããè«žåœã§ã¯ãã®äººã
ãåžæ°é©åœãèµ·ãããåœæã®çµ¶å¯Ÿçæ¿ã厩ããŸãããããã«ãããèªç±ãªçµæžæŽ»åãšè²¡ç£æš©ãä¿éãããããã«ãªããŸãããã€ãŸããåžæ°é©åœãç¡ããã°ãè³æ¬äž»çŸ©ã¯æç«ããªãã£ããšãããŸãã
18äžçŽãã19äžçŽã«ãããŠè¿ä»£åžæ°é©åœãçžæ¬¡ããŸããããã®äžã§ãã€ã®ãªã¹ã®ç£æ¥é©åœã¯å·¥æ¥ã®æ©æ¢°åãé²ããç£æ¥è³æ¬äž»çŸ©çµæžãžã®è»¢æã®ãã£ãããšãªããŸãããããã¯ã¢ãã ã»ã¹ãã¹(Adam Smith)ãèæžãè«žåœæ°ã®å¯ã(ãåœå¯è«ã)ã§èª¬ãããèªç±äž»çŸ©ã«åºã¥ãçç£ã®éèŠæ§ããåçãšããå人ã®å©æœ€è¿œæ±ã«åœå®¶ãäžåä»å
¥ããªãèªç±æŸä»»äž»çŸ©ã§ããã
19äžçŽåŸåã«ã¯ã€ã®ãªã¹ãè¿œãæãããšããã¢ã¡ãªã«åè¡åœããã€ãé£éŠå
±ååœã§å€§äŒæ¥ã«ããçç£ã®éäžãç¶ããŸããããããç¬å è³æ¬äž»çŸ©çµæžãšãããŸãã競åä»ç€Ÿã®æ¯ã®æ ¹ãæ¢ããããã«ãèµ€åã«ãªã£ãŠãŸã§ååãå®äŸ¡ã§å£²ãç¶ãã倧äŒæ¥ã«ããåžå Žã®ç¬å ãç¶ããŸãããããããŠè³æ¬äž»çŸ©ã®çºå±ããŠãããšãŒãããè«žåœãã¢ããªã«ã»ã¢ãžã¢ã»ã©ãã³ã¢ã¡ãªã«ã§æ€æ°å°ç²åŸç«¶äºãç¹°ãåºããŸããããã®çµæã1914幎ã«åçºãã第äžæ¬¡äžç倧æŠã§ãã
1929幎ã®ã¢ã¡ãªã« ãã¥ãŒãšãŒã¯ ãŠã©ãŒã«è¡ã®æ ªäŸ¡å€§æŽèœã«ç«¯ãçºãã1930幎代ã®äžç倧ææ
ã§ã¯ã瀟äŒäž»çŸ©çµæžäœå¶ã®ãœããšã瀟äŒäž»çŸ©å
±ååœé£éŠãé€ããäžçäžã§äŒæ¥ã®åç£ã倱æ¥è
ãå€ãçºçããŸããã
äžç倧ææ
ã«ã€ããŠãã€ã®ãªã¹ã®çµæžåŠè
ãžã§ã³ã»ã¡ã€ããŒãã»ã±ã€ã³ãº(John Maynard Keynes)ã¯èæžãéçšã»å©åããã³è²šå¹£ã®äžè¬çè«ã(1936幎å)ã§ãæå¹éèŠãäžååã§ããããšææããåœå®¶ã«ããé©åãªæå¹éèŠæäœãããªãã¡å
Œ
±äºæ¥ã«ãã倱æ¥ã解æ¶ã§ããäŒæ¥ã«ããèªç±ãªçµæžæŽ»åã䟵害ããããšãç¡ããšããä¿®æ£è³æ¬äž»çŸ©çµæžã䞻匵ããŸãããæå¹éèŠãšããã®ã¯ã賌買åã䌎ã£ãéèŠã®ããšã§ãã
äžç倧ææ
ããæãåºãããã1933幎ã«ã¢ã¡ãªã«ã§ã¯ãã¥ãŒãã£ãŒã«(æ°èŠèãçŽã)æ¿çãå®æœãããŸããããã¥ãŒãã£ãŒã«æ¿çã§ã¯ç€ŸäŒæ¹é©ç«æ³ãè¡ããã瀟äŒä¿éæ³(Social Security Act)ã蟲æ¥èª¿æŽæ³(Agricultural Adjustment Act)ãå
šåœç£æ¥åŸ©èæ³(National Industrial Recovery Act)ãå
šåœåŽåé¢ä¿æ³(National Labor Relations Act)ãå¶å®ãããŸããããŸãã倱æ¥è
察çãšããŠããã·ãŒå·æµåéçºå
¬ç€Ÿ(Tennessee Valley Authority)ãèšç«ããŸãããäžæ¹ãæ¥æ¬ã§ã¯äžç倧ææ
ãå«ãçµæžæ¿çã®å€±æããè»éšãå°é ããæ¥äžæŠäº(ææ¥æ°äº)ã第äºæ¬¡äžç倧æŠãžãšã€ãªãã£ãŠãããŸããã
第äºæ¬¡äžç倧æŠåŸã¯ãçŸä»£è³æ¬äž»çŸ©çµæžãç¶ããŠããŸããããã¯ãç§çãªå©æœ€è¿œæ±ãããæ°ééšéãšå
Œ
±äºæ¥ã瀟äŒä¿éå¶åºŠãæŽåã瀟äŒå
šäœã®å©çãšãªããã掻åããå
Œ
±éšéã䜵åããæ··åçµæžã§ãããããã倧éçç£ã»å€§éæ¶è²»ã»å€§éå»æ£ãªã©ã®åé¡ã¯è§£æ±ºãããŠããŸããã
äžç倧ææ
ããããããããã«ãè³æ¬äž»çŸ©çµæžã«ã¯ããã€ãã®åé¡ããããŸãããããã¯è³æ¬äž»çŸ©çççŸãšããããŠããŸãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "çµæžåŠ>çŸä»£çµæžã®å€å®¹>çµæžã®å€å®¹>äžççµæžã®å€å®¹>è³æ¬äž»çŸ©çµæž",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "è³æ¬äž»çŸ©ç€ŸäŒã§ãéã倧åãªã®ã¯ééããããŸããã",
"title": "ãéãäžçªå€§åã£ãŠããšïŒ"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "çŸåšãæ¥æ¬ããšãŒããããã¢ã¡ãªã«ãªã©ã®å€ãã®åœã§æ¡ãããŠããçµæžå¶åºŠãè³æ¬äž»çŸ©(Capitalism)çµæžã§ããè³æ¬äž»çŸ©çµæžã§ã¯åœå®¶ãçµæžã«ä»å
¥ããçµæžæŽ»åãåžå Žã«ä»»ããŠããŸãã",
"title": "è³æ¬äž»çŸ©ãšã¯"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "è³æ¬äž»çŸ©ã¯3ã€ã®åºç€ã®äžã«æãç«ã£ãŠããŸãã1ã€ã¯ããã¹ãŠã®è²¡ãšåŽååãååãšããå
šé¢çãªååçµæžç€ŸäŒã2ã€ç®ã¯çç£ã®ããã®å·¥å Žã»æ©æ¢°ã»åå°ãªã©ãç§æ財ç£ãšããç§æ財ç£å¶åºŠã§ãã3ã€ç®ã¯ãåžå Žã¯éèŠãšäŸçµŠã«ãã£ãŠèª¿æŽãããã®ã§ãå©æœ€ãè¿œæ±ããçµæžæŽ»åã¯èªç±ã«ããŠæ§ããªããšããèãæ¹ã§ãã",
"title": "è³æ¬äž»çŸ©ãšã¯"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "è³æ¬äž»çŸ©çµæžçºç¥¥ã®å°ã¯ã°ã¬ãŒãããªãã³ããã³åéšã¢ã€ã«ã©ã³ãé£åçåœãäžå¿ãšãã西ãšãŒãããã§ãããªã西ãšãŒãããã§è³æ¬äž»çŸ©çµæžãçºéããã®ã§ããããã",
"title": "è³æ¬äž»çŸ©ã®æç«ãšçºå±"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "è³æ¬äž»çŸ©ä»¥åã®çµæžã¯èŸ²æ¥ãåºæ¬ãšããèªçµŠèªè¶³ãã€ãŸãå人ãšå°äž»ãäžå¿ãšããçµæžã§ããããã®ç€ŸäŒã®äžã§è³æ¬ãèç©ãã人ãçŸããŸããã西ãšãŒãããè«žåœã§ã¯ãã®äººã
ãåžæ°é©åœãèµ·ãããåœæã®çµ¶å¯Ÿçæ¿ã厩ããŸãããããã«ãããèªç±ãªçµæžæŽ»åãšè²¡ç£æš©ãä¿éãããããã«ãªããŸãããã€ãŸããåžæ°é©åœãç¡ããã°ãè³æ¬äž»çŸ©ã¯æç«ããªãã£ããšãããŸãã",
"title": "è³æ¬äž»çŸ©ã®æç«ãšçºå±"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "18äžçŽãã19äžçŽã«ãããŠè¿ä»£åžæ°é©åœãçžæ¬¡ããŸããããã®äžã§ãã€ã®ãªã¹ã®ç£æ¥é©åœã¯å·¥æ¥ã®æ©æ¢°åãé²ããç£æ¥è³æ¬äž»çŸ©çµæžãžã®è»¢æã®ãã£ãããšãªããŸãããããã¯ã¢ãã ã»ã¹ãã¹(Adam Smith)ãèæžãè«žåœæ°ã®å¯ã(ãåœå¯è«ã)ã§èª¬ãããèªç±äž»çŸ©ã«åºã¥ãçç£ã®éèŠæ§ããåçãšããå人ã®å©æœ€è¿œæ±ã«åœå®¶ãäžåä»å
¥ããªãèªç±æŸä»»äž»çŸ©ã§ããã",
"title": "è³æ¬äž»çŸ©ã®æç«ãšçºå±"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "19äžçŽåŸåã«ã¯ã€ã®ãªã¹ãè¿œãæãããšããã¢ã¡ãªã«åè¡åœããã€ãé£éŠå
±ååœã§å€§äŒæ¥ã«ããçç£ã®éäžãç¶ããŸããããããç¬å è³æ¬äž»çŸ©çµæžãšãããŸãã競åä»ç€Ÿã®æ¯ã®æ ¹ãæ¢ããããã«ãèµ€åã«ãªã£ãŠãŸã§ååãå®äŸ¡ã§å£²ãç¶ãã倧äŒæ¥ã«ããåžå Žã®ç¬å ãç¶ããŸãããããããŠè³æ¬äž»çŸ©ã®çºå±ããŠãããšãŒãããè«žåœãã¢ããªã«ã»ã¢ãžã¢ã»ã©ãã³ã¢ã¡ãªã«ã§æ€æ°å°ç²åŸç«¶äºãç¹°ãåºããŸããããã®çµæã1914幎ã«åçºãã第äžæ¬¡äžç倧æŠã§ãã",
"title": "è³æ¬äž»çŸ©ã®æç«ãšçºå±"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "1929幎ã®ã¢ã¡ãªã« ãã¥ãŒãšãŒã¯ ãŠã©ãŒã«è¡ã®æ ªäŸ¡å€§æŽèœã«ç«¯ãçºãã1930幎代ã®äžç倧ææ
ã§ã¯ã瀟äŒäž»çŸ©çµæžäœå¶ã®ãœããšã瀟äŒäž»çŸ©å
±ååœé£éŠãé€ããäžçäžã§äŒæ¥ã®åç£ã倱æ¥è
ãå€ãçºçããŸããã",
"title": "è³æ¬äž»çŸ©ã®æç«ãšçºå±"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "äžç倧ææ
ã«ã€ããŠãã€ã®ãªã¹ã®çµæžåŠè
ãžã§ã³ã»ã¡ã€ããŒãã»ã±ã€ã³ãº(John Maynard Keynes)ã¯èæžãéçšã»å©åããã³è²šå¹£ã®äžè¬çè«ã(1936幎å)ã§ãæå¹éèŠãäžååã§ããããšææããåœå®¶ã«ããé©åãªæå¹éèŠæäœãããªãã¡å
Œ
±äºæ¥ã«ãã倱æ¥ã解æ¶ã§ããäŒæ¥ã«ããèªç±ãªçµæžæŽ»åã䟵害ããããšãç¡ããšããä¿®æ£è³æ¬äž»çŸ©çµæžã䞻匵ããŸãããæå¹éèŠãšããã®ã¯ã賌買åã䌎ã£ãéèŠã®ããšã§ãã",
"title": "è³æ¬äž»çŸ©ã®æç«ãšçºå±"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "äžç倧ææ
ããæãåºãããã1933幎ã«ã¢ã¡ãªã«ã§ã¯ãã¥ãŒãã£ãŒã«(æ°èŠèãçŽã)æ¿çãå®æœãããŸããããã¥ãŒãã£ãŒã«æ¿çã§ã¯ç€ŸäŒæ¹é©ç«æ³ãè¡ããã瀟äŒä¿éæ³(Social Security Act)ã蟲æ¥èª¿æŽæ³(Agricultural Adjustment Act)ãå
šåœç£æ¥åŸ©èæ³(National Industrial Recovery Act)ãå
šåœåŽåé¢ä¿æ³(National Labor Relations Act)ãå¶å®ãããŸããããŸãã倱æ¥è
察çãšããŠããã·ãŒå·æµåéçºå
¬ç€Ÿ(Tennessee Valley Authority)ãèšç«ããŸãããäžæ¹ãæ¥æ¬ã§ã¯äžç倧ææ
ãå«ãçµæžæ¿çã®å€±æããè»éšãå°é ããæ¥äžæŠäº(ææ¥æ°äº)ã第äºæ¬¡äžç倧æŠãžãšã€ãªãã£ãŠãããŸããã",
"title": "è³æ¬äž»çŸ©ã®æç«ãšçºå±"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "第äºæ¬¡äžç倧æŠåŸã¯ãçŸä»£è³æ¬äž»çŸ©çµæžãç¶ããŠããŸããããã¯ãç§çãªå©æœ€è¿œæ±ãããæ°ééšéãšå
Œ
±äºæ¥ã瀟äŒä¿éå¶åºŠãæŽåã瀟äŒå
šäœã®å©çãšãªããã掻åããå
Œ
±éšéã䜵åããæ··åçµæžã§ãããããã倧éçç£ã»å€§éæ¶è²»ã»å€§éå»æ£ãªã©ã®åé¡ã¯è§£æ±ºãããŠããŸããã",
"title": "è³æ¬äž»çŸ©ã®æç«ãšçºå±"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "äžç倧ææ
ããããããããã«ãè³æ¬äž»çŸ©çµæžã«ã¯ããã€ãã®åé¡ããããŸãããããã¯è³æ¬äž»çŸ©çççŸãšããããŠããŸãã",
"title": "è³æ¬äž»çŸ©ã®æç«ãšçºå±"
}
] | çµæžåŠïŒçŸä»£çµæžã®å€å®¹ïŒçµæžã®å€å®¹ïŒäžççµæžã®å€å®¹ïŒè³æ¬äž»çŸ©çµæž | [[çµæžåŠ]]ïŒ[[çµæžåŠ_çŸä»£çµæžã®å€å®¹|çŸä»£çµæžã®å€å®¹]]ïŒ[[çµæžåŠ_çŸä»£çµæžã®å€å®¹_çµæžã®å€å®¹|çµæžã®å€å®¹]]ïŒ[[çµæžåŠ_çŸä»£çµæžã®å€å®¹_çµæžã®å€å®¹_äžççµæžã®å€å®¹|äžççµæžã®å€å®¹]]ïŒ[[çµæžåŠ_çŸä»£çµæžã®å€å®¹_çµæžã®å€å®¹_äžççµæžã®å€å®¹_è³æ¬äž»çŸ©çµæž|è³æ¬äž»çŸ©çµæž]]
----
__TOC__
<div style="margin:0px; padding:0px; background-color:#CCFF99; border:solid #00CC00 1px; width:100%;">
== ãéãäžçªå€§åã£ãŠããšïŒ ==
è³æ¬äž»çŸ©ç€ŸäŒã§ãéã倧åãªã®ã¯ééããããŸããã
</div>
== è³æ¬äž»çŸ©ãšã¯ ==
çŸåšãæ¥æ¬ããšãŒããããã¢ã¡ãªã«ãªã©ã®å€ãã®åœã§æ¡ãããŠããçµæžå¶åºŠã'''è³æ¬äž»çŸ©(Capitalism)çµæž'''ã§ããè³æ¬äž»çŸ©çµæžã§ã¯åœå®¶ãçµæžã«ä»å
¥ããçµæžæŽ»åãåžå Žã«ä»»ããŠããŸãã
è³æ¬äž»çŸ©ã¯3ã€ã®åºç€ã®äžã«æãç«ã£ãŠããŸãã1ã€ã¯ããã¹ãŠã®è²¡ãšåŽååãååãšãã'''å
šé¢çãªååçµæžç€ŸäŒ'''ã2ã€ç®ã¯çç£ã®ããã®å·¥å Žã»æ©æ¢°ã»åå°ãªã©ãç§æ財ç£ãšãã'''ç§æ財ç£å¶åºŠ'''ã§ãã3ã€ç®ã¯ã[[çµæžåŠ_çŸä»£çµæžã®ä»çµã¿_æ©æ§ãšãã®åã|åžå Ž]]ã¯éèŠãšäŸçµŠã«ãã£ãŠèª¿æŽãããã®ã§ãå©æœ€ãè¿œæ±ããçµæžæŽ»åã¯èªç±ã«ããŠæ§ããªããšããèãæ¹ã§ãã
== è³æ¬äž»çŸ©ã®æç«ãšçºå± ==
è³æ¬äž»çŸ©çµæžçºç¥¥ã®å°ã¯ã°ã¬ãŒãããªãã³ããã³åéšã¢ã€ã«ã©ã³ãé£åçåœãäžå¿ãšãã西ãšãŒãããã§ãããªã西ãšãŒãããã§è³æ¬äž»çŸ©çµæžãçºéããã®ã§ããããã
=== 15äžçŽã18äžçŽåã ===
è³æ¬äž»çŸ©ä»¥åã®çµæžã¯èŸ²æ¥ãåºæ¬ãšããèªçµŠèªè¶³ãã€ãŸãå人ãšå°äž»ãäžå¿ãšããçµæžã§ããããã®ç€ŸäŒã®äžã§è³æ¬ãèç©ãã人ãçŸããŸããã西ãšãŒãããè«žåœã§ã¯ãã®äººã
ãåžæ°é©åœãèµ·ãããåœæã®çµ¶å¯Ÿçæ¿ã厩ããŸãããããã«ãããèªç±ãªçµæžæŽ»åãšè²¡ç£æš©ãä¿éãããããã«ãªããŸãããã€ãŸããåžæ°é©åœãç¡ããã°ãè³æ¬äž»çŸ©ã¯æç«ããªãã£ããšãããŸãã
=== 18äžçŽã19äžçŽåå ===
18äžçŽãã19äžçŽã«ãããŠè¿ä»£åžæ°é©åœãçžæ¬¡ããŸããããã®äžã§ãã€ã®ãªã¹ã®ç£æ¥é©åœã¯å·¥æ¥ã®æ©æ¢°åãé²ãã'''ç£æ¥è³æ¬äž»çŸ©çµæž'''ãžã®è»¢æã®ãã£ãããšãªããŸãããããã¯[[w:ã¢ãã ã»ã¹ãã¹|ã¢ãã ã»ã¹ãã¹(Adam Smith)]]ãèæžãè«žåœæ°ã®å¯ã(ãåœå¯è«ã)ã§èª¬ãããèªç±äž»çŸ©ã«åºã¥ãçç£ã®éèŠæ§ããåçãšããå人ã®å©æœ€è¿œæ±ã«åœå®¶ãäžåä»å
¥ããªãèªç±æŸä»»äž»çŸ©ã§ããã
=== 19äžçŽåŸåã20äžçŽ ===
19äžçŽåŸåã«ã¯ã€ã®ãªã¹ãè¿œãæãããšããã¢ã¡ãªã«åè¡åœããã€ãé£éŠå
±ååœã§å€§äŒæ¥ã«ããçç£ã®éäžãç¶ããŸãããããã'''ç¬å è³æ¬äž»çŸ©çµæž'''ãšãããŸãã競åä»ç€Ÿã®æ¯ã®æ ¹ãæ¢ããããã«ãèµ€åã«ãªã£ãŠãŸã§ååãå®äŸ¡ã§å£²ãç¶ãã倧äŒæ¥ã«ããåžå Žã®ç¬å ãç¶ããŸãããããããŠè³æ¬äž»çŸ©ã®çºå±ããŠãããšãŒãããè«žåœãã¢ããªã«ã»ã¢ãžã¢ã»ã©ãã³ã¢ã¡ãªã«ã§æ€æ°å°ç²åŸç«¶äºãç¹°ãåºããŸããããã®çµæã1914幎ã«åçºãã第äžæ¬¡äžç倧æŠã§ãã
1929幎ã®ã¢ã¡ãªã« ãã¥ãŒãšãŒã¯ ãŠã©ãŒã«è¡ã®æ ªäŸ¡å€§æŽèœã«ç«¯ãçºãã1930幎代ã®äžç倧ææ
ã§ã¯ã[[çµæžåŠ_çŸä»£çµæžã®å€å®¹_çµæžã®å€å®¹_äžççµæžã®å€å®¹_瀟äŒäž»çŸ©çµæž|瀟äŒäž»çŸ©çµæžäœå¶]]ã®ãœããšã瀟äŒäž»çŸ©å
±ååœé£éŠãé€ããäžçäžã§äŒæ¥ã®åç£ã倱æ¥è
ãå€ãçºçããŸããã
äžç倧ææ
ã«ã€ããŠãã€ã®ãªã¹ã®çµæžåŠè
[[w:ãžã§ã³ã»ã¡ã€ããŒãã»ã±ã€ã³ãº|ãžã§ã³ã»ã¡ã€ããŒãã»ã±ã€ã³ãº(John Maynard Keynes)]]ã¯èæžãéçšã»å©åããã³è²šå¹£ã®äžè¬çè«ã(1936幎å)ã§ãæå¹éèŠãäžååã§ããããšææããåœå®¶ã«ããé©åãªæå¹éèŠæäœãããªãã¡å
Œ
±äºæ¥ã«ãã倱æ¥ã解æ¶ã§ããäŒæ¥ã«ããèªç±ãªçµæžæŽ»åã䟵害ããããšãç¡ããšãã'''ä¿®æ£è³æ¬äž»çŸ©çµæž'''ã䞻匵ããŸããã<!-- ä¹æ°å¹æã«ã€ã㊠-->æå¹éèŠãšããã®ã¯ã賌買åã䌎ã£ã[[çµæžåŠ_çŸä»£çµæžã®ä»çµã¿_æ©æ§ãšãã®åã|éèŠ]]ã®ããšã§ãã
äžç倧ææ
ããæãåºãããã1933幎ã«ã¢ã¡ãªã«ã§ã¯ãã¥ãŒãã£ãŒã«ïŒæ°èŠèãçŽãïŒæ¿çãå®æœãããŸããããã¥ãŒãã£ãŒã«æ¿çã§ã¯ç€ŸäŒæ¹é©ç«æ³ãè¡ããã瀟äŒä¿éæ³(Social Security Act)ã蟲æ¥èª¿æŽæ³(Agricultural Adjustment Act)ãå
šåœç£æ¥åŸ©èæ³(National Industrial Recovery Act)ãå
šåœåŽåé¢ä¿æ³(National Labor Relations Act)ãå¶å®ãããŸããããŸãã倱æ¥è
察çãšããŠããã·ãŒå·æµåéçºå
¬ç€Ÿ(Tennessee Valley Authority)ãèšç«ããŸãããäžæ¹ãæ¥æ¬ã§ã¯äžç倧ææ
ãå«ãçµæžæ¿çã®å€±æããè»éšãå°é ããæ¥äžæŠäºïŒææ¥æ°äºïŒã第äºæ¬¡äžç倧æŠãžãšã€ãªãã£ãŠãããŸããã
第äºæ¬¡äžç倧æŠåŸã¯ã'''çŸä»£è³æ¬äž»çŸ©çµæž'''ãç¶ããŠããŸããããã¯ãç§çãªå©æœ€è¿œæ±ãããæ°ééšéãšå
Œ
±äºæ¥ã[[çµæžåŠ_瀟äŒä¿éå¶åºŠ|瀟äŒä¿éå¶åºŠ]]ãæŽåã瀟äŒå
šäœã®å©çãšãªããã掻åããå
Œ
±éšéã䜵åããæ··åçµæžã§ãããããã倧éçç£ã»å€§éæ¶è²»ã»å€§éå»æ£ãªã©ã®åé¡ã¯è§£æ±ºãããŠããŸããã
=== è³æ¬äž»çŸ©çççŸ ===
äžç倧ææ
ããããããããã«ãè³æ¬äž»çŸ©çµæžã«ã¯ããã€ãã®åé¡ããããŸãããããã¯è³æ¬äž»çŸ©çççŸãšããããŠããŸãã
* éå°çç£ïŒéèŠïŒåžå Žã®æ¶è²»éïŒäºæž¬ã誀ããšãã®ãäœãããšã«ãªããŸãã
* 倱æ¥
* 貧å°
==== åžå Žã®å€±æ ====
* [[çµæžåŠ_çŸä»£çµæžã®å€å®¹_çµæžã®å€å®¹_çµæžãšã¯äœã#財ç©|å
Œ
±è²¡]]ïŒåœã®é²è¡ïŒèŠå¯ã»æ¶é²çã¯ïŒåœæ°ã«å¿
èŠãªãµãŒãã¹ã§ãããªããåžå Žã«ååšããŠããªããã®ã§ãã
* ç¬å ãŸãã¯å¯¡å
* å¹³åè²»çšéæž
* å€éšçµæž
* å€éšäžçµæžïŒå€éšè² çµæžïŒäŸïŒå
¬å®³
* æ
å ±ã®é察称æ§
== ããããã®è³æ¬äž»çŸ© ==
{{stub}}
[[Category:çµæžåŠ|*]] | null | 2009-06-07T14:07:02Z | [
"ãã³ãã¬ãŒã:Stub"
] | https://ja.wikibooks.org/wiki/%E7%B5%8C%E6%B8%88%E5%AD%A6_%E7%8F%BE%E4%BB%A3%E7%B5%8C%E6%B8%88%E3%81%AE%E5%A4%89%E5%AE%B9_%E7%B5%8C%E6%B8%88%E3%81%AE%E5%A4%89%E5%AE%B9_%E4%B8%96%E7%95%8C%E7%B5%8C%E6%B8%88%E3%81%AE%E5%A4%89%E5%AE%B9_%E8%B3%87%E6%9C%AC%E4%B8%BB%E7%BE%A9%E7%B5%8C%E6%B8%88 |
1,786 | çµæžåŠ çŸä»£çµæžã®å€å®¹ çµæžã®å€å®¹ äžççµæžã®å€å®¹ 瀟äŒäž»çŸ©çµæž | çµæžåŠ>çŸä»£çµæžã®å€å®¹>çµæžã®å€å®¹>äžççµæžã®å€å®¹>瀟äŒäž»çŸ©çµæž
20äžçŽã«ã¯è³æ¬äž»çŸ©ã®ççŸããšãããšããè©Šã¿ããããŸãããããã瀟äŒäž»çŸ©çµæž(socialism)ã§ãã瀟äŒäž»çŸ©ã®ç¹åŸŽã¯æ¬¡ã®éãã§ãã
è¿ä»£çãªç€ŸäŒäž»çŸ©è«ãçãŸããã®ã¯ç£æ¥é©åœä»¥éã§ãããã®ä»£è¡šçãªçè«å®¶ã»å®è·µè
ãããŒãªãšããµã³=ã·ã¢ã³ããªãŒãŠã§ã³ã®äžåã§ãã
圌ãã¯åŸã«ãšã³ã²ã«ã¹ããã空æ³ç瀟äŒäž»çŸ©ããšåŒã°ããŸãã(ã空æ³ããç§åŠãžã)ããã®ãããçŸä»£ã§ã圌ãã¯ç©ºæ³ç瀟äŒäž»çŸ©è
ãšåŒã°ããŠããã®ã§ããããœé£å瀟äŒäž»çŸ©ã®åŽ©å£ã»äžåœã®ç€ŸäŒäž»çŸ©åžå Žçµæžãäºå®äžã®æ°èªç±äž»çŸ©çµæžãžãšèµãåã£ãŠããçŸåšãåè©äŸ¡ãå§ãŸã£ãŠããŸãã
1867幎ããã€ãã®çµæžåŠè
ã»å²åŠè
ã«ãŒã«ã»ãã«ã¯ã¹(Karl Heinrich Marx)ã¯èæžãè³æ¬è«ãã§ãè³æ¬äž»çŸ©ã®æã€åºæã®ççŸãå°æ¥æ°ãã瀟äŒäœå¶ãçããšææããŸãããåãããã€ãã®çµæžåŠè
ã»å²åŠè
ã®ããªãŒããªãã»ãšã³ã²ã«ã¹(Friedrich Engels)ãèæžã家æã»ç§æ財ç£ã»åœå®¶ã®èµ·æºããªã©ã§ç€ŸäŒäž»çŸ©ã»å
±ç£äž»çŸ©ãå±ããŸããã
ãã«ã¯ã¹ãã®çè«ãèæ¯ãšããŠã1917幎ã«ãã·ã¢é©åœã§ãœããšã瀟äŒäž»çŸ©æ¿æš©ãèªçããŸããããã·ã¢ã¯1921幎ããæ°çµæžæ¿ç(ããããÐÐŸÐ²Ð°Ñ ÑкПМПЌОÑеÑÐºÐ°Ñ Ð¿ÐŸÐ»ÐžÑОка)ãæšé²ãã1928幎ã«ãœããšãé£éŠã¯ç¬¬äžæ¬¡5ã«å¹Žèšç»ã«ãã瀟äŒäž»çŸ©çµæžã®å°å
¥ãé²ããŸãããããã«ç¶ãã1945幎ã«æ¬¡ã
ãšç¬ç«ããã¢ãžã¢ãæ±ãšãŒãããã®åœã
ãããã«1949幎ã«æç«ããäžåœã§ã瀟äŒäž»çŸ©çµæžãå°å
¥ãããŸããã
æžã£ãŠããŸããäžçã§æåã®ç€ŸäŒäž»çŸ©çµæžã®åœã ã£ããœããšã瀟äŒäž»çŸ©å
±ååœé£éŠããäžæ¯æ°ããè±åºã§ããªããªã£ãŠããŸã£ããã1991幎ã«ç€ŸäŒäž»çŸ©çµæžããããŸããããšãŒãããã§ç€ŸäŒäž»çŸ©çµæžããšãåœã¯ãããããŸããããæé®®æ°äž»äž»çŸ©äººæ°å
±ååœããã¥ãŒãå
±ååœã§ã¯ç€ŸäŒäž»çŸ©çµæžäœå¶ãç¶ããŠããŸãããŸããäžè¯äººæ°å
±ååœããããã 瀟äŒäž»çŸ©å
±ååœãã©ãªã¹äººæ°æ°äž»å
±ååœã瀟äŒäž»çŸ©åœã§ãããåžå Žçµæžãåãå
¥ãè¿å¹Žã¯ãã®å²åãé«ãŸã£ãŠããŸãã
ãã ããäžåç±³ã§ã¯ã¢ã¡ãªã«åè¡åœã«ããæ°èªç±äž»çŸ©ã«åºã¥ãæ¿æ²»ã»çµæžãžã®ä»å
¥ãžã®åçºããã21äžçŽã«å
¥ããšå米巊掟æ¿æš©ãæç«ããäž»èŠäŒæ¥(ç¹ã«ç³æ²¹ãªã©ã®é±ç£è³æº)ã®åœæåãæ Œå·®æ¯æ£ãªã©ãçµæžæ¿çã®äžéšã«ç€ŸäŒäž»çŸ©æ¿çãå°å
¥ããŠããåœãçŸããããã«ãªããŸããããããã®åœã
ã®äžã«ã¯ãããªã®ããã«æ¿æ²»ã®å®å®ãšçµæžæé·ã«ææãäžãããšãããããã°ããããºãšã©ã®ããã«æ¿æ²»çµæžã®æ··ä¹±ã«é¥ã£ãŠããåœããããŸãã
1997幎ãéŠæž¯ãã€ã®ãªã¹ããäžåœã«è¿éãããŸããããã®ãšãããäžåœã¯äžåœäºå¶åºŠãšããå¶åºŠãç¶ããŠããŸããäžåœäºå¶åºŠã¯ãäžåœãšãã1ã€ã®åœã§ãããªããéŠæž¯ãè³æ¬äž»çŸ©çµæžã®åºåãšããŠåå±
ãããå¶åºŠã®ããšã§ãã
äžåœã¯1978幎ãããã³ã»ã·ã¢ãªãã³(é§å°å¹³)ã«ãã瀟äŒäž»çŸ©åœã§ãããªããåžå ŽçµæžåãåŸã
ã«é²ããç©æ¥µçã«æµ·å€è³æ¬ãå°å
¥ããéæŸæ¿çãé²ããŠããŸããããã¯1993幎ã®æ²æ³æ¹æ£ã§ç€ŸäŒäž»çŸ©åžå ŽçµæžãšææåãããŸããããœããšãé£éŠãæ¿æ²»æ¹é©ããçµæžæ¹é©ãç®æããã®ã«å¯Ÿããäžåœã¯çµæžæ¹é©ããæ¿æ²»æ¹é©ãç®æããŠãããšãããŸãããã ã瀟äŒäž»çŸ©åžå Žçµæžã®äœçœ®ã¥ãã¯ã瀟äŒäž»çŸ©çµæžãè³æ¬äž»çŸ©çµæžã«äžŠã¶çµæžäœå¶ã®ã²ãšã€ãªã®ãã瀟äŒäž»çŸ©çµæžããè³æ¬äž»çŸ©çµæžãžç§»è¡ããéäžã®åœ¢ãªã®ãã§æèŠãåãããŠããŸãã
ä»æ¹ãè³æ¬äž»çŸ©çµæžã®äœå¶ã§ãã貧å¯ã®æ Œå·®ã»å€±æ¥ãªã©ã«ä»£è¡šããããåžå Žã®å€±æãã®è§£æ¶ã®ãã瀟äŒäž»çŸ©çæ¿çãå°å
¥ããããšããããŸããäŸãšããŠã¯ã以äžã®ãããªãã®ããããããŸãã
ããããè©Šã¿ã¯1980幎代ã«å
¥ããšã¢ã¡ãªã«ã®ã¬ãŒã¬ããã¯ã¹ãã€ã®ãªã¹ã®ãµããã£ãªãºã ã«å
žåçãªæ°èªç±äž»çŸ©æ¿çã«ãã£ãŠè»¢æããŠãããŸããããããã2000幎代ã«ã¯æ Œå·®ã®æ¡å€§ãªã©ãèæ¯ãšããŠæ°èªç±äž»çŸ©ãæ¹å€ãããããã«ãªããšãçŠç¥æ¿çãå¯è£å±€ãžã®èª²çšãªã©ã®æ¿çãèŠçŽãããåœããããŸãã
çŸåšã®ç€ŸäŒäž»çŸ©çµæžãšãã®çè«ã¯ã倧ãªãå°ãªããã«ã¯ã¹çµæžåŠã®åœ±é¿äžã«ãããŸãããã®ããã瀟äŒäž»çŸ©çµæžã«ã€ããŠç¥ãããã«ããŸããã«ã¯ã¹çµæžåŠã®çè«ãæŒãããŠãããŸãããã
ãŸããåèãŸã§ã«ä»¥äžã®ãªã³ã¯ãæ²èŒããŸãã
æå€ãããããŸãããããè³æ¬è«ãã«ãŠç€ŸäŒäž»çŸ©ãå
±ç£äž»çŸ©ã«ã€ããŠã¯ã»ãšãã©èªãããŠããŸããããã®ãããããè³æ¬è«ãã¯ç€ŸäŒäž»çŸ©ã»å
±ç£äž»çŸ©ã®çµå
ž äºã
ãã®ãããªèšè¿°ãããããã¹ããæžè©ã¯ãç§ãè³æ¬è«ãèªãã ããšãããŸããã宣èšã§ããããããæ¬ãè²·ã£ãŠããŸã£ããéæ»ã§å€æ¬å±ã«å©ã売ããè³æºãã¿ãšããŠãªãµã€ã¯ã«ã«åºããæ¹ããããããã·ã§ãã
ããããããè³æ¬è«ãã®ç¬¬äžã®ç®çã¯è³æ¬äž»çŸ©ã®ä»çµã¿ã®åæã§ãããããŠè³æ¬äž»çŸ©ã®çµçãè³æ¬äž»çŸ©ã«å
åšããççŸã®å¢å€§ã«ãããèªå£ããšããŠè«ããããŠããŸãã
å®éåŠæŽŸã¯å®éåŒèµã®åŒåãã¡ã«ãã£ãŠåœ¢æãããç 究åŠæŽŸã§ãããã«ã¯ã¹çµæžåŠãã瀟äŒäž»çŸ©ã€ããªãã®ãŒãæé€ãããã®ã§ãããããå³å¯ã«ã¯ç€ŸäŒäž»çŸ©çµæžåŠã«ã¯å«ããŸãããããã«ã¯ã¹çµæžåŠãèªãããã§ã¯æ¬ ãããŸããããã®ãããããã§çŽ¹ä»ããŠãããŸãããã
æ¿æ²»ã瀟äŒãå²åŠãªã©ãçµæžä»¥å€ã®ç¹ã«ã€ããŠã¯æ¬¡ãåºç€æç®ãšãªãã§ãããã
é称ãã°ã«ã³ããªãã»ã(ç¬: Grundrisse)ãããæå³ãåæãã«ã¯ã¹ãšåŸæãã«ã¯ã¹ãã€ãªããã®ã§ããããããéåžžã«éèŠããç 究è
ãããŸãã
ãã«ã¯ã¹ã®ç€ŸäŒäž»çŸ©è«ãèªãããŠããã®ã¯ããã®ããŽãŒã¿ç¶±é æ¹å€ãã®æ¹ã§ããããŽãŒã¿ç¶±é æ¹å€ããšã¯ãåœæã®ãã€ã瀟äŒæ°äž»åŽåå
ãäœæãã綱é æ¡ããã«ã¯ã¹ãæ¹è©ããããã€ãåŽåè
å
綱é è©æ³šããããã³ããã«é¢é£ããæçŽããããŸãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "çµæžåŠ>çŸä»£çµæžã®å€å®¹>çµæžã®å€å®¹>äžççµæžã®å€å®¹>瀟äŒäž»çŸ©çµæž",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "20äžçŽã«ã¯è³æ¬äž»çŸ©ã®ççŸããšãããšããè©Šã¿ããããŸãããããã瀟äŒäž»çŸ©çµæž(socialism)ã§ãã瀟äŒäž»çŸ©ã®ç¹åŸŽã¯æ¬¡ã®éãã§ãã",
"title": "瀟äŒäž»çŸ©çµæžãšã¯"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "è¿ä»£çãªç€ŸäŒäž»çŸ©è«ãçãŸããã®ã¯ç£æ¥é©åœä»¥éã§ãããã®ä»£è¡šçãªçè«å®¶ã»å®è·µè
ãããŒãªãšããµã³=ã·ã¢ã³ããªãŒãŠã§ã³ã®äžåã§ãã",
"title": "瀟äŒäž»çŸ©çµæžã®çè«ãšå®è·µå²"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "圌ãã¯åŸã«ãšã³ã²ã«ã¹ããã空æ³ç瀟äŒäž»çŸ©ããšåŒã°ããŸãã(ã空æ³ããç§åŠãžã)ããã®ãããçŸä»£ã§ã圌ãã¯ç©ºæ³ç瀟äŒäž»çŸ©è
ãšåŒã°ããŠããã®ã§ããããœé£å瀟äŒäž»çŸ©ã®åŽ©å£ã»äžåœã®ç€ŸäŒäž»çŸ©åžå Žçµæžãäºå®äžã®æ°èªç±äž»çŸ©çµæžãžãšèµãåã£ãŠããçŸåšãåè©äŸ¡ãå§ãŸã£ãŠããŸãã",
"title": "瀟äŒäž»çŸ©çµæžã®çè«ãšå®è·µå²"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "1867幎ããã€ãã®çµæžåŠè
ã»å²åŠè
ã«ãŒã«ã»ãã«ã¯ã¹(Karl Heinrich Marx)ã¯èæžãè³æ¬è«ãã§ãè³æ¬äž»çŸ©ã®æã€åºæã®ççŸãå°æ¥æ°ãã瀟äŒäœå¶ãçããšææããŸãããåãããã€ãã®çµæžåŠè
ã»å²åŠè
ã®ããªãŒããªãã»ãšã³ã²ã«ã¹(Friedrich Engels)ãèæžã家æã»ç§æ財ç£ã»åœå®¶ã®èµ·æºããªã©ã§ç€ŸäŒäž»çŸ©ã»å
±ç£äž»çŸ©ãå±ããŸããã",
"title": "瀟äŒäž»çŸ©çµæžã®çè«ãšå®è·µå²"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ãã«ã¯ã¹ãã®çè«ãèæ¯ãšããŠã1917幎ã«ãã·ã¢é©åœã§ãœããšã瀟äŒäž»çŸ©æ¿æš©ãèªçããŸããããã·ã¢ã¯1921幎ããæ°çµæžæ¿ç(ããããÐÐŸÐ²Ð°Ñ ÑкПМПЌОÑеÑÐºÐ°Ñ Ð¿ÐŸÐ»ÐžÑОка)ãæšé²ãã1928幎ã«ãœããšãé£éŠã¯ç¬¬äžæ¬¡5ã«å¹Žèšç»ã«ãã瀟äŒäž»çŸ©çµæžã®å°å
¥ãé²ããŸãããããã«ç¶ãã1945幎ã«æ¬¡ã
ãšç¬ç«ããã¢ãžã¢ãæ±ãšãŒãããã®åœã
ãããã«1949幎ã«æç«ããäžåœã§ã瀟äŒäž»çŸ©çµæžãå°å
¥ãããŸããã",
"title": "瀟äŒäž»çŸ©çµæžã®çè«ãšå®è·µå²"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "æžã£ãŠããŸããäžçã§æåã®ç€ŸäŒäž»çŸ©çµæžã®åœã ã£ããœããšã瀟äŒäž»çŸ©å
±ååœé£éŠããäžæ¯æ°ããè±åºã§ããªããªã£ãŠããŸã£ããã1991幎ã«ç€ŸäŒäž»çŸ©çµæžããããŸããããšãŒãããã§ç€ŸäŒäž»çŸ©çµæžããšãåœã¯ãããããŸããããæé®®æ°äž»äž»çŸ©äººæ°å
±ååœããã¥ãŒãå
±ååœã§ã¯ç€ŸäŒäž»çŸ©çµæžäœå¶ãç¶ããŠããŸãããŸããäžè¯äººæ°å
±ååœããããã 瀟äŒäž»çŸ©å
±ååœãã©ãªã¹äººæ°æ°äž»å
±ååœã瀟äŒäž»çŸ©åœã§ãããåžå Žçµæžãåãå
¥ãè¿å¹Žã¯ãã®å²åãé«ãŸã£ãŠããŸãã",
"title": "çŸåšã®ç€ŸäŒäž»çŸ©çµæž"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ãã ããäžåç±³ã§ã¯ã¢ã¡ãªã«åè¡åœã«ããæ°èªç±äž»çŸ©ã«åºã¥ãæ¿æ²»ã»çµæžãžã®ä»å
¥ãžã®åçºããã21äžçŽã«å
¥ããšå米巊掟æ¿æš©ãæç«ããäž»èŠäŒæ¥(ç¹ã«ç³æ²¹ãªã©ã®é±ç£è³æº)ã®åœæåãæ Œå·®æ¯æ£ãªã©ãçµæžæ¿çã®äžéšã«ç€ŸäŒäž»çŸ©æ¿çãå°å
¥ããŠããåœãçŸããããã«ãªããŸããããããã®åœã
ã®äžã«ã¯ãããªã®ããã«æ¿æ²»ã®å®å®ãšçµæžæé·ã«ææãäžãããšãããããã°ããããºãšã©ã®ããã«æ¿æ²»çµæžã®æ··ä¹±ã«é¥ã£ãŠããåœããããŸãã",
"title": "çŸåšã®ç€ŸäŒäž»çŸ©çµæž"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "1997幎ãéŠæž¯ãã€ã®ãªã¹ããäžåœã«è¿éãããŸããããã®ãšãããäžåœã¯äžåœäºå¶åºŠãšããå¶åºŠãç¶ããŠããŸããäžåœäºå¶åºŠã¯ãäžåœãšãã1ã€ã®åœã§ãããªããéŠæž¯ãè³æ¬äž»çŸ©çµæžã®åºåãšããŠåå±
ãããå¶åºŠã®ããšã§ãã",
"title": "çŸåšã®ç€ŸäŒäž»çŸ©çµæž"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "äžåœã¯1978幎ãããã³ã»ã·ã¢ãªãã³(é§å°å¹³)ã«ãã瀟äŒäž»çŸ©åœã§ãããªããåžå ŽçµæžåãåŸã
ã«é²ããç©æ¥µçã«æµ·å€è³æ¬ãå°å
¥ããéæŸæ¿çãé²ããŠããŸããããã¯1993幎ã®æ²æ³æ¹æ£ã§ç€ŸäŒäž»çŸ©åžå ŽçµæžãšææåãããŸããããœããšãé£éŠãæ¿æ²»æ¹é©ããçµæžæ¹é©ãç®æããã®ã«å¯Ÿããäžåœã¯çµæžæ¹é©ããæ¿æ²»æ¹é©ãç®æããŠãããšãããŸãããã ã瀟äŒäž»çŸ©åžå Žçµæžã®äœçœ®ã¥ãã¯ã瀟äŒäž»çŸ©çµæžãè³æ¬äž»çŸ©çµæžã«äžŠã¶çµæžäœå¶ã®ã²ãšã€ãªã®ãã瀟äŒäž»çŸ©çµæžããè³æ¬äž»çŸ©çµæžãžç§»è¡ããéäžã®åœ¢ãªã®ãã§æèŠãåãããŠããŸãã",
"title": "çŸåšã®ç€ŸäŒäž»çŸ©çµæž"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "ä»æ¹ãè³æ¬äž»çŸ©çµæžã®äœå¶ã§ãã貧å¯ã®æ Œå·®ã»å€±æ¥ãªã©ã«ä»£è¡šããããåžå Žã®å€±æãã®è§£æ¶ã®ãã瀟äŒäž»çŸ©çæ¿çãå°å
¥ããããšããããŸããäŸãšããŠã¯ã以äžã®ãããªãã®ããããããŸãã",
"title": "çŸåšã®ç€ŸäŒäž»çŸ©çµæž"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "ããããè©Šã¿ã¯1980幎代ã«å
¥ããšã¢ã¡ãªã«ã®ã¬ãŒã¬ããã¯ã¹ãã€ã®ãªã¹ã®ãµããã£ãªãºã ã«å
žåçãªæ°èªç±äž»çŸ©æ¿çã«ãã£ãŠè»¢æããŠãããŸããããããã2000幎代ã«ã¯æ Œå·®ã®æ¡å€§ãªã©ãèæ¯ãšããŠæ°èªç±äž»çŸ©ãæ¹å€ãããããã«ãªããšãçŠç¥æ¿çãå¯è£å±€ãžã®èª²çšãªã©ã®æ¿çãèŠçŽãããåœããããŸãã",
"title": "çŸåšã®ç€ŸäŒäž»çŸ©çµæž"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "çŸåšã®ç€ŸäŒäž»çŸ©çµæžãšãã®çè«ã¯ã倧ãªãå°ãªããã«ã¯ã¹çµæžåŠã®åœ±é¿äžã«ãããŸãããã®ããã瀟äŒäž»çŸ©çµæžã«ã€ããŠç¥ãããã«ããŸããã«ã¯ã¹çµæžåŠã®çè«ãæŒãããŠãããŸãããã",
"title": "çè«"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "ãŸããåèãŸã§ã«ä»¥äžã®ãªã³ã¯ãæ²èŒããŸãã",
"title": "çè«"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "æå€ãããããŸãããããè³æ¬è«ãã«ãŠç€ŸäŒäž»çŸ©ãå
±ç£äž»çŸ©ã«ã€ããŠã¯ã»ãšãã©èªãããŠããŸããããã®ãããããè³æ¬è«ãã¯ç€ŸäŒäž»çŸ©ã»å
±ç£äž»çŸ©ã®çµå
ž äºã
ãã®ãããªèšè¿°ãããããã¹ããæžè©ã¯ãç§ãè³æ¬è«ãèªãã ããšãããŸããã宣èšã§ããããããæ¬ãè²·ã£ãŠããŸã£ããéæ»ã§å€æ¬å±ã«å©ã売ããè³æºãã¿ãšããŠãªãµã€ã¯ã«ã«åºããæ¹ããããããã·ã§ãã",
"title": "çè«"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "ããããããè³æ¬è«ãã®ç¬¬äžã®ç®çã¯è³æ¬äž»çŸ©ã®ä»çµã¿ã®åæã§ãããããŠè³æ¬äž»çŸ©ã®çµçãè³æ¬äž»çŸ©ã«å
åšããççŸã®å¢å€§ã«ãããèªå£ããšããŠè«ããããŠããŸãã",
"title": "çè«"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "å®éåŠæŽŸã¯å®éåŒèµã®åŒåãã¡ã«ãã£ãŠåœ¢æãããç 究åŠæŽŸã§ãããã«ã¯ã¹çµæžåŠãã瀟äŒäž»çŸ©ã€ããªãã®ãŒãæé€ãããã®ã§ãããããå³å¯ã«ã¯ç€ŸäŒäž»çŸ©çµæžåŠã«ã¯å«ããŸãããããã«ã¯ã¹çµæžåŠãèªãããã§ã¯æ¬ ãããŸããããã®ãããããã§çŽ¹ä»ããŠãããŸãããã",
"title": "çè«"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "æ¿æ²»ã瀟äŒãå²åŠãªã©ãçµæžä»¥å€ã®ç¹ã«ã€ããŠã¯æ¬¡ãåºç€æç®ãšãªãã§ãããã",
"title": "çè«"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "é称ãã°ã«ã³ããªãã»ã(ç¬: Grundrisse)ãããæå³ãåæãã«ã¯ã¹ãšåŸæãã«ã¯ã¹ãã€ãªããã®ã§ããããããéåžžã«éèŠããç 究è
ãããŸãã",
"title": "çè«"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "ãã«ã¯ã¹ã®ç€ŸäŒäž»çŸ©è«ãèªãããŠããã®ã¯ããã®ããŽãŒã¿ç¶±é æ¹å€ãã®æ¹ã§ããããŽãŒã¿ç¶±é æ¹å€ããšã¯ãåœæã®ãã€ã瀟äŒæ°äž»åŽåå
ãäœæãã綱é æ¡ããã«ã¯ã¹ãæ¹è©ããããã€ãåŽåè
å
綱é è©æ³šããããã³ããã«é¢é£ããæçŽããããŸãã",
"title": "çè«"
}
] | çµæžåŠïŒçŸä»£çµæžã®å€å®¹ïŒçµæžã®å€å®¹ïŒäžççµæžã®å€å®¹ïŒç€ŸäŒäž»çŸ©çµæž | [[çµæžåŠ]]ïŒ[[çµæžåŠ_çŸä»£çµæžã®å€å®¹|çŸä»£çµæžã®å€å®¹]]ïŒ[[çµæžåŠ_çŸä»£çµæžã®å€å®¹_çµæžã®å€å®¹|çµæžã®å€å®¹]]ïŒ[[çµæžåŠ_çŸä»£çµæžã®å€å®¹_çµæžã®å€å®¹_äžççµæžã®å€å®¹|äžççµæžã®å€å®¹]]ïŒç€ŸäŒäž»çŸ©çµæž
----
__TOC__
== 瀟äŒäž»çŸ©çµæžãšã¯ ==
20äžçŽã«ã¯[[çµæžåŠ_çŸä»£çµæžã®å€å®¹_çµæžã®å€å®¹_äžççµæžã®å€å®¹_è³æ¬äž»çŸ©çµæž#è³æ¬äž»çŸ©çççŸ|è³æ¬äž»çŸ©ã®ççŸ]]ããšãããšããè©Šã¿ããããŸãããããã'''瀟äŒäž»çŸ©çµæž(socialism)'''ã§ãã瀟äŒäž»çŸ©ã®ç¹åŸŽã¯æ¬¡ã®éãã§ãã
*'''è³æ¬å®¶ãåŽåè
ãæŸåããä»çµã¿ããããããšãããããŸãã'''
*ç§æ財ç£ãåŠå®ïŒçç£æ段ã¯ç€ŸäŒïŒåœå®¶ãååçµåãªã©ïŒã®ææãšããŠããŸãã
*åœå®¶ã«ããè³æºã»åŽååã®èšç»é
åïŒäœãã©ãã ãäœãããåœå®¶ã決ããŸãã
== 瀟äŒäž»çŸ©çµæžã®çè«ãšå®è·µå² ==
=== 空æ³ç瀟äŒäž»çŸ© ===
è¿ä»£çãªç€ŸäŒäž»çŸ©è«ãçãŸããã®ã¯ç£æ¥é©åœä»¥éã§ãããã®ä»£è¡šçãªçè«å®¶ã»å®è·µè
ã[[w:ã·ã£ã«ã«ã»ããŒãªãš|ããŒãªãš]]ã[[w:ã¢ã³ãªã»ãã»ãµã³ïŒã·ã¢ã³|ãµã³=ã·ã¢ã³]]ã[[w:ãããŒãã»ãªãŠãšã³|ãªãŒãŠã§ã³]]ã®äžåã§ãã
圌ãã¯åŸã«ãšã³ã²ã«ã¹ããã空æ³ç瀟äŒäž»çŸ©ããšåŒã°ããŸãã(ã空æ³ããç§åŠãžã)ããã®ãããçŸä»£ã§ã圌ãã¯ç©ºæ³ç瀟äŒäž»çŸ©è
ãšåŒã°ããŠããã®ã§ããããœé£å瀟äŒäž»çŸ©ã®åŽ©å£ã»äžåœã®ç€ŸäŒäž»çŸ©åžå Žçµæžãäºå®äžã®æ°èªç±äž»çŸ©çµæžãžãšèµãåã£ãŠããçŸåšãåè©äŸ¡ãå§ãŸã£ãŠããŸãã
=== ãã«ã¯ã¹ãšãšã³ã²ã«ã¹ ===
1867幎ããã€ãã®çµæžåŠè
ã»å²åŠè
[[w:ã«ãŒã«ã»ãã«ã¯ã¹|ã«ãŒã«ã»ãã«ã¯ã¹(Karl Heinrich Marx)]]ã¯èæžãè³æ¬è«ãã§ãè³æ¬äž»çŸ©ã®æã€åºæã®ççŸãå°æ¥æ°ãã瀟äŒäœå¶ãçããšææããŸãããåãããã€ãã®çµæžåŠè
ã»å²åŠè
ã®[[w:ããªãŒããªãã»ãšã³ã²ã«ã¹|ããªãŒããªãã»ãšã³ã²ã«ã¹(Friedrich Engels)]]ãèæžã家æã»ç§æ財ç£ã»åœå®¶ã®èµ·æºããªã©ã§ç€ŸäŒäž»çŸ©ã»å
±ç£äž»çŸ©ãå±ããŸããã
=== ãã·ã¢é©åœãšç€ŸäŒäž»çŸ©è«žåœã®æç« ===
ãã«ã¯ã¹ãã®çè«ãèæ¯ãšããŠã1917幎ã«ãã·ã¢é©åœã§ãœããšã瀟äŒäž»çŸ©æ¿æš©ãèªçããŸããããã·ã¢ã¯1921幎ããæ°çµæžæ¿çïŒããããÐÐŸÐ²Ð°Ñ ÑкПМПЌОÑеÑÐºÐ°Ñ Ð¿ÐŸÐ»ÐžÑОкаïŒãæšé²ãã1928幎ã«ãœããšãé£éŠã¯ç¬¬äžæ¬¡ïŒã«å¹Žèšç»ã«ãã瀟äŒäž»çŸ©çµæžã®å°å
¥ãé²ããŸãããããã«ç¶ãã1945幎ã«æ¬¡ã
ãšç¬ç«ããã¢ãžã¢ãæ±ãšãŒãããã®åœã
ãããã«1949幎ã«æç«ããäžåœã§ã瀟äŒäž»çŸ©çµæžãå°å
¥ãããŸããã
=== 瀟äŒæ°äž»äž»çŸ© ===
== çŸåšã®ç€ŸäŒäž»çŸ©çµæž ==
=== 瀟äŒäž»çŸ©çµæžã®åœã¯æžã£ãŠãã®ïŒ ===
æžã£ãŠããŸããäžçã§æåã®ç€ŸäŒäž»çŸ©çµæžã®åœã ã£ããœããšã瀟äŒäž»çŸ©å
±ååœé£éŠããäžæ¯æ°ããè±åºã§ããªããªã£ãŠããŸã£ããã1991幎ã«ç€ŸäŒäž»çŸ©çµæžããããŸããããšãŒãããã§ç€ŸäŒäž»çŸ©çµæžããšãåœã¯ãããããŸããããæé®®æ°äž»äž»çŸ©äººæ°å
±ååœããã¥ãŒãå
±ååœã§ã¯ç€ŸäŒäž»çŸ©çµæžäœå¶ãç¶ããŠããŸãããŸããäžè¯äººæ°å
±ååœããããã 瀟äŒäž»çŸ©å
±ååœãã©ãªã¹äººæ°æ°äž»å
±ååœã瀟äŒäž»çŸ©åœã§ãããåžå Žçµæžãåãå
¥ãè¿å¹Žã¯ãã®å²åãé«ãŸã£ãŠããŸãã
ãã ããäžåç±³ã§ã¯ã¢ã¡ãªã«åè¡åœã«ããæ°èªç±äž»çŸ©ã«åºã¥ãæ¿æ²»ã»çµæžãžã®ä»å
¥ãžã®åçºããã21äžçŽã«å
¥ããšå米巊掟æ¿æš©ãæç«ããäž»èŠäŒæ¥(ç¹ã«ç³æ²¹ãªã©ã®é±ç£è³æº)ã®åœæåãæ Œå·®æ¯æ£ãªã©ãçµæžæ¿çã®äžéšã«ç€ŸäŒäž»çŸ©æ¿çãå°å
¥ããŠããåœãçŸããããã«ãªããŸããããããã®åœã
ã®äžã«ã¯ãããªã®ããã«æ¿æ²»ã®å®å®ãšçµæžæé·ã«ææãäžãããšãããããã°ããããºãšã©ã®ããã«æ¿æ²»çµæžã®æ··ä¹±ã«é¥ã£ãŠããåœããããŸãã
=== äžåœã®çµæžäœå¶ ===
1997幎ãéŠæž¯ãã€ã®ãªã¹ããäžåœã«è¿éãããŸããããã®ãšãããäžåœã¯'''äžåœäºå¶åºŠ'''ãšããå¶åºŠãç¶ããŠããŸããäžåœäºå¶åºŠã¯ãäžåœãšããïŒã€ã®åœã§ãããªããéŠæž¯ãè³æ¬äž»çŸ©çµæžã®åºåãšããŠåå±
ãããå¶åºŠã®ããšã§ãã
äžåœã¯1978幎ãã[[w:ããŠå°å¹³|ãã³ã»ã·ã¢ãªãã³(é§å°å¹³)]]ã«ãã瀟äŒäž»çŸ©åœã§ãããªããåžå ŽçµæžåãåŸã
ã«é²ããç©æ¥µçã«æµ·å€è³æ¬ãå°å
¥ããéæŸæ¿çãé²ããŠããŸããããã¯1993幎ã®æ²æ³æ¹æ£ã§ç€ŸäŒäž»çŸ©åžå ŽçµæžãšææåãããŸããããœããšãé£éŠãæ¿æ²»æ¹é©ããçµæžæ¹é©ãç®æããã®ã«å¯Ÿããäžåœã¯çµæžæ¹é©ããæ¿æ²»æ¹é©ãç®æããŠãããšãããŸãããã ã瀟äŒäž»çŸ©åžå Žçµæžã®äœçœ®ã¥ãã¯ã瀟äŒäž»çŸ©çµæžãè³æ¬äž»çŸ©çµæžã«äžŠã¶çµæžäœå¶ã®ã²ãšã€ãªã®ãã瀟äŒäž»çŸ©çµæžããè³æ¬äž»çŸ©çµæžãžç§»è¡ããéäžã®åœ¢ãªã®ãã§æèŠãåãããŠããŸãã
=== ä¿®æ£è³æ¬äž»çŸ© ===
ä»æ¹ãè³æ¬äž»çŸ©çµæžã®äœå¶ã§ãã貧å¯ã®æ Œå·®ã»å€±æ¥ãªã©ã«ä»£è¡šããããåžå Žã®å€±æãã®è§£æ¶ã®ãã瀟äŒäž»çŸ©çæ¿çãå°å
¥ããããšããããŸããäŸãšããŠã¯ã以äžã®ãããªãã®ããããããŸãã
*é»æ°ã»ã¬ã¹ã»æ°Žéãééã«ä»£è¡šãããå
Œ
±äº€éæ©é¢ããã®ä»ã®ç€ŸäŒçã€ã³ãã©ãªã©ãåœæ°ç掻ã«æ¬ ãããªã財ããµãŒãã¹ãæäŸããäŒæ¥ã¯åœå¶ãªããå
¬å¶äŒæ¥ãšããã
*çµæžæ¿çã«ãããèšç»çµæžã®å°å
¥(äŸ:æŠåæ¥æ¬ã«ããã[[w:çµæžæ°äœå¶ç¢ºç«èŠç¶±]])ããããã¯ãçåºã«ããæ¥çã®ã³ã³ãããŒã«(äŸ:[[w:è·éè¹å£æ¹åŒ]])ã
*çŽæ¥çšã«ããã环é²èª²çšã®åŒ·åãšååé
ã
*çŠç¥æ¿çã®å
å®ã
ããããè©Šã¿ã¯1980幎代ã«å
¥ããšã¢ã¡ãªã«ã®ã¬ãŒã¬ããã¯ã¹ãã€ã®ãªã¹ã®ãµããã£ãªãºã ã«å
žåçãªæ°èªç±äž»çŸ©æ¿çã«ãã£ãŠè»¢æããŠãããŸããããããã2000幎代ã«ã¯æ Œå·®ã®æ¡å€§ãªã©ãèæ¯ãšããŠæ°èªç±äž»çŸ©ãæ¹å€ãããããã«ãªããšãçŠç¥æ¿çãå¯è£å±€ãžã®èª²çšãªã©ã®æ¿çãèŠçŽãããåœããããŸãã
== çè« ==
=== ãã«ã¯ã¹çµæžåŠ ===
çŸåšã®ç€ŸäŒäž»çŸ©çµæžãšãã®çè«ã¯ã倧ãªãå°ãªããã«ã¯ã¹çµæžåŠã®åœ±é¿äžã«ãããŸãããã®ããã瀟äŒäž»çŸ©çµæžã«ã€ããŠç¥ãããã«ããŸããã«ã¯ã¹çµæžåŠã®çè«ãæŒãããŠãããŸãããã
ãŸããåèãŸã§ã«ä»¥äžã®ãªã³ã¯ãæ²èŒããŸãã
* [[ãè³æ¬è«ãå
¥é]]
* [[ãã«ã¯ã¹çµæžåŠ]]
==== ãè³æ¬è«ã ====
æå€ãããããŸãããããè³æ¬è«ãã«ãŠç€ŸäŒäž»çŸ©ãå
±ç£äž»çŸ©ã«ã€ããŠã¯ã»ãšãã©èªãããŠããŸããããã®ãããããè³æ¬è«ãã¯ç€ŸäŒäž»çŸ©ã»å
±ç£äž»çŸ©ã®çµå
žãäºã
ãã®ãããªèšè¿°ãããããã¹ããæžè©ã¯ãç§ãè³æ¬è«ãèªãã ããšãããŸããã宣èšã§ããããããæ¬ãè²·ã£ãŠããŸã£ããéæ»ã§å€æ¬å±ã«å©ã売ããè³æºãã¿ãšããŠãªãµã€ã¯ã«ã«åºããæ¹ããããããã·ã§ãã
ããããããè³æ¬è«ãã®ç¬¬äžã®ç®çã¯è³æ¬äž»çŸ©ã®ä»çµã¿ã®åæã§ãããããŠè³æ¬äž»çŸ©ã®çµçãè³æ¬äž»çŸ©ã«å
åšããççŸã®å¢å€§ã«ãããèªå£ããšããŠè«ããããŠããŸãã
==== å®éåŠæŽŸ ====
[[w:å®éåŠæŽŸ|å®éåŠæŽŸ]]ã¯[[w:å®éåŒèµ|å®éåŒèµ]]ã®åŒåãã¡ã«ãã£ãŠåœ¢æãããç 究åŠæŽŸã§ãããã«ã¯ã¹çµæžåŠãã瀟äŒäž»çŸ©ã€ããªãã®ãŒãæé€ãããã®ã§ãããããå³å¯ã«ã¯ç€ŸäŒäž»çŸ©çµæžåŠã«ã¯å«ããŸãããããã«ã¯ã¹çµæžåŠãèªãããã§ã¯æ¬ ãããŸããããã®ãããããã§çŽ¹ä»ããŠãããŸãããã
=== 瀟äŒäž»çŸ©è« ===
æ¿æ²»ã瀟äŒãå²åŠãªã©ãçµæžä»¥å€ã®ç¹ã«ã€ããŠã¯æ¬¡ãåºç€æç®ãšãªãã§ãããã
*ãçµæžåŠã»å²åŠèçš¿ãããã€ãã»ã€ããªãã®ãŒããªã©ãåæãã«ã¯ã¹ã®èäœ
*ãçµæžåŠæ¹å€èŠç¶±ã
*ããŽãŒã¿ç¶±é æ¹å€ã
*ã空æ³ããç§åŠãžãã家æã»ç§æ財ç£ã»åœå®¶ã®èµ·æºããªã©ãšã³ã²ã«ã¹ã®èäœ
==== åæãã«ã¯ã¹ ====
==== ãçµæžåŠæ¹å€èŠç¶±ã ====
é称ãã°ã«ã³ããªãã»ãïŒç¬: GrundrisseïŒãããæå³ãåæãã«ã¯ã¹ãšåŸæãã«ã¯ã¹ãã€ãªããã®ã§ããããããéåžžã«éèŠããç 究è
ãããŸãã
==== ããŽãŒã¿ç¶±é æ¹å€ã ====
ãã«ã¯ã¹ã®ç€ŸäŒäž»çŸ©è«ãèªãããŠããã®ã¯ããã®ããŽãŒã¿ç¶±é æ¹å€ãã®æ¹ã§ããããŽãŒã¿ç¶±é æ¹å€ããšã¯ãåœæã®ãã€ã瀟äŒæ°äž»åŽåå
ãäœæãã綱é æ¡ããã«ã¯ã¹ãæ¹è©ããããã€ãåŽåè
å
綱é è©æ³šããããã³ããã«é¢é£ããæçŽããããŸãã
==== ãšã³ã²ã«ã¹ ====
=== ãœé£å瀟äŒäž»çŸ©è« ===
==== ã¬ãŒãã³ ====
==== ã¹ã¿ãŒãªã³ ====
=== äžåœ ===
==== æ¯æ²¢æ±äž»çŸ© ====
==== é§å°å¹³çè« ====
== åèæç® ==
=== å€å
ž ===
*ãã«ã¯ã¹ãè³æ¬è«ã
*ãã«ã¯ã¹ããŽãŒã綱é æ¹å€ã»ãšã«ãã«ã綱é æ¹å€ã
*ã¬ãŒãã³ãåžåœäž»çŸ©è«ã
=== å®éçè« ===
*å®éåŒèµãçµæžåè«ã
*å®éåŒèµãçµæžåŠã
*倧å
åãåœå®¶ç¬å è³æ¬äž»çŸ©ã
=== ãã®ä» ===
*å°æŸ€å
å©ãçè«çµæžåŠââãã«ã¯ã¹çµæžåŠå
¥éã[https://syllabus.hosei.ac.jp/files/1362108.pdf]
* åŽå±±æ¿æ¯
ãè³æ¬ã(岩波æžåº, 2004幎)
* ããŽã£ããã»ããŒãŽã§ã€ããè³æ¬è«ãå
¥éã(森ç°æä¹ã»äžæ奜åèš³, äœå瀟, 2011幎)
* ããŽã£ããã»ããŒãŽã§ã€ãè³æ¬ã®ãè¬ãââäžçéèææ
ãš21äžçŽè³æ¬äž»çŸ© ã(森ç°æä¹ã»å€§å±å®æŽã»äžæ奜åã»æ°äºç°æºå¹žèš³, äœå瀟, 2012幎)
</div>
{{stub}}
[[Category:çµæžåŠ|*]] | null | 2022-05-01T12:07:05Z | [
"ãã³ãã¬ãŒã:Stub"
] | https://ja.wikibooks.org/wiki/%E7%B5%8C%E6%B8%88%E5%AD%A6_%E7%8F%BE%E4%BB%A3%E7%B5%8C%E6%B8%88%E3%81%AE%E5%A4%89%E5%AE%B9_%E7%B5%8C%E6%B8%88%E3%81%AE%E5%A4%89%E5%AE%B9_%E4%B8%96%E7%95%8C%E7%B5%8C%E6%B8%88%E3%81%AE%E5%A4%89%E5%AE%B9_%E7%A4%BE%E4%BC%9A%E4%B8%BB%E7%BE%A9%E7%B5%8C%E6%B8%88 |
1,794 | 解æåŠåºç€/ÎŽã®éžã³æ¹ | ä»»æ(â)ã®æ£ã®æ°Îµã«å¯Ÿãããã(â)æ°ÎŽãååšã
ãªãã°
ãšãªããšããLã¯ãxãcã«è¿ä»ããæã® f(x)ã®æ¥µéãšãããŸãã
èšãæããã°ãæ£ã®æ°Îµãäžããããšãé©åœãªÎŽãéžã¶äºã«ãã£ãŠ
ãªãã°
ãšãªãããšã蚌æã§ããŸãã
ããã«èšãã°ããã®ãããªèšŒæãå
šãŠã®(â)ε > 0ã«å¯ŸããŠå¯èœã§ãã
ãã®åœ¢åŒçãªå®çŸ©ã¯ã極éãæ±ããã«ã¯å°ãäžäŸ¿ã§ãã極éLãèŠã€ããããã®æ¹æ³è«ã¯äžãããããæ°å€ã極éã§ãããã©ãããå€å®ããã®ã«ã ã䜿ããŸããçŽæçãªæ¥µéã®å®çŸ©ãã䌌ããããªåé¡ããã®é¡æšãæãã¯ãããã¿ã«ã®å®çãªã©ã®å®çãçšããŠæ¥µéãäºæ³ãã圢åŒçãªå®çŸ©ãçšããŠããã®å€ã極éã§ãããåŠãã瀺ãããšãã§ããŸãã
â:å
šç§°èšå·ãä»»æãå
šãŠ
â:ååšèšå·ãååšããã
xã c=9ã«è¿ä»ããæã®ãf(x) = x + 5 ã®æ¥µéãæ¢ãäºãèããŸãã極éL 㯠9+5=14 ã§ããããšãåãã£ãŠããŠãããã¯æ¬¡ã®ããã«èšŒæã§ããŸãã
ÎŽ = ε ãšéžã¹ã° (ãã®éžã³æ¹ããã®ããŒãžã®äž»é¡ã§ãã)
ãªãã°
ãšããããšã蚌æã§ããããã§ãã
å®ã¯ã蚌æã®åŒãéã«èŸ¿ãäºã«ãã£ãŠãÎŽãéžã³ãŸããã
ãã®å Žåã
ãã
ãšãªããŸãã
ãããã£ãŠÎŽ = εãšéžã¹ã°ã蚌æèªäœããã®ããã«ç°¡åã«ã§ããŸãããã®äŸã¯ãšãŠãç°¡åãªäŸãªã®ã§ãäžè¬ã«ã¯ããäžæãã¯ã¯è¡ããŸããã
xã 2ã«è¿ä»ãããšããf(x) = x2 - 9 ã®æ¥µéãL = â5ã§ããããšã蚌æããŸãã
ãªãã°
ã瀺ãããšãå¿
èŠã§ãã
ããã§ããéã«èŸ¿ã£ãŠÎŽãæ¢ããŸãããŸãæåã«ãxã䜿ãã㫠Ύ㚠εã®é¢ä¿ãè¡šãããšãèããŸãã
ãŸãäžè§äžçåŒãçšããŠ
ãšãªãããšãèããã°
ãšãªãã®ã§
ãæºããããã« ÎŽãéžã¹ã°ãããšåãããŸãããã®æåŸã®æ¹çšåŒã¯ãè«ççã«åºãŠããããã§ã¯ãªããããããã®äžçåŒãèŠæ¯ã¹ãŠåã«ãã®ããã«éžã¹ã°ã蚌æãäžæããããšããã ãããšããçŽæçãªãã¯ããã¯ã§ãããã®æ¹çšåŒã®è§£ãšããŠÎŽãéžãã§ããã蚌æã®æåŸã®æ®µéã§ããã®éã«èŸ¿ã£ãŠåŸãããæ¹çšåŒã䜿çšããŸãã
ÎŽã®äºæ¬¡æ¹çšåŒã ãšæã£ãŠãÎŽãæ£ã®æ°ã§ããããšã«æ³šæããŠè§£ããš
ãšãªããŸãã
ãã®å€ãçšããŠã極éã§ããããšã®èšŒæãè¡ããŸãã
ãªãã°
xã 0ã«è¿ä»ãããšã f(x) = sin ( x ) x {\displaystyle {\frac {\sin(x)}{x}}} ã®æ¥µéã L = 1 ã«ãªãããšã瀺ããŠãã ããã
xã0ã«è¿ä»ãããšããf(x) = 1/x ã 極éãæããªãããšã瀺ããŠãã ããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ä»»æ(â)ã®æ£ã®æ°Îµã«å¯Ÿãããã(â)æ°ÎŽãååšã",
"title": "ÎŽã®éžã³æ¹"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ãªãã°",
"title": "ÎŽã®éžã³æ¹"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ãšãªããšããLã¯ãxãcã«è¿ä»ããæã® f(x)ã®æ¥µéãšãããŸãã",
"title": "ÎŽã®éžã³æ¹"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "èšãæããã°ãæ£ã®æ°Îµãäžããããšãé©åœãªÎŽãéžã¶äºã«ãã£ãŠ",
"title": "ÎŽã®éžã³æ¹"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ãªãã°",
"title": "ÎŽã®éžã³æ¹"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ãšãªãããšã蚌æã§ããŸãã",
"title": "ÎŽã®éžã³æ¹"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ããã«èšãã°ããã®ãããªèšŒæãå
šãŠã®(â)ε > 0ã«å¯ŸããŠå¯èœã§ãã",
"title": "ÎŽã®éžã³æ¹"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ãã®åœ¢åŒçãªå®çŸ©ã¯ã極éãæ±ããã«ã¯å°ãäžäŸ¿ã§ãã極éLãèŠã€ããããã®æ¹æ³è«ã¯äžãããããæ°å€ã極éã§ãããã©ãããå€å®ããã®ã«ã ã䜿ããŸããçŽæçãªæ¥µéã®å®çŸ©ãã䌌ããããªåé¡ããã®é¡æšãæãã¯ãããã¿ã«ã®å®çãªã©ã®å®çãçšããŠæ¥µéãäºæ³ãã圢åŒçãªå®çŸ©ãçšããŠããã®å€ã極éã§ãããåŠãã瀺ãããšãã§ããŸãã",
"title": "ÎŽã®éžã³æ¹"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "â:å
šç§°èšå·ãä»»æãå
šãŠ",
"title": "ÎŽã®éžã³æ¹"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "â:ååšèšå·ãååšããã",
"title": "ÎŽã®éžã³æ¹"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "xã c=9ã«è¿ä»ããæã®ãf(x) = x + 5 ã®æ¥µéãæ¢ãäºãèããŸãã極éL 㯠9+5=14 ã§ããããšãåãã£ãŠããŠãããã¯æ¬¡ã®ããã«èšŒæã§ããŸãã",
"title": "ÎŽã®éžã³æ¹"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "ÎŽ = ε ãšéžã¹ã° (ãã®éžã³æ¹ããã®ããŒãžã®äž»é¡ã§ãã)",
"title": "ÎŽã®éžã³æ¹"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "ãªãã°",
"title": "ÎŽã®éžã³æ¹"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "ãšããããšã蚌æã§ããããã§ãã",
"title": "ÎŽã®éžã³æ¹"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "å®ã¯ã蚌æã®åŒãéã«èŸ¿ãäºã«ãã£ãŠãÎŽãéžã³ãŸããã",
"title": "ÎŽã®éžã³æ¹"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "ãã®å Žåã",
"title": "ÎŽã®éžã³æ¹"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "ãã",
"title": "ÎŽã®éžã³æ¹"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "ãšãªããŸãã",
"title": "ÎŽã®éžã³æ¹"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "ãããã£ãŠÎŽ = εãšéžã¹ã°ã蚌æèªäœããã®ããã«ç°¡åã«ã§ããŸãããã®äŸã¯ãšãŠãç°¡åãªäŸãªã®ã§ãäžè¬ã«ã¯ããäžæãã¯ã¯è¡ããŸããã",
"title": "ÎŽã®éžã³æ¹"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "",
"title": "ÎŽã®éžã³æ¹"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "xã 2ã«è¿ä»ãããšããf(x) = x2 - 9 ã®æ¥µéãL = â5ã§ããããšã蚌æããŸãã",
"title": "ÎŽã®éžã³æ¹"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "ãªãã°",
"title": "ÎŽã®éžã³æ¹"
},
{
"paragraph_id": 22,
"tag": "p",
"text": "ã瀺ãããšãå¿
èŠã§ãã",
"title": "ÎŽã®éžã³æ¹"
},
{
"paragraph_id": 23,
"tag": "p",
"text": "ããã§ããéã«èŸ¿ã£ãŠÎŽãæ¢ããŸãããŸãæåã«ãxã䜿ãã㫠Ύ㚠εã®é¢ä¿ãè¡šãããšãèããŸãã",
"title": "ÎŽã®éžã³æ¹"
},
{
"paragraph_id": 24,
"tag": "p",
"text": "",
"title": "ÎŽã®éžã³æ¹"
},
{
"paragraph_id": 25,
"tag": "p",
"text": "ãŸãäžè§äžçåŒãçšããŠ",
"title": "ÎŽã®éžã³æ¹"
},
{
"paragraph_id": 26,
"tag": "p",
"text": "ãšãªãããšãèããã°",
"title": "ÎŽã®éžã³æ¹"
},
{
"paragraph_id": 27,
"tag": "p",
"text": "ãšãªãã®ã§",
"title": "ÎŽã®éžã³æ¹"
},
{
"paragraph_id": 28,
"tag": "p",
"text": "ãæºããããã« ÎŽãéžã¹ã°ãããšåãããŸãããã®æåŸã®æ¹çšåŒã¯ãè«ççã«åºãŠããããã§ã¯ãªããããããã®äžçåŒãèŠæ¯ã¹ãŠåã«ãã®ããã«éžã¹ã°ã蚌æãäžæããããšããã ãããšããçŽæçãªãã¯ããã¯ã§ãããã®æ¹çšåŒã®è§£ãšããŠÎŽãéžãã§ããã蚌æã®æåŸã®æ®µéã§ããã®éã«èŸ¿ã£ãŠåŸãããæ¹çšåŒã䜿çšããŸãã",
"title": "ÎŽã®éžã³æ¹"
},
{
"paragraph_id": 29,
"tag": "p",
"text": "",
"title": "ÎŽã®éžã³æ¹"
},
{
"paragraph_id": 30,
"tag": "p",
"text": "ÎŽã®äºæ¬¡æ¹çšåŒã ãšæã£ãŠãÎŽãæ£ã®æ°ã§ããããšã«æ³šæããŠè§£ããš",
"title": "ÎŽã®éžã³æ¹"
},
{
"paragraph_id": 31,
"tag": "p",
"text": "ãšãªããŸãã",
"title": "ÎŽã®éžã³æ¹"
},
{
"paragraph_id": 32,
"tag": "p",
"text": "ãã®å€ãçšããŠã極éã§ããããšã®èšŒæãè¡ããŸãã",
"title": "ÎŽã®éžã³æ¹"
},
{
"paragraph_id": 33,
"tag": "p",
"text": "",
"title": "ÎŽã®éžã³æ¹"
},
{
"paragraph_id": 34,
"tag": "p",
"text": "ãªãã°",
"title": "ÎŽã®éžã³æ¹"
},
{
"paragraph_id": 35,
"tag": "p",
"text": "",
"title": "ÎŽã®éžã³æ¹"
},
{
"paragraph_id": 36,
"tag": "p",
"text": "xã 0ã«è¿ä»ãããšã f(x) = sin ( x ) x {\\displaystyle {\\frac {\\sin(x)}{x}}} ã®æ¥µéã L = 1 ã«ãªãããšã瀺ããŠãã ããã",
"title": "ÎŽã®éžã³æ¹"
},
{
"paragraph_id": 37,
"tag": "p",
"text": "",
"title": "ÎŽã®éžã³æ¹"
},
{
"paragraph_id": 38,
"tag": "p",
"text": "xã0ã«è¿ä»ãããšããf(x) = 1/x ã 極éãæããªãããšã瀺ããŠãã ããã",
"title": "ÎŽã®éžã³æ¹"
}
] | null | == δã®éžã³æ¹ ==
===圢åŒçãªæ¥µéã®å®çŸ©===
ä»»æ(â)ã®æ£ã®æ°εã«å¯Ÿãããã(â)æ°δãååšã
:<math>0 < \left| x - c \right| < \delta</math>
ãªãã°
:<math>\left| f(x) - L \right| < \epsilon</math>
ãšãªããšãã''L''ã¯ã''x''ã''c''ã«è¿ä»ããæã® ''f(x)''ã®æ¥µéãšãããŸãã
èšãæããã°ãæ£ã®æ°εãäžããããšãé©åœãªδãéžã¶äºã«ãã£ãŠ
:<math>0 < \left| x - c \right| < \delta</math>
ãªãã°
:<math>\left| f(x) - L \right| < \epsilon</math>
ãšãªãããšã蚌æã§ããŸãã
ããã«èšãã°ããã®ãããªèšŒæã'''å
šãŠã®(â)'''ε > 0ã«å¯ŸããŠå¯èœã§ãã
ãã®åœ¢åŒçãªå®çŸ©ã¯ã極éãæ±ããã«ã¯å°ãäžäŸ¿ã§ãã極é''L''ã'''èŠã€ãã'''ããã®æ¹æ³è«ã¯äžãããããæ°å€ã極éã§ãããã©ãããå€å®ããã®ã«ã ã䜿ããŸããçŽæçãªæ¥µéã®å®çŸ©ãã䌌ããããªåé¡ããã®é¡æšãæãã¯ãããã¿ã«ã®å®çãªã©ã®å®çãçšããŠæ¥µéãäºæ³ãã圢åŒçãªå®çŸ©ãçšããŠããã®å€ã極éã§ãããåŠãã瀺ãããšãã§ããŸãã
âïŒå
šç§°èšå·ãä»»æãå
šãŠ
âïŒååšèšå·ãååšããã
===äŸ1===
''x''ã ''c''=9ã«è¿ä»ããæã®ã''f(x)'' = ''x'' + 5 ã®æ¥µéãæ¢ãäºãèããŸãã極é''L'' 㯠9+5=14 ã§ããããšãåãã£ãŠããŠãããã¯æ¬¡ã®ããã«èšŒæã§ããŸãã
δ = ε ãšéžã¹ã°ãïŒãã®éžã³æ¹ããã®ããŒãžã®äž»é¡ã§ããïŒ
:<math>\left| x - 9 \right| < \delta</math>
ãªãã°
:<math>\begin{matrix}
\left| (x + 5) - 14 \right| & = & \left| x - 9 \right| \\
\ & < & \delta \\
\ & = & \epsilon \end{matrix}</math>
ãšããããšã蚌æã§ããããã§ãã
å®ã¯ã蚌æã®åŒãéã«èŸ¿ãäºã«ãã£ãŠãδãéžã³ãŸããã
:<math>\left| f(x) - L \right| < \epsilon</math>
ãã®å Žåã
:<math>\left| x - 9 \right| < \epsilon</math>
ãã
:<math>\left| x - 9 \right| < \delta</math>
ãšãªããŸãã
ãããã£ãŠδ = εãšéžã¹ã°ã蚌æèªäœããã®ããã«ç°¡åã«ã§ããŸãããã®äŸã¯ãšãŠãç°¡åãªäŸãªã®ã§ãäžè¬ã«ã¯ããäžæãã¯ã¯è¡ããŸããã
===äŸ2===
''x''ã 2ã«è¿ä»ãããšãã''f(x)'' = ''x''² - 9 ã®æ¥µéã''L'' = −5ã§ããããšã蚌æããŸãã
:<math>\left| x - 2 \right| < \delta</math>
ãªãã°
:<math>\left| f(x) - L \right| = \left| x^2 - 4 \right| < \epsilon</math>
ã瀺ãããšãå¿
èŠã§ãã
ããã§ããéã«èŸ¿ã£ãŠδãæ¢ããŸãããŸãæåã«ã''x''ã䜿ããã« δãš εã®é¢ä¿ãè¡šãããšãèããŸãã
:<math>\left| x^2 - 4 \right| < \epsilon </math>
:<math>\left| x - 2 \right| \cdot \left| x + 2 \right| < \epsilon </math>
ãŸãäžè§äžçåŒãçšããŠ
:<math>\left|x + 2 \right| = \left|x-2+4\right| < \left|x-2\right|+4 = \delta + 4 </math>
ãšãªãããšãèããã°
:<math>\left| x - 2 \right| \cdot \left| x + 2 \right| < \delta \cdot (\delta +4) </math>
ãšãªãã®ã§
:<math>(\delta) \cdot (\delta + 4) = \epsilon </math>
ãæºããããã« δãéžã¹ã°ãããšåãããŸãããã®æåŸã®æ¹çšåŒã¯ãè«ççã«åºãŠããããã§ã¯ãªããããããã®äžçåŒãèŠæ¯ã¹ãŠåã«ãã®ããã«éžã¹ã°ã蚌æãäžæããããšããã ãããšããçŽæçãªãã¯ããã¯ã§ãããã®æ¹çšåŒã®è§£ãšããŠδãéžãã§ããã蚌æã®æåŸã®æ®µéã§ããã®'''éã«èŸ¿ã£ãŠåŸããã'''æ¹çšåŒã䜿çšããŸãã
:ãã®äŸã§ã¯ã''x''ãδã«ãäžçå· < ããçå· = ã«çœ®ãæããŸãããè足ã§ãã |x-2| = δã§ã¯ãªã|x-2| < δãªã®ã§ããããã δã®éžã³æ¹ãå¯èœã«ãªããŸããäžã®æ¹çšåŒãå
ã«ã蚌æã蟿ããšããã®ãããªδã®éžã³æ¹ã§ãããšããããšããããããã§ãããã
δã®äºæ¬¡æ¹çšåŒã ãšæã£ãŠãδãæ£ã®æ°ã§ããããšã«æ³šæããŠè§£ããš
:<math>\delta = \frac{-4 + \sqrt{16 - 4 \cdot 1 \cdot \epsilon}}{2 \cdot 1} = -2 + \sqrt{4 - \epsilon}</math>
ãšãªããŸãã
<!-- ããããžãã® Noteã¯çãããã®ã§ããçšåºŠé£ã°ã -->
ãã®å€ãçšããŠã極éã§ããããšã®èšŒæãè¡ããŸãã
:<math>\left| x - 2 \right| < \delta</math>
ãªãã°
:<math>\begin{matrix}
\left| f(x) - L \right| & = & \left| x^2 - 4 \right| \\
\ & = & \left| x - 2 \right| \cdot \left| x + 2 \right| \\
\ & \le & (\delta) \cdot (\delta + 4) \\
\ & < & (\sqrt{4 - \epsilon} - 2) \cdot (\sqrt{4 - \epsilon} + 2) \\
\ & = & (\sqrt{4 - \epsilon})^2 - (2)^2 \\
\ & = & \epsilon \end{matrix}</math>
===äŸ3===
''x''ã 0ã«è¿ä»ãããšã ''f(x)'' = <math>\frac{\sin(x)}{x}</math> ã®æ¥µéã ''L'' = 1 ã«ãªãããšã瀺ããŠãã ããã
===äŸ4===
''x''ã0ã«è¿ä»ãããšãã''f(x)'' = 1/''x'' ã 極éãæããªãããšã瀺ããŠãã ããã
[[Category:解æåŠ|ãŠããã®ããã²ãã]] | null | 2011-09-24T11:51:02Z | [] | https://ja.wikibooks.org/wiki/%E8%A7%A3%E6%9E%90%E5%AD%A6%E5%9F%BA%E7%A4%8E/%CE%B4%E3%81%AE%E9%81%B8%E3%81%B3%E6%96%B9 |
1,813 | 解æåŠåºç€/埮åïŒ | æŽå²çã«ã¯åŸ®å(differentiation)ã®ç 究ã¯ãæ²ç·ã®æ¥ç·ã®åé¡ããå§ãŸããŸãããæ²ç·ãšããã®äžã®ç¹ãäžããããæããã®ç¹ã§ã®æ²ç·ã®æ¥ç·ã®åŸãã調ã¹ãã«ã¯ã©ããããããã§ãããã?
ç¹å¥ãªå Žåã ããæãããªè§£çãåŸãããŸããäŸãã°ã çŽç· y = m x + c ã¯ããã®äžã®ã©ããªç¹ã§ããããèªèº«ãæ¥ç·ã«ãªãã®ã§åŸã㯠m ã§ããæŸç©ç· y = xã®å Žåã¯ãåç¹ (0,0) ã§ã®æ¥ç·ã¯ y=0 ãªã®ã§ããã®åŸã㯠0 ã§ãã
ãããã y = sin x + x 2 {\displaystyle y=\sin x+x^{2}} ã® x = 1.5 ã§ã®æ¥ç·ã®åŸãã¯ã©ã®ããã«æ±ãããããã®ã§ãããã?
ãããç¥ãããã®ç°¡åãªæ¹æ³ã埮åæ³ã§ããé¢æ° f(x) ã埮åããŠåŸãããé¢æ°ã«å€ãå
¥ãããšãå
ã®é¢æ°ã®ãã®ç¹ã§ã®æ¥ç·ã®åŸããæ±ãŸããŸãããã®ããã«åŸ®åããŠåŸãããé¢æ°ãå°é¢æ°(derivative)ãšåŒã³ã f â² ( x ) {\displaystyle f^{\prime }(x)} ã®ããã«æžããããµã·ããããã£ãããããf(x)ã®å°é¢æ°ãããf(x)ã®åŸ®åããªã©ãšåŒã³ãŸããåæ°ã®ãããªèšæ³ãšããŠ
ãªã©ãçšããããŸããããããåæ°ã®ããã«åæ¯ãšååãšãããããªåãæ¹ã¯ã§ããŸããã®ã§æ³šæããŠãã ãããåé¡ã«ãã£ãŠã¯ãšãŠãåãããããèšæ³ã§ãã
埮åæŒç®å(埮åäœçšçŽ ãdifferential operator)ãšããŠæ±ãããæã¯
ãªã©ã®èšæ³ãããçšããããŸãã
ãªãã埮åã®èšå·ã®åŸã«ä»ãããã€ããªãã£ããããŠããæ¬åŒ§ [ ] ã¯ãæ®ã©ã®å Žåã¯ãããŸãããäŸãã°ãé¢æ°ã®ç©ã®åŸ®å D(fg) ãæ±ãå Žåãªã©ã D fg ãšè¡šèšãããšã D(fg) ãªã®ãã (Df)gãªã®ãåããã«ããã®ã§æ瀺ããããã«æ¬åŒ§ãçšãããããŸãã
äŸãã°ã f(x) = 3x + 5 ã§ããã°ã f'(x) = 3 ã«ãªããŸãã xãäœããšããããšã¯æ°ã«ããå¿
èŠã¯ãããŸããã
ã®å Žåã¯
ãšãªããŸãã
ãã® f(x) ã¯ãå
šåºéã§é£ç¶ãªã®ã§ãã x = 0 ã®æã§å°ã£ãŠããŠãå³æ¥µéã® lim x â 0 + f â² ( x ) {\displaystyle \lim _{x\to 0^{+}}f'(x)} ãšå·Šæ¥µéã® lim x â 0 â f â² ( x ) {\displaystyle \lim _{x\to 0^{-}}f'(x)} ãäžèŽããªãã®ã§ f'(0) ãå®çŸ©ãããŸããããããŠã f'(x) 㯠x=0 ã®æã§äžé£ç¶ã«ãªããŸãããã®çš®é¡ã®åŸ®åäžå¯èœãªç¹ã®äºããå°ç¹(cusp)ãšãããŸãã é¢æ°ã¯ãç¡é倧ã«çºæ£ããããç¡éã«æ¯åãããããããšãããããããã€ã埮åå¯èœãšã¯éããŸããã
äºç¹ (x1, y1)ã(x2, y2)ã®éã®å¹³åå€åçãšã¯
ã®ããšã§ããããããã®äºç¹ããé¢æ° f(x) ã®äžã®ç¹ã§ããã°ã f(xi) = yi ãšãªããŸãã
ãšæžããŠã¿ããš
ãšãªããŸãããŸã y ã®æ¹ãã¿ãŠã¿ããš
ã§ãã
ãããã£ãŠãå¹³åå€åç m ã¯ãäºã€ã®å€æ°(Î x ãš x1)ãçšããŠæ¬¡ã®ããã«æžãè¡šããŸãã
ãããŠãããäžç¹ã§ã®æ¥ç·ã®åŸãã調ã¹ããã®ã§ãx2 ã x1 ã«è¿ä»ããŸããããã¯ã€ãŸããÎ x ã 0 ã«è¿ä»ãããšããããšã«ãªããŸãã
Î x ãš x ãçšããŠãé¢æ° f(x) ã® ç¹ x ã§ã®æ¥ç·ã®åŸã(埮åä¿æ°ãè±:differential coefficient)ã極éã®ãšãã®ããã«å®çŸ©ãããš
ãšãªããŸãã
ãããå°é¢æ°ã®å®çŸ©ã§ããå³èŸºã®æ¥µéãååšãããªãã°ã f(x) 㯠x ã§åŸ®åå¯èœ(differentiable)ãšãã x ã§ã® f(x) ã®åŸ®åä¿æ°ãã f â² ( x ) {\displaystyle f'(x)} ãšæžããŸããæèŠçãªèª¬æãããŸããšãäºç¹éã®å·® Î x ã 0 ã«è¿ä»ããŠãããšããæ¥ç·ã®åŸãã®æ¥µéããã®åŒã®å³èŸºã«ãªããŸãã
ç°¡åãªé¢æ°ã®å°é¢æ°ãæ±ããŠã¿ãŸãã
ããã¯ãå
ã®é¢æ° f(x) ãçŽç·ã®åŒã§ããããããèªèº«ã®åŸãã«ãªããŸãããå®çŸ©ããæåŸ
ãããçµæã§ãããã®äŸã§ã¯ãx ã«ãããªãå®æ°ã«ãªããŸããããåœç¶ãªããäžè¬ã®æ²ç·ã§ã¯æ¥ç·ã®åŸãã x ã«ãã£ãŠå€ãããŸããããã次ã®äŸã§èŠãŠã¿ãŸãã
æŸç©ç· y=x ã®å°é¢æ°ã¯ çŽç· y=mx+c ã®åœ¢ã«ãªããŸããããããããã®å°é¢æ°ã®ç€ºããŠãããã®ã¯æ¥ç·ã®åŸãã§ãã£ãŠãæ¥ç·ãã®ãã®ã§ã¯ãªããšããããšã«æ³šæããŠãã ãããæ¥ç·ã®åŸãã¯ã x ã«ãã£ãŠå€ãã£ãŠãããŸãã x=aã§ã®æ¥ç·ã®åŸã㯠f â² ( a ) = 2 a {\displaystyle f'(a)=2a} ãšãªããŸãããã x=a ã§ã®æ¥ç·ã®åŒã¯ y = 2axâa ãšãªããŸãããã®æ¥ç·ãã(a, a) ãéãããšã«æ³šæããŠãã ããããããŠãæ¥ç·ã®å€æ° x ãšãå°é¢æ°ã®å€æ° x ãæ··åããªãã§ãã ããã
å°é¢æ°ã®èšæ³ã¯ãæ°åŠã®äžã§ããçµæ§ãç¹åŸŽçãªãã®ã§ããæããã䜿ãããèšæ³ã¯ã
ã§ãããã®èšæ³ã¯ã x ã®å€åéã«å¯ŸããŠã y ã®å€åéã¯ã©ã®ããããªã®ã?ãšããæå³ãè¡šããšèããããŸããæãã¯ãy ã®åŸ®å°éã x ã®åŸ®å°é ã§å²ã ãšããæå³ãè¡šãèšæ³ãšèŠãäºãã§ããŸãããããã«ããå°é¢æ°ã®å®çŸ©ãççŽã«è¡šããèšæ³ã§ãã
ãšããèšå·ãããèŠãããŸããããã¯ã x ã«é¢ããŠåŸ®åãããšããæå³ã§ãã d y d x {\displaystyle {\frac {dy}{dx}}} ã® é¡åãšæã£ãŠãã ããã y ã®éšåã®è¡šçŸãé·ããªã£ããããå Žåã«äŸ¿å©ã§ãã
埮åãåŠãã§ããå
ã«ãdy ã dx ã¯åæ°ã®ååãåæ¯ã®ããã«åãã¯ãªããŠèããããšãã§ãããããããªããšæããããããŸããã
ã®ããã«ããŸãã§åæ°ã®éæ°ã§ãåã£ããã®ãããªèšå·ãèŠãããã§ãããã
æãã¯ã極座æš(polar coordinates system)ãçšãã埮åã§
ã®ãããªãã®ã«ãåºäŒãã§ãããã
f ( x ) = y = x 2 {\displaystyle f(x)=y=x^{2}} ã®åŸ®åãè¡šãèšæ³ãšããŠã次ã®ãããªãã®ããããŸãããå
šãŠåãæå³ã§ãã
å°é¢æ°ã®å®çŸ©ãçšããŠã次ã®é¢æ°ã®å°é¢æ°ãæ±ããŠã¿ãŸãããã
äœããã¿ãŒã³ã®ãããªãã®ãããããŸããã? x ã®åœ¢ã®åŸ®åã¯ãã¹ãä¹é¢æ°ã®åŸ®åã®é
ç®ã§æ±ããŸãã
æ¯åã埮åãå®çŸ©éãå°ãã®ã¯é¢æ°ã倧å€ã§ãããããã£ãŠãäžè¬ã®é¢æ°ã埮åããããããã«ã埮åã®æ§è³ªããããã調ã¹ãŠããããããçšããŠåŸ®åãè¡ãã°ã楜ã«èšç®ã§ããããã«ãªããŸãã埮åã®æŒç®èŠåãç¥ãããšã§ãããªãå€ãã®é¢æ°ã埮åã§ããããã«ãªããŸããæãç°¡åãªèŠåã®ããã€ãã¯äžæ¬¡é¢æ°ã®åŸ®åã«é¢ãããã®ã§ãã®ã§ãäžæ¬¡é¢æ°ã®åŸ®åã¯ãã®åŸãã«ãªããšããæ§è³ªãšäœµããŠèãããšåãããããããšæããŸãã
ãã®ç¹å¥ãªå Žåãšã㊠x ã x ã§åŸ®åãããš d x d x = 1 {\displaystyle {\frac {dx}{dx}}=1} ãšãªããŸããåæ°ã ãšæã£ãŠçŽåãããšããšåãã«èŠããŸãããåæ°ãšã¯éãå°é¢æ°ã®å®çŸ©ããæ±ããããçµæã§ãã®ã§ã誀解ããªãããã«ç解ããŠãã ããã d d x {\displaystyle {\frac {d}{dx}}} ã§äžã€ã®èšå·ãªã®ã§ãã
ããããããŸãã§åæ°ãæ±ãæã®ãããªèšç®èŠåãç®ã«ããããšã«ãªããšæããŸãããåæ°ãšèª€è§£ããŠããŸããšããã®ãã¡ãdxã dyãå®éã«ã¯äœãªã®ããšèãã¯ããããšãã«èºãåå ã«ããªããŸããæ··ä¹±ããå Žåã¯å®çŸ©ã«æ»ã£ãŠã¿ãŠãã ããã
åºæ¬çãªé¢æ°ã«ã€ããŠã®åŸ®åã®èŠåãããã€ãåŠã³ãŸããããããããã£ãšè€éãªé¢æ°ã«ã€ããŠåŸ®åããããã®èŠåãåŠã³ãŸããè€éãªé¢æ°ã¯ãç°¡åãªé¢æ°ã«å解ããŠèãããšåããããããªããŸãã®ã§ããã®ããã®æ段ãšããŠãããã§ã¯å®æ°åã®åŸ®åãšåã®åŸ®åã«ã€ããŠåŠã³ãŸãã
ãã®ããã«ãå®æ° c ã¯ã埮åèšå·ã®å€ã«åºããŸãã埮åã®å®çŸ©ã«æ»ãã°ãååãå®æ° c ã§ãããããã® c ã極éæäœã®å€ã«åºãããšãã§ãããšããããšããæãç«ã¡ãŸãã
xã®åŸ®åã
ãšãªãããšã¯æ¢ã«åŠãã éãã§ãã
ããã§ä»åºŠã¯ 3xã®åŸ®åãèããŸãã
ããã¯ã
ãšèããã°ã次ã®åã®åŸ®åã䜿ã£ãŠã確ãããããšãã§ããŸãã
ãã®åŒã¯è€å·åé ã§ãã巊蟺ã + ãªãå³èŸºã+ 巊蟺ãâãªãå³èŸºãâã§ãã
ãã®ãå®æ°åããåã®åŸ®åã®æ³åã¯ãæ°åŠçã«ãšãŠãéèŠãªæ§è³ªã§ã埮åãç·åœ¢æ§(linearity)ãæã€ããšãæå³ããŸãã 足ãç®ãè¡ã£ãŠãã埮åãããŠããäžã€äžã€ã®é
ã«ã€ããŠåŸ®åãè¡ã£ãŠãã足ãç®ãè¡ã£ãŠãçµæã¯å€ãããŸãããç·åœ¢æ§ã¯è€éãªèšç®ããšãŠãç°¡åã«ããã®ã§ãã
åã®åŸ®åã®æ³åããå®æ°åã®åŸ®åã®æ³åã䜿ãããšãèããŠãå€é
åŒãå解ããŠãããš xã®åŸ®åãšããåé¡ã«åž°çãããŸãããã®éšåã解決ããã®ããã®å
¬åŒã§ãã
äŸãã°ãæ¢ã«ç¢ºèªããããã« x ã®åŸ®åã¯ã2x = 2x ã«ãªããŸãã
ãã®èŠåã¯ãææ°ã åæ°ã è² ã®æ°ã®æ(äžè¬ã«å®æ°ã®æ)ãæãç«ã¡ãŸãã
å€é
åŒã¯åé
åŒã®åãªã®ã§ããã®èŠåãšãå®æ°åã®åŸ®åãåã®åŸ®åã®èŠåã䜿ãããšã§ãã©ããªåŸ®åãã§ããããã«ãªããŸãã
以äžã®èŠåã«ãããå€é
åŒã®åŸ®åãã§ããããã«ãªããŸããããããã®å
¬åŒãçºããŠããã ãã§ã¯èšç®åã¯èº«ã«ä»ããªãã®ã§ããããããªå€é
åŒãå®éã«åŸ®åããŠã¿ãããšã倧åã§ããããã§ã¯ããã®æé ã詳ãã説æããŸãã
äŸãšããŠ
ãèšç®ããŠã¿ãŸãã
æåã«ãåã®åŸ®åã®æ³åãçšããŠåé
åŒã«åããŸãã
äžæ¬¡ã®é
ãšå®æ°é
ã¯
ãšãªããŸãã
é«æ¬¡ã®é
ã¯å®æ°åã®åŸ®åã®èŠåãçšããŠã埮åã®å€ã«åºããŸãã
ããã§ã¹ãä¹ã®åŸ®åæ³åã«ãããããããã®åé
åŒã®åŸ®åãæ±ãŸããŸãã
ããšã¯ã代æ°èšç®ãããŠåŒãç°¡åããŸãšããŠãæçµçã«
ãšãã解çãåŸãããŸãã
埮åã䜿ãæã®äŸ¿å©ãªèŠåã¯ãã£ãšæ²¢å±±ãããŸããããå°ãé«åºŠãªææ³ã«é¢ããŠã¯ããã®åŸã®ã埮åã®å
¬åŒããšããé
ç®ã§åŠã³ãŸãã
å°é¢æ°ã®å®çŸ©ãããå®æ°é¢æ°ãäžæ¬¡é¢æ°ã®åŸ®åãå®æ°åãåã®åŸ®åã®æ³åãå°ããŠã¿ãŠãã ããã
back to 解æåŠåºç€ | [
{
"paragraph_id": 0,
"tag": "p",
"text": "æŽå²çã«ã¯åŸ®å(differentiation)ã®ç 究ã¯ãæ²ç·ã®æ¥ç·ã®åé¡ããå§ãŸããŸãããæ²ç·ãšããã®äžã®ç¹ãäžããããæããã®ç¹ã§ã®æ²ç·ã®æ¥ç·ã®åŸãã調ã¹ãã«ã¯ã©ããããããã§ãããã?",
"title": "ã¯ããã«"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ç¹å¥ãªå Žåã ããæãããªè§£çãåŸãããŸããäŸãã°ã çŽç· y = m x + c ã¯ããã®äžã®ã©ããªç¹ã§ããããèªèº«ãæ¥ç·ã«ãªãã®ã§åŸã㯠m ã§ããæŸç©ç· y = xã®å Žåã¯ãåç¹ (0,0) ã§ã®æ¥ç·ã¯ y=0 ãªã®ã§ããã®åŸã㯠0 ã§ãã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ãããã y = sin x + x 2 {\\displaystyle y=\\sin x+x^{2}} ã® x = 1.5 ã§ã®æ¥ç·ã®åŸãã¯ã©ã®ããã«æ±ãããããã®ã§ãããã?",
"title": "ã¯ããã«"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ãããç¥ãããã®ç°¡åãªæ¹æ³ã埮åæ³ã§ããé¢æ° f(x) ã埮åããŠåŸãããé¢æ°ã«å€ãå
¥ãããšãå
ã®é¢æ°ã®ãã®ç¹ã§ã®æ¥ç·ã®åŸããæ±ãŸããŸãããã®ããã«åŸ®åããŠåŸãããé¢æ°ãå°é¢æ°(derivative)ãšåŒã³ã f â² ( x ) {\\displaystyle f^{\\prime }(x)} ã®ããã«æžããããµã·ããããã£ãããããf(x)ã®å°é¢æ°ãããf(x)ã®åŸ®åããªã©ãšåŒã³ãŸããåæ°ã®ãããªèšæ³ãšããŠ",
"title": "ã¯ããã«"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ãªã©ãçšããããŸããããããåæ°ã®ããã«åæ¯ãšååãšãããããªåãæ¹ã¯ã§ããŸããã®ã§æ³šæããŠãã ãããåé¡ã«ãã£ãŠã¯ãšãŠãåãããããèšæ³ã§ãã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "埮åæŒç®å(埮åäœçšçŽ ãdifferential operator)ãšããŠæ±ãããæã¯",
"title": "ã¯ããã«"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ãªã©ã®èšæ³ãããçšããããŸãã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ãªãã埮åã®èšå·ã®åŸã«ä»ãããã€ããªãã£ããããŠããæ¬åŒ§ [ ] ã¯ãæ®ã©ã®å Žåã¯ãããŸãããäŸãã°ãé¢æ°ã®ç©ã®åŸ®å D(fg) ãæ±ãå Žåãªã©ã D fg ãšè¡šèšãããšã D(fg) ãªã®ãã (Df)gãªã®ãåããã«ããã®ã§æ瀺ããããã«æ¬åŒ§ãçšãããããŸãã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "äŸãã°ã f(x) = 3x + 5 ã§ããã°ã f'(x) = 3 ã«ãªããŸãã xãäœããšããããšã¯æ°ã«ããå¿
èŠã¯ãããŸããã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "ã®å Žåã¯",
"title": "ã¯ããã«"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "ãšãªããŸãã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "ãã® f(x) ã¯ãå
šåºéã§é£ç¶ãªã®ã§ãã x = 0 ã®æã§å°ã£ãŠããŠãå³æ¥µéã® lim x â 0 + f â² ( x ) {\\displaystyle \\lim _{x\\to 0^{+}}f'(x)} ãšå·Šæ¥µéã® lim x â 0 â f â² ( x ) {\\displaystyle \\lim _{x\\to 0^{-}}f'(x)} ãäžèŽããªãã®ã§ f'(0) ãå®çŸ©ãããŸããããããŠã f'(x) 㯠x=0 ã®æã§äžé£ç¶ã«ãªããŸãããã®çš®é¡ã®åŸ®åäžå¯èœãªç¹ã®äºããå°ç¹(cusp)ãšãããŸãã é¢æ°ã¯ãç¡é倧ã«çºæ£ããããç¡éã«æ¯åãããããããšãããããããã€ã埮åå¯èœãšã¯éããŸããã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "äºç¹ (x1, y1)ã(x2, y2)ã®éã®å¹³åå€åçãšã¯",
"title": "ã¯ããã«"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "ã®ããšã§ããããããã®äºç¹ããé¢æ° f(x) ã®äžã®ç¹ã§ããã°ã f(xi) = yi ãšãªããŸãã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "ãšæžããŠã¿ããš",
"title": "ã¯ããã«"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "ãšãªããŸãããŸã y ã®æ¹ãã¿ãŠã¿ããš",
"title": "ã¯ããã«"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "ã§ãã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "ãããã£ãŠãå¹³åå€åç m ã¯ãäºã€ã®å€æ°(Î x ãš x1)ãçšããŠæ¬¡ã®ããã«æžãè¡šããŸãã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "ãããŠãããäžç¹ã§ã®æ¥ç·ã®åŸãã調ã¹ããã®ã§ãx2 ã x1 ã«è¿ä»ããŸããããã¯ã€ãŸããÎ x ã 0 ã«è¿ä»ãããšããããšã«ãªããŸãã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "Î x ãš x ãçšããŠãé¢æ° f(x) ã® ç¹ x ã§ã®æ¥ç·ã®åŸã(埮åä¿æ°ãè±:differential coefficient)ã極éã®ãšãã®ããã«å®çŸ©ãããš",
"title": "ã¯ããã«"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "ãšãªããŸãã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "ãããå°é¢æ°ã®å®çŸ©ã§ããå³èŸºã®æ¥µéãååšãããªãã°ã f(x) 㯠x ã§åŸ®åå¯èœ(differentiable)ãšãã x ã§ã® f(x) ã®åŸ®åä¿æ°ãã f â² ( x ) {\\displaystyle f'(x)} ãšæžããŸããæèŠçãªèª¬æãããŸããšãäºç¹éã®å·® Î x ã 0 ã«è¿ä»ããŠãããšããæ¥ç·ã®åŸãã®æ¥µéããã®åŒã®å³èŸºã«ãªããŸãã",
"title": "å°é¢æ°ã®å®çŸ©"
},
{
"paragraph_id": 22,
"tag": "p",
"text": "ç°¡åãªé¢æ°ã®å°é¢æ°ãæ±ããŠã¿ãŸãã",
"title": "å°é¢æ°ã®å®çŸ©"
},
{
"paragraph_id": 23,
"tag": "p",
"text": "ããã¯ãå
ã®é¢æ° f(x) ãçŽç·ã®åŒã§ããããããèªèº«ã®åŸãã«ãªããŸãããå®çŸ©ããæåŸ
ãããçµæã§ãããã®äŸã§ã¯ãx ã«ãããªãå®æ°ã«ãªããŸããããåœç¶ãªããäžè¬ã®æ²ç·ã§ã¯æ¥ç·ã®åŸãã x ã«ãã£ãŠå€ãããŸããããã次ã®äŸã§èŠãŠã¿ãŸãã",
"title": "å°é¢æ°ã®å®çŸ©"
},
{
"paragraph_id": 24,
"tag": "p",
"text": "æŸç©ç· y=x ã®å°é¢æ°ã¯ çŽç· y=mx+c ã®åœ¢ã«ãªããŸããããããããã®å°é¢æ°ã®ç€ºããŠãããã®ã¯æ¥ç·ã®åŸãã§ãã£ãŠãæ¥ç·ãã®ãã®ã§ã¯ãªããšããããšã«æ³šæããŠãã ãããæ¥ç·ã®åŸãã¯ã x ã«ãã£ãŠå€ãã£ãŠãããŸãã x=aã§ã®æ¥ç·ã®åŸã㯠f â² ( a ) = 2 a {\\displaystyle f'(a)=2a} ãšãªããŸãããã x=a ã§ã®æ¥ç·ã®åŒã¯ y = 2axâa ãšãªããŸãããã®æ¥ç·ãã(a, a) ãéãããšã«æ³šæããŠãã ããããããŠãæ¥ç·ã®å€æ° x ãšãå°é¢æ°ã®å€æ° x ãæ··åããªãã§ãã ããã",
"title": "å°é¢æ°ã®å®çŸ©"
},
{
"paragraph_id": 25,
"tag": "p",
"text": "å°é¢æ°ã®èšæ³ã¯ãæ°åŠã®äžã§ããçµæ§ãç¹åŸŽçãªãã®ã§ããæããã䜿ãããèšæ³ã¯ã",
"title": "å°é¢æ°ã®å®çŸ©"
},
{
"paragraph_id": 26,
"tag": "p",
"text": "ã§ãããã®èšæ³ã¯ã x ã®å€åéã«å¯ŸããŠã y ã®å€åéã¯ã©ã®ããããªã®ã?ãšããæå³ãè¡šããšèããããŸããæãã¯ãy ã®åŸ®å°éã x ã®åŸ®å°é ã§å²ã ãšããæå³ãè¡šãèšæ³ãšèŠãäºãã§ããŸãããããã«ããå°é¢æ°ã®å®çŸ©ãççŽã«è¡šããèšæ³ã§ãã",
"title": "å°é¢æ°ã®å®çŸ©"
},
{
"paragraph_id": 27,
"tag": "p",
"text": "ãšããèšå·ãããèŠãããŸããããã¯ã x ã«é¢ããŠåŸ®åãããšããæå³ã§ãã d y d x {\\displaystyle {\\frac {dy}{dx}}} ã® é¡åãšæã£ãŠãã ããã y ã®éšåã®è¡šçŸãé·ããªã£ããããå Žåã«äŸ¿å©ã§ãã",
"title": "å°é¢æ°ã®å®çŸ©"
},
{
"paragraph_id": 28,
"tag": "p",
"text": "埮åãåŠãã§ããå
ã«ãdy ã dx ã¯åæ°ã®ååãåæ¯ã®ããã«åãã¯ãªããŠèããããšãã§ãããããããªããšæããããããŸããã",
"title": "å°é¢æ°ã®å®çŸ©"
},
{
"paragraph_id": 29,
"tag": "p",
"text": "ã®ããã«ããŸãã§åæ°ã®éæ°ã§ãåã£ããã®ãããªèšå·ãèŠãããã§ãããã",
"title": "å°é¢æ°ã®å®çŸ©"
},
{
"paragraph_id": 30,
"tag": "p",
"text": "æãã¯ã極座æš(polar coordinates system)ãçšãã埮åã§",
"title": "å°é¢æ°ã®å®çŸ©"
},
{
"paragraph_id": 31,
"tag": "p",
"text": "ã®ãããªãã®ã«ãåºäŒãã§ãããã",
"title": "å°é¢æ°ã®å®çŸ©"
},
{
"paragraph_id": 32,
"tag": "p",
"text": "f ( x ) = y = x 2 {\\displaystyle f(x)=y=x^{2}} ã®åŸ®åãè¡šãèšæ³ãšããŠã次ã®ãããªãã®ããããŸãããå
šãŠåãæå³ã§ãã",
"title": "å°é¢æ°ã®å®çŸ©"
},
{
"paragraph_id": 33,
"tag": "p",
"text": "å°é¢æ°ã®å®çŸ©ãçšããŠã次ã®é¢æ°ã®å°é¢æ°ãæ±ããŠã¿ãŸãããã",
"title": "å°é¢æ°ã®å®çŸ©"
},
{
"paragraph_id": 34,
"tag": "p",
"text": "äœããã¿ãŒã³ã®ãããªãã®ãããããŸããã? x ã®åœ¢ã®åŸ®åã¯ãã¹ãä¹é¢æ°ã®åŸ®åã®é
ç®ã§æ±ããŸãã",
"title": "å°é¢æ°ã®å®çŸ©"
},
{
"paragraph_id": 35,
"tag": "p",
"text": "æ¯åã埮åãå®çŸ©éãå°ãã®ã¯é¢æ°ã倧å€ã§ãããããã£ãŠãäžè¬ã®é¢æ°ã埮åããããããã«ã埮åã®æ§è³ªããããã調ã¹ãŠããããããçšããŠåŸ®åãè¡ãã°ã楜ã«èšç®ã§ããããã«ãªããŸãã埮åã®æŒç®èŠåãç¥ãããšã§ãããªãå€ãã®é¢æ°ã埮åã§ããããã«ãªããŸããæãç°¡åãªèŠåã®ããã€ãã¯äžæ¬¡é¢æ°ã®åŸ®åã«é¢ãããã®ã§ãã®ã§ãäžæ¬¡é¢æ°ã®åŸ®åã¯ãã®åŸãã«ãªããšããæ§è³ªãšäœµããŠèãããšåãããããããšæããŸãã",
"title": "埮åã®æŒç®èŠå"
},
{
"paragraph_id": 36,
"tag": "p",
"text": "ãã®ç¹å¥ãªå Žåãšã㊠x ã x ã§åŸ®åãããš d x d x = 1 {\\displaystyle {\\frac {dx}{dx}}=1} ãšãªããŸããåæ°ã ãšæã£ãŠçŽåãããšããšåãã«èŠããŸãããåæ°ãšã¯éãå°é¢æ°ã®å®çŸ©ããæ±ããããçµæã§ãã®ã§ã誀解ããªãããã«ç解ããŠãã ããã d d x {\\displaystyle {\\frac {d}{dx}}} ã§äžã€ã®èšå·ãªã®ã§ãã",
"title": "埮åã®æŒç®èŠå"
},
{
"paragraph_id": 37,
"tag": "p",
"text": "ããããããŸãã§åæ°ãæ±ãæã®ãããªèšç®èŠåãç®ã«ããããšã«ãªããšæããŸãããåæ°ãšèª€è§£ããŠããŸããšããã®ãã¡ãdxã dyãå®éã«ã¯äœãªã®ããšèãã¯ããããšãã«èºãåå ã«ããªããŸããæ··ä¹±ããå Žåã¯å®çŸ©ã«æ»ã£ãŠã¿ãŠãã ããã",
"title": "埮åã®æŒç®èŠå"
},
{
"paragraph_id": 38,
"tag": "p",
"text": "åºæ¬çãªé¢æ°ã«ã€ããŠã®åŸ®åã®èŠåãããã€ãåŠã³ãŸããããããããã£ãšè€éãªé¢æ°ã«ã€ããŠåŸ®åããããã®èŠåãåŠã³ãŸããè€éãªé¢æ°ã¯ãç°¡åãªé¢æ°ã«å解ããŠèãããšåããããããªããŸãã®ã§ããã®ããã®æ段ãšããŠãããã§ã¯å®æ°åã®åŸ®åãšåã®åŸ®åã«ã€ããŠåŠã³ãŸãã",
"title": "埮åã®æŒç®èŠå"
},
{
"paragraph_id": 39,
"tag": "p",
"text": "ãã®ããã«ãå®æ° c ã¯ã埮åèšå·ã®å€ã«åºããŸãã埮åã®å®çŸ©ã«æ»ãã°ãååãå®æ° c ã§ãããããã® c ã極éæäœã®å€ã«åºãããšãã§ãããšããããšããæãç«ã¡ãŸãã",
"title": "埮åã®æŒç®èŠå"
},
{
"paragraph_id": 40,
"tag": "p",
"text": "xã®åŸ®åã",
"title": "埮åã®æŒç®èŠå"
},
{
"paragraph_id": 41,
"tag": "p",
"text": "ãšãªãããšã¯æ¢ã«åŠãã éãã§ãã",
"title": "埮åã®æŒç®èŠå"
},
{
"paragraph_id": 42,
"tag": "p",
"text": "ããã§ä»åºŠã¯ 3xã®åŸ®åãèããŸãã",
"title": "埮åã®æŒç®èŠå"
},
{
"paragraph_id": 43,
"tag": "p",
"text": "ããã¯ã",
"title": "埮åã®æŒç®èŠå"
},
{
"paragraph_id": 44,
"tag": "p",
"text": "ãšèããã°ã次ã®åã®åŸ®åã䜿ã£ãŠã確ãããããšãã§ããŸãã",
"title": "埮åã®æŒç®èŠå"
},
{
"paragraph_id": 45,
"tag": "p",
"text": "ãã®åŒã¯è€å·åé ã§ãã巊蟺ã + ãªãå³èŸºã+ 巊蟺ãâãªãå³èŸºãâã§ãã",
"title": "埮åã®æŒç®èŠå"
},
{
"paragraph_id": 46,
"tag": "p",
"text": "ãã®ãå®æ°åããåã®åŸ®åã®æ³åã¯ãæ°åŠçã«ãšãŠãéèŠãªæ§è³ªã§ã埮åãç·åœ¢æ§(linearity)ãæã€ããšãæå³ããŸãã 足ãç®ãè¡ã£ãŠãã埮åãããŠããäžã€äžã€ã®é
ã«ã€ããŠåŸ®åãè¡ã£ãŠãã足ãç®ãè¡ã£ãŠãçµæã¯å€ãããŸãããç·åœ¢æ§ã¯è€éãªèšç®ããšãŠãç°¡åã«ããã®ã§ãã",
"title": "埮åã®æŒç®èŠå"
},
{
"paragraph_id": 47,
"tag": "p",
"text": "åã®åŸ®åã®æ³åããå®æ°åã®åŸ®åã®æ³åã䜿ãããšãèããŠãå€é
åŒãå解ããŠãããš xã®åŸ®åãšããåé¡ã«åž°çãããŸãããã®éšåã解決ããã®ããã®å
¬åŒã§ãã",
"title": "埮åã®æŒç®èŠå"
},
{
"paragraph_id": 48,
"tag": "p",
"text": "äŸãã°ãæ¢ã«ç¢ºèªããããã« x ã®åŸ®åã¯ã2x = 2x ã«ãªããŸãã",
"title": "埮åã®æŒç®èŠå"
},
{
"paragraph_id": 49,
"tag": "p",
"text": "ãã®èŠåã¯ãææ°ã åæ°ã è² ã®æ°ã®æ(äžè¬ã«å®æ°ã®æ)ãæãç«ã¡ãŸãã",
"title": "埮åã®æŒç®èŠå"
},
{
"paragraph_id": 50,
"tag": "p",
"text": "å€é
åŒã¯åé
åŒã®åãªã®ã§ããã®èŠåãšãå®æ°åã®åŸ®åãåã®åŸ®åã®èŠåã䜿ãããšã§ãã©ããªåŸ®åãã§ããããã«ãªããŸãã",
"title": "埮åã®æŒç®èŠå"
},
{
"paragraph_id": 51,
"tag": "p",
"text": "以äžã®èŠåã«ãããå€é
åŒã®åŸ®åãã§ããããã«ãªããŸããããããã®å
¬åŒãçºããŠããã ãã§ã¯èšç®åã¯èº«ã«ä»ããªãã®ã§ããããããªå€é
åŒãå®éã«åŸ®åããŠã¿ãããšã倧åã§ããããã§ã¯ããã®æé ã詳ãã説æããŸãã",
"title": "埮åã®æŒç®èŠå"
},
{
"paragraph_id": 52,
"tag": "p",
"text": "äŸãšããŠ",
"title": "埮åã®æŒç®èŠå"
},
{
"paragraph_id": 53,
"tag": "p",
"text": "ãèšç®ããŠã¿ãŸãã",
"title": "埮åã®æŒç®èŠå"
},
{
"paragraph_id": 54,
"tag": "p",
"text": "æåã«ãåã®åŸ®åã®æ³åãçšããŠåé
åŒã«åããŸãã",
"title": "埮åã®æŒç®èŠå"
},
{
"paragraph_id": 55,
"tag": "p",
"text": "äžæ¬¡ã®é
ãšå®æ°é
ã¯",
"title": "埮åã®æŒç®èŠå"
},
{
"paragraph_id": 56,
"tag": "p",
"text": "ãšãªããŸãã",
"title": "埮åã®æŒç®èŠå"
},
{
"paragraph_id": 57,
"tag": "p",
"text": "é«æ¬¡ã®é
ã¯å®æ°åã®åŸ®åã®èŠåãçšããŠã埮åã®å€ã«åºããŸãã",
"title": "埮åã®æŒç®èŠå"
},
{
"paragraph_id": 58,
"tag": "p",
"text": "ããã§ã¹ãä¹ã®åŸ®åæ³åã«ãããããããã®åé
åŒã®åŸ®åãæ±ãŸããŸãã",
"title": "埮åã®æŒç®èŠå"
},
{
"paragraph_id": 59,
"tag": "p",
"text": "ããšã¯ã代æ°èšç®ãããŠåŒãç°¡åããŸãšããŠãæçµçã«",
"title": "埮åã®æŒç®èŠå"
},
{
"paragraph_id": 60,
"tag": "p",
"text": "ãšãã解çãåŸãããŸãã",
"title": "埮åã®æŒç®èŠå"
},
{
"paragraph_id": 61,
"tag": "p",
"text": "埮åã䜿ãæã®äŸ¿å©ãªèŠåã¯ãã£ãšæ²¢å±±ãããŸããããå°ãé«åºŠãªææ³ã«é¢ããŠã¯ããã®åŸã®ã埮åã®å
¬åŒããšããé
ç®ã§åŠã³ãŸãã",
"title": "埮åã®æŒç®èŠå"
},
{
"paragraph_id": 62,
"tag": "p",
"text": "å°é¢æ°ã®å®çŸ©ãããå®æ°é¢æ°ãäžæ¬¡é¢æ°ã®åŸ®åãå®æ°åãåã®åŸ®åã®æ³åãå°ããŠã¿ãŠãã ããã",
"title": "埮åã®æŒç®èŠå"
},
{
"paragraph_id": 63,
"tag": "p",
"text": "back to 解æåŠåºç€",
"title": "埮åã®æŒç®èŠå"
}
] | null | ==ã¯ããã«==
===埮åã®èæ¯===
æŽå²çã«ã¯'''埮å'''ïŒdifferentiationïŒã®ç 究ã¯ãæ²ç·ã®æ¥ç·ã®åé¡ããå§ãŸããŸãããæ²ç·ãšããã®äžã®ç¹ãäžããããæããã®ç¹ã§ã®æ²ç·ã®æ¥ç·ã®åŸãã調ã¹ãã«ã¯ã©ããããããã§ããããïŒ
ç¹å¥ãªå Žåã ããæãããªè§£çãåŸãããŸããäŸãã°ã çŽç· ''y = m x + c'' ã¯ããã®äžã®ã©ããªç¹ã§ããããèªèº«ãæ¥ç·ã«ãªãã®ã§åŸã㯠''m'' ã§ããæŸç©ç· ''y = x<sup>2</sup>''ã®å Žåã¯ãåç¹ (0,0) ã§ã®æ¥ç·ã¯ y=0 ãªã®ã§ããã®åŸã㯠0 ã§ãã
ãããã<math>y = \sin x + x^2</math> ã® x = 1.5 ã§ã®æ¥ç·ã®åŸãã¯ã©ã®ããã«æ±ãããããã®ã§ããããïŒ
ãããç¥ãããã®ç°¡åãªæ¹æ³ã埮åæ³ã§ããé¢æ° f(x) ã埮åããŠåŸãããé¢æ°ã«å€ãå
¥ãããšãå
ã®é¢æ°ã®ãã®ç¹ã§ã®æ¥ç·ã®åŸããæ±ãŸããŸãããã®ããã«åŸ®åããŠåŸãããé¢æ°ã'''å°é¢æ°'''ïŒderivativeïŒãšåŒã³ã<math>f^{\prime}(x)</math>ã®ããã«æžããããµã·ããããã£ãããããf(x)ã®å°é¢æ°ãããf(x)ã®åŸ®åããªã©ãšåŒã³ãŸããåæ°ã®ãããªèšæ³ãšããŠ
:<math>\frac{df}{dx}</math>
:<math>\frac{d}{dx} f </math>
ãªã©ãçšããããŸããããããåæ°ã®ããã«åæ¯ãšååãšãããããªåãæ¹ã¯ã§ããŸããã®ã§æ³šæããŠãã ãããåé¡ã«ãã£ãŠã¯ãšãŠãåãããããèšæ³ã§ãã
埮åæŒç®åïŒåŸ®åäœçšçŽ ãdifferential operatorïŒãšããŠæ±ãããæã¯
:<math>D_x[f(x)]</math>
:<math>D f(x)</math>
ãªã©ã®èšæ³ãããçšããããŸãã
ãªãã埮åã®èšå·ã®åŸã«ä»ãããã€ããªãã£ããããŠããæ¬åŒ§ [ ] ã¯ãæ®ã©ã®å Žåã¯ãããŸãããäŸãã°ãé¢æ°ã®ç©ã®åŸ®å ''D(fg)'' ãæ±ãå Žåãªã©ã ''D fg'' ãšè¡šèšãããšã ''D(fg)'' ãªã®ãã ''(Df)g''ãªã®ãåããã«ããã®ã§æ瀺ããããã«æ¬åŒ§ãçšãããããŸãã
äŸãã°ã f(x) = 3x + 5 ã§ããã°ã f'(x) = 3 ã«ãªããŸããã''x''ãäœããšããããšã¯æ°ã«ããå¿
èŠã¯ãããŸããã
:<math>f(x) = \left|x\right|</math> ïŒçµ¶å¯Ÿå€ã®ã€ããé¢æ°ïŒ
ã®å Žåã¯
:<math>f'(x) = \left\{ \begin{matrix} -1, & x < 0 \\ \times , & x = 0 \\ 1, & x > 0 \end{matrix} \right. .</math>
ãšãªããŸãã
ãã® ''f''(''x'') ã¯ãå
šåºéã§é£ç¶ãªã®ã§ãã ''x'' = 0 ã®æã§å°ã£ãŠããŠãå³æ¥µéã®<math>\lim_{x \to 0^{+}} f'(x)</math> ãšå·Šæ¥µéã® <math>\lim_{x \to 0^{-}} f'(x)</math>ãäžèŽããªãã®ã§ f'(0) ãå®çŸ©ãããŸããããããŠã f'(x) 㯠''x''=0 ã®æã§äžé£ç¶ã«ãªããŸãããã®çš®é¡ã®åŸ®åäžå¯èœãªç¹ã®äºããå°ç¹(''cusp'')ãšãããŸãã é¢æ°ã¯ãç¡é倧ã«çºæ£ããããç¡éã«æ¯åãããããããšãããããããã€ã埮åå¯èœãšã¯éããŸããã
===å¹³åå€åç===
äºç¹ (x<sub>1</sub>, y<sub>1</sub>)ã(x<sub>2</sub>, y<sub>2</sub>)ã®éã®å¹³åå€åçãšã¯
:<math>m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}</math>
ã®ããšã§ããããããã®äºç¹ããé¢æ° f(x) ã®äžã®ç¹ã§ããã°ã f(x<sub>i</sub>) = y<sub>i</sub> ãšãªããŸãã
:<math>\Delta x = x_2 - x_1\ </math>
ãšæžããŠã¿ããš
:<math>x_2 = x_1 + \Delta x\ </math>
ãšãªããŸãããŸã y ã®æ¹ãã¿ãŠã¿ããš
:<math>y_2 = f(x_2) = f(x_1 + \Delta x\ )</math>
:<math>y_1 = f(x_1)</math>
ã§ãã
ãããã£ãŠãå¹³åå€åç ''m'' ã¯ãäºã€ã®å€æ°ïŒΔ x ãš x<sub>1</sub>ïŒãçšããŠæ¬¡ã®ããã«æžãè¡šããŸãã
:<math>m = \frac{\Delta y}{\Delta x} = \frac{y_2-y_1}{x_2-x_1} = \frac{f(x_1+\Delta x)-f(x_1)}{\Delta x}</math>
ãããŠãããäžç¹ã§ã®æ¥ç·ã®åŸãã調ã¹ããã®ã§ãx<sub>2</sub> ã x<sub>1</sub> ã«è¿ä»ããŸããããã¯ã€ãŸããΔ x ã 0 ã«è¿ä»ãããšããããšã«ãªããŸãã
Δ ''x'' ãš ''x'' ãçšããŠãé¢æ° f(x) ã® ç¹ ''x'' ã§ã®æ¥ç·ã®åŸãïŒåŸ®åä¿æ°ãè±ïŒdifferential coefficientïŒã[[解æåŠåºç€/極é|極é]]ã®ãšãã®ããã«å®çŸ©ãããš
:<math>\lim_{\Delta x \to 0}\left[\frac{f(x+\Delta x)-f(x)}{\Delta x}\right]</math>
ãšãªããŸãã
==å°é¢æ°ã®å®çŸ©==
<table WIDTH="75%"><tr><td style="background-color: #FFFFFF; border: solid 1px #D6D6FF; padding: 1em;" valign=top>
<center><math>f'(x) = \lim_{\Delta x \to 0}\left[\frac{f(x+\Delta x)-f(x)}{\Delta x}\right]</math></center></td></tr></table>
ãããå°é¢æ°ã®å®çŸ©ã§ããå³èŸºã®æ¥µéãååšãããªãã°ã f(x) 㯠''x'' ã§åŸ®åå¯èœïŒdifferentiableïŒãšãã ''x'' ã§ã® f(x) ã®åŸ®åä¿æ°ãã<math>f'(x)</math>ãšæžããŸããæèŠçãªèª¬æãããŸããšãäºç¹éã®å·® Δ x ã 0 ã«è¿ä»ããŠãããšããæ¥ç·ã®åŸãã®æ¥µéããã®åŒã®å³èŸºã«ãªããŸãã
===å°é¢æ°ã®äŸ===
ç°¡åãªé¢æ°ã®å°é¢æ°ãæ±ããŠã¿ãŸãã
{|
|<math>f(x)\,</math>
| = <math>2 x + 1</math>
|-
|<math>f'(x)\,</math>
| = <math>\lim_{\Delta x \to 0}\left( \frac{ (2(x+\Delta x)+1) - (2x+1)}{\Delta x} \right)</math>
|-
|
| = <math>\lim_{\Delta x \to 0} 2 </math>
|-
|
| = 2
|}
ããã¯ãå
ã®é¢æ° f(x) ãçŽç·ã®åŒã§ããããããèªèº«ã®åŸãã«ãªããŸãããå®çŸ©ããæåŸ
ãããçµæã§ãããã®äŸã§ã¯ã''x'' ã«ãããªãå®æ°ã«ãªããŸããããåœç¶ãªããäžè¬ã®æ²ç·ã§ã¯æ¥ç·ã®åŸãã ''x'' ã«ãã£ãŠå€ãããŸããããã次ã®äŸã§èŠãŠã¿ãŸãã
{|
|-
|<math>f(x)\,</math>
| = <math>x^2\,</math>
|-
|<math>f'(x)\,</math>
| = <math>\lim_{\Delta x \to 0}\left[\frac{(x+\Delta x)^2-x^2}{\Delta x}\right]</math>
|-
|
| = <math>\lim_{\Delta x \to 0}\left(\frac{x^2+2x\Delta x+\Delta x^2-x^2}{\Delta x}\right)</math>
|-
|
| = <math>\lim_{\Delta x \to 0}\left(\frac{2x\Delta x+\Delta x^2}{\Delta x}\right)</math>
|-
|
| = <math>\lim_{\Delta x \to 0}\left(2x+\Delta x\right)</math>
|-
|
| = <math>2x</math>
|}
æŸç©ç· ''y=x<sup>2</sup>'' ã®å°é¢æ°ã¯ çŽç· ''y=mx+c'' ã®åœ¢ã«ãªããŸããããããããã®å°é¢æ°ã®ç€ºããŠãããã®ã¯æ¥ç·ã®åŸãã§ãã£ãŠãæ¥ç·ãã®ãã®ã§ã¯ãªããšããããšã«æ³šæããŠãã ãããæ¥ç·ã®åŸãã¯ã ''x'' ã«ãã£ãŠå€ãã£ãŠãããŸãã
''x=a''ã§ã®æ¥ç·ã®åŸã㯠<math>f'(a) = 2a</math> ãšãªããŸãããã ''x=a'' ã§ã®æ¥ç·ã®åŒã¯ ''y = 2ax−a<sup>2</sup>'' ãšãªããŸãããã®æ¥ç·ãã(a, a<sup>2</sup>) ãéãããšã«æ³šæããŠãã ããããããŠãæ¥ç·ã®å€æ° ''x'' ãšãå°é¢æ°ã®å€æ° ''x'' ãæ··åããªãã§ãã ããã
:ã¡ãªã¿ã«åŸã§åºãŠãããç©ã®åŸ®åæ³åã䜿ã£ãŠã f(x)=x<sup>2</sup> ã®åŸ®åã¯
::<math>f(x)=x^2 = x x </math>
::<math>f'(x) = x + x = 2x </math>
:ãšãªãäžã®çµæãšäžèŽããŸãã
===å°é¢æ°ã®èšæ³ã«ã€ããŠ===
å°é¢æ°ã®èšæ³ã¯ãæ°åŠã®äžã§ããçµæ§ãç¹åŸŽçãªãã®ã§ããæããã䜿ãããèšæ³ã¯ã
:<math> \frac{dy}{dx}</math>
ã§ãããã®èšæ³ã¯ã ''x'' ã®å€åéã«å¯ŸããŠã ''y'' ã®å€åéã¯ã©ã®ããããªã®ãïŒãšããæå³ãè¡šããšèããããŸããæãã¯ã''y'' ã®åŸ®å°éã ''x'' ã®åŸ®å°é ã§å²ã ãšããæå³ãè¡šãèšæ³ãšèŠãäºãã§ããŸãããããã«ããå°é¢æ°ã®å®çŸ©ãççŽã«è¡šããèšæ³ã§ãã
:<math>\frac{d}{dx}</math>
ãšããèšå·ãããèŠãããŸããããã¯ã ''x'' ã«é¢ããŠåŸ®åãããšããæå³ã§ãã<math> \frac{dy}{dx}</math> ã® é¡åãšæã£ãŠãã ããã ''y'' ã®éšåã®è¡šçŸãé·ããªã£ããããå Žåã«äŸ¿å©ã§ãã
埮åãåŠãã§ããå
ã«ã''dy'' ã ''dx'' ã¯åæ°ã®ååãåæ¯ã®ããã«åãã¯ãªããŠèããããšãã§ãããããããªããšæããããããŸããã
:<math>\frac {dx}{dy}</math>
ã®ããã«ããŸãã§åæ°ã®éæ°ã§ãåã£ããã®ãããªèšå·ãèŠãããã§ãããã
æãã¯ã極座æšïŒpolar coordinates systemïŒãçšãã埮åã§
:<math>\frac{d\theta}{dr}</math>
ã®ãããªãã®ã«ãåºäŒãã§ãããã
<math>f(x) = y = x^{2}</math>ã®åŸ®åãè¡šãèšæ³ãšããŠã次ã®ãããªãã®ããããŸãããå
šãŠåãæå³ã§ãã
* <math>\frac{dy}{dx} = 2x</math>
* <math>\frac{d}{dx} x^{2} = 2x</math>
* <math>dy = 2x dx</math>
* <math>f'(x) = 2x</math>
* <math>D(f(x)) = 2x</math>
===æŒç¿===
å°é¢æ°ã®å®çŸ©ãçšããŠã次ã®é¢æ°ã®å°é¢æ°ãæ±ããŠã¿ãŸãããã
#<math>f(x)=2x+3</math>
#<math>f(x)=x^3</math>
#<math>f(x)=x^4</math>
==== 解ç ====
#<math>f'(x)=\lim_{\Delta x \to 0}\frac{(2(x+\Delta x)+3)-(2x+3)}{\Delta x}
=\lim_{\Delta x \to 0}\frac{2 \Delta x}{\Delta x} =\lim_{\Delta x \to 0} 2 =2</math>
#<math>f'(x)=\lim_{\Delta x \to 0}\frac{(x+\Delta x)^3-x^3}{\Delta x}
= \lim_{\Delta x \to 0}\frac{3x^2 \Delta x+3x(\Delta x)^2+(\Delta x)^3}{\Delta x}
= \lim_{\Delta x \to 0}(3x^2 +3x\Delta x +(\Delta x)^2)=3x^2</math>
#<math>f'(x)=\lim_{\Delta x \to 0}\frac{(x+\Delta x)^4-x^4}{\Delta x}
= \lim_{\Delta x \to 0}\frac{4x^3 \Delta x+6x^2(\Delta x)^2+4x(\Delta x)^3+(\Delta x)^4}{\Delta x}
= \lim_{\Delta x \to 0}(4x^3+6x^2\Delta x+4x(\Delta x)^2+(\Delta x)^3) =4x^3</math>
äœããã¿ãŒã³ã®ãããªãã®ãããããŸãããïŒ x<sup>n</sup> ã®åœ¢ã®åŸ®åã¯ãã¹ãä¹é¢æ°ã®åŸ®åã®é
ç®ã§æ±ããŸãã
==埮åã®æŒç®èŠå==
æ¯åã埮åãå®çŸ©éãå°ãã®ã¯é¢æ°ã倧å€ã§ãããããã£ãŠãäžè¬ã®é¢æ°ã埮åããããããã«ã埮åã®æ§è³ªããããã調ã¹ãŠããããããçšããŠåŸ®åãè¡ãã°ã楜ã«èšç®ã§ããããã«ãªããŸãã埮åã®æŒç®èŠåãç¥ãããšã§ãããªãå€ãã®é¢æ°ã埮åã§ããããã«ãªããŸããæãç°¡åãªèŠåã®ããã€ãã¯äžæ¬¡é¢æ°ã®åŸ®åã«é¢ãããã®ã§ãã®ã§ãäžæ¬¡é¢æ°ã®åŸ®åã¯ãã®åŸãã«ãªããšããæ§è³ªãšäœµããŠèãããšåãããããããšæããŸãã
===å®æ°é¢æ°ã®åŸ®å===
<center><math>\frac{d}{dx}\left[c\right]=0</math></center>
====äŸ====
:<math>\frac{d}{dx}\left[3\right]=0</math>
===äžæ¬¡é¢æ°ã®åŸ®å===
<div align="center" style="padding: 1em 10em;"><math>\frac{d}{dx}\left[mx+c\right]=m</math></div>
ãã®ç¹å¥ãªå Žåãšã㊠''x'' ã ''x'' ã§åŸ®åãããš<math>\frac{dx}{dx} = 1</math>ãšãªããŸããåæ°ã ãšæã£ãŠçŽåãããšããšåãã«èŠããŸãããåæ°ãšã¯éãå°é¢æ°ã®å®çŸ©ããæ±ããããçµæã§ãã®ã§ã誀解ããªãããã«ç解ããŠãã ããã<math>\frac{d}{dx}</math>ã§äžã€ã®èšå·ãªã®ã§ãã
ããããããŸãã§åæ°ãæ±ãæã®ãããªèšç®èŠåãç®ã«ããããšã«ãªããšæããŸãããåæ°ãšèª€è§£ããŠããŸããšããã®ãã¡ã''dx''ã ''dy''ãå®éã«ã¯äœãªã®ããšèãã¯ããããšãã«èºãåå ã«ããªããŸããæ··ä¹±ããå Žåã¯å®çŸ©ã«æ»ã£ãŠã¿ãŠãã ããã
=== å®æ°åãšåã®åŸ®å ===
åºæ¬çãªé¢æ°ã«ã€ããŠã®åŸ®åã®èŠåãããã€ãåŠã³ãŸããããããããã£ãšè€éãªé¢æ°ã«ã€ããŠåŸ®åããããã®èŠåãåŠã³ãŸããè€éãªé¢æ°ã¯ãç°¡åãªé¢æ°ã«å解ããŠèãããšåããããããªããŸãã®ã§ããã®ããã®æ段ãšããŠãããã§ã¯å®æ°åã®åŸ®åãšåã®åŸ®åã«ã€ããŠåŠã³ãŸãã
===å®æ°åã®åŸ®å===
<div align="center" style="padding: 1em 10em;"><math>\frac{d}{dx}\left[cf(x)\right] = c \frac{d}{dx}\left[f(x)\right]</math></div>
ãã®ããã«ãå®æ° ''c'' ã¯ã埮åèšå·ã®å€ã«åºããŸãã埮åã®å®çŸ©ã«æ»ãã°ãååãå®æ° ''c'' ã§ãããããã® ''c'' ã極éæäœã®å€ã«åºãããšãã§ãããšããããšããæãç«ã¡ãŸãã
====äŸ====
x<sup>2</sup>ã®åŸ®åã
:<math>\frac{d}{dx}\left[x^2\right]=2x</math>.
ãšãªãããšã¯æ¢ã«åŠãã éãã§ãã
ããã§ä»åºŠã¯ 3x<sup>2</sup>ã®åŸ®åãèããŸãã
:{|
|-
|<math>\frac{d}{dx}\left[3x^2\right]</math>
| = <math>3\frac{d}{dx}\left[x^2\right]</math>
|-
|
| = <math>3\times2x\,</math>
|-
|
| = <math>6x\,</math>
|-
|}
ããã¯ã
:3x<sup>2</sup> = x<sup>2</sup> + x<sup>2</sup> + x<sup>2</sup>
ãšèããã°ã次ã®åã®åŸ®åã䜿ã£ãŠã確ãããããšãã§ããŸãã
===åãšå·®ã®åŸ®å===
<div align="center" style="padding: 1em 10em;"><math>\frac{d}{dx}\left[f(x)\pm g(x)\right]= \frac{d}{dx}\left[f(x)\right]\pm\frac{d}{dx}\left[g(x)\right]</math></div>
ãã®åŒã¯è€å·åé ã§ãã巊蟺ã + ãªãå³èŸºã+ 巊蟺ã−ãªãå³èŸºã−ã§ãã
====äŸ====
:{|
|-
|<math>\frac{d}{dx}\left[3x^2+5x\right]</math>
| = <math>\frac{d}{dx}\left[3x^2+5x\right]</math>
|-
|
| = <math>\frac{d}{dx}\left[3x^2\right]+\frac{d}{dx}\left[5x\right]</math>
|-
|
| = <math>6x+\frac{d}{dx}\left[5x\right]</math>
|-
|
| = <math>6x+5\,</math>
|-
|}
ãã®ãå®æ°åããåã®åŸ®åã®æ³åã¯ãæ°åŠçã«ãšãŠãéèŠãªæ§è³ªã§ã埮åã'''ç·åœ¢æ§'''ïŒlinearityïŒãæã€ããšãæå³ããŸãã
足ãç®ãè¡ã£ãŠãã埮åãããŠããäžã€äžã€ã®é
ã«ã€ããŠåŸ®åãè¡ã£ãŠãã足ãç®ãè¡ã£ãŠãçµæã¯å€ãããŸãããç·åœ¢æ§ã¯è€éãªèšç®ããšãŠãç°¡åã«ããã®ã§ãã
===ã¹ãä¹é¢æ°ã®åŸ®å===
åã®åŸ®åã®æ³åããå®æ°åã®åŸ®åã®æ³åã䜿ãããšãèããŠãå€é
åŒãå解ããŠãããš x<sup>n</sup>ã®åŸ®åãšããåé¡ã«åž°çãããŸãããã®éšåã解決ããã®ããã®å
¬åŒã§ãã
<div align="center" style="padding: 1em 10em;"><math>\frac{d}{dx}\left[x^n\right]=nx^{n-1}</math></div>
äŸãã°ãæ¢ã«ç¢ºèªããããã« x<sup>2</sup> ã®åŸ®åã¯ã2x<sup>1</sup> = 2x ã«ãªããŸãã
ãã®èŠåã¯ãææ°ã åæ°ã è² ã®æ°ã®æïŒäžè¬ã«å®æ°ã®æïŒãæãç«ã¡ãŸãã
:{|
|-
|<math>\frac{d}{dx}\left[\sqrt x \right]</math>
| = <math>\frac{d}{dx}\left[ x^{1/2}\right]</math>
|-
|
| = <math>\frac 1 2 x^{-1/2}</math>
|-
|
| = <math>\frac 1 {2\sqrt x}</math>
|-
|
| = <math>\frac {\sqrt x} {2x}</math>
|}
å€é
åŒã¯åé
åŒã®åãªã®ã§ããã®èŠåãšãå®æ°åã®åŸ®åãåã®åŸ®åã®èŠåã䜿ãããšã§ãã©ããªåŸ®åãã§ããããã«ãªããŸãã
===å€é
åŒã®åŸ®å===
以äžã®èŠåã«ãããå€é
åŒã®åŸ®åãã§ããããã«ãªããŸããããããã®å
¬åŒãçºããŠããã ãã§ã¯èšç®åã¯èº«ã«ä»ããªãã®ã§ããããããªå€é
åŒãå®éã«åŸ®åããŠã¿ãããšã倧åã§ããããã§ã¯ããã®æé ã詳ãã説æããŸãã
äŸãšããŠ
:<math>\frac{d}{dx}\left[6x^5+3x^2+3x+1\right]</math>
ãèšç®ããŠã¿ãŸãã
æåã«ãåã®åŸ®åã®æ³åãçšããŠåé
åŒã«åããŸãã
:<math>\frac{d}{dx}\left[6x^5\right]+\frac{d}{dx}\left[3x^2\right]+\frac{d}{dx}\left[3x\right]+\frac{d}{dx}\left[1\right]</math>
äžæ¬¡ã®é
ãšå®æ°é
ã¯
:<math>\frac{d}{dx}\left[6x^5\right]+\frac{d}{dx}\left[3x^2\right]+3+0</math>
ãšãªããŸãã
é«æ¬¡ã®é
ã¯å®æ°åã®åŸ®åã®èŠåãçšããŠã埮åã®å€ã«åºããŸãã
:<math>6\frac{d}{dx}\left[x^5\right]+3\frac{d}{dx}\left[x^2\right]+3</math>
ããã§ã¹ãä¹ã®åŸ®åæ³åã«ãããããããã®åé
åŒã®åŸ®åãæ±ãŸããŸãã
:<math>6\left(5x^4\right)+3\left(2x\right)+3</math>
ããšã¯ã代æ°èšç®ãããŠåŒãç°¡åããŸãšããŠãæçµçã«
:30x<sup>4</sup>+6x+3
ãšãã解çãåŸãããŸãã
埮åã䜿ãæã®äŸ¿å©ãªèŠåã¯ãã£ãšæ²¢å±±ãããŸããããå°ãé«åºŠãªææ³ã«é¢ããŠã¯ããã®åŸã®ã[[解æåŠåºç€/埮åïŒ|埮åã®å
¬åŒ]]ããšããé
ç®ã§åŠã³ãŸãã
===æŒç¿===
å°é¢æ°ã®å®çŸ©ãããå®æ°é¢æ°ãäžæ¬¡é¢æ°ã®åŸ®åãå®æ°åãåã®åŸ®åã®æ³åãå°ããŠã¿ãŠãã ããã
<small>'''back to [[解æåŠåºç€#埮åæ³|解æåŠåºç€]]'''</small>
[[Category:解æåŠ|ã²ãµããã¡]] | null | 2013-07-24T23:20:53Z | [] | https://ja.wikibooks.org/wiki/%E8%A7%A3%E6%9E%90%E5%AD%A6%E5%9F%BA%E7%A4%8E/%E5%BE%AE%E5%88%86%EF%BC%91 |
1,814 | 解æåŠåºç€/埮åïŒ | å€é
åŒã®åŸ®åã«ã€ããŠã¯ãåé
ã§åŠã³ãŸãããäŸãã°
ãšãªããŸãã
ããã§ã¯ y=(x+5) ã®ãããªé¢æ°ãèããŸããããã¯æ¬¡ã®ããã«å±éããŠããã埮åããããšãã§ããŸãã
ãã®å Žåã¯ã 2 ä¹ãªã®ã§å±éãããã»ã©èŠã§ã¯ãããŸãããããããã10 ä¹ãªã©ã«ãªã£ãŠãããšããšãŠã倧å€ã«ãªã£ãŠããŸãã ããã§ãå±éããªããŠã埮åãèšç®ããããšãã§ããåæé¢æ°ã®åŸ®åãšåŒã°ããæ¹æ³ãåŠã³ãŸããäžã®é¢æ°ã¯ u=(x+5) ãšçœ®ãæããŠã¿ããšæ¬¡ã®ãããªè¡šçŸã§æžãäºãã§ããŸãã
ã€ãŸããäžã®åŒãäžã®åŒã«ä»£å
¥ãããš
ãšãªãããã«ãªã£ãŠããŸãã
åæé¢æ°ã®åŸ®åã¯ããã®ããã«ãy ã u ã ãã§è¡šãããé¢æ°ãšããŠæžããã u ã x ã ãã§è¡šãããé¢æ°ãšããŠæžããããããªå Žåã«äœ¿ãããšãã§ãã
d y d x = d y d u â
d u d x {\displaystyle {\frac {dy}{dx}}={\frac {dy}{du}}\cdot {\frac {du}{dx}}}
ãã®ããã«ãªããŸãã 以äžã®ãããªãè€æ°ã®é¢æ°ãåæãããåæé¢æ°ã埮åãããšãã«ããã®å°é¢æ°ããããããã®å°é¢æ°ã®ç©ã§äžãããããšããé¢ä¿åŒã®ããšããé£éåŸ(ããããã€ãè±: chain rule)ãšãããŸãã ãã®å
¬åŒã䜿ã£ãŠãå
çšã®é¢æ°ã®åŸ®åãèšç®ããŠã¿ãŸãããã
ãããã£ãŠ
ãšãªããå±éããŠãã埮åããå ŽåãšäžèŽããŠããããšãããããŸãã åæé¢æ°ã®åŸ®åããããå°ãè€éãªåŒã§äœ¿ã£ãŠã¿ãŸããäŸãã°
ã®åŒã«ãããŠ
ãšããŠã¿ããšã
ãšãªããŸããããåæé¢æ°ã®åŸ®åã«ããã°ãã®é¢æ°ã®åŸ®åã¯
ãšãªããŸãã
ããã«è€éãªé¢æ°ã®åŸ®åã«ã€ããŠåŠã³ãŸãã
ãã®é¢æ°ã®åŸ®åãèšç®ããããã«å±éããŠãå€é
åŒã®åŸ®åãè¡ãããšãã§ããŸãããèšç®ã倧å€ã«ãªããŸããããã§ãã®é¢æ°ãf(x) = (x+5)ãšg(x) = (x + 2)ã®ç©ãšèŠãŠæ¬¡ã®å
¬åŒã䜿ãããšã«ãããéãã«ç°¡åã«èšç®ããããšãã§ããŸãã
以äžããã®å
¬åŒãå°é¢æ°ã®å®çŸ©ã«æ»ã£ãŠèšŒæããŸãã
ããã§ãçžæ®ºããé
ãä»ãå ãããšãã䜿ãå€ãããææ³ãçšããŸãã
å ããé
ã¯ãå·®ãåŒãã㊠0 ã«ãªãããšã«æ³šæããŠãã ããã
å³èŸºãäºã€ã®åæ°ã«åããŸãã
ããããã®ååã¯ãå
±éã®å åã§ããããŸãã
ããã§æ¥µéãåã£ãŠã¿ããš
ãšãªãå
¬åŒã瀺ããŸããã
3ã€ã®é¢æ°ã®ç©ã§ããã°
ãšãªããŸããããã€ã®é¢æ°ã®ç©ã§ãã£ãŠãã2ã€ã®æã®ç©ã®åŸ®åãç¹°ãè¿ã䜿ãäºã«ãããåããããªå
¬åŒãå°ãããšãã§ããŸãã
次ã¯ãåã®åŸ®åãèããŸããé¢æ°ã®åã¯
ãšèŠãäºãã§ãããã®å³èŸºã¯ãé¢æ°å士ã®ç©ãšèŠãäºãã§ããŸãã®ã§ãåã®åŸ®åã¯ãç©ã®åŸ®åã®ç¹å¥ãªå ŽåãšèŠãäºãã§ããŸãã
ç©ã®åŸ®åãšåæé¢æ°ã®åŸ®åãšã¹ãä¹é¢æ°ã®åŸ®åã䜿ã£ãŠãåã®åŸ®åãèšç®ããŠã¿ãŸãã
ããã§ãè² ã®æ¬¡æ°ã®éšåãåã³åæ°ã®è¡šçŸã«æ»ããŸãã
ããã§ãåã®åŸ®åãšåŒã°ããå
¬åŒãåŸãããŸããã
èŠããã®ã¯å°ã倧å€ãããããŸãããååãåŒãç®ã«ãªãããšã«æ³šæããŸãããã
泚æ: 足ãç®ãåŒãç®ãæãã¯å®æ°åã®æã¯ã埮åãšèšç®é åºãå
¥ãæ¿ããããšãã§ããŸããã足ãç®ãå
ã«è¡ã埮åããŠãã埮åããŠãã足ãç®ãããŠãåãã§ãããããããç©ãåã®æã¯åŸ®åãšèšç®é åºãå
¥ãæ¿ããããšã¯ã§ããªãããšã«æ³šæããŠãã ããã
ææ°é¢æ° e ã®åŸ®åãæ±ããŸãã
ææ°æ³å a = a aãçšããããšã«ãã:
ããã§ã p = eâ1 ãšãããš
ãšãªããŸããããã§ã lnã¯èªç¶å¯Ÿæ°ã®åº eãåºãšãã察æ°é¢æ°ã§ãããèªç¶å¯Ÿæ°(natural logarithm)ãšãããŸãã 察æ°èšå·ããåºãçç¥ããlogãšããèšå·ãçšããããšããããŸãã ãã®åŒã®éæ°ãèãããš
èªç¶å¯Ÿæ°ã®åº eã®å®çŸ©ãã
ãšãªããh â 0 ã®æ p â 0 ã§ããã
ãšãªããŸãã
å³ã¡ã次ã®å
¬åŒãåŸãããŸããã
ã€ãŸããææ°é¢æ° e 㯠埮åããŠãå€ãããªãé¢æ° f â² ( x ) = f ( x ) {\displaystyle f'(x)=f(x)} ã§ããããã¯ãšãŠãéèŠãªæ§è³ªã§ãã
ææ°é¢æ°ã§ããåºã e ã§ã¯ãªãã a > 0 ã ã£ããã©ããªãã§ãããã?ã€ãŸã
ãèšç®ããŸãã察æ°é¢æ°ãçšã㊠e = c ãšãªãããšã«æ³šæãããš
ãšãã圢ã«ãªããŸããããšã¯ãåæé¢æ°ã®åŸ®åã«ãã£ãŠã
ãšãªããŸãããããã£ãŠã次ã®å
¬åŒãåŸãããŸããã
a = e ãšãããšãã«ã å
çšã®å
¬åŒãšåãã«ãªãããšã«æ³šæããŠãã ããã
察æ°é¢æ°ã®åŸ®åãèšç®ããŸããææ°é¢æ°ãšå¯æ¥ãªé¢ä¿ã«ããã®ã§ãææ°é¢æ°ã®åŸ®åãçšãããšãšãŠã容æã«èšç®ã§ããŸãã ãŸãã次ã®ããã« å€æ° y ãå®çŸ©ããŸãã
å³èŸºã® lnã 察æ°é¢æ°ã§ããln ãçšããæã¯ãåºã e ã®å¯Ÿæ°é¢æ°ãå³ã¡ãèªç¶å¯Ÿæ°é¢æ°ã§ããåºã e ã§ç¡ããšããªã©ã¯ãlog ãªã©ãçšããŸãã®ã§ãç¹ã«ãåºã e ã§ããäºãæ瀺ãããå Žåãªã©ã¯ã ln ã䜿ãããŸãã log ãšããè¡šèšã«æ
£ããŠããå Žå㯠log ã ãšæã£ãŠé ããŠæ§ããŸãããæ¥æ¬ã®åŠæ ¡ã§ã¯ã åºã e ã§ã log ãçšããŠæããããšãå€ãã§ãã
y ã® x ã«ãã埮åãæ±ããããã«æ¬¡ã®ãããªå€åœ¢ãè¡ããŸãã
ãããŠã 䞡蟺ã x ã§åŸ®åããŸãã ç¹ã«å·ŠèŸºã«ã¯ x ããããŸãããã y 㯠x ã®é¢æ°ãšããŠå®çŸ©ãããŠããããšãèããŠãåæé¢æ°ã®åŸ®åã䜿ããŸãã
x = e ãšããé¢ä¿ãåã³äœ¿ããš
ã«ãªããŸãããã次ã®å
¬åŒãåŸãããŸãã
åºããe ã§ç¡ãå Žåã®å¯Ÿæ°é¢æ°ã¯ãåºã®å€æå
¬åŒãçšããäºã«ãã£ãŠ
ãšãªãã1 / ln(b) ã¯å®æ°ã§ãããã埮åã®å€ã«åºãäºãã§ã
ãšãªããŸãããããã£ãŠæ¬¡ã®å
¬åŒãåŸãããŸãã
ãµã€ã³ãã³ãµã€ã³ãã¿ã³ãžã§ã³ããã»ã«ã³ããã³ã»ã«ã³ãã®åŸ®åãèšç®ããŸãããããã®é¢æ°ã¯ãæ°åŠã ãã§ãªããç©çãå·¥åŠãªã©ã®å¿çšåéã§ãéåžžã«ããã¿ãããŸãã極座æšã®è¡šçŸããè€çŽ å¹³é¢äžã®ç·ç©åãªã©ããããããªå Žé¢ã§ãããã®é¢æ°ã«åºäŒããŸãã
ãããã®é¢æ°ã®åŸ®åã®èšç®ã®ä»æ¹ã¯ãããããããŸããäžè§é¢æ°ã®å
ã®å®çŸ©ã«æ»ã£ãŠèšç®ããããšãã§ããŸããããããããç°¡åãªæ¹æ³ãšããŠãããã§ã¯ãªã€ã©ãŒã®å
¬åŒ:
ãçšãã埮åã玹ä»ããŸãã ãã㧠i = â 1 {\displaystyle i={\sqrt {-1}}} ã§ãã
ãã®å
¬åŒãçšãããšããµã€ã³ãšã³ãµã€ã³ã¯æ¬¡ã®ããã«è¡šãããããšã«ãªããŸãã
ææ°é¢æ°ã®åŸ®åãçšããã°
ãšãªããŸãããã次ã®çµæãåŸãããŸãã
ãããçšããŠãã¿ã³ãžã§ã³ãã®åŸ®åãèšç®ã§ããŸãã
ãšããé¢ä¿åŒã«ãåã®åŸ®åãçšããã°
ãšãªããŸãããŸã
ãšããè¡šçŸãå¯èœã§ãã
ã©ã¡ãã®è¡šçŸãéèŠã§ããåºãŠããŸãã
ã»ã«ã³ãã®åŸ®åã¯åæé¢æ°ã®åŸ®åããæ±ããŠã¿ãŸãã(ãã¡ããåã®åŸ®åã䜿ã£ãŠãããŸããŸããã)
å®çŸ©ãã
ã§ãããã
ãããã®åŒã®åŸ®åã¯ããããã
ãããã£ãŠ
ãšãªãã次ã®å
¬åŒãåŸãŸãã
ã³ã»ã«ã³ãã®å Žåãåãã§ãã
ã³ã¿ã³ãžã§ã³ãã®å Žåã¯ãã¿ã³ãžã§ã³ãã®åŸ®åãšåãæ¹æ³ãçšããŸãã
éäžè§é¢æ°ã®ã¢ãŒã¯ãµã€ã³ãã¢ãŒã¯ã³ãµã€ã³ãã¢ãŒã¯ã¿ã³ãžã§ã³ã ã®åŸ®åãèšç®ããŸããããã㯠sinãcosãtanã®ããã«ãè¡šèšãããŸãã éæ°ãè¡šãæã® â1 ä¹ãªã©ãšçŽããããäºããã arcsinãarccosãarctan ã®ãããªè¡šèšããããããšãå€ããªã£ãŠããŸããäžè§é¢æ°ã®éé¢æ°ãªã®ã§ãäžè§é¢æ°ã®å€ãåãã£ãŠãããšãã«ãè§åºŠãæ±ããé¢æ°ã§ãã䜿ããšãã«ã¯å®çŸ©åãå€åã«æ°ãä»ããªããšãããŸããã
ãŸãæåã«ã arcsin ã®åŸ®åããèšç®ããŸãã ããã§ã¯ã第äžè±¡éã®å Žåã®ã¿èããŸããããªãã¡
ã®æã«éããŸããä»ã®è±¡éã«ããå Žåãªã©ã笊å·ã«æ°ãä»ããŠäŒŒããããªèšç®ãããŠãã ããã
ãŸãæåã«ãæ¢ã«ç¥ã£ãŠããé¢æ°ã®åŸ®åã䜿ãããã«
ãšããŸãããããŠäž¡èŸºã x ã§åŸ®åããŸããå³èŸºã¯ãåæé¢æ°ã®åŸ®åã§ãã
dy / dx ã«ã€ããŠè§£ããŠã¿ããš
ã䜿ããšæ¬¡ã®å
¬åŒãåŸãããŸãã
åããããªæ¹æ³ã§ãarccos ã arctan ã®åŸ®åãèšç®ã§ããŸãã
ãããŸã§ã«åŠãã ã埮åã®æ³åãçšããŠæ¬¡ã®åŸ®åãèšç®ããŠãã ããã
å€é
åŒã®åŸ®åã¯é
ãåããŠåé
åŒã«ããŠèšç®ããŸããããããŠãåã®åŸ®åãçšã㊠æçé¢æ°ã®åŸ®åãè¡ããŸããã
ãããŠãsin x, cos x, tan x, e, ln x ãªã©ã®ãããªä»ã®é¢æ°ã®åŸ®åãå¿
èŠã«ãªãããšãããã§ããããå
çšã¯ãäžè§é¢æ°ã®åŸ®åã§ãªã€ã©ãŒã®å
¬åŒãªã©ã®äŸ¿å©ãªå
¬åŒãæã£ãŠããŠèšç®ãããŸãããã å°é¢æ°ã®å®çŸ©
ãçšããŠããããã®åŸ®åãæ±ããããªãã§ãããã?
sin x ã«é¢ããŠã¯ã次ã®ãããªèšŒæãã§ããŸãã
å ã¿ã«ã
ã¯ã極éãåç
§ããŠãã ããã
cos x {\displaystyle \cos x} ã tan x {\displaystyle \tan x} ã®åŸ®åã åãããã«æ±ããŠã¿ãŠãã ããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "å€é
åŒã®åŸ®åã«ã€ããŠã¯ãåé
ã§åŠã³ãŸãããäŸãã°",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ãšãªããŸãã",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ããã§ã¯ y=(x+5) ã®ãããªé¢æ°ãèããŸããããã¯æ¬¡ã®ããã«å±éããŠããã埮åããããšãã§ããŸãã",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ãã®å Žåã¯ã 2 ä¹ãªã®ã§å±éãããã»ã©èŠã§ã¯ãããŸãããããããã10 ä¹ãªã©ã«ãªã£ãŠãããšããšãŠã倧å€ã«ãªã£ãŠããŸãã ããã§ãå±éããªããŠã埮åãèšç®ããããšãã§ããåæé¢æ°ã®åŸ®åãšåŒã°ããæ¹æ³ãåŠã³ãŸããäžã®é¢æ°ã¯ u=(x+5) ãšçœ®ãæããŠã¿ããšæ¬¡ã®ãããªè¡šçŸã§æžãäºãã§ããŸãã",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ã€ãŸããäžã®åŒãäžã®åŒã«ä»£å
¥ãããš",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ãšãªãããã«ãªã£ãŠããŸãã",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "åæé¢æ°ã®åŸ®åã¯ããã®ããã«ãy ã u ã ãã§è¡šãããé¢æ°ãšããŠæžããã u ã x ã ãã§è¡šãããé¢æ°ãšããŠæžããããããªå Žåã«äœ¿ãããšãã§ãã",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "d y d x = d y d u â
d u d x {\\displaystyle {\\frac {dy}{dx}}={\\frac {dy}{du}}\\cdot {\\frac {du}{dx}}}",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "ãã®ããã«ãªããŸãã 以äžã®ãããªãè€æ°ã®é¢æ°ãåæãããåæé¢æ°ã埮åãããšãã«ããã®å°é¢æ°ããããããã®å°é¢æ°ã®ç©ã§äžãããããšããé¢ä¿åŒã®ããšããé£éåŸ(ããããã€ãè±: chain rule)ãšãããŸãã ãã®å
¬åŒã䜿ã£ãŠãå
çšã®é¢æ°ã®åŸ®åãèšç®ããŠã¿ãŸãããã",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "ãããã£ãŠ",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "ãšãªããå±éããŠãã埮åããå ŽåãšäžèŽããŠããããšãããããŸãã åæé¢æ°ã®åŸ®åããããå°ãè€éãªåŒã§äœ¿ã£ãŠã¿ãŸããäŸãã°",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "ã®åŒã«ãããŠ",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "ãšããŠã¿ããšã",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "ãšãªããŸããããåæé¢æ°ã®åŸ®åã«ããã°ãã®é¢æ°ã®åŸ®åã¯",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "ãšãªããŸãã",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "ããã«è€éãªé¢æ°ã®åŸ®åã«ã€ããŠåŠã³ãŸãã",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "ãã®é¢æ°ã®åŸ®åãèšç®ããããã«å±éããŠãå€é
åŒã®åŸ®åãè¡ãããšãã§ããŸãããèšç®ã倧å€ã«ãªããŸããããã§ãã®é¢æ°ãf(x) = (x+5)ãšg(x) = (x + 2)ã®ç©ãšèŠãŠæ¬¡ã®å
¬åŒã䜿ãããšã«ãããéãã«ç°¡åã«èšç®ããããšãã§ããŸãã",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "以äžããã®å
¬åŒãå°é¢æ°ã®å®çŸ©ã«æ»ã£ãŠèšŒæããŸãã",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "ããã§ãçžæ®ºããé
ãä»ãå ãããšãã䜿ãå€ãããææ³ãçšããŸãã",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "å ããé
ã¯ãå·®ãåŒãã㊠0 ã«ãªãããšã«æ³šæããŠãã ããã",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "å³èŸºãäºã€ã®åæ°ã«åããŸãã",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "ããããã®ååã¯ãå
±éã®å åã§ããããŸãã",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 22,
"tag": "p",
"text": "ããã§æ¥µéãåã£ãŠã¿ããš",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 23,
"tag": "p",
"text": "ãšãªãå
¬åŒã瀺ããŸããã",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 24,
"tag": "p",
"text": "3ã€ã®é¢æ°ã®ç©ã§ããã°",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 25,
"tag": "p",
"text": "ãšãªããŸããããã€ã®é¢æ°ã®ç©ã§ãã£ãŠãã2ã€ã®æã®ç©ã®åŸ®åãç¹°ãè¿ã䜿ãäºã«ãããåããããªå
¬åŒãå°ãããšãã§ããŸãã",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 26,
"tag": "p",
"text": "次ã¯ãåã®åŸ®åãèããŸããé¢æ°ã®åã¯",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 27,
"tag": "p",
"text": "ãšèŠãäºãã§ãããã®å³èŸºã¯ãé¢æ°å士ã®ç©ãšèŠãäºãã§ããŸãã®ã§ãåã®åŸ®åã¯ãç©ã®åŸ®åã®ç¹å¥ãªå ŽåãšèŠãäºãã§ããŸãã",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 28,
"tag": "p",
"text": "ç©ã®åŸ®åãšåæé¢æ°ã®åŸ®åãšã¹ãä¹é¢æ°ã®åŸ®åã䜿ã£ãŠãåã®åŸ®åãèšç®ããŠã¿ãŸãã",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 29,
"tag": "p",
"text": "ããã§ãè² ã®æ¬¡æ°ã®éšåãåã³åæ°ã®è¡šçŸã«æ»ããŸãã",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 30,
"tag": "p",
"text": "ããã§ãåã®åŸ®åãšåŒã°ããå
¬åŒãåŸãããŸããã",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 31,
"tag": "p",
"text": "èŠããã®ã¯å°ã倧å€ãããããŸãããååãåŒãç®ã«ãªãããšã«æ³šæããŸãããã",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 32,
"tag": "p",
"text": "泚æ: 足ãç®ãåŒãç®ãæãã¯å®æ°åã®æã¯ã埮åãšèšç®é åºãå
¥ãæ¿ããããšãã§ããŸããã足ãç®ãå
ã«è¡ã埮åããŠãã埮åããŠãã足ãç®ãããŠãåãã§ãããããããç©ãåã®æã¯åŸ®åãšèšç®é åºãå
¥ãæ¿ããããšã¯ã§ããªãããšã«æ³šæããŠãã ããã",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 33,
"tag": "p",
"text": "ææ°é¢æ° e ã®åŸ®åãæ±ããŸãã",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 34,
"tag": "p",
"text": "ææ°æ³å a = a aãçšããããšã«ãã:",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 35,
"tag": "p",
"text": "ããã§ã p = eâ1 ãšãããš",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 36,
"tag": "p",
"text": "ãšãªããŸããããã§ã lnã¯èªç¶å¯Ÿæ°ã®åº eãåºãšãã察æ°é¢æ°ã§ãããèªç¶å¯Ÿæ°(natural logarithm)ãšãããŸãã 察æ°èšå·ããåºãçç¥ããlogãšããèšå·ãçšããããšããããŸãã ãã®åŒã®éæ°ãèãããš",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 37,
"tag": "p",
"text": "èªç¶å¯Ÿæ°ã®åº eã®å®çŸ©ãã",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 38,
"tag": "p",
"text": "ãšãªããh â 0 ã®æ p â 0 ã§ããã",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 39,
"tag": "p",
"text": "ãšãªããŸãã",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 40,
"tag": "p",
"text": "å³ã¡ã次ã®å
¬åŒãåŸãããŸããã",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 41,
"tag": "p",
"text": "ã€ãŸããææ°é¢æ° e 㯠埮åããŠãå€ãããªãé¢æ° f â² ( x ) = f ( x ) {\\displaystyle f'(x)=f(x)} ã§ããããã¯ãšãŠãéèŠãªæ§è³ªã§ãã",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 42,
"tag": "p",
"text": "ææ°é¢æ°ã§ããåºã e ã§ã¯ãªãã a > 0 ã ã£ããã©ããªãã§ãããã?ã€ãŸã",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 43,
"tag": "p",
"text": "ãèšç®ããŸãã察æ°é¢æ°ãçšã㊠e = c ãšãªãããšã«æ³šæãããš",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 44,
"tag": "p",
"text": "ãšãã圢ã«ãªããŸããããšã¯ãåæé¢æ°ã®åŸ®åã«ãã£ãŠã",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 45,
"tag": "p",
"text": "ãšãªããŸãããããã£ãŠã次ã®å
¬åŒãåŸãããŸããã",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 46,
"tag": "p",
"text": "a = e ãšãããšãã«ã å
çšã®å
¬åŒãšåãã«ãªãããšã«æ³šæããŠãã ããã",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 47,
"tag": "p",
"text": "察æ°é¢æ°ã®åŸ®åãèšç®ããŸããææ°é¢æ°ãšå¯æ¥ãªé¢ä¿ã«ããã®ã§ãææ°é¢æ°ã®åŸ®åãçšãããšãšãŠã容æã«èšç®ã§ããŸãã ãŸãã次ã®ããã« å€æ° y ãå®çŸ©ããŸãã",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 48,
"tag": "p",
"text": "å³èŸºã® lnã 察æ°é¢æ°ã§ããln ãçšããæã¯ãåºã e ã®å¯Ÿæ°é¢æ°ãå³ã¡ãèªç¶å¯Ÿæ°é¢æ°ã§ããåºã e ã§ç¡ããšããªã©ã¯ãlog ãªã©ãçšããŸãã®ã§ãç¹ã«ãåºã e ã§ããäºãæ瀺ãããå Žåãªã©ã¯ã ln ã䜿ãããŸãã log ãšããè¡šèšã«æ
£ããŠããå Žå㯠log ã ãšæã£ãŠé ããŠæ§ããŸãããæ¥æ¬ã®åŠæ ¡ã§ã¯ã åºã e ã§ã log ãçšããŠæããããšãå€ãã§ãã",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 49,
"tag": "p",
"text": "y ã® x ã«ãã埮åãæ±ããããã«æ¬¡ã®ãããªå€åœ¢ãè¡ããŸãã",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 50,
"tag": "p",
"text": "ãããŠã 䞡蟺ã x ã§åŸ®åããŸãã ç¹ã«å·ŠèŸºã«ã¯ x ããããŸãããã y 㯠x ã®é¢æ°ãšããŠå®çŸ©ãããŠããããšãèããŠãåæé¢æ°ã®åŸ®åã䜿ããŸãã",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 51,
"tag": "p",
"text": "x = e ãšããé¢ä¿ãåã³äœ¿ããš",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 52,
"tag": "p",
"text": "ã«ãªããŸãããã次ã®å
¬åŒãåŸãããŸãã",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 53,
"tag": "p",
"text": "åºããe ã§ç¡ãå Žåã®å¯Ÿæ°é¢æ°ã¯ãåºã®å€æå
¬åŒãçšããäºã«ãã£ãŠ",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 54,
"tag": "p",
"text": "ãšãªãã1 / ln(b) ã¯å®æ°ã§ãããã埮åã®å€ã«åºãäºãã§ã",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 55,
"tag": "p",
"text": "ãšãªããŸãããããã£ãŠæ¬¡ã®å
¬åŒãåŸãããŸãã",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 56,
"tag": "p",
"text": "ãµã€ã³ãã³ãµã€ã³ãã¿ã³ãžã§ã³ããã»ã«ã³ããã³ã»ã«ã³ãã®åŸ®åãèšç®ããŸãããããã®é¢æ°ã¯ãæ°åŠã ãã§ãªããç©çãå·¥åŠãªã©ã®å¿çšåéã§ãéåžžã«ããã¿ãããŸãã極座æšã®è¡šçŸããè€çŽ å¹³é¢äžã®ç·ç©åãªã©ããããããªå Žé¢ã§ãããã®é¢æ°ã«åºäŒããŸãã",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 57,
"tag": "p",
"text": "ãããã®é¢æ°ã®åŸ®åã®èšç®ã®ä»æ¹ã¯ãããããããŸããäžè§é¢æ°ã®å
ã®å®çŸ©ã«æ»ã£ãŠèšç®ããããšãã§ããŸããããããããç°¡åãªæ¹æ³ãšããŠãããã§ã¯ãªã€ã©ãŒã®å
¬åŒ:",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 58,
"tag": "p",
"text": "ãçšãã埮åã玹ä»ããŸãã ãã㧠i = â 1 {\\displaystyle i={\\sqrt {-1}}} ã§ãã",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 59,
"tag": "p",
"text": "ãã®å
¬åŒãçšãããšããµã€ã³ãšã³ãµã€ã³ã¯æ¬¡ã®ããã«è¡šãããããšã«ãªããŸãã",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 60,
"tag": "p",
"text": "ææ°é¢æ°ã®åŸ®åãçšããã°",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 61,
"tag": "p",
"text": "ãšãªããŸãããã次ã®çµæãåŸãããŸãã",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 62,
"tag": "p",
"text": "ãããçšããŠãã¿ã³ãžã§ã³ãã®åŸ®åãèšç®ã§ããŸãã",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 63,
"tag": "p",
"text": "ãšããé¢ä¿åŒã«ãåã®åŸ®åãçšããã°",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 64,
"tag": "p",
"text": "ãšãªããŸãããŸã",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 65,
"tag": "p",
"text": "ãšããè¡šçŸãå¯èœã§ãã",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 66,
"tag": "p",
"text": "ã©ã¡ãã®è¡šçŸãéèŠã§ããåºãŠããŸãã",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 67,
"tag": "p",
"text": "ã»ã«ã³ãã®åŸ®åã¯åæé¢æ°ã®åŸ®åããæ±ããŠã¿ãŸãã(ãã¡ããåã®åŸ®åã䜿ã£ãŠãããŸããŸããã)",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 68,
"tag": "p",
"text": "å®çŸ©ãã",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 69,
"tag": "p",
"text": "ã§ãããã",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 70,
"tag": "p",
"text": "ãããã®åŒã®åŸ®åã¯ããããã",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 71,
"tag": "p",
"text": "ãããã£ãŠ",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 72,
"tag": "p",
"text": "ãšãªãã次ã®å
¬åŒãåŸãŸãã",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 73,
"tag": "p",
"text": "ã³ã»ã«ã³ãã®å Žåãåãã§ãã",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 74,
"tag": "p",
"text": "ã³ã¿ã³ãžã§ã³ãã®å Žåã¯ãã¿ã³ãžã§ã³ãã®åŸ®åãšåãæ¹æ³ãçšããŸãã",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 75,
"tag": "p",
"text": "éäžè§é¢æ°ã®ã¢ãŒã¯ãµã€ã³ãã¢ãŒã¯ã³ãµã€ã³ãã¢ãŒã¯ã¿ã³ãžã§ã³ã ã®åŸ®åãèšç®ããŸããããã㯠sinãcosãtanã®ããã«ãè¡šèšãããŸãã éæ°ãè¡šãæã® â1 ä¹ãªã©ãšçŽããããäºããã arcsinãarccosãarctan ã®ãããªè¡šèšããããããšãå€ããªã£ãŠããŸããäžè§é¢æ°ã®éé¢æ°ãªã®ã§ãäžè§é¢æ°ã®å€ãåãã£ãŠãããšãã«ãè§åºŠãæ±ããé¢æ°ã§ãã䜿ããšãã«ã¯å®çŸ©åãå€åã«æ°ãä»ããªããšãããŸããã",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 76,
"tag": "p",
"text": "ãŸãæåã«ã arcsin ã®åŸ®åããèšç®ããŸãã ããã§ã¯ã第äžè±¡éã®å Žåã®ã¿èããŸããããªãã¡",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 77,
"tag": "p",
"text": "ã®æã«éããŸããä»ã®è±¡éã«ããå Žåãªã©ã笊å·ã«æ°ãä»ããŠäŒŒããããªèšç®ãããŠãã ããã",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 78,
"tag": "p",
"text": "ãŸãæåã«ãæ¢ã«ç¥ã£ãŠããé¢æ°ã®åŸ®åã䜿ãããã«",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 79,
"tag": "p",
"text": "ãšããŸãããããŠäž¡èŸºã x ã§åŸ®åããŸããå³èŸºã¯ãåæé¢æ°ã®åŸ®åã§ãã",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 80,
"tag": "p",
"text": "dy / dx ã«ã€ããŠè§£ããŠã¿ããš",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 81,
"tag": "p",
"text": "ã䜿ããšæ¬¡ã®å
¬åŒãåŸãããŸãã",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 82,
"tag": "p",
"text": "åããããªæ¹æ³ã§ãarccos ã arctan ã®åŸ®åãèšç®ã§ããŸãã",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 83,
"tag": "p",
"text": "ãããŸã§ã«åŠãã ã埮åã®æ³åãçšããŠæ¬¡ã®åŸ®åãèšç®ããŠãã ããã",
"title": "ãã䜿ããã埮åã®èŠå"
},
{
"paragraph_id": 84,
"tag": "p",
"text": "å€é
åŒã®åŸ®åã¯é
ãåããŠåé
åŒã«ããŠèšç®ããŸããããããŠãåã®åŸ®åãçšã㊠æçé¢æ°ã®åŸ®åãè¡ããŸããã",
"title": "ãã®ä»ãåçé¢æ°ã®åŸ®åã«ã€ããŠ"
},
{
"paragraph_id": 85,
"tag": "p",
"text": "ãããŠãsin x, cos x, tan x, e, ln x ãªã©ã®ãããªä»ã®é¢æ°ã®åŸ®åãå¿
èŠã«ãªãããšãããã§ããããå
çšã¯ãäžè§é¢æ°ã®åŸ®åã§ãªã€ã©ãŒã®å
¬åŒãªã©ã®äŸ¿å©ãªå
¬åŒãæã£ãŠããŠèšç®ãããŸãããã å°é¢æ°ã®å®çŸ©",
"title": "ãã®ä»ãåçé¢æ°ã®åŸ®åã«ã€ããŠ"
},
{
"paragraph_id": 86,
"tag": "p",
"text": "ãçšããŠããããã®åŸ®åãæ±ããããªãã§ãããã?",
"title": "ãã®ä»ãåçé¢æ°ã®åŸ®åã«ã€ããŠ"
},
{
"paragraph_id": 87,
"tag": "p",
"text": "sin x ã«é¢ããŠã¯ã次ã®ãããªèšŒæãã§ããŸãã",
"title": "ãã®ä»ãåçé¢æ°ã®åŸ®åã«ã€ããŠ"
},
{
"paragraph_id": 88,
"tag": "p",
"text": "å ã¿ã«ã",
"title": "ãã®ä»ãåçé¢æ°ã®åŸ®åã«ã€ããŠ"
},
{
"paragraph_id": 89,
"tag": "p",
"text": "ã¯ã極éãåç
§ããŠãã ããã",
"title": "ãã®ä»ãåçé¢æ°ã®åŸ®åã«ã€ããŠ"
},
{
"paragraph_id": 90,
"tag": "p",
"text": "cos x {\\displaystyle \\cos x} ã tan x {\\displaystyle \\tan x} ã®åŸ®åã åãããã«æ±ããŠã¿ãŠãã ããã",
"title": "ãã®ä»ãåçé¢æ°ã®åŸ®åã«ã€ããŠ"
}
] | null | == ãã䜿ããã埮åã®èŠå ==
=== åæé¢æ°ã®åŸ®å ===
å€é
åŒã®åŸ®åã«ã€ããŠã¯ãåé
ã§åŠã³ãŸãããäŸãã°
:<math>\frac{d}{dx}(3x^3 - 6x^2 + x) = 9x^2 - 12x + 1</math>
ãšãªããŸãã
ããã§ã¯ ''y=(x+5)<sup>2</sup>'' ã®ãããªé¢æ°ãèããŸããããã¯æ¬¡ã®ããã«å±éããŠããã埮åããããšãã§ããŸãã
:<math>y=x^2 + 10x + 25</math>
:<math>f'(x) = 2x+ 10</math>
ãã®å Žåã¯ã 2 ä¹ãªã®ã§å±éãããã»ã©èŠã§ã¯ãããŸãããããããã10 ä¹ãªã©ã«ãªã£ãŠãããšããšãŠã倧å€ã«ãªã£ãŠããŸãã
ããã§ãå±éããªããŠã埮åãèšç®ããããšãã§ãã'''åæé¢æ°ã®åŸ®å'''ãšåŒã°ããæ¹æ³ãåŠã³ãŸããäžã®é¢æ°ã¯ u=(x+5) ãšçœ®ãæããŠã¿ããšæ¬¡ã®ãããªè¡šçŸã§æžãäºãã§ããŸãã
:<math>y = y(u) = u^2</math>
:<math>u = u(x) = x + 5</math>
ã€ãŸããäžã®åŒãäžã®åŒã«ä»£å
¥ãããš
:<math>y = y(u(x))</math>
ãšãªãããã«ãªã£ãŠããŸãã
'''åæé¢æ°ã®åŸ®å'''ã¯ããã®ããã«ã''y'' ã ''u'' ã ãã§è¡šãããé¢æ°ãšããŠæžããã ''u'' ã ''x'' ã ãã§è¡šãããé¢æ°ãšããŠæžããããããªå Žåã«äœ¿ãããšãã§ãã
<center>
<math>\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}</math><br>
</center>
ãã®ããã«ãªããŸãã
以äžã®ãããªãè€æ°ã®é¢æ°ãåæãããåæé¢æ°ã埮åãããšãã«ããã®å°é¢æ°ããããããã®å°é¢æ°ã®ç©ã§äžãããããšããé¢ä¿åŒã®ããšããé£éåŸïŒããããã€ãè±: chain ruleïŒãšãããŸãã
ãã®å
¬åŒã䜿ã£ãŠãå
çšã®é¢æ°ã®åŸ®åãèšç®ããŠã¿ãŸãããã
:<math>\frac{dy}{du} = 2u</math>
:<math>\frac{du}{dx} = 1</math>
ãããã£ãŠ
:<math>\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = 2u\cdot 1 = 2(x+5) = 2x + 10</math>
ãšãªããå±éããŠãã埮åããå ŽåãšäžèŽããŠããããšãããããŸãã
åæé¢æ°ã®åŸ®åããããå°ãè€éãªåŒã§äœ¿ã£ãŠã¿ãŸããäŸãã°
:<math>\frac{d}{dx} \sqrt{1 + x^2}</math>
ã®åŒã«ãããŠ
:<math>y = y(u) = \sqrt{u}</math>
:<math>u = u(x) = 1+x^2</math>
ãšããŠã¿ããšã
:<math>\frac{dy}{du} = \frac{1}{2\sqrt{u}}</math>
:<math>\frac{du}{dx} = 2x</math>
ãšãªããŸããããåæé¢æ°ã®åŸ®åã«ããã°ãã®é¢æ°ã®åŸ®åã¯
:<math>\frac{d}{dx} \sqrt{1 + x^2} = \frac{1}{2\sqrt{1 + x^2}}\cdot 2x = \frac{x}{\sqrt{1 + x^2}}</math>
ãšãªããŸãã
===ç©ã®åŸ®åãšåã®åŸ®å===
ããã«è€éãªé¢æ°ã®åŸ®åã«ã€ããŠåŠã³ãŸãã
:<math>h(x) = (x^2+5)^5 \cdot (x^3 + 2)^3</math>
ãã®é¢æ°ã®åŸ®åãèšç®ããããã«å±éããŠãå€é
åŒã®åŸ®åãè¡ãããšãã§ããŸãããèšç®ã倧å€ã«ãªããŸããããã§ãã®é¢æ°ã''f''(''x'') = (''x''<sup>2</sup>+5)<sup>5</sup>ãš''g''(''x'') = (x<sup>3</sup> + 2)<sup>3</sup>ã®ç©ãšèŠãŠæ¬¡ã®å
¬åŒã䜿ãããšã«ãããéãã«ç°¡åã«èšç®ããããšãã§ããŸãã
<table WIDTH="75%"><tr><td style="background-color: #FFFFFF; border: solid 1px #D6D6FF; padding: 1em;" valign=top>
<center>'''ç©ã®åŸ®åã®å
¬åŒ'''<br>
<math>\frac{d}{dx}\left[ f(x) \cdot g(x) \right] = f'(x) \cdot g(x)+f(x) \cdot g'(x)\,\!</math><br>
</center></td></tr></table>
以äžããã®å
¬åŒãå°é¢æ°ã®å®çŸ©ã«æ»ã£ãŠèšŒæããŸãã
:<math>\frac{d}{dx} \left[ f(x) \cdot g(x) \right] = \lim_{h \to 0} \frac{ f(x+h)\cdot g(x+h) - f(x) \cdot g(x)}{h}</math>
ããã§ãçžæ®ºããé
ãä»ãå ãããšãã䜿ãå€ãããææ³ãçšããŸãã
:<math>\frac{d}{dx} \left[ f(x) \cdot g(x) \right] = \lim_{h \to 0} \frac{ f(x+h)\cdot g(x+h) \mathbf{- f(x) \cdot g(x+h) + f(x) \cdot g(x+h)} - f(x) \cdot g(x)}{h}</math>
å ããé
ã¯ãå·®ãåŒãã㊠0 ã«ãªãããšã«æ³šæããŠãã ããã
å³èŸºãäºã€ã®åæ°ã«åããŸãã
:<math>\frac{d}{dx} \left[ f(x) \cdot g(x) \right] = \lim_{h \to 0} \left[ \frac{ f(x+h)\cdot g(x+h) - f(x) \cdot g(x+h) }{h} + \frac{f(x) \cdot g(x+h) - f(x) \cdot g(x)}{h} \right]</math>
ããããã®ååã¯ãå
±éã®å åã§ããããŸãã
:<math>\frac{d}{dx} \left[ f(x) \cdot g(x) \right] = \lim_{h \to 0} \left[ g(x+h) \frac{ f(x+h) - f(x) }{h} + f(x) \frac{g(x+h) - g(x)}{h} \right]</math>
ããã§æ¥µéãåã£ãŠã¿ããš
:<math>\frac{d}{dx} \left[ f(x) \cdot g(x) \right] = f'(x) \cdot g(x) + f(x) \cdot g'(x)</math>
ãšãªãå
¬åŒã瀺ããŸããã
3ã€ã®é¢æ°ã®ç©ã§ããã°
: <math>\frac{d}{dx}[fgh] = f(x) g(x) h'(x) + f(x) g'(x) h(x) + f'(x) g(x) h(x) </math>
ãšãªããŸããããã€ã®é¢æ°ã®ç©ã§ãã£ãŠãã2ã€ã®æã®ç©ã®åŸ®åãç¹°ãè¿ã䜿ãäºã«ãããåããããªå
¬åŒãå°ãããšãã§ããŸãã
次ã¯ãåã®åŸ®åãèããŸããé¢æ°ã®åã¯
:<math>\frac{f(x)}{g(x)} = f(x) \cdot g(x)^{-1}</math>
ãšèŠãäºãã§ãããã®å³èŸºã¯ãé¢æ°å士ã®ç©ãšèŠãäºãã§ããŸãã®ã§ãåã®åŸ®åã¯ãç©ã®åŸ®åã®ç¹å¥ãªå ŽåãšèŠãäºãã§ããŸãã
ç©ã®åŸ®åãšåæé¢æ°ã®åŸ®åãšã¹ãä¹é¢æ°ã®åŸ®åã䜿ã£ãŠãåã®åŸ®åãèšç®ããŠã¿ãŸãã
:<math>\frac{d}{dx} \frac{f(x)}{g(x)} = f'(x) \cdot g(x)^{-1} - f(x) \cdot g'(x) \cdot g(x)^{-2}</math>
ããã§ãè² ã®æ¬¡æ°ã®éšåãåã³åæ°ã®è¡šçŸã«æ»ããŸãã
:<math>\frac{d}{dx} \frac{f(x)}{g(x)} = \frac{f'(x) \cdot g(x)}{g(x)^2} - \frac{ f(x) \cdot g'(x) }{g(x)^{2}}</math>
ããã§ã'''åã®åŸ®å'''ãšåŒã°ããå
¬åŒãåŸãããŸããã
<table WIDTH="75%"><tr><td style="background-color: #FFFFFF; border: solid 1px #D6D6FF; padding: 1em;" valign=top>
<center>'''åã®åŸ®åã®å
¬åŒ'''<br>
<math> \frac{d}{dx} \left[{f(x)\over g(x)}\right] = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g(x)^2}\,\!</math><br>
</center></td></tr></table>
èŠããã®ã¯å°ã倧å€ãããããŸãããååãåŒãç®ã«ãªãããšã«æ³šæããŸãããã
'''泚æ''': 足ãç®ãåŒãç®ãæãã¯å®æ°åã®æã¯ã埮åãšèšç®é åºãå
¥ãæ¿ããããšãã§ããŸããã足ãç®ãå
ã«è¡ã埮åããŠãã埮åããŠãã足ãç®ãããŠãåãã§ãããããããç©ãåã®æã¯åŸ®åãšèšç®é åºãå
¥ãæ¿ããããšã¯'''ã§ããªã'''ããšã«æ³šæããŠãã ããã
===ææ°é¢æ°ã®åŸ®å===
<!-- ãã®é
ã¯å
ã
ãsinhãçšãã蚌æããããŠããŸããã埮åãç¿ã以åãã sinhã«éŠŽæãã§ããªãæ¥æ¬äººãšããŠã¯ããŸããããªãã®ã§å°ã蚌æãå€ããŸãã-->
ææ°é¢æ° e<sup>x</sup> ã®åŸ®åãæ±ããŸãã
:<math>\frac{d}{dx} e^x = \lim_{h \to 0} \frac{e^{x+h} - e^{x}}{h}</math>
ææ°æ³å ''a''<sup>''b'' + ''c''</sup> = ''a''<sup>''b''</sup> ''a''<sup>''c''</sup>ãçšããããšã«ãã:
:<math>\frac{d}{dx} e^x = \lim_{h \to 0} \frac{e^{x} e^{h} - e^{x}}{h} = e^x \cdot \lim_{h \to 0} \frac{e^{h} - 1 }{h}</math>
ããã§ã p = e<sup>h</sup>−1 ãšãããš
:<math>\frac{e^{h} - 1 }{h}=\frac{p}{\ln(p+1)}</math>
ãšãªããŸããããã§ã lnã¯èªç¶å¯Ÿæ°ã®åº eãåºãšãã察æ°é¢æ°ã§ãããèªç¶å¯Ÿæ°ïŒnatural logarithmïŒãšãããŸãã 察æ°èšå·ããåºãçç¥ããlogãšããèšå·ãçšããããšããããŸãã
ãã®åŒã®éæ°ãèãããš
:<math>\frac{\ln(p+1)}{p} = \ln\left((p+1)^{\frac{1}{p}}\right)</math>
èªç¶å¯Ÿæ°ã®åº eã®å®çŸ©ãã
:<math>\lim_{p \to 0} (p+1)^{\frac{1}{p}} = e</math>
ãšãªãã''h'' → 0 ã®æ ''p'' → 0 ã§ããã
:<math>\lim_{h \to 0}\frac{e^{h} - 1 }{h} = \lim_{p \to 0} \frac{p}{\ln(p+1)} = 1</math>
ãšãªããŸããã
å³ã¡ã次ã®å
¬åŒãåŸãããŸããã
<table WIDTH="75%"><tr><td style="background-color: #FFFFFF; border: solid 1px #D6D6FF; padding: 1em;" valign=top>
<center>'''ææ°é¢æ°ã®åŸ®å'''<br>
<math>\frac{d}{dx}e^x = e^x\,\!</math><br>
</center></td></tr></table>
ã€ãŸããææ°é¢æ° e<sup>x</sup> 㯠埮åããŠãå€ãããªãé¢æ° <math>f'(x) = f(x) </math> ã§ããããã¯ãšãŠãéèŠãªæ§è³ªã§ãã
ææ°é¢æ°ã§ããåºã ''e'' ã§ã¯ãªãã ''a'' > 0 ã ã£ããã©ããªãã§ããããïŒã€ãŸã
:<math>\frac{d}{dx}a^x</math>
ãèšç®ããŸãã察æ°é¢æ°ãçšã㊠''e''<sup>ln(''c'')</sup> = ''c'' ãšãªãããšã«æ³šæãããš
:<math>a^x = e^{x \cdot \ln(a)} </math>
ãšãã圢ã«ãªããŸããããšã¯ãåæé¢æ°ã®åŸ®åã«ãã£ãŠã
:<math>\frac{d}{dx}e^{x \cdot \ln(a)} = \left[ \frac{d}{dx} x\cdot \ln(a) \right] e^{x \cdot \ln(a)} = \ln(a) a^x </math>
ãšãªããŸãããããã£ãŠã次ã®å
¬åŒãåŸãããŸããã
<table WIDTH="75%"><tr><td style="background-color: #FFFFFF; border: solid 1px #D6D6FF; padding: 1em;" valign=top>
<center>'''ææ°é¢æ°ã®åŸ®å'''<br>
<math>\frac{d}{dx}a^x = \ln\left(a\right)a^x\,\!</math><br>
</center></td></tr></table>
''a'' = ''e'' ãšãããšãã«ã å
çšã®å
¬åŒãšåãã«ãªãããšã«æ³šæããŠãã ããã
===察æ°é¢æ°ã®åŸ®å===
察æ°é¢æ°ã®åŸ®åãèšç®ããŸããææ°é¢æ°ãšå¯æ¥ãªé¢ä¿ã«ããã®ã§ãææ°é¢æ°ã®åŸ®åãçšãããšãšãŠã容æã«èšç®ã§ããŸãã
ãŸãã次ã®ããã« å€æ° ''y'' ãå®çŸ©ããŸãã
:<math>y = \ln\left(x\right)</math>
å³èŸºã® lnã 察æ°é¢æ°ã§ããln ãçšããæã¯ãåºã ''e'' ã®å¯Ÿæ°é¢æ°ãå³ã¡ãèªç¶å¯Ÿæ°é¢æ°ã§ããåºã ''e'' ã§ç¡ããšããªã©ã¯ãlog ãªã©ãçšããŸãã®ã§ãç¹ã«ãåºã ''e'' ã§ããäºãæ瀺ãããå Žåãªã©ã¯ã ln ã䜿ãããŸãã log ãšããè¡šèšã«æ
£ããŠããå Žå㯠log ã ãšæã£ãŠé ããŠæ§ããŸãããæ¥æ¬ã®åŠæ ¡ã§ã¯ã åºã ''e'' ã§ã log ãçšããŠæããããšãå€ãã§ãã
''y'' ã® ''x'' ã«ãã埮åãæ±ããããã«æ¬¡ã®ãããªå€åœ¢ãè¡ããŸãã
:<math>e^y = x</math>
ãããŠã 䞡蟺ã ''x'' ã§åŸ®åããŸãã ç¹ã«å·ŠèŸºã«ã¯ ''x'' ããããŸãããã ''y'' 㯠''x'' ã®é¢æ°ãšããŠå®çŸ©ãããŠããããšãèããŠãåæé¢æ°ã®åŸ®åã䜿ããŸãã
:<math> \frac{dy}{dx} \cdot e^y = 1</math>
''x'' = ''e''<sup>''y''</sup> ãšããé¢ä¿ãåã³äœ¿ããš
:<math> \left(\frac{dy}{dx}\right) \cdot x = 1 </math>
ã«ãªããŸãããã次ã®å
¬åŒãåŸãããŸãã
<table WIDTH="75%"><tr><td style="background-color: #FFFFFF; border: solid 1px #D6D6FF; padding: 1em;" valign=top>
<center>'''èªç¶å¯Ÿæ°é¢æ°ã®åŸ®å'''<br>
<math>\frac{d}{dx}\ln\left(x\right) = \frac{1}{x}\,\!</math><br>
</center></td></tr></table>
åºãã''e'' ã§ç¡ãå Žåã®å¯Ÿæ°é¢æ°ã¯ãåºã®å€æå
¬åŒãçšããäºã«ãã£ãŠ
:<math>\log_b(x) = \frac{\ln(x)}{\ln(b)} </math>
ãšãªãã1 / ln(''b'') ã¯å®æ°ã§ãããã埮åã®å€ã«åºãäºãã§ã
:<math>\frac{d}{dx}\log_b(x) = \frac{1}{\ln(b)} \cdot \frac{d}{dx} \ln(x) </math>
ãšãªããŸãããããã£ãŠæ¬¡ã®å
¬åŒãåŸãããŸãã
<table WIDTH="75%"><tr><td style="background-color: #FFFFFF; border: solid 1px #D6D6FF; padding: 1em;" valign=top>
<center>'''察æ°é¢æ°ã®åŸ®å'''<br>
<math>\frac{d}{dx}\log_b\left(x\right) = \frac{1}{x\ln\left(b\right)}\,\!</math><br>
</center></td></tr></table>
===äžè§é¢æ°ã®åŸ®å===
ãµã€ã³ãã³ãµã€ã³ãã¿ã³ãžã§ã³ããã»ã«ã³ããã³ã»ã«ã³ãã®åŸ®åãèšç®ããŸãããããã®é¢æ°ã¯ãæ°åŠã ãã§ãªããç©çãå·¥åŠãªã©ã®å¿çšåéã§ãéåžžã«ããã¿ãããŸãã極座æšã®è¡šçŸããè€çŽ å¹³é¢äžã®ç·ç©åãªã©ããããããªå Žé¢ã§ãããã®é¢æ°ã«åºäŒããŸãã
ãããã®é¢æ°ã®åŸ®åã®èšç®ã®ä»æ¹ã¯ãããããããŸããäžè§é¢æ°ã®å
ã®å®çŸ©ã«æ»ã£ãŠèšç®ããããšãã§ããŸããããããããç°¡åãªæ¹æ³ãšããŠãããã§ã¯ãªã€ã©ãŒã®å
¬åŒ:
<table WIDTH="75%"><tr><td style="background-color: #FFFFFF; border: solid 1px #D6D6FF; padding: 1em;" valign=top>
<center>'''ãªã€ã©ãŒã®å
¬åŒ'''<br>
<math>e^{i\,x} = \cos(x) + i\,\sin(x)\,\!</math><br>
</center></td></tr></table>
ãçšãã埮åã玹ä»ããŸãã
ããã§<math>i = \sqrt{-1}</math>ã§ãã
ãã®å
¬åŒãçšãããšããµã€ã³ãšã³ãµã€ã³ã¯æ¬¡ã®ããã«è¡šãããããšã«ãªããŸãã
:<math>\sin(x) = \frac{e^{i\,x} - e^{-i\,x}}{2i}</math>
:<math>\cos(x) = \frac{e^{i\,x} + e^{-i\,x}}{2}</math>
ææ°é¢æ°ã®åŸ®åãçšããã°
:<math>\frac{d}{dx} \sin(x) = \frac{i\,e^{i\,x} + i\,e^{-i\,x}}{2i}</math>
:<math>\frac{d}{dx} \cos(x) = \frac{i\,e^{i\,x} - i\,e^{-i\,x}}{2}</math>
ãšãªããŸãããã次ã®çµæãåŸãããŸãã
<table WIDTH="75%"><tr><td style="background-color: #FFFFFF; border: solid 1px #D6D6FF; padding: 1em;" valign=top>
<center>'''ãµã€ã³ãšã³ãµã€ã³ã®åŸ®å'''<br>
<math>\frac{d}{dx} \sin(x) = \cos(x)\,\!</math><br>
<math>\frac{d}{dx} \cos(x) = -\sin(x)\,\!</math><br>
</center></td></tr></table>
ãããçšããŠãã¿ã³ãžã§ã³ãã®åŸ®åãèšç®ã§ããŸãã
:<math>\tan(x) = \frac{\sin(x)}{\cos(x)}</math>
ãšããé¢ä¿åŒã«ãåã®åŸ®åãçšããã°
:<math>\frac{d}{dx} \tan(x) = \frac{\cos^2(x) + \sin^2(x)}{\cos^2(x)} = 1 + \left(\frac{\sin(x)}{\cos(x)}\right)^2 = 1 + \tan^2(x)</math>
ãšãªããŸãããŸã
:<math>\cos^2(x) + \sin^2(x) = 1</math> ã§ããããšãæãåºãã°
{|
|-
|<math>\frac{\cos^2(x) + \sin^2(x)}{\cos^2(x)}</math>
|<math>=\frac{1}{\cos^2(x)}</math>
|-
|
|<math>=\sec^2(x)\,</math>
|-
|}
ãšããè¡šçŸãå¯èœã§ãã
<table WIDTH="75%"><tr><td style="background-color: #FFFFFF; border: solid 1px #D6D6FF; padding: 1em;" valign=top>
<center>'''ã¿ã³ãžã§ã³ãã®åŸ®å'''<br>
<math>\frac{d}{dx} \tan(x) = \sec^2(x) = 1 + \tan^2(x)</math><br>
</center></td></tr></table>
ã©ã¡ãã®è¡šçŸãéèŠã§ããåºãŠããŸãã
ã»ã«ã³ãã®åŸ®åã¯åæé¢æ°ã®åŸ®åããæ±ããŠã¿ãŸããïŒãã¡ããåã®åŸ®åã䜿ã£ãŠãããŸããŸãããïŒ
å®çŸ©ãã
:<math>\sec(x) = \frac{1}{\cos(x)}</math>
ã§ãããã
:<math>\sec(x) = \frac{1}{u}</math>
:<math>u(x) = \cos(x)</math>
ãããã®åŒã®åŸ®åã¯ããããã
:<math>\frac{d}{dx} \sec(x) = \frac{-1}{u^2} \cdot \frac{du}{dx}</math>
:<math>\frac{du}{dx} = -\sin(x)</math>
ãããã£ãŠ
:<math>\frac{d}{dx} \sec(x) = \frac{\sin(x)}{\cos^2(x)}</math>
ãšãªãã次ã®å
¬åŒãåŸãŸãã
<table WIDTH="75%"><tr><td style="background-color: #FFFFFF; border: solid 1px #D6D6FF; padding: 1em;" valign=top>
<center>'''ã»ã«ã³ãã®åŸ®å'''<br>
<math>\frac{d}{dx} \sec(x) = \sec(x) \tan(x)\,\!</math><br>
</center></td></tr></table>
ã³ã»ã«ã³ãã®å Žåãåãã§ãã
:<math>\csc(x) = \frac{1}{\sin(x)}</math>
<table WIDTH="75%"><tr><td style="background-color: #FFFFFF; border: solid 1px #D6D6FF; padding: 1em;" valign=top>
<center>'''ã³ã»ã«ã³ãã®åŸ®å'''<br>
<math>\frac{d}{dx} \csc(x) = -\csc(x) \cot(x)\,\!</math><br>
</center></td></tr></table>
ã³ã¿ã³ãžã§ã³ãã®å Žåã¯ãã¿ã³ãžã§ã³ãã®åŸ®åãšåãæ¹æ³ãçšããŸãã
<table WIDTH="75%"><tr><td style="background-color: #FFFFFF; border: solid 1px #D6D6FF; padding: 1em;" valign=top>
<center>'''ã³ã¿ã³ãžã§ã³ãã®åŸ®å'''<br>
<math>\frac{d}{dx} \cot(x) = -\csc^2(x) = -\left(1+\cot^2(x)\right)</math><br>
</center></td></tr></table>
===éäžè§é¢æ°ã®åŸ®å===
éäžè§é¢æ°ã®ã¢ãŒã¯ãµã€ã³ãã¢ãŒã¯ã³ãµã€ã³ãã¢ãŒã¯ã¿ã³ãžã§ã³ã ã®åŸ®åãèšç®ããŸããããã㯠sin<sup>−1</sup>ãcos<sup>−1</sup>ãtan<sup>−1</sup>ã®ããã«ãè¡šèšãããŸãã éæ°ãè¡šãæã® −1 ä¹ãªã©ãšçŽããããäºããã arcsinãarccosãarctan ã®ãããªè¡šèšããããããšãå€ããªã£ãŠããŸããäžè§é¢æ°ã®éé¢æ°ãªã®ã§ãäžè§é¢æ°ã®å€ãåãã£ãŠãããšãã«ãè§åºŠãæ±ããé¢æ°ã§ãã䜿ããšãã«ã¯å®çŸ©åãå€åã«æ°ãä»ããªããšãããŸããã
ãŸãæåã«ã arcsin ã®åŸ®åããèšç®ããŸãã
ããã§ã¯ã第äžè±¡éã®å Žåã®ã¿èããŸããããªãã¡
:<math>0<x<1, 0<y<\frac{\pi}{2}</math>
ã®æã«éããŸããä»ã®è±¡éã«ããå Žåãªã©ã笊å·ã«æ°ãä»ããŠäŒŒããããªèšç®ãããŠãã ããã
:<math>y=\arcsin(x)</math>
ãŸãæåã«ãæ¢ã«ç¥ã£ãŠããé¢æ°ã®åŸ®åã䜿ãããã«
:<math>x = \sin(y)</math>
ãšããŸãããããŠäž¡èŸºã ''x'' ã§åŸ®åããŸããå³èŸºã¯ãåæé¢æ°ã®åŸ®åã§ãã
:<math>1 = \cos(y) \cdot \frac{dy}{dx}</math>
''dy'' / ''dx'' ã«ã€ããŠè§£ããŠã¿ããš
:<math>\frac{dy}{dx} = \frac{1}{\cos(y)} </math>
:<math>\sin^2(y)+\cos^2(y)=1</math>
ã䜿ããšæ¬¡ã®å
¬åŒãåŸãããŸãã
<table WIDTH="75%"><tr><td style="background-color: #FFFFFF; border: solid 1px #D6D6FF; padding: 1em;" valign=top>
<center>'''arcsinã®åŸ®å'''<br>
<math>\frac{d}{dx} \arcsin(x) = \frac{1}{\sqrt{1-x^2}}\,\!</math><br>
</center></td></tr></table>
åããããªæ¹æ³ã§ãarccos ã arctan ã®åŸ®åãèšç®ã§ããŸãã
<table WIDTH="75%"><tr><td style="background-color: #FFFFFF; border: solid 1px #D6D6FF; padding: 1em;" valign=top>
<center>'''arccos ã®åŸ®å'''<br>
<math>\frac{d}{dx} \arccos(x) = \frac{-1}{\sqrt{1-x^2}}\,\!</math><br>
</center></td></tr>
<tr><td style="background-color: #FFFFFF; border: solid 1px #D6D6FF; padding: 1em;" valign=top>
<center>'''arctan ã®åŸ®å'''<br>
<math>\frac{d}{dx} \arctan(x) = \frac{1}{1+x^2}\,\!</math><br>
</center></td></tr></table>
===æŒç¿===
ãããŸã§ã«åŠãã ã埮åã®æ³åãçšããŠæ¬¡ã®åŸ®åãèšç®ããŠãã ããã
# <math>D[(x^3 + 5)^{10}]</math>
# <math>D[x^3 + 3x]</math>
# <math>D[(x+4)\cdot (x+2)\cdot (x-3)]</math>
# <math>D[\frac{x+1}{3x^2}]</math>
# <math>D[3\cdot x^3]</math>
# <math>D[2^x]</math>
# <math>D[e^{x^2}]</math>
# <math>D[ e^{2^x} ]</math>
# <math>D[ x^x ]</math>
==== æŒç¿åé¡ã®çã ====
# <math>30 x^{2} \cdot ( x^3 + 5 )^{9}</math>
# <math>3\cdot x^2+3</math>
# <math>(x - 3)\cdot (x + 2) + (x + 4)\cdot (x + 2) + (x - 3)\cdot (x + 4)</math>
# <math>\frac{3x^2 - 6x^2 - 6x}{9x^4}</math>
# <math>9\cdot x^2</math>
# <math>\ln(2) \cdot 2^x</math>
# <math>2x \cdot e^{x^2}</math>
# <math>\ln(2) \cdot 2^x \cdot e^{2^x}</math>
# <math>[\ln(x) + 1] \cdot x^x</math>
==ãã®ä»ãåçé¢æ°ã®åŸ®åã«ã€ããŠ==
å€é
åŒã®åŸ®åã¯é
ãåããŠåé
åŒã«ããŠèšç®ããŸããããããŠãåã®åŸ®åãçšã㊠æçé¢æ°ã®åŸ®åãè¡ããŸããã
ãããŠãsin ''x'', cos ''x'', tan ''x'', e<sup>''x''</sup>, ln ''x'' ãªã©ã®ãããªä»ã®é¢æ°ã®åŸ®åãå¿
èŠã«ãªãããšãããã§ããããå
çšã¯ãäžè§é¢æ°ã®åŸ®åã§ãªã€ã©ãŒã®å
¬åŒãªã©ã®äŸ¿å©ãªå
¬åŒãæã£ãŠããŠèšç®ãããŸãããã
å°é¢æ°ã®å®çŸ©
:<math>f'(x) = \lim_{h \to 0}\frac{f(x+h)-f(x)}{h}</math>,
ãçšããŠããããã®åŸ®åãæ±ããããªãã§ããããïŒ
sin ''x'' ã«é¢ããŠã¯ã次ã®ãããªèšŒæãã§ããŸãã
<table WIDTH="60%"><tr><td style="background-color: #FFFFFF; border: solid 1px #D6D6FF; padding: 1em;" valign=top>
<math> f(x) = \sin{x}</math>
<br><math> f'(x) = \lim_{h \to 0}{\sin(x+h)-\sin{x} \over h}</math>
<math> = \lim_{h \to 0}{2\cos(x+h/2)\sin(h/2) \over h}</math>
<br><math> = \lim_{h \to 0} \cos(x+h/2){\sin(h/2) \over (h/2)}</math>
<br><math> = \cos{x}</math>
</td></tr></table>
å ã¿ã«ã
:<math>\lim_{h \to 0}{\sin(h/2)\over (h/2)} = 1 </math>
ã¯ã[[解æåŠåºç€/極é#極éãæ±ããããã®éå
·|極é]]ãåç
§ããŠãã ããã
===æŒç¿===
<math>\cos x</math> ã <math>\tan x</math> ã®åŸ®åã åãããã«æ±ããŠã¿ãŠãã ããã
==å€éšãªã³ã¯==
* [http://wims.unice.fr/wims/wims.cgi?module=home&search_keywords=derivative&search_category=X Online interactive exercises on derivatives]
<small>'''back to [[解æåŠåºç€#埮åæ³|解æåŠåºç€]]'''</small>
[[Category:解æåŠ|ã²ãµãã«]]
[[en:Calculus/More Differentiation Rules]] | null | 2013-07-24T23:46:45Z | [] | https://ja.wikibooks.org/wiki/%E8%A7%A3%E6%9E%90%E5%AD%A6%E5%9F%BA%E7%A4%8E/%E5%BE%AE%E5%88%86%EF%BC%92 |
1,838 | ãã€ãèª åçŽç¬¬17課 | <第16課 | 第18課>
Berlin ist die gröÃte Stadt in Deutschland.
Sein Haus ist am gröÃten.
Ihr neues Buch ist interessanter als ihr FrÃŒheres.
Am liebsten esse ich Obst.
Wörter åèª:
Grammatik ææ³: Thema: Komparativ und Superlativ der Adjektive und Adverben
ãã€ãèªã®åœ¢å®¹è©ã«ã¯ãæ¯èŒçŽãæäžçŽããããããã«ãã£ãŠçšåºŠã®å·®ãçŸããæäžçŽã¯ãå®å è©ãšãšãã«çšããã
圢容è©ã®æ¯èŒçŽãæäžçŽã®äœãæ¹ã«ã¯ãèŠåå€åãšäžèŠåå€åããããã»ãšãã©ã®åœ¢å®¹è©ã¯èŠåå€åããã以äžãã®äŸã瀺ãã
å€åè¡š:Tafel
èŠåå€åãã圢容è©ã®ãªãã«ã¯ãèªå¹¹ãå€é³ãããã®ãããã
äžèŠåå€åãã圢容è©ã¯å°ãªãããéèŠãªãã®ãå€ãã
åè©ã修食ããå Žå
æ¯èŒçŽãæäžçŽã®åœ¢å®¹è©ããåçŽåæ§ãåè©åããŠçšããããšãã§ããã......
ãã€ãèªã§ã¯å¯è©ã«ãæ¯èŒçŽãšæäžçŽããããå¯è©ã®æ¯èŒçŽãšæäžçŽã¯ã圢容è©ãšåã圢ã§ããããã ãæäžçŽã®å Žå㯠圢容è©ãåè©åãããã®ã䌎ã(äžæ§æ±ã)ã
am besten am wenigsten am letzten am mindesten am meisten
<第16課 | 第18課> | [
{
"paragraph_id": 0,
"tag": "p",
"text": "<第16課 | 第18課>",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "Berlin ist die gröÃte Stadt in Deutschland.",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "Sein Haus ist am gröÃten.",
"title": ""
},
{
"paragraph_id": 3,
"tag": "p",
"text": "Ihr neues Buch ist interessanter als ihr FrÃŒheres.",
"title": ""
},
{
"paragraph_id": 4,
"tag": "p",
"text": "Am liebsten esse ich Obst.",
"title": ""
},
{
"paragraph_id": 5,
"tag": "p",
"text": "Wörter åèª:",
"title": ""
},
{
"paragraph_id": 6,
"tag": "p",
"text": "Grammatik ææ³: Thema: Komparativ und Superlativ der Adjektive und Adverben",
"title": ""
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ãã€ãèªã®åœ¢å®¹è©ã«ã¯ãæ¯èŒçŽãæäžçŽããããããã«ãã£ãŠçšåºŠã®å·®ãçŸããæäžçŽã¯ãå®å è©ãšãšãã«çšããã",
"title": ""
},
{
"paragraph_id": 8,
"tag": "p",
"text": "圢容è©ã®æ¯èŒçŽãæäžçŽã®äœãæ¹ã«ã¯ãèŠåå€åãšäžèŠåå€åããããã»ãšãã©ã®åœ¢å®¹è©ã¯èŠåå€åããã以äžãã®äŸã瀺ãã",
"title": ""
},
{
"paragraph_id": 9,
"tag": "p",
"text": "å€åè¡š:Tafel",
"title": ""
},
{
"paragraph_id": 10,
"tag": "p",
"text": "èŠåå€åãã圢容è©ã®ãªãã«ã¯ãèªå¹¹ãå€é³ãããã®ãããã",
"title": ""
},
{
"paragraph_id": 11,
"tag": "p",
"text": "äžèŠåå€åãã圢容è©ã¯å°ãªãããéèŠãªãã®ãå€ãã",
"title": ""
},
{
"paragraph_id": 12,
"tag": "p",
"text": "åè©ã修食ããå Žå",
"title": ""
},
{
"paragraph_id": 13,
"tag": "p",
"text": "æ¯èŒçŽãæäžçŽã®åœ¢å®¹è©ããåçŽåæ§ãåè©åããŠçšããããšãã§ããã......",
"title": ""
},
{
"paragraph_id": 14,
"tag": "p",
"text": "ãã€ãèªã§ã¯å¯è©ã«ãæ¯èŒçŽãšæäžçŽããããå¯è©ã®æ¯èŒçŽãšæäžçŽã¯ã圢容è©ãšåã圢ã§ããããã ãæäžçŽã®å Žå㯠圢容è©ãåè©åãããã®ã䌎ã(äžæ§æ±ã)ã",
"title": "å¯è©ã®æ¯èŒçŽãšæäžçŽ"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "am besten am wenigsten am letzten am mindesten am meisten",
"title": "å¯è©ã®æ¯èŒçŽãšæäžçŽ"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "<第16課 | 第18課>",
"title": "å¯è©ã®æ¯èŒçŽãšæäžçŽ"
}
] | ïŒç¬¬16課 | 第18èª²ïŒ Berlin ist die gröÃte Stadt in Deutschland. Sein Haus ist am gröÃten. Ihr neues Buch ist interessanter als ihr FrÃŒheres. Am liebsten esse ich Obst. Wörterãåèª: Grammatik ææ³:
Thema: Komparativ und Superlativ der Adjektive und Adverben ãã€ãèªã®åœ¢å®¹è©ã«ã¯ãæ¯èŒçŽãæäžçŽããããããã«ãã£ãŠçšåºŠã®å·®ãçŸããæäžçŽã¯ãå®å è©ãšãšãã«çšããã 圢容è©ã®æ¯èŒçŽãæäžçŽã®äœãæ¹ã«ã¯ãèŠåå€åãšäžèŠåå€åããããã»ãšãã©ã®åœ¢å®¹è©ã¯èŠåå€åããã以äžãã®äŸã瀺ãã å€åè¡šïŒTafel èŠåå€åãã圢容è©ã®ãªãã«ã¯ãèªå¹¹ãå€é³ãããã®ãããã äžèŠåå€åãã圢容è©ã¯å°ãªãããéèŠãªãã®ãå€ãã åè©ã修食ããå Žå æ¯èŒçŽãæäžçŽã®åœ¢å®¹è©ããåçŽåæ§ãåè©åããŠçšããããšãã§ãããâŠâŠ | [[ãã€ãèª/åçŽ/第16課|ïŒç¬¬16課]] | [[ãã€ãèª/åçŽ/第18課|第18課ïŒ]]
<pre>
* Berlin ist die gröÃte Stadt in Deutschland. <!--Kapitaltitelsatzãç« ã®å¯é¡-->
* Sein Haus ist am gröÃten.
* Ihr neues Buch ist interessanter als ihr FrÃŒhes.
* Am liebsten esse ich Obst.
</pre>
Berlin ist die gröÃte Stadt in Deutschland.
:ãã«ãªã³ã¯ãã€ãã§ãã£ãšã倧ããªéœåžã§ãã
Sein Haus ist am gröÃten.
:圌ã®å®¶ãäžçªå€§ãã
Ihr neues Buch ist interessanter als ihr FrÃŒheres.
:圌女ã®æ°ããæ¬ã¯ã以åã®ãã®ããé¢çœãã
Am liebsten esse ich Obst.
:ç§ã¯æç©ãäžçªå¥œãã§é£ã¹ãŸãã
Wörterãåèª:
Grammatik ææ³:
Thema: Komparativ und Superlativ der Adjektive und Adverben
'''ãã€ãèªã®åœ¢å®¹è©ã«ã¯ãæ¯èŒçŽãæäžçŽãããã'''ããã«ãã£ãŠçšåºŠã®å·®ãçŸããæäžçŽã¯ãå®å è©ãšãšãã«çšããã
圢容è©ã®æ¯èŒçŽãæäžçŽã®äœãæ¹ã«ã¯ãèŠåå€åãšäžèŠåå€åããããã»ãšãã©ã®åœ¢å®¹è©ã¯èŠåå€åããã以äžãã®äŸã瀺ãã
å€åè¡šïŒTafel
;RegelmÀssige VerÀnderung
<pre>
schön, schöner, am schönsten
klein, kleiner, am kleinsten
bequem, bequemer, am bequemsten
wenig, weniger, am wenigsten
</pre>
èŠåå€åãã圢容è©ã®ãªãã«ã¯ãèªå¹¹ãå€é³ãããã®ãããã
;RegelmÀssige VerÀnderung, aber mit Umlaut
<pre>
groÃ, gröÃer, am gröÃten
lang, lÀnger, am lÀngsten
kurz, kÃŒrzer, am kÃŒrzesten
...
</pre>
äžèŠåå€åãã圢容è©ã¯å°ãªãããéèŠãªãã®ãå€ãã
;UnregelmÀÃige VerÀnderung
<pre>
viel, mehr, am meisten
gut, besser, am besten
</pre>
;Mit Nomen
åè©ã修食ããå Žå
æ¯èŒçŽãæäžçŽã®åœ¢å®¹è©ããåçŽåæ§ãåè©åããŠçšããããšãã§ãããâŠâŠ
==å¯è©ã®æ¯èŒçŽãšæäžçŽ==
;Komparativ und Superlativ des Adverbs
'''ãã€ãèªã§ã¯å¯è©ã«ãæ¯èŒçŽãšæäžçŽãããã'''å¯è©ã®æ¯èŒçŽãšæäžçŽã¯ã圢容è©ãšåã圢ã§ããããã ãæäžçŽã®å Žå㯠圢容è©ãåè©åãããã®ã䌎ãïŒäžæ§æ±ãïŒã
am besten
am wenigsten
am letzten
am mindesten
am meisten
[[ãã€ãèª/åçŽ/第16課|ïŒç¬¬16課]] | [[ãã€ãèª/åçŽ/第18課|第18課ïŒ]]
[[Category:ãã€ãèª åçŽ|17]] | null | 2015-08-09T02:33:36Z | [] | https://ja.wikibooks.org/wiki/%E3%83%89%E3%82%A4%E3%83%84%E8%AA%9E_%E5%88%9D%E7%B4%9A%E7%AC%AC17%E8%AA%B2 |
1,839 | çµ±èšåŠåºç€/確çååž | ã³ã€ã³æãã®è¡šãšè£ãªã©ã®ããã«, èšèã§äºè±¡ãè¡šãã®ã¯äžäŸ¿ãªã®ã§ç¢ºçå€æ°ãšãããã®ãå°å
¥ãã. äŸãã°,
ãªã©ã®ããã«æ±ºãã. ãã®ããã«æšæ¬ç©ºéäžã§å®çŸ©ãããå®æ°å€é¢æ° X ã確çå€æ°ãšãã. æšæ¬ç¹ã«å¯ŸããŠç¢ºçãäžããããŠããããšãèããã°, 確çå€æ°ã®ããããã®å€ã«å¯ŸããŠã確çãäžããããŠãããšããããšã«ãªã. å³ã¡, 確çå€æ°ã¯, ãã®åãå€ã確ççã«æ±ºãŸãå€æ°ãšãèšãã. 確çå€æ°ãçšããããšã«ãã, ãããŸã§P({è¡š})=1/2 ãªã©ãšæžããŠããæã¯, P(X=1)=1/2 ã®ããã«æžãã. ãã®ããã«, èšèã§ã¯ãªãå®æ°å€ã§äºè±¡ãè¡šçŸããããšã«ããæ°åŠçã«ã¯ãšãŠãæ±ãæããã®ãšãªã.
ãµã€ã³ãã§ããã°, 確çå€æ°ã¯ {1,2,3,4,5,6}ã®6ã€ã®å€ãåã. æ°æž©ãªã©ã§ããã°, 10床, 20床ã®ãããªå€ãããã°, 9.87床ã®ããã«äžéå端ãªå€ãããé£ç¶ãªå€ãåããšããŠãããšããã. ã³ã€ã³æãããµã€ã³ãã®ããã«é£ã³é£ã³ã®å€ãåãå Žåã®ç¢ºçå€æ°ãé¢æ£å確çå€æ°ãé¢æ£ç¢ºçå€æ°ãšãã. äžæ¹, é£ç¶ãªå€ãåã確çå€æ°ãé£ç¶å確çå€æ°ãé£ç¶ç¢ºçå€æ°ãšãã.
é¢æ£å確çå€æ°ã®åãå€ã¯æéåãšã¯éãã, å¯ç®ç¡éå(èªç¶æ°ã®åæ°)ã®å Žåããã.
{xi}(1â€i<â)ãå€ã«åãé¢æ£å確çå€æ° X ã ãããšã,
ã«ãã£ãŠé¢æ° f ãå®çŸ©ããããšãã§ãã. ãã® f ã確ç質éé¢æ°ãšãã. 確çã«ãã£ãŠå®çŸ©ãããŠããããšãã
ã§ãªããã°ãªããªãããšãåãã.
é¢æ£åã®å Žåãšåãããã«ãé£ç¶åãå®çŸ©ããããã«ã¯, é£ç¶å確çå€æ° X ã«å¯ŸããŠ
ãæºããé¢æ°fãèããã°ãã. ãã® f ã確çå¯åºŠé¢æ°ãšãã.
é¢æ£åãšåãããã«, 確çã§å®çŸ©ãããŠããããšãã,
ã§ãªããã°ãªããªãããšãåãã.
f ã確ç質éé¢æ°ã確çå¯åºŠé¢æ°ãšããŠ
ã«ãã£ãŠå®çŸ©ãããé¢æ° F(x)ã, fã®çŽ¯ç©ååžé¢æ°ãååžé¢æ°ãšåŒã¶. ãã®çŽ¯ç©ååžé¢æ°ãçšããã°
ãšè¡šãããšãã§ãã.
é¢æ£å確çå€æ°ã«å¯Ÿãã环ç©ååžé¢æ°ã¯
é£ç¶å確çå€æ°ã«å¯Ÿãã环ç©ååžé¢æ°ã¯
ãšè¡šçŸã§ãã. 环ç©ååžé¢æ°ã®å€ãåããã° P(a < X †b) ã®å€ãèšç®ã§ããã®ã§, 环ç©ååžé¢æ°ã®å€ãæ°è¡šã«ãŸãšããŠãã, 確çã®èšç®ãè¡ããšããããšããã°ãã°è¡ããã.
fã確ç質éé¢æ°ãšãããšãã
ãæåŸ
å€ãšããã
ãåæ£ãšãããåæ£ã«ã€ããŠã¯ã
ãæãç«ã€ã®ã§ããããçšããŠèšç®ããŠãããã
åæ§ã«ãfã確çå¯åºŠé¢æ°ãšãããšãã
ãæåŸ
å€ãšããã
ãåæ£ãšãããåæ£ã«ã€ããŠã¯é¢æ£åã®ãšããšåæ§ã«ã
ãæãç«ã€ã®ã§ããããçšããŠèšç®ããŠãããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ã³ã€ã³æãã®è¡šãšè£ãªã©ã®ããã«, èšèã§äºè±¡ãè¡šãã®ã¯äžäŸ¿ãªã®ã§ç¢ºçå€æ°ãšãããã®ãå°å
¥ãã. äŸãã°,",
"title": "確çå€æ°ãšã¯"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ãªã©ã®ããã«æ±ºãã. ãã®ããã«æšæ¬ç©ºéäžã§å®çŸ©ãããå®æ°å€é¢æ° X ã確çå€æ°ãšãã. æšæ¬ç¹ã«å¯ŸããŠç¢ºçãäžããããŠããããšãèããã°, 確çå€æ°ã®ããããã®å€ã«å¯ŸããŠã確çãäžããããŠãããšããããšã«ãªã. å³ã¡, 確çå€æ°ã¯, ãã®åãå€ã確ççã«æ±ºãŸãå€æ°ãšãèšãã. 確çå€æ°ãçšããããšã«ãã, ãããŸã§P({è¡š})=1/2 ãªã©ãšæžããŠããæã¯, P(X=1)=1/2 ã®ããã«æžãã. ãã®ããã«, èšèã§ã¯ãªãå®æ°å€ã§äºè±¡ãè¡šçŸããããšã«ããæ°åŠçã«ã¯ãšãŠãæ±ãæããã®ãšãªã.",
"title": "確çå€æ°ãšã¯"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ãµã€ã³ãã§ããã°, 確çå€æ°ã¯ {1,2,3,4,5,6}ã®6ã€ã®å€ãåã. æ°æž©ãªã©ã§ããã°, 10床, 20床ã®ãããªå€ãããã°, 9.87床ã®ããã«äžéå端ãªå€ãããé£ç¶ãªå€ãåããšããŠãããšããã. ã³ã€ã³æãããµã€ã³ãã®ããã«é£ã³é£ã³ã®å€ãåãå Žåã®ç¢ºçå€æ°ãé¢æ£å確çå€æ°ãé¢æ£ç¢ºçå€æ°ãšãã. äžæ¹, é£ç¶ãªå€ãåã確çå€æ°ãé£ç¶å確çå€æ°ãé£ç¶ç¢ºçå€æ°ãšãã.",
"title": "確çå€æ°ãšã¯"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "é¢æ£å確çå€æ°ã®åãå€ã¯æéåãšã¯éãã, å¯ç®ç¡éå(èªç¶æ°ã®åæ°)ã®å Žåããã.",
"title": "確çå€æ°ãšã¯"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "{xi}(1â€i<â)ãå€ã«åãé¢æ£å確çå€æ° X ã ãããšã,",
"title": "確ç質éé¢æ°"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ã«ãã£ãŠé¢æ° f ãå®çŸ©ããããšãã§ãã. ãã® f ã確ç質éé¢æ°ãšãã. 確çã«ãã£ãŠå®çŸ©ãããŠããããšãã",
"title": "確ç質éé¢æ°"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ã§ãªããã°ãªããªãããšãåãã.",
"title": "確ç質éé¢æ°"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "é¢æ£åã®å Žåãšåãããã«ãé£ç¶åãå®çŸ©ããããã«ã¯, é£ç¶å確çå€æ° X ã«å¯ŸããŠ",
"title": "確çå¯åºŠé¢æ°"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "ãæºããé¢æ°fãèããã°ãã. ãã® f ã確çå¯åºŠé¢æ°ãšãã.",
"title": "確çå¯åºŠé¢æ°"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "é¢æ£åãšåãããã«, 確çã§å®çŸ©ãããŠããããšãã,",
"title": "確çå¯åºŠé¢æ°"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "ã§ãªããã°ãªããªãããšãåãã.",
"title": "確çå¯åºŠé¢æ°"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "f ã確ç質éé¢æ°ã確çå¯åºŠé¢æ°ãšããŠ",
"title": "环ç©ååžé¢æ°"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "ã«ãã£ãŠå®çŸ©ãããé¢æ° F(x)ã, fã®çŽ¯ç©ååžé¢æ°ãååžé¢æ°ãšåŒã¶. ãã®çŽ¯ç©ååžé¢æ°ãçšããã°",
"title": "环ç©ååžé¢æ°"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "ãšè¡šãããšãã§ãã.",
"title": "环ç©ååžé¢æ°"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "é¢æ£å確çå€æ°ã«å¯Ÿãã环ç©ååžé¢æ°ã¯",
"title": "环ç©ååžé¢æ°"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "é£ç¶å確çå€æ°ã«å¯Ÿãã环ç©ååžé¢æ°ã¯",
"title": "环ç©ååžé¢æ°"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "ãšè¡šçŸã§ãã. 环ç©ååžé¢æ°ã®å€ãåããã° P(a < X †b) ã®å€ãèšç®ã§ããã®ã§, 环ç©ååžé¢æ°ã®å€ãæ°è¡šã«ãŸãšããŠãã, 確çã®èšç®ãè¡ããšããããšããã°ãã°è¡ããã.",
"title": "环ç©ååžé¢æ°"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "fã確ç質éé¢æ°ãšãããšãã",
"title": "æåŸ
å€ãšåæ£"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "ãæåŸ
å€ãšããã",
"title": "æåŸ
å€ãšåæ£"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "ãåæ£ãšãããåæ£ã«ã€ããŠã¯ã",
"title": "æåŸ
å€ãšåæ£"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "ãæãç«ã€ã®ã§ããããçšããŠèšç®ããŠãããã",
"title": "æåŸ
å€ãšåæ£"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "åæ§ã«ãfã確çå¯åºŠé¢æ°ãšãããšãã",
"title": "æåŸ
å€ãšåæ£"
},
{
"paragraph_id": 22,
"tag": "p",
"text": "ãæåŸ
å€ãšããã",
"title": "æåŸ
å€ãšåæ£"
},
{
"paragraph_id": 23,
"tag": "p",
"text": "ãåæ£ãšãããåæ£ã«ã€ããŠã¯é¢æ£åã®ãšããšåæ§ã«ã",
"title": "æåŸ
å€ãšåæ£"
},
{
"paragraph_id": 24,
"tag": "p",
"text": "ãæãç«ã€ã®ã§ããããçšããŠèšç®ããŠãããã",
"title": "æåŸ
å€ãšåæ£"
}
] | null | == 確çå€æ°ãšã¯ ==
ã³ã€ã³æãã®è¡šãšè£ãªã©ã®ããã«, èšèã§äºè±¡ãè¡šãã®ã¯äžäŸ¿ãªã®ã§ç¢ºçå€æ°ãšãããã®ãå°å
¥ãã. äŸãã°,
:''X''({è¡š})=1
:''X''({è£})=0
ãªã©ã®ããã«æ±ºãã. ãã®ããã«æšæ¬ç©ºéäžã§å®çŸ©ãããå®æ°å€é¢æ° ''X'' ã'''確çå€æ°'''ãšãã.
æšæ¬ç¹ã«å¯ŸããŠç¢ºçãäžããããŠããããšãèããã°, 確çå€æ°ã®ããããã®å€ã«å¯ŸããŠã確çãäžããããŠãããšããããšã«ãªã. å³ã¡, 確çå€æ°ã¯, ãã®åãå€ã確ççã«æ±ºãŸãå€æ°ãšãèšãã.
確çå€æ°ãçšããããšã«ãã, ãããŸã§''P''({è¡š})=1/2 ãªã©ãšæžããŠããæã¯, ''P''(''X''=1)=1/2 ã®ããã«æžãã. ãã®ããã«, èšèã§ã¯ãªãå®æ°å€ã§äºè±¡ãè¡šçŸããããšã«ããæ°åŠçã«ã¯ãšãŠãæ±ãæããã®ãšãªã.
ãµã€ã³ãã§ããã°, 確çå€æ°ã¯ {1,2,3,4,5,6}ã®6ã€ã®å€ãåã. æ°æž©ãªã©ã§ããã°, 10床, 20床ã®ãããªå€ãããã°, 9.87床ã®ããã«äžéå端ãªå€ãããé£ç¶ãªå€ãåããšããŠãããšããã. ã³ã€ã³æãããµã€ã³ãã®ããã«é£ã³é£ã³ã®å€ãåãå Žåã®ç¢ºçå€æ°ã'''é¢æ£å確çå€æ°'''ã'''é¢æ£ç¢ºçå€æ°'''ãšãã. äžæ¹, é£ç¶ãªå€ãåã確çå€æ°ã'''é£ç¶å確çå€æ°'''ã'''é£ç¶ç¢ºçå€æ°'''ãšãã.
é¢æ£å確çå€æ°ã®åãå€ã¯æéåãšã¯éãã, å¯ç®ç¡éåïŒèªç¶æ°ã®åæ°ïŒã®å Žåããã.
== 確ç質éé¢æ° ==
{x<sub>i</sub>}(1≤i<∞)ãå€ã«åãé¢æ£å確çå€æ° ''X'' ã ãããšã,
:f(x<sub>i</sub>) = ''P''(''X''=x<sub>i</sub>)
ã«ãã£ãŠé¢æ° ''f'' ãå®çŸ©ããããšãã§ãã. ãã® ''f'' ã'''確ç質éé¢æ°'''ãšãã. 確çã«ãã£ãŠå®çŸ©ãããŠããããšãã
:f(x<sub>i</sub>) ≥ 0
:<math> \sum^{\infty}_{i=1} f(x_i) = 1 </math>
ã§ãªããã°ãªããªãããšãåãã.
== 確çå¯åºŠé¢æ° ==
é¢æ£åã®å Žåãšåãããã«ãé£ç¶åãå®çŸ©ããããã«ã¯, é£ç¶å確çå€æ° ''X'' ã«å¯ŸããŠ
:<math>P(a \le X \le b) = \int^b_a f(x) dx </math>
ãæºããé¢æ°''f''ãèããã°ãã. ãã® ''f'' ã'''確çå¯åºŠé¢æ°'''ãšãã.
:é¢æ£åãšéã£ãŠé£ç¶åã®ç¢ºçã®è¶³ãåããã¯Σã§ã¯ãªãç©åã§è¡šãããŠããããšã«æ³šæ.
é¢æ£åãšåãããã«, 確çã§å®çŸ©ãããŠããããšãã,
:f(x) ≥ 0
:<math> \int^{\infty}_{-\infty} f(x) dx = 1 </math>
ã§ãªããã°ãªããªãããšãåãã.
== 环ç©ååžé¢æ° ==
''f'' ã確ç質éé¢æ°ã確çå¯åºŠé¢æ°ãšããŠ
:<math>F(x) = f(X \le x)</math>
ã«ãã£ãŠå®çŸ©ãããé¢æ° ''F''(''x'')ã, ''f''ã®'''环ç©ååžé¢æ°'''ã'''ååžé¢æ°'''ãšåŒã¶.
ãã®çŽ¯ç©ååžé¢æ°ãçšããã°
:<math>P(a < X \le b) = F(b) - F(a) </math>
ãšè¡šãããšãã§ãã.
é¢æ£å確çå€æ°ã«å¯Ÿãã环ç©ååžé¢æ°ã¯
:<math> F(x) = \sum_{x_i \le x} f(x_i) </math>
é£ç¶å確çå€æ°ã«å¯Ÿãã环ç©ååžé¢æ°ã¯
:<math>F(a) = \int^a_{-\infty} f(x) dx </math>
ãšè¡šçŸã§ãã. 环ç©ååžé¢æ°ã®å€ãåããã° P(a < X ≤ b) ã®å€ãèšç®ã§ããã®ã§, 环ç©ååžé¢æ°ã®å€ãæ°è¡šã«ãŸãšããŠãã, 確çã®èšç®ãè¡ããšããããšããã°ãã°è¡ããã.
== æåŸ
å€ãšåæ£ ==
''f''ã確ç質éé¢æ°ãšãããšãã
:<math>E(X):= \sum_{i=1}^\infty x_if(x_i)</math>
ã'''æåŸ
å€'''ãšããã
:<math>V(X):= \sum_{i=1}^\infty (x_i-E(X))^2 f(x_i)</math>
ã'''åæ£'''ãšãããåæ£ã«ã€ããŠã¯ã
:<math>\begin{align}
V(X)&= \sum_{i=1}^\infty (x_i^2-2x_iE(X)+(E(X))^2) f(x_i) \\
&= \sum_{i=1}^\infty x_i^2 f(x_i)-2E(X)\sum_{i=1}^\infty x_if(x_i)+(E(X))^2\sum_{i=1}^\infty f(x_i) \\
&= E(X^2)-2E(X)E(X)+(E(X))^2 \\
&= E(X^2)-(E(X))^2
\end{align}</math>
ãæãç«ã€ã®ã§ããããçšããŠèšç®ããŠãããã
åæ§ã«ã''f''ã確çå¯åºŠé¢æ°ãšãããšãã
:<math>E(X):=\int_{-\infty}^\infty xf(x) dx</math>
ã'''æåŸ
å€'''ãšããã
:<math>V(X):= \int_{-\infty}^\infty (x-E(X))^2f(x) dx</math>
ã'''åæ£'''ãšãããåæ£ã«ã€ããŠã¯é¢æ£åã®ãšããšåæ§ã«ã
:<math>\begin{align}
V(X)&= \int_{-\infty}^\infty (x^2-2xE(X)+(E(X))^2) f(x) dx \\
&= \int_{-\infty}^\infty x^2 f(x) dx-2E(X)\int_{-\infty}^\infty xf(x) dx+(E(X))^2\int_{-\infty}^\infty f(x) dx \\
&= E(X^2)-2E(X)E(X)+(E(X))^2 \\
&= E(X^2)-(E(X))^2
\end{align}</math>
ãæãç«ã€ã®ã§ããããçšããŠèšç®ããŠãããã
[[ã«ããŽãª:確çååž]] | 2005-04-06T09:28:15Z | 2024-03-08T14:05:04Z | [] | https://ja.wikibooks.org/wiki/%E7%B5%B1%E8%A8%88%E5%AD%A6%E5%9F%BA%E7%A4%8E/%E7%A2%BA%E7%8E%87%E5%88%86%E5%B8%83 |
1,841 | 解æåŠåºç€/çŽæ° | çŽæ°(æãã¯ç¡éçŽæ°)ãšããã®ã¯ãé
ã®åã§æžãããŠãããã®ã§ããç§åŠãå·¥åŠãæ°åŠã®ãããããªåé¡ã«çŸããçŽæ°ã®äžã€ã«çæ¯çŽæ°(æãã¯å¹ŸäœçŽæ°)ãšåŒã°ããçŽæ°ããããŸãã
. . . {\displaystyle ...} ã¯ããã®åãç¡éã«ç¶ãããšã瀺ããŠããŸãã çŽæ°ã調ã¹ããšãã«ãã䜿ãæ¹æ³ãšããŠã¯ãæåã®né
ã®åã調ã¹ããšããæ¹æ³ããããŸãã
äŸãã°ãçæ¯çŽæ°ãèãããšããæåã® né
ã®åã¯
ãšãªããŸãã äžè¬ã«ç¡éçŽæ°ã調ã¹ããšãã«ã¯ããã®ãããªéšååããšãŠã圹ã«ç«ã¡ãŸãã
çŽæ°ã調ã¹ããšãã«éèŠãªããšã¯ã次㮠2ã€ã§ãã
äŸãã°ãçæ¯çŽæ°ã§ããã°ãäžã§å®çŸ©ããSn(r) 㯠r>1ã®æã«ãnââãšããå Žåãæéãªå€ã«åæããŸããã(+âã«çºæ£ããŸãã)Sn(r) ã®åé
r 㯠i ã倧ãããªãã«ã€ã倧ãããªã£ãŠããããšããããããŸãã
|r| < 1 ã®æã®æ¹ãé¢çœãçµæãåŸãããŸããé
ã®æ°ã¯ç¡éãªã®ã«æéãªå€ã«åæããŸãã
ããã¯ãçæ¯æ°åã®åã®å
¬åŒãèãããšåãããŸãã
|r| < 1 ã®æã¯ã r 㯠nââ 㧠0ã«åæããã®ã§ãã®åŒãåŸãããŸãã
ä»ã®çŽæ°ã§ããçæ¯çŽæ°ã®å ŽåãšäŒŒããããªè©äŸ¡ãããŠãããŸãã
ããããçæ¯çŽæ°ãšéã£ãŠåãç°¡åã«è¡šããããã®ã¯å°ãªããæ®ã©ã®å Žåã«åããã®ã¯ããã®çŽæ°ãåæãããã©ãã?ã ãã§ãã çæ¯çŽæ°ãšç³ã¿èŸŒã¿çŽæ°ã®å Žåã ãã¯ãæ¯èŒçç°¡åã«åæå
ãŸã§æ±ãŸãã®ã§ãã
çŽæ°ãåæãããšããé
an 㯠n ââ 㧠0 ã«åæããäºã¯ããããã§ãããéã«é
ã 0 ã«åæãããããšãã£ãŠãçŽæ°ãåæãããšã¯éããŸããã
次ã®ãããªèª¿åçŽæ°ãèããŠã¿ãŸãããã å ã¿ã«èª¿åçŽæ°ãšããã®ã¯é
ã 1/n ã§è¡šãããçŽæ°ã®äºã§ãã
â n = 1 2 m 1 n = 1 + 1 2 + 1 3 + 1 4 + 1 5 + 1 6 + 1 7 + 1 8 + ... + 1 2 m {\displaystyle \sum _{n=1}^{2^{m}}{\frac {1}{n}}=1+{\frac {1}{2}}+{\frac {1}{3}}+{\frac {1}{4}}+{\frac {1}{5}}+{\frac {1}{6}}+{\frac {1}{7}}+{\frac {1}{8}}+\ldots +{\frac {1}{2^{m}}}}
mââ ã®æã æåŸã®åŒãç¡é倧ã«çºæ£ããããããã®èª¿åçŽæ°ã¯çºæ£ãããšããããŸãã ãŸãã倧äœã©ã®ãããã®éãã§çºæ£ããã®ããããããŸããåãããã«éšååã次ã®ããã«äžããè©äŸ¡ããäºãã§ããŸãã
æãã¯
äžã®åŒãèŠããšããããšãããéšååã¯å€§äœ log m ãšåããããã®éãã§å¢å ããŠããããšãåãããŸãããšãŠããã£ãããªéãã§ãã
äžã®æ¹æ³ã«æ³šç®ããŠãã ããã調åçŽæ°ã®åææ§ã調ã¹ãããã«ãçºæ£ãããšåãã£ãŠããæ°åãšæ¯ã¹ãŠããŸãã ããã¯åææ§ã®å€å®ã«ããçšããããã©ããªæ°åã§ãã£ãŠã䌌ããããªå€å®æ³ãåãäºãã§ããŸãã
çŽæ°ã®åææ§ã調ã¹ãã«ã¯ãããããªæ¹æ³ããããŸãããã©ããããã§è¿°ã¹ããããªèãæ¹ãæ ¹åºã«ãããŸãã
å®ç: åé
ã®çµ¶å¯Ÿå€ãåã£ãçŽæ° â n = 1 â | a n | {\displaystyle \sum _{n=1}^{\infty }\left|a_{n}\right|} ãåæãããªãã°ã â n = 1 â a n {\displaystyle \sum _{n=1}^{\infty }a_{n}} ãåæããã
ãã®å®çã®æ¡ä»¶ãæºãããããšããçŽæ° â n = 1 â a n {\displaystyle \sum _{n=1}^{\infty }a_{n}} ã¯çµ¶å¯ŸåæãããšãããŸãã
åæã¯ããŸããã絶察åæããªãçŽæ°ã®äŸãšããŠã¯ã1-(1/2)+(1/3)-(1/4) ... ããããŸãããã®åé
ã®çµ¶å¯Ÿå€ãåã£ããã®ã¯ãäžã§ã¿ã調åçŽæ°ãªã®ã§çºæ£ããŠããŸãããã®çŽæ°ã¯ ln(2) ã«åæããŸãã
ãã®ããã«çµ¶å¯ŸåæããŠããªãããã©ãåæããå ŽåãçŽæ°ã¯æ¡ä»¶åæãããšãããŸãã
çŽæ°ã絶察åæããŠãããšããé
ã®åãåãé çªãã©ã®ããã«å€ããŠãåãå€ã«åæããŸãã
çŽæ°ãæ¡ä»¶åæããŠãããšããé
ã®é åºãå€ãããšä»»æã®å€ã«åæããããçºæ£ããããã§ããŸãã
äŸãã°ãçŽæ° 1-(1/2)+(1/3)-(1/4) ... ã¯æ¡ä»¶åæããŸãããæ£ã®é
ãšè² ã®é
ã«ãããæ£ã®é
ã足ãã100 ãè¶
ãããšããã§ãè² ã®é
ã足ãã100ããå°ãããªã£ããšããã§ããŸã100ãè¶
ãããŸã§æ£ã®é
ã足ã...ãšããããšãç¹°ãè¿ããŠããã°ã100ã«åæããçŽæ°ãã§ãããããŸãã
æéåã®é
ã®åãåãå Žåã¯èªç±ã«é åºãå€æŽã§ããã®ã§ãããç¡éåãåãå Žåã¯ãã®ãããªãé
ã®é åºãã«æ°ãã€ããªããã°ãªããªãå ŽåããããŸãããããã£ãæå³ã§çµ¶å¯ŸåæããçŽæ°ã¯æ±ãããããããããè¿°ã¹ãåææ§ã®å€å®æ³ã®æ¡ä»¶ãå
šãŠæ£ã®é
ã§ãããšä»®å®ããŠãããããã®ãã絶察åæãèããŠã®ããšã§ããå
šãŠãæ£ã®é
ã§ããçŽæ°ã§ããã°ã絶察åæãããã+âã«çºæ£ãããã®ã©ã¡ããã§ãã
æ£é
çŽæ° â n = 1 â a n {\displaystyle \sum _{n=1}^{\infty }a_{n}} ã«å¯Ÿã
ãšãã極éããããšããŸãããã®æ
ãšããããšãèšããŸãã
äŸãã°
ãªãã°
ãªã®ã§ããã®çŽæ°ã¯åæããŸãã
f(x) ã¯æ£ã®å€ãåãå調æžå°é¢æ°ã§ãããšããŸãã çŽæ°
ãèãããšããã®çŽæ°ã¯ã次ã®åºçŸ©ç©å
ãåæãããšãããã€ããã®æã«éãåæããŸãã
äŸãã°ãå®æ°pã«å¯ŸããŠãé¢æ°
ãèããã°
ãããã£ãŠãp>1 ã®æããã®åºçŸ©ç©åã¯åæãããšããããçŽæ°ãåæãããšããããŸãã
ãã®å€å®æ³ã®æ£åœæ§ã¯æ¬¡ã®ããã«ãããšããããŸãã
åºçŸ©ç©åããã®ããã«åã«åå²ããåŸã«ãf(x)ãå調æžå°ã§ããããšãèããã°ãåé
ã¯æ¬¡ã®ããã«è©äŸ¡ã§ãããšããããŸãã
ãã®äžçåŒã®åãåãã°ãåºçŸ©ç©åã®åææ§ãšãçŽæ°ã®åææ§ãåå€ã§ãããšããããŸãã
ãæéã®å€ã«åæãããªãã°ãΣan ãåæããŸãã
ã§ãããªãã° an ãçºæ£ããŸãã
äŸ
ã®æã倧ã㪠n ã«å¯ŸããŠããã®äžè¬é
㯠0 ã«åæããŸããã調åçŽæ°ã®äžè¬é
cn = n ãšæ¯ã¹ãŠ
ãšãªãã®ã§ãçŽæ° Σ anã¯çºæ£ããŸãã
æ°å an ã®é
ã®æ£è² ã®ç¬Šå·ã1é
ããšã«å
¥ãæ¿ãããšããã€ãŸã
ãæºãããšãããã®æ°åã®åã亀代çŽæ°ãšãããŸãã亀代çŽæ°ã¯ã
ãæºãããšãåæããŸãã
ãŸããã®ãšããçŽæ°ã®åæå
ãšéšååãšã®èª€å·®ã®å€§ããã¯ãéšååã«å«ãŸããªãã£ãæåã®é
ãããå°ãããªããŸããããªãã¡ã
幟äœçŽæ°ãšã¯ã
ã®ããã«ãããçŽæ°ã®ããšã§ããæ¥æ¬èªã§ã¯çæ¯çŽæ°ãšããããšãå€ãã§ãããã®ããŒãžã®æåã«èŠãããã«ã幟äœçŽæ°ã¯ | r | < 1 {\displaystyle |r|<1} ã®ãšãåæãããã®åæå
ã¯
ã§ãã
次ã®åœ¢ã®çŽæ°
ãç³ã¿èŸŒã¿çŽæ°ãšããã ãã®åœ¢ã®çŽæ°ã¯æéåãå±éãããš
ãšãªããåãæã¡æ¶ãããšã§
ãšãªãããããã£ãŠã
ãšãªãã®ã§ã極éã®ååšã«ãã£ãŠåæãå€å®ããããšãã§ããã
ãã®ä»ã®å€å®æ³ãååšããããå€ãã®çŽæ°ã«ã€ããŠã¯ãããã®å€å®æ³ã§ååã§ãããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "çŽæ°(æãã¯ç¡éçŽæ°)ãšããã®ã¯ãé
ã®åã§æžãããŠãããã®ã§ããç§åŠãå·¥åŠãæ°åŠã®ãããããªåé¡ã«çŸããçŽæ°ã®äžã€ã«çæ¯çŽæ°(æãã¯å¹ŸäœçŽæ°)ãšåŒã°ããçŽæ°ããããŸãã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 1,
"tag": "p",
"text": ". . . {\\displaystyle ...} ã¯ããã®åãç¡éã«ç¶ãããšã瀺ããŠããŸãã çŽæ°ã調ã¹ããšãã«ãã䜿ãæ¹æ³ãšããŠã¯ãæåã®né
ã®åã調ã¹ããšããæ¹æ³ããããŸãã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "äŸãã°ãçæ¯çŽæ°ãèãããšããæåã® né
ã®åã¯",
"title": "ã¯ããã«"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ãšãªããŸãã äžè¬ã«ç¡éçŽæ°ã調ã¹ããšãã«ã¯ããã®ãããªéšååããšãŠã圹ã«ç«ã¡ãŸãã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "çŽæ°ã調ã¹ããšãã«éèŠãªããšã¯ã次㮠2ã€ã§ãã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "äŸãã°ãçæ¯çŽæ°ã§ããã°ãäžã§å®çŸ©ããSn(r) 㯠r>1ã®æã«ãnââãšããå Žåãæéãªå€ã«åæããŸããã(+âã«çºæ£ããŸãã)Sn(r) ã®åé
r 㯠i ã倧ãããªãã«ã€ã倧ãããªã£ãŠããããšããããããŸãã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "|r| < 1 ã®æã®æ¹ãé¢çœãçµæãåŸãããŸããé
ã®æ°ã¯ç¡éãªã®ã«æéãªå€ã«åæããŸãã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ããã¯ãçæ¯æ°åã®åã®å
¬åŒãèãããšåãããŸãã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "|r| < 1 ã®æã¯ã r 㯠nââ 㧠0ã«åæããã®ã§ãã®åŒãåŸãããŸãã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "ä»ã®çŽæ°ã§ããçæ¯çŽæ°ã®å ŽåãšäŒŒããããªè©äŸ¡ãããŠãããŸãã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "ããããçæ¯çŽæ°ãšéã£ãŠåãç°¡åã«è¡šããããã®ã¯å°ãªããæ®ã©ã®å Žåã«åããã®ã¯ããã®çŽæ°ãåæãããã©ãã?ã ãã§ãã çæ¯çŽæ°ãšç³ã¿èŸŒã¿çŽæ°ã®å Žåã ãã¯ãæ¯èŒçç°¡åã«åæå
ãŸã§æ±ãŸãã®ã§ãã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "çŽæ°ãåæãããšããé
an 㯠n ââ 㧠0 ã«åæããäºã¯ããããã§ãããéã«é
ã 0 ã«åæãããããšãã£ãŠãçŽæ°ãåæãããšã¯éããŸããã",
"title": "åææ§"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "次ã®ãããªèª¿åçŽæ°ãèããŠã¿ãŸãããã å ã¿ã«èª¿åçŽæ°ãšããã®ã¯é
ã 1/n ã§è¡šãããçŽæ°ã®äºã§ãã",
"title": "åææ§"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "â n = 1 2 m 1 n = 1 + 1 2 + 1 3 + 1 4 + 1 5 + 1 6 + 1 7 + 1 8 + ... + 1 2 m {\\displaystyle \\sum _{n=1}^{2^{m}}{\\frac {1}{n}}=1+{\\frac {1}{2}}+{\\frac {1}{3}}+{\\frac {1}{4}}+{\\frac {1}{5}}+{\\frac {1}{6}}+{\\frac {1}{7}}+{\\frac {1}{8}}+\\ldots +{\\frac {1}{2^{m}}}}",
"title": "åææ§"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "mââ ã®æã æåŸã®åŒãç¡é倧ã«çºæ£ããããããã®èª¿åçŽæ°ã¯çºæ£ãããšããããŸãã ãŸãã倧äœã©ã®ãããã®éãã§çºæ£ããã®ããããããŸããåãããã«éšååã次ã®ããã«äžããè©äŸ¡ããäºãã§ããŸãã",
"title": "åææ§"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "æãã¯",
"title": "åææ§"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "äžã®åŒãèŠããšããããšãããéšååã¯å€§äœ log m ãšåããããã®éãã§å¢å ããŠããããšãåãããŸãããšãŠããã£ãããªéãã§ãã",
"title": "åææ§"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "äžã®æ¹æ³ã«æ³šç®ããŠãã ããã調åçŽæ°ã®åææ§ã調ã¹ãããã«ãçºæ£ãããšåãã£ãŠããæ°åãšæ¯ã¹ãŠããŸãã ããã¯åææ§ã®å€å®ã«ããçšããããã©ããªæ°åã§ãã£ãŠã䌌ããããªå€å®æ³ãåãäºãã§ããŸãã",
"title": "åææ§"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "çŽæ°ã®åææ§ã調ã¹ãã«ã¯ãããããªæ¹æ³ããããŸãããã©ããããã§è¿°ã¹ããããªèãæ¹ãæ ¹åºã«ãããŸãã",
"title": "åææ§"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "å®ç: åé
ã®çµ¶å¯Ÿå€ãåã£ãçŽæ° â n = 1 â | a n | {\\displaystyle \\sum _{n=1}^{\\infty }\\left|a_{n}\\right|} ãåæãããªãã°ã â n = 1 â a n {\\displaystyle \\sum _{n=1}^{\\infty }a_{n}} ãåæããã",
"title": "åææ§"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "ãã®å®çã®æ¡ä»¶ãæºãããããšããçŽæ° â n = 1 â a n {\\displaystyle \\sum _{n=1}^{\\infty }a_{n}} ã¯çµ¶å¯ŸåæãããšãããŸãã",
"title": "åææ§"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "åæã¯ããŸããã絶察åæããªãçŽæ°ã®äŸãšããŠã¯ã1-(1/2)+(1/3)-(1/4) ... ããããŸãããã®åé
ã®çµ¶å¯Ÿå€ãåã£ããã®ã¯ãäžã§ã¿ã調åçŽæ°ãªã®ã§çºæ£ããŠããŸãããã®çŽæ°ã¯ ln(2) ã«åæããŸãã",
"title": "åææ§"
},
{
"paragraph_id": 22,
"tag": "p",
"text": "ãã®ããã«çµ¶å¯ŸåæããŠããªãããã©ãåæããå ŽåãçŽæ°ã¯æ¡ä»¶åæãããšãããŸãã",
"title": "åææ§"
},
{
"paragraph_id": 23,
"tag": "p",
"text": "çŽæ°ã絶察åæããŠãããšããé
ã®åãåãé çªãã©ã®ããã«å€ããŠãåãå€ã«åæããŸãã",
"title": "åææ§"
},
{
"paragraph_id": 24,
"tag": "p",
"text": "çŽæ°ãæ¡ä»¶åæããŠãããšããé
ã®é åºãå€ãããšä»»æã®å€ã«åæããããçºæ£ããããã§ããŸãã",
"title": "åææ§"
},
{
"paragraph_id": 25,
"tag": "p",
"text": "äŸãã°ãçŽæ° 1-(1/2)+(1/3)-(1/4) ... ã¯æ¡ä»¶åæããŸãããæ£ã®é
ãšè² ã®é
ã«ãããæ£ã®é
ã足ãã100 ãè¶
ãããšããã§ãè² ã®é
ã足ãã100ããå°ãããªã£ããšããã§ããŸã100ãè¶
ãããŸã§æ£ã®é
ã足ã...ãšããããšãç¹°ãè¿ããŠããã°ã100ã«åæããçŽæ°ãã§ãããããŸãã",
"title": "åææ§"
},
{
"paragraph_id": 26,
"tag": "p",
"text": "æéåã®é
ã®åãåãå Žåã¯èªç±ã«é åºãå€æŽã§ããã®ã§ãããç¡éåãåãå Žåã¯ãã®ãããªãé
ã®é åºãã«æ°ãã€ããªããã°ãªããªãå ŽåããããŸãããããã£ãæå³ã§çµ¶å¯ŸåæããçŽæ°ã¯æ±ãããããããããè¿°ã¹ãåææ§ã®å€å®æ³ã®æ¡ä»¶ãå
šãŠæ£ã®é
ã§ãããšä»®å®ããŠãããããã®ãã絶察åæãèããŠã®ããšã§ããå
šãŠãæ£ã®é
ã§ããçŽæ°ã§ããã°ã絶察åæãããã+âã«çºæ£ãããã®ã©ã¡ããã§ãã",
"title": "åææ§"
},
{
"paragraph_id": 27,
"tag": "p",
"text": "æ£é
çŽæ° â n = 1 â a n {\\displaystyle \\sum _{n=1}^{\\infty }a_{n}} ã«å¯Ÿã",
"title": "åææ§"
},
{
"paragraph_id": 28,
"tag": "p",
"text": "ãšãã極éããããšããŸãããã®æ",
"title": "åææ§"
},
{
"paragraph_id": 29,
"tag": "p",
"text": "ãšããããšãèšããŸãã",
"title": "åææ§"
},
{
"paragraph_id": 30,
"tag": "p",
"text": "äŸãã°",
"title": "åææ§"
},
{
"paragraph_id": 31,
"tag": "p",
"text": "ãªãã°",
"title": "åææ§"
},
{
"paragraph_id": 32,
"tag": "p",
"text": "ãªã®ã§ããã®çŽæ°ã¯åæããŸãã",
"title": "åææ§"
},
{
"paragraph_id": 33,
"tag": "p",
"text": "f(x) ã¯æ£ã®å€ãåãå調æžå°é¢æ°ã§ãããšããŸãã çŽæ°",
"title": "åææ§"
},
{
"paragraph_id": 34,
"tag": "p",
"text": "ãèãããšããã®çŽæ°ã¯ã次ã®åºçŸ©ç©å",
"title": "åææ§"
},
{
"paragraph_id": 35,
"tag": "p",
"text": "ãåæãããšãããã€ããã®æã«éãåæããŸãã",
"title": "åææ§"
},
{
"paragraph_id": 36,
"tag": "p",
"text": "äŸãã°ãå®æ°pã«å¯ŸããŠãé¢æ°",
"title": "åææ§"
},
{
"paragraph_id": 37,
"tag": "p",
"text": "ãèããã°",
"title": "åææ§"
},
{
"paragraph_id": 38,
"tag": "p",
"text": "ãããã£ãŠãp>1 ã®æããã®åºçŸ©ç©åã¯åæãããšããããçŽæ°ãåæãããšããããŸãã",
"title": "åææ§"
},
{
"paragraph_id": 39,
"tag": "p",
"text": "ãã®å€å®æ³ã®æ£åœæ§ã¯æ¬¡ã®ããã«ãããšããããŸãã",
"title": "åææ§"
},
{
"paragraph_id": 40,
"tag": "p",
"text": "åºçŸ©ç©åããã®ããã«åã«åå²ããåŸã«ãf(x)ãå調æžå°ã§ããããšãèããã°ãåé
ã¯æ¬¡ã®ããã«è©äŸ¡ã§ãããšããããŸãã",
"title": "åææ§"
},
{
"paragraph_id": 41,
"tag": "p",
"text": "ãã®äžçåŒã®åãåãã°ãåºçŸ©ç©åã®åææ§ãšãçŽæ°ã®åææ§ãåå€ã§ãããšããããŸãã",
"title": "åææ§"
},
{
"paragraph_id": 42,
"tag": "p",
"text": "ãæéã®å€ã«åæãããªãã°ãΣan ãåæããŸãã",
"title": "åææ§"
},
{
"paragraph_id": 43,
"tag": "p",
"text": "ã§ãããªãã° an ãçºæ£ããŸãã",
"title": "åææ§"
},
{
"paragraph_id": 44,
"tag": "p",
"text": "äŸ",
"title": "åææ§"
},
{
"paragraph_id": 45,
"tag": "p",
"text": "ã®æã倧ã㪠n ã«å¯ŸããŠããã®äžè¬é
㯠0 ã«åæããŸããã調åçŽæ°ã®äžè¬é
cn = n ãšæ¯ã¹ãŠ",
"title": "åææ§"
},
{
"paragraph_id": 46,
"tag": "p",
"text": "ãšãªãã®ã§ãçŽæ° Σ anã¯çºæ£ããŸãã",
"title": "åææ§"
},
{
"paragraph_id": 47,
"tag": "p",
"text": "æ°å an ã®é
ã®æ£è² ã®ç¬Šå·ã1é
ããšã«å
¥ãæ¿ãããšããã€ãŸã",
"title": "åææ§"
},
{
"paragraph_id": 48,
"tag": "p",
"text": "ãæºãããšãããã®æ°åã®åã亀代çŽæ°ãšãããŸãã亀代çŽæ°ã¯ã",
"title": "åææ§"
},
{
"paragraph_id": 49,
"tag": "p",
"text": "ãæºãããšãåæããŸãã",
"title": "åææ§"
},
{
"paragraph_id": 50,
"tag": "p",
"text": "ãŸããã®ãšããçŽæ°ã®åæå
ãšéšååãšã®èª€å·®ã®å€§ããã¯ãéšååã«å«ãŸããªãã£ãæåã®é
ãããå°ãããªããŸããããªãã¡ã",
"title": "åææ§"
},
{
"paragraph_id": 51,
"tag": "p",
"text": "幟äœçŽæ°ãšã¯ã",
"title": "幟äœçŽæ°"
},
{
"paragraph_id": 52,
"tag": "p",
"text": "ã®ããã«ãããçŽæ°ã®ããšã§ããæ¥æ¬èªã§ã¯çæ¯çŽæ°ãšããããšãå€ãã§ãããã®ããŒãžã®æåã«èŠãããã«ã幟äœçŽæ°ã¯ | r | < 1 {\\displaystyle |r|<1} ã®ãšãåæãããã®åæå
ã¯",
"title": "幟äœçŽæ°"
},
{
"paragraph_id": 53,
"tag": "p",
"text": "ã§ãã",
"title": "幟äœçŽæ°"
},
{
"paragraph_id": 54,
"tag": "p",
"text": "次ã®åœ¢ã®çŽæ°",
"title": "ç³ã¿èŸŒã¿çŽæ°"
},
{
"paragraph_id": 55,
"tag": "p",
"text": "ãç³ã¿èŸŒã¿çŽæ°ãšããã ãã®åœ¢ã®çŽæ°ã¯æéåãå±éãããš",
"title": "ç³ã¿èŸŒã¿çŽæ°"
},
{
"paragraph_id": 56,
"tag": "p",
"text": "ãšãªããåãæã¡æ¶ãããšã§",
"title": "ç³ã¿èŸŒã¿çŽæ°"
},
{
"paragraph_id": 57,
"tag": "p",
"text": "ãšãªãããããã£ãŠã",
"title": "ç³ã¿èŸŒã¿çŽæ°"
},
{
"paragraph_id": 58,
"tag": "p",
"text": "ãšãªãã®ã§ã極éã®ååšã«ãã£ãŠåæãå€å®ããããšãã§ããã",
"title": "ç³ã¿èŸŒã¿çŽæ°"
},
{
"paragraph_id": 59,
"tag": "p",
"text": "ãã®ä»ã®å€å®æ³ãååšããããå€ãã®çŽæ°ã«ã€ããŠã¯ãããã®å€å®æ³ã§ååã§ãããã",
"title": "ç³ã¿èŸŒã¿çŽæ°"
}
] | null | ==ã¯ããã«==
çŽæ°ïŒæãã¯ç¡éçŽæ°ïŒãšããã®ã¯ãé
ã®åã§æžãããŠãããã®ã§ããç§åŠãå·¥åŠãæ°åŠã®ãããããªåé¡ã«çŸããçŽæ°ã®äžã€ã«çæ¯çŽæ°ïŒæãã¯å¹ŸäœçŽæ°ïŒãšåŒã°ããçŽæ°ããããŸãã
:<math> r + r^2 + r^3 + r^4 + \cdots</math>
<math>...</math>ã¯ããã®åãç¡éã«ç¶ãããšã瀺ããŠããŸãã
çŽæ°ã調ã¹ããšãã«ãã䜿ãæ¹æ³ãšããŠã¯ãæåã®né
ã®åã調ã¹ããšããæ¹æ³ããããŸãã
äŸãã°ãçæ¯çŽæ°ãèãããšããæåã® né
ã®åã¯
:<math>S_n(r) = \sum_{i=1}^{n} r^i </math>
ãšãªããŸãã
äžè¬ã«ç¡éçŽæ°ã調ã¹ããšãã«ã¯ããã®ãããªéšååããšãŠã圹ã«ç«ã¡ãŸãã
çŽæ°ã調ã¹ããšãã«éèŠãªããšã¯ã次㮠2ã€ã§ãã
*ãã®çŽæ°ã¯åæããã®ãïŒ
*åæãããšãããäœã«åæããã®ãïŒ
äŸãã°ãçæ¯çŽæ°ã§ããã°ãäžã§å®çŸ©ããS<sub>n</sub>(r) 㯠r>1ã®æã«ãn→∞ãšããå Žåãæéãªå€ã«åæããŸãããïŒ+∞ã«çºæ£ããŸããïŒS<sub>n</sub>(r) ã®åé
r<sup>i</sup> 㯠i ã倧ãããªãã«ã€ã倧ãããªã£ãŠããããšããããããŸãã
|r| < 1 ã®æã®æ¹ãé¢çœãçµæãåŸãããŸããé
ã®æ°ã¯ç¡éãªã®ã«æéãªå€ã«åæããŸãã
:<math>\lim_{n \rightarrow \infty} S_n(r) = \frac{r}{1-r} </math>
ããã¯ãçæ¯æ°åã®åã®å
¬åŒãèãããšåãããŸãã
:<math>S_n(r) = \sum_{i=1}^{n} r^i = \sum_{i=1}^{n}\left( r\frac{1-r^i}{1-r}- r\frac{1-r^{i-1}}{1-r}\right)= r \frac{1-r^n}{1-r}</math>
|r| < 1 ã®æã¯ã r<sup>n</sup> 㯠n→∞ 㧠0ã«åæããã®ã§ãã®åŒãåŸãããŸãã
ä»ã®çŽæ°ã§ããçæ¯çŽæ°ã®å ŽåãšäŒŒããããªè©äŸ¡ãããŠãããŸãã
ããããçæ¯çŽæ°ãšéã£ãŠåãç°¡åã«è¡šããããã®ã¯å°ãªããæ®ã©ã®å Žåã«åããã®ã¯ããã®çŽæ°ãåæãããã©ããïŒã ãã§ãã
çæ¯çŽæ°ãšç³ã¿èŸŒã¿çŽæ°ã®å Žåã ãã¯ãæ¯èŒçç°¡åã«åæå
ãŸã§æ±ãŸãã®ã§ãã
==åææ§==
çŽæ°ãåæãããšããé
''a''<sub>''n''</sub> 㯠''n'' →∞ 㧠0 ã«åæããäºã¯ããããã§ãããéã«é
ã 0 ã«åæãããããšãã£ãŠãçŽæ°ãåæãããšã¯éããŸããã
次ã®ãããªèª¿åçŽæ°ãèããŠã¿ãŸãããã å ã¿ã«èª¿åçŽæ°ãšããã®ã¯é
ã 1/''n'' ã§è¡šãããçŽæ°ã®äºã§ãã
<math>\sum_{n=1}^{2^m} \frac{1}{n} = 1+ \frac{1}{2}+ \frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+ \ldots + \frac{1}{2^m}</math>
:<math> > 1 + \frac{1}{2}+ \frac{1}{4}+\frac{1}{4}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+ \ldots + \frac{1}{2^m}</math>
:<math> = 1+\frac{1}{2}+ \frac{1}{4}\cdot 2+ \frac{1}{8}\cdot 4+ \ldots+ \frac{1}{2^m}\cdot 2^{m-1} </math>
:<math> = 1+\frac{1}{2}+ \frac{1}{2} + \frac{1}{2} + \ldots+ \frac{1}{2} = 1+\frac{m}{2}</math>
''m''→∞ ã®æã æåŸã®åŒãç¡é倧ã«çºæ£ããããããã®èª¿åçŽæ°ã¯çºæ£ãããšããããŸãã
ãŸãã倧äœã©ã®ãããã®éãã§çºæ£ããã®ããããããŸããåãããã«'''éšåå'''ã次ã®ããã«äžããè©äŸ¡ããäºãã§ããŸãã
:<math>1+\frac{m}{2} < \sum_{n=1}^{2^m} \frac{1}{n} <1+m </math>
æãã¯
:<math>1+\frac{\log_2 m}{2}< \sum_{n=1}^m \frac{1}{n} < 1+ \log_2 m</math>
äžã®åŒãèŠããšããããšãããéšååã¯å€§äœ log ''m'' ãšåããããã®éãã§å¢å ããŠããããšãåãããŸãããšãŠããã£ãããªéãã§ãã
äžã®æ¹æ³ã«æ³šç®ããŠãã ããã調åçŽæ°ã®åææ§ã調ã¹ãããã«ãçºæ£ãããšåãã£ãŠããæ°åãšæ¯ã¹ãŠããŸãã
ããã¯'''åææ§ã®å€å®'''ã«ããçšããããã©ããªæ°åã§ãã£ãŠã䌌ããããªå€å®æ³ãåãäºãã§ããŸãã
<!--
å
容ãæªããã®ã§ã³ã¡ã³ãã¢ãŠã
This is a ''convergence test'' (also known as the direct comparison test) we can apply to any pair of series.
* If ''b''<sub>''n''</sub> converges and |''a''<sub>''n''</sub>|≤|''b''<sub>''n''</sub>| then ''a''<sub>''n''</sub> converges.
* If ''b''<sub>''n''</sub> diverges and |''a''<sub>''n''</sub>|≥|''b''<sub>''n''</sub>| then ''a''<sub>''n''</sub> diverges.
-->
çŽæ°ã®åææ§ã調ã¹ãã«ã¯ãããããªæ¹æ³ããããŸãããã©ããããã§è¿°ã¹ããããªèãæ¹ãæ ¹åºã«ãããŸãã
===絶察åæ===
å®ç: åé
ã®çµ¶å¯Ÿå€ãåã£ãçŽæ° <math>\sum_{n=1}^\infty \left| a_n \right|</math> ãåæãããªãã°ã <math>\sum_{n=1}^\infty a_n</math> ãåæããã
ãã®å®çã®æ¡ä»¶ãæºãããããšããçŽæ° <math>\sum_{n=1}^\infty a_n</math> ã¯'''絶察åæãã'''ãšãããŸãã
åæã¯ããŸããã絶察åæããªãçŽæ°ã®äŸãšããŠã¯ã1-(1/2)+(1/3)-(1/4) ... ããããŸãããã®åé
ã®çµ¶å¯Ÿå€ãåã£ããã®ã¯ãäžã§ã¿ã調åçŽæ°ãªã®ã§çºæ£ããŠããŸãããã®çŽæ°ã¯ ln(2) ã«åæããŸãã
ãã®ããã«çµ¶å¯ŸåæããŠããªãããã©ãåæããå ŽåãçŽæ°ã¯'''æ¡ä»¶åæ'''ãããšãããŸãã
çŽæ°ã絶察åæããŠãããšããé
ã®åãåãé çªãã©ã®ããã«å€ããŠãåãå€ã«åæããŸãã
çŽæ°ãæ¡ä»¶åæããŠãããšããé
ã®é åºãå€ãããšä»»æã®å€ã«åæããããçºæ£ããããã§ããŸãã
äŸãã°ãçŽæ° 1-(1/2)+(1/3)-(1/4) ... ã¯æ¡ä»¶åæããŸãããæ£ã®é
ãšè² ã®é
ã«ãããæ£ã®é
ã足ãã100 ãè¶
ãããšããã§ãè² ã®é
ã足ãã100ããå°ãããªã£ããšããã§ããŸã100ãè¶
ãããŸã§æ£ã®é
ã足ãâŠãšããããšãç¹°ãè¿ããŠããã°ã100ã«åæããçŽæ°ãã§ãããããŸãã
æéåã®é
ã®åãåãå Žåã¯èªç±ã«é åºãå€æŽã§ããã®ã§ãããç¡éåãåãå Žåã¯ãã®ãããªãé
ã®é åºãã«æ°ãã€ããªããã°ãªããªãå ŽåããããŸãããããã£ãæå³ã§çµ¶å¯ŸåæããçŽæ°ã¯æ±ãããããããããè¿°ã¹ãåææ§ã®å€å®æ³ã®æ¡ä»¶ãå
šãŠæ£ã®é
ã§ãããšä»®å®ããŠãããããã®ãã絶察åæãèããŠã®ããšã§ããå
šãŠãæ£ã®é
ã§ããçŽæ°ã§ããã°ã絶察åæãããã+∞ã«çºæ£ãããã®ã©ã¡ããã§ãã
===æ¯ã«ããå€å®æ³===
æ£é
çŽæ° <math>\sum_{n=1}^\infty a_n</math> ã«å¯Ÿã
:<math> \lim_{n \to \infty } \frac{a_{n+1}}{a_n} = r</math>
ãšãã極éããããšããŸãããã®æ
*''r''<1 ãªãã°çŽæ°ã¯åæããŸãã
*''r''>1 ãªãã°çŽæ°ã¯çºæ£ããŸãã
*''r''=1 ãªãã°ããã®å€å®æ³ã§ã¯åæãããã©ããå€æã§ããŸããã
ãšããããšãèšããŸãã
äŸãã°
:<math>a_n=\frac{n!n!}{(2n)!}</math>
ãªãã°
:<math>\frac{a_{n+1}}{a_n}=\frac{(n+1)^2}{(2n+1)(2n+2)}=\frac{n+1}{4n+2} \to \frac{1}{4}</math>
ãªã®ã§ããã®çŽæ°ã¯åæããŸãã
===ç©åã«ããå€å®æ³===
''f''(''x'') ã¯æ£ã®å€ãåãå調æžå°é¢æ°ã§ãããšããŸãã
çŽæ°
:<math>\sum_{n=1}^\infty f(n)</math>
ãèãããšããã®çŽæ°ã¯ã次ã®åºçŸ©ç©å
:<math>\int_1^\infty f(x)dx</math>
ãåæãããšãããã€ããã®æã«éãåæããŸãã
äŸãã°ãå®æ°''p''ã«å¯ŸããŠãé¢æ°
:<math>f(x)=\frac{1}{x^p}</math>
ãèããã°
*''p''=1 ã®æã¯ã調åçŽæ°ãªã®ã§çºæ£ããŸãã
*''p''<1 ã®æã¯ã調åçŽæ°ã®æããããåé
ã倧ããã®ã§çºæ£ããŸãã
*''p''>1 ã®æã¯ãåæããŸããããã¯æ¬¡ã®èšç®ããããããŸãã
:<math>\begin{matrix}\int_1^\infty x^{-p}dx & = & \lim_{s \to \infty}\int_1^s x^{-p}dx & \\
& = & \lim_{s \to \infty } \left. \frac{-1}{(p-1)x^{p-1}} \right|^s_1 & \\
& = & \lim_{s \to \infty } \left( \frac{1}{p-1}-\frac{1}{(p-1)s^{p-1}} \right)
& =\frac{1}{p-1} \end{matrix}</math>
ãããã£ãŠã''p''>1 ã®æããã®åºçŸ©ç©åã¯åæãããšããããçŽæ°ãåæãããšããããŸãã
ãã®å€å®æ³ã®æ£åœæ§ã¯æ¬¡ã®ããã«ãããšããããŸãã
:<math>\int_1^\infty f(x)dx=\sum_{n=1}^\infty \int_n^{n+1} f(x)dx</math>
åºçŸ©ç©åããã®ããã«åã«åå²ããåŸã«ã''f''(''x'')ãå調æžå°ã§ããããšãèããã°ãåé
ã¯æ¬¡ã®ããã«è©äŸ¡ã§ãããšããããŸãã
:<math>f(n) \ge \int_n^{n+1} f(x)dx \ge f(n+1)</math>
ãã®äžçåŒã®åãåãã°ãåºçŸ©ç©åã®åææ§ãšãçŽæ°ã®åææ§ãåå€ã§ãããšããããŸãã
===é
ã®æ¥µéã®æ¯èŒã«ããå€å®===
* çŽæ° Σ ''b''<sub>n</sub> ãåæã
:<math> \lim_{n \rightarrow \infty} \frac{|a_n|}{b_n}</math>
ãæéã®å€ã«åæãããªãã°ãΣ''a''<sub>n</sub> ãåæããŸãã
* ''c''<sub>n</sub> ãçºæ£ã
:<math> \lim_{n \rightarrow \infty} \frac{|a_n|}{c_n} > 0</math>
ã§ãããªãã° ''a''<sub>n</sub> ãçºæ£ããŸãã
'''äŸ'''
:<math>a_n=n^{-\frac{n+1}{n}}</math>
ã®æã倧ã㪠''n'' ã«å¯ŸããŠããã®äžè¬é
㯠0 ã«åæããŸããã調åçŽæ°ã®äžè¬é
''c''<sub>n</sub> = ''n''<sup>−1</sup> ãšæ¯ã¹ãŠ
:<math>\lim_{n \rightarrow \infty} \frac{|a_n|}{c_n} = \lim_{n \rightarrow \infty} \frac{n}{n^{\frac{n+1}{n}}} =
\lim_{n \rightarrow \infty} \frac {1}{n^{\frac {1}{n}}}=1>0</math>
ãšãªãã®ã§ãçŽæ° Σ ''a''<sub>n</sub>ã¯çºæ£ããŸãã
=== 亀代çŽæ° ===
æ°å ''a''<sub>n</sub> ã®é
ã®æ£è² ã®ç¬Šå·ã1é
ããšã«å
¥ãæ¿ãããšããã€ãŸã
:<math>a_n=(-1)^n |a_n| \,</math>
ãæºãããšãããã®æ°åã®åã亀代çŽæ°ãšãããŸãã亀代çŽæ°ã¯ã
:<math>\lim_{n \to \infty}a_n=0</math> ã〠<math>\ |a_{n+1}| < |a_n|</math>.
ãæºãããšãåæããŸãã
ãŸããã®ãšããçŽæ°ã®åæå
ãšéšååãšã®èª€å·®ã®å€§ããã¯ãéšååã«å«ãŸããªãã£ãæåã®é
ãããå°ãããªããŸããããªãã¡ã
:<math>\left| \sum_{n=1}^\infty a_n - \sum_{n=1}^m a_n \right| < |a_{m+1}|</math>
== 幟äœçŽæ° ==
幟äœçŽæ°ãšã¯ã
:<math>\sum_{n=0}^\infty ar^n</math> ãŸã㯠<math>\sum_{n=1}^\infty ar^{n-1}</math>
ã®ããã«ãããçŽæ°ã®ããšã§ããæ¥æ¬èªã§ã¯çæ¯çŽæ°ãšããããšãå€ãã§ãããã®ããŒãžã®æåã«èŠãããã«ã幟äœçŽæ°ã¯<math>|r|<1</math>ã®ãšãåæãããã®åæå
ã¯
:<math>\ S = \frac{a}{1-r}. </math>
ã§ãã
==ç³ã¿èŸŒã¿çŽæ°==
次ã®åœ¢ã®çŽæ°
:<math>\sum_{n=0}^\infty( b_n - b_{n+1})</math>
ãç³ã¿èŸŒã¿çŽæ°ãšããã
ãã®åœ¢ã®çŽæ°ã¯æéåãå±éãããš
:<math>\sum_{n=0}^k (b_n - b_{n+1})= (b_0 - b_1) + (b_1 - b_2) + \dots + (b_{k-1} - b_k)</math>
ãšãªããåãæã¡æ¶ãããšã§
:<math>\sum_{n=0}^k (b_n - b_{n+1})= b_0 - b_k</math>
ãšãªãããããã£ãŠã
:<math>\sum_{n=0}^\infty (b_n - b_{n+1}) =
\lim_{k \to \infty} \sum_{n=0}^k (b_n - b_{n+1}) =
\lim_{k \to \infty} (b_0 - b_k) = b_0 - \lim_{k \to \infty} b_k</math>
ãšãªãã®ã§ã極éã®ååšã«ãã£ãŠåæãå€å®ããããšãã§ããã
ãã®ä»ã®å€å®æ³ãååšããããå€ãã®çŽæ°ã«ã€ããŠã¯ãããã®å€å®æ³ã§ååã§ãããã
[[Category:解æåŠ|ããããã]] | null | 2013-03-11T07:21:37Z | [] | https://ja.wikibooks.org/wiki/%E8%A7%A3%E6%9E%90%E5%AD%A6%E5%9F%BA%E7%A4%8E/%E7%B4%9A%E6%95%B0 |
1,848 | OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é æ²é¢ä»»æå€æé¢åæ§æåãäœæãã | < ^ >
Curved-MPR ã®äœææ³
1) ããŒã¿ããŒã¹ãŠã€ã³ããŠãã察象ãšããã·ãªãŒãºãéžæããŸãã
ã¹ã©ã€ããŒãæäœããŠãCurved-MPRäœæã«é©ããã·ãªãŒãºå
ç»åãéžæããŸãã
2) ROI ã¡ãã¥ãŒããŒãã Open Poligon (F12) ãããã¯éç (F14) ããŒã«ãéžæããŸãã
3) éžæããROI ããŒã«ã䜿çšããŠãäœæãããæ²é¢ã«åãããæ²ç·ãæããŠãããŸãã
4) 2D-3D ã¡ãã¥ãŒãã 2-D Curved MPR ãéžæããŸãã
5) 衚瀺ãããèšå®ãŠã€ã³ããŠãã thick slab ã®èšå®ããããªããŸãããŸãããã§ãã¯ããã¯ã¹ãã¯ãªãã¯ããŠèšå®ãããã°ã
æ²é¢ã«å¯ŸããŠçŽäº€ããæé¢ãåæã«äœæããäºãå¯èœã§ããèšå®ãå®äºãããã OK ãã¿ã³ãã¯ãªãã¯ããŸãã
6) äœæãããå€æé¢åæ§æåãå¥ãŠã€ã³ããŠã§è¡šç€ºãããŸããæ²é¢ä»»æå€æé¢åæ§æåã®åºæ¥äžããã§ãã
çŽäº€æé¢äœæãèšå®ããŠããå Žåã«ã¯ãçŽäº€æé¢ã®å€æé¢åæ§æåã®ãŠã€ã³ããŠãåæã«è¡šç€ºãããŸãã
OsiriX < ^ > | [
{
"paragraph_id": 0,
"tag": "p",
"text": "< ^ >",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "Curved-MPR ã®äœææ³",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "1) ããŒã¿ããŒã¹ãŠã€ã³ããŠãã察象ãšããã·ãªãŒãºãéžæããŸãã",
"title": ""
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ã¹ã©ã€ããŒãæäœããŠãCurved-MPRäœæã«é©ããã·ãªãŒãºå
ç»åãéžæããŸãã",
"title": ""
},
{
"paragraph_id": 4,
"tag": "p",
"text": "",
"title": ""
},
{
"paragraph_id": 5,
"tag": "p",
"text": "2) ROI ã¡ãã¥ãŒããŒãã Open Poligon (F12) ãããã¯éç (F14) ããŒã«ãéžæããŸãã",
"title": ""
},
{
"paragraph_id": 6,
"tag": "p",
"text": "",
"title": ""
},
{
"paragraph_id": 7,
"tag": "p",
"text": "3) éžæããROI ããŒã«ã䜿çšããŠãäœæãããæ²é¢ã«åãããæ²ç·ãæããŠãããŸãã",
"title": ""
},
{
"paragraph_id": 8,
"tag": "p",
"text": "",
"title": ""
},
{
"paragraph_id": 9,
"tag": "p",
"text": "4) 2D-3D ã¡ãã¥ãŒãã 2-D Curved MPR ãéžæããŸãã",
"title": ""
},
{
"paragraph_id": 10,
"tag": "p",
"text": "",
"title": ""
},
{
"paragraph_id": 11,
"tag": "p",
"text": "5) 衚瀺ãããèšå®ãŠã€ã³ããŠãã thick slab ã®èšå®ããããªããŸãããŸãããã§ãã¯ããã¯ã¹ãã¯ãªãã¯ããŠèšå®ãããã°ã",
"title": ""
},
{
"paragraph_id": 12,
"tag": "p",
"text": "æ²é¢ã«å¯ŸããŠçŽäº€ããæé¢ãåæã«äœæããäºãå¯èœã§ããèšå®ãå®äºãããã OK ãã¿ã³ãã¯ãªãã¯ããŸãã",
"title": ""
},
{
"paragraph_id": 13,
"tag": "p",
"text": "",
"title": ""
},
{
"paragraph_id": 14,
"tag": "p",
"text": "6) äœæãããå€æé¢åæ§æåãå¥ãŠã€ã³ããŠã§è¡šç€ºãããŸããæ²é¢ä»»æå€æé¢åæ§æåã®åºæ¥äžããã§ãã",
"title": ""
},
{
"paragraph_id": 15,
"tag": "p",
"text": "çŽäº€æé¢äœæãèšå®ããŠããå Žåã«ã¯ãçŽäº€æé¢ã®å€æé¢åæ§æåã®ãŠã€ã³ããŠãåæã«è¡šç€ºãããŸãã",
"title": ""
},
{
"paragraph_id": 16,
"tag": "p",
"text": "",
"title": ""
},
{
"paragraph_id": 17,
"tag": "p",
"text": "OsiriX < ^ >",
"title": ""
}
] | < ^ > Curved-MPR ã®äœææ³ 1) ããŒã¿ããŒã¹ãŠã€ã³ããŠãã察象ãšããã·ãªãŒãºãéžæããŸãã ã¹ã©ã€ããŒãæäœããŠãCurved-MPRäœæã«é©ããã·ãªãŒãºå
ç»åãéžæããŸãã 2) ROI ã¡ãã¥ãŒããŒãã Open Poligon (F12) ãããã¯éç (F14) ããŒã«ãéžæããŸãã 3) éžæããROI ããŒã«ã䜿çšããŠãäœæãããæ²é¢ã«åãããæ²ç·ãæããŠãããŸãã 4) 2D-3D ã¡ãã¥ãŒãã 2-D Curved MPR ãéžæããŸãã 5) 衚瀺ãããèšå®ãŠã€ã³ããŠãã thick slab ã®èšå®ããããªããŸãããŸãããã§ãã¯ããã¯ã¹ãã¯ãªãã¯ããŠèšå®ãããã°ã æ²é¢ã«å¯ŸããŠçŽäº€ããæé¢ãåæã«äœæããäºãå¯èœã§ããèšå®ãå®äºãããã OK ãã¿ã³ãã¯ãªãã¯ããŸãã 6) äœæãããå€æé¢åæ§æåãå¥ãŠã€ã³ããŠã§è¡šç€ºãããŸããæ²é¢ä»»æå€æé¢åæ§æåã®åºæ¥äžããã§ãã çŽäº€æé¢äœæãèšå®ããŠããå Žåã«ã¯ãçŽäº€æé¢ã®å€æé¢åæ§æåã®ãŠã€ã³ããŠãåæã«è¡šç€ºãããŸãã OsiriX < ^ > | [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é ã·ãªãŒãºå
ç»åãã3Dåæ§æåäœæã«å¿
èŠãªé åãæãåºã|<]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|^]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_ã·ãã¯ã»ã¹ã©ãã®ã¢ãŒãèšå®å€ãå¢ãã|>]]
----
'''Curved-MPR ã®äœææ³'''
1) ''ããŒã¿ããŒã¹ãŠã€ã³ããŠ''ãã察象ãšããã·ãªãŒãºãéžæããŸãã
''ã¹ã©ã€ããŒ''ãæäœããŠãCurved-MPRäœæã«é©ããã·ãªãŒãºå
ç»åãéžæããŸãã
<center>[[ç»å:OsiriXCurvedMPR01.jpg]]</center>
2) ''ROI ã¡ãã¥ãŒããŒ''ãã ''Open Poligon (F12)'' ãããã¯''éç (F14)'' ããŒã«ãéžæããŸãã
<center>[[ç»å:OsiriXCurvedMPR02.jpg]]</center>
3) éžæãã''ROI ããŒã«''ã䜿çšããŠãäœæãããæ²é¢ã«åãããæ²ç·ãæããŠãããŸãã
<center>[[Image:OsiriXCurvedMPR03.jpg]]</center>
4) ''2D-3D ã¡ãã¥ãŒ''ãã ''2-D Curved MPR'' ãéžæããŸãã
<center>[[ç»å:OsiriXCurvedMPR04.jpg]]</center>
5) 衚瀺ãããèšå®ãŠã€ã³ããŠãã ''thick slab'' ã®èšå®ããããªããŸãããŸãã''ãã§ãã¯ããã¯ã¹''ãã¯ãªãã¯ããŠèšå®ãããã°ã
æ²é¢ã«å¯ŸããŠ''çŽäº€ããæé¢''ãåæã«äœæããäºãå¯èœã§ããèšå®ãå®äºãããã ''OK'' ãã¿ã³ãã¯ãªãã¯ããŸãã
<center>[[ç»å:OsiriXCurvedMPR05.jpg]]</center>
6) äœæãããå€æé¢åæ§æåãå¥ãŠã€ã³ããŠã§è¡šç€ºãããŸããæ²é¢ä»»æå€æé¢åæ§æåã®åºæ¥äžããã§ãã
çŽäº€æé¢äœæãèšå®ããŠããå Žåã«ã¯ãçŽäº€æé¢ã®å€æé¢åæ§æåã®ãŠã€ã³ããŠãåæã«è¡šç€ºãããŸãã
<center>[[ç»å:OsiriXCurvedMPR06.jpg]]</center>
----
[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|OsiriX]] <br>
[[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é ã·ãªãŒãºå
ç»åãã3Dåæ§æåäœæã«å¿
èŠãªé åãæãåºã|<]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž|^]] [[OsiriX ãªã³ã©ã€ã³è§£èª¬ææž/OsiriXå
¥é_ã·ãã¯ã»ã¹ã©ãã®ã¢ãŒãèšå®å€ãå¢ãã|>]]
[[Category:OsiriX|ãããããã«ãããããããããããããããããããããã]] | null | 2015-08-29T00:59:41Z | [] | https://ja.wikibooks.org/wiki/OsiriX_%E3%82%AA%E3%83%B3%E3%83%A9%E3%82%A4%E3%83%B3%E8%A7%A3%E8%AA%AC%E6%96%87%E6%9B%B8/OsiriX%E5%85%A5%E9%96%80_%E6%9B%B2%E9%9D%A2%E4%BB%BB%E6%84%8F%E5%A4%9A%E6%96%AD%E9%9D%A2%E5%86%8D%E6%A7%8B%E6%88%90%E5%83%8F%E3%82%92%E4%BD%9C%E6%88%90%E3%81%99%E3%82%8B |
1,850 | ãžã§ãŒã¯é/é»çãžã§ãŒã¯ | äžè¬ã«é»çãžã§ãŒã¯ã¯ããé»çããã蟌ãã®ã«ââã¯äœäººå¿
èŠã§ãã?ããšãã質åã«ãââã«é¢é£ããé¢çœãçããè¿ããšãã圢åŒã®ãžã§ãŒã¯ã®ããšã§ããæ¥æ¬ã§ããã°ãå¯åžãªã©ã§è¡ãããŠããå°åãåçã®ãããªãã®ãšæã£ãŠãããšæããŸãã
ããããã®ã¯
ãšãã圢ã§ã®ãžã§ãŒã¯ã§ãã
次ã®äŸã¯é»çãžã§ãŒã¯ã®ååãšããŠçšãããããã®ã®äžã€ã§ãã
ãŠã£ãããã£ã¢ã®é»çãžã§ãŒã¯ãåç
§ããŠãã ããã
ããã«ããé»çãžã§ãŒã¯ã®äžèŠ§ã¯ãã€ã³ã¿ãŒãããäžã®ãããããªé»çãžã§ãŒã¯ãå
ã«äœãããŸããã äžã«ã¯ãŠã£ãã¡ãã£ã¢ã³ã®èªäœã®ãã®ããããããããŸããã
Q:é»çãåããŠåãä»ããããã«äœäººã®ç¡ç¥è«è
(atheists) ãå¿
èŠã§ãã?
Q:é»ç(lightbulb) ãåããŠåãä»ããããã«äœäººã®ADD(Attention Deficit Disorder) ã®åäŸãå¿
èŠã§ãã?
Q:é»çãåãæ¿ããããã«äœäººã®ä¿³åª(actors) ãå¿
èŠã§ãã?
Q:é»çãåããŠåãä»ããã®ã«äœäººã®é¬éè¡åž«(alchemists) ãå¿
èŠã§ãã?
Q:é»çã亀æããã®ã«äœäººã®ã¢ã«ãææãå¿
èŠã§ãã?
Q:é»çã亀æããã®ã«äœäººã®ãã¹ææãå¿
èŠã§ãã?
Q:é»çãå€ããã®ã«äœäººã®ãããã¹ãä¿¡è
(Baptists) ãå¿
èŠããª?
Q:é»çãåãæ¿ããã®ã«äœäººã®ããŒã·ã¹ã(bassists) ãå¿
èŠã§ãã?
Q:é»çã亀æããã®ã«äœäººã®ãã€ã¯ä¹ã(biker) ãå¿
èŠã?
Q:é»çãåããŠåãä»ããããã«äœäººã®å®å(bureaucrats) ãå¿
èŠã§ãã?
Q:é»çãåãæ¿ããã®ã«ããã·ã¥æ¿æš©ã®ã¡ã³ããŒãäœäººå¿
èŠã?
Q:é»çã亀æããã®ã«äœäººã®ããã·ã¥ãå¿
èŠã§ãã?
Q:é»çããã蟌ãã®ã«äœäººã®ã«ãªãã©ã«ãã¢äºº(Californians) ãå¿
èŠã§ãã?
Q:é»çããã蟌ãã®ã«äœäººã®å€§å·¥(carpenters) ãå¿
èŠã ã?
Q:é»çãåãæ¿ããã®ã«ã«ã³ããªãŒãã¥ãŒãžãã¯(Country and Western) ã®ææã¯äœäººå¿
�
Q:é»çãå€ããããã«ã³ã³ãµã«ã¿ã³ã(Consultants) ã¯äœäººå¿
�
Q:é»çãå€ããããã«äœäººã®ã¯ãªã¹ãã£ã³(Christians) ãå¿
�
Q:é»çãåãæ¿ããã®ã«ã¯äœäººã®ã«ã€ããã©ã¯ã¿ãŒ(Chiropractors) ãå¿
�
Q:é»çãåãä»ããã®ã«äœäººã®ãããããã(Deadheads:ãã³ãGrateful Deadã®ãã¡ã³)ãå¿
èŠãšããŸãã?
Q:é»çãåãä»ããã®ã«äœäººã®ãã©ãŽã³ããŒã«(Dragon Ball) ã®ç»å Žäººç©ãå¿
èŠã§ãã?
Q:é»çãåãä»ããã®ã«äœäººã®ãã©ããŒ(drummers) ãå¿
èŠã§ãã?
Q:é»çãåãä»ããã®ã«å®å䞻矩è
(existentialists) ã¯äœäººå¿
èŠã§ãã?
Q:é»çãå€ããããã«äœäººã®çµæžåŠè
(economists) ãå¿
èŠã§ãã?
Q:é»çãåãã€ããã®ã«äœäººã®ã€ã®ãªã¹äºº(Englishmen) ãå¿
èŠã§ãã?
Q:é»çãåãæ¿ããã®ã«äœäººã®emo kidsãå¿
èŠã§ãã?
Q:é»çãåãæ¿ããã®ã«äœäººã®çŠé³æŽŸ(evangelicals) ãå¿
èŠã§ãã?
Q:é»çãåãæ¿ããã®ã«äœäººã®é£ã人(fishermen) ãå¿
èŠã§ãã?
Q:é»çãåãæ¿ããã®ã«ãäœäººã®ãã©ã³ã¯ã»ã¶ãã(Frank Zappas) ãå¿
èŠã§ãã?
Q:é»çãåãæ¿ããã®ã«äœäººã®ãã©ã³ã¹äºº(French) ãå¿
èŠã§ãã?
Q:é»çããã蟌ãã®ã«äœäººã®ãã§ããã¹ã(feminists) ãå¿
èŠã§ãã?
Q:é»çãåãæ¿ããã®ã«äœäººã®ãã£ã³ã©ã³ã人(Finnish)ãå¿
èŠã§ãã?
Q:é»çãåãæ¿ããã®ã«äœäººã®æ¶é²å£«(firefighter) ãå¿
èŠã§ãã?
Q:é»çãåãæ¿ããã®ã«ãç¢æã¡(Go players) ã¯äœäººå¿
�
Q:é»çãåããŠåãä»ããã®ã«ãäœæ±ã®ç¥æ§(gods) ãå¿
èŠããã?
Q:é»çãåãä»ããã®ã« äœå¹ã®ã°ã«ãŒ(grues) ãå¿
�
Q:é»çãåãæ¿ããã®ã«äœäººã®æµ®æµªè
(hobos) ãå¿
èŠã?
Q:é»çãåãæ¿ããã®ã«ããŒãŽã¡ãŒã倧åŠã®ææã¯äœäººå¿
èŠã?
Q:é»çãåãæ¿ããã®ã«ãã ã¹ã¿ãŒã¯äœå¹å¿
èŠã ãã?
Q:é»çãåãæ¿ããã®ã«å¿
èŠãªã¢ã€ã«ã©ã³ã人(Irishmen) ã¯äœäºº?
Q:é»çãåãã€ããã®ã«äœäººã®ã€ã¿ãªã¢äºº(Italian) ãå¿
èŠã§ãã?
Q:1åã®é»çãåãæ¿ããã®ã«äœäººã®æ¥æ¬äººèŠ³å
客ãå¿
èŠã?
Q:1åã®é»çãåãæ¿ããã®ã«äœäººã®æ¥æ¬äººãå¿
èŠã?
Q:1åã®é»çãåãæ¿ããã®ã«äœäººã®æ¥æ¬äººãµã©ãªãŒãã³ãå¿
èŠã?
Q:é»çãåãæ¿ããã®ã«äœäººã®ãŠãã€äººã®æ¯èŠªãå¿
èŠã?
Q:é»çãåãæ¿ããã®ã«äœäººã®ãžã£ã°ã©ãŒ(juggler) ãå¿
�
Q:é»çãåãæ¿ããã®ã«äœäººã®ã¯ãªã³ãŽã³äºº(Klingons) ãå¿
�
Q:é»çãåãæ¿ããã®ã«äœäººã®åžæž(librarian) ãå¿
èŠã?
Q:é»çãåãæ¿ããã®ã«äœäººã®åŒè·å£«(lawyer) ãå¿
èŠã?
Q:é»çãåãæ¿ããã®ã«äœäººã®ã¬ãºãã¢ã³(lesbian) ãå¿
èŠã?
Q:é»çãåãä»ãã(screw) ã®ã«äœäººã®ãªãã©ã«ã»ã¢ãŒã(liberal arts) ã®ææãå¿
èŠã§ãã?
Q:é»çãåãæ¿ããã®ã«äœäººã®ãã«ã¯ã¹äž»çŸ©è
(Marxists) ãå¿
èŠã?
Q:é»çãåãä»ãã(screw in) ã®ã«äœäººã®ç·ãå¿
èŠã?
Q:寿åœã®ããé»çãåãæ¿ããã®ã«äœäººã®ãã€ã¯ããœããã®ããã°ã©ããå¿
èŠã?
Q:é»çãåãæ¿ããã®ã«äœäººã®ãã€ã¯ããœããã®ãšã³ãžãã¢ãå¿
èŠã?
Q:é»çãåãæ¿ããã®ã«äœäººã®å°äºº(midgets) ãå¿
èŠã?
Q:é»çãåãæ¿ããã®ã«äœäººã®ããããªã¹ã(minimalists) ãå¿
èŠã?
Q:é»çãåãæ¿ããã®ã«äœäººã®æ ç»ç£ç£ãå¿
èŠã?
Q:é»çãåãæ¿ããã®ã«äœäººã®ãã«ã·ã¹ã(narcissists) ãå¿
èŠã?
Q:é»çãåãæ¿ããã®ã«äœäººã®2ã¡ãããããŒãå¿
èŠã?
Q:é»çãåãæ¿ããã®ã«äœäººã®åååãšã³ãžãã¢ãå¿
èŠã?
Q:é»çãåãæ¿ããã®ã«äœäººã®ã€ã³ããŒ(New Yorkers) ãå¿
èŠã?
Q:é»çãåãæ¿ããã®ã«å€§éªäººã¯äœäººå¿
�
Q:é»çãåãæ¿ããã®ã«ãªããžã§ã¯ããã£ã©ã¯äœäººå¿
�
Q:é»çã亀æããã®ã«äœäººã®ãã³ã¯ããã«ãŒãå¿
èŠã§ãã?
Q:é»çã亀æããã®ã«ãã³ãã³ã¹ããç¥ã人(Pentecostals) ãäœäººå¿
èŠã§ãã?
Q:é»çã亀æããã®ã«äœäººå¿
èŠã§ãã?
Q:é»çã亀æããã®ã«äœäººã®èŠå®(policeman) ãå¿
èŠã?
Q:é»çã亀æããã®ã«äœäººã®å¿çåŠè
ãå¿
èŠã§ãã?
Q:é»çãåãæ¿ããã®ã«äœäººã®ããã°ã©ã(Programmers) ãå¿
èŠã§ãã?
Q:é»çãåãæ¿ããã®ã«äœäººã®è©©äºº(poets) ãå¿
èŠã§ãã?
Q:é»çãåãæ¿ããã®ã«äœäººã®äžçµ¶å察è
(pro-lifers) ãå¿
èŠã§ãã?
Q:é»çãåãæ¿ããã®ã«äœäººã®äžçµ¶è³æè
(pro-choicers) ãå¿
èŠã§ãã?
Q:é»çãåãæ¿ããã®ã«äœäººã®æ£çŽãªæ¿æ²»å®¶ãå¿
èŠã§ãã?
Q:é»çã亀æããã®ã«äœäººã®ç«æ人ãå¿
èŠã?
Q:é»çã亀æããã®ã«äœäººã®ãœé£äººãå¿
èŠã?
Q:é»çãåãä»ããã®ã«äœäººã®èäœåŽåè
(rednecks) ãå¿
èŠã?
Q:çºå
ããã«ã亀æããã®ã«äœäººã®ã¹ããŒã ãã«ãŒããŒãå¿
èŠã?
Q:é»çã亀æããã®ã«äœäººã®ãœãã©ãææãå¿
èŠã§ãã?
Q:é»çãåãæ¿ããã®ã«äœäººã®ã·ã¥ã«ã¬ã¢ãªã¹ã(surrealists) ãå¿
èŠã?
Q:é»çãåãæ¿ããã®ã«çµ±èšåŠè
(statistician)ã¯äœäººå¿
èŠã?
Q:é»çãå€ããã®ã«äœäººã®ç€ŸäŒäž»çŸ©è
(socialists)ãå¿
èŠã?
Q:é»çãå€ããã®ã«äœäººã®ãœã·ã£ã²ãã£ã©(social game character)ãå¿
èŠã?
Q:é»çãå€ããã®ã«äœäººã®Sloane Rangersãå¿
èŠã?
Q:é»çã亀æããã®ã«äœäººã®ãããŒã«ææãå¿
èŠã§ãã?
Q:é»çãåãæ¿ããã®ã«äœäººã®ã¿ãã¬ã€(tough guys) ãå¿
èŠã§ãã?
Q:é»çãåãæ¿ããã®ã«äœäººã®ãã©ã³ãããå¥è
(trumpet players) ãå¿
èŠã§ãã?
Q:é»çãåãæ¿ããã®ã«äœäººã®ãããã·ãŒåçé¢ä¿è
ãå¿
èŠã§ãã?
Q:é»çãåãæ¿ããã®ã«äœäººã®æ³¥æ£(thieves) ãå¿
èŠã§ãã?
Q:"é»çã亀æããã«ã¯äœäººã®ãŠãã¿ãªã¢ã³ãå¿
èŠã§ãã?"
Q:é»çãåãæ¿ããã®ã«ãäœäººã®çŸè¡é€šã®å®¢(art museum visitors) ãå¿
èŠã§ãã?
Q:é»çãåãæ¿ããã®ã«ãäœäººã®ãŠã§ã€ã¿ãŒ/ãŠã§ã€ãã¬ã¹(waiters/waitresses) ãå¿
èŠã§ãã?
Q:é»çãåãæ¿ããã®ã«ãäœäººã®ãŠã£ãããã£ã¢ã³(wikipedian) ãå¿
èŠã§ãã?
Q:é»çãåãæ¿ããã®ã«ãçŠ
å§(Zen monk) ã¯äœäººå¿
èŠã?
()ã®äžã«é©åœãªåèªãå
¥ããã
Q:é»çãåãæ¿ããã®ã«ãäœå¹ã®(åç©å)ãå¿
èŠã§ãã?
Q:é»çãåãæ¿ããã®ã«ãäœäººã®(倧åŠå)ã®åŠçãå¿
èŠã§ãã?
é»çãžã§ãŒã¯ã¯ããé»çãåãæããããšããã®ãããšããšã ãããå£ã«ãã³ããå¡ãããªã©ã®æŽŸçäœåãããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "äžè¬ã«é»çãžã§ãŒã¯ã¯ããé»çããã蟌ãã®ã«ââã¯äœäººå¿
èŠã§ãã?ããšãã質åã«ãââã«é¢é£ããé¢çœãçããè¿ããšãã圢åŒã®ãžã§ãŒã¯ã®ããšã§ããæ¥æ¬ã§ããã°ãå¯åžãªã©ã§è¡ãããŠããå°åãåçã®ãããªãã®ãšæã£ãŠãããšæããŸãã",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ããããã®ã¯",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ãšãã圢ã§ã®ãžã§ãŒã¯ã§ãã",
"title": ""
},
{
"paragraph_id": 3,
"tag": "p",
"text": "次ã®äŸã¯é»çãžã§ãŒã¯ã®ååãšããŠçšãããããã®ã®äžã€ã§ãã",
"title": ""
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ãŠã£ãããã£ã¢ã®é»çãžã§ãŒã¯ãåç
§ããŠãã ããã",
"title": ""
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ããã«ããé»çãžã§ãŒã¯ã®äžèŠ§ã¯ãã€ã³ã¿ãŒãããäžã®ãããããªé»çãžã§ãŒã¯ãå
ã«äœãããŸããã äžã«ã¯ãŠã£ãã¡ãã£ã¢ã³ã®èªäœã®ãã®ããããããããŸããã",
"title": ""
},
{
"paragraph_id": 6,
"tag": "p",
"text": "Q:é»çãåããŠåãä»ããããã«äœäººã®ç¡ç¥è«è
(atheists) ãå¿
èŠã§ãã?",
"title": "A"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "Q:é»ç(lightbulb) ãåããŠåãä»ããããã«äœäººã®ADD(Attention Deficit Disorder) ã®åäŸãå¿
èŠã§ãã?",
"title": "A"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "Q:é»çãåãæ¿ããããã«äœäººã®ä¿³åª(actors) ãå¿
èŠã§ãã?",
"title": "A"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "Q:é»çãåããŠåãä»ããã®ã«äœäººã®é¬éè¡åž«(alchemists) ãå¿
èŠã§ãã?",
"title": "A"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "Q:é»çã亀æããã®ã«äœäººã®ã¢ã«ãææãå¿
èŠã§ãã?",
"title": "A"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "Q:é»çã亀æããã®ã«äœäººã®ãã¹ææãå¿
èŠã§ãã?",
"title": "B"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "Q:é»çãå€ããã®ã«äœäººã®ãããã¹ãä¿¡è
(Baptists) ãå¿
èŠããª?",
"title": "B"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "Q:é»çãåãæ¿ããã®ã«äœäººã®ããŒã·ã¹ã(bassists) ãå¿
èŠã§ãã?",
"title": "B"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "Q:é»çã亀æããã®ã«äœäººã®ãã€ã¯ä¹ã(biker) ãå¿
èŠã?",
"title": "B"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "Q:é»çãåããŠåãä»ããããã«äœäººã®å®å(bureaucrats) ãå¿
èŠã§ãã?",
"title": "B"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "Q:é»çãåãæ¿ããã®ã«ããã·ã¥æ¿æš©ã®ã¡ã³ããŒãäœäººå¿
èŠã?",
"title": "B"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "Q:é»çã亀æããã®ã«äœäººã®ããã·ã¥ãå¿
èŠã§ãã?",
"title": "B"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "Q:é»çããã蟌ãã®ã«äœäººã®ã«ãªãã©ã«ãã¢äºº(Californians) ãå¿
èŠã§ãã?",
"title": "C"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "Q:é»çããã蟌ãã®ã«äœäººã®å€§å·¥(carpenters) ãå¿
èŠã ã?",
"title": "C"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "Q:é»çãåãæ¿ããã®ã«ã«ã³ããªãŒãã¥ãŒãžãã¯(Country and Western) ã®ææã¯äœäººå¿
�",
"title": "C"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "Q:é»çãå€ããããã«ã³ã³ãµã«ã¿ã³ã(Consultants) ã¯äœäººå¿
�",
"title": "C"
},
{
"paragraph_id": 22,
"tag": "p",
"text": "Q:é»çãå€ããããã«äœäººã®ã¯ãªã¹ãã£ã³(Christians) ãå¿
�",
"title": "C"
},
{
"paragraph_id": 23,
"tag": "p",
"text": "Q:é»çãåãæ¿ããã®ã«ã¯äœäººã®ã«ã€ããã©ã¯ã¿ãŒ(Chiropractors) ãå¿
�",
"title": "C"
},
{
"paragraph_id": 24,
"tag": "p",
"text": "Q:é»çãåãä»ããã®ã«äœäººã®ãããããã(Deadheads:ãã³ãGrateful Deadã®ãã¡ã³)ãå¿
èŠãšããŸãã?",
"title": "D"
},
{
"paragraph_id": 25,
"tag": "p",
"text": "Q:é»çãåãä»ããã®ã«äœäººã®ãã©ãŽã³ããŒã«(Dragon Ball) ã®ç»å Žäººç©ãå¿
èŠã§ãã?",
"title": "D"
},
{
"paragraph_id": 26,
"tag": "p",
"text": "Q:é»çãåãä»ããã®ã«äœäººã®ãã©ããŒ(drummers) ãå¿
èŠã§ãã?",
"title": "D"
},
{
"paragraph_id": 27,
"tag": "p",
"text": "Q:é»çãåãä»ããã®ã«å®å䞻矩è
(existentialists) ã¯äœäººå¿
èŠã§ãã?",
"title": "E"
},
{
"paragraph_id": 28,
"tag": "p",
"text": "Q:é»çãå€ããããã«äœäººã®çµæžåŠè
(economists) ãå¿
èŠã§ãã?",
"title": "E"
},
{
"paragraph_id": 29,
"tag": "p",
"text": "Q:é»çãåãã€ããã®ã«äœäººã®ã€ã®ãªã¹äºº(Englishmen) ãå¿
èŠã§ãã?",
"title": "E"
},
{
"paragraph_id": 30,
"tag": "p",
"text": "Q:é»çãåãæ¿ããã®ã«äœäººã®emo kidsãå¿
èŠã§ãã?",
"title": "E"
},
{
"paragraph_id": 31,
"tag": "p",
"text": "Q:é»çãåãæ¿ããã®ã«äœäººã®çŠé³æŽŸ(evangelicals) ãå¿
èŠã§ãã?",
"title": "E"
},
{
"paragraph_id": 32,
"tag": "p",
"text": "Q:é»çãåãæ¿ããã®ã«äœäººã®é£ã人(fishermen) ãå¿
èŠã§ãã?",
"title": "F"
},
{
"paragraph_id": 33,
"tag": "p",
"text": "Q:é»çãåãæ¿ããã®ã«ãäœäººã®ãã©ã³ã¯ã»ã¶ãã(Frank Zappas) ãå¿
èŠã§ãã?",
"title": "F"
},
{
"paragraph_id": 34,
"tag": "p",
"text": "Q:é»çãåãæ¿ããã®ã«äœäººã®ãã©ã³ã¹äºº(French) ãå¿
èŠã§ãã?",
"title": "F"
},
{
"paragraph_id": 35,
"tag": "p",
"text": "Q:é»çããã蟌ãã®ã«äœäººã®ãã§ããã¹ã(feminists) ãå¿
èŠã§ãã?",
"title": "F"
},
{
"paragraph_id": 36,
"tag": "p",
"text": "Q:é»çãåãæ¿ããã®ã«äœäººã®ãã£ã³ã©ã³ã人(Finnish)ãå¿
èŠã§ãã?",
"title": "F"
},
{
"paragraph_id": 37,
"tag": "p",
"text": "Q:é»çãåãæ¿ããã®ã«äœäººã®æ¶é²å£«(firefighter) ãå¿
èŠã§ãã?",
"title": "F"
},
{
"paragraph_id": 38,
"tag": "p",
"text": "Q:é»çãåãæ¿ããã®ã«ãç¢æã¡(Go players) ã¯äœäººå¿
�",
"title": "G"
},
{
"paragraph_id": 39,
"tag": "p",
"text": "Q:é»çãåããŠåãä»ããã®ã«ãäœæ±ã®ç¥æ§(gods) ãå¿
èŠããã?",
"title": "G"
},
{
"paragraph_id": 40,
"tag": "p",
"text": "Q:é»çãåãä»ããã®ã« äœå¹ã®ã°ã«ãŒ(grues) ãå¿
�",
"title": "G"
},
{
"paragraph_id": 41,
"tag": "p",
"text": "Q:é»çãåãæ¿ããã®ã«äœäººã®æµ®æµªè
(hobos) ãå¿
èŠã?",
"title": "H"
},
{
"paragraph_id": 42,
"tag": "p",
"text": "Q:é»çãåãæ¿ããã®ã«ããŒãŽã¡ãŒã倧åŠã®ææã¯äœäººå¿
èŠã?",
"title": "H"
},
{
"paragraph_id": 43,
"tag": "p",
"text": "Q:é»çãåãæ¿ããã®ã«ãã ã¹ã¿ãŒã¯äœå¹å¿
èŠã ãã?",
"title": "H"
},
{
"paragraph_id": 44,
"tag": "p",
"text": "Q:é»çãåãæ¿ããã®ã«å¿
èŠãªã¢ã€ã«ã©ã³ã人(Irishmen) ã¯äœäºº?",
"title": "I"
},
{
"paragraph_id": 45,
"tag": "p",
"text": "Q:é»çãåãã€ããã®ã«äœäººã®ã€ã¿ãªã¢äºº(Italian) ãå¿
èŠã§ãã?",
"title": "I"
},
{
"paragraph_id": 46,
"tag": "p",
"text": "Q:1åã®é»çãåãæ¿ããã®ã«äœäººã®æ¥æ¬äººèŠ³å
客ãå¿
èŠã?",
"title": "J"
},
{
"paragraph_id": 47,
"tag": "p",
"text": "Q:1åã®é»çãåãæ¿ããã®ã«äœäººã®æ¥æ¬äººãå¿
èŠã?",
"title": "J"
},
{
"paragraph_id": 48,
"tag": "p",
"text": "Q:1åã®é»çãåãæ¿ããã®ã«äœäººã®æ¥æ¬äººãµã©ãªãŒãã³ãå¿
èŠã?",
"title": "J"
},
{
"paragraph_id": 49,
"tag": "p",
"text": "Q:é»çãåãæ¿ããã®ã«äœäººã®ãŠãã€äººã®æ¯èŠªãå¿
èŠã?",
"title": "J"
},
{
"paragraph_id": 50,
"tag": "p",
"text": "Q:é»çãåãæ¿ããã®ã«äœäººã®ãžã£ã°ã©ãŒ(juggler) ãå¿
�",
"title": "J"
},
{
"paragraph_id": 51,
"tag": "p",
"text": "Q:é»çãåãæ¿ããã®ã«äœäººã®ã¯ãªã³ãŽã³äºº(Klingons) ãå¿
�",
"title": "K"
},
{
"paragraph_id": 52,
"tag": "p",
"text": "Q:é»çãåãæ¿ããã®ã«äœäººã®åžæž(librarian) ãå¿
èŠã?",
"title": "L"
},
{
"paragraph_id": 53,
"tag": "p",
"text": "Q:é»çãåãæ¿ããã®ã«äœäººã®åŒè·å£«(lawyer) ãå¿
èŠã?",
"title": "L"
},
{
"paragraph_id": 54,
"tag": "p",
"text": "Q:é»çãåãæ¿ããã®ã«äœäººã®ã¬ãºãã¢ã³(lesbian) ãå¿
èŠã?",
"title": "L"
},
{
"paragraph_id": 55,
"tag": "p",
"text": "Q:é»çãåãä»ãã(screw) ã®ã«äœäººã®ãªãã©ã«ã»ã¢ãŒã(liberal arts) ã®ææãå¿
èŠã§ãã?",
"title": "L"
},
{
"paragraph_id": 56,
"tag": "p",
"text": "",
"title": "L"
},
{
"paragraph_id": 57,
"tag": "p",
"text": "Q:é»çãåãæ¿ããã®ã«äœäººã®ãã«ã¯ã¹äž»çŸ©è
(Marxists) ãå¿
èŠã?",
"title": "M"
},
{
"paragraph_id": 58,
"tag": "p",
"text": "Q:é»çãåãä»ãã(screw in) ã®ã«äœäººã®ç·ãå¿
èŠã?",
"title": "M"
},
{
"paragraph_id": 59,
"tag": "p",
"text": "Q:寿åœã®ããé»çãåãæ¿ããã®ã«äœäººã®ãã€ã¯ããœããã®ããã°ã©ããå¿
èŠã?",
"title": "M"
},
{
"paragraph_id": 60,
"tag": "p",
"text": "Q:é»çãåãæ¿ããã®ã«äœäººã®ãã€ã¯ããœããã®ãšã³ãžãã¢ãå¿
èŠã?",
"title": "M"
},
{
"paragraph_id": 61,
"tag": "p",
"text": "Q:é»çãåãæ¿ããã®ã«äœäººã®å°äºº(midgets) ãå¿
èŠã?",
"title": "M"
},
{
"paragraph_id": 62,
"tag": "p",
"text": "Q:é»çãåãæ¿ããã®ã«äœäººã®ããããªã¹ã(minimalists) ãå¿
èŠã?",
"title": "M"
},
{
"paragraph_id": 63,
"tag": "p",
"text": "Q:é»çãåãæ¿ããã®ã«äœäººã®æ ç»ç£ç£ãå¿
èŠã?",
"title": "M"
},
{
"paragraph_id": 64,
"tag": "p",
"text": "Q:é»çãåãæ¿ããã®ã«äœäººã®ãã«ã·ã¹ã(narcissists) ãå¿
èŠã?",
"title": "N"
},
{
"paragraph_id": 65,
"tag": "p",
"text": "Q:é»çãåãæ¿ããã®ã«äœäººã®2ã¡ãããããŒãå¿
èŠã?",
"title": "N"
},
{
"paragraph_id": 66,
"tag": "p",
"text": "Q:é»çãåãæ¿ããã®ã«äœäººã®åååãšã³ãžãã¢ãå¿
èŠã?",
"title": "N"
},
{
"paragraph_id": 67,
"tag": "p",
"text": "Q:é»çãåãæ¿ããã®ã«äœäººã®ã€ã³ããŒ(New Yorkers) ãå¿
èŠã?",
"title": "N"
},
{
"paragraph_id": 68,
"tag": "p",
"text": "Q:é»çãåãæ¿ããã®ã«å€§éªäººã¯äœäººå¿
�",
"title": "O"
},
{
"paragraph_id": 69,
"tag": "p",
"text": "Q:é»çãåãæ¿ããã®ã«ãªããžã§ã¯ããã£ã©ã¯äœäººå¿
�",
"title": "O"
},
{
"paragraph_id": 70,
"tag": "p",
"text": "Q:é»çã亀æããã®ã«äœäººã®ãã³ã¯ããã«ãŒãå¿
èŠã§ãã?",
"title": "P"
},
{
"paragraph_id": 71,
"tag": "p",
"text": "Q:é»çã亀æããã®ã«ãã³ãã³ã¹ããç¥ã人(Pentecostals) ãäœäººå¿
èŠã§ãã?",
"title": "P"
},
{
"paragraph_id": 72,
"tag": "p",
"text": "Q:é»çã亀æããã®ã«äœäººå¿
èŠã§ãã?",
"title": "P"
},
{
"paragraph_id": 73,
"tag": "p",
"text": "Q:é»çã亀æããã®ã«äœäººã®èŠå®(policeman) ãå¿
èŠã?",
"title": "P"
},
{
"paragraph_id": 74,
"tag": "p",
"text": "Q:é»çã亀æããã®ã«äœäººã®å¿çåŠè
ãå¿
èŠã§ãã?",
"title": "P"
},
{
"paragraph_id": 75,
"tag": "p",
"text": "Q:é»çãåãæ¿ããã®ã«äœäººã®ããã°ã©ã(Programmers) ãå¿
èŠã§ãã?",
"title": "P"
},
{
"paragraph_id": 76,
"tag": "p",
"text": "Q:é»çãåãæ¿ããã®ã«äœäººã®è©©äºº(poets) ãå¿
èŠã§ãã?",
"title": "P"
},
{
"paragraph_id": 77,
"tag": "p",
"text": "Q:é»çãåãæ¿ããã®ã«äœäººã®äžçµ¶å察è
(pro-lifers) ãå¿
èŠã§ãã?",
"title": "P"
},
{
"paragraph_id": 78,
"tag": "p",
"text": "Q:é»çãåãæ¿ããã®ã«äœäººã®äžçµ¶è³æè
(pro-choicers) ãå¿
èŠã§ãã?",
"title": "P"
},
{
"paragraph_id": 79,
"tag": "p",
"text": "Q:é»çãåãæ¿ããã®ã«äœäººã®æ£çŽãªæ¿æ²»å®¶ãå¿
èŠã§ãã?",
"title": "P"
},
{
"paragraph_id": 80,
"tag": "p",
"text": "Q:é»çã亀æããã®ã«äœäººã®ç«æ人ãå¿
èŠã?",
"title": "Q"
},
{
"paragraph_id": 81,
"tag": "p",
"text": "Q:é»çã亀æããã®ã«äœäººã®ãœé£äººãå¿
èŠã?",
"title": "R"
},
{
"paragraph_id": 82,
"tag": "p",
"text": "Q:é»çãåãä»ããã®ã«äœäººã®èäœåŽåè
(rednecks) ãå¿
èŠã?",
"title": "R"
},
{
"paragraph_id": 83,
"tag": "p",
"text": "Q:çºå
ããã«ã亀æããã®ã«äœäººã®ã¹ããŒã ãã«ãŒããŒãå¿
èŠã?",
"title": "S"
},
{
"paragraph_id": 84,
"tag": "p",
"text": "Q:é»çã亀æããã®ã«äœäººã®ãœãã©ãææãå¿
èŠã§ãã?",
"title": "S"
},
{
"paragraph_id": 85,
"tag": "p",
"text": "Q:é»çãåãæ¿ããã®ã«äœäººã®ã·ã¥ã«ã¬ã¢ãªã¹ã(surrealists) ãå¿
èŠã?",
"title": "S"
},
{
"paragraph_id": 86,
"tag": "p",
"text": "Q:é»çãåãæ¿ããã®ã«çµ±èšåŠè
(statistician)ã¯äœäººå¿
èŠã?",
"title": "S"
},
{
"paragraph_id": 87,
"tag": "p",
"text": "Q:é»çãå€ããã®ã«äœäººã®ç€ŸäŒäž»çŸ©è
(socialists)ãå¿
èŠã?",
"title": "S"
},
{
"paragraph_id": 88,
"tag": "p",
"text": "Q:é»çãå€ããã®ã«äœäººã®ãœã·ã£ã²ãã£ã©(social game character)ãå¿
èŠã?",
"title": "S"
},
{
"paragraph_id": 89,
"tag": "p",
"text": "Q:é»çãå€ããã®ã«äœäººã®Sloane Rangersãå¿
èŠã?",
"title": "S"
},
{
"paragraph_id": 90,
"tag": "p",
"text": "Q:é»çã亀æããã®ã«äœäººã®ãããŒã«ææãå¿
èŠã§ãã?",
"title": "T"
},
{
"paragraph_id": 91,
"tag": "p",
"text": "Q:é»çãåãæ¿ããã®ã«äœäººã®ã¿ãã¬ã€(tough guys) ãå¿
èŠã§ãã?",
"title": "T"
},
{
"paragraph_id": 92,
"tag": "p",
"text": "Q:é»çãåãæ¿ããã®ã«äœäººã®ãã©ã³ãããå¥è
(trumpet players) ãå¿
èŠã§ãã?",
"title": "T"
},
{
"paragraph_id": 93,
"tag": "p",
"text": "Q:é»çãåãæ¿ããã®ã«äœäººã®ãããã·ãŒåçé¢ä¿è
ãå¿
èŠã§ãã?",
"title": "T"
},
{
"paragraph_id": 94,
"tag": "p",
"text": "Q:é»çãåãæ¿ããã®ã«äœäººã®æ³¥æ£(thieves) ãå¿
èŠã§ãã?",
"title": "T"
},
{
"paragraph_id": 95,
"tag": "p",
"text": "Q:\"é»çã亀æããã«ã¯äœäººã®ãŠãã¿ãªã¢ã³ãå¿
èŠã§ãã?\"",
"title": "U"
},
{
"paragraph_id": 96,
"tag": "p",
"text": "Q:é»çãåãæ¿ããã®ã«ãäœäººã®çŸè¡é€šã®å®¢(art museum visitors) ãå¿
èŠã§ãã?",
"title": "V"
},
{
"paragraph_id": 97,
"tag": "p",
"text": "Q:é»çãåãæ¿ããã®ã«ãäœäººã®ãŠã§ã€ã¿ãŒ/ãŠã§ã€ãã¬ã¹(waiters/waitresses) ãå¿
èŠã§ãã?",
"title": "W"
},
{
"paragraph_id": 98,
"tag": "p",
"text": "Q:é»çãåãæ¿ããã®ã«ãäœäººã®ãŠã£ãããã£ã¢ã³(wikipedian) ãå¿
èŠã§ãã?",
"title": "W"
},
{
"paragraph_id": 99,
"tag": "p",
"text": "Q:é»çãåãæ¿ããã®ã«ãçŠ
å§(Zen monk) ã¯äœäººå¿
èŠã?",
"title": "Z"
},
{
"paragraph_id": 100,
"tag": "p",
"text": "()ã®äžã«é©åœãªåèªãå
¥ããã",
"title": "æ±çšçãªãã®"
},
{
"paragraph_id": 101,
"tag": "p",
"text": "Q:é»çãåãæ¿ããã®ã«ãäœå¹ã®(åç©å)ãå¿
èŠã§ãã?",
"title": "æ±çšçãªãã®"
},
{
"paragraph_id": 102,
"tag": "p",
"text": "Q:é»çãåãæ¿ããã®ã«ãäœäººã®(倧åŠå)ã®åŠçãå¿
èŠã§ãã?",
"title": "æ±çšçãªãã®"
},
{
"paragraph_id": 103,
"tag": "p",
"text": "é»çãžã§ãŒã¯ã¯ããé»çãåãæããããšããã®ãããšããšã ãããå£ã«ãã³ããå¡ãããªã©ã®æŽŸçäœåãããã",
"title": "掟çäœå"
}
] | äžè¬ã«é»çãžã§ãŒã¯ã¯ããé»çããã蟌ãã®ã«ââã¯äœäººå¿
èŠã§ããïŒããšãã質åã«ãââã«é¢é£ããé¢çœãçããè¿ããšãã圢åŒã®ãžã§ãŒã¯ã®ããšã§ããæ¥æ¬ã§ããã°ãå¯åžãªã©ã§è¡ãããŠããå°åãåçã®ãããªãã®ãšæã£ãŠãããšæããŸãã ããããã®ã¯ ãšãã圢ã§ã®ãžã§ãŒã¯ã§ãã 次ã®äŸã¯é»çãžã§ãŒã¯ã®ååãšããŠçšãããããã®ã®äžã€ã§ãã ãŠã£ãããã£ã¢ã®é»çãžã§ãŒã¯ãåç
§ããŠãã ããã ããã«ããé»çãžã§ãŒã¯ã®äžèŠ§ã¯ãã€ã³ã¿ãŒãããäžã®ãããããªé»çãžã§ãŒã¯ãå
ã«äœãããŸããã
äžã«ã¯ãŠã£ãã¡ãã£ã¢ã³ã®èªäœã®ãã®ããããããããŸããã | äžè¬ã«'''é»çãžã§ãŒã¯'''ã¯ããé»çããã蟌ãã®ã«ââã¯äœäººå¿
èŠã§ããïŒããšãã質åã«ãââã«é¢é£ããé¢çœãçããè¿ããšãã圢åŒã®[[w:ãžã§ãŒã¯|ãžã§ãŒã¯]]ã®ããšã§ããæ¥æ¬ã§ããã°ãå¯åžãªã©ã§è¡ãããŠããå°åãåçã®ãããªãã®ãšæã£ãŠãããšæããŸãã
ããããã®ã¯
:ãé»çããã蟌ãã®ã«ïŒããã¿ã€ãã®äººéïŒã¯äœäººå¿
èŠã§ããïŒã
:ã11人ãé»çããã蟌ãããã«1人ãšããã®ã¿ã€ãã®äººéã«ãããã¡ãªïŒããŸãè¯ããªãïŒç¹åŸŽãè¡åãè¡ã10人ãã
ãšãã圢ã§ã®ãžã§ãŒã¯ã§ãã
次ã®äŸã¯é»çãžã§ãŒã¯ã®ååãšããŠçšãããããã®ã®äžã€ã§ãã
:QïŒãé»çãåãæ¿ããã®ã«äœäººã®ïŒé©åœãªã°ã«ãŒãåïŒãå¿
èŠã§ããïŒã
:AïŒã10人ãé»çãæã€äººã1人ãšãã¯ãããåã人ã9人ãã
ãŠã£ãããã£ã¢ã®[[w:é»çãžã§ãŒã¯|é»çãžã§ãŒã¯]]ãåç
§ããŠãã ããã
ããã«ããé»çãžã§ãŒã¯ã®äžèŠ§ã¯ãã€ã³ã¿ãŒãããäžã®ãããããªé»çãžã§ãŒã¯ãå
ã«äœãããŸããã
äžã«ã¯ãŠã£ãã¡ãã£ã¢ã³ã®èªäœã®ãã®ããããããããŸããã
__NOTOC__
{| border="0" id="toc" style="margin: 0 auto;" align=center
| '''Table of contents:'''
[[#A|A]] [[#B|B]] [[#C|C]] [[#D|D]] [[#E|E]] [[#F|F]] [[#G|G]] [[#H|H]] [[#I|I]] [[#J|J]] [[#K|K]] [[#L|L]] [[#M|M]] [[#N|N]] [[#O|O]] [[#P|P]] [[#Q|Q]] [[#R|R]] [[#S|S]] [[#T|T]] [[#U|U]] [[#V|V]] [[#W|W]] [[#X|X]] [[#Y|Y]] [[#Z|Z]]
|}
== A ==
QïŒé»çãåããŠåãä»ããããã«äœäººã®[[w:ç¡ç¥è«|ç¡ç¥è«è
]](atheists) ãå¿
èŠã§ããïŒ
:AïŒäžèŠã§ããç¡ç¥è«è
ã¯æéã«ã¯å±
ãŸãããå€ãªå®æã«ã²ã£ããã£ã人éãšéã£ãŠã
QïŒé»ç(lightbulb) ãåããŠåãä»ããããã«äœäººã®[[w:泚ææ¬ é¥é害|ADD]](Attention Deficit Disorder) ã®åäŸãå¿
èŠã§ããïŒ
:AïŒèªè»¢è»ã«ä¹ãã«(ride bikes) è¡ããïŒ
<!--
QïŒ"How many kids with [[w:Attention-deficit hyperactivity disorder|ADD]] does it take to screw in a lightbulb?"
:AïŒ"Let's go ride bikes!"
ã¡ãã£ãšãããã«ããã§ãããADDã®åäŸã¯ããŸã泚æããŠè©±ãèããŠããªãã£ããããã®ã§ãlightbulbã ride bikeãšèãéãããšããæå³ãªã®ãããããŸããã
-->
QïŒé»çãåãæ¿ããããã«äœäººã®[[w:俳åª|俳åª]](actors) ãå¿
èŠã§ããïŒ
:AïŒ1人ã ãã§ãã圌çã¯ã¹ãããã©ã€ãã®å
±æããšãŠãå«ãããã
QïŒé»çãåããŠåãä»ããã®ã«äœäººã®[[w:é¬éè¡|é¬éè¡åž«]](alchemists) ãå¿
èŠã§ããïŒ
:AïŒã©ãã«åãä»ããã€ããïŒ
QïŒé»çã亀æããã®ã«äœäººã®ã¢ã«ãææãå¿
èŠã§ããïŒ
:A1ïŒç¡çã§ãããããªé«ããŸã§å±ããŸããã
:A2ïŒ2人ã§ãã1人ãé»çãåãããã1人ããããªãã«ã¯å°ãé«éããã®ã§ã¯ãªãã£ãŠïŒããšèšããŸãã
== B ==
QïŒé»çã亀æããã®ã«äœäººã®ãã¹ææãå¿
èŠã§ããïŒ
:AïŒç¡çšã§ãã圌ãã¯ç·ã®äžã®ç·ãªã®ã§ãæéãæ©ããŠåãããããããããã«æã€æ¹ãéžã³ãŸãã
QïŒé»çãå€ããã®ã«äœäººã®[[w:ãããã¹ãæäŒ|ãããã¹ãä¿¡è
]](Baptists) ãå¿
èŠããªïŒ
:AïŒå€ããïŒãç¡çã ãã
QïŒé»çãåãæ¿ããã®ã«äœäººã®[[w:ããŒã·ã¹ã|ããŒã·ã¹ã]](bassists) ãå¿
èŠã§ããïŒ
:AïŒç¡çã[[w:ããŒããŒãã£ã¹ã|ããŒããŒãã£ã¹ã]]ãªãå·Šæã§ã§ããã®ã«ã
QïŒé»çã亀æããã®ã«äœäººã®ãã€ã¯ä¹ã(biker) ãå¿
èŠãïŒ
:AïŒ2人ã1人ãé»çãåæ¿ãããã1人ãã¹ã€ããã蹎ã£é£ã°ãã
QïŒé»çãåããŠåãä»ããããã«äœäººã®[[w:å®å|å®å]](bureaucrats) ãå¿
èŠã§ããïŒ
:AïŒ2人ã é»çãå·®ã蟌ãã®ã«1人ãšãããã§çããã®ã«1人ã
QïŒé»çãåãæ¿ããã®ã«ããã·ã¥æ¿æš©ã®ã¡ã³ããŒãäœäººå¿
èŠãïŒ
:AïŒ7人ã
:é»çãåãæ¿ããªããã°ãªããªãããšãåŠå®ããã®ã«1人ã
:é»çã«ã€ããŠçåèŠãã人éã®æåœå¿ãåãããããæ»æããã®ã«1人ã
:æ°ããé»çãå¿
èŠã«ãªã£ãããšã«ã€ããŠãåã®æ¿æš©ã®è²¬ä»»ãåãã®ã«1人ã
:é»çãå¯ãã«å€§éã«åèããŠãããšããããããåœã®äŸµç¥ãèšç»ããã®ã«1人ã
:ãã§ã€ããŒå¯å€§çµ±é ãšååããããªããŒãã³ã»ã€ã³ãã¹ããªãŒãºç€Ÿã«å¯ŸããŠãé»ç1ã€ã«100äžãã«ãæ¯æãæã¯ããæŽããã®ã«1人ã
:ããã·ã¥ããã©ã€ãã¹ãŒã姿ã§ç±³åœæã«èº«ãå
ãã§é»çãåãæ¿ããŠããã·ãŒã³ã瀺ãåçãæ®åœ±ãã段åããæŽããã®ã«1人ã
:æåŸã«ãããã·ã¥ã«å¯ŸããŠãé»çããã£ã€ããœã±ããã«ãã蟌ãããšãšããã®åœããã£ã€ãã€ãã¡ããããšã®éãã説æããã®ã«1人ã
QïŒé»çã亀æããã®ã«äœäººã®ããã·ã¥ãå¿
èŠã§ããïŒ
:AïŒ1人ãããã·ã¥ãé»çããœã±ããã«ããŠãããå
šäžçãããããåãã
== C ==
QïŒé»çããã蟌ãã®ã«äœäººã®[[w:ã«ãªãã©ã«ãã¢|ã«ãªãã©ã«ãã¢äºº]](Californians) ãå¿
èŠã§ããïŒ
:AïŒã«ãªãã©ã«ãã¢äººãªããœã±ãããããªã㊠[[w:颚å|济槜]](hot tubs) ã«ãã蟌ãã ãããã
QïŒé»çããã蟌ãã®ã«äœäººã®[[w:倧工|倧工]](carpenters) ãå¿
èŠã ãïŒ
:AïŒãããããã¯ã[[:en:w:electrician|é»æ°å·¥]]ã®ä»äºã ããã倧工ãããªããŠã
QïŒé»çãåãæ¿ããã®ã«ã«ã³ããªãŒãã¥ãŒãžãã¯(Country and Western) ã®ææã¯äœäººå¿
èŠïŒ
:AïŒ5人ã1人ãé»çã®åãæ¿ãã4人ã å€ãé»çã®ããã«æãã
QïŒé»çãå€ããããã«[[:en:w:Consultant|ã³ã³ãµã«ã¿ã³ã]](Consultants) ã¯äœäººå¿
èŠïŒ
:AïŒããªãã¯ã©ãããçããæåŸ
ããŠãã®ïŒ
QïŒé»çãå€ããããã«äœäººã®[[w:ã¯ãªã¹ãã£ã³|ã¯ãªã¹ãã£ã³]](Christians) ãå¿
èŠïŒ
:AïŒ1人ããããªããã©ãããé»çãæ»ãã§ã埩掻ããã ããããã
QïŒé»çãåãæ¿ããã®ã«ã¯äœäººã®[[w:ã«ã€ããã©ã¯ãã£ãã¯|ã«ã€ããã©ã¯ã¿ãŒ]](Chiropractors) ãå¿
èŠïŒ
:AïŒ1人ã ããã§ãã18ç®æã¯ã«ã€ããã©ã¯ãã£ãã¯å±ããããããªããšã
== D ==
QïŒé»çãåãä»ããã®ã«äœäººã®[[w:ãããããã|ãããããã]]ïŒDeadheads:ãã³ã[[:en:w:Grateful Dead|Grateful Dead]]ã®ãã¡ã³ïŒãå¿
èŠãšããŸããïŒ
:AïŒ20001人ã§ãã ãŸã1人ã¯é»çãåãä»ããŸãããã®å Žã§2000人ããã®ä»ã§18000人ããã®å§¿ãèŠãŠãçãå°œããŸãã
:â»ç±ççãªãã¡ã³ãå€ããã³ãã®ããã§ãã
<!--è±èªçwp10/22ã®çãã-->
QïŒé»çãåãä»ããã®ã«äœäººã®[[w:ãã©ãŽã³ããŒã«|ãã©ãŽã³ããŒã«]](Dragon Ball) ã®ç»å Žäººç©ãå¿
èŠã§ããïŒ
:AïŒ1人ã§ãããã ããåãä»ãããŸã§ã«5ååã®è©±ãš4åã®å€èº«ãå¿
èŠãšããŸãããŸããæ空ã觊ããšé»çãå£ããã®ã§ãã®äœæ¥ã«äžé©ã§ãã
QïŒé»çãåãä»ããã®ã«äœäººã®[[w:ãã©ããŒ|ãã©ããŒ]](drummers) ãå¿
èŠã§ããïŒ
:AïŒ5人ã§ããåãä»ãã«1人ãšã[[:en:w:Neil Peart|ããŒã«ã»ããŒã]]ã ã£ããã©ããããïŒãèªãåãã®ã4人ã
== E ==
QïŒé»çãåãä»ããã®ã«[[w:å®å䞻矩|å®å䞻矩è
]](existentialists) ã¯äœäººå¿
èŠã§ããïŒ
:AïŒ2人ã åãä»ããããã«1人ããããšããæãŠããªãäžåçã®å°çã«ãããŠãæå·çãªèç¡ã®å®å®ã«ãŸã§éããããšçœç±ãã1åã®ç¯ç«ãšãã䞻芳çå®åšããé»çããèªäœã¯ã©ã®ããã«è±¡åŸŽããã®ãïŒãã芳å¯ããããã«1人ã
<!--
"Two. One to screw it in and one to observe how the lightbulb itself symbolizes a single incandescent beacon of subjective reality in a netherworld of endless absurdity reaching out toward a maudlin cosmos of nothingness."
-->
QïŒé»çãå€ããããã«äœäººã®[[w:çµæžåŠè
|çµæžåŠè
]](economists) ãå¿
èŠã§ããïŒ
:AïŒ0人ãäœãããªããŠã[[w:åžå Ž|åžå Ž]]ããã£ãŠããããã
QïŒé»çãåãã€ããã®ã«äœäººã®[[w:ã€ã®ãªã¹|ã€ã®ãªã¹äºº]](Englishmen) ãå¿
èŠã§ããïŒ
:A1ïŒ0人ãé£äžãªããããéãåªã£ãŠãæ¹ããŸãã
:A2ïŒ1人ã圌ãçŽ
è¶ã飲ãã§ããéã«å€åœäººã®å¬äœ¿ããåãæ¿ããã
QïŒé»çãåãæ¿ããã®ã«äœäººã®emo kidsãå¿
èŠã§ããïŒ
:AïŒ0人ããã€ãã¯æéã«åº§ã£ãŠæ³£ããŠãã»ããéžã¶ã ãããã
<!--
QïŒ"How many emo kids does it take to screw in a lightbulb?"
:AïŒ"None. They'd rather sit in the darkness and cry."
-->
QïŒé»çãåãæ¿ããã®ã«äœäººã®[[w:çŠé³æŽŸ|çŠé³æŽŸ]](evangelicals) ãå¿
èŠã§ããïŒ
:AïŒ0人ã é»çã¯é¡ãèŠããªãæããã¿ã³ãšéããã§ãããã
== F ==
QïŒé»çãåãæ¿ããã®ã«äœäººã®[[w:é£ã|é£ã人]](fishermen) ãå¿
èŠã§ããïŒ
:AïŒ5人㚠ããªããã»ãé»çãèŠãŠïŒãããã€ã¯å€§ããïŒ æã
5人ã ãã§ã¯æã«è² ããªãã£ãïŒ
QïŒé»çãåãæ¿ããã®ã«ãäœäººã®[[w:ãã©ã³ã¯ã»ã¶ãã|ãã©ã³ã¯ã»ã¶ãã]](Frank Zappas) ãå¿
èŠã§ããïŒ
:AïŒ1人ãèŠããŸãããé»çã¯æ»ãã§ãŸãããã¡ãã£ãšå€ãªèãã¯ããŸããã
QïŒé»çãåãæ¿ããã®ã«äœäººã®[[w:ãã©ã³ã¹|ãã©ã³ã¹äºº]](French) ãå¿
èŠã§ããïŒ
:AïŒ1人ã圌ã¯é»çããœã±ããã«æŒãåœãŠãäžçã®æ¹ãåãããŸãã
QïŒé»çããã蟌ãã®ã«äœäººã®[[w:ãã§ãããºã |ãã§ããã¹ã]](feminists) ãå¿
èŠã§ããïŒ
:A1ïŒ7人ã é»çãå€ããããã«1人ãšãããã«ã€ããŠçç·šãæžãããã« 2人ãšããããããã¥ã¡ã³ã¿ãªãŒãšããŠæ åã«æ®ãããã«4人å¿
èŠã
:A2ïŒ0人ããã§ããã¹ãã«ã¯äœãå€ããããªããã
QïŒé»çãåãæ¿ããã®ã«äœäººã®[[w:ãã£ã³ã©ã³ã|ãã£ã³ã©ã³ã人]](Finnish)ãå¿
èŠã§ããïŒ
:A1ïŒ5人ã1人ãé»çãæã¡ãä»ã®4人ã¯éšå±ãåãå§ãããŸã§ãŠã©ãã«ã飲ãã
:A2ïŒ0人ãå€ãé»çãä¿®çããã
QïŒé»çãåãæ¿ããã®ã«äœäººã®[[w:æ¶é²å£«|æ¶é²å£«]](firefighter) ãå¿
èŠã§ããïŒ
:AïŒ3人ã2人ã倩äºãåãéããåŸããã1人ãé»çãåãæ¿ããã
==G==
QïŒé»çãåãæ¿ããã®ã«ã[[w:å²ç¢|ç¢]]æã¡(Go players) ã¯äœäººå¿
èŠïŒ
:AïŒ1人ããããªããé»çãåãããå Žæãå€ããŠæã¡ç¶ããã ãã
QïŒé»çãåããŠåãä»ããã®ã«ãäœæ±ã®[[w:ç¥|ç¥æ§]](gods) ãå¿
èŠãããïŒ
:AïŒ2æ±ãäžæ¹ã®ç¥æ§ãé»çããœã±ããã«æŒãã€ãããããäžæ¹ã®ç¥æ§ãäžçãåãã
QïŒé»çãåãä»ããã®ã« äœå¹ã®[[:en:w:Grue (monster)|ã°ã«ãŒ]](grues) ãå¿
èŠïŒ
:AïŒ0å¹ãã°ã«ãŒã¯å
ã«åŒ±ãããéãã¡ãããã
==H==
QïŒé»çãåãæ¿ããã®ã«äœäººã®æµ®æµªè
([[:en:w:hobo|hobos]]) ãå¿
èŠãïŒ
:AïŒ0人ãäœæ¥ãçµãããŸã§è¿ãã«ããããªãããïŒèããŠïŒã
QïŒé»çãåãæ¿ããã®ã«ããŒãŽã¡ãŒã倧åŠã®ææã¯äœäººå¿
èŠãïŒ
:AïŒ1人ãå®å®ã¯åœŒãäžå¿ã«å転ããŠãããããã
QïŒé»çãåãæ¿ããã®ã«[[w:ãã ã¹ã¿ãŒ|ãã ã¹ã¿ãŒ]]ã¯äœå¹å¿
èŠã ããïŒ
:AïŒ2å¹ãã§ãã©ããã£ãŠããã«å
¥ã蟌ãã ã®ãã¯ããããªããã ãããã
<!--QïŒ- How many hamsters does it take to screw in a lightbulb?
:AïŒ- Two, but I have no idea how they got in there.
-->
== I ==
QïŒé»çãåãæ¿ããã®ã«å¿
èŠãª[[w:ã¢ã€ã«ã©ã³ã|ã¢ã€ã«ã©ã³ã人]](Irishmen) ã¯äœäººïŒ
:AïŒ11人ã1人ãé»çããœã±ããã«æŒãã€ãããä»ã®10人ã¯éšå±ãå転ããŠèŠããããã«ãªããŸã§é
ã飲ãã
<!-- ã¢ã«ã³ãŒã«åºŠã®é«ããé
ãããããã¢ã€ã«ã©ã³ããªã®ã§ããããïŒã¢ã€ã«ã©ã³ã人ïŒã®ãã ãããšããã¹ããã¿ã€ããããããã§ãã-->
QïŒé»çãåãã€ããã®ã«äœäººã®[[w:ã€ã¿ãªã¢|ã€ã¿ãªã¢äºº]](Italian) ãå¿
èŠã§ããïŒ
:AïŒ2人ãç·ãéã³ã«åºããããã®éã«åœŒã®ãã³ããåãæ¿ããã
== J ==
<!--æ¥æ¬èªçwpãã-->
QïŒ1åã®é»çãåãæ¿ããã®ã«äœäººã®æ¥æ¬äººèŠ³å
客ãå¿
èŠãïŒ
:AïŒ10人ã1人ãé»çã亀æããä»ã®9人ããã®æ§åãåçã«æ®ãããã
QïŒ1åã®é»çãåãæ¿ããã®ã«äœäººã®æ¥æ¬äººãå¿
èŠãïŒ
:AïŒ10人ã1人ãé»çã亀æããä»ã®9人ããã®æ§åãã¢ãã¡ã«æãããã
QïŒ1åã®é»çãåãæ¿ããã®ã«äœäººã®æ¥æ¬äººãµã©ãªãŒãã³ãå¿
èŠãïŒ
:AïŒ10人ã1人ãé»çãåãæããã¹ããæ¬ç€Ÿã«ã䌺ããç«ãŠã5人ãé»çãå€ããã¹ãã鳩éŠåè°ãã3人ã決è£ãåºããŠããã1人ãåãæããã
QïŒé»çãåãæ¿ããã®ã«äœäººã®ãŠãã€äººã®æ¯èŠªãå¿
èŠãïŒ
:AïŒ0人ãç§ã¯çã£æãªãŸãŸã§ãããã ãããã®èŸãããšãšèšã£ããâŠâŠããããåã«ã¯é¢ä¿ãªãããã
<!--
QïŒ"How many Jewish mothers does it take to change a lightbulb?"
:AïŒ"None, I'll just sit here in the dark, and this pain I have - oy vey you should never know..."
ãŠãã€äººã®æ¯èŠªããåäŸã®ããã«èº«ãç ç²ã«ããããã¡ãã£ãšæçŽã£ãœããšããã¹ãã¬ãªã¿ã€ãã«ã¡ãªããžã§ãŒã¯
-->
QïŒé»çãåãæ¿ããã®ã«äœäººã®[[w:ãžã£ã°ã©ãŒ|ãžã£ã°ã©ãŒ]](juggler) ãå¿
èŠïŒ
:AïŒ1人ã§ãããé»çã¯æäœ3ã€å¿
èŠã«ãªããŸãã
== K ==
QïŒé»çãåãæ¿ããã®ã«äœäººã®[[w:ã¯ãªã³ãŽã³|ã¯ãªã³ãŽã³äºº]](Klingons) ãå¿
èŠïŒ
:AïŒåãæ¿ããå¿
èŠã¯ãªãããã¯ãªã³ãŽã³äººã¯æéãæããªãããã<!--æèŠèœåãããããïŒ-->
== L ==
QïŒé»çãåãæ¿ããã®ã«äœäººã®[[:w:åžæž|åžæž]](librarian) ãå¿
èŠãïŒ
:AïŒç§ã¯ç¥ããªããã©ã調ã¹ãŠããããã
<!--QïŒ"How many librarians does it take to change a lightbulb?"
:AïŒ"I don't know, but I could look it up for you."
-->
QïŒé»çãåãæ¿ããã®ã«äœäººã®[[:w:åŒè·å£«|åŒè·å£«]](lawyer) ãå¿
èŠãïŒ
:A1ïŒ65人ãé»çãåããåå ãšãªã£ãé»æµãµãŒãžãé²ãããã®åªåã«å¯Ÿããæ æ
¢è¡çºããããã¯äžååãªé»åäŸçµŠã«å¯ŸããŠé»åäŒç€Ÿãå蚎ããã®ã«42人ãé
ç·å·¥äºãããæ¥è
ãå蚎ããã®ã«14人ãé»çã®è£œé å
ãå蚎ããã®ã«9人ã
:A2ïŒäœäººãŸã§ãªãèããããïŒ
<!--QïŒ"How many lawyers does it take to change a light bulb?"
:A1ïŒ"65. 42 to sue the power company for insufficiently supplying power, or negligent failure to prevent the surge that made the bulb burn out in the first place, 14 to sue the electrician who wired the house, and 9 to sue the bulb manufacturers."
:A2:"A: How many can you afford? "-->
QïŒé»çãåãæ¿ããã®ã«äœäººã®[[w:ã¬ã¹ãã¢ã³|ã¬ãºãã¢ã³]](lesbian) ãå¿
èŠãïŒ
:AïŒ2人ã1人ãé»çãåæ¿ãããã1人ããã©ãŒã¯ãœã³ã°ãæžãã
QïŒé»çãåãä»ãã(screw) ã®ã«äœäººã®[[w:ãªãã©ã«ã»ã¢ãŒã|ãªãã©ã«ã»ã¢ãŒã]](liberal arts) ã®ææãå¿
èŠã§ããïŒ
:AïŒ37人ã6人ãããã«é»æ°ãæ¬è³ªçã«é»çã«ãšã£ãŠæ害ãã«ã€ããŠè«æãæžãã19人ãé»çãå€èã(dead)<ref>æ»ãã ãšãããŠããé§æŽèœã</ref>çœäººç·æ§ã®çºæã§ãããšåŒŸåŸãã5人ãé»çã®åãä»ããã¬ã€ãã®é¡äŒŒ(analogy) ã§ãããšå®£èšãïŒãããªãããªã㧠"screw"<ref>ã¹ã©ã³ã°ã§ã»ãã¯ã¹ãæå³ããã</ref>ãªããŠèšããã ãïŒïŒã3人ãæåã®6人ãåŠéšéäŒã§è£åãããããŠ4人ãïŒãã®ãªãã®2人ã¯åŒè·å£«ã䜿ã£ãŠïŒåŠéšç®¡ççµç¹ãæ§å·®å¥ã§å蚎ããã37人å
šå¡ããä»ã®36人ã¯ãã®ããšã«ååãªæ³šæãæã£ãŠããªããšäž»åŒµãããäžæ¹ã§ãããã ã®1人ããã¯ãããæ¢ããŠãã®ã¯ãœãããã®é»çãåãæ¿ããããšãæãã€ããªãã
<!--
QïŒ"How many liberal arts professors does it take to screw in a light bulb?"
:AïŒ"6 to write papers on how electricity is inherently destrictive to light bulbs, 19 to denounce light bulbs as a dead white male invention, 5 to declare the act of installing a light bulb is a rape analogy (why else would they call it 'screwing'?), 3 to backstab the first 6 during a faculty meeting, and 4 to accuse the administration of sexism—2 of them using lawyers. All 37 say that the other 36 are taking the subject too lightly. In the meantime, it doesn't occur to ''a single one'' to find a ladder and change the goddamned bulb."
-->
== M ==
QïŒé»çãåãæ¿ããã®ã«äœäººã®[[w:ãã«ã¯ã¹äž»çŸ©|ãã«ã¯ã¹äž»çŸ©]]è
(Marxists) ãå¿
èŠãïŒ
:A1ïŒ0人ãé»çãšã¯èªåèªèº«ã«èªå·±é©åœã®çš®åãå
å
ããŠãããã®ã§ããã
:A2ïŒé»çãªããŠãªããã
<!--
QïŒ"How many Matrixists does it take to change a lightbulb?"
:AïŒ"There is no lightbulb."
-->
QïŒé»çãåãä»ãã(screw in) ã®ã«äœäººã®ç·ãå¿
èŠãïŒ
:AïŒ1人ãç·ã¯äœã§ãå°ç¡ãã«ããŠããããã(screw anything)ã
<!--
QïŒ"How many men does it take to screw in a lightbulb?"
:AïŒ"One. Men will screw anything."
-->
QïŒå¯¿åœã®ããé»çãåãæ¿ããã®ã«äœäººã®ãã€ã¯ããœããã®ããã°ã©ããŒãå¿
èŠãïŒ
:AïŒ0人ããããä»æ§ã§ãããïŒ
<!--
QïŒ"How many [[:en:w:Microsoft|Microsoft]] Programmers does it take to replace a burnt out bulb?"
:AïŒ"None, 'cause its a feature!"
-->
QïŒé»çãåãæ¿ããã®ã«äœäººã®ãã€ã¯ããœããã®ãšã³ãžãã¢ãå¿
èŠãïŒ
:AïŒ0人ã圌ãã¯ãæéããæ°ããæ¥çæšæºèŠæ ŒãšããŠå®£èšããã ããã
<!--
QïŒ"How many [[:en:w:Microsoft|Microsoft]] Engineers does it take to change a lightbulb?"
:AïŒ"None, they just declare 'dark' the new industry standard"
-->
QïŒé»çãåãæ¿ããã®ã«äœäººã®å°äºº([[:en:w:midget|midgets]]) ãå¿
èŠãïŒ
:AïŒå€©äºã®é«ãã«ãããïŒ
QïŒé»çãåãæ¿ããã®ã«äœäººã®ããããªã¹ã([[:en:w:minimalism|minimalists]]) ãå¿
èŠãïŒ
:AïŒ1ã
<!--
QïŒ"How many [[:en:w:minimalism|minimalists]] does it take to change a lightbulb?"
:AïŒ"One."
-->
QïŒé»çãåãæ¿ããã®ã«äœäººã®æ ç»ç£ç£ãå¿
èŠãïŒ
:AïŒ1人ã ãã§ãããã§ãç£ç£ã¯32åãç¹°ãè¿ãåãæ¿ããããããæå¥ã®æãŠã«ã¯ã¿ããªåã®é»çã®æ¹ããã£ãœã©ããã£ããšæãã¯ãã
<!--
QïŒ"How many movie directors does it take to change a lightbulb?"
:AïŒ"Just one, but he wants to do it thirty-two times and when he's finished everyone will think that his last lightbulb was much better."
-->
== N ==
QïŒé»çãåãæ¿ããã®ã«äœäººã®ãã«ã·ã¹ã([[:en:w:narcissism|narcissists]]) ãå¿
èŠãïŒ
:AïŒ1人ã圌ãé»çãæŒãããå®å®ã圌ãäžå¿ã«å転ããããã
QïŒé»çãåãæ¿ããã®ã«äœäººã®ïŒã¡ãããããŒãå¿
èŠãïŒ
:AïŒ5人ã1人ãé»çãåãä»ããŠã2人ç®ãé»çã«é¢ããèšäºã延ã
ãšã³ããŒããŒã¹ããã3人ç®ããããããªãèèãèªãã4人ç®ãéåœäººãè«žæªã®æ ¹æºã§ãããšèšãã5人ç®ãé»çãåãæ¿ããAAïŒã¢ã¹ããŒã¢ãŒãïŒãäœæããã亀æãçµãããŸã§ã«ã¯1ã¹ã¬ãããåãŸããŸã§ãããããã®ãã眵ãåã£ãŠããã ãã§é»çãã©ãå
ãããç¥ããªãããçµå±é»çã¯ç¹ç¯ããªãã
QïŒé»çãåãæ¿ããã®ã«äœäººã®åååãšã³ãžãã¢ãå¿
èŠãïŒ
:AïŒ7人ã1人ãé»çãåãä»ããŠãæ®ãã®6人ãå€ããã€ãã©ãããã®ã1äžå¹Žã®éãã£ãšé ãæ©ãŸãç¶ããã
<!--
QïŒ"How many nuclear engineers does it take to change a light bulb?"
:AïŒ"Seven. One to install the new bulb and six to figure out what to do with the old one for the next 10,000 years."
-->
QïŒé»çãåãæ¿ããã®ã«äœäººã®ã€ã³ããŒ(New Yorkers) ãå¿
èŠãïŒ
:AïŒãŠããã®ç¥ã£ããã£ã¡ããããã ã!
<!--
QïŒ"How many New Yorkers does it take to change a light bulb?"
:AïŒ"NONE OF YOUR GODDAM BUSINESS!!!"
-->
== O ==
QïŒé»çãåãæ¿ããã®ã«[[w:倧éª|倧éª]]人ã¯äœäººå¿
èŠïŒ
:AïŒ2人ã䟿åšãè²·ã
ãŠããŠåãæ¿ãããããšãããã1人ãšãããã«ããã³ããã1人èŠããŸã£ããïŒ
QïŒé»çãåãæ¿ããã®ã«ãªããžã§ã¯ããã£ã©ã¯äœäººå¿
èŠïŒ
:AïŒæ¢ããäœããã§å€ãããšæããã ãã©ãªãã
== P ==
QïŒé»çã亀æããã®ã«äœäººã®ãã³ã¯ããã«ãŒãå¿
èŠã§ããïŒ
:AïŒ2人ã§ãã1人ãé»çããããã¿ããã1人ãèªåã®ãã§ãã§å€ãé»çãå²ããŸãã
QïŒé»çã亀æããã®ã«ãã³ãã³ã¹ããç¥ã人(Pentecostals) ãäœäººå¿
èŠã§ããïŒ
:AïŒ10人ãäžäººãåãæ¿ããŠæ®ãã®9人ãéã®ç²Ÿééæ£ã®ç¥ãããããŸãã
<!--
QïŒHow many Pentecostals does it take to change a lightbulb?
:AïŒ10, one to change it and 9 others to pray against the spirit of darkness.
-->
QïŒé»çã亀æããã®ã«äœäººå¿
èŠã§ããïŒ
:AïŒ1人ãã£ãŠäœã§ããããèããã ïŒ
<!--
QïŒ"How many [[:en:w:people|people]] does it take to change a lightbulb?"
:AïŒOne. Retard.
-->
QïŒé»çã亀æããã®ã«äœäººã®[[w:èŠå®|èŠå®]](policeman) ãå¿
èŠãïŒ
:AïŒ0人ãããªå
¬ãªããŠå¿
èŠãªãšãã«ããã«ãããããããªãïŒ
QïŒé»çã亀æããã®ã«äœäººã®å¿çåŠè
ãå¿
èŠã§ããïŒ
:A1ïŒ1人ã ãããã ãé»çãå¿åºããèªåãå€ããããŠãªããªããšãã®ã¿ã
:A2ïŒ10人ã1人ãåãæ¿ããŠæ®ãã®9人ãçµéšãšé¢é£ä»ããããšããã ããã
<!--
QïŒ"How many Psychologists does it take to change a lightbulb?"
:AïŒ"Just one. But the bulb has to really WANT to change."
:AïŒ"Ten. One to change it, and the other nine to relate to the experience."
-->
QïŒé»çãåãæ¿ããã®ã«äœäººã®[[w:ããã°ã©ã|ããã°ã©ã]](Programmers) ãå¿
èŠã§ããïŒ
:AïŒãœããã®åé¡ã§ã¯ãªãããŒãã®åé¡ãªã®ã§ããã°ã©ãã¯äžèŠã§ãã
QïŒé»çãåãæ¿ããã®ã«äœäººã®[[w:詩人|詩人]](poets) ãå¿
èŠã§ããïŒ
:AïŒ3人ã§ãã1人ãéãåªãã1人ãèçã«ç«ãç¯ããŸãããããŠæ®ã£ãäžäººé»çãæ¿ããŸãã
QïŒé»çãåãæ¿ããã®ã«äœäººã®äžçµ¶å察è
(pro-lifers) ãå¿
èŠã§ããïŒ
:AïŒ2人ã1人ãåãæ¿ãããã1人ãé»çã¯åãä»ããå§ãããšãããå
ã£ãŠãããšå説ãã<ref name="chu">å察è
ã¯å粟ã®ãšããã人ã§ãããšäž»åŒµããè³æè
ã¯çãŸãåºãŠã¯ãããŠäººã§ãããšäž»åŒµããã</ref>ã
<!--
QïŒ"How many pro-lifers does it take to screw in a light bulb?"
:AïŒ"Two, one to do it and one to insist that the bulb was lit when the screwing began."
-->
QïŒé»çãåãæ¿ããã®ã«äœäººã®äžçµ¶è³æè
(pro-choicers) ãå¿
èŠã§ããïŒ
:AïŒ2人ã1人ãåãæ¿ããããäžäººãé»çã¯å
ããŸãã«ååšããªãã£ããšå説ãã<ref name="chu" />ã
<!--
QïŒ"How many pro-choicers does it take to screw in a light bulb?"
:AïŒ"Two, one to do it and one to assert that the bulb didn't exist before it was lit up."
-->
:
QïŒé»çãåãæ¿ããã®ã«äœäººã®æ£çŽãªæ¿æ²»å®¶ãå¿
èŠã§ããïŒ
:AïŒ(ãã®ãããªæ¿æ²»å®¶ã)èŠã€ã次第æããŸãã
<!--
QïŒ"How many honest politicians does it take to screw in a light bulb?"
:AïŒ"As soon as we find one, we'll let you know."
-->
== Q ==
QïŒé»çã亀æããã®ã«äœäººã®ç«æ人ãå¿
èŠãïŒ
:AïŒç¡çã§ãããç«æ人ã«æã¯ãªãã
== R ==
QïŒé»çã亀æããã®ã«äœäººã®ãœé£äººãå¿
èŠãïŒ
:AïŒã²ã£ããåé¡ã ãªïŒãããç¥åœãœé£ã«ãããŠã¯ãé»çã¯ããŸãã亀æãããã®ã ããã ã
<!--QïŒ"How many Russians does it take to change a lightbulb?"
:AïŒ"Trick question. In Soviet Russia, the lightbulb changes you!"-->
QïŒé»çãåãä»ããã®ã«äœäººã®èäœåŽåè
([[:en:w:redneck|rednecks]]<ref>èŸæžã«ãããšã¢ã¡ãªã«åéšã®ç¡æè²ã®çœäººåŽåè
ã®ããšãæ¥çŒãã§éŠãèµ€ããªãããšããã</ref>) ãå¿
èŠãïŒ
:AïŒ1人ããã³ããŒã䜿ãã®ã«ã¯1人ã§ååã ããã
<!--
QïŒ"How many [[:en:w:redneck|rednecks]] does it take to screw in a light bulb?"
:AïŒ"One, it only takes one person to use a [[:en:w:hammer|hammer]]."
-->
:ïŒèš³æ³šïŒéãæã¡èŸŒãããã«ãœã±ããã«æã¡èŸŒããã®ãšèããŠãããïŒ
==S==
QïŒçºå
ããã«ã亀æããã®ã«äœäººã®ã¹ããŒã ãã«ãŒããŒãå¿
èŠãïŒ
:AïŒ11人ã1人ã亀æããæ®ãã®10人ãä¿å®ã®ããã«åœŒãå°æ®ºãããïŒ[[w:ã¹ã¿ãŒã»ãŠã©ãŒãº|ã¹ã¿ãŒã»ãŠã©ãŒãº]]åç
§ïŒ
<!--
QïŒ"How many stormtroopers does it take to change a light panel?"
:AïŒEleven: one to replace it and 10 to shoot the others and take the credit.
-->
QïŒé»çã亀æããã®ã«äœäººã®ãœãã©ãææãå¿
èŠã§ããïŒ
:A1ïŒ1人ã§ãã圌女ãé»çãã€ãããšãäžçã¯åœŒå¥³ãäžå¿ã«å転ããŸãã
:A2ïŒ2人ã§ãã1人ããã€ãšããã³ãŒã©ãæã¡ããã1人ã圌女ã®äŒŽå¥è
ã«ããããŸãã
:A3ïŒ4人ã§ãã1人ãé»çã亀æããæ®ãã®3人ã圌女ãä¹ã£ãŠããæ€
åãåãå»ãããšããŸãã
QïŒé»çãåãæ¿ããã®ã«äœäººã®ã·ã¥ã«ã¬ã¢ãªã¹ã([[:en:w:surrealism|surrealists]]) ãå¿
èŠãïŒ
:AïŒé1å¹ã
:AïŒ2人ãããªã³ãæãã€ããã®ã«1人ããã¹ã¿ãã«ãããªè²ã§å¡ã£ãæ©æ¢°éšåãæºããã®ã«ãã1人ã
<!--
QïŒ"How many [[:en:w:surrealism|surrealists]] does it take to change a lightbulb?"
:AïŒ"A Fish."
:AïŒ"Two: One to hold down the giraffe and one to fill the bathtub with brightly colored machine parts."
-->
QïŒé»çãåãæ¿ããã®ã«çµ±èšåŠè
ïŒstatisticianïŒã¯äœäººå¿
èŠãïŒ
:A1ïŒ1人ããã©ã¹ãã€ãã¹3人ã
:A2ïŒçŽ23%ã
QïŒé»çãå€ããã®ã«äœäººã®ç€ŸäŒäž»çŸ©è
([[:en:w:socialism|socialists]])ãå¿
èŠãïŒ
:AïŒç€ŸäŒäž»çŸ©ã¯äœãå€ããããªããã
<!--
QïŒ"How many [[:en:w:socialism|socialists]] does it take to change a lightbulb? "
:AïŒ"Socialism will never change anything"
-->
QïŒé»çãå€ããã®ã«äœäººã®ãœã·ã£ã²ãã£ã©(socialãgameãcharacter)ãå¿
èŠãïŒ
:AïŒ4人以äžãæŠå£«ãé»çãªã©ãããªãã»ã©ã®ããŒã ãå
ãããªããå¿
殺æãæŸã¡ãåè
ãé»çãªã©ãããªãã»ã©ã®ããŒã ãå
ãããªããçŽç« ããæªå
ç·ãæŸã¡ãå§äŸ¶ãé»çãªã©ãããªãã»ã©ã®ããŒã ãå
ãããªããå埩ããéæ³äœ¿ããé»çãªã©ãããªãã»ã©ã®ããŒã ãå
ãããªãã身é·ã®3åã¯æãéæ³é£ããããŒã ãæŸã€ãã¡ãªã¿ã«é»çã¯ãšã£ãã«æåã®ããŒã ã§å²ããŠããã®ã§çµå±é»çã¯å
ããªãã
QïŒé»çãå€ããã®ã«äœäººã®[[:en:w:Sloane_Ranger|Sloane Rangers]]ãå¿
èŠãïŒ
:AïŒ5人ãã²ãšããããã«é»è©±ããŠãä»ã®4人ãããã£ã»ã³ã©ãŒããäœã£ãŠãã
<!--
QïŒ"How many Sloane Rangers does it take to change a lightbulb? "
:AïŒ"Five: one to phone Daddy and four to mix the Pina Coladas"
-->
== T ==
QïŒé»çã亀æããã®ã«äœäººã®ãããŒã«ææãå¿
èŠã§ããïŒ
:AïŒ4人ã§ãã1人ãé»çã亀æããããšã®3人ã¯ãããèªåããã®é«ãé³ãåºãããªãèªåãããã®ã«ããšæçŽãèšããŸãã
QïŒé»çãåãæ¿ããã®ã«äœäººã®ã¿ãã¬ã€(tough guys) ãå¿
èŠã§ããïŒ
:AïŒæéãªããŠæããªããã1人ãå¿
èŠãªãã
QïŒé»çãåãæ¿ããã®ã«äœäººã®[[w:ãã©ã³ããã|ãã©ã³ãããå¥è
]](trumpet players) ãå¿
èŠã§ããïŒ
:AïŒ5人ã1人ãé»çãåãæ¿ããä»ã®4人ãäžæãé»çã®åãæ¿ãæ¹ãèšãåããŸãã
QïŒé»çãåãæ¿ããã®ã«äœäººã®[https://nortonsafe.search.ask.com/web?q=%E3%83%84%E3%83%9C%E3%83%83%E3%82%B7%E3%83%BC%E5%90%8C%E7%9B%9F&o=APN11915&geo=ja_JP&prt=&ctype=&ver=&chn=&tpr=121 ãããã·ãŒåç]é¢ä¿è
ãå¿
èŠã§ããïŒ
:AïŒ4人ãé»çãå
ç«¥åŽåã«ãã£ãŠäœãããŠããªãããšã確èªããã®ã«1人ãé»çã®è²©å£²äŒç€Ÿã®èšçœ®ã«å
ç«¥åŽåã䜿ãããŠããªãããšã確èªããã®ã«1人ãé»çã®è²©å£²ãå
ç«¥åŽåã«ãã£ãŠè¡ãããŠããªãããšã確èªããã®ã«1人ãé»çã®äº€æãå
ç«¥åŽåã«ãããã«è¡ãã®ã«1人å¿
èŠã§ãããªãã[[w:å
ç«¥åŽåå察äžçããŒ|6æ12æ¥]]ã«å®æœããå Žåã¯ãå€ãé»çããã¿ã«å
ç«¥åŽåã®å»çµ¶ã䞻匵ãã€ã€äº€æããŸãã
QïŒé»çãåãæ¿ããã®ã«äœäººã®æ³¥æ£(thieves) ãå¿
èŠã§ããïŒ
:AïŒ4人ã3人ãåºããç¥å¥ªãã1人ãé»çãåãæ¿ããŸãã
==U==
QïŒ"é»çã亀æããã«ã¯äœäººã®ãŠãã¿ãªã¢ã³ãå¿
èŠã§ããïŒ"
:AïŒWe choose not to make a statement either in favor of or against the need for a light bulb. However, if in your own journey you have found that light bulbs work for you, you are invited to write a poem or compose a modern dance about your light bulb for the next Sunday service, in which we will explore a number of light bulb traditions, including incandescent, fluorescent, 3-way, long-life and tinted, all of which are equally valid paths to enlightenment.
== V ==
QïŒé»çãåãæ¿ããã®ã«ãäœäººã®çŸè¡é€šã®å®¢(art museum visitors) ãå¿
èŠã§ããïŒ
:AïŒ2人ã§ãã1人ãé»çã亀æããã1人ã¯ãããèŠãŠãäžæ³å
ã§ãã§ããããšèšããŸãã
== W ==
QïŒé»çãåãæ¿ããã®ã«ãäœäººã®ãŠã§ã€ã¿ãŒïŒãŠã§ã€ãã¬ã¹(waiters/waitresses) ãå¿
èŠã§ããïŒ
:AïŒ5人ã§ãã1人ã絊ä»èŠç¿ãã«ããããŠã4人ããã®ãŸããã«ç«ã£ãŠè«è©ããŸãã
QïŒé»çãåãæ¿ããã®ã«ãäœäººã®ãŠã£ãããã£ã¢ã³(wikipedian) ãå¿
èŠã§ããïŒ
:AïŒ5人ã§ãã1人ã亀æãããŒãã§æèµ·ãã1人ã亀æããäºã«å察祚ãåºãã1人ãè³æ祚ãåºãã1人ã亀æãžã®ã³ã¡ã³ãäŸé ŒãåºãããããèŠã誰ããåæã«äº€æããŸãã
:ãŸããäœäºãçšåºŠåé¡ãšããããšã
:A2ïŒ3人ã§ãã1人ãé»çãåããããšã«ã€ããŠèšäºãæžããŸãããå¥ã®1人ãå³åº§ã«èŠåºå
žã¿ã°ãä»ãã1人ãä¿¡é Œã§ããæ
å ±æºã®æ瀺ãæ±ããŠãã³ãã¬ãŒããè¿œå ããŸããã€ãã§ã«ããã®æ§åãã¢ã³ãµã€ã¯ãããã£ã¢ã³ãè¶åããŸãããçãäžãã£ãŠããã®ã¯ãã®4人ã ãã§ãããããŠæ°å¹ŽåŸã«ããŠã£ããªãŒã¯ã¹ã§å®éã«é»çãåããŠããããšãæŽé²ãããŸãã
== X ==
== Y ==
== Z ==
QïŒé»çãåãæ¿ããã®ã«ã[[w:çŠ
|çŠ
]]å§(Zen monk) ã¯äœäººå¿
èŠãïŒ
:AïŒ3人ãåãæ¿ããããã«1人ãåãæ¿ããªãããã«1人ãåæ¿ãããã€åãæ¿ããªãããã«ãã1人ã
:AïŒã3人ããšããçãã¯ãçŠ
ã®äœããããç¥ããªãè
ã®çãã§ãããåãæ¿ããªãããã«1人ãèŠãã®ã§ããã°ããåãæ¿ããããã€åãæ¿ãããããã®1人ãèŠãã¯ãã§ããã4人ãšçããã¹ãã§ãããã
== æ±çšçãªãã® ==
ïŒïŒã®äžã«é©åœãªåèªãå
¥ããã
QïŒé»çãåãæ¿ããã®ã«ãäœå¹ã®ïŒåç©åïŒãå¿
èŠã§ããïŒ
:AïŒïŒå¹ãããã°ååã§ããããããæãŸããã®ãäžçªå€§å€ã§ãããã
QïŒé»çãåãæ¿ããã®ã«ãäœäººã®ïŒå€§åŠåïŒã®åŠçãå¿
èŠã§ããïŒ
:AïŒäžäººã§ååã§ããããã®åŠçã«3æéåã®ãã€ãæãæãå¿
èŠããããŸãã
<!--
QïŒHow many (insert animal)s does it take to screw in a lightbulb?
:AïŒOnly two, but getting them in there is the hard part.
QïŒHow many (insert college) freshmen does it take to screw in a lightbulb?
:AïŒ"None. That's a sophomore class."
QïŒHow many (insert college) students does it take to screw in a lightbulb?"
:AïŒOne, but you get 3 hours credit for it.
-->
== 掟çäœå ==
é»çãžã§ãŒã¯ã¯ããé»çãåãæããããšããã®ãããšããšã ãããå£ã«ãã³ããå¡ãããªã©ã®æŽŸçäœåãããã
== 蚳泚 ==
<div class="references-small"><references/></div>
[[Category:ãžã§ãŒã¯|é»çãžã§ãŒã¯]] | 2005-04-09T07:41:58Z | 2024-01-20T04:12:01Z | [] | https://ja.wikibooks.org/wiki/%E3%82%B8%E3%83%A7%E3%83%BC%E3%82%AF%E9%9B%86/%E9%9B%BB%E7%90%83%E3%82%B8%E3%83%A7%E3%83%BC%E3%82%AF |
1,852 | ãŠã£ãããã£ã¢ã®æžãæ¹/å
¥éç·š/æžããŠã¿ãã/å çç·š | <å
é ã«æ»ã
ããŠããŠã£ãããã£ã¢ãã©ããããµã€ããªã®ãã¯ã倧äœããã£ãŠããã ããã§ãããã? ã§ã¯ããã£ããèšäºãæžããŠã¿ãŸãããã ......ãšãã£ãŠãããããªãæ°ããèšäºãæžãã®ã¯ãç·åŒµãããã®ã§ãããŸãã¯ãä»ã®èšäºã«å çããŠã¿ãŸããããæ°ããèšäºãæžãæ¹æ³ã¯ã次ã®ç« ã§ã玹ä»ããŸãã®ã§ããå®å¿ãã
ãŠã£ãããã£ã¢ã«çžå¿ããé
ç®ãšã¯ã©ããªãã®ã§ããã?ããã«ã¯æ§ã
ãªæèŠããããŸããçŸç§äºå
žãšã¯ã森çŸ
äžè±¡ã®ç©äºã説æãããã®ã ããã§ãã
ããªã¿ãã«çŸç§äºå
žãªã©ã®ãããªãçŽã®çŸç§äºå
žã«ãããããªé
ç®ããæžãããã¹ãã ãšãã人ãããã°ããããçŽã®äºå
žã«ã¯æžãããªããããªããš(ãµãã«ã«ãã£ãŒãç¹å®åéã®å°éçšèªãªã©)ãããã£ããæžãã¹ãã ãšãã人ãããŸãããã ãä»ã®æ¥æ¬èªçã§ã¯ãã¡ã€ã³ã«ã«ãã£ãŒã®èšäºãå·çãã人ã¯å€§å€äžè¶³ããŠããŸãããã®åéã§æŽ»åãã人ã¯ã»ãŒééããªããæè¿ãããã§ãããã
ãšã¯ãã£ãŠãããããªã«é£ããèããªããŠãæ§ããŸãããæåã§ããã趣å³ãªã©ã§åŸãç¥èãªã©ããŸãã¯èªåã«èº«è¿ãªåéããæãåºããŠã¿ãŸãããããŠã£ãããã£ã¢ã«ã¯ãæ°åŠãç§åŠãå²åŠãæåŠãæåãªã©ã«é¢ããäžèŠé£ããããªèšäºã¯ãã¡ãããåœãåžçºæã芳å
å°ãé£ã¹ç©ã人ç©ãã¹ããŒããé³æ¥œãããœã³ã³ã家é»ãªã©ã®é»æ°è£œåãééãã¢ãã¡ã»ã²ãŒã ã«è³ããŸã§ã沢山ã®é
ç®ããããŸãããã®æ¬ã§ã¯ã(ã©ããªé
ç®ã§ãã)ãçŸç§äºå
žçãªå
容ããšããŠæç« ãæžãããã®éããã¹ã瀺ããŸãã
èåããšã¯ãæ¬ãäœããšãã§ããæ ¡æ£ã®äœæ¥ã§ããå
·äœçã«ã¯ã
ã®äºã€ã«åãããŸããå°å³ãªäœæ¥ã§ãããWikiã®ã·ã¹ãã ã«æ
£ããã«ã¯æã£ãŠã€ãã§ããã誰ã§ãæ°è»œã«ã§ããç·šéã§ããããŸãã
æç« ã®å
容ãè¡šèšãæŽããäœæ¥ã¯ããšãã«ãŠã£ãããã£ã¢ã«éã£ãããšã§ã¯ãªããäžè¬ã®æç« ã®æ ¡æ£ãšç¹ã«å€ãããŸãããå
·äœçã«ã¯ã
ãŠã£ãããã£ã¢ç¹æã®ãªã³ã¯è²Œããã«ããŽãªåé¡ãªã©ã®ã¡ã³ããã³ã¹äœæ¥ã«ã¯æ¬¡ã®ãããªãã®ããããŸããããã¯é èªã§ããŠã£ãåã(Wikify) ãšãåŒã°ããŸãããŠã£ãåã¯ãšãã«ä»ã®ããŒãžãžã®ãªã³ã¯ãããããšãæãçšèªã§ãããããŒã¯ã¢ããå
šè¬ã«ã€ããŠäœ¿ãããå Žåãããããã§ãã
ãªã©ããããŸããä»ã¯æå³ã®åãããªãèšèã沢山åºãŠãããããããŸããããããŸãæ°ã«ããããšã¯ãããŸããããšãããããèåãäœæ¥ã¯ãã¹ãŠã®åç¹ã§ããã倧åãªäœæ¥ã§ããããšã¯é ã«çœ®ããŠãããŠäžããã
ç¥ã£ãŠããããšã足ããŠã¿ãŸããããç没幎ææ¥ãæããŠãã人ç©èšäºããæŽå²ãèæ¯ããã®åŸã®æ代ãžã®åœ±é¿ããŸã æžãããŠããªãèšäºãå€ãã§ãããŸãã説æãå°»åããã³ãã«ãªã£ãŠããŸã£ãŠããèšäºãªã©ãããã§ããããäœåãªã¹ããªã©ãä»ããŠãããšãã«ã¯ãéèŠãªäœåãæãèœã¡ãŠããããšããããŸãã
ããããèšäºãæ¢ãäžçªç°¡åãªæ¹æ³ã¯ããµãã¹ã¿ãã«ã«ããŽã©ã€ãºãããŠããèšäºãèŠãããšã§ãããã®ã«ããŽãªã«ã¯ãä»ã®ãŠã£ãããã£ã¢ã³ãã¡ããå®çŸ©ããæžãããŠããªãããšæã£ãé
ç®ãéããããŠããŸããåŠçæ代ã«ããã£ãé
ç®ããèå³ãæã£ãŠããé
ç®ãããã°ãã²ãéããŠã¿ãŠãã ããããã®é
ç®ã®ååŠè
ãæŠå¿µãç解ããããã«ãå¿
èŠãªã®ã«äžè¶³ããŠããæ
å ±ã«ãã£ãšæ°ä»ãããšã§ããããããããããšãå®çŸ©ãã®ãã®ãæ£ç¢ºã§ãªãã£ãããäžæã説æã§ããŠããªãããšããããããããŸãããç·šéã¯å€§èã«!ã©ãã©ãèšè¿°ã足ããŠãã£ãŠãã ãããèªä¿¡ããããªããå
ã®èšäºã®å圢ãçããŠããå¿
èŠãããããŸããã(ãã ãèäœæš©ãã¯ãããšããæš©å©ã«ã ãã¯æ³šæããŠãã ãããããŠã£ãããã£ã¢ã«éããããŠã£ããããžã§ã¯ãã¯æš©å©äŸµå®³ã«ã¯å€§å€æ
éãªå§¿å¢ãåã£ãŠããŸããã©ããã®ãŠã§ãããŒãžã®ã³ããŒãªããŠã®ã¯ãã¡ã§ã)
ããã§éèŠãªäºã¯ãåºå
žãæèšããããšã§ãããã®äºæãæ¬åœã«æ£ããã®ãæ€èšŒãã人ã«ãšã£ãŠãåºå
žãæèšãããŠãããšããäºã¯éåžžã«å©ããããšã§ãããŠã£ãããã£ã¢ã§ã¯æžç±ã»ãŠã§ããµã€ããªã©ã®å€éšã®æ
å ±ãããšã«èšäºã«ããŠããããšããšãŠãéèŠèŠããŠããŸãããªããªãããŠã£ãããã£ã¢ã®èšäºã«ã¯ãäžç«æ§ã»å®¢èŠ³æ§ãä¿ã¡ããäžçªæåã«èšäºãæžãå§ããç·šéè
ã®äž»èŠ³çãªèããæžãçŸç§ãµã€ãã§ã¯ãªãããšããç®çã®ããšã§æ¯æ¥äžçäžã®èšäºãç«ã¡äžãããç·šéãéããŠããŸããã§ãããããããããå çãããããªãšæã£ãæ¹ã¯ããèªèº«ã®è©³ããåéã®äžã§åºå
žã®æèšãç¡ãã»å°ãªãèšäºã«ã¯ä»ã足ããŠã¿ãŠãã ããã詳ããã¯ã#åºå
žãä»ããŠã¿ããã芧ãã ããã
åºå
žãæèšããäºã¯ãŠã£ãããã£ã¢ã«ãããŠãšãŠãéèŠãªäºã§ãããã¡ããéã瀺ããŠãããå
人ãžæ¬æã瀺ããšããæå³ããããŸãããèšäºã®ä¿¡ãŽããæ§ã確ä¿ãããšããæå³åãããããŸãããŠã£ãããã£ã¢ã¯ããèªäœãä¿¡çšæ§ãæã£ãŠããããã§ã¯ãããŸããããã®ãããæžã蟌ãŸããŠããå
容ãäºå®ã§ããããšã確èªããããã«ãåºå
žãå¿
èŠãªã®ã§ãã
åºå
žã®ç€ºãæ¹ã¯åŠè¡åéãåŠäŒãå³å¯ã«ã¯å人ã«ãã£ãŠãéããŸããããåèæç®ãåæããæ¹æ³ã(ãžã§ãã©ã«ã»ãªãã¡ã¬ã³ã¹)ãšãæ¬æã®äžã«æ³šéãå
¥ããæ¹æ³ã(ã€ã³ã©ã€ã³ã»ãµã€ããŒã·ã§ã³)ãªã©æ§ã
ãªæ¹æ³ããããããããã«å©ç¹ããããŸããäž¡è
ãæè¡·ãããåå¥åç
§æ³ããšãããã®ãããããããŒããŒãæ¹åŒãããã³ã¯ãŒããŒæ¹åŒããªã©ãæåã§ããå°é家ã®æ¹ã¯ããããã®ã¹ã¿ã€ã«ã§è¡ãããã°ãããšæããŸãããããã§ã¯ãŠã£ãããã£ã¢ã§ãã䜿ãããåå¥åç
§æ³ã«ã€ããŠèª¬æããŸãã
ãŠã£ãããã£ã¢ã§ãã䜿ãããåå¥åç
§æ³ã§ã¯ãæ¬æäžã«åŒçšé ã«æç®çªå·ãæ¯ããæåŸã«ãè泚ããåèæç®ãç¯ãèšããŸãããè泚ãç¯ã«ã¯åŒçšé ã«åç
§ç®æã衚瀺ããããåèæç®ãç¯ã«ã¯æžèªæ
å ±ãç®æ¡æžãã§åæããŸãã
åºå
žã®æèšã«ã¯HTMLã¿ã°ããã³ãã¬ãŒããå€ã䜿ããŸããæ¬ç¯ã§ã¯ãããã«ã€ããŠã説æããŸããæ
£ããã°ããã»ã©é£ãããã®ã§ã¯ãããŸãããçŠããã«æ°é·ã«åãçµã¿ãŸãããã
åèæç®ã«é¢ããæ
å ±ã§ããæžç±ã§ããã°èè
ã»æžåã»çºè¡æã»åè¡å¹Ž(ããã°ISBNã³ãŒã)ãæèšããŸããéèªãçŽèŠã®å Žåã¯å·»ã»å·æ°ãªã©ãæèšããŸãã
äŸãã°ããã®ããã«æèšããŸãã
å€ãã®å Žåãåèæç®ãç¯ã«ã¯æžç±ãéèªã«é¢ããæ
å ±ã眮ããæ°èããŠã§ããµã€ãã«é¢ããæ
å ±ã¯è泚ã«å
¥ã蟌ãã§ããŸããŸãã
ãã¡ãã«è©³ããæžåŒã玹ä»ãããŠããŸãã®ã§ãå¿
ãäºåã«åç
§ããŠãããŸãããã
æ¬æã«æç®çªå·ããµãããã«ã¯ãåŒçšç®æãæèšããHTMLã¿ã°(Refã¿ã°)ãçªå·ãæ¯ãããç®æã«è²Œãä»ããŠãããŸãããè泚ãç¯ã«ã¯ã<references/>ããŸãã¯ã{{Reflist}}ããšããã¿ã°ã眮ããŠãããŸãã
ã<ref>ããšã</ref>ãã§å²ãŸããéšåã«åŒçšç®æã«é¢ããæ
å ±ãè©°ã蟌ã¿ãŸãã
ãRef nameããšããã¿ã°ããããŸããäžã€ã®ç®æãæ°ãæã§åŒçšããããã®ã¿ã°ã§ããå®éã«ã¯ãã¡ãã®æ¹ããã䜿ãããŸãã
ãã¡ãã¯æåã®ç®æãã<ref name="XX">ãš</ref>ããšããããã«ããŸãããXXãã®æã«ã¯é©åœãªã¿ã€ãã«ãã€ããŸãããã以éã®ç®æã«ã¯ã<ref name="XX"/>ããæ¿å
¥ããŠãããŸãã
Refã¿ã°ããç®ãã ãšãããšããã¡ãã¯ãäžèº«ãã«ããããŸãã倧æµã¯ãŸããäžèº«ããäœãã貌ãä»ããåã«Refã¿ã°ã§ãå
ããã®ãæ®éã§ãã
ã©ã®è³æã®ã©ãããåŒçšããã®ããæèšããŸãã
äŸãã°ã以äžã®ããã«è¡šèšããŸãã
æ°èãªãèŠåºãã»çºè¡æã»èšäºã®æ¥ä»ã»é²èŠ§æ¥(ããã°èè
ãURLã)ããŠã§ããµã€ããªãURLã»ã¿ã€ãã«ã»çºè¡æã»(æ²èŒæ¥)ã»é²èŠ§æ¥(ããã°èè
)ãæèšããŸãããCite newsããCite webããšãããã³ãã¬ãŒãã䜿ããšäŸ¿å©ã§ãã
2ã€ã®ãã³ãã¬ãŒãã¯äŒŒãŠããŠãã©ã¡ãã䜿ãã®ãæé©ãªã®ãåãããªãå Žåã¯ããCite nwesãã¯æ¿æ²»ã»çµæžã»äºä»¶ã»äºæ
ãªã©åœå
å€ã®åºæ¥äºãæã瀺ãå
容ã®æããCite webãã¯èžèœã»ã¹ããŒãã»æå(äŸãã°ãã²ãŒã ãã¢ãã¡ãªã©äžè¬çã«èº«è¿ãªã«ã«ãã£ãŒ)ãªã©ã§ãã®ãã³ãã¬ãŒãã䜿ãããšãå€ãã§ãã
ãã³ãã¬ãŒãã®äžèº«ã®åºæ¬ã¯ãã|ã(ãã€ã â»)ãåŒæ°ã(瀺ãããå
容ã®æåå)ã=ãã®åŸã«æ
å ±ãå
¥åããŠãããŸãã(â»ã|ãã¯ãäžè¬çã«ããŒãã£ã«ã«ããŒãªã©ãšåŒã°ãããããŠã£ãããã£ã¢ã§ã¯ãã€ããšåŒã¶ã)
{{Cite news |url=ãã.jp |title=ãŠã£ãè±åããããâ³è³ãåè³ããŸãã |newspaper=ãŠã£ããŠã£ãæ°è |date=2021-11-15 |author=ãŠã£ã倪é |accessdate=2021-11-22}}
{{Cite web |url=ãã.jp |title=ãŠã£ãåéžæããâ³å€§äŒã§åªåããŸãã |publisher=âââã¹ããŒã |date=2021-05-15 |accessdate=2021-05-20 }}
â»æ¥ä»ã¯ã20XX-01-11ãã®ããã«èšå
¥ããã
å
¥åãããšããã®ããã«è¡šç€ºãããŸãã
åºå
žã®ã|~~=ãã¯é åºãææ§ã«ãã決ãŸã£ãŠããªãã®ã§ãæ§ã
ãªèšäºãé²èŠ§ããŠãããšãããã©ãã©ãªåºå
žã®èšèŒé åºã«åºäŒããŸãã ãããåºå
žã®ã¿ã€ãã«ãURLãªã©ããã©ãã©ãªèšäºãæ ¡æ£ãããå Žåã¯ããããã¯çŽ°éšã®ç·šéã§ããã«ãã§ãã¯ãå
¥ããåºæ¥ãã ããå€æŽãå
¬éããæŒãåæ°ãæžãããããã«ãããã¬ãã¥ãŒãå®è¡ããããŠãäœåºŠãåºæ¥äžããã確èªããŠãããæçµçã«å€æŽãå
¬éããŸãããã
以äžã¯åºå
žã®äœ¿ãæ¹ã®äŸã§ãã段èœåãã衚瀺ã®ä»æ¹ãªã©ãå®éã®ãŠã£ãããã£ã¢ã®ããŒãžãšã¯ç°ãªãéšåããããŸããããããããããã£ãæãã§ããåºå
žã¯æ
£ãã倧äºãªã®ã§ãç¹°ãè¿ããŠæ
£ããŠããããšãéèŠã§ãã
ãžã§ã³ã»ãã²ãã²ã»ã¹ãã¹(è±:John hogehoge Smithã19XX幎1æ1æ¥ - )ã¯ãã¢ã¡ãªã«åè¡åœåºèº«ã®ãŠã£ãããã£ã¢ç 究è
ãJAWPç 究ææé·ã
19XX幎ã«ã«ãªãã©ã«ãã¢å·ãµã³ãã©ã³ã·ã¹ã³ã«çãŸããã19XX幎ã«é£ã³çŽã§ã«ãªãã©ã«ãã¢å€§åŠããŒã¯ã¬ãŒæ ¡ã«å
¥åŠãåæ¥åŸã¯ã¹ã¿ã³ãã©ãŒã倧åŠã«ãããŠãŠã£ãããã£ã¢ã«ã€ããŠç 究ã2000幎ããã¯æ±äº¬ã®JAWPç 究æã«æãããŠæ¥æ¥ãæ ç¹ãæ¥æ¬ã«ç§»ããã
ãŸããé¢é£ããç»åã貌ãããšããèšäºã®å
å®ã®ããã®å€§åãªå çã«ãªããŸããåºæ¬çã«ã¯[[ç»å:貌ããããã¡ã€ã«å|thumb|ç»åã®èª¬æ]]ãšããæé¢ã§ãç»åã衚瀺ãããããšãã§ããŸãããã®æé¢(ã¿ã°)ã«ã€ããŠã詳ãã説æã¯ãw:Wikipedia:ç»åã®è¡šç€ºãèŠãŠãã ããã
泚æç¹ãããã€ãæããŸããšã
衚瀺ã§ããã®ã¯ãæ¥æ¬èªçã«ããç»åã ãã§ã¯ãããŸãããããŠã£ãã¡ãã£ã¢ã³ã¢ã³ãº(WikimediaCommons, é称ã³ã¢ã³ãº)ãã«ããç»åãããŠã£ãããã£ã¢å
ã«ããã®ãšåãæèŠã§ãã®ãŸãŸè¡šç€ºãããããšãã§ããŸãã
æ²èŒã®ä»æ¹ã¯ãŠã£ãããã£ã¢å
ã«ç»åãããã®ãšåããã[[ç»å:貌ããããã¡ã€ã«å|thumb|ç»åã®èª¬æ]]ãšãã£ãã¿ã°ãæžãããšã«ãªããŸããHTMLã䜿ã£ãŠããŒã ããŒãžãäœã£ãããšã®ããæ¹ã¯ããã~ãšããã£ã¬ã¯ããªãæå®ããªããšãããªãããããšæããããããŸãããããŠã£ãããã£ã¢ã®äžã§ã¯ç»ååã ãã§å€§äžå€«ã§ããã ãŸããããšæã£ãŠãã£ãŠã¿ãŠãã ããã
ãŠã£ãããã£ã¢ãã³ã¢ã³ãºã«æ¬²ããç»åããªãå Žåã«ã¯ãèªåã®æããçµµãèªåã§æ®ã£ãåçããããã¯å€éšãµã€ãããæã£ãŠãããããªãã¯ãã¡ã€ã³ãªãã¡ã€ã«ãã¢ããããŒãããããšãã§ããŸãããŸãã¯ãããŽã®è¿ãã«ãããã¢ããããŒãããšããæåãã¯ãªãã¯ããŠãã ãã(衚瀺ãããŠããªãå Žåã«ã¯ãw:ç¹å¥:Uploadãå©çšããŠãã ãã)ã
ã¢ããããŒãçšã®ç»é¢ã衚瀺ããããããŸãã¯ããã«æžããŠãã泚æãäžèªããŠãã ãããèäœæš©ããã¡ã€ã«ã®çš®é¡ã«ã€ããŠã®æ³šæãªã©ã倧åãªããšãæžãããŠããŸããåæã§ãããããªãã"Browse" ããã㯠"åç
§" ãšãããã¿ã³ãæŒããŠãã¢ããããŒããããç»åãéžæããŠãã ããã
ã¢ããããŒããããç»åã®ãã¡ã€ã«åãå€ãããå Žåã«ã¯ãæ²èŒãããã¡ã€ã«åãæ¬ã«æ°ãããã¡ã€ã«åãèšå
¥ããŠãã ãããã¢ããããŒãåŸã«ãã¡ã€ã«åãå€æŽããããšã¯ã§ããªãã®ã§w:Wikipedia:ç»åå©çšã®æ¹é#ç»åã®ãã¡ã€ã«åãåèã«ããŠæ
éã«æ±ºããŠãã ããã
次ã«ãããã¡ã€ã«ã®æŠèŠãæ¬ã«å¿
èŠäºé
ãèšå
¥ããŠãã ããããŸã次ã®2ç¹ã¯å¿
ãèšè¿°ããå¿
èŠããããŸã:
以äžã®åºå
žãã©ã€ã»ã³ã¹ãã®ããããã§ãæ¬ ããŠããå Žåããã®ç»åã¯åºæ¬çã«ã¯åé€ãããããšãšãªããŸãã®ã§ã©ãã泚æããŠäžããã
ãã®ã»ããç»åã«ã€ããŠã®ç°¡åãªèª¬æããããšãªãããã§ããããããšãã°ãèªåã§æ®ã£ãåçã§ããã°ãæ®åœ±å Žæãæ¥æãæ®åœ±å¯Ÿè±¡ã«ã€ããŠã®ç°¡åãªèª¬æ(ãââçââåžã«ããââã®åçããªã©)ããããšã衚瀺ãããšãã®ãã£ãã·ã§ã³ãä»ãããããªããªã©ã®å©ç¹ãçãŸããŸãã
ãªããçŸåšã¯æ¥æ¬èªçã«ç»åãã¢ããããŒãããããæ¹ããããŠã£ãã¡ãã£ã¢ã³ã¢ã³ãºã«ç»åãã¢ããããŒããããšããæ¹åã«å€ããã€ã€ãããŸããã³ã¢ã³ãºã«ç»åãã¢ããããŒãããããšã«ãããä»èšèªçãä»ã®ãŠã£ãã¡ãã£ã¢ãããžã§ã¯ããšãç»åãå
±æããããšãã§ããŸããæ¥æ¬èªã§ã®ãã¡ã€ã«åãéæšå¥šã ã£ãããšãã決ãŸããããã®ã§ãä»åã¯ãŠã£ãããã£ã¢æ¬äœãžã®ã¢ããããŒãã説æããŸããããæ
£ããŠããããã²ã³ã¢ã³ãºãžã®ã¢ããããŒããæ€èšããŠã¿ãŠãã ããããŠã£ãããã£ã¢ã«ãã説æããŒãžãåèã«ãªãã§ãããã
以äžã¯ãã³ã¢ã³ãºã«ç»åãã¢ããããŒããããšãã®æš¡ç¯äŸã§ããããŠã£ãããã£ã¢ã§ãåã圢ã§æžãã°å¿
èŠãªæ
å ±ãæžããããã§ãããã
{{<ã³ããŒã©ã€ãã»ã¿ã°>}} ã³ããŒã©ã€ãã»ã¿ã°ã貌ã£ãŠãã ãããæ¥æ¬èªçã§ããã°ã{{PD}} ã {{GFDL}} ã®ããããã§ãã
æ¥æ¬èªçã§ã¯ãPDãšGFDLãCC BY-SAããããã¯ãããã«æºããããªãŒã©ã€ã»ã³ã¹ã®ç»åãã䜿ããŸããããããã§ã¢ãŠãŒã¹ (Fairuse) ãªã©ãä»ã®ã©ã€ã»ã³ã¹ã®ç»åã䜿ããèšèªç/å§åŠ¹ãããžã§ã¯ãããããŸããæ¥æ¬èªçãŠã£ãããã£ã¢ã«é©åããªãã©ã€ã»ã³ã¹ã®ãã®ãæ¥æ¬èªçã«ã¢ããããŒãããŠããŸããšåé€ãããŸãã®ã§ã泚æããŸãããããŠã£ãã¡ãã£ã¢ã³ã¢ã³ãºã§ã¯ãCCã¯OK, Fairuseã¯äžå¯ãšãªã£ãŠããŸããã€ãŸããè±èªç㧠Fairuse ãšãªã£ãŠããç»åãæ¥æ¬èªçã§è¡šç€ºããããšã¯ãçŸåšã¯æ®å¿µãªããã§ããŸããã
éåžžã®èšäºãšéããç»åããŒãžã¯ç§»åæ©èœã䜿ã£ã移åãã§ããŸããããã®ãããç»åã®ãã¡ã€ã«åãå€ããããã«ã¯ãä¿åããŠå¥åã§åã³ã¢ããããŒãããªããŠã¯ãªããŸãããåçŽãªç¶Žãã®ééãã ãã§ãªãããã¡ã€ã«åããå
容ãé¡æšã§ããªããã®ã«ã€ããŠããã¡ã€ã«åãå€æŽããã»ããããã§ãããããã¡ã€ã«åå€æŽã«ããéè€ããç»åã¯ããã®ç»åããŒãžã«æçš¿è
èªèº«ã§ {{å³æåé€|å
šè¬8|[[ãã¡ã€ã«å.jpg]]ãšéè€}} ãªã©ãšæžããŠããã°ã管çè
ã«ããåé€ãããŸãã
以äžã§ã¯ç»åã«ã€ããŠèª¬æããŠããŸããããé³å£°ãã¡ã€ã«ãGIFã¢ãã¡ãåç»ãªã©ä»ã®ã¡ãã£ã¢ãã¡ã€ã«ã«ã€ããŠããåºæ¬çã«ã¯åæ§ã§ã(åºå
žãšã©ã€ã»ã³ã¹ãå¿ããªãã§äžãã)ã詳ããã¯ããŠã£ãããã£ã¢ã®w:Wikipedia:ãã«ãã¡ãã£ã¢FAQãªã©ãèŠãŠã¿ãŠäžããã
ããäžã€ãå çã®æ¹æ³ãšããŠã¯ä»èšèªçããæ
å ±ãæã£ãŠæ¥ããšããæ¹æ³ããããŸãããŠã£ãããã£ã¢ããŽããŒã¯ã®äžã®æ¹ã«ã次ã®ãããªããã¯ã¹ã«å
¥ã£ãæååãããã°ã¯ãªãã¯ããŠã¿ãŸãããã
Englishãªãè±èªçã®ãFrançaisãªããã©ã³ã¹èªçã®è©²åœããŒãžã«è¡ãããšãã§ããŸãããŠã£ãããã£ã¢ã¯ãGFDLãšCC BY-SAã«åŸã£ãŠæžãããŠããã®ã§ãèŠçŽæ¬ã«ãã泚æããã°ãä»èšèªçã®ããŒãžãã³ããŒãããã翻蚳ããŠãæ§ããŸããããã ããèŠçŽæ¬ãžã®èšèŒãæ ããšããã£ããã®ç¿»èš³ãGFDLãšCC BY-SAã®èŠä»¶ãæºãããŠããªããšããŠåé€ãããããšãããããŸãã®ã§ãä»èšèªçã®ããŒãžã翻蚳ããããšæã£ãå Žåã¯ããŸãã¯äžåºŠw:Wikipedia:翻蚳FAQã«ç®ãéããŠäžããã
| [
{
"paragraph_id": 0,
"tag": "p",
"text": "<å
é ã«æ»ã",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ããŠããŠã£ãããã£ã¢ãã©ããããµã€ããªã®ãã¯ã倧äœããã£ãŠããã ããã§ãããã? ã§ã¯ããã£ããèšäºãæžããŠã¿ãŸãããã ......ãšãã£ãŠãããããªãæ°ããèšäºãæžãã®ã¯ãç·åŒµãããã®ã§ãããŸãã¯ãä»ã®èšäºã«å çããŠã¿ãŸããããæ°ããèšäºãæžãæ¹æ³ã¯ã次ã®ç« ã§ã玹ä»ããŸãã®ã§ããå®å¿ãã",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ãŠã£ãããã£ã¢ã«çžå¿ããé
ç®ãšã¯ã©ããªãã®ã§ããã?ããã«ã¯æ§ã
ãªæèŠããããŸããçŸç§äºå
žãšã¯ã森çŸ
äžè±¡ã®ç©äºã説æãããã®ã ããã§ãã",
"title": "é
ç®ã®éžã³æ¹"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ããªã¿ãã«çŸç§äºå
žãªã©ã®ãããªãçŽã®çŸç§äºå
žã«ãããããªé
ç®ããæžãããã¹ãã ãšãã人ãããã°ããããçŽã®äºå
žã«ã¯æžãããªããããªããš(ãµãã«ã«ãã£ãŒãç¹å®åéã®å°éçšèªãªã©)ãããã£ããæžãã¹ãã ãšãã人ãããŸãããã ãä»ã®æ¥æ¬èªçã§ã¯ãã¡ã€ã³ã«ã«ãã£ãŒã®èšäºãå·çãã人ã¯å€§å€äžè¶³ããŠããŸãããã®åéã§æŽ»åãã人ã¯ã»ãŒééããªããæè¿ãããã§ãããã",
"title": "é
ç®ã®éžã³æ¹"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ãšã¯ãã£ãŠãããããªã«é£ããèããªããŠãæ§ããŸãããæåã§ããã趣å³ãªã©ã§åŸãç¥èãªã©ããŸãã¯èªåã«èº«è¿ãªåéããæãåºããŠã¿ãŸãããããŠã£ãããã£ã¢ã«ã¯ãæ°åŠãç§åŠãå²åŠãæåŠãæåãªã©ã«é¢ããäžèŠé£ããããªèšäºã¯ãã¡ãããåœãåžçºæã芳å
å°ãé£ã¹ç©ã人ç©ãã¹ããŒããé³æ¥œãããœã³ã³ã家é»ãªã©ã®é»æ°è£œåãééãã¢ãã¡ã»ã²ãŒã ã«è³ããŸã§ã沢山ã®é
ç®ããããŸãããã®æ¬ã§ã¯ã(ã©ããªé
ç®ã§ãã)ãçŸç§äºå
žçãªå
容ããšããŠæç« ãæžãããã®éããã¹ã瀺ããŸãã",
"title": "é
ç®ã®éžã³æ¹"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "èåããšã¯ãæ¬ãäœããšãã§ããæ ¡æ£ã®äœæ¥ã§ããå
·äœçã«ã¯ã",
"title": "èåã"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ã®äºã€ã«åãããŸããå°å³ãªäœæ¥ã§ãããWikiã®ã·ã¹ãã ã«æ
£ããã«ã¯æã£ãŠã€ãã§ããã誰ã§ãæ°è»œã«ã§ããç·šéã§ããããŸãã",
"title": "èåã"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "æç« ã®å
容ãè¡šèšãæŽããäœæ¥ã¯ããšãã«ãŠã£ãããã£ã¢ã«éã£ãããšã§ã¯ãªããäžè¬ã®æç« ã®æ ¡æ£ãšç¹ã«å€ãããŸãããå
·äœçã«ã¯ã",
"title": "èåã"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "ãŠã£ãããã£ã¢ç¹æã®ãªã³ã¯è²Œããã«ããŽãªåé¡ãªã©ã®ã¡ã³ããã³ã¹äœæ¥ã«ã¯æ¬¡ã®ãããªãã®ããããŸããããã¯é èªã§ããŠã£ãåã(Wikify) ãšãåŒã°ããŸãããŠã£ãåã¯ãšãã«ä»ã®ããŒãžãžã®ãªã³ã¯ãããããšãæãçšèªã§ãããããŒã¯ã¢ããå
šè¬ã«ã€ããŠäœ¿ãããå Žåãããããã§ãã",
"title": "èåã"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "ãªã©ããããŸããä»ã¯æå³ã®åãããªãèšèã沢山åºãŠãããããããŸããããããŸãæ°ã«ããããšã¯ãããŸããããšãããããèåãäœæ¥ã¯ãã¹ãŠã®åç¹ã§ããã倧åãªäœæ¥ã§ããããšã¯é ã«çœ®ããŠãããŠäžããã",
"title": "èåã"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "ç¥ã£ãŠããããšã足ããŠã¿ãŸããããç没幎ææ¥ãæããŠãã人ç©èšäºããæŽå²ãèæ¯ããã®åŸã®æ代ãžã®åœ±é¿ããŸã æžãããŠããªãèšäºãå€ãã§ãããŸãã説æãå°»åããã³ãã«ãªã£ãŠããŸã£ãŠããèšäºãªã©ãããã§ããããäœåãªã¹ããªã©ãä»ããŠãããšãã«ã¯ãéèŠãªäœåãæãèœã¡ãŠããããšããããŸãã",
"title": "ããå ç"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "ããããèšäºãæ¢ãäžçªç°¡åãªæ¹æ³ã¯ããµãã¹ã¿ãã«ã«ããŽã©ã€ãºãããŠããèšäºãèŠãããšã§ãããã®ã«ããŽãªã«ã¯ãä»ã®ãŠã£ãããã£ã¢ã³ãã¡ããå®çŸ©ããæžãããŠããªãããšæã£ãé
ç®ãéããããŠããŸããåŠçæ代ã«ããã£ãé
ç®ããèå³ãæã£ãŠããé
ç®ãããã°ãã²ãéããŠã¿ãŠãã ããããã®é
ç®ã®ååŠè
ãæŠå¿µãç解ããããã«ãå¿
èŠãªã®ã«äžè¶³ããŠããæ
å ±ã«ãã£ãšæ°ä»ãããšã§ããããããããããšãå®çŸ©ãã®ãã®ãæ£ç¢ºã§ãªãã£ãããäžæã説æã§ããŠããªãããšããããããããŸãããç·šéã¯å€§èã«!ã©ãã©ãèšè¿°ã足ããŠãã£ãŠãã ãããèªä¿¡ããããªããå
ã®èšäºã®å圢ãçããŠããå¿
èŠãããããŸããã(ãã ãèäœæš©ãã¯ãããšããæš©å©ã«ã ãã¯æ³šæããŠãã ãããããŠã£ãããã£ã¢ã«éããããŠã£ããããžã§ã¯ãã¯æš©å©äŸµå®³ã«ã¯å€§å€æ
éãªå§¿å¢ãåã£ãŠããŸããã©ããã®ãŠã§ãããŒãžã®ã³ããŒãªããŠã®ã¯ãã¡ã§ã)",
"title": "ããå ç"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "ããã§éèŠãªäºã¯ãåºå
žãæèšããããšã§ãããã®äºæãæ¬åœã«æ£ããã®ãæ€èšŒãã人ã«ãšã£ãŠãåºå
žãæèšãããŠãããšããäºã¯éåžžã«å©ããããšã§ãããŠã£ãããã£ã¢ã§ã¯æžç±ã»ãŠã§ããµã€ããªã©ã®å€éšã®æ
å ±ãããšã«èšäºã«ããŠããããšããšãŠãéèŠèŠããŠããŸãããªããªãããŠã£ãããã£ã¢ã®èšäºã«ã¯ãäžç«æ§ã»å®¢èŠ³æ§ãä¿ã¡ããäžçªæåã«èšäºãæžãå§ããç·šéè
ã®äž»èŠ³çãªèããæžãçŸç§ãµã€ãã§ã¯ãªãããšããç®çã®ããšã§æ¯æ¥äžçäžã®èšäºãç«ã¡äžãããç·šéãéããŠããŸããã§ãããããããããå çãããããªãšæã£ãæ¹ã¯ããèªèº«ã®è©³ããåéã®äžã§åºå
žã®æèšãç¡ãã»å°ãªãèšäºã«ã¯ä»ã足ããŠã¿ãŠãã ããã詳ããã¯ã#åºå
žãä»ããŠã¿ããã芧ãã ããã",
"title": "ããå ç"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "åºå
žãæèšããäºã¯ãŠã£ãããã£ã¢ã«ãããŠãšãŠãéèŠãªäºã§ãããã¡ããéã瀺ããŠãããå
人ãžæ¬æã瀺ããšããæå³ããããŸãããèšäºã®ä¿¡ãŽããæ§ã確ä¿ãããšããæå³åãããããŸãããŠã£ãããã£ã¢ã¯ããèªäœãä¿¡çšæ§ãæã£ãŠããããã§ã¯ãããŸããããã®ãããæžã蟌ãŸããŠããå
容ãäºå®ã§ããããšã確èªããããã«ãåºå
žãå¿
èŠãªã®ã§ãã",
"title": "åºå
žãä»ããŠã¿ã"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "åºå
žã®ç€ºãæ¹ã¯åŠè¡åéãåŠäŒãå³å¯ã«ã¯å人ã«ãã£ãŠãéããŸããããåèæç®ãåæããæ¹æ³ã(ãžã§ãã©ã«ã»ãªãã¡ã¬ã³ã¹)ãšãæ¬æã®äžã«æ³šéãå
¥ããæ¹æ³ã(ã€ã³ã©ã€ã³ã»ãµã€ããŒã·ã§ã³)ãªã©æ§ã
ãªæ¹æ³ããããããããã«å©ç¹ããããŸããäž¡è
ãæè¡·ãããåå¥åç
§æ³ããšãããã®ãããããããŒããŒãæ¹åŒãããã³ã¯ãŒããŒæ¹åŒããªã©ãæåã§ããå°é家ã®æ¹ã¯ããããã®ã¹ã¿ã€ã«ã§è¡ãããã°ãããšæããŸãããããã§ã¯ãŠã£ãããã£ã¢ã§ãã䜿ãããåå¥åç
§æ³ã«ã€ããŠèª¬æããŸãã",
"title": "åºå
žãä»ããŠã¿ã"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "ãŠã£ãããã£ã¢ã§ãã䜿ãããåå¥åç
§æ³ã§ã¯ãæ¬æäžã«åŒçšé ã«æç®çªå·ãæ¯ããæåŸã«ãè泚ããåèæç®ãç¯ãèšããŸãããè泚ãç¯ã«ã¯åŒçšé ã«åç
§ç®æã衚瀺ããããåèæç®ãç¯ã«ã¯æžèªæ
å ±ãç®æ¡æžãã§åæããŸãã",
"title": "åºå
žãä»ããŠã¿ã"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "åºå
žã®æèšã«ã¯HTMLã¿ã°ããã³ãã¬ãŒããå€ã䜿ããŸããæ¬ç¯ã§ã¯ãããã«ã€ããŠã説æããŸããæ
£ããã°ããã»ã©é£ãããã®ã§ã¯ãããŸãããçŠããã«æ°é·ã«åãçµã¿ãŸãããã",
"title": "åºå
žãä»ããŠã¿ã"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "åèæç®ã«é¢ããæ
å ±ã§ããæžç±ã§ããã°èè
ã»æžåã»çºè¡æã»åè¡å¹Ž(ããã°ISBNã³ãŒã)ãæèšããŸããéèªãçŽèŠã®å Žåã¯å·»ã»å·æ°ãªã©ãæèšããŸãã",
"title": "åºå
žãä»ããŠã¿ã"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "äŸãã°ããã®ããã«æèšããŸãã",
"title": "åºå
žãä»ããŠã¿ã"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "å€ãã®å Žåãåèæç®ãç¯ã«ã¯æžç±ãéèªã«é¢ããæ
å ±ã眮ããæ°èããŠã§ããµã€ãã«é¢ããæ
å ±ã¯è泚ã«å
¥ã蟌ãã§ããŸããŸãã",
"title": "åºå
žãä»ããŠã¿ã"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "ãã¡ãã«è©³ããæžåŒã玹ä»ãããŠããŸãã®ã§ãå¿
ãäºåã«åç
§ããŠãããŸãããã",
"title": "åºå
žãä»ããŠã¿ã"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "æ¬æã«æç®çªå·ããµãããã«ã¯ãåŒçšç®æãæèšããHTMLã¿ã°(Refã¿ã°)ãçªå·ãæ¯ãããç®æã«è²Œãä»ããŠãããŸãããè泚ãç¯ã«ã¯ã<references/>ããŸãã¯ã{{Reflist}}ããšããã¿ã°ã眮ããŠãããŸãã",
"title": "åºå
žãä»ããŠã¿ã"
},
{
"paragraph_id": 22,
"tag": "p",
"text": "ã<ref>ããšã</ref>ãã§å²ãŸããéšåã«åŒçšç®æã«é¢ããæ
å ±ãè©°ã蟌ã¿ãŸãã",
"title": "åºå
žãä»ããŠã¿ã"
},
{
"paragraph_id": 23,
"tag": "p",
"text": "ãRef nameããšããã¿ã°ããããŸããäžã€ã®ç®æãæ°ãæã§åŒçšããããã®ã¿ã°ã§ããå®éã«ã¯ãã¡ãã®æ¹ããã䜿ãããŸãã",
"title": "åºå
žãä»ããŠã¿ã"
},
{
"paragraph_id": 24,
"tag": "p",
"text": "ãã¡ãã¯æåã®ç®æãã<ref name=\"XX\">ãš</ref>ããšããããã«ããŸãããXXãã®æã«ã¯é©åœãªã¿ã€ãã«ãã€ããŸãããã以éã®ç®æã«ã¯ã<ref name=\"XX\"/>ããæ¿å
¥ããŠãããŸãã",
"title": "åºå
žãä»ããŠã¿ã"
},
{
"paragraph_id": 25,
"tag": "p",
"text": "Refã¿ã°ããç®ãã ãšãããšããã¡ãã¯ãäžèº«ãã«ããããŸãã倧æµã¯ãŸããäžèº«ããäœãã貌ãä»ããåã«Refã¿ã°ã§ãå
ããã®ãæ®éã§ãã",
"title": "åºå
žãä»ããŠã¿ã"
},
{
"paragraph_id": 26,
"tag": "p",
"text": "ã©ã®è³æã®ã©ãããåŒçšããã®ããæèšããŸãã",
"title": "åºå
žãä»ããŠã¿ã"
},
{
"paragraph_id": 27,
"tag": "p",
"text": "äŸãã°ã以äžã®ããã«è¡šèšããŸãã",
"title": "åºå
žãä»ããŠã¿ã"
},
{
"paragraph_id": 28,
"tag": "p",
"text": "æ°èãªãèŠåºãã»çºè¡æã»èšäºã®æ¥ä»ã»é²èŠ§æ¥(ããã°èè
ãURLã)ããŠã§ããµã€ããªãURLã»ã¿ã€ãã«ã»çºè¡æã»(æ²èŒæ¥)ã»é²èŠ§æ¥(ããã°èè
)ãæèšããŸãããCite newsããCite webããšãããã³ãã¬ãŒãã䜿ããšäŸ¿å©ã§ãã",
"title": "åºå
žãä»ããŠã¿ã"
},
{
"paragraph_id": 29,
"tag": "p",
"text": "2ã€ã®ãã³ãã¬ãŒãã¯äŒŒãŠããŠãã©ã¡ãã䜿ãã®ãæé©ãªã®ãåãããªãå Žåã¯ããCite nwesãã¯æ¿æ²»ã»çµæžã»äºä»¶ã»äºæ
ãªã©åœå
å€ã®åºæ¥äºãæã瀺ãå
容ã®æããCite webãã¯èžèœã»ã¹ããŒãã»æå(äŸãã°ãã²ãŒã ãã¢ãã¡ãªã©äžè¬çã«èº«è¿ãªã«ã«ãã£ãŒ)ãªã©ã§ãã®ãã³ãã¬ãŒãã䜿ãããšãå€ãã§ãã",
"title": "åºå
žãä»ããŠã¿ã"
},
{
"paragraph_id": 30,
"tag": "p",
"text": "ãã³ãã¬ãŒãã®äžèº«ã®åºæ¬ã¯ãã|ã(ãã€ã â»)ãåŒæ°ã(瀺ãããå
容ã®æåå)ã=ãã®åŸã«æ
å ±ãå
¥åããŠãããŸãã(â»ã|ãã¯ãäžè¬çã«ããŒãã£ã«ã«ããŒãªã©ãšåŒã°ãããããŠã£ãããã£ã¢ã§ã¯ãã€ããšåŒã¶ã)",
"title": "åºå
žãä»ããŠã¿ã"
},
{
"paragraph_id": 31,
"tag": "p",
"text": "{{Cite news |url=ãã.jp |title=ãŠã£ãè±åããããâ³è³ãåè³ããŸãã |newspaper=ãŠã£ããŠã£ãæ°è |date=2021-11-15 |author=ãŠã£ã倪é |accessdate=2021-11-22}}",
"title": "åºå
žãä»ããŠã¿ã"
},
{
"paragraph_id": 32,
"tag": "p",
"text": "{{Cite web |url=ãã.jp |title=ãŠã£ãåéžæããâ³å€§äŒã§åªåããŸãã |publisher=âââã¹ããŒã |date=2021-05-15 |accessdate=2021-05-20 }}",
"title": "åºå
žãä»ããŠã¿ã"
},
{
"paragraph_id": 33,
"tag": "p",
"text": "â»æ¥ä»ã¯ã20XX-01-11ãã®ããã«èšå
¥ããã",
"title": "åºå
žãä»ããŠã¿ã"
},
{
"paragraph_id": 34,
"tag": "p",
"text": "å
¥åãããšããã®ããã«è¡šç€ºãããŸãã",
"title": "åºå
žãä»ããŠã¿ã"
},
{
"paragraph_id": 35,
"tag": "p",
"text": "åºå
žã®ã|~~=ãã¯é åºãææ§ã«ãã決ãŸã£ãŠããªãã®ã§ãæ§ã
ãªèšäºãé²èŠ§ããŠãããšãããã©ãã©ãªåºå
žã®èšèŒé åºã«åºäŒããŸãã ãããåºå
žã®ã¿ã€ãã«ãURLãªã©ããã©ãã©ãªèšäºãæ ¡æ£ãããå Žåã¯ããããã¯çŽ°éšã®ç·šéã§ããã«ãã§ãã¯ãå
¥ããåºæ¥ãã ããå€æŽãå
¬éããæŒãåæ°ãæžãããããã«ãããã¬ãã¥ãŒãå®è¡ããããŠãäœåºŠãåºæ¥äžããã確èªããŠãããæçµçã«å€æŽãå
¬éããŸãããã",
"title": "åºå
žãä»ããŠã¿ã"
},
{
"paragraph_id": 36,
"tag": "p",
"text": "以äžã¯åºå
žã®äœ¿ãæ¹ã®äŸã§ãã段èœåãã衚瀺ã®ä»æ¹ãªã©ãå®éã®ãŠã£ãããã£ã¢ã®ããŒãžãšã¯ç°ãªãéšåããããŸããããããããããã£ãæãã§ããåºå
žã¯æ
£ãã倧äºãªã®ã§ãç¹°ãè¿ããŠæ
£ããŠããããšãéèŠã§ãã",
"title": "åºå
žãä»ããŠã¿ã"
},
{
"paragraph_id": 37,
"tag": "p",
"text": "ãžã§ã³ã»ãã²ãã²ã»ã¹ãã¹(è±:John hogehoge Smithã19XX幎1æ1æ¥ - )ã¯ãã¢ã¡ãªã«åè¡åœåºèº«ã®ãŠã£ãããã£ã¢ç 究è
ãJAWPç 究ææé·ã",
"title": "åºå
žãä»ããŠã¿ã"
},
{
"paragraph_id": 38,
"tag": "p",
"text": "19XX幎ã«ã«ãªãã©ã«ãã¢å·ãµã³ãã©ã³ã·ã¹ã³ã«çãŸããã19XX幎ã«é£ã³çŽã§ã«ãªãã©ã«ãã¢å€§åŠããŒã¯ã¬ãŒæ ¡ã«å
¥åŠãåæ¥åŸã¯ã¹ã¿ã³ãã©ãŒã倧åŠã«ãããŠãŠã£ãããã£ã¢ã«ã€ããŠç 究ã2000幎ããã¯æ±äº¬ã®JAWPç 究æã«æãããŠæ¥æ¥ãæ ç¹ãæ¥æ¬ã«ç§»ããã",
"title": "åºå
žãä»ããŠã¿ã"
},
{
"paragraph_id": 39,
"tag": "p",
"text": "ãŸããé¢é£ããç»åã貌ãããšããèšäºã®å
å®ã®ããã®å€§åãªå çã«ãªããŸããåºæ¬çã«ã¯[[ç»å:貌ããããã¡ã€ã«å|thumb|ç»åã®èª¬æ]]ãšããæé¢ã§ãç»åã衚瀺ãããããšãã§ããŸãããã®æé¢(ã¿ã°)ã«ã€ããŠã詳ãã説æã¯ãw:Wikipedia:ç»åã®è¡šç€ºãèŠãŠãã ããã",
"title": "ç»åã貌ã£ãŠã¿ã"
},
{
"paragraph_id": 40,
"tag": "p",
"text": "泚æç¹ãããã€ãæããŸããšã",
"title": "ç»åã貌ã£ãŠã¿ã"
},
{
"paragraph_id": 41,
"tag": "p",
"text": "衚瀺ã§ããã®ã¯ãæ¥æ¬èªçã«ããç»åã ãã§ã¯ãããŸãããããŠã£ãã¡ãã£ã¢ã³ã¢ã³ãº(WikimediaCommons, é称ã³ã¢ã³ãº)ãã«ããç»åãããŠã£ãããã£ã¢å
ã«ããã®ãšåãæèŠã§ãã®ãŸãŸè¡šç€ºãããããšãã§ããŸãã",
"title": "ç»åã貌ã£ãŠã¿ã"
},
{
"paragraph_id": 42,
"tag": "p",
"text": "æ²èŒã®ä»æ¹ã¯ãŠã£ãããã£ã¢å
ã«ç»åãããã®ãšåããã[[ç»å:貌ããããã¡ã€ã«å|thumb|ç»åã®èª¬æ]]ãšãã£ãã¿ã°ãæžãããšã«ãªããŸããHTMLã䜿ã£ãŠããŒã ããŒãžãäœã£ãããšã®ããæ¹ã¯ããã~ãšããã£ã¬ã¯ããªãæå®ããªããšãããªãããããšæããããããŸãããããŠã£ãããã£ã¢ã®äžã§ã¯ç»ååã ãã§å€§äžå€«ã§ããã ãŸããããšæã£ãŠãã£ãŠã¿ãŠãã ããã",
"title": "ç»åã貌ã£ãŠã¿ã"
},
{
"paragraph_id": 43,
"tag": "p",
"text": "ãŠã£ãããã£ã¢ãã³ã¢ã³ãºã«æ¬²ããç»åããªãå Žåã«ã¯ãèªåã®æããçµµãèªåã§æ®ã£ãåçããããã¯å€éšãµã€ãããæã£ãŠãããããªãã¯ãã¡ã€ã³ãªãã¡ã€ã«ãã¢ããããŒãããããšãã§ããŸãããŸãã¯ãããŽã®è¿ãã«ãããã¢ããããŒãããšããæåãã¯ãªãã¯ããŠãã ãã(衚瀺ãããŠããªãå Žåã«ã¯ãw:ç¹å¥:Uploadãå©çšããŠãã ãã)ã",
"title": "ç»åã貌ã£ãŠã¿ã"
},
{
"paragraph_id": 44,
"tag": "p",
"text": "ã¢ããããŒãçšã®ç»é¢ã衚瀺ããããããŸãã¯ããã«æžããŠãã泚æãäžèªããŠãã ãããèäœæš©ããã¡ã€ã«ã®çš®é¡ã«ã€ããŠã®æ³šæãªã©ã倧åãªããšãæžãããŠããŸããåæã§ãããããªãã\"Browse\" ããã㯠\"åç
§\" ãšãããã¿ã³ãæŒããŠãã¢ããããŒããããç»åãéžæããŠãã ããã",
"title": "ç»åã貌ã£ãŠã¿ã"
},
{
"paragraph_id": 45,
"tag": "p",
"text": "ã¢ããããŒããããç»åã®ãã¡ã€ã«åãå€ãããå Žåã«ã¯ãæ²èŒãããã¡ã€ã«åãæ¬ã«æ°ãããã¡ã€ã«åãèšå
¥ããŠãã ãããã¢ããããŒãåŸã«ãã¡ã€ã«åãå€æŽããããšã¯ã§ããªãã®ã§w:Wikipedia:ç»åå©çšã®æ¹é#ç»åã®ãã¡ã€ã«åãåèã«ããŠæ
éã«æ±ºããŠãã ããã",
"title": "ç»åã貌ã£ãŠã¿ã"
},
{
"paragraph_id": 46,
"tag": "p",
"text": "次ã«ãããã¡ã€ã«ã®æŠèŠãæ¬ã«å¿
èŠäºé
ãèšå
¥ããŠãã ããããŸã次ã®2ç¹ã¯å¿
ãèšè¿°ããå¿
èŠããããŸã:",
"title": "ç»åã貌ã£ãŠã¿ã"
},
{
"paragraph_id": 47,
"tag": "p",
"text": "以äžã®åºå
žãã©ã€ã»ã³ã¹ãã®ããããã§ãæ¬ ããŠããå Žåããã®ç»åã¯åºæ¬çã«ã¯åé€ãããããšãšãªããŸãã®ã§ã©ãã泚æããŠäžããã",
"title": "ç»åã貌ã£ãŠã¿ã"
},
{
"paragraph_id": 48,
"tag": "p",
"text": "ãã®ã»ããç»åã«ã€ããŠã®ç°¡åãªèª¬æããããšãªãããã§ããããããšãã°ãèªåã§æ®ã£ãåçã§ããã°ãæ®åœ±å Žæãæ¥æãæ®åœ±å¯Ÿè±¡ã«ã€ããŠã®ç°¡åãªèª¬æ(ãââçââåžã«ããââã®åçããªã©)ããããšã衚瀺ãããšãã®ãã£ãã·ã§ã³ãä»ãããããªããªã©ã®å©ç¹ãçãŸããŸãã",
"title": "ç»åã貌ã£ãŠã¿ã"
},
{
"paragraph_id": 49,
"tag": "p",
"text": "ãªããçŸåšã¯æ¥æ¬èªçã«ç»åãã¢ããããŒãããããæ¹ããããŠã£ãã¡ãã£ã¢ã³ã¢ã³ãºã«ç»åãã¢ããããŒããããšããæ¹åã«å€ããã€ã€ãããŸããã³ã¢ã³ãºã«ç»åãã¢ããããŒãããããšã«ãããä»èšèªçãä»ã®ãŠã£ãã¡ãã£ã¢ãããžã§ã¯ããšãç»åãå
±æããããšãã§ããŸããæ¥æ¬èªã§ã®ãã¡ã€ã«åãéæšå¥šã ã£ãããšãã決ãŸããããã®ã§ãä»åã¯ãŠã£ãããã£ã¢æ¬äœãžã®ã¢ããããŒãã説æããŸããããæ
£ããŠããããã²ã³ã¢ã³ãºãžã®ã¢ããããŒããæ€èšããŠã¿ãŠãã ããããŠã£ãããã£ã¢ã«ãã説æããŒãžãåèã«ãªãã§ãããã",
"title": "ç»åã貌ã£ãŠã¿ã"
},
{
"paragraph_id": 50,
"tag": "p",
"text": "以äžã¯ãã³ã¢ã³ãºã«ç»åãã¢ããããŒããããšãã®æš¡ç¯äŸã§ããããŠã£ãããã£ã¢ã§ãåã圢ã§æžãã°å¿
èŠãªæ
å ±ãæžããããã§ãããã",
"title": "ç»åã貌ã£ãŠã¿ã"
},
{
"paragraph_id": 51,
"tag": "p",
"text": "{{<ã³ããŒã©ã€ãã»ã¿ã°>}} ã³ããŒã©ã€ãã»ã¿ã°ã貌ã£ãŠãã ãããæ¥æ¬èªçã§ããã°ã{{PD}} ã {{GFDL}} ã®ããããã§ãã",
"title": "ç»åã貌ã£ãŠã¿ã"
},
{
"paragraph_id": 52,
"tag": "p",
"text": "æ¥æ¬èªçã§ã¯ãPDãšGFDLãCC BY-SAããããã¯ãããã«æºããããªãŒã©ã€ã»ã³ã¹ã®ç»åãã䜿ããŸããããããã§ã¢ãŠãŒã¹ (Fairuse) ãªã©ãä»ã®ã©ã€ã»ã³ã¹ã®ç»åã䜿ããèšèªç/å§åŠ¹ãããžã§ã¯ãããããŸããæ¥æ¬èªçãŠã£ãããã£ã¢ã«é©åããªãã©ã€ã»ã³ã¹ã®ãã®ãæ¥æ¬èªçã«ã¢ããããŒãããŠããŸããšåé€ãããŸãã®ã§ã泚æããŸãããããŠã£ãã¡ãã£ã¢ã³ã¢ã³ãºã§ã¯ãCCã¯OK, Fairuseã¯äžå¯ãšãªã£ãŠããŸããã€ãŸããè±èªç㧠Fairuse ãšãªã£ãŠããç»åãæ¥æ¬èªçã§è¡šç€ºããããšã¯ãçŸåšã¯æ®å¿µãªããã§ããŸããã",
"title": "ç»åã貌ã£ãŠã¿ã"
},
{
"paragraph_id": 53,
"tag": "p",
"text": "éåžžã®èšäºãšéããç»åããŒãžã¯ç§»åæ©èœã䜿ã£ã移åãã§ããŸããããã®ãããç»åã®ãã¡ã€ã«åãå€ããããã«ã¯ãä¿åããŠå¥åã§åã³ã¢ããããŒãããªããŠã¯ãªããŸãããåçŽãªç¶Žãã®ééãã ãã§ãªãããã¡ã€ã«åããå
容ãé¡æšã§ããªããã®ã«ã€ããŠããã¡ã€ã«åãå€æŽããã»ããããã§ãããããã¡ã€ã«åå€æŽã«ããéè€ããç»åã¯ããã®ç»åããŒãžã«æçš¿è
èªèº«ã§ {{å³æåé€|å
šè¬8|[[ãã¡ã€ã«å.jpg]]ãšéè€}} ãªã©ãšæžããŠããã°ã管çè
ã«ããåé€ãããŸãã",
"title": "ç»åã貌ã£ãŠã¿ã"
},
{
"paragraph_id": 54,
"tag": "p",
"text": "以äžã§ã¯ç»åã«ã€ããŠèª¬æããŠããŸããããé³å£°ãã¡ã€ã«ãGIFã¢ãã¡ãåç»ãªã©ä»ã®ã¡ãã£ã¢ãã¡ã€ã«ã«ã€ããŠããåºæ¬çã«ã¯åæ§ã§ã(åºå
žãšã©ã€ã»ã³ã¹ãå¿ããªãã§äžãã)ã詳ããã¯ããŠã£ãããã£ã¢ã®w:Wikipedia:ãã«ãã¡ãã£ã¢FAQãªã©ãèŠãŠã¿ãŠäžããã",
"title": "ç»åã貌ã£ãŠã¿ã"
},
{
"paragraph_id": 55,
"tag": "p",
"text": "ããäžã€ãå çã®æ¹æ³ãšããŠã¯ä»èšèªçããæ
å ±ãæã£ãŠæ¥ããšããæ¹æ³ããããŸãããŠã£ãããã£ã¢ããŽããŒã¯ã®äžã®æ¹ã«ã次ã®ãããªããã¯ã¹ã«å
¥ã£ãæååãããã°ã¯ãªãã¯ããŠã¿ãŸãããã",
"title": "翻蚳"
},
{
"paragraph_id": 56,
"tag": "p",
"text": "Englishãªãè±èªçã®ãFrançaisãªããã©ã³ã¹èªçã®è©²åœããŒãžã«è¡ãããšãã§ããŸãããŠã£ãããã£ã¢ã¯ãGFDLãšCC BY-SAã«åŸã£ãŠæžãããŠããã®ã§ãèŠçŽæ¬ã«ãã泚æããã°ãä»èšèªçã®ããŒãžãã³ããŒãããã翻蚳ããŠãæ§ããŸããããã ããèŠçŽæ¬ãžã®èšèŒãæ ããšããã£ããã®ç¿»èš³ãGFDLãšCC BY-SAã®èŠä»¶ãæºãããŠããªããšããŠåé€ãããããšãããããŸãã®ã§ãä»èšèªçã®ããŒãžã翻蚳ããããšæã£ãå Žåã¯ããŸãã¯äžåºŠw:Wikipedia:翻蚳FAQã«ç®ãéããŠäžããã",
"title": "翻蚳"
},
{
"paragraph_id": 57,
"tag": "p",
"text": "",
"title": "翻蚳"
}
] | ïŒå
é ã«æ»ã ããŠããŠã£ãããã£ã¢ãã©ããããµã€ããªã®ãã¯ã倧äœããã£ãŠããã ããã§ããããïŒãã§ã¯ããã£ããèšäºãæžããŠã¿ãŸãããã
âŠâŠãšãã£ãŠãããããªãæ°ããèšäºãæžãã®ã¯ãç·åŒµãããã®ã§ãããŸãã¯ãä»ã®èšäºã«å çããŠã¿ãŸããããæ°ããèšäºãæžãæ¹æ³ã¯ã次ã®ç« ã§ã玹ä»ããŸãã®ã§ããå®å¿ãã | {{æžãæ¹å
¥éç·šNav}}
ããŠããŠã£ãããã£ã¢ãã©ããããµã€ããªã®ãã¯ã倧äœããã£ãŠããã ããã§ããããïŒãã§ã¯ããã£ããèšäºãæžããŠã¿ãŸãããã
âŠâŠãšãã£ãŠãããããªãæ°ããèšäºãæžãã®ã¯ãç·åŒµãããã®ã§ãããŸãã¯ãä»ã®èšäºã«å çããŠã¿ãŸããããæ°ããèšäºãæžãæ¹æ³ã¯ã次ã®ç« ã§ã玹ä»ããŸãã®ã§ããå®å¿ãã
[[Image:Bleistift1.jpg|250px|right]]
== é
ç®ã®éžã³æ¹ ==
ãŠã£ãããã£ã¢ã«çžå¿ããé
ç®ãšã¯ã©ããªãã®ã§ãããïŒããã«ã¯æ§ã
ãªæèŠããããŸãã[[w:çŸç§äºå
ž|çŸç§äºå
ž]]ãšã¯ã森çŸ
äžè±¡ã®ç©äºã説æãããã®ã ããã§ãã
[[w:ããªã¿ãã«çŸç§äºå
ž|ããªã¿ãã«çŸç§äºå
ž]]ãªã©ã®ãããªãçŽã®çŸç§äºå
žã«ãããããªé
ç®ããæžãããã¹ãã ãšãã人ãããã°ããããçŽã®äºå
žã«ã¯æžãããªããããªããšïŒ[[w:ãµãã«ã«ãã£ãŒ|ãµãã«ã«ãã£ãŒ]]ãç¹å®åéã®å°éçšèªãªã©ïŒãããã£ããæžãã¹ãã ãšãã人ãããŸãããã ãä»ã®æ¥æ¬èªçã§ã¯ãã¡ã€ã³ã«ã«ãã£ãŒã®èšäºãå·çãã人ã¯å€§å€äžè¶³ããŠããŸãããã®åéã§æŽ»åãã人ã¯ã»ãŒééããªããæè¿ãããã§ãããã
ãšã¯ãã£ãŠãããããªã«é£ããèããªããŠãæ§ããŸãããæåã§ããã趣å³ãªã©ã§åŸãç¥èãªã©ããŸãã¯èªåã«èº«è¿ãªåéããæãåºããŠã¿ãŸãããããŠã£ãããã£ã¢ã«ã¯ãæ°åŠãç§åŠãå²åŠãæåŠãæåãªã©ã«é¢ããäžèŠé£ããããªèšäºã¯ãã¡ãããåœãåžçºæã芳å
å°ãé£ã¹ç©ã人ç©ãã¹ããŒããé³æ¥œãããœã³ã³ã家é»ãªã©ã®é»æ°è£œåãééãã¢ãã¡ã»ã²ãŒã ã«è³ããŸã§ã沢山ã®é
ç®ããããŸãããã®æ¬ã§ã¯ãïŒã©ããªé
ç®ã§ããïŒãçŸç§äºå
žçãªå
容ããšããŠæç« ãæžãããã®éããã¹ã瀺ããŸãã
== èåã ==
'''èåã'''ãšã¯ãæ¬ãäœããšãã§ãã[[w:æ ¡æ£|æ ¡æ£]]ã®äœæ¥ã§ããå
·äœçã«ã¯ã
* æç« ã®å
容ãè¡šèšãæŽããäœæ¥ã
* ãŠã£ãããã£ã¢ç¹æã®ãªã³ã¯è²Œããã«ããŽãªåé¡ãªã©ã®ã¡ã³ããã³ã¹äœæ¥
ã®äºã€ã«åãããŸããå°å³ãªäœæ¥ã§ãããWikiã®ã·ã¹ãã ã«æ
£ããã«ã¯æã£ãŠã€ãã§ããã誰ã§ãæ°è»œã«ã§ããç·šéã§ããããŸãã
æç« ã®å
容ãè¡šèšãæŽããäœæ¥ã¯ããšãã«ãŠã£ãããã£ã¢ã«éã£ãããšã§ã¯ãªããäžè¬ã®æç« ã®æ ¡æ£ãšç¹ã«å€ãããŸãããå
·äœçã«ã¯ã
* åºæåè©ã®è¡šèšïŒæŒ¢åãèªã¿ä»®åã®ééãïŒã幎代ãªã©ã®ãã¹ã®èšæ£
* æç« ããªãããã«èªããããã«çŽãïŒãŠã«ãã¯ãªã©ã®èšæ£ãéè€ã®ããæç« ã®åç·šé
* è¡šèšæ³ã®çµ±äžïŒ[[w:Wikipedia:ã¹ã¿ã€ã«ããã¥ã¢ã«|ã¹ã¿ã€ã«ããã¥ã¢ã«]]ã«æ²¿ã£ãè¡šèšã«é
ç®å
šäœãä¿®æ£ããŸãã
** ããã«ã¯æäœã®çµ±äžã»äœ¿çšãã挢åã®çµ±äžã»ãã£ããªã©ã®[[w:çŽç©|çŽç©]]ã®çµ±äžãªã©ããããŸãã
ãŠã£ãããã£ã¢ç¹æã®ãªã³ã¯è²Œããã«ããŽãªåé¡ãªã©ã®ã¡ã³ããã³ã¹äœæ¥ã«ã¯æ¬¡ã®ãããªãã®ããããŸããããã¯é èªã§ããŠã£ãåã(Wikify) ãšãåŒã°ããŸãããŠã£ãåã¯ãšãã«ä»ã®ããŒãžãžã®ãªã³ã¯ãããããšãæãçšèªã§ãããããŒã¯ã¢ããå
šè¬ã«ã€ããŠäœ¿ãããå Žåãããããã§ãã
* ãŠã£ãããŒã¯ã¢ããã®äœè£ãæŽããã匷調ã®ä»å ãé€å»ãããŒã¯ã¢ããæã®ãã¹ã®ä¿®æ£
* ãŠã£ãããŒã¯ã¢ãããè¿œå ããé©åãªé
ç®ãžãšãªã³ã¯ãã
* <!--[[w:Wikipedia:èšèªéãªã³ã¯|èšèªéãªã³ã¯]]ã®ä»å --><!--ãŠã£ãããŒã¿ç§»è¡ã®ãã-->
* é©åãª[[w:Wikipedia:ã«ããŽãª|ã«ããŽãª]]ãã€ãããã«ããŽãªã®èªã¿ïŒ[[ãœãŒãããŒ]]ïŒãã€ãã
ãªã©ããããŸããä»ã¯æå³ã®åãããªãèšèã沢山åºãŠãããããããŸããããããŸãæ°ã«ããããšã¯ãããŸããããšãããããèåãäœæ¥ã¯ãã¹ãŠã®åç¹ã§ããã倧åãªäœæ¥ã§ããããšã¯é ã«çœ®ããŠãããŠäžããã
== ããå ç ==
ç¥ã£ãŠããããšã足ããŠã¿ãŸããããç没幎ææ¥ãæããŠãã人ç©èšäºããæŽå²ãèæ¯ããã®åŸã®æ代ãžã®åœ±é¿ããŸã æžãããŠããªãèšäºãå€ãã§ãããŸãã説æãå°»åããã³ãã«ãªã£ãŠããŸã£ãŠããèšäºãªã©ãããã§ããããäœåãªã¹ããªã©ãä»ããŠãããšãã«ã¯ãéèŠãªäœåãæãèœã¡ãŠããããšããããŸãã<!--åžçºæèšäºãªã©ããã³ãã¬ãŒãã䜿ã£ãŠããèšäºã®ç©ºæ¬ãåããããšãç«æŽŸãªå çã§ããå°å
ã®é
ç®ãªã©ã§ã空æ¬ãããã°ãã²ææŠããŠã¿ãŠãã ãã-->
ããããèšäºãæ¢ãäžçªç°¡åãªæ¹æ³ã¯ã[[w:Category:ãµãã¹ã¿ã|ãµãã¹ã¿ãã«ã«ããŽã©ã€ãºãããŠããèšäº]]ãèŠãããšã§ãããã®ã«ããŽãªã«ã¯ãä»ã®ãŠã£ãããã£ã¢ã³ãã¡ããå®çŸ©ããæžãããŠããªãããšæã£ãé
ç®ãéããããŠããŸããåŠçæ代ã«ããã£ãé
ç®ããèå³ãæã£ãŠããé
ç®ãããã°ãã²ãéããŠã¿ãŠãã ããããã®é
ç®ã®ååŠè
ãæŠå¿µãç解ããããã«ãå¿
èŠãªã®ã«äžè¶³ããŠããæ
å ±ã«ãã£ãšæ°ä»ãããšã§ããããããããããšãå®çŸ©ãã®ãã®ãæ£ç¢ºã§ãªãã£ãããäžæã説æã§ããŠããªãããšããããããããŸããã'''[[w:WP:BB|ç·šéã¯å€§èã«ïŒ]]'''ã©ãã©ãèšè¿°ã足ããŠãã£ãŠãã ãããèªä¿¡ããããªããå
ã®èšäºã®å圢ãçããŠããå¿
èŠãããããŸããã<!--ã倧ããåã£ããšãã«ã¯ãããŒãã§çç±èª¬æããããã£ãŠã®ã¯ããã³ãã¥ããã£ãŒãšããŠã®ãŠã£ãããã£ã¢ãã§æžãæ¹ãããã®ããªãïŒ-->ïŒãã ãèäœæš©ãã¯ãããšããæš©å©ã«ã ãã¯æ³šæããŠãã ãããããŠã£ãããã£ã¢ã«éããããŠã£ããããžã§ã¯ãã¯æš©å©äŸµå®³ã«ã¯å€§å€æ
éãªå§¿å¢ãåã£ãŠããŸããã©ããã®ãŠã§ãããŒãžã®ã³ããŒãªããŠã®ã¯ãã¡ã§ãïŒ
ããã§éèŠãªäºã¯ã[[w:Wikipedia:åºå
žãæèšãã|åºå
žãæèšãã]]ããšã§ãããã®äºæãæ¬åœã«æ£ããã®ãæ€èšŒãã人ã«ãšã£ãŠãåºå
žãæèšãããŠãããšããäºã¯éåžžã«å©ããããšã§ãããŠã£ãããã£ã¢ã§ã¯æžç±ã»ãŠã§ããµã€ããªã©ã®å€éšã®æ
å ±ãããšã«èšäºã«ããŠããããšããšãŠãéèŠèŠããŠããŸãããªããªãããŠã£ãããã£ã¢ã®èšäºã«ã¯ã'''äžç«æ§'''ã»'''客芳æ§'''ãä¿ã¡ããäžçªæåã«èšäºãæžãå§ããç·šéè
ã®äž»èŠ³çãªèããæžãçŸç§ãµã€ãã§ã¯ãªãããšããç®çã®ããšã§æ¯æ¥äžçäžã®èšäºãç«ã¡äžãããç·šéãéããŠããŸããã§ãããããããããå çãããããªãšæã£ãæ¹ã¯ããèªèº«ã®è©³ããåéã®äžã§åºå
žã®æèšãç¡ãã»å°ãªãèšäºã«ã¯ä»ã足ããŠã¿ãŠãã ããã詳ããã¯ã[[#åºå
žãä»ããŠã¿ã]]ãã芧ãã ããã
== åºå
žãä»ããŠã¿ã ==
åºå
žãæèšããäºã¯ãŠã£ãããã£ã¢ã«ãããŠãšãŠãéèŠãªäºã§ãããã¡ããéã瀺ããŠãããå
人ãžæ¬æã瀺ããšããæå³ããããŸãããèšäºã®ä¿¡ãŽããæ§ã確ä¿ãããšããæå³åãããããŸãããŠã£ãããã£ã¢ã¯ããèªäœãä¿¡çšæ§ãæã£ãŠããããã§ã¯ãããŸããããã®ãããæžã蟌ãŸããŠããå
容ãäºå®ã§ããããšã確èªããããã«ãåºå
žãå¿
èŠãªã®ã§ãã
åºå
žã®ç€ºãæ¹ã¯åŠè¡åéãåŠäŒãå³å¯ã«ã¯å人ã«ãã£ãŠãéããŸãããã'''åèæç®ãåæããæ¹æ³'''ãïŒãžã§ãã©ã«ã»ãªãã¡ã¬ã³ã¹ïŒãšã'''æ¬æã®äžã«æ³šéãå
¥ããæ¹æ³'''ãïŒã€ã³ã©ã€ã³ã»ãµã€ããŒã·ã§ã³ïŒãªã©æ§ã
ãªæ¹æ³ããããããããã«å©ç¹ããããŸããäž¡è
ãæè¡·ããã'''åå¥åç
§æ³'''ããšãããã®ãããããããŒããŒãæ¹åŒãããã³ã¯ãŒããŒæ¹åŒããªã©ãæåã§ããå°é家ã®æ¹ã¯ããããã®ã¹ã¿ã€ã«ã§è¡ãããã°ãããšæããŸãããããã§ã¯ãŠã£ãããã£ã¢ã§ãã䜿ãããåå¥åç
§æ³ã«ã€ããŠèª¬æããŸãã
ãŠã£ãããã£ã¢ã§ãã䜿ãããåå¥åç
§æ³ã§ã¯ãæ¬æäžã«åŒçšé ã«æç®çªå·ãæ¯ããæåŸã«ãè泚ããåèæç®ãç¯ãèšããŸãããè泚ãç¯ã«ã¯åŒçšé ã«åç
§ç®æã衚瀺ããããåèæç®ãç¯ã«ã¯æžèªæ
å ±ãç®æ¡æžãã§åæããŸãã
åºå
žã®æèšã«ã¯HTMLã¿ã°ããã³ãã¬ãŒããå€ã䜿ããŸããæ¬ç¯ã§ã¯ãããã«ã€ããŠã説æããŸããæ
£ããã°ããã»ã©é£ãããã®ã§ã¯ãããŸãããçŠããã«æ°é·ã«åãçµã¿ãŸãããã
=== æžèªæ
å ± ===
åèæç®ã«é¢ããæ
å ±ã§ããæžç±ã§ããã°'''èè
ã»æžåã»çºè¡æã»åè¡å¹Ž'''ïŒããã°ISBNã³ãŒãïŒãæèšããŸããéèªãçŽèŠã®å Žåã¯å·»ã»å·æ°ãªã©ãæèšããŸãã
äŸãã°ããã®ããã«æèšããŸãã
; æžç±
: èè
ããé¡åããX瀟ã20XX幎ã ISBN 978-4123456789
; éèª
: èè
ããèšäºããéèªã®ååãXå·ãXX瀟ã20XX幎ã
å€ãã®å Žåãåèæç®ãç¯ã«ã¯æžç±ãéèªã«é¢ããæ
å ±ã眮ããæ°èããŠã§ããµã€ãã«é¢ããæ
å ±ã¯è泚ã«å
¥ã蟌ãã§ããŸããŸãã
[[w:WP:CITEHOW|ãã¡ã]]ã«è©³ããæžåŒã玹ä»ãããŠããŸãã®ã§ãå¿
ãäºåã«åç
§ããŠãããŸãããã
=== è泚ãšæç®çªå· ===
æ¬æã«æç®çªå·ããµãããã«ã¯ãåŒçšç®æãæèšããHTMLã¿ã°ïŒRefã¿ã°ïŒãçªå·ãæ¯ãããç®æã«è²Œãä»ããŠãããŸãããè泚ãç¯ã«ã¯ã<nowiki><references/></nowiki>ããŸãã¯ã<nowiki>{{Reflist}}</nowiki>ããšããã¿ã°ã眮ããŠãããŸãã
==== Refã¿ã°ã®èª¬æãšäœ¿ãæ¹ ====
ã<nowiki><ref></nowiki>ããšã<nowiki></ref></nowiki>ãã§å²ãŸããéšåã«åŒçšç®æã«é¢ããæ
å ±ãè©°ã蟌ã¿ãŸãã
ãRef nameããšããã¿ã°ããããŸããäžã€ã®ç®æãæ°ãæã§åŒçšããããã®ã¿ã°ã§ããå®éã«ã¯ãã¡ãã®æ¹ããã䜿ãããŸãã
ãã¡ãã¯æåã®ç®æãã<nowiki><ref name="XX">ãš</ref></nowiki>ããšããããã«ããŸãããXXãã®æã«ã¯é©åœãªã¿ã€ãã«ãã€ããŸãããã以éã®ç®æã«ã¯ã<nowiki><ref name="XX"/></nowiki>ããæ¿å
¥ããŠãããŸãã
==== åŒçšç®æã®æèš ====
Refã¿ã°ããç®ãã ãšãããšããã¡ãã¯ãäžèº«ãã«ããããŸãã倧æµã¯ãŸããäžèº«ããäœãã貌ãä»ããåã«Refã¿ã°ã§ãå
ããã®ãæ®éã§ãã
; æžç±ã»éèª
ã©ã®è³æã®ã©ãããåŒçšããã®ããæèšããŸãã
äŸãã°ã以äžã®ããã«è¡šèšããŸãã
: èæžããé¡åããX瀟ã20XX幎ãXXXé ã
: èè
ããèšäºããéèªã®ååãXå·ãXX瀟ã20XX幎ãXXX-XXXé ã
: èè
ïŒ20XXïŒãp.XX
; æ°èã»ãŠã§ã
æ°èãªã'''èŠåºãã»çºè¡æã»èšäºã®æ¥ä»ã»é²èŠ§æ¥'''ïŒããã°èè
ãURLãïŒããŠã§ããµã€ããªã'''URLã»ã¿ã€ãã«ã»çºè¡æã»ïŒæ²èŒæ¥ïŒã»é²èŠ§æ¥'''ïŒããã°èè
ïŒãæèšããŸããã[[Template:Cite news|Cite news]]ãã[[Template:Cite web|Cite web]]ããšãããã³ãã¬ãŒãã䜿ããšäŸ¿å©ã§ãã
2ã€ã®ãã³ãã¬ãŒãã¯äŒŒãŠããŠãã©ã¡ãã䜿ãã®ãæé©ãªã®ãåãããªãå Žåã¯ããCite nwesãã¯æ¿æ²»ã»çµæžã»äºä»¶ã»äºæ
ãªã©åœå
å€ã®åºæ¥äºãæã瀺ãå
容ã®æããCite webãã¯èžèœã»ã¹ããŒãã»æåïŒäŸãã°ãã²ãŒã ãã¢ãã¡ãªã©äžè¬çã«èº«è¿ãªã«ã«ãã£ãŒïŒãªã©ã§ãã®ãã³ãã¬ãŒãã䜿ãããšãå€ãã§ãã
ãã³ãã¬ãŒãã®äžèº«ã®åºæ¬ã¯ãã|ãïŒãã€ã â»ïŒãåŒæ°ãïŒç€ºãããå
容ã®æååïŒãïŒãã®åŸã«æ
å ±ãå
¥åããŠãããŸããïŒâ»ã|ãã¯ãäžè¬çã«ããŒãã£ã«ã«ããŒãªã©ãšåŒã°ãããããŠã£ãããã£ã¢ã§ã¯ãã€ããšåŒã¶ãïŒ
* ãCite newsãã®äœ¿çšäŸ:
<nowiki>{{Cite news |url=ãã.jp |title=ãŠã£ãè±åããããâ³è³ãåè³ããŸãã |newspaper=ãŠã£ããŠã£ãæ°è |date=2021-11-15 |author=ãŠã£ã倪é |accessdate=2021-11-22}}</nowiki>
* ãCite webãã®äœ¿çšäŸ:
<nowiki>{{Cite web |url=ãã.jp |title=ãŠã£ãåéžæããâ³å€§äŒã§åªåããŸãã |publisher=âââã¹ããŒã |date=2021-05-15 |accessdate=2021-05-20 }}</nowiki>
â»æ¥ä»ã¯ã20XX-01-11ãã®ããã«èšå
¥ããã
å
¥åãããšããã®ããã«è¡šç€ºãããŸãã
:ãŠã£ã倪é (2021幎11æ15æ¥). âãŠã£ãè±åããããâ³è³ãåè³ããŸããâ. ãŠã£ããŠã£ãæ°è 2021幎11æ22æ¥é²èŠ§ã
:âãŠã£ãåéžæããâ³å€§äŒã§åªåããŸããâ. âââã¹ããŒã (2021幎5æ15æ¥). 2021幎5æ20æ¥é²èŠ§ã
åºå
žã®ãïœïœïœïŒãã¯é åºãææ§ã«ãã決ãŸã£ãŠããªãã®ã§ãæ§ã
ãªèšäºãé²èŠ§ããŠãããšãããã©ãã©ãªåºå
žã®èšèŒé åºã«åºäŒããŸãã
ãããåºå
žã®ã¿ã€ãã«ãURLãªã©ããã©ãã©ãªèšäºãæ ¡æ£ãããå Žåã¯ããããã¯çŽ°éšã®ç·šéã§ããã«ãã§ãã¯ãå
¥ããåºæ¥ãã ããå€æŽãå
¬éããæŒãåæ°ãæžãããããã«ãããã¬ãã¥ãŒãå®è¡ããããŠãäœåºŠãåºæ¥äžããã確èªããŠãããæçµçã«å€æŽãå
¬éããŸãããã
=== åºå
žã®ä»ãæ¹ã®äŸ ===
以äžã¯åºå
žã®äœ¿ãæ¹ã®äŸã§ãã段èœåãã衚瀺ã®ä»æ¹ãªã©ãå®éã®ãŠã£ãããã£ã¢ã®ããŒãžãšã¯ç°ãªãéšåããããŸããããããããããã£ãæãã§ããåºå
žã¯æ
£ãã倧äºãªã®ã§ãç¹°ãè¿ããŠæ
£ããŠããããšãéèŠã§ãã
âââ 以äžã¯äŸæ âââ
'''ãžã§ã³ã»ãã²ãã²ã»ã¹ãã¹'''ïŒè±:John hogehoge Smithã19XX幎1æ1æ¥ - ïŒã¯ãã¢ã¡ãªã«åè¡åœåºèº«ã®ãŠã£ãããã£ã¢ç 究è
ãJAWPç 究ææé·<ref>ãžã§ã³ã»ãã²ãã²ã»ã¹ãã¹ããåã«ãããããŠã£ãããã£ã¢ããJAWP瀟ã2003幎ã12é ã</ref>ã
; åºç
19XX幎ã«ã«ãªãã©ã«ãã¢å·ãµã³ãã©ã³ã·ã¹ã³ã«çãŸãã<ref name="Smith25">ãžã§ã³ã»ãã²ãã²ã»ã¹ãã¹ããåã«ãããããŠã£ãããã£ã¢ããJAWP瀟ã2003幎ã25é ã</ref>ã19XX幎ã«é£ã³çŽã§<ref name="Tanaka">ç°äžå€ªéããã¹ãã¹æ°æé·ã«èã-ããããã®JAWPç 究æãããŠã£ãããã£ã¢ã»ãžã£ãŒãã«ã3å·ããŠã£ããšæ¥æ¬ç€Ÿã2002幎ã32é ã</ref>ã«ãªãã©ã«ãã¢å€§åŠããŒã¯ã¬ãŒæ ¡ã«å
¥åŠ<ref name="Smith25"/>ãåæ¥åŸã¯ã¹ã¿ã³ãã©ãŒã倧åŠã«ãããŠãŠã£ãããã£ã¢ã«ã€ããŠç 究<ref name="Smith25"/>ã2000幎ããã¯æ±äº¬ã®JAWPç 究æã«æãããŠæ¥æ¥ãæ ç¹ãæ¥æ¬ã«ç§»ãã<ref name="Smith25"/>ã
; 人ç©
* æ¥ç³»3äžã§ãã<ref name="Tanaka"/>ãããã²ãã²ãã¯æ¥æ¬èªã®ã¡ã¿æ§æå€æ°ã«ç±æ¥ãã<ref>âã¹ãã¹æé·ãæ¥æ¬ãžã®æããèªãâ. æ¯ææ°è瀟. (2003幎2æ16æ¥) 2003幎2æ17æ¥é²èŠ§ã</ref>ã
* ã€ãŒã°ã«ã¹ã®å€§ãã¡ã³ã§ãã<ref name="Tanaka"/>ã
; è泚
<references/>
; åèæç®
* ãžã§ã³ã»ãã²ãã²ã»ã¹ãã¹ããåã«ãããããŠã£ãããã£ã¢ããJAWP瀟ã2003幎 ISBN 978-4123456789ã
* ç°äžå€ªéããã¹ãã¹æ°æé·ã«èã-ããããã®JAWPç 究æãããŠã£ãããã£ã¢ã»ãžã£ãŒãã«ã3å·ããŠã£ããšæ¥æ¬ç€Ÿã2002幎ã
âââ äŸæãããŸã§ âââ
=== é¢é£ææž ===
* [[w:Wikipedia:åºå
žãæèšãã|Wikipedia:åºå
žãæèšãã]]
* [[w:Help:è泚|Help:è泚]]
== ç»åã貌ã£ãŠã¿ã ==
ãŸããé¢é£ããç»åã貌ãããšããèšäºã®å
å®ã®ããã®å€§åãªå çã«ãªããŸããåºæ¬çã«ã¯<nowiki>[[ç»å:貌ããããã¡ã€ã«å|thumb|ç»åã®èª¬æ]]</nowiki>ãšããæé¢ã§ãç»åã衚瀺ãããããšãã§ããŸãããã®æé¢ïŒã¿ã°ïŒã«ã€ããŠã詳ãã説æã¯ã[[w:Wikipedia:ç»åã®è¡šç€º]]ãèŠãŠãã ããã
泚æç¹ãããã€ãæããŸããšã
* åºå
žãšãèäœæš©ã»èåæš©ãã©ã€ã»ã³ã¹ã«æ³šæ - åºå
žãã©ã€ã»ã³ã¹ãäžæãªç»åã¯åé€ãããŸããæ¥æ¬èªçãŠã£ãããã£ã¢ã§ã¯ãGFDLãŸãã¯CC BY-SA䞊ã³ã«ãããã«æºããããªãŒã©ã€ã»ã³ã¹ãããã¯PDïŒèäœæš©æŸæ£ã»èäœæš©ä¿è·æéæºäºïŒã®ç»åããã¢ããããŒãã§ããŸããïŒåŸè¿°ïŒ<!--â commonsã«ããã®ã¯å
šéšããïŒãšãã話ãäºæžç«¯ã«ãããŸããã®ã§å€æŽ-->
* ãŠã£ãããã£ã¢ã§ã¯ãç»åã衚瀺ããã®ã«HTMLã¿ã°ã¯äœ¿ããŸãããä»ã®ãµã€ãã«ããç»åããã®ãŸãŸè¡šç€ºããããšããããšã¯ã§ããŸããã®ã§ã泚æããŠãã ããã
* å¿
ãããã¬ãã¥ãŒæ©èœã䜿ã£ãŠãã©ã®ããã«è¡šç€ºãããã確èªããŠãã ããã寞æ³ã®å€§ããªç»åã§ãµã€ãºæå®ããµã ãã€ã«æå®ãå¿ãããšã巚倧ãªç»åã衚瀺ãããããšã«ãªããŸãã
=== ã³ã¢ã³ãºã«ããç»åã衚瀺ãã ===
[[Image:BritNatural History Museum2.jpg|thumb|ã³ã¢ã³ãºããåŒã³åºãããã¡ã€ã«ã§ã]]
衚瀺ã§ããã®ã¯ãæ¥æ¬èªçã«ããç»åã ãã§ã¯ãããŸãããã[[w:ãŠã£ãã¡ãã£ã¢ã³ã¢ã³ãº|ãŠã£ãã¡ãã£ã¢ã³ã¢ã³ãº]]ïŒWikimediaCommons, é称ã³ã¢ã³ãºïŒãã«ããç»åãããŠã£ãããã£ã¢å
ã«ããã®ãšåãæèŠã§ãã®ãŸãŸè¡šç€ºãããããšãã§ããŸãã
æ²èŒã®ä»æ¹ã¯ãŠã£ãããã£ã¢å
ã«ç»åãããã®ãšåããã'''<nowiki>[[ç»å:貌ããããã¡ã€ã«å|thumb|ç»åã®èª¬æ]]</nowiki>'''ãšãã£ãã¿ã°ãæžãããšã«ãªããŸããHTMLã䜿ã£ãŠããŒã ããŒãžãäœã£ãããšã®ããæ¹ã¯ãããïœãšããã£ã¬ã¯ããªãæå®ããªããšãããªãããããšæããããããŸãããããŠã£ãããã£ã¢ã®äžã§ã¯ç»ååã ãã§å€§äžå€«ã§ããã ãŸããããšæã£ãŠãã£ãŠã¿ãŠãã ããã<!--ã³ã¢ã³ãºå
ã®èäœæš©ãã³ãã¬ã®è§£èª¬ã欲ããã»ã»ã»å¥ããŒãžã®æ¹ããããããããªããã©--><!--ããããããŸãããïŒã³ã¢ã³ãºã§ãã¹ã説æã§ã¯ïŒããããããšã§ã¯ãªãïŒ-->
=== ç»åãã¢ããããŒããã ===
ãŠã£ãããã£ã¢ãã³ã¢ã³ãºã«æ¬²ããç»åããªãå Žåã«ã¯ãèªåã®æããçµµãèªåã§æ®ã£ãåçããããã¯å€éšãµã€ãããæã£ãŠãã[[w:Wikipedia:ãããªãã¯ãã¡ã€ã³ã®è³æº|ãããªãã¯ãã¡ã€ã³ãªãã¡ã€ã«]]ãã¢ããããŒãããããšãã§ããŸãããŸãã¯ãããŽã®è¿ãã«ãããã¢ããããŒãããšããæåãã¯ãªãã¯ããŠãã ããïŒè¡šç€ºãããŠããªãå Žåã«ã¯ã[[w:ç¹å¥:Upload]]ãå©çšããŠãã ããïŒã
ã¢ããããŒãçšã®ç»é¢ã衚瀺ããããããŸãã¯ããã«æžããŠãã泚æãäžèªããŠãã ãããèäœæš©ããã¡ã€ã«ã®çš®é¡ã«ã€ããŠã®æ³šæãªã©ã倧åãªããšãæžãããŠããŸããåæã§ãããããªãã"Browse" ããã㯠"åç
§" ãšãããã¿ã³ãæŒããŠãã¢ããããŒããããç»åãéžæããŠãã ããã
ã¢ããããŒããããç»åã®ãã¡ã€ã«åãå€ãããå Žåã«ã¯ãæ²èŒãããã¡ã€ã«åãæ¬ã«æ°ãããã¡ã€ã«åãèšå
¥ããŠãã ãããã¢ããããŒãåŸã«ãã¡ã€ã«åãå€æŽããããšã¯ã§ããªãã®ã§[[w:Wikipedia:ç»åå©çšã®æ¹é#ç»åã®ãã¡ã€ã«å]]ãåèã«ããŠæ
éã«æ±ºããŠãã ããã
次ã«ãããã¡ã€ã«ã®æŠèŠãæ¬ã«å¿
èŠäºé
ãèšå
¥ããŠãã ããããŸã次ã®2ç¹ã¯å¿
ãèšè¿°ããå¿
èŠããããŸã:
; ç»åã®åºå
ž
: ãã®ç»åã®åºæãèšããŸããããèªåãæ®åœ±ããåçãäœæããç»åãªãã<nowiki>~~~</nowiki>ãæ®åœ±ïŒäœæïŒãããªã©ãå€éšã®ãµã€ãã«ãã£ãç»åãªãURLãæžããŸãããããã ããå€éšã®ãµã€ãããæã¡èŸŒãå Žåã¯ãã®ãã¡ã€ã«ãGFDLãPDã§å©çšã§ãããã®ã§ãªããã°ãªããŸããã"All rights reserved." ãšãããµã€ããããåæã«ç»åãæã£ãŠããŠã¯ãããŸããã
; ç»åã®ã©ã€ã»ã³ã¹
: ã<nowiki>{{</nowiki>[[w:Template:GFDL|GFDL]]}}ããªã©ãš[[w:Wikipedia:ç»åã®èäœæš©è¡šç€ºã¿ã°|ã³ããŒã©ã€ãã»ã¿ã°]]ãèšå
¥ããŸããæ¥æ¬èªçã§äœ¿ããã©ã€ã»ã³ã¹ã¯[[w:GFDL]]ãš[[w:ãããªãã¯ãã¡ã€ã³]] (PD) ã®2çš®é¡ããããŸãããæ¥æ¬æ³ã§ã¯èäœæš©ã®äžéšïŒ[[w:èäœè
äººæ Œæš©|èäœè
äººæ Œæš©]]ïŒãææŸãããšãã§ããªããšããè°è«ããããèªåã§äœã£ãç»åãæçš¿ãããšãã¯ãGFDLãšãããŠã£ãããã£ã¢ã³ãã»ãšãã©ã§ããäžæ¹ãããšãã°NASAãã¢ã¡ãªã«è»ã®ãµã€ãã«ããç»åïŒ[[w:ã¢ã¡ãªã«åè¡åœæ¿åºã®èäœç©]]ïŒãªã©ã§ããããªãã¯ãã¡ã€ã³ãªãã¡ã€ã«ãã¢ããããŒãããå Žåã¯ãã<nowiki>{{</nowiki>[[w:Template:PD|PD]]}}ïŒã³ã¢ã³ãºã®å Žåã¯ã<nowiki>{{</nowiki>[[commons:Template:PD-USGov-NASA|PD-USGov-NASA]]}}ãªã©ïŒããšæžãããšã«ãªããŸãã
以äžã®åºå
žãã©ã€ã»ã³ã¹ãã®ããããã§ã'''æ¬ ããŠããå Žå'''ããã®ç»åã¯åºæ¬çã«ã¯'''åé€ããã'''ããšãšãªããŸãã®ã§ã©ãã泚æããŠäžããã
ãã®ã»ããç»åã«ã€ããŠã®ç°¡åãªèª¬æããããšãªãããã§ããããããšãã°ãèªåã§æ®ã£ãåçã§ããã°ãæ®åœ±å Žæãæ¥æãæ®åœ±å¯Ÿè±¡ã«ã€ããŠã®ç°¡åãªèª¬æïŒãââçââåžã«ããââã®åçããªã©ïŒããããšã衚瀺ãããšãã®ãã£ãã·ã§ã³ãä»ãããããªããªã©ã®å©ç¹ãçãŸããŸãã
:♯ åºèã®å
éšã®ç»åããå人ãåç©é€šã®åèµç©ãæ®ãå Žåã«ã¯ããã©ãã«ãé¿ããããã«å¿
ãèš±å¯ãåã£ãŠããæ®åœ±ãããââã®èš±å¯ãåã£ãŠæ®åœ±ããšæèšããŠãã ããã
ãªããçŸåšã¯æ¥æ¬èªçã«ç»åãã¢ããããŒãããããæ¹ããããŠã£ãã¡ãã£ã¢ã³ã¢ã³ãºã«ç»åãã¢ããããŒããããšããæ¹åã«å€ããã€ã€ãããŸããã³ã¢ã³ãºã«ç»åãã¢ããããŒãããããšã«ãããä»èšèªçãä»ã®ãŠã£ãã¡ãã£ã¢ãããžã§ã¯ããšãç»åãå
±æããããšãã§ããŸããæ¥æ¬èªã§ã®ãã¡ã€ã«åãéæšå¥šã ã£ãã<!--ãã«ããŽãªãå¿
ãã€ããªããšãããªãã£ãã-->ãšãã決ãŸããããã®ã§ãä»åã¯ãŠã£ãããã£ã¢æ¬äœãžã®ã¢ããããŒãã説æããŸããããæ
£ããŠããããã²ã³ã¢ã³ãºãžã®ã¢ããããŒããæ€èšããŠã¿ãŠãã ããã[[w:Wikipedia:ã³ã¢ã³ãºãã£ã³ããŒã³|ãŠã£ãããã£ã¢ã«ãã説æããŒãž]]ãåèã«ãªãã§ãããã
以äžã¯ãã³ã¢ã³ãºã«ç»åãã¢ããããŒããããšãã®æš¡ç¯äŸã§ããããŠã£ãããã£ã¢ã§ãåã圢ã§æžãã°å¿
èŠãªæ
å ±ãæžããããã§ãããã
<div style="border:1px solid #aaa; padding:0.5em">
: '''<tt><nowiki>{{Information|</nowiki></tt>'''
: '''<tt>|Description=</tt>''' ç»åã«ã€ããŠã®ç°¡åãªèª¬æãèšããŠãã ããã
: '''<tt>|Source=</tt>''' åºå
žå
ãæžããŠãã ããããããäžã§æãã°URLããã®ãŠã§ããµã€ãã®URLãæããã«ããŸããããå€ãåè¡ç©ãªã©ã§èäœæš©ã®åããç»åãã¹ãã£ã³ããå Žåã¯ãã®åè¡ç©ã®ååãèšããŠãã ãããèªåãèäœæš©ä¿æè
ã§ããå Žåã¯ã'''<tt><nowiki>~~~</nowiki>'s file</tt>'''ãšæžããŠãããšè¯ãã§ãããã<!-- hoge's file ã£ãŠè±èªçã«ã¯ãªããšãªãå€ãªæ°ãããâŠâŠïŒæå³ã¯éããã ãããã©ïŒæŽç·ŽãããŠãªããšããã-->
: '''<tt>|Date=</tt>''' ãã¡ã€ã«ã®äœæããã³çºè¡šæ¥ãèšå
¥ããŸãããã
: '''<tt>|Author=</tt>''' å¶äœè
ã®ååãæžããŸããããããªããå¶äœè
ã§ããå Žåã¯'''<tt><nowiki>~~~</nowiki></tt>'''ãšæžããŠãã ããã
: '''<tt>|Permission=</tt>''' ããªããèäœæš©ä¿æè
ã§ããå Žåã¯ããªããéžæããã©ã€ã»ã³ã¹ãæžããŠãã ããïŒãã³ãã¬ãŒãã§ã¯æããŸããïŒãå€éšã®ãã¡ã€ã«ã§ããå Žåã¯å©çšæ¡ä»¶ãæžããŠãã ããïŒãã ããå€éšã®æ¡ä»¶ãé·æã«æž¡ãå Žåã¯ç°¡åãªèª¬ææãšãªã³ã¯ã§ããŸããŸããïŒã
: '''<tt>|other_versions =</tt>''' ã³ã¢ã³ãºäžã«ãã®ãã¡ã€ã«ãã掟çãããã¡ã€ã«ããããªãæžããŸãããïŒäŸ: ãã®ç»åã®ââã®éšåãæ¡å€§ããç»åïŒã
: '''<tt>}}</tt>'''
'''<tt><nowiki>{{<ã³ããŒã©ã€ãã»ã¿ã°>}}</nowiki></tt>''' [[w:Wikipedia:ç»åã®èäœæš©è¡šç€ºã¿ã°|ã³ããŒã©ã€ãã»ã¿ã°]]ã貌ã£ãŠãã ãããæ¥æ¬èªçã§ããã°ã<nowiki>{{PD}} ã {{GFDL}}</nowiki> ã®ããããã§ãã
</div>
<!--ä»èšèªçã®å
šãåäžã®ç»åãja:ã«ãã£ãŠããã®ã¯éæšå¥šã§ã¯âŠâŠããã¯commonsã®ãããã§ãããïŒãšããããã§ãã£ããã³ã¡ã³ãã¢ãŠãããŸãïŒ
=== ä»èšèªçã®ç»åã移å
¥ãã ===
-->
<!--ä»ã®èšèªçã§ã¯ããã§ã¢ãŠãŒã¹ãšãCCãããããæ°ãã€ããŠãïœãšãã説æããããæžããããšã移å
¥ã®æã«ã¯ãçžäºãªã³ã¯ã匵ãã£ãŠããšãšãåºå
žå
ãæèšãããšãã泚æã-->
<!--
ãŠã£ãããã£ã¢ã¯ãå€èšèªã§å±éãããããžã§ã¯ãã§ããæ¥æ¬èªçã«ãã³ã¢ã³ãºã«ããªãç»åã欲ããå Žåã«ã¯ãä»åœèªçã®ãŠã£ãããã£ã¢ãªã©ããç»åãæã£ãŠããããšãã§ããŸãã
# ç»åã欲ããé
ç®ã®å³ç«¯ã«ããä»ã®èšèªã®é
ç®ã«é£ãã§ã¿ããïŒãã®ãšãã«å¥ã®ãŠã€ã³ããŠã§éãããšäŸ¿å©ã§ãïŒ
# æ°ã«å
¥ã£ãç»åãããã°ããã®ç»åãã¯ãªãã¯
# ç»åã®äžã§å³ã¯ãªãã¯ãèªåã®PCã«ãã£ããä¿åããã
# ä»åºŠã¯æ¥æ¬èªçã«ã¢ããããŒãã
# ããã¡ã€ã«ã®æŠèŠãæ¬ã«ã¯ãã<nowiki>[[:en:Image:ãã¡ã€ã«å]]ããã{{GFDL}}</nowiki>ããªã©ãšæžããåæã«å
ã®ç»åãšãã®ç»åããŒãžã®éã§[[w:Wikipedia:èšèªéãªã³ã¯|èšèªéãªã³ã¯]]ã貌ããïŒããããŠããã°ãå
ã®ç»åãèäœæš©éåãªã©ã®çç±ã§åé€ã«ãªã£ããšãã«ãæ
å ±ããããããããªããŸãïŒ
:: ãŸããåæã«å
ã®èšèªçã®æ
å ±ïŒäœæè
ãæ®åœ±å Žæã®æ
å ±ãç·šéãã人ãããã°ãã®æ
å ±ãªã©ïŒãã³ããŒããŠãããŸãããã
-->
æ¥æ¬èªçã§ã¯ãPDãšGFDLãCC BY-SAããããã¯ãããã«æºããããªãŒã©ã€ã»ã³ã¹ã®<!--ã©ã€ã»ã³ã¹ã® â PDã¯ã©ã€ã»ã³ã¹ãããªãïŒãšããããã³ãåé¿ã®ããã«ãã¡ããã³ã¡ã³ãã¢ãŠã-->ç»åãã䜿ããŸããããã[[w:ãã§ã¢ãŠãŒã¹|ãã§ã¢ãŠãŒã¹]] (Fairuse) ãªã©ãä»ã®ã©ã€ã»ã³ã¹ã®ç»åã䜿ããèšèªç/å§åŠ¹ãããžã§ã¯ãããããŸããæ¥æ¬èªçãŠã£ãããã£ã¢ã«é©åããªãã©ã€ã»ã³ã¹ã®ãã®ãæ¥æ¬èªçã«ã¢ããããŒãããŠããŸããšåé€ãããŸãã®ã§ã泚æããŸãããããŠã£ãã¡ãã£ã¢ã³ã¢ã³ãºã§ã¯ãCCã¯OK, Fairuseã¯äžå¯ãšãªã£ãŠããŸããã€ãŸããè±èªç㧠Fairuse ãšãªã£ãŠããç»åãæ¥æ¬èªçã§è¡šç€ºããããšã¯ãçŸåšã¯æ®å¿µãªããã§ããŸããã
=== ãã¡ã€ã«åãå€ããããªã£ãã ===
éåžžã®èšäºãšéããç»åããŒãžã¯ç§»åæ©èœã䜿ã£ã移åãã§ããŸããããã®ãããç»åã®ãã¡ã€ã«åãå€ããããã«ã¯ãä¿åããŠå¥åã§åã³ã¢ããããŒãããªããŠã¯ãªããŸãããåçŽãªç¶Žãã®ééãã ãã§ãªãããã¡ã€ã«åããå
容ãé¡æšã§ããªããã®ã«ã€ããŠããã¡ã€ã«åãå€æŽããã»ããããã§ãããããã¡ã€ã«åå€æŽã«ããéè€ããç»åã¯ããã®ç»åããŒãžã«æçš¿è
èªèº«ã§ <nowiki>{{å³æåé€|å
šè¬8|[[ãã¡ã€ã«å.jpg]]ãšéè€}}</nowiki> ãªã©ãšæžããŠããã°ã管çè
ã«ããåé€ãããŸãã
=== ç»å以å€ã¯ïŒ ===
以äžã§ã¯ç»åã«ã€ããŠèª¬æããŠããŸããããé³å£°ãã¡ã€ã«ãGIFã¢ãã¡ãåç»ãªã©ä»ã®ã¡ãã£ã¢ãã¡ã€ã«ã«ã€ããŠããåºæ¬çã«ã¯åæ§ã§ãïŒåºå
žãšã©ã€ã»ã³ã¹ãå¿ããªãã§äžããïŒã詳ããã¯ããŠã£ãããã£ã¢ã®[[w:Wikipedia:ãã«ãã¡ãã£ã¢FAQ]]ãªã©ãèŠãŠã¿ãŠäžããã
== 翻蚳 ==
ããäžã€ãå çã®æ¹æ³ãšããŠã¯ä»èšèªçããæ
å ±ãæã£ãŠæ¥ããšããæ¹æ³ããããŸãããŠã£ãããã£ã¢ããŽããŒã¯ã®äžã®æ¹ã«ã次ã®ãããªããã¯ã¹ã«å
¥ã£ãæååãããã°ã¯ãªãã¯ããŠã¿ãŸãããã
{| style="border:1px solid #777; padding:.5em; font-size:smaller; color:#000; background:#fff"
|
*Deutsch
*English
*Français
|}
Englishãªãè±èªçã®ãFrançaisãªããã©ã³ã¹èªçã®è©²åœããŒãžã«è¡ãããšãã§ããŸãããŠã£ãããã£ã¢ã¯ãGFDLãšCC BY-SAã«åŸã£ãŠæžãããŠããã®ã§ãèŠçŽæ¬ã«ãã泚æããã°ãä»èšèªçã®ããŒãžãã³ããŒãããã翻蚳ããŠãæ§ããŸããããã ãã'''èŠçŽæ¬ãžã®èšèŒãæ ã'''ãšããã£ããã®ç¿»èš³ãGFDLãšCC BY-SAã®èŠä»¶ãæºãããŠããªããšããŠ'''åé€ããã'''ããšãããããŸãã®ã§ãä»èšèªçã®ããŒãžã翻蚳ããããšæã£ãå Žåã¯ããŸãã¯äžåºŠ'''[[w:Wikipedia:翻蚳FAQ]]'''ã«ç®ãéããŠäžããã
<!-- ãã¿ãŸãããå
·äœäŸã«ã€ããŠã¯ã³ã¡ã³ãã¢ãŠãããŸãïŒç¿»èš³FAQå¿
èªã£ãŠããšã§âŠâŠïŒæ£çŽïŒç¿»èš³ã¯å®æã«ããããã§ãããã®ã§ã¯ãªããšæããŸãïŒèŠçŽæ¬èšå
¥ãã¹ãšããäºçŽ°ãªçç±ã§åé€ãããŠããŸã£ããšãã®ãã¡ãŒãžã¯ïŒç¹ã«åå¿è
ã«ã¯éåžžã«å€§ãããšæããŸãã®ã§ïŒããçšåºŠãã£ãããšç解ããäžã§ãªããšïŒãããªãæ¹ããããšæããŸãïŒ
ãã®éã«ã¯èŠçŽæ¬ã«ã
è±èªçã®Harley-Davidson 21:18, 30 May 2005 UTCã翻蚳ãèè
ïŒâŠâŠ
ãšããããã«ãæžããŠãã ããããã®å Žåã¯ããè±èªçã®ããŒã¬ãŒãããããœã³ã®èšäºïŒ[[w:en:Harley-Davidson]]ïŒã®21:18, 30 May 2005 (UTC) ã®çãå
ã«ç¿»èš³ãããäž»èŠãªèè
ã¯âŠâŠããšããæå³ã«ãªããŸããé
ç®åã¯åããã®èšäºåãããã€ã®çããšããã®ã¯ãè±èªçãªããhistoryããä»ã®èšèªçã§ããã°ãã®èšèªã§historyã«å¯Ÿå¿ããèšèãæžãããŠããã¿ããã¯ãªãã¯ããŠã翻蚳ããçã®æ¥ä»ã確èªããŠäžãããã¿ã€ã ãŸãŒã³ã¯ããªãã·ã§ã³ã§èšå®ããŠããªããã°[[w:åå®äžçæ|UTC]]ãªã®ã§ãã®ããã«ãJSTãªã©ã«å€ããŠããã°ãããæžããŠäžããã
-->
{{stub}}
[[Category:ãŠã£ãããã£ã¢ã®æžãæ¹|ã«ã
ããã02]] | 2005-04-10T09:30:54Z | 2023-12-28T13:20:44Z | [
"ãã³ãã¬ãŒã:æžãæ¹å
¥éç·šNav",
"ãã³ãã¬ãŒã:Stub"
] | https://ja.wikibooks.org/wiki/%E3%82%A6%E3%82%A3%E3%82%AD%E3%83%9A%E3%83%87%E3%82%A3%E3%82%A2%E3%81%AE%E6%9B%B8%E3%81%8D%E6%96%B9/%E5%85%A5%E9%96%80%E7%B7%A8/%E6%9B%B8%E3%81%84%E3%81%A6%E3%81%BF%E3%82%88%E3%81%86/%E5%8A%A0%E7%AD%86%E7%B7%A8 |
1,854 | ãã®ä»ã®æ¬ | ãã®æ¬æ£ã¯ãã©ã®æ¬æ£ã«ãå
¥ããªãæ¬ã䞊ã¹ãæ¬æ£ã§ãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ãã®æ¬æ£ã¯ãã©ã®æ¬æ£ã«ãå
¥ããªãæ¬ã䞊ã¹ãæ¬æ£ã§ãã",
"title": ""
}
] | ãã®æ¬æ£ã¯ãã©ã®æ¬æ£ã«ãå
¥ããªãæ¬ã䞊ã¹ãæ¬æ£ã§ãã | {{åä¿è·}}
{{Pathnav|ã¡ã€ã³ããŒãž|frame=1}}
{{é²æç¶æ³}}
ãã®æ¬æ£ã¯ãã©ã®æ¬æ£ã«ãå
¥ããªãæ¬ã䞊ã¹ãæ¬æ£ã§ãã
== ãã®ä» ==
*[[ãŠã£ãã¡ãã£ã¢è²¡å£]]
** [[ãŠã£ãããã£ã¢ã®æžãæ¹]]{{é²æ|75%|2023-10-25}}
** [[ãŠã£ãããŒã¿]]{{é²æ|50%|2023-10-25}}
* [[ç°¿èš]]
* [[äœææŠè«]]
* [[ç°å¢å¯Ÿç]]
** [[å°çæž©æåé²æ¢å¯Ÿç]]{{é²æ|00%|2019-03-9}}
* [[飌è²æ³]]
* [[å人èªå³å£²äŒåå æ¹æ³]]{{é²æ|75%|2019-07-30}}
* [[ãžã§ãŒã¯é]]
* [[JRã®éè³èšç®æ¹æ³]]
* [[æ¶ç©ºäžçã®äœãæ¹]]
* [[ææãåèãã]]
* [[趣å³]]
[[Category:æžåº«|ãã®ã»ãã®ã»ã]] | 2005-04-12T10:13:29Z | 2023-10-26T15:22:31Z | [
"ãã³ãã¬ãŒã:åä¿è·",
"ãã³ãã¬ãŒã:Pathnav",
"ãã³ãã¬ãŒã:é²æç¶æ³",
"ãã³ãã¬ãŒã:é²æ"
] | https://ja.wikibooks.org/wiki/%E3%81%9D%E3%81%AE%E4%BB%96%E3%81%AE%E6%9C%AC |
1,859 | ãŠã£ãããã£ã¢ã®æžãæ¹/ããŒã¿ã«ã»ãããžã§ã¯ãæ¡å
| ãŠã£ãããã£ã¢å
ã«ã¯ãåãåéã«èå³ãæã€å·çè
ãéãŸããè¡šèšãå
容ãªã©ã話ãåãããŒãžããããŸããèšäºãæžããŠããŠå°ã£ããšããè¿·ã£ããšãã«ã¯ã該åœãžã£ã³ã«ã®ããŒã¿ã«ããŒãžããããžã§ã¯ãã®ããŒãããŒãžã§ãçžè«ããŠã¿ãŸãããããã£ãšå
茩ãŠã£ãããã£ã¢ã³ããææ矩ãªã¢ããŽã¡ã€ã¹ãããããã§ãããã
ããŒã¿ã«ãšã¯ãè±èªã§éãæå³ããŸãããã®åéã®éèŠãªèšäºããæ°ããèšäºãªã©æ³šç®ãããèšäºãéãããã®åéå
šäœãæŠèŠ³ããããšãããããŸããé¢ä¿ããèšäºãäžããŒãžã«ãã€ããããŸããŸãªé
ç®ã玹ä»ããŸãããããŠãã®ããŒã¿ã«ã¯æ¬¡ã®ç¯ã§çŽ¹ä»ãããããžã§ã¯ããããããå°ãåºãç¯å²ãæ±ã£ãŠããŸãã
ããŒã¿ã«ã®éå¶æ¹éã¯ããããã«ç°ãªããŸããã§ãããããŠãã®ããŒã¿ã«ã¯é²èŠ§ããã人ãšç·šéã®äž¡æ¹ã«åœ¹ç«ã€ããšãç®æããŠããŸããã€ãŸããããŒã¿ã«ã¯èªè
ãžã®æ¡å
ã§ãããšãšãã«ããã®åéã®é
ç®ãå·çãã人ãäœæ¥ãããããããããšãç®æšã«ããŠããŸããããšãã°ãæ°çé
ç®ã¯èªè
ãžã®æ¡å
ã§ãããšãšãã«ãå çãæç« ã®æŽåœ¢(èåã)ãå·çè
ã«åŒã³ããã圹å²ãæãããŸãã
ããã«ç¿»èš³äŸé Œãå çäŸé Œãšãã£ããå®å
šã«å·çè
åãã®ã³ãŒããŒãåããããŒã¿ã«ãå€ãååšããŸãã
ãŸãäžéšã®ããŒã¿ã«ã§ã¯ãé±åäœãæåäœã§ç¹å®ã®é
ç®ãéäžããŠå·çãããç¹éèšäºãã®äŒç»ãè¡ãããŠããŸããæã«ã¯ããŒã¿ã«ã®ããŒããç¹å®åéã®é
ç®ã®å·çã«é¢ããè°è«ãçµæçã«éçŽããå Žã«ãªã£ãŠããããšããããŸã(ããã¯ãããžã§ã¯ãã«ãåœãŠã¯ãŸããŸã)ã
ããã€ãã®ããŒã¿ã«ã§ã¯ãåå è
ãã®ãªã¹ããåããŠããŸããããã¯ç©æ¥µçã«ããŒã¿ã«ã䜿ã£ãŠãããšãã宣èšã®ãããªãã®ã§ããªã¹ãã«ååãã®ããªããã°ããŒã¿ã«ãé²èŠ§ããããç·šéãããããŠã¯ãããªããšããæå³ã§ã¯ãããŸãããããããããããªãããšããã£ãããæ°è»œã«ããŒã¿ã«ã®ããŒããåå è
ãªã¹ãã«ååãã®ããŠãã人ã«çžè«ããŠã¿ãŸãããã
æ¥æ¬èªçãŠã£ãããã£ã¢ã«ã¯äžèšã®ãããªããŒã¿ã«ããããŸãã
äžèŠ§ããŒãžãåèã«ããŠãã ããã
ãŸããããŒã¿ã«ã§ã¯ãªãã§ãããåããããªæŽ»åãè¡ã£ãŠããããŒãžãããã€ããããŸãã
ãããžã§ã¯ããšã¯ãç¹å®ã®åéã®èšäºãå
å®ãããããããã®åéã®èšäºã®ç·šéã®æéãã¬ã€ãã©ã€ã³ã«ã€ããŠè°è«ããŠããå Žã§ããåãããžã§ã¯ãããŒãžã«çœ²åããããšã§åå è¡šæãã§ããŸããèªåã®èå³ã®ããåéã®ãããžã§ã¯ãããŒãžãããã°ããã²åå ããŠã¿ãŸããããæ¥æ¬èªçã«ã¯ä»¥äžã®ãããªãããžã§ã¯ãããããŸããäžèŠ§ããŒãžãåèã«ããŠãã ããã
ããã€ãã®ãããžã§ã¯ãã¯ä»ã®èšèªçããã®ç¿»èš³ã«ãã£ãŠå§ãŸããŸãããããã€ãã®ãããžã§ã¯ãã¯ãŸã£ããç¬èªã«æ¥æ¬èªçã§ã¯ãããããŸãããä»ã®ãããžã§ã¯ããåèã«ç«ã¡äžãããããã®ããããŸããèªåã®é¢å¿ãããäž»é¡ãäžäººã§æžãã«ã¯å€§ãããã®ã ã£ãããçæã®æŽä»£åäž»ã®ãããªäžå®ã®æ±ºãŸã£ã圢åŒãããã»ããæžãããããããªãã®ã§ããããããŸãããããžã§ã¯ãã§é©åœãªãã®ããªããèããŠã¿ãŸãããããããŠãããŸã ãªãã®ãªããããªããæ°ãããããžã§ã¯ããå§ããããšãã§ããã®ã§ãããã ãããããžã§ã¯ããå§ããã®ã§ããã°ãä»ã®ç·šéè
ãšååã«çžè«ããããšã倧åã§ãããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ãŠã£ãããã£ã¢å
ã«ã¯ãåãåéã«èå³ãæã€å·çè
ãéãŸããè¡šèšãå
容ãªã©ã話ãåãããŒãžããããŸããèšäºãæžããŠããŠå°ã£ããšããè¿·ã£ããšãã«ã¯ã該åœãžã£ã³ã«ã®ããŒã¿ã«ããŒãžããããžã§ã¯ãã®ããŒãããŒãžã§ãçžè«ããŠã¿ãŸãããããã£ãšå
茩ãŠã£ãããã£ã¢ã³ããææ矩ãªã¢ããŽã¡ã€ã¹ãããããã§ãããã",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ããŒã¿ã«ãšã¯ãè±èªã§éãæå³ããŸãããã®åéã®éèŠãªèšäºããæ°ããèšäºãªã©æ³šç®ãããèšäºãéãããã®åéå
šäœãæŠèŠ³ããããšãããããŸããé¢ä¿ããèšäºãäžããŒãžã«ãã€ããããŸããŸãªé
ç®ã玹ä»ããŸãããããŠãã®ããŒã¿ã«ã¯æ¬¡ã®ç¯ã§çŽ¹ä»ãããããžã§ã¯ããããããå°ãåºãç¯å²ãæ±ã£ãŠããŸãã",
"title": "ããŒã¿ã«"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ããŒã¿ã«ã®éå¶æ¹éã¯ããããã«ç°ãªããŸããã§ãããããŠãã®ããŒã¿ã«ã¯é²èŠ§ããã人ãšç·šéã®äž¡æ¹ã«åœ¹ç«ã€ããšãç®æããŠããŸããã€ãŸããããŒã¿ã«ã¯èªè
ãžã®æ¡å
ã§ãããšãšãã«ããã®åéã®é
ç®ãå·çãã人ãäœæ¥ãããããããããšãç®æšã«ããŠããŸããããšãã°ãæ°çé
ç®ã¯èªè
ãžã®æ¡å
ã§ãããšãšãã«ãå çãæç« ã®æŽåœ¢(èåã)ãå·çè
ã«åŒã³ããã圹å²ãæãããŸãã",
"title": "ããŒã¿ã«"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ããã«ç¿»èš³äŸé Œãå çäŸé Œãšãã£ããå®å
šã«å·çè
åãã®ã³ãŒããŒãåããããŒã¿ã«ãå€ãååšããŸãã",
"title": "ããŒã¿ã«"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ãŸãäžéšã®ããŒã¿ã«ã§ã¯ãé±åäœãæåäœã§ç¹å®ã®é
ç®ãéäžããŠå·çãããç¹éèšäºãã®äŒç»ãè¡ãããŠããŸããæã«ã¯ããŒã¿ã«ã®ããŒããç¹å®åéã®é
ç®ã®å·çã«é¢ããè°è«ãçµæçã«éçŽããå Žã«ãªã£ãŠããããšããããŸã(ããã¯ãããžã§ã¯ãã«ãåœãŠã¯ãŸããŸã)ã",
"title": "ããŒã¿ã«"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ããã€ãã®ããŒã¿ã«ã§ã¯ãåå è
ãã®ãªã¹ããåããŠããŸããããã¯ç©æ¥µçã«ããŒã¿ã«ã䜿ã£ãŠãããšãã宣èšã®ãããªãã®ã§ããªã¹ãã«ååãã®ããªããã°ããŒã¿ã«ãé²èŠ§ããããç·šéãããããŠã¯ãããªããšããæå³ã§ã¯ãããŸãããããããããããªãããšããã£ãããæ°è»œã«ããŒã¿ã«ã®ããŒããåå è
ãªã¹ãã«ååãã®ããŠãã人ã«çžè«ããŠã¿ãŸãããã",
"title": "ããŒã¿ã«"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "æ¥æ¬èªçãŠã£ãããã£ã¢ã«ã¯äžèšã®ãããªããŒã¿ã«ããããŸãã",
"title": "ããŒã¿ã«"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "äžèŠ§ããŒãžãåèã«ããŠãã ããã",
"title": "ããŒã¿ã«"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "ãŸããããŒã¿ã«ã§ã¯ãªãã§ãããåããããªæŽ»åãè¡ã£ãŠããããŒãžãããã€ããããŸãã",
"title": "ããŒã¿ã«"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "ãããžã§ã¯ããšã¯ãç¹å®ã®åéã®èšäºãå
å®ãããããããã®åéã®èšäºã®ç·šéã®æéãã¬ã€ãã©ã€ã³ã«ã€ããŠè°è«ããŠããå Žã§ããåãããžã§ã¯ãããŒãžã«çœ²åããããšã§åå è¡šæãã§ããŸããèªåã®èå³ã®ããåéã®ãããžã§ã¯ãããŒãžãããã°ããã²åå ããŠã¿ãŸããããæ¥æ¬èªçã«ã¯ä»¥äžã®ãããªãããžã§ã¯ãããããŸããäžèŠ§ããŒãžãåèã«ããŠãã ããã",
"title": "ãããžã§ã¯ã"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "ããã€ãã®ãããžã§ã¯ãã¯ä»ã®èšèªçããã®ç¿»èš³ã«ãã£ãŠå§ãŸããŸãããããã€ãã®ãããžã§ã¯ãã¯ãŸã£ããç¬èªã«æ¥æ¬èªçã§ã¯ãããããŸãããä»ã®ãããžã§ã¯ããåèã«ç«ã¡äžãããããã®ããããŸããèªåã®é¢å¿ãããäž»é¡ãäžäººã§æžãã«ã¯å€§ãããã®ã ã£ãããçæã®æŽä»£åäž»ã®ãããªäžå®ã®æ±ºãŸã£ã圢åŒãããã»ããæžãããããããªãã®ã§ããããããŸãããããžã§ã¯ãã§é©åœãªãã®ããªããèããŠã¿ãŸãããããããŠãããŸã ãªãã®ãªããããªããæ°ãããããžã§ã¯ããå§ããããšãã§ããã®ã§ãããã ãããããžã§ã¯ããå§ããã®ã§ããã°ãä»ã®ç·šéè
ãšååã«çžè«ããããšã倧åã§ãããã",
"title": "ãããžã§ã¯ã"
}
] | ãŠã£ãããã£ã¢å
ã«ã¯ãåãåéã«èå³ãæã€å·çè
ãéãŸããè¡šèšãå
容ãªã©ã話ãåãããŒãžããããŸããèšäºãæžããŠããŠå°ã£ããšããè¿·ã£ããšãã«ã¯ã該åœãžã£ã³ã«ã®ããŒã¿ã«ããŒãžããããžã§ã¯ãã®ããŒãããŒãžã§ãçžè«ããŠã¿ãŸãããããã£ãšå
茩ãŠã£ãããã£ã¢ã³ããææ矩ãªã¢ããŽã¡ã€ã¹ãããããã§ãããã | ãŠã£ãããã£ã¢å
ã«ã¯ãåãåéã«èå³ãæã€å·çè
ãéãŸããè¡šèšãå
容ãªã©ã話ãåãããŒãžããããŸããèšäºãæžããŠããŠå°ã£ããšããè¿·ã£ããšãã«ã¯ã該åœãžã£ã³ã«ã®ããŒã¿ã«ããŒãžããããžã§ã¯ãã®ããŒãããŒãžã§ãçžè«ããŠã¿ãŸãããããã£ãšå
茩ãŠã£ãããã£ã¢ã³ããææ矩ãªã¢ããŽã¡ã€ã¹ãããããã§ãããã
==ããŒã¿ã«==
'''ããŒã¿ã«'''ãšã¯ãè±èªã§éãæå³ããŸãããã®åéã®éèŠãªèšäºããæ°ããèšäºãªã©æ³šç®ãããèšäºãéãããã®åéå
šäœãæŠèŠ³ããããšãããããŸããé¢ä¿ããèšäºãäžããŒãžã«ãã€ããããŸããŸãªé
ç®ã玹ä»ããŸãããããŠãã®ããŒã¿ã«ã¯æ¬¡ã®ç¯ã§çŽ¹ä»ãããããžã§ã¯ããããããå°ãåºãç¯å²ãæ±ã£ãŠããŸãã
ããŒã¿ã«ã®éå¶æ¹éã¯ããããã«ç°ãªããŸããã§ãããããŠãã®ããŒã¿ã«ã¯é²èŠ§ããã人ãšç·šéã®äž¡æ¹ã«åœ¹ç«ã€ããšãç®æããŠããŸããã€ãŸããããŒã¿ã«ã¯èªè
ãžã®æ¡å
ã§ãããšãšãã«ããã®åéã®é
ç®ãå·çãã人ãäœæ¥ãããããããããšãç®æšã«ããŠããŸããããšãã°ãæ°çé
ç®ã¯èªè
ãžã®æ¡å
ã§ãããšãšãã«ãå çãæç« ã®æŽåœ¢ïŒ[[w:wikipedia:éèãšã|èåã]]ïŒãå·çè
ã«åŒã³ããã圹å²ãæãããŸãã
<!--å·çæ¯æŽ-->
ããã«ç¿»èš³äŸé Œãå çäŸé Œãšãã£ããå®å
šã«å·çè
åãã®ã³ãŒããŒãåããããŒã¿ã«ãå€ãååšããŸãã
ãŸãäžéšã®ããŒã¿ã«ã§ã¯ãé±åäœãæåäœã§ç¹å®ã®é
ç®ãéäžããŠå·çãããç¹éèšäºãã®äŒç»ãè¡ãããŠããŸããæã«ã¯ããŒã¿ã«ã®ããŒããç¹å®åéã®é
ç®ã®å·çã«é¢ããè°è«ãçµæçã«éçŽããå Žã«ãªã£ãŠããããšããããŸãïŒããã¯ãããžã§ã¯ãã«ãåœãŠã¯ãŸããŸãïŒã
ããã€ãã®ããŒã¿ã«ã§ã¯ãåå è
ãã®ãªã¹ããåããŠããŸããããã¯ç©æ¥µçã«ããŒã¿ã«ã䜿ã£ãŠãããšãã宣èšã®ãããªãã®ã§ããªã¹ãã«ååãã®ããªããã°ããŒã¿ã«ãé²èŠ§ããããç·šéãããããŠã¯ãããªããšããæå³ã§ã¯ãããŸãããããããããããªãããšããã£ãããæ°è»œã«ããŒã¿ã«ã®ããŒããåå è
ãªã¹ãã«ååãã®ããŠãã人ã«çžè«ããŠã¿ãŸãããã
æ¥æ¬èªçãŠã£ãããã£ã¢ã«ã¯äžèšã®ãããªããŒã¿ã«ããããŸãã
[[w:wikipedia:ãŠã£ãããŒã¿ã«/äžèŠ§|äžèŠ§ããŒãž]]ãåèã«ããŠãã ããã
<!--{{w:Template:ãŠã£ãããŒã¿ã«}}ãåŒã³åºãããããã®ã§ãããå¥ãããžã§ã¯ãã®ãã³ãã¬ãŒããåŒã³åºãããšã¯ã§ããªãããã§ãã-->
<!--èªè
ãšç·šéè
åãã®ãã¯ãã«ã ãšãã話ãæžããã°ã-->
<!--äºåé³é -->
<!-- æ£åŒçºè¶³ã«éããŸããããã©ããã®ãã®ãå
¥ããŠãã ãã-->
*[[w:Portal: ã¢ãã¡|ã¢ãã¡]]
*[[w:Portal: å»åŠãšå»ç|å»åŠãšå»ç]]
*[[w:Portal: æ ç»|æ ç»]]
*[[w:Portal: ãšã¬ã¯ãããã¯ã¹|ãšã¬ã¯ãããã¯ã¹]]
*[[w:Portal: æž©æ³|æž©æ³]]
*[[w:Portal: ååŠ|ååŠ]]
*[[w:Portal: ç°å¢|ç°å¢]]
*[[w:Portal: éåœ|éåœ]]
*[[w:Portal: æè²|æè²]]
*[[w:Portal: ããªã¹ãæ|ããªã¹ãæ]]
*[[w:Portal: ã¯ã©ã·ãã¯é³æ¥œ|ã¯ã©ã·ãã¯é³æ¥œ]]
*[[w:Portal: è»äº|è»äº]]
*[[w:Portal: ã²ãŒã |ã²ãŒã ]]
*[[w:Portal: 建ç¯|建ç¯]]
*[[w:Portal: ã³ã³ãã¥ãŒã¿|ã³ã³ãã¥ãŒã¿]]
*[[w:Portal: é£|é£]]
*[[w:Portal: æ€ç©|æ€ç©]]
*[[w:Portal: æ°åŠ|æ°åŠ]]
*[[w:Portal: ã¹ããŒã|ã¹ããŒã]]
*[[w:Portal: çç©åŠ|çç©åŠ]]
*[[w:Portal: 第äžåžåœ|第äžåžåœ]]
*[[w:Portal: 倧æ±äºå
±æ å|倧æ±äºå
±æ å]]
*[[w:Portal: å²åŠ|å²åŠ]]
*[[w:Portal: ãã¬ã|ãã¬ã]]
*[[w:Portal: æ¥æ¬|æ¥æ¬]]
*[[w:Portal: æ¥æ¬ã®å°åå¥èšäº|æ¥æ¬ã®å°åå¥èšäº]]
*[[w:Portal: æ¥æ¬ã®å°ç|æ¥æ¬ã®å°ç]]
*[[w:Portal: çŸè¡|çŸè¡]]
*[[w:Portal: èå°èžè¡|èå°èžè¡]]
*[[w:Portal: ä»æ|ä»æ]]
*[[w:Portal: ç©çåŠ|ç©çåŠ]]
*[[w:Portal: æåŠ|æåŠ]]
*[[w:Portal: å¹³å|å¹³å]]
*[[w:Portal: æŸé|æŸé]]
*[[w:Portal: 挫ç»|挫ç»]]
*[[w:Portal: ãšãŒããã|ãšãŒããã]]
*[[w:Portal: ã©ãžãª|ã©ãžãª]]
*[[w:Portal: æŽå²|æŽå²]]
<!--ããã¡ãã£ãšå
å®ããããåããŒã¿ã«ããããžã§ã¯ãã®æ¹ã«ã¡ãã»ãŒãžãé¡ãããããããé¢çœãããïŒ-->
ãŸããããŒã¿ã«ã§ã¯ãªãã§ãããåããããªæŽ»åãè¡ã£ãŠããããŒãžãããã€ããããŸãã
*翻蚳ïŒ>[[w:Wikipedia:翻蚳äŸé Œ]]
<!--éæãè¿œå ãé¡ãããŸããããŒã¿ã«ã®æ¹ãããããïŒ-->
==ãããžã§ã¯ã==
'''ãããžã§ã¯ã'''ãšã¯ãç¹å®ã®åéã®èšäºãå
å®ãããããããã®åéã®èšäºã®ç·šéã®æéãã¬ã€ãã©ã€ã³ã«ã€ããŠè°è«ããŠããå Žã§ããåãããžã§ã¯ãããŒãžã«çœ²åããããšã§åå è¡šæãã§ããŸããèªåã®èå³ã®ããåéã®ãããžã§ã¯ãããŒãžãããã°ããã²åå ããŠã¿ãŸããããæ¥æ¬èªçã«ã¯ä»¥äžã®ãããªãããžã§ã¯ãããããŸãã[[w:Wikipedia:ãŠã£ããããžã§ã¯ã/äžèŠ§|äžèŠ§ããŒãž]]ãåèã«ããŠãã ããã<!--å·çè
åãã®ãã¯ãã«ã ãšããããšãããã¡ãã£ãšæžããã-->
*人ç©äŒ-[[w:ãããžã§ã¯ã:èžèœäºº|èžèœäºº]]-[[w:ãããžã§ã¯ã:äœå®¶|äœå®¶]]-[[w:ãããžã§ã¯ã:挫ç»å®¶|挫ç»å®¶]]-[[w:ãããžã§ã¯ã:ã¢ããŠã³ãµãŒ|ã¢ããŠã³ãµãŒ]]-[[w:ãããžã§ã¯ã:éçéžæ|éçéžæ]]-[[w:ãããžã§ã¯ã:ãµãã«ãŒéžæ|ãµãã«ãŒéžæ]]-[[w:ãããžã§ã¯ã:ããã¬ã¹ã©ãŒ|ããã¬ã¹ã©ãŒ]]
*茞éã»äº€é-[[w:ãããžã§ã¯ã:éé|éé]]-[[w:ãããžã§ã¯ã:éè·¯|éè·¯]]-[[w:ãããžã§ã¯ã:èªç©º|èªç©º]]-[[w:ãããžã§ã¯ã:空枯ã»é£è¡å Ž|空枯ã»é£è¡å Ž]]-[[w:ãããžã§ã¯ã:èªåè»|èªåè»]]-[[w:ãããžã§ã¯ã:ä¹çšè»|ä¹çšè»]]
*æåãšèžè¡-[[w:ãããžã§ã¯ã:ã¹ããŒã|ã¹ããŒã]]-[[w:ãããžã§ã¯ã:ãªãªã³ããã¯|ãªãªã³ããã¯]]-[[w:ãããžã§ã¯ã:æ¥æ¬æå|æ¥æ¬æå]]-[[w:ãããžã§ã¯ã:è²å|è²å]]-[[w:ãããžã§ã¯ã:é³æ¥œ|é³æ¥œ]]
*å°ç-[[w:ãããžã§ã¯ã:åœ|åœ]]-[[w:ãããžã§ã¯ã:ã¢ã¡ãªã«åè¡åœã®å·|ã¢ã¡ãªã«åè¡åœã®å·]]-[[w:ãããžã§ã¯ã:äžè¯äººæ°å
±ååœã®è¡æ¿åºå|äžè¯äººæ°å
±ååœã®è¡æ¿åºå]]-[[w:ãããžã§ã¯ã:æ¥æ¬ã®åžçºæ|æ¥æ¬ã®åžçºæ]]-[[w:ãããžã§ã¯ã:å°å³|å°å³]]-[[w:ãããžã§ã¯ã:å°åœ¢|å°åœ¢]]-[[w:ãããžã§ã¯ã:æ²³å·|æ²³å·]]-[[w:ãããžã§ã¯ã:å±±|å±±]]
*æŽå²-[[w:ãããžã§ã¯ã:äžçéºç£|äžçéºç£]]-[[w:ãããžã§ã¯ã:æŠäº|æŠäº]]-[[w:ãããžã§ã¯ã:æ¥æ¬å²|æ¥æ¬å²]]
*èªç¶ç§åŠ-[[w:ãããžã§ã¯ã:æ°åŠ|æ°åŠ]]-[[w:ãããžã§ã¯ã:çç©|çç©]]-[[w:ãããžã§ã¯ã:倩äœ|倩äœ]]-[[w:ãããžã§ã¯ã:é±ç©|é±ç©]]-[[w:ãããžã§ã¯ã:ç©çåŠ|ç©çåŠ]]-[[w:ãããžã§ã¯ã:å»åŠ|å»åŠ]]
*瀟äŒç§åŠ-[[w:ãããžã§ã¯ã:æ¿æ²»|æ¿æ²»]]-[[w:ãããžã§ã¯ã:çµæž|çµæž]]-[[w:ãããžã§ã¯ã:è»äº|è»äº]]
*人æç§åŠ-[[w:ãããžã§ã¯ã:å®æ|å®æ]]-[[w:ãããžã§ã¯ã:ç¥è©±|ç¥è©±]]-[[w:ãããžã§ã¯ã:èšèªåŠ|èšèªåŠ]]
*嚯楜-[[w:ãããžã§ã¯ã:ãã£ã¯ã·ã§ã³|ãã£ã¯ã·ã§ã³]]-[[w:ãããžã§ã¯ã:ããŒãã²ãŒã |ããŒãã²ãŒã ]]-[[w:ãããžã§ã¯ã:ã³ã³ãã¥ãŒã¿ã²ãŒã |ã³ã³ãã¥ãŒã¿ã²ãŒã ]]
*ãã®ä»-[[w:ãããžã§ã¯ã:ãã³ãã¬ãŒãé|ãã³ãã¬ãŒãé]]-[[w:ãããžã§ã¯ã:ãŠã£ãæè¡éš|ãŠã£ãæè¡éš]]
ããã€ãã®ãããžã§ã¯ãã¯ä»ã®èšèªçããã®ç¿»èš³ã«ãã£ãŠå§ãŸããŸãããããã€ãã®ãããžã§ã¯ãã¯ãŸã£ããç¬èªã«æ¥æ¬èªçã§ã¯ãããããŸãããä»ã®ãããžã§ã¯ããåèã«ç«ã¡äžãããããã®ããããŸããèªåã®é¢å¿ãããäž»é¡ãäžäººã§æžãã«ã¯å€§ãããã®ã ã£ãããçæã®æŽä»£åäž»ã®ãããªäžå®ã®æ±ºãŸã£ã圢åŒãããã»ããæžãããããããªãã®ã§ããããããŸãããããžã§ã¯ãã§é©åœãªãã®ããªããèããŠã¿ãŸãããããããŠãããŸã ãªãã®ãªããããªããæ°ãããããžã§ã¯ããå§ããããšãã§ããã®ã§ãããã ãããããžã§ã¯ããå§ããã®ã§ããã°ãä»ã®ç·šéè
ãšååã«çžè«ããããšã倧åã§ãããã
{{stub}}
[[Category:ãŠã£ãããã£ã¢ã®æžãæ¹|ã»ãŒãããµãããããš]] | null | 2021-04-26T18:09:44Z | [
"ãã³ãã¬ãŒã:Stub"
] | https://ja.wikibooks.org/wiki/%E3%82%A6%E3%82%A3%E3%82%AD%E3%83%9A%E3%83%87%E3%82%A3%E3%82%A2%E3%81%AE%E6%9B%B8%E3%81%8D%E6%96%B9/%E3%83%9D%E3%83%BC%E3%82%BF%E3%83%AB%E3%83%BB%E3%83%97%E3%83%AD%E3%82%B8%E3%82%A7%E3%82%AF%E3%83%88%E6%A1%88%E5%86%85 |
1,885 | BASIC | æ
å ±æè¡ > ããã°ã©ãã³ã° > BASIC
ããã°ã©ãã³ã°èšèªBASIC(ããŒã·ãã¯)ã®äœ¿çšæ³
BASICã«ã¯å€§ããåããŠã以äžã®ããã«åé¡ãããŸã(ãã ãBASICã¯æ°å€ã®æ¹èšãããã®ã§ãããã¯åé¡ã®äžäŸ)ã
æ¥æ¬èªãŠã£ãããã¯ã¹ã®æ¬ããŒãžãBASICãã§ã¯ãäž»ã«ãã€ã³ã³BASICãJISèŠæ ŒBASICãåºæºã«ãææ³ã説æããŠããŸãã ãã®çç±ã¯ããã€ã³ã³BASICã¯ææ³ãåçŽã§å
¥éããããããŸããå€ããããããããä»ã®ããã°ã©ãã³ã°èšèªã«ãå¿çšããããããã§ãã
ãã£ãœããVisual Basicãªã©ã®GUI察å¿ããBASICã¯ãææ³ãšæäœæ§ããå€ãBASICãšã¯ãããªãç°ãªããŸããGUI察å¿BASICã¯ãããŠã¹å
¥åã«å¯Ÿå¿ããGUIããã°ã©ãã³ã°ã«å¯Ÿå¿ããããã«ãæ°ããæ©èœã倧éã«è¿œå ããŠãããããããŒããŒãå
¥åãäžå¿ã«ãã€ããå€ãBASICãšã¯ã倧å¹
ã«éã£ãŠããŸãã
GUI察å¿ããBasicã«ã¯ãæŽå²çãªçµç·¯ããããBASICããã掟çããååãã€ããŠããŸãããå®æ
ã¯ãã»ãšãã©å¥ã®ããã°ã©ãã³ã°èšèªã ãšæã£ãã»ããè¯ãã§ãããã
ãªãã2017幎ã®çŸåšã(GUIã«ç¹åããŠãã)Visual BasicãåºããŠãããã€ã¯ããœãã瀟ããå
¥éè
çšã«æ©èœãç°¡æåãã small basic ãšãããã®ãåºããŠããã®ã§ãGUIããã°ã©ãã³ã°ã®åå¿è
㯠Visual Basic ã§ã¯ãªã small basic (ã¹ã¢ãŒã« ããŒã·ãã¯)ã§å
¥éããã»ãããåŠã³ãããã§ãããã
ããŸã Visual Basic ã¯ãå
¥éçšã®ããã°ã©ã ãåäœããããŸã§ã«ãèŠããããšããšãŠãå€ããªã£ãŠããŸãããã®ããããã€ã¯ããœãã瀟ãããã¯ãVisual Basicã¯å
¥éçšã«ã¯é©ããªããšå€æããŠãè¿å¹Žã«ãªã£ãŠ small basic ãåºããšããããšã«ãªã£ã次第ã§ãã
BASICã®å®è¡ç°å¢ãœããã¯ãVector(ãã¯ã¿ãŒ; https://www.vector.co.jp/ )ãªã©ã€ã³ã¿ãŒãããäžã®ããªãŒ ãœãããŠã§ã¢é
åžãµã€ãããç¡åãŸãã¯æåã§ããŠã³ããŒãããããšãã§ããŸãã
æ¥æ¬ã§äž»æµã ã£ãN-BASICãF-BASICã補é ããŠããäŒç€Ÿã¯ãBASICèšèªã®éçºã»è²©å£²ãçµäºããŠããŸããããã¯ã
ãªã©ã®çç±ãèããããŸãããã®ãããçŸåš(什å4幎7æ)ã§ã¯ãBASICã¯å°ã趣å³ã§äœ¿ãããçšåºŠã«ãªã£ãŠããŸããŸããã
ãã®ä»£ãããä»ã®äŒæ¥ãå人ãæã®BASICã®å®è¡ç°å¢ãåçŸããã¢ããªã±ãŒã·ã§ã³ãäœããããªãŒ ãœãããŠã§ã¢é
åžãµã€ãã§å
¬éããŠããŸãã
Microsoft Quick BASIC(MS-DOSæ代)äºæã®ãªãŒãã³ ãœãŒã¹ ãœãããŠã§ã¢ãªã©ãããããããå©çšããããšãã§ããŸãã
ç¹ã«ãQB64ã«ã¯ãšãã¥ã¬ãŒã·ã§ã³æ©èœããããæãªããã®æ¹æ³ã§å€å°ã®ããã°ã©ãã³ã°ãå¯èœã§ãã
ãŸãã䜿çšããBASIC(ããŒã·ãã¯)ãéžã³ãèµ·åããŠäžããã
BASICã§ç»é¢ã«æåã衚瀺ããããã«ã¯ PRINT æã䜿ããŸãããã ããæ°ããBASICã§ã¯ããŸã£ããå¥ã®ã³ãã³ãæã«ãªããŸãã
BASICãèµ·åãããšããOkããReadyããªã©(BASICãæ©çš®ã«ãã£ãŠç°ãªããŸã)ã®æåã®äžã«ãâ ã(ã«ãŒãœã«)ãåºãŸããã«ãŒãœã«ã¯ã«ãŒãœã«ããŒã®äžäžå·Šå³ã§ç§»åã§ããŸãããã®ã«ãŒãœã«ãåºãŠãããšãã«ãBASICã®ããã°ã©ã ãç·šéã§ããŸãã
ã§ã¯æåã«ãPRINTæã䜿ã£ãŠãç»é¢ã«æåã衚瀺ãããŠã¿ãŸãããã
ãšå
¥åããŠã¿ãŠãã ãããå
¥åæã®æåã¢ãŒãã¯ãçŽæ¥å
¥åã¢ãŒãã§å
¥åããŠãã ãããWindowsã®å Žåãå³äžã«ãæåå
¥åã¢ãŒãã®åãæ¿ãã®ã¿ããããã®ã§ããããã¯ãªãã¯ããŠãçŽæ¥å
¥åã¢ãŒããéžãã§ãããäžèšã®PRINTæãå
¥åããŠãã ããã
ãã®ããã«äžèšã®PRINTæãå
¥åããRUN(ãã©ã³ããšããããèµ·åãããã®æå³)ãå®è¡ãããš(å®è¡æ¹æ³ã¯æ©çš®ã«ãã£ãŠç°ãªããŸãã®ã§ãããããã®æ©çš®ãåèã«ããŠãã ãã)ãç»é¢ã« Hello BASIC ãšè¡šç€ºãããŸãã
åæ§ã«ãæ°ããè¡ã§ãç»é¢ã®å·Šç«¯ã«ã«ãŒãœã«ãããç¶æ
ã§ã
ã®ããã«å
¥åããŠã¿ãŠ(æåŸã«EnterããŒãå
¥åããŠæ¹è¡ããŸããæ©çš®ã«ãã£ãŠã¯RETURNããŒãCRããŒãšãèšããŸãã以äžãåããªã®ã§çç¥ããŸã)ãRUNãå®è¡ãããš(å®è¡æ¹æ³ã¯ããããã®æ©çš®ãåèã«ããŠãã ãã)ã5 ãšèšç®ã®çµæã衚瀺ãããŸãã
ãã®ããã«ãPRINTåœä»€ã¯ããã®çŽåŸã«ãããã®ãç»é¢ã«è¡šç€ºããŸãã
ãŸããBASICã§ã¯ãåœä»€ãå®è¡ããããšãRUN(ã©ã³)ãšèšããŸããè±èªã®ãèµ°ãã RUN ãšåãåèªã§ããã©ã³ãã³ã°(èµ°ã)ãã©ã³ããŒ(èµ°è
)ã®ã©ã³ãšåãã§ãã
ãã£ãœãã
ãRUNã§å®è¡ãããšãç»é¢ã«"2+3"ãšãã®ãŸãŸè¡šç€ºãããŸãã
ã€ãŸããäºéåŒçšç¬Š " " ã¯ããåŒçšç¬Šå
ã®æååããç»é¢ã«ãã®ãŸãŸè¡šç€ºããããšããæå³ã®èšå·ã§ãã
ä»ã®ããã°ã©ãã³ã°èšèªã§ãããprintããšããèªãããã¹ã衚瀺åœä»€ã«çšããããã°ã©ãã³ã°èšèªã¯å€ãã§ãããŸããä»ã®ããã°ã©ãã³ã°èšèªã§ããæååã衚瀺ããå Žåã¯ãäºéåŒçšç¬Š " " 㧠ãããã®ããæ®éã«ãªã£ãŠããŸãã
ãããäºéåŒçšç¬Šã§ããããªããšã
ã¯ããšã©ãŒã®ããæãªã®ã§å®è¡äžå¯èœãçãªå ±åã ã³ã³ãã¥ãŒã¿ãŒããå ±åããããããããã¯ããŸã£ããäºæãã¬æ°å€ãæåã衚瀺ããããªã©ã®ãšã©ãŒãèµ·ãããŸã(äŸãã°undefined)ã
å€ãBASICã§ã¯ãããã°ã©ã ã¯ãè¡çªå·+åœä»€ãã®åœ¢ã§ããããŸããè¡çªå·ãã€ããªãã§å
¥åãããšãåè¿°ã®ããã«ãåœä»€ãå³å®è¡ããŠãçµäºãããŸããå
é ã«è¡çªå·ãã€ããããšã§åããŠãåœä»€ãçµã¿åããããããã°ã©ã ããšããŠå®è¡ã§ããããã«ãªããŸãã0æªæºã®æ°ãå°æ°ãåæ°ã¯è¡çªå·ã«ã§ããŸããã
åè¡ã®æåã«ã€ããŠããæ°åãè¡çªå·ã§ãã10ããã¯ãããŠ10ãã€å¢ãããŠããã®ãäžè¬çã§ããããããã°ãåŸããç°¡åã«è¡ãæ¿å
¥ããããšãã§ããŸã(ãã ã9è¡ãŸã§)ãPRINT ã¯åç¯ã§èª¬æããéãç»é¢ã«æåãåºåããåœä»€ã§ããæåŸã® END ã¯ããã°ã©ã ã®çµäºãè¡šãåœä»€ã§ãçç¥å¯èœãªBASICãå€ãã§ãããããã§ãªããã°å¿
ãå
¥ããããã«ããŸãã
å
¥åããã
ãš(è¡çªå·ãªãã§)å
¥åãããšå®è¡ããŸãã ãã®ããã°ã©ã ãå®è¡ããããšãç»é¢ã«ã3+5= 8ããšè¡šç€ºãããŸãã
10è¡ã®æåŸã«ã€ããŠãã ; ã¯ããæ¹è¡ããªããããšãã³ã³ãã¥ãŒã¿ãŒã«éç¥ããŸãããããåãé€ããšãå®è¡ãããšãã«ã3+5=ããšã8ããå¥ã®è¡ã«è¡šç€ºãããŠããŸããŸãããããå©çšããŠãäžè¡å空çœã«ããããšãã§ããŸãã
ãªããå€ãBASICã§ã¯ã:ããçšãããšæ¬¡ã®ããã«ãæžããŸãããçŸåšã§ã¯æšå¥šãããŸããã
çŸåšãäžéšã®(åçŸ)BASICã§ã¯ã
ã®ããã«èšè¿°ããããšãã§ããŸãã
ãªããENDã¯ããã°ã©ã ã®çµäºãè¡šãåœä»€ã§ããã®ã§ãããšãã°ã
ã®ãããªããã°ã©ã ã ãšãã3+5=ãã衚瀺ããåã«ããããªãçµäºããŸãã
ã®ããã«ãè¡çªå·ãé çªã©ããã§ã¯ãªãå Žåãã©ã®è¡ãåªå
ããŠå®è¡ããã®ã§ãããã?
çŸä»£ã®GUI察å¿ã®BASICã§ã¯ãè¡çªå·ã®ãªããã®ãå€ãã®ã§ããããã®çç±ã®ã²ãšã€ããããããããã®ãããªãè¡çªå·ãšé åºã®ã¡ããå Žåã®æ··ä¹±ãé²ããããªã©ããããªãã®çç±ãããã®ã§ãããã
ããŠããããŠãã®å€ãBASICã®å Žåãè¡çªå·ã®å°ããé ããå
ã«å®è¡ãããšæããŸã(ããã€ãã®åçŸBASICãœããã§ç¢ºèª)ããã®å Žåãç¹ã«ãšã©ãŒã¡ãã»ãŒãžãªã©ã¯ãåºãããŸããã
ãããããå€ãBASICã§ã¯ããœãããŠã§ã¢ã®å
éšã§ã¯ãããã°ã©ã ã®å®è¡ã®ããããã«(ã€ãŸãRUNåœä»€ã®çŽåŸã«)ããŸãè¡çªå·ã«ããšã¥ããŠäžŠã¹æ¿ããè¡ã£ãŠã
ã®ããã«äžŠã¹æ¿ããŠããããããããã£ãšãäžããé ã«å®è¡ãããŠããã®ã§ãããã
ã€ãŸãããããã®å€ãBASICã¯ãããã°ã©ã ãæåã«å®è¡ããéããŸã䞊ã¹æ¿ããè¡ã£ãŠããã®ã§ãã
ãããè¡æ°ã10è¡ãŠãã©ã®å°ãªãããã°ã©ã ãªããããã§ãããŸããŸããããæ°ã®å©ãã䟿å©ãªæ©èœã§ãããã
ããããããçŸè¡ãåè¡ãããããã°ã©ã ã䞊ã¹æ¿ãããšãªããšã䞊ã¹æ¿ãã«ã¯æéãæããã®ã§ãããã°ã©ã ã®å®è¡ãçµãããŸã§ã®æéãé·åŒããŠããŸããŸãã
å察ã«èšããšãè¡çªå·ã®ãªãBASICã®å Žåããã®ã¶ãé«éåãããŠããå¯èœæ§ããããŸã(䞊ã¹æ¿ãã®æéãçããã®ã§)ã
ããã«èšããšãè¡çªå·ã®ããBASICã®äœ¿ãéã¯ãåŠçã«æéãæãã£ãŠãããã®ã§ãåŠçã®é åºã確å®ã«ãŸã¡ãããªããèªå以å€ã®ä»ã®ããã°ã©ããŒã«ãäŒããããããªããã°ã©ã ãæžããšãã«ã¯ãããããããè¡çªå·ã®ããBASICã䟿å©ãããããŸããã
ãšãã£ã¿ã®ãªãå€ãBASICã§ã¯ã
ãšå
¥åãããšãããã°ã©ã (ããã°ã©ã ãªã¹ã)ãå
é ã®è¡ãããã衚瀺ããŸãã
ãšå
¥åãããš10è¡ç®ã ããã
ãšå
¥åãããš20è¡ç®ä»¥éãã¹ãŠãã
ãšå
¥åãããšå
é ã®è¡ãã20è¡ç®ãŸã§ãã
ãšå
¥åãããš20è¡ç®ãã30è¡ç®ã衚瀺ããŸãã
ãŸãã
ãšå
¥åãããšãæ¹è¡ãããã³ã«è¡çªå·ã10ãã€å¢ãããŠèªåçã«è¡šç€ºããŸããèªå衚瀺ãåæ¢ãããã®ã¯BREAKããŒãæŒããŸã(æ©çš®ã«ãã£ãŠã¯STOPããŒããCTRL+STOPããŒãåææŒããªã©ãæäœãå€å°ç°ãªããŸã)ã
ä»ã§ãããããã°ã©ã ã®å®è¡çµæã®ç»é¢ãšãããã°ã©ã èšè¿°çšã®ãšãã£ã¿ç»é¢ãšã¯ãå¥ã
ã®ç»é¢ã«åãããŠããã®ãæ®éã§ãã
ããããæã®ããœã³ã³ã§ã¯ã衚瀺ãŠã€ã³ããŠãæšæºã§ã¯1ã€ãããããŸããã§ãããããããããŠã£ã³ããŠããšããæŠå¿µãããªããæã®å€ãããã°ã©ã èšèªã§ã¯ãå®è¡çµæã®è¡šç€ºç»é¢ãšããšãã£ã¿ç»é¢ãšããåãã²ãšã€ã®ç»é¢ã ã£ããããŸãããããã³ãã³ãå
¥åæ©èœãããã°ã©ã èšè¿°æ©èœãå
ŒããŠãããããããã¯ããœã³ã³æ¬äœã«ããã¬ããŒã¹ã€ãã(å°åã®ã¬ããŒã¹ã€ãããã€ããŠããããã)ã«ãããã³ãã³ãå
¥åã¢ãŒã(ãã¿ãŒããã«ã¢ãŒãããšãã)ãšããã°ã©ãã³ã°ã¢ãŒããšãåãæ¿ãããããŠããŸããã
çŸä»£ã§ããWindowsã®ã³ãã³ãããã³ããã®ãããªãOSä»å±ã®ã³ãã³ãå
¥åçšã¢ããªã±ãŒã·ã§ã³ã§ã¯ãæ®éããŠã£ã³ããŠã¯1ã€ã ãã§ããããã®ãã£ãã²ãšã€ã®ãŠã£ã³ããŠããå®è¡çµæã®è¡šç€ºç»é¢ãšãã³ãã³ãå
¥åç»é¢ãšãå
ŒããŠããŸãã
æ°ããBASICã§ã¯ãããã°ã©ã ãç·šéããããã®ãšãã£ã¿ãæã£ãŠããããããå
¥åã«äœ¿ããŸãããšãã£ã¿ã®æŠèŠã䜿ãæ¹èªäœã¯çç¥ããŸãããŸãã次ã®ããã«ãè¡çªå·ãçç¥ãã§ããŸãã
ããã°ã©ã ã®å®è¡ã¯ãRUNã§ã¯ãªãããšãã£ã¿ã®ã¡ãã¥ãŒãããå®è¡ããéžæããŸãã
å€ãBASICã®ããã«ãåœä»€ãå®è¡ããŠãå³çµäºãããã«ã¯ãäžã«ã¯ãçŽæ¥å
¥åã(äŸ: ã€ããã£ãšã€ã ãŠã£ã³ã㊠)ãç°¡åã«ã§ããæ°ããBASICããããŸãããã»ãšãã©ã®æ°ããBASICã§ã¯ãšãã£ã¿ã®ã¡ãã¥ãŒãã察å¿ããé
ç®ãéžã¶å¿
èŠããããŸãã
ããã§ã¯è¡çªå·ä»ãã®å€ãBASICã®æžåŒã§èª¬æããŸãã
â» ä»ã®ããã°ã©ã èšèªã§ãã䌌ããããªææ³ã®èšèªã¯ãå€ããããŸããä»ã®ããã°ã©ã èšèªã«ããããã®ã¯ãäž»ã«ã
ã§ãã
泚é(ã¡ã
ãããã)ãã€ããã«ã¯REMã䜿ããŸãããã¬ã ããšèªã¿ãŸãã泚éãšã¯ãäœãå®è¡ããªãããšããåœä»€ã§ãããã°ã©ã ã®èª¬æãæžãããããããã°(ãšã©ãŒã®åå ããããäœæ¥ã®ããš)ãªã©ã§äžæçã«åœä»€ãå®è¡ãããªãããã«ãããšãããªã©ã«äœ¿ããŸãã
ãã®ããã°ã©ã ãå®è¡ãããšã10è¡ç®ã¯äœãå®è¡ããã20è¡ç®ãå®è¡ãããŠãç»é¢ã«ã2ããšã ã衚瀺ããŸãã 30è¡ã¯ENDåœä»€ã§ãããã®åœä»€ã§å®è¡ãçµäºããŸãã
ãã€ã¯ããœããç³»ã®BASICã§ã¯ãã¢ãã¹ãããã£ãŒã代ããã«äœ¿ããŸãã
ç»é¢ã«è¡šç€ºãããã«ã¯ PRINTæã䜿ããŸãããããªã³ãããšèªã¿ãŸãã
PRINTã®åŸã«ç¶ããã®ãç»é¢ã«è¡šç€ºããŸããæååãæ°å€ãå€æ°ãªã©
PRINTã«ç¶ãå®æ°ãå€æ°ãç»é¢ã«è¡šç€ºããŸããã©ã®ãããªåã§ãã£ãŠã衚瀺ãããŸããæ°å€ãæåãªã©ããŸãã;ã»ãã³ãã³ãå€æ°æ«å°Ÿã«çœ®ãäºã«ãã£ãŠææ«ã®æ¹è¡ãè¡ãããŸãããã€ãŸãäºã€ã®PRINTæãã²ãšã€ãšããŠé£ç¶ã«è¡šç€ºããããšãåºæ¥ãŸããäžè¬çãªæ³šæãšããŠãPRINTæã¯é«åºŠãªå
éšåŠçãè¡ãããã«åŠçãé
ããªããŸãã
å€æ°ã¯ãæ°å€ãæåãªã©ã®ããŒã¿ãå
¥ããŠããç®±ã®ãããªãã®ã§ãã
å€æ°ã®ååã«ã¯ã以äžã®ãããªèŠåããããŸãã
ãŸããå€ãBASICãç°¡æãªBASICã§ã¯ãæ©çš®ã«ãã£ãŠå€æ°åã®é·ãã«ã2æå以äžãã8æå以äžããšããå¶éããããŸãã
ããŒããŒãããå
¥åããã«ã¯ãINPUTæã䜿ããŸãã
10 INPUT A ã§ã¯ãæ°å€å€æ°Aã« ããŒããŒãããå
¥åããæ°å€ã代å
¥ããŸãã
ãã®ãããªæžãæ¹ãåºæ¥ãŸãã
å
¥åãä¿ãæååã衚瀺ããŠãããå
¥åã«å
¥ããŸãã
å€æ°ã¯ãæ°å€ãæåãªã©ã®ããŒã¿ãå
¥ããŠããç®±ã®ãããªãã®ã§ãã
ãã®ããã°ã©ã ã¯ãå€æ° A ã« 12ãå€æ° B ã« 3 ã代å
¥ãã足ãç®ã»åŒãç®ã»æãç®ã»å²ãç®ã®çµæã衚瀺ããç©ã§ã(é ã«ã15 9 36 4 ãšè¡šç€ºãããŸã)ã
å€æ°ãžã®ä»£å
¥ã¯ = ã䜿çšããŸããäžã®ããã°ã©ã ã§ã¯çŽæ¥æ°åã代å
¥ããŸããããèšç®åŒ(å€æ°ã䜿çšãããã®ãå«ã)ãè©äŸ¡ããå€ã代å
¥ããããšãã§ããŸãã
BASICã«ããã代å
¥ãšã¯ããèšå·=ã®å³èŸºã®èšç®åŒãè©äŸ¡ããå€ããèšå·=ã®å·ŠèŸºã®å€æ°ã«å²åœãŠãããšããæå³ã§ãã
ãã®ããã
ãšããåœä»€ã¯ãšã©ãŒã«ãªããŸãã ããªããã代å
¥å
ã®å€æ°ã¯ãèšå·=ã®å·ŠèŸºã«ããå¿
èŠããããŸãã
ãŸããå³èŸºã«ããèšç®åŒããèšå·=ã®å·Šã«ããå€æ°ã«ä»£å
¥ããã®ã§ã
ã®ããã«ãèªåèªèº«ãçšããåŒã代å
¥ããããšãã§ããŸããããããA+1=Aããšããé åºã ãšããšã©ãŒã«ãªããŸãã
ãå®è¡ãããšãèšç®çµæ(12+1)ã®ã13ãã衚瀺ãããã§ãããã
ãªããå€æ°ãžã®ä»£å
¥ã¯ãLETãåœä»€ã§ã
ã¯
ãªã®ã§ãããJISèŠæ ŒBASICãé€ããŠãã»ãšãã©ã®æ°æ§ã®BASICãåãããLETã¯çç¥å¯èœã§ãã
èšç®ã®èšå·ã¯ã足ãç®ã«ã¯+ãåŒãç®ã«ã¯-ãæãç®ã«ã¯*ãå²ãç®ã«ã¯,/ ã®èšå·ãå²ãåœãŠãããŠããŸããäœãã¯ãMODã(ã¢ãžã§ã)ã§ãã
æ¬åŒ§()ã䜿ãäºãåºæ¥ãŸããèšç®ã®é åºã«è¿·ã£ããæ¬åŒ§ã䜿ãããã«ããŸãããã
å°æ¥çã«ãLETæã®ããä»ã®ããã°ã©ãã³ã°èšèªã®åŠç¿ã®ããšãèããŠãLETæãã€ãã£ãŠäžèšã®ããã°ã©ã ãæžããŠã¿ãŸãããã
å©çšè
ããããŒããŒãã§æ°å€ãå
¥åããŠãããã«ã¯ãINPUT æã䜿ããŸãã INPUTåœä»€ã䜿ã£ãŠæ°å€ãŸãã¯æåå(å€æ°å$)ãå
¥åãããå Žåã
ãšããŸãã
(ããã°ã©ã äŸ)
ãŸãã¯
ããšãã°ãäžã®ããã°ã©ã ãå®è¡ããããšã«ã
ãå®è¡ãããšãããã»ã©å
¥åããå€æ°ãåºããããããŸããã
ãã®çç±ã¯ãã¡ã¢ãªå
ã«ã以åã«äœ¿çšããå€æ°ãããã®ãŸãŸæ®ã£ãŠããããã§ãã
ã€ãŸããããã°ã©ã ãçµäºããŠããããã ãã§ã¯å€æ°ã®å
容ã¯æ¶å»ãããŸããã
åœä»€ NEW ã䜿ããšãBASICã§æ±ã£ãŠããå€æ°ã«ãã¹ãŠãŒã 0 ã代å
¥ããåæå(ãããã)ããŸãã
ãããäžã®ç¯ã®ããã°ã©ã ã®å®è¡çŽåŸã«ããŸã£ããå¥ã®ããã°ã©ã ãå®è¡ããå¿
èŠããã£ããšããŠãããã§ãåãå€æ°åã®å€æ°ã䜿ãããŠãããšãããããã®å€æ°ã¯åæåãããŠããªããšããšã©ãŒã®åå ã«ãªã£ãŠããŸããŸãã
ãŸã£ããå¥ã®ããã°ã©ã ã§ããåãå€æ°åãAãããBããããŸã£ããå¥ã®å
容ã§äœ¿ãããšããããŸãã®ã§ãå¿
èŠã«å¿ã㊠NEW åœä»€ã䜿ããŸãããã
ãšæžããŠå®è¡ããã°ããã®ããã°ã©ã ã®å®è¡åã«ã©ããªããã°ã©ã ã§å€æ°ãAããçšããŠããããããããåæåã§ããŸãã
ãªããäžèšã®ããã°ã©ã ã®å®è¡çµæãšããŠãèšç®çµæãšããŠã16ãã衚瀺ãããŸãã
ãã®ããã°ã©ã ã®å ŽåãªããããããNEWã§å€æ°AãåæåããªããŠãããã®æ¬¡ã®è¡ã§ A=7ãšèšè¿°ããŠããã®ã§ããã€ã¯åæåã®å¿
èŠã¯ãããŸããã
ã§ãããäœãããšããããã°ã©ã ãè€éã«ãªã£ãŠãããšããã€ããå€æ°ã®åæ°ãå€ããªããå€æ°ã²ãšã€ãã€åæåãããã®ã倧å€ã«ãªãå ŽåããããŸãããåæ°ãå€ããšäžã€ã¥ã€åæåããæ¹æ³ã ãšãåæåãããããå€æ°ãåºãŠæ¥ããããããŸããã
ãªã®ã§ãããã®ããã NEW åœä»€ã§ããã£ãã«ããã¹ãŠã®å€æ°ãåæåããŠããŸããŸããããåæåããã察象ã¯ããã®BASICã§æ±ã£ãŠãããå€æ°ãã ãã§ãã®ã§ãå®å¿ããŠãå¹³æ°ã§ãã
ãªããäžèšã®ããã«ãããèšç®éäžã«ãNEWãå
¥ãããšã
(ããŸãããããªãããã°ã©ã )
ãã®ããã°ã©ã ãªããPRINTåœä»€ã§ã9ãã衚瀺ããããããŸãããªããªãAãåæåãããŠããŸããAã«0ã代å
¥ãããŠããããã§ãã
ãªããçŸåšã®ããã°ã©ã èšèªã§ã¯ãNEWåœä»€ã¯å¥ã®æå³ã§äœ¿ãããŠããŸãã
ãªããèšç®äœæ¥ã®ãšãã«ãåæã®ç¬éã®ç¶æ
ã«å¯Ÿå¿ããæ°å€ã®ããšããç§åŠæè¡çšèªã§ãåæå€ã(ãããã¡ãinitial value ã€ãã·ã£ã« ããªã¥ãŒ)ãšãããŸãããã¡ãã³ã³ãœãããªã©ã®ã²ãŒã æ¥çãªã©ã§ããã²ãŒã éå§ç¶æ
ã®äž»äººå
¬ã®ã©ã€ã(çåœå)å€ãšãã®æ°å€ããŸãšããŠãåæãã©ã¡ãŒã¿ãŒããªã©ãšãããŸããããããšåãããšã§ãã
çç§ãªã©ã§ã¯ãããšãã°ããŒã«ãæããç¬éã®ããŒã«ã®é床ã®ããšãåæé床ããšèšããŸãã
ãããçŸä»£ã®ããã°ã©ã èšèªã®ãªãã®åœä»€æã®èªå¥ã§ããinitããªã©ã®èªå¥ããã£ãããããã¯ãããããããåæå€(â» è±èªã§ initial value )ã®ããšãããããŸããã
ããããææ¥ æŽãã ã£ããªããé 足ãããã§ãªããéšã ã£ãããªããæ宀ã§èªç¿ããã®ãããªå Žåãããæ¡ä»¶åå²(ããããã ã¶ãã)ãšãããŸãã
ããã°ã©ã äžã§ããæ¡ä»¶ã«åœãŠã¯ãŸããã§å®è¡ããå
容ãå€ãããšãã«ã¯ IF~THEN~ELSEæ ã䜿çšããŸãã
æ¡ä»¶åå²ã§ã¯ IF ãšããèªå¥ãã»ãŒããªãã䜿ãã®ã§ãæ¡ä»¶åå²åœä»€ã®ããšããIFæããšãèšããŸãããIFããšã¯ããã€ãããšèªã¿ãããã ãã ãªãã°ãããšããæå³ã®è±èªã®æ¥ç¶è©ã§ã(æ¥æ¬ã§ã¯ãäžåŠæ ¡ã®è±èªã®ææ¥ã§ æ¥ç¶è© IF ãç¿ãã§ããã)ã
THEN ã¯ãããã§ããã°ããããšããæå³ã§ããELSE ã¯ãããã§ãªããã°ããããšããæå³ã§ãããªããTHENã¯ããŒã³ããšèªã¿ãELSEã¯ããšã«ã¹ããšèªã¿ãŸãã
ã»ãã®ããã°ã©ã èšèªã§ããæ¡ä»¶åå²åœä»€ã®ããšãæ®éã¯ãIFæããšèšããŸãã
ããã§äœ¿ã£ãŠããA > Bã® > ã¯æ¯èŒæŒç®å(ã²ãã ããããã)ãšãããæ°å€ã®æ¯èŒã«äœ¿ããŸãã
ä»ã®ããã°ã©ã èšèªã§ããIFæ ã®èãæ¹ãš æ¯èŒæŒç®å ã®èãããã¯ãã»ãŒããªãã䜿ããŸãããªã®ã§ãããŸããã®BASICã®åŠç¿ã§ãæ¯èŒæŒç®åã®èãæ¹ãããã£ãããšç解ããŸãããã
IFæã¯ãIFãšTHENã®éã«æ¡ä»¶åŒãæžããTHENããæ¡ä»¶åŒãæç«ãããšãã®åœä»€ãæžããŸãããããŠæç«ããªãã£ããšãã®ããšã¯ãã®åŸãã«ELSEã«ç¶ããŠæžããŸãã
äŸã®30è¡ç®ã¯ããã A > Bãæç«ããã°PRINT "A is bigger than B"ãå®è¡ããããæç«ããªããã°PRINT "B is bigger than A"ãå®è¡ãããšããæå³ã§ãããŸããæååã®å Žåã¯ã
PRINTåœä»€ã®å ŽåãPRINTãçç¥(THEN "å
容"ã®ããã«)ã§ããŸãã
ãªããELSEã¯çç¥ã§ããŸãã
è€æ°è¡ã«ããã£ãŠããæžããªããã®ãå®è¡ããããå ŽåãGOTOåœä»€(åŸè¿°)ã䜿ãè¡ãé£ã°ãå¿
èŠããããŸã(ãã®å ŽåãGOTOãšæžãã®ãçç¥ããŠãè¡çªå·ã ãã§ãæžããŸã)ã
ç¡æ¡ä»¶ã§ãžã£ã³ãããŸãã
æ¡ä»¶åå²ã§ã¯ãªãã匷å¶ã®åå²ã«ã¯GOTOåœä»€ã䜿ããŸãããGOTOãã¯ããŽãŒ ãã¥ãŒããšèªã¿ãŸããGOTOã®åŸã«è¡çªå·ãå
¥ãããšã察å¿ããè¡ã®åœä»€ãå®è¡ããŸãã
ãã®ããã°ã©ã ãå®è¡ãããš20è¡ç®ãã¹ãããããã30è¡ç®ãå®è¡ãããŠãç»é¢ã«ã2ããšã ã衚瀺ããŸãã
ãã®ããã°ã©ã ãå®è¡ãããšãç»é¢ã«ã2ãã1ããšè¡šç€ºããŸãããããã®ããã«GOTOã®é£ã³å
ãå
¥ãçµãã ããã°ã©ã ã¯ãã¹ãã²ãã£ã»ããã°ã©ã ããšåŒã°ããŠããä»ã®äººãèŠãŠãããã°ã©ã ã®æ§é ãäžç®ã§ã¯ææ¡ãã¥ãããããã«ãéåžžã®ããã°ã©ã ã§ã¯ çŠãæ(ããããŠ) ãšãããŠããŸãã
ãã®ããã°ã©ã ãå®è¡ãããšãç»é¢ã«ã1ãã2ãã衚瀺ãç¶ããŸãããã®ããã«ãçµäºããã«ãå®è¡ãç¶ãããããã°ã©ã ããç¡éã«ãŒãããšåŒã³ãŸãã衚瀺ãæ¢ããã«ã¯ãå€ãBASICã§ã¯AUTOåœä»€ãæ¢ãããšããšåæ§ã«ãBREAKããªã©ã®ããŒãæŒããŠãã ãããæ°ããBASICã§ã¯ã¡ãã¥ãŒãããåæ¢ããéžæããŸã(Visual Basicãªã©ã§ã¯ç¡éã«ãŒããæžããšãã®ãŸãŸåçç¡çšã§å¿çäžèœã«ãªã£ãŠããŸããã®ããããŸãã®ã§ãã¢ããªã±ãŒã·ã§ã³ã匷å¶çµäºãããããCTRL+ALT+DELãããªã©ããŠOSãã匷å¶çµäºãããŠãã ãã)ã
æ°ããBASICã§ãGOTOåœä»€ã¯äœ¿çšã§ããŸãããæšå¥šã¯ãããŸããã
ã©ãããŠãGOTOæã䜿ãå¿
èŠã®ããå Žåã«ã¯ãREMæãªã©ã«ããã³ã¡ã³ãæ©èœã掻çšããŸããããGOTOæã®åã®è¡ã§ãREMæã«ãã説æã§ãGOTOæã®è¡ãå
ã説æãããããããã¯åŠçããããšããŠããå
容ãªã©ãèšè¿°ãããšãä»ã®äººãããã°ã©ã å
容ãææ¡ãããããªãã§ãããã
ããã°ã©ã äžã§åãåŠçãç¹°ãè¿ãå Žåã«ã¯ãFOR~NEXT æã䜿çšããŸãã
ãã®äŸã¯ãFORããNEXTã®éãç¹°ãè¿ããŸããåæ°ã¯ã1ãã5ãŸã§ã®5åãããSTEPãæå®ããŠããã°ãå¢éå€ã®èšå®ãã§ããŸãã ãããå®è¡ãããšä»¥äžã®æ§ã«è¡šç€ºãããŸãã
FORã®çŽåŸã®å€æ°(äžèšã®å Žåã¯N)ãšãNEXTã®çŽåŸã®å€æ°ã¯ãåãå€æ°ã§ãªããã°ãªããŸããã
FOR æã®æ§æã¯ä»¥äžã®æ§ã«ãªããŸãã
äžã®æã®ãã¡ããSTEP å€æŽéãã¯çç¥ã§ããŸããçç¥ããããšãã«ã¯å€æ°ã¯1ã¥ã€å€åããŸãã
å€æ°ãåæå€ããæçµå€ãŸã§å€åãããã®åå€ããšã« NEXT ãŸã§ã®æãå®è¡ãããŸãã
INPUTæã§æ¯åããŒã¿å
¥åããã®ã¯å€§å€ã§ãã
ããã°ã©ã ã®äžã«èšé²ããããšãåºæ¥ãŸãã DATAæãREADæãRESTOREæ ã§ãã
20è¡ã§DATAæãã1åèªã¿èŸŒãã§å€æ°Aã«ä»£å
¥ããŸãã30è¡ã§è¡šç€ºããŸãããã®äŸã§ã¯ã1ãã衚瀺ãããŸãããã次ã«èªã¿èŸŒãã ãªãã2ããèªã¿èŸŒãŸããŸãã
10è¡ã®RESTOREã§DATAæã®èªã¿èŸŒã¿å
ãæå®ããŸããããã§ã¯50è¡ããèªã¿èŸŒã¿ãŸãã20è¡ã§èªãã§ã30è¡ã§è¡šç€ºããã®äŸã§ã¯ã4ãã衚瀺ãããŸããæ®é㯠FOR NEXTæãªã©ã䜿ã£ãŠ é£ç¶ããŠèªã¿èŸŒã¿ãŸãã
DATAæã®èãæ¹ã¯ããã¡ã€ã«æäœã®ã·ãŒã±ã³ã·ã£ã«ãã¡ã€ã«ãšäŒŒãŠããŸãã
åãå
容ã®ããã°ã©ã ã¯ããŸãšããŠãµãã«ãŒãã³ã«ããäºãã§ããŸããGOSUBã§ãã
ããã°ã©ã ã®åããè¡çªå·ã§æžããŸãã 110 120 200 210 220 130 150 ãé çªã«æ³šç®ã RETURNã䜿ããšGOSUBã®æ¬¡ã«æ»ããŸã
é¢æ°ã¯ãµãã«ãŒãã³ã«äŒŒãŠããŸããçµã¿èŸŒãŸãããµãã«ãŒãã³ã®ããã«æã£ãŠãã ããã
ABS()ã¯çµ¶å¯Ÿå€ãè¿ãé¢æ°ã§ãã
ä»ã«ãè²ã
ãªé¢æ°ããããŸãã
ãããŸã§ã®èª¬æã§ãæ°å€ã®ã¿ãæ±ããŸãããããã§ã¯ãæåã®å
¥åã衚瀺ãæäœã説æããŸãã
æåãè¡šãæã¯""ã§å²ã¿ãŸãã
æåãè¡šãæååå€æ°ã§ã¯ãå€æ°åã®æ«å°Ÿã«$ãä»ããŸãã
æã®è¶³ãç®ãåºæ¥ãŸãã
æåã®å
¥åãšè¡šç€º
BASICã§ã¯æååã®äŸ¿å©ãªé¢æ°ããããŸãã
ASC(x$) RIGHT$(x$,y) LEFT$(x$,y) MID$(x$,y,z) LEN(x$) STR$(x) VAL(x$) CHR$(x) TAB(x)
ãããŸã§ã¯æ°å€ã®æŽæ°ã§è¡ããŸããã
å²ãç®ã§å²ãåããªããšãã«æ±ãå°æ°ç¹ã®åŠçãæµ®åå°æ°ç¹ã®å®æ°ãå€æ°ã«ã€ããŠèª¬æããŸãã誀差ã«ã€ããŠãã
BASICã§ã¯å°æ°ç¹ãä»ãããšãå°æ°ç¹ä»ãã®å®æ°ãšããŠæ±ãããŸãã
ã³ã³ãã¥ãŒã¿ãŒã®èšç®ã§ã¯èª€å·®ãçºçããŸãã 誀差ã®çšåºŠã¯æ©çš®ã«ãã£ãŠç°ãªããŸãã
äœæé²ã®ãããªãã®ãäœããšãã«äœ¿ããŸããåããããªå€æ°ãããããäœããšãã«ãå€æ°ãå€ããŠå€§å€ã§ããããã§é
åå€æ°(ã¯ãã〠ãžããã)ã䜿ããŸãã
䜿ãæ¹ã¯ãæåã«é
åå€æ°ã宣èšããŸããäŸãã° DIM a(3)ãšæžãããªããå€æ°a(1) a(2) a(3)ã®3åã®é
åå€æ°ã䜿ããããã«ãªããŸã(BASICã®çš®é¡ã«ãã£ãŠã¯a(0)ã䜿ãããã®ããããŸã)ã
ãDIMããšã¯æ¬¡å
DIMENSION ã®ç¥ã®ããšã§ããDIMã®éšåããé
å宣èšã®åœä»€ã§ããDIM a(3)ã®ãaãã®éšåã¯å€æ°åã§ãã®ã§ãã¹ã€ã«bã§ãcã§ããããŸããŸããã
DIM a(3)ã®ã«ãã³ãšã«ãã³å
ã®éšåããæ·»ãåã(ããã)ãšèšããŸãã
é
åå€æ°ã®äŸ¿å©ãªæã¯ãæ°å€ã§æžããéšåã«æ°å€å€æ°ã䜿ã£ãŠãäŸãã°ãa(i)ã®ããã«äœ¿ãäºãã§ããã«ãŒããªã©ãšçµåãããã°å€æ°ã®å€æ°ãäžåºŠã«æ±ãããšãåºæ¥ãŸãã
ããã¯ãäžæ¬¡å
é
åã®äŸã§ãã
ããã¯ã3人ã®ååãšçªå·ãå
¥åããŠã衚瀺ããããã°ã©ã ã³ãŒãã§ããé
åã䜿ãããšã«ãããç°¡æœã«æžãããšãåºæ¥ãŸããç°¡åã«äººæ°ãå€ãããããšãåºæ¥ãŸããæ¹è¯ããŠäœæé²ã®ããã«äœãå€ããããšã容æã§ãã
é
åã«ã¯ããã®ãããªäžæ¬¡å
é
åã®ä»ã«äºæ¬¡å
ã3次å
é
åããããŸãã
ããã§ã¯ãå§ããŠã®äººãé°å²æ°ãã€ãããããã«åºæ¬ã®äžã®åæ©ãæäœéã«æžããŸããããããŠãåçŽãšå¿çšã¯å¥ã®æ¬ã«ã€ã¥ããŸãã
çŸåšã§ã¯æ§é åBASICããããŸããããã¯æ¡ä»¶æãæç«ããã°THENããENDIFãããã¯ELSEãŸã§ã®éšåãå®è¡ããŠãæç«ããªããã°ELSEããENDIFãŸã§ãå®è¡ãããã®ã§ãäŸã®ããã°ã©ã ã¯
ãšæžããŠãéåžžã«èŠããããªããŸãããã ããå¿
ããã䜿ãããã®ã§ã¯ãããŸãããå€ãBASICã§ã¯1è¡ã§æžãæ¹æ³ãã䜿ããŸããã
(:)ã§åºåã£ãŠãäžè¡ã«å€ãã®ã³ãã³ããæžãäºãã§ããŸãããã ããããã¯å€ãBASICã®ææ³ãªã®ã§ããŸã䜿ããªãæ¹ãè¯ãã§ãããã
åãçŽç·ãªã©ã®ç»åã衚瀺ããããé³å£°ã鳎ãããããªã©ã®æ©èœã®åœä»€ã¯ãBASIC察å¿ã®ããœã³ã³ãäœã£ãŠããäŒç€Ÿããšã«éã£ãŠããŸãããããŒããŠã§ã¢åŽã®æ§èœã«ãé¢ä¿ããããšã§ããããã®ãããä»æ§çµ±äžããããªãã£ãã®ã§ãã
äžå¿ãBASICã®åœéèŠæ ŒãååšããŠããŸãããå®éã«ã¯ããã®èŠæ Œã«åŸã£ãŠãªãBASICãå€ãã§ãããããããç¹ã«ãç»å衚瀺ãé³å£°ãªã©ã®ãã«ãã¡ãã£ã¢é¢ä¿ã®æ©èœã§ã¯ããã®ãããªèŠæ Œå€ã®ä»æ§ãå€ãã§ãããã
ãã®wikibooksæ¥æ¬èªçãBASICãã§ã¯ãæ¥æ¬ã®èªè
ã察象ã«ããŠããããšããããæ¥æ¬ã§æ®åããæ¥æ¬ç£ããœã³ã³ã®ããŒããŠã§ã¢ãæ³å®ããŠãBASICã®ãç»å衚瀺ãé³å£°ãªã©ã®ãã«ãã¡ãã£ã¢é¢ä¿ã®ããã°ã©ã ãèšè¿°ããŸãã
N88BASICäºæã®BASICãªãã°ãç»åãã€ãããšãã¯ã
ã®ããã«èšè¿°ããããšã§ãç»åã§çŽç·ãåŒããŸãã
å
容ã¯ã
ã§ãã æ°ãã€ããããšãšããŠãç»é¢ã®å·Šäžã座æš(0,0)ã§ããå³äžã«è¡ãã«ã€ããŠã座æšã®å€ã倧ãããªããŸãã
è²çªå·ã¯ãäžè¬ã«ã
ã§ããè²çªå·ã®ããšãããã¬ããçªå·ããšããããŸãã
èæ¯è²ãæšæºèšå®ã§ã¯é»ã§ããããããè²çªå·ã0(é»)ã ãšãç·ãèŠããªããããããŸããã
ã¯ãéè²ã®çŽç·ãåŒããŸãã
ã¯ãèµ€è²ã®çŽç·ãåŒããŸãã
ãšãããšãé·æ¹åœ¢ã®æ ç·ã®ã¿ãæããŸãããã®é·æ¹åœ¢ã®å¯Ÿè§ç·ã®åº§æšãã(100,130)ãã(200,230)ãšããããã§ãã Bã¯BOXã®æå³ã§ãã
ãã®åœä»€ LINE (100,130)-(200,230),2,B ã§ã¯ã察è§ç·ã¯ãæãããŸããããŸããå¡ãã€ã¶ããããããŸããã
å¡ãã€ã¶ããããã«ã¯ããBãã§ã¯ãªããBFãã«ããŸãã
Fã¯FILLã®æå³ã§ãã
æžåŒã¯
ã§ãã
ããšãã°ã
ã§ã(250,180)座æšãäžå¿ãšããååŸ50ã®èµ€ã(è²çªå·: 2)åãæžããŸãã
å匧ãæãã«ã¯ã
ã®æ§æãå©çšããŸãã
è§åºŠã®æž¬ãæ¹ã¯ãæ°åŠã®xy座æšã§ã®è§åºŠã®æž¬ãæ¹ãšåãã§ãå³ã0床ãšããŠãåæèšãŸãã(å·ŠãŸãã)ã§ããè§åºŠã®åäœã¯ãã©ãžã¢ã³ ã§ããçŽ3.14ã§ååã«ãªããŸã(BASICã®ãœãããŠã§ã¢ã®çš®é¡ã«ãã£ãŠã¯ãéããããããŸãããããããã®ãœãããŠã§ã¢ããšã«ç¢ºèªããŠãã ããã)ã
ãŸã ã©ãžã¢ã³ãç¿ã£ãŠããªãäžåŠçã®ããã¯ããã®ç¯ã¯é£ã°ããŸãããã
ãšæžãã°ãåå匧ãæãããŸãã
æ¥å(ã ãã)ãŸãã¯æ¥å匧ãæžãã«ã¯ã
ã®ããã«ããŸãã
CIRCLEåœä»€ã¯ã
ãšããæžåŒã«ãªã£ãŠããŸãã
æ¯çã¯ã瞊ãšæšªã®æ¯çã§ããã1ã ãšæ£åã«ãªããŸãã1ãã倧ãããšçžŠé·ã®æ¥åã«ãªãã1ããå°ãããšæšªé·ã®æ¥åã«ãªããŸãã
å¡ãã€ã¶ãã«ã¯ã
åœä»€ãPSETãã䜿ããšãæå®ããäœçœ®ã«ãç¹ãã²ãšã€è¿œå ããŸãã
æžåŒã¯
ã§ãã
PSETã®æŽ»çšæ¹æ³ã¯éåžžã次ã®ããã«ãFORæãªã©ã®ç¹°ãè¿ãæãšãã¿ããããŠãèšç®åŒãªã©ã®çµæã®äœå³ãããã®ã«äœ¿çšããã§ãããã
ãšå
¥åãããšãããããããšããããŒããšãã®é³ã鳎ãããŸããããŒãé³ãšãããŸãã
ãRND()ãã§ã0ãã1ãŸã§ã®å°æ°ãå«ãä¹±æ°ãçºçãããŸãã
RND(1)ã®ããã«ãæ¬åŒ§ã®äžã«æ°åãå
¥ããŠäœ¿çšããŸãã
ã®ããã«äœ¿çšããŸãã
ãµã€ã³ããã€ããã«ã¯(1ãã6ã®æŽæ°ã ããåºãããã°ã©ã ãã€ããã«ã¯)ãä¹±æ°åœä»€ã«ãæŽæ°åã®åœä»€ãªã©ãšçµã¿åãããŸãã
ã«ãŒããããŠããŸãããINPUT åœä»€ã䜿ã£ãŠEnterããŒãæŒãããšã«æ¬¡ã®ä¹±æ°ã衚瀺ãããŠããŸããRND()ã¯ãå®éã«ã¯1ã®å€ãçæãããããšã¯ãã»ãšãã©ç¡ããšæãããã®ã§ãã®ããã°ã©ã ã«ãªããŸããå²ã蟌ã¿ããŒ(BREAKããŒãESCããŒ)ã§å®è¡ãçµäºããŸãã
BASICã¯ã圢åŒçã«ã¯ãBASICã¯ããã°ã©ã èšèªã§ãããšããŠåé¡ãããŠããŸããããããå®éã«ã¯ãå€ãBASICã21äžçŽã«åçŸããBASICã§ã¯ãä»ã®ããã°ã©ã èšèªã«ã¯ãªããç»å衚瀺ã®æ©èœãå
å®ããŠããŸããããã¯ã©ãããäºããšãããšãåçŸBASICã§ã¯ãç»å衚瀺ã®åœä»€ãå®è¡ããéã«ã¯ãOSã®ç»å衚瀺ã®æ©èœãåŒã³åºããŠã䜿ã£ãŠããã®ã§ããäžè¬çã«ãããã°ã©ã ãéããŠã®ç»å衚瀺ã«ã€ããŠã®ä»æ§ã¯ãåOSããšã«ãã©ãã©ã§ãããã®ãããBASICã®ã€ã³ã¿ããªã¿èªäœã®äœæè
ã¯ãããããã®OSããšã«ãBASICã€ã³ã¿ããªã¿ãäœããªããå¿
èŠããããŸãããã®ãããåçŸBASICã«ã¯ãWindowsçããã€ã³ã¿ããªã¿ã®äœãããŠãªãåçŸBASICããããŸãã
ãããããå®éã®å€ãBASICã®æµè¡ãã1970幎代ããã¯ã21äžçŽã®ä»ãšã¯ããœã³ã³è²©å£²ã®ç¶æ³ãéã£ãŠããŸãã1970幎代ããã®åœæã¯ããŸã OS(ãªãã¬ãŒãã£ã³ã° ã·ã¹ãã )ãé«åºŠåããåã ã£ãããšããããããã«ãOSãšããœã³ã³æ¬äœããã£ã€ããŠè²©å£²ãããŠããããšãããã1970幎代ããã¯ãBASICã販売ãããŠããããœã³ã³ãšäžç·ã«ãOSãšäžç·ã«ããœã³ã³æ¬äœã«çµã¿èŸŒãŸããŠããç¶æ
ã§ã販売ãããŠããŸããã
ãã®ãããå®éã®1970ã80幎代ã«åžè²©ãããŠããããœã³ã³ã«çµã¿èŸŒãŸããŠããBASICã§ã¯ãç»é¢ã«åãçŽç·ãªã©ã衚瀺ãããããç»å衚瀺ã®åœä»€ãããã¶ãŒé³ã鳎ãããªã©åœä»€ãªã©ããç°¡åã«ããã°ã©ã èšè¿°ã§ããããã«ãªã£ãŠããŸãã
æ¬æ¥ãç»å衚瀺ã®ããã®åŠçã¯ããã£ã¹ãã¬ã€ã®çš®é¡ããšã«ã解å床ããã©ãã©ã ã£ããããã®ã§ãããœã³ã³å
éšåäœãåããå¿
èŠãããã®ã§ããªãã¬ãŒãã£ã³ã°ã·ã¹ãã ã®æ©èœã䜿ã£ãŠãç»åã衚瀺ãããããããšã«ãªããŸãã
ããããåœæã®BASICã§ã¯ããªãã¬ãŒãã£ã³ã°ã·ã¹ãã ã®ä»çµã¿ããæèããå¿
èŠã¯ãããŸããã§ããããªããªããç¹å®äŒæ¥ã®ããœã³ã³ã«çµã¿èŸŒãŸããç¶æ
ã§BASICãé
åžãããŠããã®ã§ããã®ç¹å®äŒæ¥ã®ãã£ã¹ãã¬ã€ãã¹ããŒã«ãŒãšãã£ãããŒããŠã§ã¢ããç°¡åã«å¶åŸ¡ã§ããããã«ãBASICãæ¹è¯ããŠãã£ãã®ã§ãã
ãã®ãããªäºæ
ã®ãããããããåœæã®ã»ãšãã©ã®æ¶è²»è
ã¯ããããããªãã¬ãŒãã£ã³ã° ã·ã¹ãã ããæŠå¿µããç¥ããŸããã§ããã
ãã®ããã«ãBASICã®æ©èœã®èæ¯ã«ã¯ã1970ã80幎åœæã®ããœã³ã³äºæ
ããããŸãã
1970幎åœæã¯ãåããœã³ã³äŒç€Ÿã®BASICãæåããç¹å®ã®èªç€Ÿããœã³ã³ã«å¯Ÿå¿ããç¶æ
ã§ãããœã³ã³ã«çµã¿èŸŒãŸããŠããŠè²©å£²ãããŠããã®ã§ãBASICããçŽæ¥ãªãã¬ãŒãã£ã³ã°ã·ã¹ãã ã®æ©èœãå©çšã§ããããã§ãããã®ããã1970幎ããã®BASICã®æ©èœã¯ãçŸåšã®ãããã°ã©ã èšèªããšã¯ãããéã£ãŠããŸãã
ããŠ21äžçŽã®çŸåšãããã°ã©ã ã§ç»åã衚瀺ãããããããã¯é³å£°ã鳎ãããããªã©ã®ããã°ã©ã ãèšè¿°ãããå Žåã«ã¯ããªãã¬ãŒãã£ã³ã°ã·ã¹ãã ã®æ©èœã掻çšããå¿
èŠããããŸããOSã®æ©èœã䜿ãããã®ã³ãã³ã矀ã§ãããAPIã(ãšãŒ ã㌠ã¢ã€)ãšãããŸããã€ãŸããåçŸBASICã®ã€ã³ã¿ããªã¿äœæè
ã¯ã(ãããã)APIãé§äœ¿ããŠãåçŸBASICã®ç»å衚瀺ãé³å£°æ©èœãªã©ããäœã£ãŠããã®ã§ãã
ãªãã¬ãŒãã£ã³ã°ã·ã¹ãã ã«ã¯ããŠã£ã³ããŠãºãããã¯OSããªããã¯ã¹ãªã©ãè²ã
ãšãããŸãããããããã®OSããšã«ä»çµã¿ãéãã®ã§ãããã°ã©ã ã®èšè¿°äœæ¥ããããããã®OSããšã«ãããã°ã©ã ãåããå¿
èŠããããŸãã
äžè¿°ã®ãããªããœã³ã³äºæ
ãã1970幎é ãšçŸä»£ã§ã¯å€§ããéãã®ã§ããã¯ãBASICã ãã§ã¯ãé«åºŠãªã¢ããªã±ãŒã·ã§ã³ãäœãããšããŠããããŸãç°¡åã«ã¯äœããªããªã£ãŠããŸããŸããã
ãªã®ã§ãããã21äžçŽã®çŸä»£ã®äººããç¬åŠã§BASICãåŠã¶å Žåã¯ããã£ããŠå€ãBASICã ãã§æºè¶³ããã«ããªãã¹ããCèšèªãåŠãã ããããã«ããã®åŸã®æ代ã®ä»ã®ããã°ã©ã èšèªãåŠã³ãŸãããã
| [
{
"paragraph_id": 0,
"tag": "p",
"text": "æ
å ±æè¡ > ããã°ã©ãã³ã° > BASIC",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ããã°ã©ãã³ã°èšèªBASIC(ããŒã·ãã¯)ã®äœ¿çšæ³",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "BASICã«ã¯å€§ããåããŠã以äžã®ããã«åé¡ãããŸã(ãã ãBASICã¯æ°å€ã®æ¹èšãããã®ã§ãããã¯åé¡ã®äžäŸ)ã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "æ¥æ¬èªãŠã£ãããã¯ã¹ã®æ¬ããŒãžãBASICãã§ã¯ãäž»ã«ãã€ã³ã³BASICãJISèŠæ ŒBASICãåºæºã«ãææ³ã説æããŠããŸãã ãã®çç±ã¯ããã€ã³ã³BASICã¯ææ³ãåçŽã§å
¥éããããããŸããå€ããããããããä»ã®ããã°ã©ãã³ã°èšèªã«ãå¿çšããããããã§ãã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ãã£ãœããVisual Basicãªã©ã®GUI察å¿ããBASICã¯ãææ³ãšæäœæ§ããå€ãBASICãšã¯ãããªãç°ãªããŸããGUI察å¿BASICã¯ãããŠã¹å
¥åã«å¯Ÿå¿ããGUIããã°ã©ãã³ã°ã«å¯Ÿå¿ããããã«ãæ°ããæ©èœã倧éã«è¿œå ããŠãããããããŒããŒãå
¥åãäžå¿ã«ãã€ããå€ãBASICãšã¯ã倧å¹
ã«éã£ãŠããŸãã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "GUI察å¿ããBasicã«ã¯ãæŽå²çãªçµç·¯ããããBASICããã掟çããååãã€ããŠããŸãããå®æ
ã¯ãã»ãšãã©å¥ã®ããã°ã©ãã³ã°èšèªã ãšæã£ãã»ããè¯ãã§ãããã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ãªãã2017幎ã®çŸåšã(GUIã«ç¹åããŠãã)Visual BasicãåºããŠãããã€ã¯ããœãã瀟ããå
¥éè
çšã«æ©èœãç°¡æåãã small basic ãšãããã®ãåºããŠããã®ã§ãGUIããã°ã©ãã³ã°ã®åå¿è
㯠Visual Basic ã§ã¯ãªã small basic (ã¹ã¢ãŒã« ããŒã·ãã¯)ã§å
¥éããã»ãããåŠã³ãããã§ãããã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ããŸã Visual Basic ã¯ãå
¥éçšã®ããã°ã©ã ãåäœããããŸã§ã«ãèŠããããšããšãŠãå€ããªã£ãŠããŸãããã®ããããã€ã¯ããœãã瀟ãããã¯ãVisual Basicã¯å
¥éçšã«ã¯é©ããªããšå€æããŠãè¿å¹Žã«ãªã£ãŠ small basic ãåºããšããããšã«ãªã£ã次第ã§ãã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "BASICã®å®è¡ç°å¢ãœããã¯ãVector(ãã¯ã¿ãŒ; https://www.vector.co.jp/ )ãªã©ã€ã³ã¿ãŒãããäžã®ããªãŒ ãœãããŠã§ã¢é
åžãµã€ãããç¡åãŸãã¯æåã§ããŠã³ããŒãããããšãã§ããŸãã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "æ¥æ¬ã§äž»æµã ã£ãN-BASICãF-BASICã補é ããŠããäŒç€Ÿã¯ãBASICèšèªã®éçºã»è²©å£²ãçµäºããŠããŸããããã¯ã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "ãªã©ã®çç±ãèããããŸãããã®ãããçŸåš(什å4幎7æ)ã§ã¯ãBASICã¯å°ã趣å³ã§äœ¿ãããçšåºŠã«ãªã£ãŠããŸããŸããã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "ãã®ä»£ãããä»ã®äŒæ¥ãå人ãæã®BASICã®å®è¡ç°å¢ãåçŸããã¢ããªã±ãŒã·ã§ã³ãäœããããªãŒ ãœãããŠã§ã¢é
åžãµã€ãã§å
¬éããŠããŸãã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "Microsoft Quick BASIC(MS-DOSæ代)äºæã®ãªãŒãã³ ãœãŒã¹ ãœãããŠã§ã¢ãªã©ãããããããå©çšããããšãã§ããŸãã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "ç¹ã«ãQB64ã«ã¯ãšãã¥ã¬ãŒã·ã§ã³æ©èœããããæãªããã®æ¹æ³ã§å€å°ã®ããã°ã©ãã³ã°ãå¯èœã§ãã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "ãŸãã䜿çšããBASIC(ããŒã·ãã¯)ãéžã³ãèµ·åããŠäžããã",
"title": "å€ãBASICã§ã®ããã°ã©ã ã®å
¥å"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "BASICã§ç»é¢ã«æåã衚瀺ããããã«ã¯ PRINT æã䜿ããŸãããã ããæ°ããBASICã§ã¯ããŸã£ããå¥ã®ã³ãã³ãæã«ãªããŸãã",
"title": "å€ãBASICã§ã®ããã°ã©ã ã®å
¥å"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "BASICãèµ·åãããšããOkããReadyããªã©(BASICãæ©çš®ã«ãã£ãŠç°ãªããŸã)ã®æåã®äžã«ãâ ã(ã«ãŒãœã«)ãåºãŸããã«ãŒãœã«ã¯ã«ãŒãœã«ããŒã®äžäžå·Šå³ã§ç§»åã§ããŸãããã®ã«ãŒãœã«ãåºãŠãããšãã«ãBASICã®ããã°ã©ã ãç·šéã§ããŸãã",
"title": "å€ãBASICã§ã®ããã°ã©ã ã®å
¥å"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "ã§ã¯æåã«ãPRINTæã䜿ã£ãŠãç»é¢ã«æåã衚瀺ãããŠã¿ãŸãããã",
"title": "å€ãBASICã§ã®ããã°ã©ã ã®å
¥å"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "ãšå
¥åããŠã¿ãŠãã ãããå
¥åæã®æåã¢ãŒãã¯ãçŽæ¥å
¥åã¢ãŒãã§å
¥åããŠãã ãããWindowsã®å Žåãå³äžã«ãæåå
¥åã¢ãŒãã®åãæ¿ãã®ã¿ããããã®ã§ããããã¯ãªãã¯ããŠãçŽæ¥å
¥åã¢ãŒããéžãã§ãããäžèšã®PRINTæãå
¥åããŠãã ããã",
"title": "å€ãBASICã§ã®ããã°ã©ã ã®å
¥å"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "ãã®ããã«äžèšã®PRINTæãå
¥åããRUN(ãã©ã³ããšããããèµ·åãããã®æå³)ãå®è¡ãããš(å®è¡æ¹æ³ã¯æ©çš®ã«ãã£ãŠç°ãªããŸãã®ã§ãããããã®æ©çš®ãåèã«ããŠãã ãã)ãç»é¢ã« Hello BASIC ãšè¡šç€ºãããŸãã",
"title": "å€ãBASICã§ã®ããã°ã©ã ã®å
¥å"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "åæ§ã«ãæ°ããè¡ã§ãç»é¢ã®å·Šç«¯ã«ã«ãŒãœã«ãããç¶æ
ã§ã",
"title": "å€ãBASICã§ã®ããã°ã©ã ã®å
¥å"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "ã®ããã«å
¥åããŠã¿ãŠ(æåŸã«EnterããŒãå
¥åããŠæ¹è¡ããŸããæ©çš®ã«ãã£ãŠã¯RETURNããŒãCRããŒãšãèšããŸãã以äžãåããªã®ã§çç¥ããŸã)ãRUNãå®è¡ãããš(å®è¡æ¹æ³ã¯ããããã®æ©çš®ãåèã«ããŠãã ãã)ã5 ãšèšç®ã®çµæã衚瀺ãããŸãã",
"title": "å€ãBASICã§ã®ããã°ã©ã ã®å
¥å"
},
{
"paragraph_id": 22,
"tag": "p",
"text": "ãã®ããã«ãPRINTåœä»€ã¯ããã®çŽåŸã«ãããã®ãç»é¢ã«è¡šç€ºããŸãã",
"title": "å€ãBASICã§ã®ããã°ã©ã ã®å
¥å"
},
{
"paragraph_id": 23,
"tag": "p",
"text": "ãŸããBASICã§ã¯ãåœä»€ãå®è¡ããããšãRUN(ã©ã³)ãšèšããŸããè±èªã®ãèµ°ãã RUN ãšåãåèªã§ããã©ã³ãã³ã°(èµ°ã)ãã©ã³ããŒ(èµ°è
)ã®ã©ã³ãšåãã§ãã",
"title": "å€ãBASICã§ã®ããã°ã©ã ã®å
¥å"
},
{
"paragraph_id": 24,
"tag": "p",
"text": "ãã£ãœãã",
"title": "å€ãBASICã§ã®ããã°ã©ã ã®å
¥å"
},
{
"paragraph_id": 25,
"tag": "p",
"text": "ãRUNã§å®è¡ãããšãç»é¢ã«\"2+3\"ãšãã®ãŸãŸè¡šç€ºãããŸãã",
"title": "å€ãBASICã§ã®ããã°ã©ã ã®å
¥å"
},
{
"paragraph_id": 26,
"tag": "p",
"text": "ã€ãŸããäºéåŒçšç¬Š \" \" ã¯ããåŒçšç¬Šå
ã®æååããç»é¢ã«ãã®ãŸãŸè¡šç€ºããããšããæå³ã®èšå·ã§ãã",
"title": "å€ãBASICã§ã®ããã°ã©ã ã®å
¥å"
},
{
"paragraph_id": 27,
"tag": "p",
"text": "ä»ã®ããã°ã©ãã³ã°èšèªã§ãããprintããšããèªãããã¹ã衚瀺åœä»€ã«çšããããã°ã©ãã³ã°èšèªã¯å€ãã§ãããŸããä»ã®ããã°ã©ãã³ã°èšèªã§ããæååã衚瀺ããå Žåã¯ãäºéåŒçšç¬Š \" \" 㧠ãããã®ããæ®éã«ãªã£ãŠããŸãã",
"title": "å€ãBASICã§ã®ããã°ã©ã ã®å
¥å"
},
{
"paragraph_id": 28,
"tag": "p",
"text": "ãããäºéåŒçšç¬Šã§ããããªããšã",
"title": "å€ãBASICã§ã®ããã°ã©ã ã®å
¥å"
},
{
"paragraph_id": 29,
"tag": "p",
"text": "ã¯ããšã©ãŒã®ããæãªã®ã§å®è¡äžå¯èœãçãªå ±åã ã³ã³ãã¥ãŒã¿ãŒããå ±åããããããããã¯ããŸã£ããäºæãã¬æ°å€ãæåã衚瀺ããããªã©ã®ãšã©ãŒãèµ·ãããŸã(äŸãã°undefined)ã",
"title": "å€ãBASICã§ã®ããã°ã©ã ã®å
¥å"
},
{
"paragraph_id": 30,
"tag": "p",
"text": "",
"title": "å€ãBASICã§ã®ããã°ã©ã ã®å
¥å"
},
{
"paragraph_id": 31,
"tag": "p",
"text": "å€ãBASICã§ã¯ãããã°ã©ã ã¯ãè¡çªå·+åœä»€ãã®åœ¢ã§ããããŸããè¡çªå·ãã€ããªãã§å
¥åãããšãåè¿°ã®ããã«ãåœä»€ãå³å®è¡ããŠãçµäºãããŸããå
é ã«è¡çªå·ãã€ããããšã§åããŠãåœä»€ãçµã¿åããããããã°ã©ã ããšããŠå®è¡ã§ããããã«ãªããŸãã0æªæºã®æ°ãå°æ°ãåæ°ã¯è¡çªå·ã«ã§ããŸããã",
"title": "å€ãBASICã§ã®ããã°ã©ã ã®å
¥å"
},
{
"paragraph_id": 32,
"tag": "p",
"text": "åè¡ã®æåã«ã€ããŠããæ°åãè¡çªå·ã§ãã10ããã¯ãããŠ10ãã€å¢ãããŠããã®ãäžè¬çã§ããããããã°ãåŸããç°¡åã«è¡ãæ¿å
¥ããããšãã§ããŸã(ãã ã9è¡ãŸã§)ãPRINT ã¯åç¯ã§èª¬æããéãç»é¢ã«æåãåºåããåœä»€ã§ããæåŸã® END ã¯ããã°ã©ã ã®çµäºãè¡šãåœä»€ã§ãçç¥å¯èœãªBASICãå€ãã§ãããããã§ãªããã°å¿
ãå
¥ããããã«ããŸãã",
"title": "å€ãBASICã§ã®ããã°ã©ã ã®å
¥å"
},
{
"paragraph_id": 33,
"tag": "p",
"text": "å
¥åããã",
"title": "å€ãBASICã§ã®ããã°ã©ã ã®å
¥å"
},
{
"paragraph_id": 34,
"tag": "p",
"text": "ãš(è¡çªå·ãªãã§)å
¥åãããšå®è¡ããŸãã ãã®ããã°ã©ã ãå®è¡ããããšãç»é¢ã«ã3+5= 8ããšè¡šç€ºãããŸãã",
"title": "å€ãBASICã§ã®ããã°ã©ã ã®å
¥å"
},
{
"paragraph_id": 35,
"tag": "p",
"text": "10è¡ã®æåŸã«ã€ããŠãã ; ã¯ããæ¹è¡ããªããããšãã³ã³ãã¥ãŒã¿ãŒã«éç¥ããŸãããããåãé€ããšãå®è¡ãããšãã«ã3+5=ããšã8ããå¥ã®è¡ã«è¡šç€ºãããŠããŸããŸãããããå©çšããŠãäžè¡å空çœã«ããããšãã§ããŸãã",
"title": "å€ãBASICã§ã®ããã°ã©ã ã®å
¥å"
},
{
"paragraph_id": 36,
"tag": "p",
"text": "ãªããå€ãBASICã§ã¯ã:ããçšãããšæ¬¡ã®ããã«ãæžããŸãããçŸåšã§ã¯æšå¥šãããŸããã",
"title": "å€ãBASICã§ã®ããã°ã©ã ã®å
¥å"
},
{
"paragraph_id": 37,
"tag": "p",
"text": "çŸåšãäžéšã®(åçŸ)BASICã§ã¯ã",
"title": "å€ãBASICã§ã®ããã°ã©ã ã®å
¥å"
},
{
"paragraph_id": 38,
"tag": "p",
"text": "ã®ããã«èšè¿°ããããšãã§ããŸãã",
"title": "å€ãBASICã§ã®ããã°ã©ã ã®å
¥å"
},
{
"paragraph_id": 39,
"tag": "p",
"text": "ãªããENDã¯ããã°ã©ã ã®çµäºãè¡šãåœä»€ã§ããã®ã§ãããšãã°ã",
"title": "å€ãBASICã§ã®ããã°ã©ã ã®å
¥å"
},
{
"paragraph_id": 40,
"tag": "p",
"text": "ã®ãããªããã°ã©ã ã ãšãã3+5=ãã衚瀺ããåã«ããããªãçµäºããŸãã",
"title": "å€ãBASICã§ã®ããã°ã©ã ã®å
¥å"
},
{
"paragraph_id": 41,
"tag": "p",
"text": "",
"title": "å€ãBASICã§ã®ããã°ã©ã ã®å
¥å"
},
{
"paragraph_id": 42,
"tag": "p",
"text": "ã®ããã«ãè¡çªå·ãé çªã©ããã§ã¯ãªãå Žåãã©ã®è¡ãåªå
ããŠå®è¡ããã®ã§ãããã?",
"title": "å€ãBASICã§ã®ããã°ã©ã ã®å
¥å"
},
{
"paragraph_id": 43,
"tag": "p",
"text": "çŸä»£ã®GUI察å¿ã®BASICã§ã¯ãè¡çªå·ã®ãªããã®ãå€ãã®ã§ããããã®çç±ã®ã²ãšã€ããããããããã®ãããªãè¡çªå·ãšé åºã®ã¡ããå Žåã®æ··ä¹±ãé²ããããªã©ããããªãã®çç±ãããã®ã§ãããã",
"title": "å€ãBASICã§ã®ããã°ã©ã ã®å
¥å"
},
{
"paragraph_id": 44,
"tag": "p",
"text": "ããŠããããŠãã®å€ãBASICã®å Žåãè¡çªå·ã®å°ããé ããå
ã«å®è¡ãããšæããŸã(ããã€ãã®åçŸBASICãœããã§ç¢ºèª)ããã®å Žåãç¹ã«ãšã©ãŒã¡ãã»ãŒãžãªã©ã¯ãåºãããŸããã",
"title": "å€ãBASICã§ã®ããã°ã©ã ã®å
¥å"
},
{
"paragraph_id": 45,
"tag": "p",
"text": "ãããããå€ãBASICã§ã¯ããœãããŠã§ã¢ã®å
éšã§ã¯ãããã°ã©ã ã®å®è¡ã®ããããã«(ã€ãŸãRUNåœä»€ã®çŽåŸã«)ããŸãè¡çªå·ã«ããšã¥ããŠäžŠã¹æ¿ããè¡ã£ãŠã",
"title": "å€ãBASICã§ã®ããã°ã©ã ã®å
¥å"
},
{
"paragraph_id": 46,
"tag": "p",
"text": "ã®ããã«äžŠã¹æ¿ããŠããããããããã£ãšãäžããé ã«å®è¡ãããŠããã®ã§ãããã",
"title": "å€ãBASICã§ã®ããã°ã©ã ã®å
¥å"
},
{
"paragraph_id": 47,
"tag": "p",
"text": "ã€ãŸãããããã®å€ãBASICã¯ãããã°ã©ã ãæåã«å®è¡ããéããŸã䞊ã¹æ¿ããè¡ã£ãŠããã®ã§ãã",
"title": "å€ãBASICã§ã®ããã°ã©ã ã®å
¥å"
},
{
"paragraph_id": 48,
"tag": "p",
"text": "ãããè¡æ°ã10è¡ãŠãã©ã®å°ãªãããã°ã©ã ãªããããã§ãããŸããŸããããæ°ã®å©ãã䟿å©ãªæ©èœã§ãããã",
"title": "å€ãBASICã§ã®ããã°ã©ã ã®å
¥å"
},
{
"paragraph_id": 49,
"tag": "p",
"text": "ããããããçŸè¡ãåè¡ãããããã°ã©ã ã䞊ã¹æ¿ãããšãªããšã䞊ã¹æ¿ãã«ã¯æéãæããã®ã§ãããã°ã©ã ã®å®è¡ãçµãããŸã§ã®æéãé·åŒããŠããŸããŸãã",
"title": "å€ãBASICã§ã®ããã°ã©ã ã®å
¥å"
},
{
"paragraph_id": 50,
"tag": "p",
"text": "å察ã«èšããšãè¡çªå·ã®ãªãBASICã®å Žåããã®ã¶ãé«éåãããŠããå¯èœæ§ããããŸã(䞊ã¹æ¿ãã®æéãçããã®ã§)ã",
"title": "å€ãBASICã§ã®ããã°ã©ã ã®å
¥å"
},
{
"paragraph_id": 51,
"tag": "p",
"text": "ããã«èšããšãè¡çªå·ã®ããBASICã®äœ¿ãéã¯ãåŠçã«æéãæãã£ãŠãããã®ã§ãåŠçã®é åºã確å®ã«ãŸã¡ãããªããèªå以å€ã®ä»ã®ããã°ã©ããŒã«ãäŒããããããªããã°ã©ã ãæžããšãã«ã¯ãããããããè¡çªå·ã®ããBASICã䟿å©ãããããŸããã",
"title": "å€ãBASICã§ã®ããã°ã©ã ã®å
¥å"
},
{
"paragraph_id": 52,
"tag": "p",
"text": "",
"title": "å€ãBASICã§ã®ããã°ã©ã ã®å
¥å"
},
{
"paragraph_id": 53,
"tag": "p",
"text": "ãšãã£ã¿ã®ãªãå€ãBASICã§ã¯ã",
"title": "å€ãBASICã§ã®ããã°ã©ã ã®å
¥å"
},
{
"paragraph_id": 54,
"tag": "p",
"text": "ãšå
¥åãããšãããã°ã©ã (ããã°ã©ã ãªã¹ã)ãå
é ã®è¡ãããã衚瀺ããŸãã",
"title": "å€ãBASICã§ã®ããã°ã©ã ã®å
¥å"
},
{
"paragraph_id": 55,
"tag": "p",
"text": "ãšå
¥åãããš10è¡ç®ã ããã",
"title": "å€ãBASICã§ã®ããã°ã©ã ã®å
¥å"
},
{
"paragraph_id": 56,
"tag": "p",
"text": "ãšå
¥åãããš20è¡ç®ä»¥éãã¹ãŠãã",
"title": "å€ãBASICã§ã®ããã°ã©ã ã®å
¥å"
},
{
"paragraph_id": 57,
"tag": "p",
"text": "ãšå
¥åãããšå
é ã®è¡ãã20è¡ç®ãŸã§ãã",
"title": "å€ãBASICã§ã®ããã°ã©ã ã®å
¥å"
},
{
"paragraph_id": 58,
"tag": "p",
"text": "ãšå
¥åãããš20è¡ç®ãã30è¡ç®ã衚瀺ããŸãã",
"title": "å€ãBASICã§ã®ããã°ã©ã ã®å
¥å"
},
{
"paragraph_id": 59,
"tag": "p",
"text": "ãŸãã",
"title": "å€ãBASICã§ã®ããã°ã©ã ã®å
¥å"
},
{
"paragraph_id": 60,
"tag": "p",
"text": "ãšå
¥åãããšãæ¹è¡ãããã³ã«è¡çªå·ã10ãã€å¢ãããŠèªåçã«è¡šç€ºããŸããèªå衚瀺ãåæ¢ãããã®ã¯BREAKããŒãæŒããŸã(æ©çš®ã«ãã£ãŠã¯STOPããŒããCTRL+STOPããŒãåææŒããªã©ãæäœãå€å°ç°ãªããŸã)ã",
"title": "å€ãBASICã§ã®ããã°ã©ã ã®å
¥å"
},
{
"paragraph_id": 61,
"tag": "p",
"text": "ä»ã§ãããããã°ã©ã ã®å®è¡çµæã®ç»é¢ãšãããã°ã©ã èšè¿°çšã®ãšãã£ã¿ç»é¢ãšã¯ãå¥ã
ã®ç»é¢ã«åãããŠããã®ãæ®éã§ãã",
"title": "å€ãBASICã§ã®ããã°ã©ã ã®å
¥å"
},
{
"paragraph_id": 62,
"tag": "p",
"text": "ããããæã®ããœã³ã³ã§ã¯ã衚瀺ãŠã€ã³ããŠãæšæºã§ã¯1ã€ãããããŸããã§ãããããããããŠã£ã³ããŠããšããæŠå¿µãããªããæã®å€ãããã°ã©ã èšèªã§ã¯ãå®è¡çµæã®è¡šç€ºç»é¢ãšããšãã£ã¿ç»é¢ãšããåãã²ãšã€ã®ç»é¢ã ã£ããããŸãããããã³ãã³ãå
¥åæ©èœãããã°ã©ã èšè¿°æ©èœãå
ŒããŠãããããããã¯ããœã³ã³æ¬äœã«ããã¬ããŒã¹ã€ãã(å°åã®ã¬ããŒã¹ã€ãããã€ããŠããããã)ã«ãããã³ãã³ãå
¥åã¢ãŒã(ãã¿ãŒããã«ã¢ãŒãããšãã)ãšããã°ã©ãã³ã°ã¢ãŒããšãåãæ¿ãããããŠããŸããã",
"title": "å€ãBASICã§ã®ããã°ã©ã ã®å
¥å"
},
{
"paragraph_id": 63,
"tag": "p",
"text": "çŸä»£ã§ããWindowsã®ã³ãã³ãããã³ããã®ãããªãOSä»å±ã®ã³ãã³ãå
¥åçšã¢ããªã±ãŒã·ã§ã³ã§ã¯ãæ®éããŠã£ã³ããŠã¯1ã€ã ãã§ããããã®ãã£ãã²ãšã€ã®ãŠã£ã³ããŠããå®è¡çµæã®è¡šç€ºç»é¢ãšãã³ãã³ãå
¥åç»é¢ãšãå
ŒããŠããŸãã",
"title": "å€ãBASICã§ã®ããã°ã©ã ã®å
¥å"
},
{
"paragraph_id": 64,
"tag": "p",
"text": "",
"title": "å€ãBASICã§ã®ããã°ã©ã ã®å
¥å"
},
{
"paragraph_id": 65,
"tag": "p",
"text": "æ°ããBASICã§ã¯ãããã°ã©ã ãç·šéããããã®ãšãã£ã¿ãæã£ãŠããããããå
¥åã«äœ¿ããŸãããšãã£ã¿ã®æŠèŠã䜿ãæ¹èªäœã¯çç¥ããŸãããŸãã次ã®ããã«ãè¡çªå·ãçç¥ãã§ããŸãã",
"title": "å€ãBASICã§ã®ããã°ã©ã ã®å
¥å"
},
{
"paragraph_id": 66,
"tag": "p",
"text": "ããã°ã©ã ã®å®è¡ã¯ãRUNã§ã¯ãªãããšãã£ã¿ã®ã¡ãã¥ãŒãããå®è¡ããéžæããŸãã",
"title": "å€ãBASICã§ã®ããã°ã©ã ã®å
¥å"
},
{
"paragraph_id": 67,
"tag": "p",
"text": "å€ãBASICã®ããã«ãåœä»€ãå®è¡ããŠãå³çµäºãããã«ã¯ãäžã«ã¯ãçŽæ¥å
¥åã(äŸ: ã€ããã£ãšã€ã ãŠã£ã³ã㊠)ãç°¡åã«ã§ããæ°ããBASICããããŸãããã»ãšãã©ã®æ°ããBASICã§ã¯ãšãã£ã¿ã®ã¡ãã¥ãŒãã察å¿ããé
ç®ãéžã¶å¿
èŠããããŸãã",
"title": "å€ãBASICã§ã®ããã°ã©ã ã®å
¥å"
},
{
"paragraph_id": 68,
"tag": "p",
"text": "ããã§ã¯è¡çªå·ä»ãã®å€ãBASICã®æžåŒã§èª¬æããŸãã",
"title": "å€ãBASICã§ã®ããã°ã©ã ã®å
¥å"
},
{
"paragraph_id": 69,
"tag": "p",
"text": "â» ä»ã®ããã°ã©ã èšèªã§ãã䌌ããããªææ³ã®èšèªã¯ãå€ããããŸããä»ã®ããã°ã©ã èšèªã«ããããã®ã¯ãäž»ã«ã",
"title": "æåã«"
},
{
"paragraph_id": 70,
"tag": "p",
"text": "ã§ãã",
"title": "æåã«"
},
{
"paragraph_id": 71,
"tag": "p",
"text": "泚é(ã¡ã
ãããã)ãã€ããã«ã¯REMã䜿ããŸãããã¬ã ããšèªã¿ãŸãã泚éãšã¯ãäœãå®è¡ããªãããšããåœä»€ã§ãããã°ã©ã ã®èª¬æãæžãããããããã°(ãšã©ãŒã®åå ããããäœæ¥ã®ããš)ãªã©ã§äžæçã«åœä»€ãå®è¡ãããªãããã«ãããšãããªã©ã«äœ¿ããŸãã",
"title": "泚éïŒã³ã¡ã³ãïŒ REM"
},
{
"paragraph_id": 72,
"tag": "p",
"text": "ãã®ããã°ã©ã ãå®è¡ãããšã10è¡ç®ã¯äœãå®è¡ããã20è¡ç®ãå®è¡ãããŠãç»é¢ã«ã2ããšã ã衚瀺ããŸãã 30è¡ã¯ENDåœä»€ã§ãããã®åœä»€ã§å®è¡ãçµäºããŸãã",
"title": "泚éïŒã³ã¡ã³ãïŒ REM"
},
{
"paragraph_id": 73,
"tag": "p",
"text": "ãã€ã¯ããœããç³»ã®BASICã§ã¯ãã¢ãã¹ãããã£ãŒã代ããã«äœ¿ããŸãã",
"title": "泚éïŒã³ã¡ã³ãïŒ REM"
},
{
"paragraph_id": 74,
"tag": "p",
"text": "ç»é¢ã«è¡šç€ºãããã«ã¯ PRINTæã䜿ããŸãããããªã³ãããšèªã¿ãŸãã",
"title": "衚瀺 PRINT"
},
{
"paragraph_id": 75,
"tag": "p",
"text": "PRINTã®åŸã«ç¶ããã®ãç»é¢ã«è¡šç€ºããŸããæååãæ°å€ãå€æ°ãªã©",
"title": "衚瀺 PRINT"
},
{
"paragraph_id": 76,
"tag": "p",
"text": "",
"title": "衚瀺 PRINT"
},
{
"paragraph_id": 77,
"tag": "p",
"text": "PRINTã«ç¶ãå®æ°ãå€æ°ãç»é¢ã«è¡šç€ºããŸããã©ã®ãããªåã§ãã£ãŠã衚瀺ãããŸããæ°å€ãæåãªã©ããŸãã;ã»ãã³ãã³ãå€æ°æ«å°Ÿã«çœ®ãäºã«ãã£ãŠææ«ã®æ¹è¡ãè¡ãããŸãããã€ãŸãäºã€ã®PRINTæãã²ãšã€ãšããŠé£ç¶ã«è¡šç€ºããããšãåºæ¥ãŸããäžè¬çãªæ³šæãšããŠãPRINTæã¯é«åºŠãªå
éšåŠçãè¡ãããã«åŠçãé
ããªããŸãã",
"title": "衚瀺 PRINT"
},
{
"paragraph_id": 78,
"tag": "p",
"text": "å€æ°ã¯ãæ°å€ãæåãªã©ã®ããŒã¿ãå
¥ããŠããç®±ã®ãããªãã®ã§ãã",
"title": "å€æ°"
},
{
"paragraph_id": 79,
"tag": "p",
"text": "å€æ°ã®ååã«ã¯ã以äžã®ãããªèŠåããããŸãã",
"title": "å€æ°"
},
{
"paragraph_id": 80,
"tag": "p",
"text": "ãŸããå€ãBASICãç°¡æãªBASICã§ã¯ãæ©çš®ã«ãã£ãŠå€æ°åã®é·ãã«ã2æå以äžãã8æå以äžããšããå¶éããããŸãã",
"title": "å€æ°"
},
{
"paragraph_id": 81,
"tag": "p",
"text": "ããŒããŒãããå
¥åããã«ã¯ãINPUTæã䜿ããŸãã",
"title": "å
¥å INPUT"
},
{
"paragraph_id": 82,
"tag": "p",
"text": "",
"title": "å
¥å INPUT"
},
{
"paragraph_id": 83,
"tag": "p",
"text": "10 INPUT A ã§ã¯ãæ°å€å€æ°Aã« ããŒããŒãããå
¥åããæ°å€ã代å
¥ããŸãã",
"title": "å
¥å INPUT"
},
{
"paragraph_id": 84,
"tag": "p",
"text": "ãã®ãããªæžãæ¹ãåºæ¥ãŸãã",
"title": "å
¥å INPUT"
},
{
"paragraph_id": 85,
"tag": "p",
"text": "å
¥åãä¿ãæååã衚瀺ããŠãããå
¥åã«å
¥ããŸãã",
"title": "å
¥å INPUT"
},
{
"paragraph_id": 86,
"tag": "p",
"text": "å€æ°ã¯ãæ°å€ãæåãªã©ã®ããŒã¿ãå
¥ããŠããç®±ã®ãããªãã®ã§ãã",
"title": "代å
¥ãšèšç®"
},
{
"paragraph_id": 87,
"tag": "p",
"text": "ãã®ããã°ã©ã ã¯ãå€æ° A ã« 12ãå€æ° B ã« 3 ã代å
¥ãã足ãç®ã»åŒãç®ã»æãç®ã»å²ãç®ã®çµæã衚瀺ããç©ã§ã(é ã«ã15 9 36 4 ãšè¡šç€ºãããŸã)ã",
"title": "代å
¥ãšèšç®"
},
{
"paragraph_id": 88,
"tag": "p",
"text": "å€æ°ãžã®ä»£å
¥ã¯ = ã䜿çšããŸããäžã®ããã°ã©ã ã§ã¯çŽæ¥æ°åã代å
¥ããŸããããèšç®åŒ(å€æ°ã䜿çšãããã®ãå«ã)ãè©äŸ¡ããå€ã代å
¥ããããšãã§ããŸãã",
"title": "代å
¥ãšèšç®"
},
{
"paragraph_id": 89,
"tag": "p",
"text": "BASICã«ããã代å
¥ãšã¯ããèšå·=ã®å³èŸºã®èšç®åŒãè©äŸ¡ããå€ããèšå·=ã®å·ŠèŸºã®å€æ°ã«å²åœãŠãããšããæå³ã§ãã",
"title": "代å
¥ãšèšç®"
},
{
"paragraph_id": 90,
"tag": "p",
"text": "ãã®ããã",
"title": "代å
¥ãšèšç®"
},
{
"paragraph_id": 91,
"tag": "p",
"text": "ãšããåœä»€ã¯ãšã©ãŒã«ãªããŸãã ããªããã代å
¥å
ã®å€æ°ã¯ãèšå·=ã®å·ŠèŸºã«ããå¿
èŠããããŸãã",
"title": "代å
¥ãšèšç®"
},
{
"paragraph_id": 92,
"tag": "p",
"text": "ãŸããå³èŸºã«ããèšç®åŒããèšå·=ã®å·Šã«ããå€æ°ã«ä»£å
¥ããã®ã§ã",
"title": "代å
¥ãšèšç®"
},
{
"paragraph_id": 93,
"tag": "p",
"text": "ã®ããã«ãèªåèªèº«ãçšããåŒã代å
¥ããããšãã§ããŸããããããA+1=Aããšããé åºã ãšããšã©ãŒã«ãªããŸãã",
"title": "代å
¥ãšèšç®"
},
{
"paragraph_id": 94,
"tag": "p",
"text": "",
"title": "代å
¥ãšèšç®"
},
{
"paragraph_id": 95,
"tag": "p",
"text": "ãå®è¡ãããšãèšç®çµæ(12+1)ã®ã13ãã衚瀺ãããã§ãããã",
"title": "代å
¥ãšèšç®"
},
{
"paragraph_id": 96,
"tag": "p",
"text": "ãªããå€æ°ãžã®ä»£å
¥ã¯ãLETãåœä»€ã§ã",
"title": "代å
¥ãšèšç®"
},
{
"paragraph_id": 97,
"tag": "p",
"text": "ã¯",
"title": "代å
¥ãšèšç®"
},
{
"paragraph_id": 98,
"tag": "p",
"text": "ãªã®ã§ãããJISèŠæ ŒBASICãé€ããŠãã»ãšãã©ã®æ°æ§ã®BASICãåãããLETã¯çç¥å¯èœã§ãã",
"title": "代å
¥ãšèšç®"
},
{
"paragraph_id": 99,
"tag": "p",
"text": "èšç®ã®èšå·ã¯ã足ãç®ã«ã¯+ãåŒãç®ã«ã¯-ãæãç®ã«ã¯*ãå²ãç®ã«ã¯,/ ã®èšå·ãå²ãåœãŠãããŠããŸããäœãã¯ãMODã(ã¢ãžã§ã)ã§ãã",
"title": "代å
¥ãšèšç®"
},
{
"paragraph_id": 100,
"tag": "p",
"text": "æ¬åŒ§()ã䜿ãäºãåºæ¥ãŸããèšç®ã®é åºã«è¿·ã£ããæ¬åŒ§ã䜿ãããã«ããŸãããã",
"title": "代å
¥ãšèšç®"
},
{
"paragraph_id": 101,
"tag": "p",
"text": "å°æ¥çã«ãLETæã®ããä»ã®ããã°ã©ãã³ã°èšèªã®åŠç¿ã®ããšãèããŠãLETæãã€ãã£ãŠäžèšã®ããã°ã©ã ãæžããŠã¿ãŸãããã",
"title": "代å
¥ãšèšç®"
},
{
"paragraph_id": 102,
"tag": "p",
"text": "å©çšè
ããããŒããŒãã§æ°å€ãå
¥åããŠãããã«ã¯ãINPUT æã䜿ããŸãã INPUTåœä»€ã䜿ã£ãŠæ°å€ãŸãã¯æåå(å€æ°å$)ãå
¥åãããå Žåã",
"title": "å
¥ååœä»€"
},
{
"paragraph_id": 103,
"tag": "p",
"text": "ãšããŸãã",
"title": "å
¥ååœä»€"
},
{
"paragraph_id": 104,
"tag": "p",
"text": "(ããã°ã©ã äŸ)",
"title": "å
¥ååœä»€"
},
{
"paragraph_id": 105,
"tag": "p",
"text": "ãŸãã¯",
"title": "å
¥ååœä»€"
},
{
"paragraph_id": 106,
"tag": "p",
"text": "",
"title": "å
¥ååœä»€"
},
{
"paragraph_id": 107,
"tag": "p",
"text": "ããšãã°ãäžã®ããã°ã©ã ãå®è¡ããããšã«ã",
"title": "å€æ°ã®åæå"
},
{
"paragraph_id": 108,
"tag": "p",
"text": "ãå®è¡ãããšãããã»ã©å
¥åããå€æ°ãåºããããããŸããã",
"title": "å€æ°ã®åæå"
},
{
"paragraph_id": 109,
"tag": "p",
"text": "ãã®çç±ã¯ãã¡ã¢ãªå
ã«ã以åã«äœ¿çšããå€æ°ãããã®ãŸãŸæ®ã£ãŠããããã§ãã",
"title": "å€æ°ã®åæå"
},
{
"paragraph_id": 110,
"tag": "p",
"text": "ã€ãŸããããã°ã©ã ãçµäºããŠããããã ãã§ã¯å€æ°ã®å
容ã¯æ¶å»ãããŸããã",
"title": "å€æ°ã®åæå"
},
{
"paragraph_id": 111,
"tag": "p",
"text": "åœä»€ NEW ã䜿ããšãBASICã§æ±ã£ãŠããå€æ°ã«ãã¹ãŠãŒã 0 ã代å
¥ããåæå(ãããã)ããŸãã",
"title": "å€æ°ã®åæå"
},
{
"paragraph_id": 112,
"tag": "p",
"text": "ãããäžã®ç¯ã®ããã°ã©ã ã®å®è¡çŽåŸã«ããŸã£ããå¥ã®ããã°ã©ã ãå®è¡ããå¿
èŠããã£ããšããŠãããã§ãåãå€æ°åã®å€æ°ã䜿ãããŠãããšãããããã®å€æ°ã¯åæåãããŠããªããšããšã©ãŒã®åå ã«ãªã£ãŠããŸããŸãã",
"title": "å€æ°ã®åæå"
},
{
"paragraph_id": 113,
"tag": "p",
"text": "ãŸã£ããå¥ã®ããã°ã©ã ã§ããåãå€æ°åãAãããBããããŸã£ããå¥ã®å
容ã§äœ¿ãããšããããŸãã®ã§ãå¿
èŠã«å¿ã㊠NEW åœä»€ã䜿ããŸãããã",
"title": "å€æ°ã®åæå"
},
{
"paragraph_id": 114,
"tag": "p",
"text": "ãšæžããŠå®è¡ããã°ããã®ããã°ã©ã ã®å®è¡åã«ã©ããªããã°ã©ã ã§å€æ°ãAããçšããŠããããããããåæåã§ããŸãã",
"title": "å€æ°ã®åæå"
},
{
"paragraph_id": 115,
"tag": "p",
"text": "ãªããäžèšã®ããã°ã©ã ã®å®è¡çµæãšããŠãèšç®çµæãšããŠã16ãã衚瀺ãããŸãã",
"title": "å€æ°ã®åæå"
},
{
"paragraph_id": 116,
"tag": "p",
"text": "ãã®ããã°ã©ã ã®å ŽåãªããããããNEWã§å€æ°AãåæåããªããŠãããã®æ¬¡ã®è¡ã§ A=7ãšèšè¿°ããŠããã®ã§ããã€ã¯åæåã®å¿
èŠã¯ãããŸããã",
"title": "å€æ°ã®åæå"
},
{
"paragraph_id": 117,
"tag": "p",
"text": "ã§ãããäœãããšããããã°ã©ã ãè€éã«ãªã£ãŠãããšããã€ããå€æ°ã®åæ°ãå€ããªããå€æ°ã²ãšã€ãã€åæåãããã®ã倧å€ã«ãªãå ŽåããããŸãããåæ°ãå€ããšäžã€ã¥ã€åæåããæ¹æ³ã ãšãåæåãããããå€æ°ãåºãŠæ¥ããããããŸããã",
"title": "å€æ°ã®åæå"
},
{
"paragraph_id": 118,
"tag": "p",
"text": "ãªã®ã§ãããã®ããã NEW åœä»€ã§ããã£ãã«ããã¹ãŠã®å€æ°ãåæåããŠããŸããŸããããåæåããã察象ã¯ããã®BASICã§æ±ã£ãŠãããå€æ°ãã ãã§ãã®ã§ãå®å¿ããŠãå¹³æ°ã§ãã",
"title": "å€æ°ã®åæå"
},
{
"paragraph_id": 119,
"tag": "p",
"text": "ãªããäžèšã®ããã«ãããèšç®éäžã«ãNEWãå
¥ãããšã",
"title": "å€æ°ã®åæå"
},
{
"paragraph_id": 120,
"tag": "p",
"text": "(ããŸãããããªãããã°ã©ã )",
"title": "å€æ°ã®åæå"
},
{
"paragraph_id": 121,
"tag": "p",
"text": "ãã®ããã°ã©ã ãªããPRINTåœä»€ã§ã9ãã衚瀺ããããããŸãããªããªãAãåæåãããŠããŸããAã«0ã代å
¥ãããŠããããã§ãã",
"title": "å€æ°ã®åæå"
},
{
"paragraph_id": 122,
"tag": "p",
"text": "ãªããçŸåšã®ããã°ã©ã èšèªã§ã¯ãNEWåœä»€ã¯å¥ã®æå³ã§äœ¿ãããŠããŸãã",
"title": "å€æ°ã®åæå"
},
{
"paragraph_id": 123,
"tag": "p",
"text": "ãªããèšç®äœæ¥ã®ãšãã«ãåæã®ç¬éã®ç¶æ
ã«å¯Ÿå¿ããæ°å€ã®ããšããç§åŠæè¡çšèªã§ãåæå€ã(ãããã¡ãinitial value ã€ãã·ã£ã« ããªã¥ãŒ)ãšãããŸãããã¡ãã³ã³ãœãããªã©ã®ã²ãŒã æ¥çãªã©ã§ããã²ãŒã éå§ç¶æ
ã®äž»äººå
¬ã®ã©ã€ã(çåœå)å€ãšãã®æ°å€ããŸãšããŠãåæãã©ã¡ãŒã¿ãŒããªã©ãšãããŸããããããšåãããšã§ãã",
"title": "å€æ°ã®åæå"
},
{
"paragraph_id": 124,
"tag": "p",
"text": "çç§ãªã©ã§ã¯ãããšãã°ããŒã«ãæããç¬éã®ããŒã«ã®é床ã®ããšãåæé床ããšèšããŸãã",
"title": "å€æ°ã®åæå"
},
{
"paragraph_id": 125,
"tag": "p",
"text": "ãããçŸä»£ã®ããã°ã©ã èšèªã®ãªãã®åœä»€æã®èªå¥ã§ããinitããªã©ã®èªå¥ããã£ãããããã¯ãããããããåæå€(â» è±èªã§ initial value )ã®ããšãããããŸããã",
"title": "å€æ°ã®åæå"
},
{
"paragraph_id": 126,
"tag": "p",
"text": "",
"title": "å€æ°ã®åæå"
},
{
"paragraph_id": 127,
"tag": "p",
"text": "ããããææ¥ æŽãã ã£ããªããé 足ãããã§ãªããéšã ã£ãããªããæ宀ã§èªç¿ããã®ãããªå Žåãããæ¡ä»¶åå²(ããããã ã¶ãã)ãšãããŸãã",
"title": "æ¡ä»¶åå² IF THEN ELSE"
},
{
"paragraph_id": 128,
"tag": "p",
"text": "ããã°ã©ã äžã§ããæ¡ä»¶ã«åœãŠã¯ãŸããã§å®è¡ããå
容ãå€ãããšãã«ã¯ IF~THEN~ELSEæ ã䜿çšããŸãã",
"title": "æ¡ä»¶åå² IF THEN ELSE"
},
{
"paragraph_id": 129,
"tag": "p",
"text": "æ¡ä»¶åå²ã§ã¯ IF ãšããèªå¥ãã»ãŒããªãã䜿ãã®ã§ãæ¡ä»¶åå²åœä»€ã®ããšããIFæããšãèšããŸãããIFããšã¯ããã€ãããšèªã¿ãããã ãã ãªãã°ãããšããæå³ã®è±èªã®æ¥ç¶è©ã§ã(æ¥æ¬ã§ã¯ãäžåŠæ ¡ã®è±èªã®ææ¥ã§ æ¥ç¶è© IF ãç¿ãã§ããã)ã",
"title": "æ¡ä»¶åå² IF THEN ELSE"
},
{
"paragraph_id": 130,
"tag": "p",
"text": "THEN ã¯ãããã§ããã°ããããšããæå³ã§ããELSE ã¯ãããã§ãªããã°ããããšããæå³ã§ãããªããTHENã¯ããŒã³ããšèªã¿ãELSEã¯ããšã«ã¹ããšèªã¿ãŸãã",
"title": "æ¡ä»¶åå² IF THEN ELSE"
},
{
"paragraph_id": 131,
"tag": "p",
"text": "ã»ãã®ããã°ã©ã èšèªã§ããæ¡ä»¶åå²åœä»€ã®ããšãæ®éã¯ãIFæããšèšããŸãã",
"title": "æ¡ä»¶åå² IF THEN ELSE"
},
{
"paragraph_id": 132,
"tag": "p",
"text": "ããã§äœ¿ã£ãŠããA > Bã® > ã¯æ¯èŒæŒç®å(ã²ãã ããããã)ãšãããæ°å€ã®æ¯èŒã«äœ¿ããŸãã",
"title": "æ¡ä»¶åå² IF THEN ELSE"
},
{
"paragraph_id": 133,
"tag": "p",
"text": "ä»ã®ããã°ã©ã èšèªã§ããIFæ ã®èãæ¹ãš æ¯èŒæŒç®å ã®èãããã¯ãã»ãŒããªãã䜿ããŸãããªã®ã§ãããŸããã®BASICã®åŠç¿ã§ãæ¯èŒæŒç®åã®èãæ¹ãããã£ãããšç解ããŸãããã",
"title": "æ¡ä»¶åå² IF THEN ELSE"
},
{
"paragraph_id": 134,
"tag": "p",
"text": "IFæã¯ãIFãšTHENã®éã«æ¡ä»¶åŒãæžããTHENããæ¡ä»¶åŒãæç«ãããšãã®åœä»€ãæžããŸãããããŠæç«ããªãã£ããšãã®ããšã¯ãã®åŸãã«ELSEã«ç¶ããŠæžããŸãã",
"title": "æ¡ä»¶åå² IF THEN ELSE"
},
{
"paragraph_id": 135,
"tag": "p",
"text": "äŸã®30è¡ç®ã¯ããã A > Bãæç«ããã°PRINT \"A is bigger than B\"ãå®è¡ããããæç«ããªããã°PRINT \"B is bigger than A\"ãå®è¡ãããšããæå³ã§ãããŸããæååã®å Žåã¯ã",
"title": "æ¡ä»¶åå² IF THEN ELSE"
},
{
"paragraph_id": 136,
"tag": "p",
"text": "PRINTåœä»€ã®å ŽåãPRINTãçç¥(THEN \"å
容\"ã®ããã«)ã§ããŸãã",
"title": "æ¡ä»¶åå² IF THEN ELSE"
},
{
"paragraph_id": 137,
"tag": "p",
"text": "ãªããELSEã¯çç¥ã§ããŸãã",
"title": "æ¡ä»¶åå² IF THEN ELSE"
},
{
"paragraph_id": 138,
"tag": "p",
"text": "è€æ°è¡ã«ããã£ãŠããæžããªããã®ãå®è¡ããããå ŽåãGOTOåœä»€(åŸè¿°)ã䜿ãè¡ãé£ã°ãå¿
èŠããããŸã(ãã®å ŽåãGOTOãšæžãã®ãçç¥ããŠãè¡çªå·ã ãã§ãæžããŸã)ã",
"title": "æ¡ä»¶åå² IF THEN ELSE"
},
{
"paragraph_id": 139,
"tag": "p",
"text": "ç¡æ¡ä»¶ã§ãžã£ã³ãããŸãã",
"title": "åå² GOTO"
},
{
"paragraph_id": 140,
"tag": "p",
"text": "æ¡ä»¶åå²ã§ã¯ãªãã匷å¶ã®åå²ã«ã¯GOTOåœä»€ã䜿ããŸãããGOTOãã¯ããŽãŒ ãã¥ãŒããšèªã¿ãŸããGOTOã®åŸã«è¡çªå·ãå
¥ãããšã察å¿ããè¡ã®åœä»€ãå®è¡ããŸãã",
"title": "åå² GOTO"
},
{
"paragraph_id": 141,
"tag": "p",
"text": "ãã®ããã°ã©ã ãå®è¡ãããš20è¡ç®ãã¹ãããããã30è¡ç®ãå®è¡ãããŠãç»é¢ã«ã2ããšã ã衚瀺ããŸãã",
"title": "åå² GOTO"
},
{
"paragraph_id": 142,
"tag": "p",
"text": "ãã®ããã°ã©ã ãå®è¡ãããšãç»é¢ã«ã2ãã1ããšè¡šç€ºããŸãããããã®ããã«GOTOã®é£ã³å
ãå
¥ãçµãã ããã°ã©ã ã¯ãã¹ãã²ãã£ã»ããã°ã©ã ããšåŒã°ããŠããä»ã®äººãèŠãŠãããã°ã©ã ã®æ§é ãäžç®ã§ã¯ææ¡ãã¥ãããããã«ãéåžžã®ããã°ã©ã ã§ã¯ çŠãæ(ããããŠ) ãšãããŠããŸãã",
"title": "åå² GOTO"
},
{
"paragraph_id": 143,
"tag": "p",
"text": "ãã®ããã°ã©ã ãå®è¡ãããšãç»é¢ã«ã1ãã2ãã衚瀺ãç¶ããŸãããã®ããã«ãçµäºããã«ãå®è¡ãç¶ãããããã°ã©ã ããç¡éã«ãŒãããšåŒã³ãŸãã衚瀺ãæ¢ããã«ã¯ãå€ãBASICã§ã¯AUTOåœä»€ãæ¢ãããšããšåæ§ã«ãBREAKããªã©ã®ããŒãæŒããŠãã ãããæ°ããBASICã§ã¯ã¡ãã¥ãŒãããåæ¢ããéžæããŸã(Visual Basicãªã©ã§ã¯ç¡éã«ãŒããæžããšãã®ãŸãŸåçç¡çšã§å¿çäžèœã«ãªã£ãŠããŸããã®ããããŸãã®ã§ãã¢ããªã±ãŒã·ã§ã³ã匷å¶çµäºãããããCTRL+ALT+DELãããªã©ããŠOSãã匷å¶çµäºãããŠãã ãã)ã",
"title": "åå² GOTO"
},
{
"paragraph_id": 144,
"tag": "p",
"text": "æ°ããBASICã§ãGOTOåœä»€ã¯äœ¿çšã§ããŸãããæšå¥šã¯ãããŸããã",
"title": "åå² GOTO"
},
{
"paragraph_id": 145,
"tag": "p",
"text": "ã©ãããŠãGOTOæã䜿ãå¿
èŠã®ããå Žåã«ã¯ãREMæãªã©ã«ããã³ã¡ã³ãæ©èœã掻çšããŸããããGOTOæã®åã®è¡ã§ãREMæã«ãã説æã§ãGOTOæã®è¡ãå
ã説æãããããããã¯åŠçããããšããŠããå
容ãªã©ãèšè¿°ãããšãä»ã®äººãããã°ã©ã å
容ãææ¡ãããããªãã§ãããã",
"title": "åå² GOTO"
},
{
"paragraph_id": 146,
"tag": "p",
"text": "",
"title": "åå² GOTO"
},
{
"paragraph_id": 147,
"tag": "p",
"text": "ããã°ã©ã äžã§åãåŠçãç¹°ãè¿ãå Žåã«ã¯ãFOR~NEXT æã䜿çšããŸãã",
"title": "ç¹°ãè¿ã FOR NEXT"
},
{
"paragraph_id": 148,
"tag": "p",
"text": "ãã®äŸã¯ãFORããNEXTã®éãç¹°ãè¿ããŸããåæ°ã¯ã1ãã5ãŸã§ã®5åãããSTEPãæå®ããŠããã°ãå¢éå€ã®èšå®ãã§ããŸãã ãããå®è¡ãããšä»¥äžã®æ§ã«è¡šç€ºãããŸãã",
"title": "ç¹°ãè¿ã FOR NEXT"
},
{
"paragraph_id": 149,
"tag": "p",
"text": "FORã®çŽåŸã®å€æ°(äžèšã®å Žåã¯N)ãšãNEXTã®çŽåŸã®å€æ°ã¯ãåãå€æ°ã§ãªããã°ãªããŸããã",
"title": "ç¹°ãè¿ã FOR NEXT"
},
{
"paragraph_id": 150,
"tag": "p",
"text": "FOR æã®æ§æã¯ä»¥äžã®æ§ã«ãªããŸãã",
"title": "ç¹°ãè¿ã FOR NEXT"
},
{
"paragraph_id": 151,
"tag": "p",
"text": "äžã®æã®ãã¡ããSTEP å€æŽéãã¯çç¥ã§ããŸããçç¥ããããšãã«ã¯å€æ°ã¯1ã¥ã€å€åããŸãã",
"title": "ç¹°ãè¿ã FOR NEXT"
},
{
"paragraph_id": 152,
"tag": "p",
"text": "å€æ°ãåæå€ããæçµå€ãŸã§å€åãããã®åå€ããšã« NEXT ãŸã§ã®æãå®è¡ãããŸãã",
"title": "ç¹°ãè¿ã FOR NEXT"
},
{
"paragraph_id": 153,
"tag": "p",
"text": "INPUTæã§æ¯åããŒã¿å
¥åããã®ã¯å€§å€ã§ãã",
"title": "DATAæ"
},
{
"paragraph_id": 154,
"tag": "p",
"text": "ããã°ã©ã ã®äžã«èšé²ããããšãåºæ¥ãŸãã DATAæãREADæãRESTOREæ ã§ãã",
"title": "DATAæ"
},
{
"paragraph_id": 155,
"tag": "p",
"text": "20è¡ã§DATAæãã1åèªã¿èŸŒãã§å€æ°Aã«ä»£å
¥ããŸãã30è¡ã§è¡šç€ºããŸãããã®äŸã§ã¯ã1ãã衚瀺ãããŸãããã次ã«èªã¿èŸŒãã ãªãã2ããèªã¿èŸŒãŸããŸãã",
"title": "DATAæ"
},
{
"paragraph_id": 156,
"tag": "p",
"text": "",
"title": "DATAæ"
},
{
"paragraph_id": 157,
"tag": "p",
"text": "10è¡ã®RESTOREã§DATAæã®èªã¿èŸŒã¿å
ãæå®ããŸããããã§ã¯50è¡ããèªã¿èŸŒã¿ãŸãã20è¡ã§èªãã§ã30è¡ã§è¡šç€ºããã®äŸã§ã¯ã4ãã衚瀺ãããŸããæ®é㯠FOR NEXTæãªã©ã䜿ã£ãŠ é£ç¶ããŠèªã¿èŸŒã¿ãŸãã",
"title": "DATAæ"
},
{
"paragraph_id": 158,
"tag": "p",
"text": "DATAæã®èãæ¹ã¯ããã¡ã€ã«æäœã®ã·ãŒã±ã³ã·ã£ã«ãã¡ã€ã«ãšäŒŒãŠããŸãã",
"title": "DATAæ"
},
{
"paragraph_id": 159,
"tag": "p",
"text": "",
"title": "DATAæ"
},
{
"paragraph_id": 160,
"tag": "p",
"text": "åãå
容ã®ããã°ã©ã ã¯ããŸãšããŠãµãã«ãŒãã³ã«ããäºãã§ããŸããGOSUBã§ãã",
"title": "ãµãã«ãŒãã³ãGOSUB"
},
{
"paragraph_id": 161,
"tag": "p",
"text": "ããã°ã©ã ã®åããè¡çªå·ã§æžããŸãã 110 120 200 210 220 130 150 ãé çªã«æ³šç®ã RETURNã䜿ããšGOSUBã®æ¬¡ã«æ»ããŸã",
"title": "ãµãã«ãŒãã³ãGOSUB"
},
{
"paragraph_id": 162,
"tag": "p",
"text": "é¢æ°ã¯ãµãã«ãŒãã³ã«äŒŒãŠããŸããçµã¿èŸŒãŸãããµãã«ãŒãã³ã®ããã«æã£ãŠãã ããã",
"title": "é¢æ° ()"
},
{
"paragraph_id": 163,
"tag": "p",
"text": "ABS()ã¯çµ¶å¯Ÿå€ãè¿ãé¢æ°ã§ãã",
"title": "é¢æ° ()"
},
{
"paragraph_id": 164,
"tag": "p",
"text": "ä»ã«ãè²ã
ãªé¢æ°ããããŸãã",
"title": "é¢æ° ()"
},
{
"paragraph_id": 165,
"tag": "p",
"text": "ãããŸã§ã®èª¬æã§ãæ°å€ã®ã¿ãæ±ããŸãããããã§ã¯ãæåã®å
¥åã衚瀺ãæäœã説æããŸãã",
"title": "æååæäœ $"
},
{
"paragraph_id": 166,
"tag": "p",
"text": "æåãè¡šãæã¯\"\"ã§å²ã¿ãŸãã",
"title": "æååæäœ $"
},
{
"paragraph_id": 167,
"tag": "p",
"text": "æåãè¡šãæååå€æ°ã§ã¯ãå€æ°åã®æ«å°Ÿã«$ãä»ããŸãã",
"title": "æååæäœ $"
},
{
"paragraph_id": 168,
"tag": "p",
"text": "æã®è¶³ãç®ãåºæ¥ãŸãã",
"title": "æååæäœ $"
},
{
"paragraph_id": 169,
"tag": "p",
"text": "æåã®å
¥åãšè¡šç€º",
"title": "æååæäœ $"
},
{
"paragraph_id": 170,
"tag": "p",
"text": "BASICã§ã¯æååã®äŸ¿å©ãªé¢æ°ããããŸãã",
"title": "æååæäœ $"
},
{
"paragraph_id": 171,
"tag": "p",
"text": "ASC(x$) RIGHT$(x$,y) LEFT$(x$,y) MID$(x$,y,z) LEN(x$) STR$(x) VAL(x$) CHR$(x) TAB(x)",
"title": "æååæäœ $"
},
{
"paragraph_id": 172,
"tag": "p",
"text": "ãããŸã§ã¯æ°å€ã®æŽæ°ã§è¡ããŸããã",
"title": "æµ®åå°æ°ç¹ #"
},
{
"paragraph_id": 173,
"tag": "p",
"text": "å²ãç®ã§å²ãåããªããšãã«æ±ãå°æ°ç¹ã®åŠçãæµ®åå°æ°ç¹ã®å®æ°ãå€æ°ã«ã€ããŠèª¬æããŸãã誀差ã«ã€ããŠãã",
"title": "æµ®åå°æ°ç¹ #"
},
{
"paragraph_id": 174,
"tag": "p",
"text": "BASICã§ã¯å°æ°ç¹ãä»ãããšãå°æ°ç¹ä»ãã®å®æ°ãšããŠæ±ãããŸãã",
"title": "æµ®åå°æ°ç¹ #"
},
{
"paragraph_id": 175,
"tag": "p",
"text": "ã³ã³ãã¥ãŒã¿ãŒã®èšç®ã§ã¯èª€å·®ãçºçããŸãã 誀差ã®çšåºŠã¯æ©çš®ã«ãã£ãŠç°ãªããŸãã",
"title": "æµ®åå°æ°ç¹ #"
},
{
"paragraph_id": 176,
"tag": "p",
"text": "",
"title": "æµ®åå°æ°ç¹ #"
},
{
"paragraph_id": 177,
"tag": "p",
"text": "äœæé²ã®ãããªãã®ãäœããšãã«äœ¿ããŸããåããããªå€æ°ãããããäœããšãã«ãå€æ°ãå€ããŠå€§å€ã§ããããã§é
åå€æ°(ã¯ãã〠ãžããã)ã䜿ããŸãã",
"title": "é
å DIM"
},
{
"paragraph_id": 178,
"tag": "p",
"text": "䜿ãæ¹ã¯ãæåã«é
åå€æ°ã宣èšããŸããäŸãã° DIM a(3)ãšæžãããªããå€æ°a(1) a(2) a(3)ã®3åã®é
åå€æ°ã䜿ããããã«ãªããŸã(BASICã®çš®é¡ã«ãã£ãŠã¯a(0)ã䜿ãããã®ããããŸã)ã",
"title": "é
å DIM"
},
{
"paragraph_id": 179,
"tag": "p",
"text": "ãDIMããšã¯æ¬¡å
DIMENSION ã®ç¥ã®ããšã§ããDIMã®éšåããé
å宣èšã®åœä»€ã§ããDIM a(3)ã®ãaãã®éšåã¯å€æ°åã§ãã®ã§ãã¹ã€ã«bã§ãcã§ããããŸããŸããã",
"title": "é
å DIM"
},
{
"paragraph_id": 180,
"tag": "p",
"text": "DIM a(3)ã®ã«ãã³ãšã«ãã³å
ã®éšåããæ·»ãåã(ããã)ãšèšããŸãã",
"title": "é
å DIM"
},
{
"paragraph_id": 181,
"tag": "p",
"text": "é
åå€æ°ã®äŸ¿å©ãªæã¯ãæ°å€ã§æžããéšåã«æ°å€å€æ°ã䜿ã£ãŠãäŸãã°ãa(i)ã®ããã«äœ¿ãäºãã§ããã«ãŒããªã©ãšçµåãããã°å€æ°ã®å€æ°ãäžåºŠã«æ±ãããšãåºæ¥ãŸãã",
"title": "é
å DIM"
},
{
"paragraph_id": 182,
"tag": "p",
"text": "ããã¯ãäžæ¬¡å
é
åã®äŸã§ãã",
"title": "é
å DIM"
},
{
"paragraph_id": 183,
"tag": "p",
"text": "ããã¯ã3人ã®ååãšçªå·ãå
¥åããŠã衚瀺ããããã°ã©ã ã³ãŒãã§ããé
åã䜿ãããšã«ãããç°¡æœã«æžãããšãåºæ¥ãŸããç°¡åã«äººæ°ãå€ãããããšãåºæ¥ãŸããæ¹è¯ããŠäœæé²ã®ããã«äœãå€ããããšã容æã§ãã",
"title": "é
å DIM"
},
{
"paragraph_id": 184,
"tag": "p",
"text": "é
åã«ã¯ããã®ãããªäžæ¬¡å
é
åã®ä»ã«äºæ¬¡å
ã3次å
é
åããããŸãã",
"title": "é
å DIM"
},
{
"paragraph_id": 185,
"tag": "p",
"text": "ããã§ã¯ãå§ããŠã®äººãé°å²æ°ãã€ãããããã«åºæ¬ã®äžã®åæ©ãæäœéã«æžããŸããããããŠãåçŽãšå¿çšã¯å¥ã®æ¬ã«ã€ã¥ããŸãã",
"title": "ããšãã"
},
{
"paragraph_id": 186,
"tag": "p",
"text": "çŸåšã§ã¯æ§é åBASICããããŸããããã¯æ¡ä»¶æãæç«ããã°THENããENDIFãããã¯ELSEãŸã§ã®éšåãå®è¡ããŠãæç«ããªããã°ELSEããENDIFãŸã§ãå®è¡ãããã®ã§ãäŸã®ããã°ã©ã ã¯",
"title": "è£è¶³"
},
{
"paragraph_id": 187,
"tag": "p",
"text": "ãšæžããŠãéåžžã«èŠããããªããŸãããã ããå¿
ããã䜿ãããã®ã§ã¯ãããŸãããå€ãBASICã§ã¯1è¡ã§æžãæ¹æ³ãã䜿ããŸããã",
"title": "è£è¶³"
},
{
"paragraph_id": 188,
"tag": "p",
"text": "(:)ã§åºåã£ãŠãäžè¡ã«å€ãã®ã³ãã³ããæžãäºãã§ããŸãããã ããããã¯å€ãBASICã®ææ³ãªã®ã§ããŸã䜿ããªãæ¹ãè¯ãã§ãããã",
"title": "è£è¶³"
},
{
"paragraph_id": 189,
"tag": "p",
"text": "",
"title": "è£è¶³"
},
{
"paragraph_id": 190,
"tag": "p",
"text": "åãçŽç·ãªã©ã®ç»åã衚瀺ããããé³å£°ã鳎ãããããªã©ã®æ©èœã®åœä»€ã¯ãBASIC察å¿ã®ããœã³ã³ãäœã£ãŠããäŒç€Ÿããšã«éã£ãŠããŸãããããŒããŠã§ã¢åŽã®æ§èœã«ãé¢ä¿ããããšã§ããããã®ãããä»æ§çµ±äžããããªãã£ãã®ã§ãã",
"title": "ãã«ãã¡ãã£ã¢é¢ä¿"
},
{
"paragraph_id": 191,
"tag": "p",
"text": "äžå¿ãBASICã®åœéèŠæ ŒãååšããŠããŸãããå®éã«ã¯ããã®èŠæ Œã«åŸã£ãŠãªãBASICãå€ãã§ãããããããç¹ã«ãç»å衚瀺ãé³å£°ãªã©ã®ãã«ãã¡ãã£ã¢é¢ä¿ã®æ©èœã§ã¯ããã®ãããªèŠæ Œå€ã®ä»æ§ãå€ãã§ãããã",
"title": "ãã«ãã¡ãã£ã¢é¢ä¿"
},
{
"paragraph_id": 192,
"tag": "p",
"text": "ãã®wikibooksæ¥æ¬èªçãBASICãã§ã¯ãæ¥æ¬ã®èªè
ã察象ã«ããŠããããšããããæ¥æ¬ã§æ®åããæ¥æ¬ç£ããœã³ã³ã®ããŒããŠã§ã¢ãæ³å®ããŠãBASICã®ãç»å衚瀺ãé³å£°ãªã©ã®ãã«ãã¡ãã£ã¢é¢ä¿ã®ããã°ã©ã ãèšè¿°ããŸãã",
"title": "ãã«ãã¡ãã£ã¢é¢ä¿"
},
{
"paragraph_id": 193,
"tag": "p",
"text": "N88BASICäºæã®BASICãªãã°ãç»åãã€ãããšãã¯ã",
"title": "ãã«ãã¡ãã£ã¢é¢ä¿"
},
{
"paragraph_id": 194,
"tag": "p",
"text": "ã®ããã«èšè¿°ããããšã§ãç»åã§çŽç·ãåŒããŸãã",
"title": "ãã«ãã¡ãã£ã¢é¢ä¿"
},
{
"paragraph_id": 195,
"tag": "p",
"text": "å
容ã¯ã",
"title": "ãã«ãã¡ãã£ã¢é¢ä¿"
},
{
"paragraph_id": 196,
"tag": "p",
"text": "ã§ãã æ°ãã€ããããšãšããŠãç»é¢ã®å·Šäžã座æš(0,0)ã§ããå³äžã«è¡ãã«ã€ããŠã座æšã®å€ã倧ãããªããŸãã",
"title": "ãã«ãã¡ãã£ã¢é¢ä¿"
},
{
"paragraph_id": 197,
"tag": "p",
"text": "è²çªå·ã¯ãäžè¬ã«ã",
"title": "ãã«ãã¡ãã£ã¢é¢ä¿"
},
{
"paragraph_id": 198,
"tag": "p",
"text": "ã§ããè²çªå·ã®ããšãããã¬ããçªå·ããšããããŸãã",
"title": "ãã«ãã¡ãã£ã¢é¢ä¿"
},
{
"paragraph_id": 199,
"tag": "p",
"text": "èæ¯è²ãæšæºèšå®ã§ã¯é»ã§ããããããè²çªå·ã0(é»)ã ãšãç·ãèŠããªããããããŸããã",
"title": "ãã«ãã¡ãã£ã¢é¢ä¿"
},
{
"paragraph_id": 200,
"tag": "p",
"text": "ã¯ãéè²ã®çŽç·ãåŒããŸãã",
"title": "ãã«ãã¡ãã£ã¢é¢ä¿"
},
{
"paragraph_id": 201,
"tag": "p",
"text": "ã¯ãèµ€è²ã®çŽç·ãåŒããŸãã",
"title": "ãã«ãã¡ãã£ã¢é¢ä¿"
},
{
"paragraph_id": 202,
"tag": "p",
"text": "",
"title": "ãã«ãã¡ãã£ã¢é¢ä¿"
},
{
"paragraph_id": 203,
"tag": "p",
"text": "ãšãããšãé·æ¹åœ¢ã®æ ç·ã®ã¿ãæããŸãããã®é·æ¹åœ¢ã®å¯Ÿè§ç·ã®åº§æšãã(100,130)ãã(200,230)ãšããããã§ãã Bã¯BOXã®æå³ã§ãã",
"title": "ãã«ãã¡ãã£ã¢é¢ä¿"
},
{
"paragraph_id": 204,
"tag": "p",
"text": "ãã®åœä»€ LINE (100,130)-(200,230),2,B ã§ã¯ã察è§ç·ã¯ãæãããŸããããŸããå¡ãã€ã¶ããããããŸããã",
"title": "ãã«ãã¡ãã£ã¢é¢ä¿"
},
{
"paragraph_id": 205,
"tag": "p",
"text": "å¡ãã€ã¶ããããã«ã¯ããBãã§ã¯ãªããBFãã«ããŸãã",
"title": "ãã«ãã¡ãã£ã¢é¢ä¿"
},
{
"paragraph_id": 206,
"tag": "p",
"text": "Fã¯FILLã®æå³ã§ãã",
"title": "ãã«ãã¡ãã£ã¢é¢ä¿"
},
{
"paragraph_id": 207,
"tag": "p",
"text": "æžåŒã¯",
"title": "ãã«ãã¡ãã£ã¢é¢ä¿"
},
{
"paragraph_id": 208,
"tag": "p",
"text": "ã§ãã",
"title": "ãã«ãã¡ãã£ã¢é¢ä¿"
},
{
"paragraph_id": 209,
"tag": "p",
"text": "ããšãã°ã",
"title": "ãã«ãã¡ãã£ã¢é¢ä¿"
},
{
"paragraph_id": 210,
"tag": "p",
"text": "ã§ã(250,180)座æšãäžå¿ãšããååŸ50ã®èµ€ã(è²çªå·: 2)åãæžããŸãã",
"title": "ãã«ãã¡ãã£ã¢é¢ä¿"
},
{
"paragraph_id": 211,
"tag": "p",
"text": "å匧ãæãã«ã¯ã",
"title": "ãã«ãã¡ãã£ã¢é¢ä¿"
},
{
"paragraph_id": 212,
"tag": "p",
"text": "ã®æ§æãå©çšããŸãã",
"title": "ãã«ãã¡ãã£ã¢é¢ä¿"
},
{
"paragraph_id": 213,
"tag": "p",
"text": "è§åºŠã®æž¬ãæ¹ã¯ãæ°åŠã®xy座æšã§ã®è§åºŠã®æž¬ãæ¹ãšåãã§ãå³ã0床ãšããŠãåæèšãŸãã(å·ŠãŸãã)ã§ããè§åºŠã®åäœã¯ãã©ãžã¢ã³ ã§ããçŽ3.14ã§ååã«ãªããŸã(BASICã®ãœãããŠã§ã¢ã®çš®é¡ã«ãã£ãŠã¯ãéããããããŸãããããããã®ãœãããŠã§ã¢ããšã«ç¢ºèªããŠãã ããã)ã",
"title": "ãã«ãã¡ãã£ã¢é¢ä¿"
},
{
"paragraph_id": 214,
"tag": "p",
"text": "ãŸã ã©ãžã¢ã³ãç¿ã£ãŠããªãäžåŠçã®ããã¯ããã®ç¯ã¯é£ã°ããŸãããã",
"title": "ãã«ãã¡ãã£ã¢é¢ä¿"
},
{
"paragraph_id": 215,
"tag": "p",
"text": "ãšæžãã°ãåå匧ãæãããŸãã",
"title": "ãã«ãã¡ãã£ã¢é¢ä¿"
},
{
"paragraph_id": 216,
"tag": "p",
"text": "æ¥å(ã ãã)ãŸãã¯æ¥å匧ãæžãã«ã¯ã",
"title": "ãã«ãã¡ãã£ã¢é¢ä¿"
},
{
"paragraph_id": 217,
"tag": "p",
"text": "ã®ããã«ããŸãã",
"title": "ãã«ãã¡ãã£ã¢é¢ä¿"
},
{
"paragraph_id": 218,
"tag": "p",
"text": "CIRCLEåœä»€ã¯ã",
"title": "ãã«ãã¡ãã£ã¢é¢ä¿"
},
{
"paragraph_id": 219,
"tag": "p",
"text": "ãšããæžåŒã«ãªã£ãŠããŸãã",
"title": "ãã«ãã¡ãã£ã¢é¢ä¿"
},
{
"paragraph_id": 220,
"tag": "p",
"text": "æ¯çã¯ã瞊ãšæšªã®æ¯çã§ããã1ã ãšæ£åã«ãªããŸãã1ãã倧ãããšçžŠé·ã®æ¥åã«ãªãã1ããå°ãããšæšªé·ã®æ¥åã«ãªããŸãã",
"title": "ãã«ãã¡ãã£ã¢é¢ä¿"
},
{
"paragraph_id": 221,
"tag": "p",
"text": "å¡ãã€ã¶ãã«ã¯ã",
"title": "ãã«ãã¡ãã£ã¢é¢ä¿"
},
{
"paragraph_id": 222,
"tag": "p",
"text": "",
"title": "ãã«ãã¡ãã£ã¢é¢ä¿"
},
{
"paragraph_id": 223,
"tag": "p",
"text": "åœä»€ãPSETãã䜿ããšãæå®ããäœçœ®ã«ãç¹ãã²ãšã€è¿œå ããŸãã",
"title": "ãã«ãã¡ãã£ã¢é¢ä¿"
},
{
"paragraph_id": 224,
"tag": "p",
"text": "æžåŒã¯",
"title": "ãã«ãã¡ãã£ã¢é¢ä¿"
},
{
"paragraph_id": 225,
"tag": "p",
"text": "ã§ãã",
"title": "ãã«ãã¡ãã£ã¢é¢ä¿"
},
{
"paragraph_id": 226,
"tag": "p",
"text": "PSETã®æŽ»çšæ¹æ³ã¯éåžžã次ã®ããã«ãFORæãªã©ã®ç¹°ãè¿ãæãšãã¿ããããŠãèšç®åŒãªã©ã®çµæã®äœå³ãããã®ã«äœ¿çšããã§ãããã",
"title": "ãã«ãã¡ãã£ã¢é¢ä¿"
},
{
"paragraph_id": 227,
"tag": "p",
"text": "",
"title": "ãã«ãã¡ãã£ã¢é¢ä¿"
},
{
"paragraph_id": 228,
"tag": "p",
"text": "ãšå
¥åãããšãããããããšããããŒããšãã®é³ã鳎ãããŸããããŒãé³ãšãããŸãã",
"title": "ãã«ãã¡ãã£ã¢é¢ä¿"
},
{
"paragraph_id": 229,
"tag": "p",
"text": "",
"title": "ãã«ãã¡ãã£ã¢é¢ä¿"
},
{
"paragraph_id": 230,
"tag": "p",
"text": "ãRND()ãã§ã0ãã1ãŸã§ã®å°æ°ãå«ãä¹±æ°ãçºçãããŸãã",
"title": "ä¹±æ°"
},
{
"paragraph_id": 231,
"tag": "p",
"text": "RND(1)ã®ããã«ãæ¬åŒ§ã®äžã«æ°åãå
¥ããŠäœ¿çšããŸãã",
"title": "ä¹±æ°"
},
{
"paragraph_id": 232,
"tag": "p",
"text": "ã®ããã«äœ¿çšããŸãã",
"title": "ä¹±æ°"
},
{
"paragraph_id": 233,
"tag": "p",
"text": "ãµã€ã³ããã€ããã«ã¯(1ãã6ã®æŽæ°ã ããåºãããã°ã©ã ãã€ããã«ã¯)ãä¹±æ°åœä»€ã«ãæŽæ°åã®åœä»€ãªã©ãšçµã¿åãããŸãã",
"title": "ä¹±æ°"
},
{
"paragraph_id": 234,
"tag": "p",
"text": "ã«ãŒããããŠããŸãããINPUT åœä»€ã䜿ã£ãŠEnterããŒãæŒãããšã«æ¬¡ã®ä¹±æ°ã衚瀺ãããŠããŸããRND()ã¯ãå®éã«ã¯1ã®å€ãçæãããããšã¯ãã»ãšãã©ç¡ããšæãããã®ã§ãã®ããã°ã©ã ã«ãªããŸããå²ã蟌ã¿ããŒ(BREAKããŒãESCããŒ)ã§å®è¡ãçµäºããŸãã",
"title": "ä¹±æ°"
},
{
"paragraph_id": 235,
"tag": "p",
"text": "BASICã¯ã圢åŒçã«ã¯ãBASICã¯ããã°ã©ã èšèªã§ãããšããŠåé¡ãããŠããŸããããããå®éã«ã¯ãå€ãBASICã21äžçŽã«åçŸããBASICã§ã¯ãä»ã®ããã°ã©ã èšèªã«ã¯ãªããç»å衚瀺ã®æ©èœãå
å®ããŠããŸããããã¯ã©ãããäºããšãããšãåçŸBASICã§ã¯ãç»å衚瀺ã®åœä»€ãå®è¡ããéã«ã¯ãOSã®ç»å衚瀺ã®æ©èœãåŒã³åºããŠã䜿ã£ãŠããã®ã§ããäžè¬çã«ãããã°ã©ã ãéããŠã®ç»å衚瀺ã«ã€ããŠã®ä»æ§ã¯ãåOSããšã«ãã©ãã©ã§ãããã®ãããBASICã®ã€ã³ã¿ããªã¿èªäœã®äœæè
ã¯ãããããã®OSããšã«ãBASICã€ã³ã¿ããªã¿ãäœããªããå¿
èŠããããŸãããã®ãããåçŸBASICã«ã¯ãWindowsçããã€ã³ã¿ããªã¿ã®äœãããŠãªãåçŸBASICããããŸãã",
"title": "1970ã80幎代ã®ããœã³ã³äºæ
ãèæ¯ã«ãã"
},
{
"paragraph_id": 236,
"tag": "p",
"text": "ãããããå®éã®å€ãBASICã®æµè¡ãã1970幎代ããã¯ã21äžçŽã®ä»ãšã¯ããœã³ã³è²©å£²ã®ç¶æ³ãéã£ãŠããŸãã1970幎代ããã®åœæã¯ããŸã OS(ãªãã¬ãŒãã£ã³ã° ã·ã¹ãã )ãé«åºŠåããåã ã£ãããšããããããã«ãOSãšããœã³ã³æ¬äœããã£ã€ããŠè²©å£²ãããŠããããšãããã1970幎代ããã¯ãBASICã販売ãããŠããããœã³ã³ãšäžç·ã«ãOSãšäžç·ã«ããœã³ã³æ¬äœã«çµã¿èŸŒãŸããŠããç¶æ
ã§ã販売ãããŠããŸããã",
"title": "1970ã80幎代ã®ããœã³ã³äºæ
ãèæ¯ã«ãã"
},
{
"paragraph_id": 237,
"tag": "p",
"text": "ãã®ãããå®éã®1970ã80幎代ã«åžè²©ãããŠããããœã³ã³ã«çµã¿èŸŒãŸããŠããBASICã§ã¯ãç»é¢ã«åãçŽç·ãªã©ã衚瀺ãããããç»å衚瀺ã®åœä»€ãããã¶ãŒé³ã鳎ãããªã©åœä»€ãªã©ããç°¡åã«ããã°ã©ã èšè¿°ã§ããããã«ãªã£ãŠããŸãã",
"title": "1970ã80幎代ã®ããœã³ã³äºæ
ãèæ¯ã«ãã"
},
{
"paragraph_id": 238,
"tag": "p",
"text": "æ¬æ¥ãç»å衚瀺ã®ããã®åŠçã¯ããã£ã¹ãã¬ã€ã®çš®é¡ããšã«ã解å床ããã©ãã©ã ã£ããããã®ã§ãããœã³ã³å
éšåäœãåããå¿
èŠãããã®ã§ããªãã¬ãŒãã£ã³ã°ã·ã¹ãã ã®æ©èœã䜿ã£ãŠãç»åã衚瀺ãããããããšã«ãªããŸãã",
"title": "1970ã80幎代ã®ããœã³ã³äºæ
ãèæ¯ã«ãã"
},
{
"paragraph_id": 239,
"tag": "p",
"text": "ããããåœæã®BASICã§ã¯ããªãã¬ãŒãã£ã³ã°ã·ã¹ãã ã®ä»çµã¿ããæèããå¿
èŠã¯ãããŸããã§ããããªããªããç¹å®äŒæ¥ã®ããœã³ã³ã«çµã¿èŸŒãŸããç¶æ
ã§BASICãé
åžãããŠããã®ã§ããã®ç¹å®äŒæ¥ã®ãã£ã¹ãã¬ã€ãã¹ããŒã«ãŒãšãã£ãããŒããŠã§ã¢ããç°¡åã«å¶åŸ¡ã§ããããã«ãBASICãæ¹è¯ããŠãã£ãã®ã§ãã",
"title": "1970ã80幎代ã®ããœã³ã³äºæ
ãèæ¯ã«ãã"
},
{
"paragraph_id": 240,
"tag": "p",
"text": "ãã®ãããªäºæ
ã®ãããããããåœæã®ã»ãšãã©ã®æ¶è²»è
ã¯ããããããªãã¬ãŒãã£ã³ã° ã·ã¹ãã ããæŠå¿µããç¥ããŸããã§ããã",
"title": "1970ã80幎代ã®ããœã³ã³äºæ
ãèæ¯ã«ãã"
},
{
"paragraph_id": 241,
"tag": "p",
"text": "ãã®ããã«ãBASICã®æ©èœã®èæ¯ã«ã¯ã1970ã80幎åœæã®ããœã³ã³äºæ
ããããŸãã",
"title": "1970ã80幎代ã®ããœã³ã³äºæ
ãèæ¯ã«ãã"
},
{
"paragraph_id": 242,
"tag": "p",
"text": "1970幎åœæã¯ãåããœã³ã³äŒç€Ÿã®BASICãæåããç¹å®ã®èªç€Ÿããœã³ã³ã«å¯Ÿå¿ããç¶æ
ã§ãããœã³ã³ã«çµã¿èŸŒãŸããŠããŠè²©å£²ãããŠããã®ã§ãBASICããçŽæ¥ãªãã¬ãŒãã£ã³ã°ã·ã¹ãã ã®æ©èœãå©çšã§ããããã§ãããã®ããã1970幎ããã®BASICã®æ©èœã¯ãçŸåšã®ãããã°ã©ã èšèªããšã¯ãããéã£ãŠããŸãã",
"title": "1970ã80幎代ã®ããœã³ã³äºæ
ãèæ¯ã«ãã"
},
{
"paragraph_id": 243,
"tag": "p",
"text": "ããŠ21äžçŽã®çŸåšãããã°ã©ã ã§ç»åã衚瀺ãããããããã¯é³å£°ã鳎ãããããªã©ã®ããã°ã©ã ãèšè¿°ãããå Žåã«ã¯ããªãã¬ãŒãã£ã³ã°ã·ã¹ãã ã®æ©èœã掻çšããå¿
èŠããããŸããOSã®æ©èœã䜿ãããã®ã³ãã³ã矀ã§ãããAPIã(ãšãŒ ã㌠ã¢ã€)ãšãããŸããã€ãŸããåçŸBASICã®ã€ã³ã¿ããªã¿äœæè
ã¯ã(ãããã)APIãé§äœ¿ããŠãåçŸBASICã®ç»å衚瀺ãé³å£°æ©èœãªã©ããäœã£ãŠããã®ã§ãã",
"title": "1970ã80幎代ã®ããœã³ã³äºæ
ãèæ¯ã«ãã"
},
{
"paragraph_id": 244,
"tag": "p",
"text": "ãªãã¬ãŒãã£ã³ã°ã·ã¹ãã ã«ã¯ããŠã£ã³ããŠãºãããã¯OSããªããã¯ã¹ãªã©ãè²ã
ãšãããŸãããããããã®OSããšã«ä»çµã¿ãéãã®ã§ãããã°ã©ã ã®èšè¿°äœæ¥ããããããã®OSããšã«ãããã°ã©ã ãåããå¿
èŠããããŸãã",
"title": "1970ã80幎代ã®ããœã³ã³äºæ
ãèæ¯ã«ãã"
},
{
"paragraph_id": 245,
"tag": "p",
"text": "äžè¿°ã®ãããªããœã³ã³äºæ
ãã1970幎é ãšçŸä»£ã§ã¯å€§ããéãã®ã§ããã¯ãBASICã ãã§ã¯ãé«åºŠãªã¢ããªã±ãŒã·ã§ã³ãäœãããšããŠããããŸãç°¡åã«ã¯äœããªããªã£ãŠããŸããŸããã",
"title": "1970ã80幎代ã®ããœã³ã³äºæ
ãèæ¯ã«ãã"
},
{
"paragraph_id": 246,
"tag": "p",
"text": "ãªã®ã§ãããã21äžçŽã®çŸä»£ã®äººããç¬åŠã§BASICãåŠã¶å Žåã¯ããã£ããŠå€ãBASICã ãã§æºè¶³ããã«ããªãã¹ããCèšèªãåŠãã ããããã«ããã®åŸã®æ代ã®ä»ã®ããã°ã©ã èšèªãåŠã³ãŸãããã",
"title": "1970ã80幎代ã®ããœã³ã³äºæ
ãèæ¯ã«ãã"
},
{
"paragraph_id": 247,
"tag": "p",
"text": "",
"title": "åèãªã³ã¯"
}
] | æ
å ±æè¡ > ããã°ã©ãã³ã° > BASIC ããã°ã©ãã³ã°èšèªBASICïŒããŒã·ãã¯ïŒã®äœ¿çšæ³ | <small>[[æ
å ±æè¡]] > [[ããã°ã©ãã³ã°]] > BASIC</small>
----
ããã°ã©ãã³ã°èšèª[[w:BASIC|BASIC]]ïŒããŒã·ãã¯ïŒã®äœ¿çšæ³
== ã¯ããã« ==
=== BASICã®åé¡ ===
BASICã«ã¯å€§ããåããŠã以äžã®ããã«åé¡ãããŸãïŒãã ãBASICã¯æ°å€ã®æ¹èšãããã®ã§ãããã¯åé¡ã®äžäŸïŒã
;ããŒããã¹BASIC (DTBASIC):
:ããŒããã¹å€§åŠã§éçºãããæãåæã®BASICã®å®è£
ãæããŸãããã®ææã®BASICã¯æè²çšãç 究çšéãäž»ã§ãããåºæ¬çãªæ°å€èšç®ãå¶åŸ¡æ§é ãæäŸããTinyFORTRANã€ã³ã¿ããªã¿ãšããŠã®æ§æ Œã匷ãTSSç°å¢ã§å®è¡ãããŸããã
;ãã€ã³ã³BASIC (MicrocomputerBASIC):
:ãã€ã¯ãã³ã³ãã¥ãŒã¿ãŒåãã«æäŸãããBASICã®å®è£
ãæããŸãããããã®å®è£
ã¯ãããŒããŠã§ã¢ã«ç¹åããæ©èœãæ¡åŒµãå«ãŸããŠãããããã¹ãã ãã§ãªãããžãã¹ã§ãåºãå©çšãããŸããã
:代衚çãªå®è£
ã«ã¯ãN88-BASICãF-BASICãMSX-BASICãªã©ããããŸãã
;JISèŠæ ŒBASIC:
:ANSI X3.60-1978ãAmerican National Standard for the Programming Language Minimal BASICããæ¥æ¬èªã«ç¿»èš³ãã JIS C 6207-1982ãé»åèšç®æ©ããã°ã©ã èšèª åºæ¬BASICã1982幎ã«æ¥æ¬å·¥æ¥èŠæ Œã«ãã£ãŠ JIS C 6207-1982 ãšããŠå¶å®ãããJISèŠæ ŒBASICã
:ãã€ã³ã³BASICãåºã«ããŠãããããã€ãã®æ©èœãææ³ãè¿œå ãããŸãããã»ã³ã¿ãŒè©ŠéšïŒæ°åŠïŒã®åºé¡ã«äœ¿ãããã®ã§ãæ¥æ¬ã®åŠæ ¡ã§äœ¿çšãããŸããã
:1993幎㫠JIS X 3003-1993ãé»åèšç®æ©ããã°ã©ã èšèª Full BASIC (The Programming Language Full BASIC)ãã«æ¹èšããå»æ¢ã
;Visual Basic
:Visual Basicã¯ã1991幎ã«ãã€ã¯ããœããã«ãã£ãŠéçºãããããã°ã©ãã³ã°èšèªã§ãããã€ã³ã³BASICãããŒã¹ã«éçºãããŠãããGUIïŒã°ã©ãã£ã«ã«ãŠãŒã¶ãŒã€ã³ã¿ãŒãã§ã€ã¹ïŒãäœæããããã®æ©èœãè¿œå ãããŠããŸããVisual Basicã¯ãWindowsã¢ããªã±ãŒã·ã§ã³ã®éçºã«åºã䜿ãããŠããŸãã
æ¥æ¬èªãŠã£ãããã¯ã¹ã®æ¬ããŒãžãBASICãã§ã¯ãäž»ã«ãã€ã³ã³BASICãJISèŠæ ŒBASICãåºæºã«ãææ³ã説æããŠããŸãã
ãã®çç±ã¯ããã€ã³ã³BASICã¯ææ³ãåçŽã§å
¥éããããããŸããå€ããããããããä»ã®ããã°ã©ãã³ã°èšèªã«ãå¿çšããããããã§ãã
== æŽå² ==
BASICïŒBeginner's All-purpose Symbolic Instruction CodeïŒã¯ãããŒããã¹å€§åŠã®ãžã§ã³ã»ã±ã¡ããŒãšããŒãã¹ã»ã«ãŒãã«ãã£ãŠéçºãããããã°ã©ãã³ã°èšèªã§ãååŠè
ã容æã«åŠç¿ã§ããããã«èšèšãããŸããããã®èªçããå§ãŸãããã€ã¯ãã³ã³ãã¥ãŒã¿ã®å°é ãåçšããŒãžã§ã³ã®ç»å ŽãçµãŠãæ§ã
ãªé²åãéããŠããŸãããæ¬ç¯ã§ã¯ãBASICèšèªã®çºå±ãšæŽå²çãªå€é·ã«çŠç¹ãåœãŠãŸãã
;1964幎: ããŒããã¹å€§åŠã§ããžã§ã³ã»ã±ã¡ããŒïŒJohn KemenyïŒãšããŒãã¹ã»ã«ãŒãïŒThomas KurtzïŒã«ãã£ãŠéçºãããBASICã®æåã®ããŒãžã§ã³ã䜿çšããããããã¯ãåŠçã容æã«ããã°ã©ãã³ã°ãåŠã¶ããšãç®çãšããŠããã
;1965幎: BASICã®æåã®åçšããŒãžã§ã³ãDartmouth BASICããªãªãŒã¹ãããã
;1970幎: ãžã§ã³ã»ã±ã¡ããŒãšããŒãã¹ã»ã«ãŒãã«ããæ¹èšçã®BASICããªãªãŒã¹ãããã
;1971幎: Altair BASICããªãªãŒã¹ããããã€ã¯ããœããã®åµæ¥è
ã§ãããã«ã»ã²ã€ããšããŒã«ã»ã¢ã¬ã³ã«ãã£ãŠéçºãã;ããããã¯ãåããŠã®ãã€ã¯ããœããã®è£œåãšãªã£ãã
;1975幎: ãã€ã¯ããœãããBASICã³ã³ãã€ã©ã®æåã®ããŒãžã§ã³ããªãªãŒã¹ããããã¯åŸã«ãMicrosoft BASICããšããŠç¥ãããããã«ãªãã
;1977幎: Apple IIããªãªãŒã¹ãããBASICãæšæºã§æèŒãããæåã®ããŒãœãã«ã³ã³ãã¥ãŒã¿ã®1ã€ãšãªã£ãã
;1979幎: ANSIã«ããBASICã®æšæºåãè©Šã¿ããããã倱æã«çµãã£ãã
;1982幎: MicrosoftãMSXã³ã³ãã¥ãŒã¿çšã«MSX-BASICããªãªãŒã¹ã
;1987幎: ANSIãBASICã®æšæºåãæ¿èªããANSI X3.113-1987ãšããŠå
¬éãããã
;1991幎: Visual Basicããã€ã¯ããœããã«ãã£ãŠãªãªãŒã¹ãããã€ãã³ãé§ååã®ããã°ã©ãã³ã°ãå¯èœã«ãããªã©ã倧å¹
ãªæ©èœåäžããªãããã
;2008幎: MicrosoftãSmall BasicãšåŒã°ããBASICã®æ°ããæè²åãèšèªããªãªãŒã¹ã
;2010幎: MicrosoftãVisual Basic 2010 Express EditionããªãªãŒã¹ãããã¯ãVisual Basicã®æ°ããããŒãžã§ã³ã§ãåå¿è
åãã®ããã°ã©ãã³ã°ãç°¡çŽ åããããã®æ©èœãè¿œå ãããŠããã
;2017幎: MicrosoftãVisual Basicã®å°æ¥ã®ãµããŒãã«ã€ããŠã®æ確ãªèšç»ãçºè¡šãå°æ¥ã®.NET Coreã.NET 5.0以éã®ãªãªãŒã¹ã§ã¯ãVB.NETã«å¯Ÿããäž»èŠãªæ°æ©èœã®æäŸã¯èŠéãããããšã瀺ãããã
ãã®ããã«ãBASICã¯ãã®æŽå²ã®äžã§å€ãã®å€é·ãçµéšããå€ãã®ããŒãžã§ã³ããªãªãŒã¹ãããŠããŸããããã®åŸããããŸããŸãªç°å¢ã§ã®å©çšãæè²çšéãªã©ã§ãããã€ãã®æŽŸç圢ã䜿çšããç¶ããŠããŸãã
=== æšæºèŠæ Œåã®æŽå² ===
BASICèšèªã®æšæºèŠæ Œåã¯ããã®æ®åãšãšãã«éèŠæ§ãå¢ããŠããŸãããæšæºåã¯ãç°ãªãå®è£
éã®äºææ§ã確ä¿ããéçºè
ããŠãŒã¶ãŒã«å®å®ããç°å¢ãæäŸããããšãç®çãšããŠããŸããæ¬ç¯ã§ã¯ãBASICèšèªã®æšæºèŠæ Œåã«é¢ããæŽå²ãæ¢æ±ããŸãã
;1978幎: ã¢ã¡ãªã«åœç«æšæºåäŒïŒANSIïŒã¯ãBASICèšèªã®æšæºåãç®æããŠæšæºåäœæ¥ãéå§ããã
;1983幎
:; ANSI X3.60-1983 Information Systems - Programming Languages - Minimal BASIC
:: ã¢ã¡ãªã«åœç«æšæºåäŒïŒANSIïŒã«ãã£ãŠçºè¡ãããåã®BASICèšèªã®æšæºèŠæ Œã
:: ããã¯ãBASICã®èŠæ Œåã«é¢ããæåã®è©Šã¿ã§ããããæ¥çå
šäœã§ã®åãå
¥ãã«ã¯è³ããªãã£ãã
;1987幎
:; ANSI X3.113-1987 Information Systems - Programming Languages - Full BASIC;
:: ANSIã«ãã£ãŠçºè¡ãããå
æ¬çãªBASICèšèªã®æšæºèŠæ Œã
:: å€ãã®BASICå®è£
ã§æ¡çšãããã
;1991幎
:; ISO/IEC 10279:1991 Information technology - Programming languages - Full BASIC
:: åœéæšæºåæ©æ§ïŒISOïŒããã³åœéé»æ°æšæºäŒè°ïŒIECïŒã«ãã£ãŠçºè¡ããããBASICèšèªã®åœéæšæºèŠæ Œã
;1994幎
:;ISO/IEC 10279:1991/Amd 1<nowiki>:</nowiki>1994 Information technology â Programming languages â Full BASIC â Amendment 1: Modules and single character input enhancement
:: ISO/IEC 10279:1991 ã®ãšã©ãŒã³ãŒãã®ä¿®æ£ãè¿œå ãä»æ§ã®æ確åãªã©ã®ä¿®æ£ã
;2000幎代: æšæºåäœæ¥ã¯äžæ®µèœããBASICèšèªã®äž»æµãšããŠã®å°äœã¯çžå¯Ÿçã«äœäžããŠããã
=== GUIã«å¯Ÿå¿ããBASIC ===
GUIã«å¯Ÿå¿ããBASICãšã¯ãã°ã©ãã£ã«ã«ãŠãŒã¶ãŒã€ã³ã¿ãŒãã§ãŒã¹ïŒGUIïŒãçŽæ¥ãµããŒãããBASICèšèªã®ããšã§ãããããã®èšèªã¯ããŠã£ã³ããŠããã¿ã³ãããã¹ãããã¯ã¹ãªã©ã®GUIã³ã³ããŒãã³ãã䜿ã£ãŠãçŽæçã§äœ¿ããããGUIã¢ããªã±ãŒã·ã§ã³ãéçºããããšãã§ããŸãã代衚çãªGUIã«å¯Ÿå¿ããBASICèšèªã«ã¯ãVisual BasicïŒVBïŒããããŸãã
;VBã®ã³ãŒãäŸ:<syntaxhighlight lang=basic>
Public Class Form1
Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click
MessageBox.Show("Hello, World!")
End Sub
End Class
</syntaxhighlight>
äžæ¹ãSmall BasicïŒSBïŒã¯GUIã«çŽæ¥å¯Ÿå¿ããŠããŸãããSBã¯ãäž»ã«ããã¹ãããŒã¹ã®ããã°ã©ãã³ã°ãšã·ã³ãã«ãªã°ã©ãã£ã«ã«èŠçŽ ã®å¶åŸ¡ã«çŠç¹ãåœãŠãæè²çšã®ããã°ã©ãã³ã°èšèªã§ããSBã¯åå¿è
åãã«èšèšãããŠãããã·ã³ãã«ãªæ§æãçŽæçãªæäœæ§ãæäŸããŸãããé«åºŠãªGUIéçºã«ã¯é©ããŠããŸãããSBã¯ãããã°ã©ãã³ã°ã®åºç€ãåŠã¶ããã®æ段ãšããŠäœçœ®ä»ããããŠããŸãã
;SBã®ã³ãŒãäŸ:<syntaxhighlight lang=basic>
TextWindow.WriteLine("Hello, World!")
</syntaxhighlight>
=== ãã€ã³ã³BASICã®å
¥ææ¹æ³ ===
ãã€ã³ã³BASICãå
¥æããæ¹æ³ã¯ãããã€ãã®ã¢ãããŒãããããŸããäžéšã®ãªãã·ã§ã³ã¯ããã€ãŠäž»æµã ã£ãN-BASICãF-BASICãªã©ã®ç¹å®ã®BASICå®è¡ç°å¢ãååŸããããã®ãã®ã§ããããã®ä»ã®ãªãã·ã§ã³ã¯ãã€ã³ã³BASICã®å®è¡ç°å¢ãåçŸãããã代æ¿æ段ãæäŸããããšã«çŠç¹ãåœãŠãŠããŸãã
;ããªãŒãœãããŠã§ã¢é
åžãµã€ã: VectorïŒãã¯ã¿ãŒ; https://www.vector.co.jp/ ïŒãªã©ã®ã€ã³ã¿ãŒãããäžã®ããªãŒãœãããŠã§ã¢é
åžãµã€ãã§ã¯ãç¹å®ã®BASICå®è¡ç°å¢ãœãããŠã§ã¢ãç¡åãŸãã¯æåã§ããŠã³ããŒãã§ããå ŽåããããŸãã
;ãªãŒãã³ãœãŒã¹ãããžã§ã¯ã: FreeBASICãQB64ãªã©ã®ãªãŒãã³ãœãŒã¹ãããžã§ã¯ãã¯ãMicrosoft Quick BASICïŒMS-DOSæ代ïŒãšã®äºææ§ãæäŸãããã€ã³ã³BASICã®å®è¡ç°å¢ãåçŸããŠããŸãããããã®ãããžã§ã¯ãã§ã¯ãBASICããã°ã©ãã³ã°ãç¶ããããæ°ãããããžã§ã¯ããå§ãããããããšãã§ããŸãã
;ä»ã®äŒæ¥ãå人ã«ããã¢ããªã±ãŒã·ã§ã³: ä»ã®äŒæ¥ãå人ãéçºãããã€ã³ã³BASICã®å®è¡ç°å¢ãåçŸããã¢ããªã±ãŒã·ã§ã³ããããŸãããããã¯ããªãŒãœãããŠã§ã¢é
åžãµã€ããªã©ã§å
¥æã§ããå ŽåããããŸãã
ãã€ã³ã³BASICã®å
¥æãå°é£ã«ãªã£ãèæ¯ã«ã¯ã以äžã®ãããªçç±ãèããããŸãïŒ
#ã¯ãŒãããœãããè¡šèšç®ãœãããã¯ããå°å·ãœãããªã©ãç¹å®ã®çšéã«ç¹åããã¢ããªã±ãŒã·ã§ã³ãœãããŠã§ã¢ãæ®åããäžè¬æ¶è²»è
ãããã°ã©ãã³ã°èšèªãåŠã¶å¿
èŠããªããªã£ãããšã
#ããžãã¹ã§ãããã©ã ãäœã人ã
ããããçç£æ§ã®é«ãèšèªãããŒã«ã䜿çšããããã«ãªã£ãããšã
#äž»æµãšãªãã³ã³ãã¥ãŒã¿ç°å¢ãå€åããROM BASICãDisk BASICããWindowsãMacintoshãOS/2ãªã©ã®æ°ãããã©ãããã©ãŒã ã«ç§»è¡ããããšã
ãããã®çç±ã«ããããã€ã³ã³BASICã®éèŠãäœäžããäžè¬çãªããã°ã©ãã³ã°ããŒãºãæè¡ç°å¢ã®å€åã«é©å¿ããå¿
èŠæ§ãçããŸãã<ref>äžåŠæ ¡ã»é«çåŠæ ¡ã®æ
å ±ç§ãæè¡ã»å®¶åºç§ã§åãæ±ãããïŒèšèªã¯ã[[JavaScript]]ã[[Python]]ããã«[[Visual Basic for Applications]]ïŒããžã¥ã¢ã«ããŒã·ãã¯ã»ãã©ãŒã»ã¢ããªã±ãŒã·ã§ã³ãºãVBAïŒã§ãããVBAã¯ãã€ã³ã³BASICã®ç¯çã§ã¯ãããŸããã</ref>ã
== ãã€ã³ã³BASICã§ã®ããã°ã©ã ã®å
¥å ==
ãŸãã䜿çšããBASICïŒããŒã·ãã¯ïŒãéžã³ãèµ·åããŠäžããã
BASICã§ç»é¢ã«æåã衚瀺ããããã«ã¯ <code>PRINT</code> æã䜿ããŸãããã ããæ°ããBASICã§ã¯ããŸã£ããå¥ã®ã³ãã³ãæã«ãªããŸãã
BASICãèµ·åãããšããOkããReadyããªã©ïŒBASICãæ©çš®ã«ãã£ãŠç°ãªããŸãïŒã®æåã®äžã«ãâ ãïŒã«ãŒãœã«ïŒãåºãŸããã«ãŒãœã«ã¯ã«ãŒãœã«ããŒã®äžäžå·Šå³ã§ç§»åã§ããŸãããã®ã«ãŒãœã«ãåºãŠãããšãã«ãBASICã®ããã°ã©ã ãç·šéã§ããŸãã
ã§ã¯æåã«ãPRINTæã䜿ã£ãŠãç»é¢ã«æåã衚瀺ãããŠã¿ãŸãããã
:<syntaxhighlight lang=basic>
PRINT "Hello BASIC"
</syntaxhighlight>
ãšå
¥åããŠã¿ãŠãã ãããå
¥åæã®æåã¢ãŒãã¯ãçŽæ¥å
¥åã¢ãŒãã§å
¥åããŠãã ãããWindowsã®å Žåãå³äžã«ãæåå
¥åã¢ãŒãã®åãæ¿ãã®ã¿ããããã®ã§ããããã¯ãªãã¯ããŠãçŽæ¥å
¥åã¢ãŒããéžãã§ãããäžèšã®PRINTæãå
¥åããŠãã ããã
ãã®ããã«äžèšã®PRINTæãå
¥åããRUNïŒãã©ã³ããšããããèµ·åãããã®æå³ïŒãå®è¡ãããšïŒå®è¡æ¹æ³ã¯æ©çš®ã«ãã£ãŠç°ãªããŸãã®ã§ãããããã®æ©çš®ãåèã«ããŠãã ããïŒãç»é¢ã« '''Hello BASIC''' ãšè¡šç€ºãããŸãã
åæ§ã«ãæ°ããè¡ã§ãç»é¢ã®å·Šç«¯ã«ã«ãŒãœã«ãããç¶æ
ã§ã
:<syntaxhighlight lang=basic>
PRINT 2+3
</syntaxhighlight>
ã®ããã«å
¥åããŠã¿ãŠïŒæåŸã«EnterããŒãå
¥åããŠæ¹è¡ããŸããæ©çš®ã«ãã£ãŠã¯RETURNããŒãCRããŒãšãèšããŸãã以äžãåããªã®ã§çç¥ããŸãïŒãRUNãå®è¡ãããšïŒå®è¡æ¹æ³ã¯ããããã®æ©çš®ãåèã«ããŠãã ããïŒã'''5''' ãšèšç®ã®çµæã衚瀺ãããŸãã
ãã®ããã«ãPRINTåœä»€ã¯ããã®çŽåŸã«ãããã®ãç»é¢ã«è¡šç€ºããŸãã
ãŸããBASICã§ã¯ãåœä»€ãå®è¡ããããšãRUNïŒã©ã³ïŒãšèšããŸããè±èªã®ãèµ°ãã RUN ãšåãåèªã§ããã©ã³ãã³ã°ïŒèµ°ãïŒãã©ã³ããŒïŒèµ°è
ïŒã®ã©ã³ãšåãã§ãã
ãã£ãœãã
:<syntaxhighlight lang=basic>
PRINT "2+3"
</syntaxhighlight>
ãRUNã§å®è¡ãããšãç»é¢ã«"2+3"ãšãã®ãŸãŸè¡šç€ºãããŸãã
ã€ãŸããäºéåŒçšç¬Š " " ã¯ããåŒçšç¬Šå
ã®æååããç»é¢ã«ãã®ãŸãŸè¡šç€ºããããšããæå³ã®èšå·ã§ãã
ä»ã®ããã°ã©ãã³ã°èšèªã§ãããprintããšããèªãããã¹ã衚瀺åœä»€ã«çšããããã°ã©ãã³ã°èšèªã¯å€ãã§ãããŸããä»ã®ããã°ã©ãã³ã°èšèªã§ããæååã衚瀺ããå Žåã¯ãäºéåŒçšç¬Š " " 㧠ãããã®ããæ®éã«ãªã£ãŠããŸãã
ãããäºéåŒçšç¬Šã§ããããªããšã
;ãšã©ãŒãåºãäŸ:<syntaxhighlight lang=basic>
PRINT Hello BASIC
</syntaxhighlight>
ã¯ããšã©ãŒã®ããæãªã®ã§å®è¡äžå¯èœãçãªå ±åã ã³ã³ãã¥ãŒã¿ãŒããå ±åããããããããã¯ããŸã£ããäºæãã¬æ°å€ãæåã衚瀺ããããªã©ã®ãšã©ãŒãèµ·ãããŸãïŒäŸãã°undefinedïŒã
=== è¡çªå· ===
ãã€ã³ã³BASICã§ã¯ãããã°ã©ã ã¯ãè¡çªå·ïŒåœä»€ãã®åœ¢ã§ããããŸããè¡çªå·ãã€ããªãã§å
¥åãããšãåè¿°ã®ããã«ïœ¢åœä»€ãå³å®è¡ããŠãçµäºãããŸããå
é ã«è¡çªå·ãã€ããããšã§åããŠãåœä»€ãçµã¿åããããããã°ã©ã ããšããŠå®è¡ã§ããããã«ãªããŸãã0æªæºã®æ°ãå°æ°ãåæ°ã¯è¡çªå·ã«ã§ããŸããã
;ç°¡åãªããã°ã©ã ã®äŸ:<syntaxhighlight lang=basic>
5 CLS
10 PRINT "3+5=";
20 PRINT 3+5
30 END
</syntaxhighlight>
åè¡ã®æåã«ã€ããŠããæ°åãè¡çªå·ã§ãã10ããã¯ãããŠ10ãã€å¢ãããŠããã®ãäžè¬çã§ããããããã°ãåŸããç°¡åã«è¡ãæ¿å
¥ããããšãã§ããŸãïŒãã ã9è¡ãŸã§ïŒãPRINT ã¯åç¯ã§èª¬æããéãç»é¢ã«æåãåºåããåœä»€ã§ããæåŸã® END ã¯ããã°ã©ã ã®çµäºãè¡šãåœä»€ã§ãçç¥å¯èœãªBASICãå€ãã§ãããããã§ãªããã°å¿
ãå
¥ããããã«ããŸãã
å
¥åããã
:<syntaxhighlight lang=basic>
RUN
</syntaxhighlight>
ãšïŒè¡çªå·ãªãã§ïŒå
¥åãããšå®è¡ããŸãã
ãã®ããã°ã©ã ãå®è¡ããããšãç»é¢ã«ã3+5= 8ããšè¡šç€ºãããŸãã
10è¡ã®æåŸã«ã€ããŠãã ''';''' ã¯ããæ¹è¡'''ããªã'''ãããšãã³ã³ãã¥ãŒã¿ãŒã«éç¥ããŸãããããåãé€ããšãå®è¡ãããšãã«ã3+5=ããšã8ããå¥ã®è¡ã«è¡šç€ºãããŠããŸããŸãããããå©çšããŠãäžè¡å空çœã«ããããšãã§ããŸãã
ãªãããã€ã³ã³BASICã§ã¯ãïŒããçšãããšæ¬¡ã®ããã«ãæžããŸãããçŸåšã§ã¯æšå¥šãããŸããã
:<syntaxhighlight lang=basic>
5 CLS
10 PRINT "3+5=";:PRINT 3+5
20 END
</syntaxhighlight>
çŸåšãäžéšã®(åçŸ)BASICã§ã¯ã
:<syntaxhighlight lang=basic>
5 CLS
10 PRINT "3+5=";3+5
20 END
</syntaxhighlight>
ã®ããã«èšè¿°ããããšãã§ããŸãã
ãªããENDã¯ããã°ã©ã ã®çµäºãè¡šãåœä»€ã§ããã®ã§ãããšãã°ã
:<syntaxhighlight lang=basic>
5 END
10 PRINT "3+5=";3+5
20 END
</syntaxhighlight>
ã®ãããªããã°ã©ã ã ãšãã3+5=ãã衚瀺ããåã«ããããªãçµäºããŸãã
=== è¡çªå·ãé çªã©ããã§ãªãå Žå ===
:<syntaxhighlight lang=basic>
20 PRINT("aaa20")
10 PRINT ("bbb10")
</syntaxhighlight>
ã®ããã«ãè¡çªå·ãé çªã©ããã§ã¯ãªãå Žåãã©ã®è¡ãåªå
ããŠå®è¡ããã®ã§ããããïŒ
çŸä»£ã®GUI察å¿ã®BASICã§ã¯ãè¡çªå·ã®ãªããã®ãå€ãã®ã§ããããã®çç±ã®ã²ãšã€ããããããããã®ãããªãè¡çªå·ãšé åºã®ã¡ããå Žåã®æ··ä¹±ãé²ããããªã©ããããªãã®çç±ãããã®ã§ãããã
ããŠããããŠãã®ãã€ã³ã³BASICã®å Žåãè¡çªå·ã®å°ããé ããå
ã«å®è¡ãããšæããŸãïŒããã€ãã®åçŸBASICãœããã§ç¢ºèªïŒããã®å Žåãç¹ã«ãšã©ãŒã¡ãã»ãŒãžãªã©ã¯ãåºãããŸããã
ããããããã€ã³ã³BASICã§ã¯ããœãããŠã§ã¢ã®å
éšã§ã¯ãããã°ã©ã ã®å®è¡ã®ããããã«ïŒã€ãŸãRUNåœä»€ã®çŽåŸã«ïŒããŸãè¡çªå·ã«ããšã¥ããŠäžŠã¹æ¿ããè¡ã£ãŠã
:<syntaxhighlight lang=basic>
10 PRINT ("bbb10")
20 PRINT("aaa20")
</syntaxhighlight>
ã®ããã«äžŠã¹æ¿ããŠããããããããã£ãšãäžããé ã«å®è¡ãããŠããã®ã§ãããã
ã€ãŸãããããã®ãã€ã³ã³BASICã¯ãããã°ã©ã ãæåã«å®è¡ããéããŸã䞊ã¹æ¿ããè¡ã£ãŠããã®ã§ãã
ãããè¡æ°ã10è¡ãŠãã©ã®å°ãªãããã°ã©ã ãªããããã§ãããŸããŸããããæ°ã®å©ãã䟿å©ãªæ©èœã§ãããã
ããããããçŸè¡ãåè¡ãããããã°ã©ã ã䞊ã¹æ¿ãããšãªããšã䞊ã¹æ¿ãã«ã¯æéãæããã®ã§ãããã°ã©ã ã®å®è¡ãçµãããŸã§ã®æéãé·åŒããŠããŸããŸãã
å察ã«èšããšãè¡çªå·ã®ãªãBASICã®å Žåããã®ã¶ãé«éåãããŠããå¯èœæ§ããããŸãïŒäžŠã¹æ¿ãã®æéãçããã®ã§ïŒã
ããã«èšããšãè¡çªå·ã®ããBASICã®äœ¿ãéã¯ãåŠçã«æéãæãã£ãŠãããã®ã§ãåŠçã®é åºã確å®ã«ãŸã¡ãããªããèªå以å€ã®ä»ã®ããã°ã©ããŒã«ãäŒããããããªããã°ã©ã ãæžããšãã«ã¯ãããããããè¡çªå·ã®ããBASICã䟿å©ãããããŸããã
=== ããã°ã©ã ã®ç·šé ===
ãšãã£ã¿ã®ãªããã€ã³ã³BASICã§ã¯ã
:<syntaxhighlight lang=basic>
LIST
</syntaxhighlight>
ãšå
¥åãããšãããã°ã©ã ïŒããã°ã©ã ãªã¹ãïŒãå
é ã®è¡ãããã衚瀺ããŸãã
:<syntaxhighlight lang=basic>
LIST 10
</syntaxhighlight>
ãšå
¥åãããš10è¡ç®ã ããã
:<syntaxhighlight lang=basic>
LIST 20-
</syntaxhighlight>
ãšå
¥åãããš20è¡ç®ä»¥éãã¹ãŠãã
:<syntaxhighlight lang=basic>
LIST -20
</syntaxhighlight>
ãšå
¥åãããšå
é ã®è¡ãã20è¡ç®ãŸã§ãã
:<syntaxhighlight lang=basic>
LIST 20-30
</syntaxhighlight>
ãšå
¥åãããš20è¡ç®ãã30è¡ç®ã衚瀺ããŸãã
ãŸãã
:<syntaxhighlight lang=basic>
AUTO
</syntaxhighlight>
ãšå
¥åãããšãæ¹è¡ãããã³ã«è¡çªå·ã10ãã€å¢ãããŠèªåçã«è¡šç€ºããŸããèªå衚瀺ãåæ¢ãããã®ã¯BREAKããŒãæŒããŸãïŒæ©çš®ã«ãã£ãŠã¯STOPããŒããCTRL+STOPããŒãåææŒããªã©ãæäœãå€å°ç°ãªããŸãïŒã
* ãªãããããªã£ãŠãã®ãïŒ
ä»ã§ãããããã°ã©ã ã®å®è¡çµæã®ç»é¢ãšãããã°ã©ã èšè¿°çšã®ãšãã£ã¿ç»é¢ãšã¯ãå¥ã
ã®ç»é¢ã«åãããŠããã®ãæ®éã§ãã
ããããæã®ããœã³ã³ã§ã¯ã衚瀺ãŠã€ã³ããŠãæšæºã§ã¯1ã€ãããããŸããã§ãããããããããŠã£ã³ããŠããšããæŠå¿µãããªããæã®å€ãããã°ã©ã èšèªã§ã¯ãå®è¡çµæã®è¡šç€ºç»é¢ãšããšãã£ã¿ç»é¢ãšããåãã²ãšã€ã®ç»é¢ã ã£ããããŸãããããã³ãã³ãå
¥åæ©èœãããã°ã©ã èšè¿°æ©èœãå
ŒããŠãããããããã¯ããœã³ã³æ¬äœã«ããã¬ããŒã¹ã€ããïŒå°åã®ã¬ããŒã¹ã€ãããã€ããŠãããããïŒã«ãããã³ãã³ãå
¥åã¢ãŒãïŒãã¿ãŒããã«ã¢ãŒãããšããïŒãšããã°ã©ãã³ã°ã¢ãŒããšãåãæ¿ãããããŠããŸããã
çŸä»£ã§ããWindowsã®ã³ãã³ãããã³ããã®ãããªãOSä»å±ã®ã³ãã³ãå
¥åçšã¢ããªã±ãŒã·ã§ã³ã§ã¯ãæ®éããŠã£ã³ããŠã¯1ã€ã ãã§ããããã®ãã£ãã²ãšã€ã®ãŠã£ã³ããŠããå®è¡çµæã®è¡šç€ºç»é¢ãšãã³ãã³ãå
¥åç»é¢ãšãå
ŒããŠããŸãã
=== æ°ããBASICã§ã®ããã°ã©ã ã®å
¥å ===
æ°ããBASICã§ã¯ãããã°ã©ã ãç·šéããããã®ãšãã£ã¿ãæã£ãŠããããããå
¥åã«äœ¿ããŸãããšãã£ã¿ã®æŠèŠã䜿ãæ¹èªäœã¯çç¥ããŸãããŸãã次ã®ããã«ãè¡çªå·ãçç¥ãã§ããŸãã
:<syntaxhighlight lang=basic>
PRINT "3+5=";
PRINT 3+5
END
</syntaxhighlight>
ããã°ã©ã ã®å®è¡ã¯ãRUNã§ã¯ãªãããšãã£ã¿ã®ã¡ãã¥ãŒãããå®è¡ããéžæããŸãã
ãã€ã³ã³BASICã®ããã«ãåœä»€ãå®è¡ããŠãå³çµäºãããã«ã¯ãäžã«ã¯ãçŽæ¥å
¥åã(äŸ: ã€ããã£ãšã€ã ãŠã£ã³ã㊠)ãç°¡åã«ã§ããæ°ããBASICããããŸãããã»ãšãã©ã®æ°ããBASICã§ã¯ãšãã£ã¿ã®ã¡ãã¥ãŒãã察å¿ããé
ç®ãéžã¶å¿
èŠããããŸãã
ããã§ã¯è¡çªå·ä»ãã®ãã€ã³ã³BASICã®æžåŒã§èª¬æããŸãã
ã
== 以äžã¯åºæ¬çã«å€ã圢åŒã§èª¬æããŸã ==
* ãã㧠å€ã圢åŒã N-BASIC, MSX-BASIC ãšããŸãããã以éã®BASICã§åãããã«èæ
®ããŸãã
* 説æã¯ã¹ãã¬ãŒãã§ãããããããå
·äœäŸãå€ãå
¥ããŸãã
* åºæ¥ãã ãå°éçšèªã䜿ããŸããããã䜿ããšãã¯èª¬æãå
¥ããŸãã
== æåã« ==
* BASICã®ããã°ã©ã ã¯è¡åäœã§å®è¡ãããŸãã
* è¡ã®äžããäžã«åãã£ãŠå®è¡ãããŸãïŒåå²ãªã©ããããŸãïŒã
* STOPåœä»€, ENDåœä»€ã§å®è¡ãçµäºããŸãã
* 空çœã«ãæå³ããããŸãã®ã§æ³šæããŸãããã
â» ä»ã®ããã°ã©ã èšèªã§ãã䌌ããããªææ³ã®èšèªã¯ãå€ããããŸããä»ã®ããã°ã©ã èšèªã«ããããã®ã¯ãäž»ã«ã
:ç¹å¥ãªæ瀺ããªãããããäžããäžã«åãã£ãŠé ã«å®è¡ãããã
:空çœã«æå³ãããã
ã§ãã
== REMïŒã³ã¡ã³ãïŒ ==
BASICã®ã³ã¡ã³ãã¯ãããã°ã©ã å
ã§ã®èª¬æãã¡ã¢ãèšè¿°ããããã®ããã¹ãã§ãããããã®ã³ã¡ã³ãã¯ããã°ã©ã ã®å®è¡æã«ç¡èŠãããŸãããã³ãŒãã®ç解ãã¡ã³ããã³ã¹ãå
±åäœæ¥ãæ¯æŽããŸãã
REMïŒRemarkã®ç¥ïŒã¹ããŒãã¡ã³ãã«ãã£ãŠã³ã¡ã³ããæžãããšãäžè¬çã§ããããã€ã¯ããœããç³»ã®BASICã§ã¯ã
ã¢ãã¹ãããã£ïŒ'ïŒãã³ã¡ã³ãã«äœ¿çšã§ããŸããã¢ãã¹ãããã£ã䜿ã£ãã³ã¡ã³ãã¯ãREMã¹ããŒãã¡ã³ããšåæ§ã«ããã°ã©ã ã®å®è¡æã«ç¡èŠãããŸãã
äŸãã°ïŒ
:<syntaxhighlight lang=basic>
10 REM ãã®è¡ã¯ç»é¢ã«ãHello, world!ããšè¡šç€ºãã
20 PRINT "Hello, world!"
30 ' ãããåããç»é¢ã«ãHello, world!ããšè¡šç€ºãã
40 PRINT "Hello, world!"
</syntaxhighlight>
äžèšã®äŸã§ã¯ãREMã¹ããŒãã¡ã³ããšã¢ãã¹ãããã£ã®äž¡æ¹ã䜿ã£ãŠãåãæå³ã®ã³ã¡ã³ããè¿œå ããŠããŸãã
ã©ã¡ãã®æ¹æ³ã§ããããã°ã©ã ã®å®è¡æã«ã³ã¡ã³ãã¯ç¡èŠãããPRINTã¹ããŒãã¡ã³ããå®è¡ãããŸãã
BASICã«ãããã³ã¡ã³ãã®å©çšã¯ãããã°ã©ã ã®å¯èªæ§ãã¡ã³ããã³ã¹æ§ãåäžãããããã«éåžžã«éèŠã§ããã³ã¡ã³ããé©åã«æŽ»çšããããšã§ãä»ã®äººãã³ãŒããç解ãããããªããŸãããèªåèªèº«ãåŸã§ã³ãŒããæ¯ãè¿ã£ãéã«è¿œãããããªããŸãã
ãŸããBASICã§ã¯ã³ã¡ã³ãã䜿ã£ãŠããã°ã©ã ã®äžéšãäžæçã«ç¡å¹åããããšãã§ããŸããããã¯ããããã°ã®éã«ç¹å®ã®ã³ãŒããå®è¡ãããªãããã«ãããããããã¯ããã°ã©ã ã®äžéšããã¹ããããããéã«åœ¹ç«ã¡ãŸãã
ã³ã¡ã³ãã¯ãããã°ã©ã ã®ã©ãã«ã§ãè¿œå ããããšãã§ããŸãããã³ãŒãã®æå³ãç®çãæ確ã«ããããã«ã¯ãé©åãªäœçœ®ã«è¿œå ããããšãéèŠã§ãããŸããã³ã¡ã³ãã¯å¿
èŠæå°éã«çããããšãæãŸããã§ããé床ãªã³ã¡ã³ãã¯ã³ãŒããèªã¿ã«ããããå¯èœæ§ããããŸãã®ã§ãã³ãŒãèªäœãèªå·±èª¬æçã§ããããšãçæ³çã§ãã
== PRINTåœä»€ ==
BASICã®PRINTåœä»€ã¯ãç»é¢ã«æååãæ°å€ã衚瀺ããããã«äœ¿çšãããŸãã以äžã«ãBASICã®PRINTåœä»€ã®äœ¿ãæ¹ãšã³ãŒãäŸã瀺ããŸãã
=== PRINTåœä»€ã®äœ¿ãæ¹ ===
PRINTåœä»€ã¯ã次ã®ããã«äœ¿çšããŸãã
:<syntaxhighlight lang=basic>
PRINT expression1 [, expression2 [, expression3, ...]]
</syntaxhighlight>
ããã§ã<code>expression1</code>, <code>expression2</code>, <code>expression3</code>ãªã©ã¯ã衚瀺ãããæååãæ°å€ãå€æ°ããŸãã¯åŒã§ããã«ã³ãã§åºåã£ãŠè€æ°ã®å€ãæå®ããããšãã§ããŸããPRINTåœä»€ã¯ãæå®ãããé çªã«å€ãç»é¢ã«è¡šç€ºããŸãã
=== ã³ãŒãäŸ ===
: <syntaxhighlight lang=basic>
10 PRINT "Hello, world!" ' æååã®è¡šç€º
20 LET x = 10 ' å€æ°ã«å€ã代å
¥
30 PRINT "The value of x is: ", x ' å€æ°ã®å€ã衚瀺
40 PRINT "The sum of 3 and 5 is: ", 3 + 5 ' åŒã®çµæã衚瀺
60 PRINT "The value of x is: "; ' (;) ã§çµãããšæ¹è¡ããªã
70 PRINT x ' å€æ°ã®å€ã衚瀺
</syntaxhighlight>
äžèšã®ã³ãŒãäŸã§ã¯ãæåã®PRINTåœä»€ã§æåå "Hello, world!" ã衚瀺ãã次ã«å€æ°xã®å€ã衚瀺ããŠããŸãããŸããæåŸã®PRINTåœä»€ã§ã¯ã3ãš5ã®åã衚瀺ããåŒã䜿çšããŠããŸãã
=== Microsoftç³»ã®ç°¡ç¥è¡šèš ===
Microsoftç³»ã®BASICã§ã¯ãPRINTåœä»€ã <code>?</code> ãšç°¡ç¥ããŠèšè¿°ããããšãã§ããŸãã
ãŸããã»ãã³ãã³ïŒ;ïŒã䜿ãããšã§ãæ¹è¡ãææ¢ããäºãã§ããŸãã
:<syntaxhighlight lang=basic>
10 ? "Hello, world!" ' æååã®è¡šç€º
20 LET x = 10 ' å€æ°ã«å€ã代å
¥
30 ? "The value of x is: ", x ' å€æ°ã®å€ã衚瀺
40 ? "The sum of 3 and 5 is: ", 3 + 5 ' åŒã®çµæã衚瀺
60 ? "The value of x is: "; ' (;) ã§çµãããšæ¹è¡ããªã
70 ? x ' å€æ°ã®å€ã衚瀺
</syntaxhighlight>
äžèšã®äŸã§ã¯ã<code>?</code> ã䜿çšããŠPRINTåœä»€ãç°¡ç¥åããã»ãã³ãã³ïŒ;ïŒã䜿çšããŠæ¹è¡ãææ¢ããŠããŸãã
ããã«ãããã³ãŒããããçããèªã¿ãããããããšãã§ããŸãã
== å€æ° ==
'''å€æ°'''ã¯ãæ°å€ãæåãªã©ã®ããŒã¿ãå
¥ããŠããç®±ã®ãããªãã®ã§ãã
å€æ°ã®ååã«ã¯ã以äžã®ãããªèŠåããããŸãã
* ã¢ã«ãã¡ãããããå§ãŸãã
*: 1ABC ãªã©ã¯äžå¯
* ã¢ã«ãã¡ããããšæ°åã§æ§æããããïŒèšå·ãšç©ºçœã¯äžå¯ïŒ
*: A:B PI3.14 ãªã©ã¯äžå¯
* BASICå
ã§äœ¿çšãããŠããåœä»€åãšéè€ããªãã
*: PRINT ãªã©ã¯äžå¯
* å€æ°åã®å€§æåãšå°æåã¯åºå¥ãããªãã
*: ABCãšaBcã¯åãå€æ°ãšè§£éãããã
ãŸãããã€ã³ã³BASICãç°¡æãªBASICã§ã¯ãæ©çš®ã«ãã£ãŠå€æ°åã®é·ãã«ã2æå以äžãã8æå以äžããšããå¶éããããŸãã
== å
¥å INPUT ==
ããŒããŒãããå
¥åããã«ã¯ãINPUTæã䜿ããŸãã
:<syntaxhighlight lang=basic>
5 REM ãã㯠æ°å€ãããŒå
¥åããŠãå€æ°Aã«ä»£å
¥ããããŠå€æ°Aã衚瀺ããã
10 INPUT A
20 PRINT A
30 END
</syntaxhighlight>
10 INPUT A ã§ã¯ãæ°å€å€æ°Aã« ããŒããŒãããå
¥åããæ°å€ã代å
¥ããŸãã
ãã®ãããªæžãæ¹ãåºæ¥ãŸãã
:<syntaxhighlight lang=basic>
10 INPUT "æ°å€ãå
¥åããŠäžãã ",A
20 PRINT A
30 END
</syntaxhighlight>
å
¥åãä¿ãæååã衚瀺ããŠãããå
¥åã«å
¥ããŸãã
== 代å
¥ãšèšç® ==
'''å€æ°'''ã¯ãæ°å€ãæåãªã©ã®ããŒã¿ãå
¥ããŠããç®±ã®ãããªãã®ã§ãã
:<syntaxhighlight lang=basic>
10 A=12
20 B=3
30 PRINT A+B
40 PRINT A-B
50 PRINT A*B
60 PRINT A/B
70 END
</syntaxhighlight>
ãã®ããã°ã©ã ã¯ãå€æ° A ã« 12ãå€æ° B ã« 3 ã代å
¥ãã足ãç®ã»åŒãç®ã»æãç®ã»å²ãç®ã®çµæã衚瀺ããç©ã§ãïŒé ã«ã15 9 36 4 ãšè¡šç€ºãããŸãïŒã
å€æ°ãžã®ä»£å
¥ã¯ '''=''' ã䜿çšããŸããäžã®ããã°ã©ã ã§ã¯çŽæ¥æ°åã代å
¥ããŸããããèšç®åŒïŒå€æ°ã䜿çšãããã®ãå«ãïŒãè©äŸ¡ããå€ã代å
¥ããããšãã§ããŸãã
BASICã«ããã代å
¥ãšã¯ããèšå·=ã®å³èŸºã®èšç®åŒãè©äŸ¡ããå€ããèšå·=ã®å·ŠèŸºã®å€æ°ã«å²åœãŠãããšããæå³ã§ãã
ãã®ããã
12 = A
ãšããåœä»€ã¯ãšã©ãŒã«ãªããŸãã
ããªããã代å
¥å
ã®å€æ°ã¯ãèšå·=ã®å·ŠèŸºã«ããå¿
èŠããããŸãã
ãŸããå³èŸºã«ããèšç®åŒããèšå·=ã®å·Šã«ããå€æ°ã«ä»£å
¥ããã®ã§ã
A=A+1
ã®ããã«ãèªåèªèº«ãçšããåŒã代å
¥ããããšãã§ããŸããããããA+1=Aããšããé åºã ãšããšã©ãŒã«ãªããŸãã
:<syntaxhighlight lang=basic>
10 A=12
20 A=A+1
30 PRINT A
40 END
</syntaxhighlight>
ãå®è¡ãããšãèšç®çµæïŒ12ïŒ1ïŒã®ã13ãã衚瀺ãããã§ãããã
ãªããå€æ°ãžã®ä»£å
¥ã¯ãLETãåœä»€ã§ã
A=12
ã¯
LET A=12
ãªã®ã§ãããJISèŠæ ŒBASICãé€ããŠãã»ãšãã©ã®æ°æ§ã®BASICãåãããLETã¯çç¥å¯èœã§ãã
èšç®ã®èšå·ã¯ã足ãç®ã«ã¯'''+'''ãåŒãç®ã«ã¯'''-'''ãæãç®ã«ã¯'''*'''ãå²ãç®ã«ã¯,'''/''' ã®èšå·ãå²ãåœãŠãããŠããŸããäœãã¯ã'''MOD'''ãïŒã¢ãžã§ãïŒã§ãã
æ¬åŒ§()ã䜿ãäºãåºæ¥ãŸããèšç®ã®é åºã«è¿·ã£ããæ¬åŒ§ã䜿ãããã«ããŸãããã
100 A=(10+2)/4
å°æ¥çã«ãLETæã®ããä»ã®ããã°ã©ãã³ã°èšèªã®åŠç¿ã®ããšãèããŠãLETæãã€ãã£ãŠäžèšã®ããã°ã©ã ãæžããŠã¿ãŸãããã
:<syntaxhighlight lang=basic>
10 LET A=12
20 LET B=3
30 PRINT A+B
40 PRINT A-B
50 PRINT A*B
60 PRINT A/B
70 END
</syntaxhighlight>
== å
¥ååœä»€ ==
å©çšè
ããããŒããŒãã§æ°å€ãå
¥åããŠãããã«ã¯ãINPUT æã䜿ããŸãã
INPUTåœä»€ã䜿ã£ãŠæ°å€ãŸãã¯æåå(å€æ°å$)ãå
¥åãããå Žåã
;äŸ
INPUT "ããã«æåã衚瀺ãããããšãå¯èœ";å€æ°å
PRINT "å
¥åããæ°å€ïŒæååïŒã¯";å€æ°å;"ã§ã"
ãšããŸãã
ïŒããã°ã©ã äŸïŒ
:<syntaxhighlight lang=basic>
10 INPUT "æ°å€ãå
¥åããŠãã ãã" ;A
20 PRINT "å
¥åãããæ°å€ã¯"
30 PRINT A
40 PRINT "ã§ãã"
50 END
</syntaxhighlight>
ãŸãã¯
:<syntaxhighlight lang=basic>
5 PRINT "æ°å€ãå
¥åããŠãã ãã"
10 INPUT A
20 PRINT "å
¥åãããæ°å€ã¯"
30 PRINT A
40 PRINT "ã§ãã"
50 END
</syntaxhighlight>
== å€æ°ã®åæå ==
ããšãã°ãäžã®ããã°ã©ã ãå®è¡ããããšã«ã
PRINT A
ãå®è¡ãããšãããã»ã©å
¥åããå€æ°ãåºããããããŸããã
ãã®çç±ã¯ãã¡ã¢ãªå
ã«ã以åã«äœ¿çšããå€æ°ãããã®ãŸãŸæ®ã£ãŠããããã§ãã
ã€ãŸããããã°ã©ã ãçµäºããŠããããã ãã§ã¯å€æ°ã®å
容ã¯æ¶å»ãããŸããã
åœä»€ NEW ã䜿ããšãBASICã§æ±ã£ãŠããå€æ°ã«ãã¹ãŠãŒã 0 ã代å
¥ããåæåïŒããããïŒããŸãã
ãããäžã®ç¯ã®ããã°ã©ã ã®å®è¡çŽåŸã«ããŸã£ããå¥ã®ããã°ã©ã ãå®è¡ããå¿
èŠããã£ããšããŠãããã§ãåãå€æ°åã®å€æ°ã䜿ãããŠãããšãããããã®å€æ°ã¯åæåãããŠããªããšããšã©ãŒã®åå ã«ãªã£ãŠããŸããŸãã
ãŸã£ããå¥ã®ããã°ã©ã ã§ããåãå€æ°åãAãããBããããŸã£ããå¥ã®å
容ã§äœ¿ãããšããããŸãã®ã§ãå¿
èŠã«å¿ã㊠NEW åœä»€ã䜿ããŸãããã
:<syntaxhighlight lang=basic>
10 NEW
20 LET A=7
30 PRINT A+9
40 END
</syntaxhighlight>
ãšæžããŠå®è¡ããã°ããã®ããã°ã©ã ã®å®è¡åã«ã©ããªããã°ã©ã ã§å€æ°ãAããçšããŠããããããããåæåã§ããŸãã
ãªããäžèšã®ããã°ã©ã ã®å®è¡çµæãšããŠãèšç®çµæãšããŠã16ãã衚瀺ãããŸãã
ãã®ããã°ã©ã ã®å ŽåãªããããããNEWã§å€æ°AãåæåããªããŠãããã®æ¬¡ã®è¡ã§ <nowiki>A=7</nowiki>ãšèšè¿°ããŠããã®ã§ããã€ã¯åæåã®å¿
èŠã¯ãããŸããã
ã§ãããäœãããšããããã°ã©ã ãè€éã«ãªã£ãŠãããšããã€ããå€æ°ã®åæ°ãå€ããªããå€æ°ã²ãšã€ãã€åæåãããã®ã倧å€ã«ãªãå ŽåããããŸãããåæ°ãå€ããšäžã€ã¥ã€åæåããæ¹æ³ã ãšãåæåãããããå€æ°ãåºãŠæ¥ããããããŸããã
ãªã®ã§ãããã®ããã NEW åœä»€ã§ããã£ãã«ããã¹ãŠã®å€æ°ãåæåããŠããŸããŸããããåæåããã察象ã¯ããã®BASICã§æ±ã£ãŠãããå€æ°ãã ãã§ãã®ã§ãå®å¿ããŠãå¹³æ°ã§ãã
ãªããäžèšã®ããã«ãããèšç®éäžã«ãNEWãå
¥ãããšã
ïŒããŸãããããªãããã°ã©ã ïŒ
:<syntaxhighlight lang=basic>
20 LET A=7
25 NEW
30 PRINT A+9
40 END
</syntaxhighlight>
ãã®ããã°ã©ã ãªããPRINTåœä»€ã§ã9ãã衚瀺ããããããŸãããªããªãAãåæåãããŠããŸããAã«0ã代å
¥ãããŠããããã§ãã
ãªããçŸåšã®ããã°ã©ã èšèªã§ã¯ãNEWåœä»€ã¯å¥ã®æå³ã§äœ¿ãããŠããŸãã
ãªããèšç®äœæ¥ã®ãšãã«ãåæã®ç¬éã®ç¶æ
ã«å¯Ÿå¿ããæ°å€ã®ããšããç§åŠæè¡çšèªã§ãåæå€ãïŒãããã¡ãinitial value ã€ãã·ã£ã« ããªã¥ãŒïŒãšãããŸãããã¡ãã³ã³ãœãããªã©ã®ã²ãŒã æ¥çãªã©ã§ããã²ãŒã éå§ç¶æ
ã®äž»äººå
¬ã®ã©ã€ãïŒçåœåïŒå€ãšãã®æ°å€ããŸãšããŠãåæãã©ã¡ãŒã¿ãŒããªã©ãšãããŸããããããšåãããšã§ãã
çç§ãªã©ã§ã¯ãããšãã°ããŒã«ãæããç¬éã®ããŒã«ã®é床ã®ããšãåæé床ããšèšããŸãã
ãããçŸä»£ã®ããã°ã©ã èšèªã®ãªãã®åœä»€æã®èªå¥ã§ããinitããªã©ã®èªå¥ããã£ãããããã¯ãããããããåæå€ïŒâ» è±èªã§ initial value ïŒã®ããšãããããŸããã
== æ¡ä»¶åå² IF THEN ELSE ==
ããããææ¥ æŽãã ã£ããªããé 足ãããã§ãªããéšã ã£ãããªããæ宀ã§èªç¿ããã®ãããªå Žåãããæ¡ä»¶åå²ïŒããããã ã¶ããïŒãšãããŸãã
ããã°ã©ã äžã§ããæ¡ä»¶ã«åœãŠã¯ãŸããã§å®è¡ããå
容ãå€ãããšãã«ã¯ '''IF'''ïœ'''THEN'''ïœ'''ELSE'''æ ã䜿çšããŸãã
æ¡ä»¶åå²ã§ã¯ IF ãšããèªå¥ãã»ãŒããªãã䜿ãã®ã§ãæ¡ä»¶åå²åœä»€ã®ããšããIFæããšãèšããŸãããIFããšã¯ããã€ãããšèªã¿ãããã ãã ãªãã°ãããšããæå³ã®è±èªã®æ¥ç¶è©ã§ãïŒæ¥æ¬ã§ã¯ãäžåŠæ ¡ã®è±èªã®ææ¥ã§ æ¥ç¶è© IF ãç¿ãã§ãããïŒã
THEN ã¯ãããã§ããã°ããããšããæå³ã§ããELSE ã¯ãããã§ãªããã°ããããšããæå³ã§ãããªããTHENã¯ããŒã³ããšèªã¿ãELSEã¯ããšã«ã¹ããšèªã¿ãŸãã
ã»ãã®ããã°ã©ã èšèªã§ããæ¡ä»¶åå²åœä»€ã®ããšãæ®éã¯ãIFæããšèšããŸãã
:<syntaxhighlight lang=basic>
10 A=0
20 B=3
30 IF A > B THEN PRINT "A is bigger than B" ELSE PRINT "B is bigger than A"
</syntaxhighlight>
ããã§äœ¿ã£ãŠããA > Bã® '''>''' ã¯'''æ¯èŒæŒç®å'''ïŒã²ãã ãããããïŒãšãããæ°å€ã®æ¯èŒã«äœ¿ããŸãã
{| class="wikitable"
|-
! æŒç®å !! æå³ !! æ°åŠã®èšå·
|-
| A '''=''' B || AãšBã¯çãã || AïŒB
|-
| A '''>''' B || Aã¯Bãã倧ãã || AïŒB
|-
| A '''<''' B || Aã¯Bããå°ãã || AïŒB
|-
| A '''>=''' B || Aã¯Bä»¥äž || Aâ§B
|-
| A '''<=''' B || Aã¯Bä»¥äž || AâŠB
|-
| A '''<>''' B || AãšBã¯çãããªã || Aâ B
|}
ä»ã®ããã°ã©ã èšèªã§ããIFæ ã®èãæ¹ãš æ¯èŒæŒç®å ã®èãããã¯ãã»ãŒããªãã䜿ããŸãããªã®ã§ãããŸããã®BASICã®åŠç¿ã§ãæ¯èŒæŒç®åã®èãæ¹ãããã£ãããšç解ããŸãããã
IFæã¯ãIFãšTHENã®éã«æ¡ä»¶åŒãæžããTHENããæ¡ä»¶åŒãæç«ãããšãã®åœä»€ãæžããŸãããããŠæç«ããªãã£ããšãã®ããšã¯ãã®åŸãã«ELSEã«ç¶ããŠæžããŸãã
äŸã®30è¡ç®ã¯ããã A > Bãæç«ããã°PRINT "A is bigger than B"ãå®è¡ããããæç«ããªããã°PRINT "B is bigger than A"ãå®è¡ãããšããæå³ã§ãããŸããæååã®å Žåã¯ã
IF å€æ°å$="" THEN çã®å Žåã®è¡çªå·ãŸãã¯åœä»€ ELSE åœã®å Žåã®è¡çªå·ãŸãã¯åœä»€
PRINTåœä»€ã®å ŽåãPRINTãçç¥(THEN "å
容"ã®ããã«)ã§ããŸãã
ãªããELSEã¯çç¥ã§ããŸãã
è€æ°è¡ã«ããã£ãŠããæžããªããã®ãå®è¡ããããå ŽåãGOTOåœä»€ïŒåŸè¿°ïŒã䜿ãè¡ãé£ã°ãå¿
èŠããããŸãïŒãã®å ŽåãGOTOãšæžãã®ãçç¥ããŠãè¡çªå·ã ãã§ãæžããŸãïŒã
== åå² GOTO ==
ç¡æ¡ä»¶ã§ãžã£ã³ãããŸãã
æ¡ä»¶åå²ã§ã¯ãªãã匷å¶ã®åå²ã«ã¯'''GOTO'''åœä»€ã䜿ããŸãããGOTOãã¯ããŽãŒ ãã¥ãŒããšèªã¿ãŸããGOTOã®åŸã«è¡çªå·ãå
¥ãããšã察å¿ããè¡ã®åœä»€ãå®è¡ããŸãã
:<syntaxhighlight lang=basic>
10 GOTO 30
20 PRINT "1"
30 PRINT "2"
40 END
</syntaxhighlight>
ãã®ããã°ã©ã ãå®è¡ãããš20è¡ç®ãã¹ãããããã30è¡ç®ãå®è¡ãããŠãç»é¢ã«ã2ããšã ã衚瀺ããŸãã
:<syntaxhighlight lang=basic>
10 GOTO 40
20 PRINT "1"
30 GOTO 60
40 PRINT "2"
50 GOTO 20
60 END
</syntaxhighlight>
ãã®ããã°ã©ã ãå®è¡ãããšãç»é¢ã«ã2ãã1ããšè¡šç€ºããŸãããããã®ããã«GOTOã®é£ã³å
ãå
¥ãçµãã ããã°ã©ã ã¯ãã¹ãã²ãã£ïœ¥ããã°ã©ã ããšåŒã°ããŠããä»ã®äººãèŠãŠãããã°ã©ã ã®æ§é ãäžç®ã§ã¯ææ¡ãã¥ãããããã«ãéåžžã®ããã°ã©ã ã§ã¯ çŠãæïŒããããŠïŒ ãšãããŠããŸãã
:<syntaxhighlight lang=basic>
10 PRINT "1"
20 PRINT "2"
30 GOTO 10
40 END
</syntaxhighlight>
ãã®ããã°ã©ã ãå®è¡ãããšãç»é¢ã«ã1ãã2ãã衚瀺ãç¶ããŸãããã®ããã«ãçµäºããã«ãå®è¡ãç¶ãããããã°ã©ã ããç¡éã«ãŒãããšåŒã³ãŸãã衚瀺ãæ¢ããã«ã¯ããã€ã³ã³BASICã§ã¯AUTOåœä»€ãæ¢ãããšããšåæ§ã«ãBREAKããªã©ã®ããŒãæŒããŠãã ãããæ°ããBASICã§ã¯ã¡ãã¥ãŒãããåæ¢ããéžæããŸãïŒVisual Basicãªã©ã§ã¯ç¡éã«ãŒããæžããšãã®ãŸãŸåçç¡çšã§å¿çäžèœã«ãªã£ãŠããŸããã®ããããŸãã®ã§ãã¢ããªã±ãŒã·ã§ã³ã匷å¶çµäºãããããCTRL+ALT+DELãããªã©ããŠOSãã匷å¶çµäºãããŠãã ããïŒã
æ°ããBASICã§ãGOTOåœä»€ã¯äœ¿çšã§ããŸãããæšå¥šã¯ãããŸããã
ã©ãããŠãGOTOæã䜿ãå¿
èŠã®ããå Žåã«ã¯ãREMæãªã©ã«ããã³ã¡ã³ãæ©èœã掻çšããŸããããGOTOæã®åã®è¡ã§ãREMæã«ãã説æã§ãGOTOæã®è¡ãå
ã説æãããããããã¯åŠçããããšããŠããå
容ãªã©ãèšè¿°ãããšãä»ã®äººãããã°ã©ã å
容ãææ¡ãããããªãã§ãããã
== ç¹°ãè¿ã FOR NEXT ==
ããã°ã©ã äžã§åãåŠçãç¹°ãè¿ãå Žåã«ã¯ã'''FOR'''ïœ'''NEXT''' æã䜿çšããŸãã
:<syntaxhighlight lang=basic>
10 J=0
20 FOR N=1 TO 5
30 J=J+N
40 PRINT "N=";N;" J=";J
50 NEXT N
60 END
</syntaxhighlight>
ãã®äŸã¯ãFORããNEXTã®éãç¹°ãè¿ããŸããåæ°ã¯ã1ãã5ãŸã§ã®5åãããSTEPãæå®ããŠããã°ãå¢éå€ã®èšå®ãã§ããŸãã
ãããå®è¡ãããšä»¥äžã®æ§ã«è¡šç€ºãããŸãã
FORã®çŽåŸã®å€æ°ïŒäžèšã®å Žåã¯NïŒãšãNEXTã®çŽåŸã®å€æ°ã¯ãåãå€æ°ã§ãªããã°ãªããŸããã
:<syntaxhighlight lang=text>
N= 1 J= 1
N= 2 J= 3
N= 3 J= 6
N= 4 J= 10
N= 5 J= 15
</syntaxhighlight>
FOR æã®æ§æã¯ä»¥äžã®æ§ã«ãªããŸãã
FOR å€æ°=åæå€ TO æçµå€ STEP å€æŽé
äžã®æã®ãã¡ããSTEP å€æŽéãã¯çç¥ã§ããŸããçç¥ããããšãã«ã¯å€æ°ã¯1ã¥ã€å€åããŸãã
å€æ°ãåæå€ããæçµå€ãŸã§å€åãããã®åå€ããšã« NEXT ãŸã§ã®æãå®è¡ãããŸãã
== DATAæ ==
INPUTæã§æ¯åããŒã¿å
¥åããã®ã¯å€§å€ã§ãã
ããã°ã©ã ã®äžã«èšé²ããããšãåºæ¥ãŸãã
DATAæãREADæãRESTOREæãã§ãã
:<syntaxhighlight lang=basic>
20 READ A
30 PRINT A
40 DATA 1,2,3
</syntaxhighlight>
20è¡ã§DATAæããïŒåèªã¿èŸŒãã§å€æ°Aã«ä»£å
¥ããŸãã30è¡ã§è¡šç€ºããŸãããã®äŸã§ã¯ãïŒãã衚瀺ãããŸãããã次ã«èªã¿èŸŒãã ãªããïŒããèªã¿èŸŒãŸããŸãã
:<syntaxhighlight lang=basic>
10 RESTORE 50
20 READ A
30 PRINT A
40 DATA 1,2,3
50 DATA 4,5,6
</syntaxhighlight>
10è¡ã®RESTOREã§DATAæã®èªã¿èŸŒã¿å
ãæå®ããŸããããã§ã¯50è¡ããèªã¿èŸŒã¿ãŸãã20è¡ã§èªãã§ã30è¡ã§è¡šç€ºããã®äŸã§ã¯ãïŒãã衚瀺ãããŸããæ®é㯠FOR NEXTæãªã©ã䜿ã£ãŠ é£ç¶ããŠèªã¿èŸŒã¿ãŸãã
DATAæã®èãæ¹ã¯ããã¡ã€ã«æäœã®ã·ãŒã±ã³ã·ã£ã«ãã¡ã€ã«ãšäŒŒãŠããŸãã
== ãµãã«ãŒãã³ãGOSUB ==
åãå
容ã®ããã°ã©ã ã¯ããŸãšããŠãµãã«ãŒãã³ã«ããäºãã§ããŸããGOSUBã§ãã
:<syntaxhighlight lang=basic>
110 INPUT A
120 GOSUB 200
130 PRINT A
150 END
200 REM ãµãã«ãŒãã³
210 A=A*2
220 RETURN
</syntaxhighlight>
ããã°ã©ã ã®åããè¡çªå·ã§æžããŸãã 110 120 200 210 220 130 150 ãé çªã«æ³šç®ã
RETURNã䜿ããšGOSUBã®æ¬¡ã«æ»ããŸã
== é¢æ° ==
BASICã®é¢æ°ã¯ãç¹å®ã®å
¥åå€ãåãåããåŠçãè¡ãããã®çµæãè¿ãæç¶ãã§ãã
ãããã®é¢æ°ã¯ãããã°ã©ã å
ã§åå©çšå¯èœãªå°ããªãµãã«ãŒãã³ãšããŠäœ¿çšãããŸãã
以äžã«ãããã€ãã®äžè¬çãªBASICã®é¢æ°ã衚圢åŒã§è§£èª¬ããŸãã
:{| class=wikitable
|+ äžè¬çãªBASICã®é¢æ°
|-
!é¢æ°!!説æ!!䜿çšäŸ
|-
!ABS
|æž¡ãããæ°å€ã®çµ¶å¯Ÿå€ãè¿ããŸãã||x = ABS(-10)
|-
!SIN
|æž¡ãããè§åºŠã®æ£åŒŠãè¿ããŸãã||x = SIN(30)
|-
!COS
|æž¡ãããè§åºŠã®äœåŒŠãè¿ããŸãã||x = COS(45)
|-
!TAN
|æž¡ãããè§åºŠã®æ£æ¥ãè¿ããŸãã||x = TAN(60)
|-
!INT
|æž¡ãããæ°å€ã®æŽæ°éšåãè¿ããŸãã||x = INT(5.7)
|-
!RND
|0ãã1ãŸã§ã®ã©ã³ãã ãªæµ®åå°æ°ç¹æ°ãè¿ããŸãã||x = RND
|-
!LEN
|æž¡ãããæååã®é·ããè¿ããŸãã||x = LEN("Hello")
|-
!LEFT
|æž¡ãããæååã®å·Šç«¯ããæå®ãããæ°ã®æåãååŸããŸãã||x = LEFT("Hello", 2)
|-
!RIGHT
|æž¡ãããæååã®å³ç«¯ããæå®ãããæ°ã®æåãååŸããŸãã||x = RIGHT("Hello", 3)
|-
!MID
|æž¡ãããæååããæå®ãããäœçœ®ãšé·ãã®éšåæååãååŸããŸãã||x = MID("Hello", 2, 3)
|-
!DATE
|çŸåšã®æ¥ä»ãè¿ããŸãã||x = DATE
|-
!TIME
|çŸåšã®æå»ãè¿ããŸãã||x = TIME
|-
!DATEDIFF
|2ã€ã®æ¥ä»ã®éã®æ¥æ°ãè¿ããŸãã||x = DATEDIFF("2023-01-01", "2022-12-31")
|}
ãããã®é¢æ°ã¯ãBASICããã°ã©ã ã§æ§ã
ãªèšç®ãåŠçãè¡ãéã«äœ¿çšãããŸããäŸãã°ãæ°å€ã®æäœãæååã®åŠçãæ¥ä»ãæå»ã®ååŸãªã©ãå€å²ã«æž¡ãçšéã«æŽ»çšãããŸãã
;ã³ãŒãäŸ:<syntaxhighlight lang=basic>
10 INPUT A
20 B=ABS(A)
30 PRINT B
50 END
</syntaxhighlight>
ABS()ã¯çµ¶å¯Ÿå€ãè¿ãé¢æ°ã§ãã
== æååæäœ $ ==
ãããŸã§ã®èª¬æã§ãæ°å€ã®ã¿ãæ±ããŸãããããã§ã¯ãæåã®å
¥åã衚瀺ãæäœã説æããŸãã
=== æåå®æ°ãšæåå€æ° ===
æåãè¡šãæã¯""ã§å²ã¿ãŸãã
"ããã¯æåã§ã"
æåãè¡šãæååå€æ°ã§ã¯ãå€æ°åã®æ«å°Ÿã«$ãä»ããŸãã
A$="æåå"
=== æååã®çµå ===
æã®è¶³ãç®ãåºæ¥ãŸãã
10 A$="ä»æ¥ã¯"
20 B$="æŽãã"
30 C$=A$+B$
40 PRINT C$
50 END
æåã®å
¥åãšè¡šç€º
10 INPUT A$
20 PRINT A$
30 END
=== æååã®é¢æ°ãšå€æ ===
BASICã§ã¯æååã®äŸ¿å©ãªé¢æ°ããããŸãã
ASC(x$)ã
RIGHT$(x$,y)ã
LEFT$(x$,y)ã
MID$(x$,y,z)ã
LEN(x$)ã
STR$(x)ã
VAL(x$)ã
CHR$(x)ã
TAB(x)ã
== æµ®åå°æ°ç¹ # ==
ãããŸã§ã¯æ°å€ã®æŽæ°ã§è¡ããŸããã
å²ãç®ã§å²ãåããªããšãã«æ±ãå°æ°ç¹ã®åŠçãæµ®åå°æ°ç¹ã®å®æ°ãå€æ°ã«ã€ããŠèª¬æããŸãã誀差ã«ã€ããŠãã
BASICã§ã¯å°æ°ç¹ãä»ãããšãå°æ°ç¹ä»ãã®å®æ°ãšããŠæ±ãããŸãã
100 PI=3.14
100 A=3.14
200 PRINT A
400 END
;誀差
ã³ã³ãã¥ãŒã¿ãŒã®èšç®ã§ã¯èª€å·®ãçºçããŸãã
誀差ã®çšåºŠã¯æ©çš®ã«ãã£ãŠç°ãªããŸãã
10 A=10.0/7.0
20 B=A*7.0
30 PRINT A
40 PRINT B
50 END
== é
å DIM ==
äœæé²ã®ãããªãã®ãäœããšãã«äœ¿ããŸããåããããªå€æ°ãããããäœããšãã«ãå€æ°ãå€ããŠå€§å€ã§ããããã§é
åå€æ°ïŒã¯ãã〠ãžãããïŒã䜿ããŸãã
䜿ãæ¹ã¯ãæåã«é
åå€æ°ã宣èšããŸããäŸãã° DIM a(3)ãšæžãããªããå€æ°a(1) a(2) a(3)ã®3åã®é
åå€æ°ã䜿ããããã«ãªããŸã(BASICã®çš®é¡ã«ãã£ãŠã¯a(0)ã䜿ãããã®ããããŸã)ã
ãDIMããšã¯æ¬¡å
DIMENSION ã®ç¥ã®ããšã§ããDIMã®éšåããé
å宣èšã®åœä»€ã§ããDIM a(3)ã®ãaãã®éšåã¯å€æ°åã§ãã®ã§ãã¹ã€ã«bã§ãcã§ããããŸããŸããã
DIM a(3)ã®ã«ãã³ãšã«ãã³å
ã®éšåããæ·»ãåãïŒãããïŒãšèšããŸãã
é
åå€æ°ã®äŸ¿å©ãªæã¯ãæ°å€ã§æžããéšåã«æ°å€å€æ°ã䜿ã£ãŠãäŸãã°ãa(i)ã®ããã«äœ¿ãäºãã§ããã«ãŒããªã©ãšçµåãããã°å€æ°ã®å€æ°ãäžåºŠã«æ±ãããšãåºæ¥ãŸãã
10 DIM A(10)
20 FOR I=1 to 10
30 A(I)=I*2
40 NEXT I
50 FOR J=1 TO 10
60 PRINT A(I)
70 NEXT J
90 END
ããã¯ãäžæ¬¡å
é
åã®äŸã§ãã
10 DIM NAMAE$(3)
20 DIM NO(3)
30 FOR I=1 TO 3
40 INPUT "NAMAE";NAMAE$(I)
50 INPUT "BANGO";NO(I)
60 NEXT I
70 FOR I=1 TO 3
80 PRINT NAMAE$(I),NO(I)
90 NEXT I
100 END
ããã¯ãïŒäººã®ååãšçªå·ãå
¥åããŠã衚瀺ããããã°ã©ã ã³ãŒãã§ããé
åã䜿ãããšã«ãããç°¡æœã«æžãããšãåºæ¥ãŸããç°¡åã«äººæ°ãå€ãããããšãåºæ¥ãŸããæ¹è¯ããŠäœæé²ã®ããã«äœãå€ããããšã容æã§ãã
é
åã«ã¯ããã®ãããªäžæ¬¡å
é
åã®ä»ã«äºæ¬¡å
ãïŒæ¬¡å
é
åããããŸãã
== ããšãã ==
ããã§ã¯ãå§ããŠã®äººãé°å²æ°ãã€ãããããã«åºæ¬ã®äžã®åæ©ãæäœéã«æžããŸããããããŠãåçŽãšå¿çšã¯å¥ã®æ¬ã«ã€ã¥ããŸãã
== è£è¶³ ==
=== è€æ°è¡ã®IFæ ===
çŸåšã§ã¯æ§é åBASICããããŸããããã¯æ¡ä»¶æãæç«ããã°THENããENDIFãããã¯ELSEãŸã§ã®éšåãå®è¡ããŠãæç«ããªããã°ELSEããENDIFãŸã§ãå®è¡ãããã®ã§ãäŸã®ããã°ã©ã ã¯
10 A=0
20 B=3
30 '''IF''' A > B '''THEN'''
40 PRINT "A is bigger than B"
50 '''ELSE'''
60 PRINT "B is bigger than A"
70 '''ENDIF'''
80 END
ãšæžããŠãéåžžã«èŠããããªããŸãããã ããå¿
ããã䜿ãããã®ã§ã¯ãããŸããããã€ã³ã³BASICã§ã¯1è¡ã§æžãæ¹æ³ãã䜿ããŸããã
=== ãã«ãã¹ããŒãã¡ã³ã ===
ïŒ:ïŒã§åºåã£ãŠãäžè¡ã«å€ãã®ã³ãã³ããæžãäºãã§ããŸãããã ããããã¯ãã€ã³ã³BASICã®ææ³ãªã®ã§ããŸã䜿ããªãæ¹ãè¯ãã§ãããã
{{-}}
== ãã«ãã¡ãã£ã¢é¢ä¿ ==
åãçŽç·ãªã©ã®ç»åã衚瀺ããããé³å£°ã鳎ãããããªã©ã®æ©èœã®åœä»€ã¯ãBASIC察å¿ã®ããœã³ã³ãäœã£ãŠããäŒç€Ÿããšã«éã£ãŠããŸãããããŒããŠã§ã¢åŽã®æ§èœã«ãé¢ä¿ããããšã§ããããã®ãããä»æ§çµ±äžããããªãã£ãã®ã§ãã
äžå¿ãBASICã®åœéèŠæ ŒãååšããŠããŸãããå®éã«ã¯ããã®èŠæ Œã«åŸã£ãŠãªãBASICãå€ãã§ãããããããç¹ã«ãç»å衚瀺ãé³å£°ãªã©ã®ãã«ãã¡ãã£ã¢é¢ä¿ã®æ©èœã§ã¯ããã®ãããªèŠæ Œå€ã®ä»æ§ãå€ãã§ãããã
ãã®wikibooksæ¥æ¬èªçãBASICãã§ã¯ãæ¥æ¬ã®èªè
ã察象ã«ããŠããããšããããæ¥æ¬ã§æ®åããæ¥æ¬ç£ããœã³ã³ã®ããŒããŠã§ã¢ãæ³å®ããŠãBASICã®ãç»å衚瀺ãé³å£°ãªã©ã®ãã«ãã¡ãã£ã¢é¢ä¿ã®ããã°ã©ã ãèšè¿°ããŸãã
=== ã°ã©ãã£ãã¯é¢é£ ===
==== çŽç· ====
:â» BASICã®æžç±ãå
¥æã§ããªãã®ã§ãèšæ¶ãšãããäžã®æ
å ±ã«é Œã£ãŠèšè¿°ããŠãããŸãã
N88BASICäºæã®BASICãªãã°ãç»åãã€ãããšãã¯ã
LINE (100,130)-(200,230),1
ã®ããã«èšè¿°ããããšã§ãç»åã§çŽç·ãåŒããŸãã
å
容ã¯ã
LINE(å§ç¹ã®x座æšãå§ç¹ã®y座æš)-ïŒçµç¹ã®x座æšãçµç¹ã®y座æšïŒãè²çªå·
ã§ãã
æ°ãã€ããããšãšããŠãç»é¢ã®å·Šäžã座æš(0,0)ã§ããå³äžã«è¡ãã«ã€ããŠã座æšã®å€ã倧ãããªããŸãã
è²çªå·ã¯ãäžè¬ã«ã
:0 é»
:1 é
:2 èµ€
:3 玫
:4 ç·
:5 æ°Žè²
:6 é»è²
:7 çœ
ã§ããè²çªå·ã®ããšãããã¬ããçªå·ããšããããŸãã
èæ¯è²ãæšæºèšå®ã§ã¯é»ã§ããããããè²çªå·ã0ïŒé»ïŒã ãšãç·ãèŠããªããããããŸããã
LINE (100,130)-(200,230),1
ã¯ãéè²ã®çŽç·ãåŒããŸãã
LINE (100,130)-(200,230),2
ã¯ãèµ€è²ã®çŽç·ãåŒããŸãã
LINE (100,130)-(200,230),2,B
ãšãããšãé·æ¹åœ¢ã®æ ç·ã®ã¿ãæããŸãããã®é·æ¹åœ¢ã®å¯Ÿè§ç·ã®åº§æšãã(100,130)ãã(200,230)ãšããããã§ãã
Bã¯BOXã®æå³ã§ãã
ãã®åœä»€ LINE (100,130)-(200,230),2,B ã§ã¯ã察è§ç·ã¯ãæãããŸããããŸããå¡ãã€ã¶ããããããŸããã
å¡ãã€ã¶ããããã«ã¯ããBãã§ã¯ãªããBFãã«ããŸãã
LINE (100,130)-(200,230),2,BF
Fã¯FILLã®æå³ã§ãã
==== å ====
æžåŒã¯
CIRCLE (äžå¿ã®x座æš,äžå¿ã®y座æš),ååŸ,è²
ã§ãã
ããšãã°ã
CIRCLE (250,180),50,2
ã§ãïŒ250,180ïŒåº§æšãäžå¿ãšããååŸ50ã®èµ€ãïŒè²çªå·: 2ïŒåãæžããŸãã
å匧ãæãã«ã¯ã
CIRCLE (äžå¿ã®x座æš,äžå¿ã®y座æš),ååŸ,è²,éå§è§,çµäºè§
ã®æ§æãå©çšããŸãã
è§åºŠã®æž¬ãæ¹ã¯ãæ°åŠã®xy座æšã§ã®è§åºŠã®æž¬ãæ¹ãšåãã§ãå³ã0床ãšããŠãåæèšãŸããïŒå·ŠãŸããïŒã§ããè§åºŠã®åäœã¯ãã©ãžã¢ã³ ã§ããçŽ3.14ã§ååã«ãªããŸãïŒBASICã®ãœãããŠã§ã¢ã®çš®é¡ã«ãã£ãŠã¯ãéããããããŸãããããããã®ãœãããŠã§ã¢ããšã«ç¢ºèªããŠãã ãããïŒã
ãŸã ã©ãžã¢ã³ãç¿ã£ãŠããªãäžåŠçã®ããã¯ããã®ç¯ã¯é£ã°ããŸãããã
5 CLS
10 CIRCLE (250,180),50,2,0,3.14
ãšæžãã°ãåå匧ãæãããŸãã
æ¥åïŒã ããïŒãŸãã¯æ¥å匧ãæžãã«ã¯ã
10 CIRCLE (250,180),50,2,0,3.14,2
ã®ããã«ããŸãã
CIRCLEåœä»€ã¯ã
CIRCLE (äžå¿ã®x座æš,äžå¿ã®y座æš),ååŸ,è²,éå§è§,çµäºè§,æ¯ç
ãšããæžåŒã«ãªã£ãŠããŸãã
æ¯çã¯ã瞊ãšæšªã®æ¯çã§ããã1ã ãšæ£åã«ãªããŸãã1ãã倧ãããšçžŠé·ã®æ¥åã«ãªãã1ããå°ãããšæšªé·ã®æ¥åã«ãªããŸãã
å¡ãã€ã¶ãã«ã¯ã
==== ç¹ã®ãããã ====
åœä»€ãPSETãã䜿ããšãæå®ããäœçœ®ã«ãç¹ãã²ãšã€è¿œå ããŸãã
æžåŒã¯
PSET(x座æš,y座æš),è²çªå·
ã§ãã
PSETã®æŽ»çšæ¹æ³ã¯éåžžã次ã®ããã«ãFORæãªã©ã®ç¹°ãè¿ãæãšãã¿ããããŠãèšç®åŒãªã©ã®çµæã®äœå³ãããã®ã«äœ¿çšããã§ãããã
10 FOR N=0 TO 50
20 PSET(200+N,100+0.01*N*N),1
30 NEXT N
40 END
=== é³ ===
BEEP
ãšå
¥åãããšãããããããšããããŒããšãã®é³ã鳎ãããŸããããŒãé³ãšãããŸãã
== ä¹±æ° ==
ãRND()ãã§ã0ãã1ãŸã§ã®å°æ°ãå«ãä¹±æ°ãçºçãããŸãã
RND(1)ã®ããã«ãæ¬åŒ§ã®äžã«æ°åãå
¥ããŠäœ¿çšããŸãã
10 X = RND (1)
20 PRINT X
ã®ããã«äœ¿çšããŸãã
ãµã€ã³ããã€ããã«ã¯ïŒ1ãã6ã®æŽæ°ã ããåºãããã°ã©ã ãã€ããã«ã¯ïŒãä¹±æ°åœä»€ã«ãæŽæ°åã®åœä»€ãªã©ãšçµã¿åãããŸãã
ã«ãŒããããŠããŸãããINPUT åœä»€ã䜿ã£ãŠEnterããŒãæŒãããšã«æ¬¡ã®ä¹±æ°ã衚瀺ãããŠããŸããRND()ã¯ãå®éã«ã¯1ã®å€ãçæãããããšã¯ãã»ãšãã©ç¡ããšæãããã®ã§ãã®ããã°ã©ã ã«ãªããŸããå²ã蟌ã¿ããŒïŒBREAKããŒãESCããŒïŒã§å®è¡ãçµäºããŸãã
10 X = INT(RND(1) * 6 + 1)
20 PRINT X
30 INPUT Y
40 GOTO 10
== 1970ã80幎代ã®ããœã³ã³äºæ
ãèæ¯ã«ãã ==
BASICã¯ã圢åŒçã«ã¯ãBASICã¯ããã°ã©ã èšèªã§ãããšããŠåé¡ãããŠããŸããããããå®éã«ã¯ããã€ã³ã³BASICã21äžçŽã«åçŸããBASICã§ã¯ãä»ã®ããã°ã©ã èšèªã«ã¯ãªããç»å衚瀺ã®æ©èœãå
å®ããŠããŸããããã¯ã©ãããäºããšãããšãåçŸBASICã§ã¯ãç»å衚瀺ã®åœä»€ãå®è¡ããéã«ã¯ãOSã®ç»å衚瀺ã®æ©èœãåŒã³åºããŠã䜿ã£ãŠããã®ã§ããäžè¬çã«ãããã°ã©ã ãéããŠã®ç»å衚瀺ã«ã€ããŠã®ä»æ§ã¯ãåOSããšã«ãã©ãã©ã§ãããã®ãããBASICã®ã€ã³ã¿ããªã¿èªäœã®äœæè
ã¯ãããããã®OSããšã«ãBASICã€ã³ã¿ããªã¿ãäœããªããå¿
èŠããããŸãããã®ãããåçŸBASICã«ã¯ãWindowsçããã€ã³ã¿ããªã¿ã®äœãããŠãªãåçŸBASICããããŸãã
ãããããå®éã®ãã€ã³ã³BASICã®æµè¡ãã1970幎代ããã¯ã21äžçŽã®ä»ãšã¯ããœã³ã³è²©å£²ã®ç¶æ³ãéã£ãŠããŸãã1970幎代ããã®åœæã¯ããŸã OSïŒãªãã¬ãŒãã£ã³ã° ã·ã¹ãã ïŒãé«åºŠåããåã ã£ãããšããããããã«ãOSãšããœã³ã³æ¬äœããã£ã€ããŠè²©å£²ãããŠããããšãããã1970幎代ããã¯ãBASICã販売ãããŠããããœã³ã³ãšäžç·ã«ãOSãšäžç·ã«ããœã³ã³æ¬äœã«çµã¿èŸŒãŸããŠããç¶æ
ã§ã販売ãããŠããŸããã
ãã®ãããå®éã®1970ã80幎代ã«åžè²©ãããŠããããœã³ã³ã«çµã¿èŸŒãŸããŠããBASICã§ã¯ãç»é¢ã«åãçŽç·ãªã©ã衚瀺ãããããç»å衚瀺ã®åœä»€ãããã¶ãŒé³ã鳎ãããªã©åœä»€ãªã©ããç°¡åã«ããã°ã©ã èšè¿°ã§ããããã«ãªã£ãŠããŸãã
æ¬æ¥ãç»å衚瀺ã®ããã®åŠçã¯ããã£ã¹ãã¬ã€ã®çš®é¡ããšã«ã解å床ããã©ãã©ã ã£ããããã®ã§ãããœã³ã³å
éšåäœãåããå¿
èŠãããã®ã§ããªãã¬ãŒãã£ã³ã°ã·ã¹ãã ã®æ©èœã䜿ã£ãŠãç»åã衚瀺ãããããããšã«ãªããŸãã
ããããåœæã®BASICã§ã¯ããªãã¬ãŒãã£ã³ã°ã·ã¹ãã ã®ä»çµã¿ããæèããå¿
èŠã¯ãããŸããã§ããããªããªããç¹å®äŒæ¥ã®ããœã³ã³ã«çµã¿èŸŒãŸããç¶æ
ã§BASICãé
åžãããŠããã®ã§ããã®ç¹å®äŒæ¥ã®ãã£ã¹ãã¬ã€ãã¹ããŒã«ãŒãšãã£ãããŒããŠã§ã¢ããç°¡åã«å¶åŸ¡ã§ããããã«ãBASICãæ¹è¯ããŠãã£ãã®ã§ãã
ãã®ãããªäºæ
ã®ãããããããåœæã®ã»ãšãã©ã®æ¶è²»è
ã¯ããããããªãã¬ãŒãã£ã³ã° ã·ã¹ãã ããæŠå¿µããç¥ããŸããã§ããã
ãã®ããã«ãBASICã®æ©èœã®èæ¯ã«ã¯ã1970ã80幎åœæã®ããœã³ã³äºæ
ããããŸãã
1970幎åœæã¯ãåããœã³ã³äŒç€Ÿã®BASICãæåããç¹å®ã®èªç€Ÿããœã³ã³ã«å¯Ÿå¿ããç¶æ
ã§ãããœã³ã³ã«çµã¿èŸŒãŸããŠããŠè²©å£²ãããŠããã®ã§ãBASICããçŽæ¥ãªãã¬ãŒãã£ã³ã°ã·ã¹ãã ã®æ©èœãå©çšã§ããããã§ãããã®ããã1970幎ããã®BASICã®æ©èœã¯ãçŸåšã®ãããã°ã©ã èšèªããšã¯ãããéã£ãŠããŸãã
ããŠ21äžçŽã®çŸåšãããã°ã©ã ã§ç»åã衚瀺ãããããããã¯é³å£°ã鳎ãããããªã©ã®ããã°ã©ã ãèšè¿°ãããå Žåã«ã¯ããªãã¬ãŒãã£ã³ã°ã·ã¹ãã ã®æ©èœã掻çšããå¿
èŠããããŸããOSã®æ©èœã䜿ãããã®ã³ãã³ã矀ã§ãããAPIãïŒãšãŒ ã㌠ã¢ã€ïŒãšãããŸããã€ãŸããåçŸBASICã®ã€ã³ã¿ããªã¿äœæè
ã¯ãïŒããããïŒAPIãé§äœ¿ããŠãåçŸBASICã®ç»å衚瀺ãé³å£°æ©èœãªã©ããäœã£ãŠããã®ã§ãã
ãªãã¬ãŒãã£ã³ã°ã·ã¹ãã ã«ã¯ããŠã£ã³ããŠãºãããã¯OSããªããã¯ã¹ãªã©ãè²ã
ãšãããŸãããããããã®OSããšã«ä»çµã¿ãéãã®ã§ãããã°ã©ã ã®èšè¿°äœæ¥ããããããã®OSããšã«ãããã°ã©ã ãåããå¿
èŠããããŸãã
äžè¿°ã®ãããªããœã³ã³äºæ
ãã1970幎é ãšçŸä»£ã§ã¯å€§ããéãã®ã§ããã¯ãBASICã ãã§ã¯ãé«åºŠãªã¢ããªã±ãŒã·ã§ã³ãäœãããšããŠããããŸãç°¡åã«ã¯äœããªããªã£ãŠããŸããŸããã
ãªã®ã§ãããã21äžçŽã®çŸä»£ã®äººããç¬åŠã§BASICãåŠã¶å Žåã¯ããã£ããŠãã€ã³ã³BASICã ãã§æºè¶³ããã«ããªãã¹ããCèšèªãåŠãã ããããã«ããã®åŸã®æ代ã®ä»ã®ããã°ã©ã èšèªãåŠã³ãŸãããã
== åèãªã³ã¯ ==
{{stub}}
[[Category:BASIC|*]]
[[Category:ããã°ã©ãã³ã°èšèª]]
{{NDC|007.64}} | 2005-05-01T15:58:02Z | 2024-01-31T00:22:07Z | [
"ãã³ãã¬ãŒã:Stub",
"ãã³ãã¬ãŒã:NDC",
"ãã³ãã¬ãŒã:-"
] | https://ja.wikibooks.org/wiki/BASIC |
1,888 | é«çåŠæ ¡æ°åŠIII/埮åæ³ | ããã§ã¯ã埮åã»ç©åã®èãã§åŠãã 埮åã®æ§è³ªã«ã€ããŠãã詳ããæ±ããç¹ã«ãé¢æ°ã®åãå·®ãç©ãåãæŽã«åæé¢æ°ããéé¢æ°ã®å°é¢æ°ã«ã€ããŠè©³ããæ±ãããŸããäžè§é¢æ°ãªã©ã®è€éãªé¢æ°ã®åŸ®åã«ã€ããŠãããã§ãŸãšããã
é¢æ° f ( x ) {\displaystyle f(x)} ãä»»æã®ç¹xã§æ¥µéå€
ãæã€ãšããé¢æ° f ( x ) {\displaystyle f(x)} ã¯åŸ®åå¯èœãšèšããé¢æ° f' ããé¢æ°fã®å°é¢æ°ãšåŒã¶ã
é¢æ° f ( x ) {\displaystyle f(x)} ã埮åå¯èœãªãã°ãé£ç¶é¢æ°ã§ããã
(蚌æ) fã埮åå¯èœãšãããšã
ãªã®ã§ãfã¯é£ç¶ã§ããã
ããã§ã¯ãé¢æ°ã®åãå·®ãç©ãåã®åŸ®åã«ã€ããŠæ±ãããããã®æ¹æ³ã¯ä»¥éã®èšç®ã§åžžã«çšããããå
容ã§ããã®ã§ãååã«ç¿çããŠããå¿
èŠãããã
f,gã埮åå¯èœãªé¢æ°ãšããããã®ãšããfãšgã®åã«ã€ããŠæ¬¡ãæãç«ã€ã
ããã¯ãé¢æ°ã®åã埮åããŠåŸãããå°é¢æ°ã¯ãããããã®é¢æ°ã®åã足ãåããããã®ã«çããããšãè¡šããŠããã
å°åº
次ã«ãé¢æ°ã®å®æ°åã®å°é¢æ°ã«ã€ããŠèãããé¢æ°ã®å®æ°åããããã®ã埮åãããã®ã¯ãå®æ°åããåã®é¢æ°ã«å¯Ÿããå°é¢æ°ãå®æ°åãããã®ã«ãªããå
·äœçã«ã¯æ¬¡ã®åŒãæãç«ã€ã ( a f ) â² = a f â² {\displaystyle (af)'=af'} (aã¯å®æ°)
å°åº
ç©ã«é¢ããŠã¯ãåãå®æ°åãšæ¯ã¹ãŠèšç®çµæãããè€éã«ãªããå
·äœçã«ã¯æ¬¡ãæãç«ã€ã
ããã¯ãããããã®é¢æ°ã®åŸ®åãšãã以å€ã®é¢æ°ãšã®ç©ãåŸããããšããããšãè¡šããŠãããããã¯å°åºãèŠãªããšãªããããªãããããããªãããç¥ããªãããããå°åºãæ€èšããããšãéèŠã§ããã
å°åº
ããã§ã lim h â 0 f ( x + h ) = f ( x ) {\displaystyle \lim _{h\rightarrow 0}f(x+h)=f(x)} ã«æ³šæãããšã
æ°åŠIIã§ç¿ã£ãããã«ãnãèªç¶æ°ãšãããšãã
ã§ããã
ããã§ã¯ãæ°åŠIIã§ã¯æ±ããªãã£ãäžåŒã®å°åºãè¡ãã
(å°åºãã®1)
ããã§ãäºé
å®çã«ãã
ãã ã
ãªã®ã§ã
ãã®åŒããåŒ(1)ã®å³èŸºã«ä»£å
¥ãããš
ã§ããã
(å°åºãã®2)
[1] n = 1 {\displaystyle n=1} ã®ãšã 巊蟺ã¯
ã§ãããå³èŸºã¯
ãªã®ã§ã n = 1 {\displaystyle n=1} ã®ãšã1ã¯æãç«ã€ã
[2] n = k {\displaystyle n=k} ã®ãšã ( x k ) â² = k x k â 1 {\displaystyle (x^{k})'=kx^{k-1}} ãæãç«ã€ãšä»®å®ããã n = k + 1 {\displaystyle n=k+1} ã®ãšããç©ã®å°é¢æ°ã®åŒãã
ãã£ãŠã n = k + 1 {\displaystyle n=k+1} ã®ãšãã1ãæãç«ã€ã
[1] [2]ããããã¹ãŠã®èªç¶æ° n {\displaystyle n} ã«ã€ããŠ1ãæãç«ã€ã
åã®å°é¢æ°ã«ã€ããŠã¯æ¬¡åŒãæãç«ã€ã
ãã®åŒã«ã€ããŠããããå°åºãæ€èšããããšãå¿
èŠã§ããã
å°åº
ãŸããåã®å°é¢æ°ã®åŒãšãç©ã®å°é¢æ°ã®åŒããã次ã®å
¬åŒãå°ãããã
ãã®åŒã¯ãç©ã®åŒãšåã®åŒããçŽæ¥åŸãåŒã ããããçŸãã圢ã§ããã®ã§ãèŠããŠãããšäŸ¿å©ãªããšãããã
å°åº
x a {\displaystyle x^{a}} ã®ææ°ãèªç¶æ° n {\displaystyle n} ã§ãããšãã ( x n ) â² = n x n â 1 {\displaystyle (x^{n})'=nx^{n-1}} ã§ããã®ã¯æ¢ã«èšŒæããã ããã§ã¯ãææ°ãæŽæ°ã®å Žåãèããã
[1] m {\displaystyle m} ãè² ã®æŽæ°ã®ãšã n = â m {\displaystyle n=-m} ãšããã
ãã®ãšã n {\displaystyle n} ã¯æ£ã®æŽæ°ã§ãåã®å°é¢æ°ã®åŒãã
ãæãç«ã€ã
[2] m = 0 {\displaystyle m=0} ã®ãšãã
ãªã®ã§
ãæãç«ã€ã
ãã£ãŠãæŽæ° m {\displaystyle m} ã«ã€ã㊠( x m ) â² = m x m â 1 {\displaystyle (x^{m})'=mx^{m-1}} ãæãç«ã€ã
åæé¢æ°ãšã¯ã2ã€ã®é¢æ° f , g {\displaystyle f,g} ãçšããŠã h ( x ) = f ( g ( x ) ) {\displaystyle h(x)=f(g(x))} ãšãã圢ã§æžãããšãã§ããé¢æ°ã®ããšã§ãããåæé¢æ°ã¯ãäžããããå€æ°ã«å¯Ÿããé¢æ°ãšèŠãããšãã§ããå°é¢æ°ãåãããšãå¯èœã§ãããå
·äœçã«ã¯ã
ãæãç«ã€ã
å°åº
ãšãªãã
f ( x ) = x {\displaystyle f(x)={\sqrt {x}}} ã g ( x ) = x 2 + x + 1 {\displaystyle g(x)=x^{2}+x+1} ãšããããã®åæé¢æ°ã¯ã f ( g ( x ) ) = x 2 + x + 1 {\displaystyle f(g(x))={\sqrt {x^{2}+x+1}}} ã§ããã
ãã®åæé¢æ°ã®å°é¢æ°ãæ±ããŠã¿ããã
f â² ( x ) = 1 2 x {\displaystyle f'(x)={\frac {1}{2{\sqrt {x}}}}}
g â² ( x ) = 2 x + 1 {\displaystyle g'(x)=2x+1}
ãªã®ã§ã f ( g ( x ) ) â² = f â² ( g ( x ) ) g â² ( x ) = 2 x + 1 2 x 2 + x + 1 {\displaystyle {f(g(x))}'=f'(g(x))g'(x)={\frac {2x+1}{2{\sqrt {x^{2}+x+1}}}}}
ã§ããã
â»é¢æ° f , g {\displaystyle f,g} ã®åæé¢æ°ã ( f â g ) ( x ) = f ( g ( x ) ) {\displaystyle (f\circ g)(x)=f(g(x))} ãšæžãããšãããã
åæé¢æ°ã®åŸ®åã¯ã©ã€ããããã®èšæ³ãçšããŠã y = f ( u ) , u = g ( x ) {\displaystyle y=f(u),u=g(x)} ã®ãšãã d y d x = f ( g ( x ) ) â² {\displaystyle {\frac {dy}{dx}}=f(g(x))'} ã f â² ( u ) = d y d u {\displaystyle f'(u)={\frac {dy}{du}}} ã g â² ( x ) = d u d x {\displaystyle g'(x)={\frac {du}{dx}}} ãªã®ã§ã
ãšæžãããšãã§ããã
ãŸãã以äžã®å
¬åŒãæãç«ã€ã
( f â 1 ( y ) ) â² = 1 ( f ( x ) ) â² {\displaystyle (f^{-1}(y))'={\frac {1}{(f(x))'}}}
å°åº
y = f ( x ) {\displaystyle y=f(x)} ãšçœ®ããšã x = f â 1 ( y ) {\displaystyle x=f^{-1}(y)} ã§ã y â y 0 {\displaystyle y\to y_{0}} ã®ãšã x â x 0 {\displaystyle x\to x_{0}} ã§ããããã
ãŸãã
x a {\displaystyle x^{a}} ã®ææ°ãæŽæ° m {\displaystyle m} ã®ãšãã ( x m ) â² = m x m â 1 {\displaystyle (x^{m})'=mx^{m-1}} ãæãç«ã€ã®ã¯æ¢ã«èšŒæããã 次ã¯ã x > 0 {\displaystyle x>0} ãšããŠææ°ãæçæ°ã®ãšããèããã
ãªããææ°ãæŽæ°ã§ããå Žåãã环ä¹ããšåŒã¶ã®ã«å¯Ÿããææ°ãæçæ°(å®æ°)ã§ããå Žåããåªä¹(ã¹ãããã)ããšåŒã¶ãæçæ°ã¯æŽæ°ãå«ãã®ã§ã环ä¹ã¯åªä¹ã®ç¹å¥ãªå Žåãæãã
[1] n {\displaystyle n} ãèªç¶æ°ãšãããšã y = x 1 n {\displaystyle y=x^{\frac {1}{n}}} ã®ãšãã x = y n {\displaystyle x=y^{n}} ãæãç«ã€ã®ã§ãéé¢æ°ã®å°é¢æ°ã®åŒãã
[2] m {\displaystyle m} ãæŽæ°ãšãããšãæçæ° p {\displaystyle p} ã«ã€ããŠ
ããã
ãªã®ã§ã[1]ãšåæé¢æ°ã®å°é¢æ°ã®åŒãã
ãæãç«ã€ã
ãã£ãŠãæçæ° p {\displaystyle p} ã«ã€ã㊠( x p ) â² = p x p â 1 {\displaystyle (x^{p})'=px^{p-1}} ãæãç«ã€ã
ãšãªãã
å°åº
ã«æ³šæãããšã
ãšãªããçµæãåŸãããã
tan x {\displaystyle \tan x} ã«ã€ããŠã¯ã
ãã㧠k = h x {\displaystyle k={\frac {h}{x}}} ãšçœ®ããšã
kã0ã«è¿ã¥ããŠãããšã ( 1 + k ) 1 k {\displaystyle (1+k)^{\frac {1}{k}}} ã¯ã
1.1 1 0.1 = 2.5937424601 {\displaystyle 1.1^{\frac {1}{0.1}}=2.5937424601}
1.01 1 0.01 = 2.7048138294215260932671947108075 {\displaystyle 1.01^{\frac {1}{0.01}}=2.7048138294215260932671947108075}
1.001 1 0.001 = 2.7169239322358924573830881219476 {\displaystyle 1.001^{\frac {1}{0.001}}=2.7169239322358924573830881219476}
1.0001 1 0.0001 = 2.7181459268252248640376646749131 {\displaystyle 1.0001^{\frac {1}{0.0001}}=2.7181459268252248640376646749131}
0.9 1 â 0.1 = 2.8679719907924413133222572312408 {\displaystyle 0.9^{\frac {1}{-0.1}}=2.8679719907924413133222572312408}
0.99 1 â 0.01 = 2.7319990264290260038466717212578 {\displaystyle 0.99^{\frac {1}{-0.01}}=2.7319990264290260038466717212578}
0.999 1 â 0.001 = 2.719642216442850365397553464404 {\displaystyle 0.999^{\frac {1}{-0.001}}=2.719642216442850365397553464404}
0.9999 1 â 0.0001 = 2.7184177550104492651837311208356 {\displaystyle 0.9999^{\frac {1}{-0.0001}}=2.7184177550104492651837311208356}
(èšç®:Windowsä»å±é»å)
ãšãªããäžå®ã®å€ã«è¿ã¥ããŠãã(蚌æã¯æ°åŠIIIã®ç¯å²ã§ã¯ã§ããªã)ã ãã®äžå®ã®å€ãããªãã¡
lim k â 0 ( 1 + k ) 1 k = 2.718281828... {\displaystyle \lim _{k\to 0}(1+k)^{\frac {1}{k}}=2.718281828...}
ãeã§è¡šãããããšã lim k â 0 ( 1 + k ) 1 k = e {\displaystyle \lim _{k\to 0}(1+k)^{\frac {1}{k}}=e}
ããããäžã®åŒã«ä»£å
¥ãããšã
ç¹ã« a = e {\displaystyle a=e} ã®ãšãã
( log e x ) â² = 1 x {\displaystyle (\log _{e}x)'={\frac {1}{x}}}
eãåºãšãã察æ°ãèªç¶å¯Ÿæ°ãšããã eã¯ãèªç¶å¯Ÿæ°ã®åºããŸãã¯ããã€ãã¢æ°ããšåŒã°ããããšãå€ãã æ°åŠã§ã¯ã log e x {\displaystyle \log _{e}x} ã®eãçç¥ããŠlog xãšæžãã æ°åŠä»¥å€ã®åéã§ã¯ãåžžçšå¯Ÿæ°ãšåºå¥ããããã«ãln xãçšããããããšãããã
ãŸãã log | x | {\displaystyle \log |x|} ã®åŸ®åã¯ã
x>0ã®ãšã
x<0ã®ãšã
ãã£ãŠã ( log | x | ) â² = 1 x {\displaystyle (\log |x|)'={\frac {1}{x}}}
ãŸããåæé¢æ°ã®åŸ®åæ³ããã { l o g | f ( x ) | } â² = f â² ( x ) f ( x ) {\displaystyle \{log|f(x)|\}'={\frac {f'(x)}{f(x)}}} ãæãç«ã€ããšããããã
lim k â 0 ( 1 + k ) 1 k = e {\displaystyle \lim _{k\to 0}(1+k)^{\frac {1}{k}}=e} ãšå
ã»ã©å®çŸ©ãããããã®å®çŸ©åŒã¯ä»¥äžã®ããã«æžãæããããã
lim x â â ( 1 + 1 x ) x = e {\displaystyle \lim _{x\to \infty }(1+{\frac {1}{x}})^{x}=e}
lim x â â â ( 1 + 1 x ) x = e {\displaystyle \lim _{x\to -\infty }(1+{\frac {1}{x}})^{x}=e}
äžã®äºã€ã®åŒã¯ k = 1 x {\displaystyle k={\frac {1}{x}}} ãšçœ®ãæãããšããããã e {\displaystyle e} ã®å®çŸ©åŒã®çåŽæ¥µéã®å Žåãè¡šããŠããããšããããã
ãããã®åŒãå©çšããããšã§ãä»ãŸã§è§£ããªãã£ããã¿ãŒã³ã®æ¥µéãæ±ããããããã«ãªãã
äŸé¡) lim x â 0 log ( 1 â x ) x {\displaystyle \lim _{x\to 0}{\frac {\log(1-x)}{x}}} ã®æ¥µéãæ±ãã
解ç)
lim x â 0 log ( 1 â x ) x = lim x â 0 log ( 1 â x ) 1 x {\displaystyle \lim _{x\to 0}{\frac {\log(1-x)}{x}}=\lim _{x\to 0}\log(1-x)^{\frac {1}{x}}}
â x = k {\displaystyle -x=k} ãšãããš x â 0 {\displaystyle x\rightarrow 0} ã®ãšã k â 0 {\displaystyle k\rightarrow 0} ãªã®ã§ã
(äžåŒ) = lim k â 0 v log ( 1 + k ) â 1 k = lim k â 0 â log ( 1 + k ) 1 k {\displaystyle =\lim _{k\to 0}v\log(1+k)^{-{\frac {1}{k}}}=\lim _{k\to 0}-\log(1+k)^{\frac {1}{k}}}
ããã§ã察æ°é¢æ°ã¯é£ç¶é¢æ°ãªã®ã§ãlogãšlimãå
¥ãæ¿ããŠãè¯ãã
(äžåŒ) = â log { lim k â 0 ( 1 + k ) 1 k } = â log e = â 1 {\displaystyle =-\log\{\lim _{k\to 0}(1+k)^{\frac {1}{k}}\}=-\log e=-1}
ãã£ãŠãåæããŠæ¥µéå€ã¯-1ã§ããã
y = a x ( a > 0 ) {\displaystyle y=a^{x}(a>0)}
䞡蟺ã®èªç¶å¯Ÿæ°ããšããšã
log y = x log a {\displaystyle \log y=x\log a}
䞡蟺ãxã§åŸ®åãããšã
y â² y = log a {\displaystyle {\frac {y'}{y}}=\log a}
y â² = y log a {\displaystyle y'=y\log a}
y â² = a x log a {\displaystyle y'=a^{x}\log a}
ç¹ã«a=eã®å Žå
( e x ) â² = e x {\displaystyle (e^{x})'=e^{x}}
e x {\displaystyle e^{x}} ã®xãç
©éãªå Žåã e x = e x p ( x ) {\displaystyle e^{x}=exp(x)} ã®ããã«è¡šãå ŽåãããããŸãã䞡蟺ã®èªç¶å¯Ÿæ°ããšã£ãŠãã埮åããæäœã察æ°åŸ®åæ³ãšåŒã¶ã
埮åä¿æ°ã®å®çŸ©åŒãçšããŠæ¥µéãæ±ããããšãã§ããã
äŸé¡) lim x â 0 e x â 1 x {\displaystyle \lim _{x\to 0}{\frac {e^{x}-1}{x}}} ãæ±ãã
解ç)
lim x â 0 e x â 1 x = lim x â 0 e x â e 0 x â 0 {\displaystyle \lim _{x\to 0}{\frac {e^{x}-1}{x}}=\lim _{x\to 0}{\frac {e^{x}-e^{0}}{x-0}}}
ããã§ã埮åä¿æ°ã®å®çŸ©åŒ f â² ( a ) = lim x â a f ( x ) â f ( a ) x â a {\displaystyle f'(a)=\lim _{x\to a}{\frac {f(x)-f(a)}{x-a}}} ããã f ( x ) = e x {\displaystyle f(x)=e^{x}} ãšãããš f â² ( x ) = e x {\displaystyle f'(x)=e^{x}} ã§
(äžåŒ) = f â² ( 0 ) = e 0 = 1 {\displaystyle =f'(0)=e^{0}=1}
ãã£ãŠãåæããŠæ¥µéå€ã¯1ã§ããã
x a {\displaystyle x^{a}} ã®ææ°ãæçæ° p {\displaystyle p} ã®ãšãã ( x p ) â² = p x p â 1 {\displaystyle (x^{p})'=px^{p-1}} ãæãç«ã€ã®ã¯æ¢ã«èšŒæããã æåŸã«ã x > 0 {\displaystyle x>0} ãšããŠææ°ãå®æ°ã®ãšããèããã
y = x a {\displaystyle y=x^{a}} ã® a {\displaystyle a} ã¯å®æ°ã§ãããšããã 䞡蟺ã®çµ¶å¯Ÿå€ã®èªç¶å¯Ÿæ°ããšã£ãŠ
䞡蟺ãxã§åŸ®åããŠã
ãã£ãŠ
ãæãç«ã€ã
æåã¯ææ°ãèªç¶æ°ã®å Žåã®ã¿ã ã£ãã®ã«æ¯ã¹ãããäžè¬ã®ç¯å²ã§äžåŒãæãç«ã€ããšãããã£ãããã®ããã«ããåŒãããäžè¬ã«èšããããã«ããã®ããæ°åŠã®çºå±æ§ã§ããééå³ã§ããã
å°é¢æ°f'(x)ãf(x)ã®ç¬¬1次å°é¢æ°ãšããã
å°é¢æ°ã®å°é¢æ°ã第2次å°é¢æ°ãšããã
å°é¢æ°ã®å°é¢æ°ã®å°é¢æ°ã第3次å°é¢æ°ãšããã
äžè¬ã«ãé¢æ°f(x)ãnå埮åããŠåŸãããé¢æ°ã第n次å°é¢æ°ãšããã
y ( n ) , f ( n ) , d n y d x n , d n d x n f ( x ) {\displaystyle y^{(n)},f^{(n)},{\frac {d^{n}y}{dx^{n}}},{\frac {d^{n}}{dx^{n}}}f(x)}
ã®ããããã§è¡šãã ãŸããnã1,2,3ã®æã¯ãããã y â² , y â²â² , y â²â²â² {\displaystyle y',y'',y'''} ã f â² ( x ) , f â²â² ( x ) , f â²â²â² ( x ) {\displaystyle f'(x),f''(x),f'''(x)} ãšè¡šãã
2次以äžã®å°é¢æ°ãé«æ¬¡å°é¢æ°ãšããã
(äŸ) f ( x ) = x 5 {\displaystyle f(x)=x^{5}} ã®ç¬¬3次å°é¢æ°ã¯
f â² ( x ) = 5 x 4 {\displaystyle f'(x)=5x^{4}}
f â²â² ( x ) = 20 x 3 {\displaystyle f''(x)=20x^{3}}
f â²â²â² ( x ) = 60 x 2 {\displaystyle f'''(x)=60x^{2}}
ãªã®ã§ 60 x 2 {\displaystyle 60x^{2}} ã§ããã
y = f ( x ) {\displaystyle y=f(x)} ã®åœ¢ã§è¡šãããé¢æ°ãéœé¢æ°ãšåŒã¶ã
ããã«å¯Ÿã F ( x , y ) = 0 {\displaystyle F(x,y)=0} ã®åœ¢ã§è¡šãããé¢æ°ãé°é¢æ°ãšåŒã¶ã
äŸãã°ãåã®æ¹çšåŒã¯é°é¢æ°è¡šç€ºãããé¢æ°ã§ããã
éœé¢æ°ãšé°é¢æ°ã¯äºãã«äºãã®åœ¢ãžãšå€åœ¢ã§ããããå€åœ¢ãããšåŒãç
©éã«ãªãå Žåããããããã§ã F ( x , y ) {\displaystyle F(x,y)} ãåæé¢æ°ãšèŠåããŠåŸ®åããããšãèããã
(äŸ)åã®æ¹çšåŒ x 2 + y 2 = 4 {\displaystyle x^{2}+y^{2}=4} ã«ã€ããŠã d d x y {\displaystyle {\frac {d}{dx}}y} ãæ±ããã
ãã®åŒãyã«ã€ããŠè§£ããš y = ± 4 â x 2 {\displaystyle y=\pm {\sqrt {4-x^{2}}}} ã§ãããããã®åŒã埮åããããšãããšåŒãç
©éã§åä»ã§ããã
äžã®yã«ã€ããŠã®çåŒããå
ã®æ¹çšåŒã®yã¯ãxã®åŒãå¥ã®æåã§çœ®æãããã®ããšèããããã®ã§ãåæé¢æ°ã®åŸ®åæ³ãå©çšãããšå
ã®åœ¢ã®ãŸãŸåŸ®åãã§ããã å
ã®æ¹çšåŒã®äž¡èŸºãxã§åŸ®åãããšã
ãã
ãªã®ã§ã
ããªãã¡
ã§ããã
ãªããç
©éã«ãªãã®ã§yãxã®åŒã«çŽãå¿
èŠã¯ãªãã
ãã¯ãã«ã§ç¿ã£ãããã«ãçŽç·ã®æ¹çšåŒã¯åªä»å€æ°tãçšããŠäžæ¬¡é¢æ° x = f ( t ) , y = g ( t ) {\displaystyle x=f(t),y=g(t)} ã§è¡šãããããããåªä»å€æ°è¡šç€ºããšåŒãã ã
äžè¬ã«ãåªä»å€æ°è¡šç€º x = f ( t ) , y = g ( t ) {\displaystyle x=f(t),y=g(t)} ã¯æ²ç·ãè¡šããããã§ãããæ²ç·ãã¯åã«æ²ãã£ãç·ã®ããšã§ã¯ãªããçŽç·ãå«ãäžè¬çãªç·ã®ããšã§ããã
x = f ( t ) , y = g ( t ) {\displaystyle x=f(t),y=g(t)} ãxã§åŸ®åãããã é¢æ°f,gãäžè§é¢æ°ã®å Žåçãé«æ ¡ç¯å²ã§ã¯tãæ¶å»ã§ããªãããšãããã®ã§ãåªä»å€æ°è¡šç€ºã®ãŸãŸåŸ®åããããšãèããã y = g ( t ) ⺠t = g â 1 ( y ) {\displaystyle y=g(t)\iff t=g^{-1}(y)} ãããtãyã®åŒãšèãããš x = f ( t ) {\displaystyle x=f(t)} ã¯åæé¢æ°ãšèŠåããã
ãã£ãŠãåæé¢æ°ã®åŸ®åæ³ãã
ã§ããã
ããã§ãéé¢æ°ã®åŸ®åæ³ãã
ã§ããã®ã§ã
ãæãç«ã€ã
ãªãã d 2 d x 2 y {\displaystyle {\frac {d^{2}}{dx^{2}}}y} 㯠d y d x {\displaystyle {\frac {dy}{dx}}} ã«åã³åªä»å€æ°æ²ç·ã®åŸ®åæ³ãçšããããšã§ã d d t ( d y d x ) d x d t {\displaystyle {\frac {{\frac {d}{dt}}({\frac {dy}{dx}})}{\frac {dx}{dt}}}} ã®ããã«èšç®ã§ããã
é¢æ° f ( x ) {\displaystyle f(x)} äžã®ç¹ ( a , f ( a ) ) {\displaystyle (a,f(a))} ã«ãããæ¥ç·ã®åŸã㯠f â² ( a ) {\displaystyle f'(a)} ã§ããã®ã§ãæ¥ç·ã®æ¹çšåŒã¯
y â f ( a ) = f â² ( a ) ( x â a ) {\displaystyle y-f(a)=f'(a)(x-a)}
ãšãªãã
ãŸããæ¥ç¹ãéãæ¥ç·ã«åçŽãªçŽç·ãæ³ç·(ã»ããã)ãšããã åçŽãªçŽç·å士ã¯åŸãã®ç¬Šå·ãéã§ãããåŸãã®çµ¶å¯Ÿå€ãéæ°ã§ããã®ã§ãæ³ç·ã®æ¹çšåŒã¯
y â f ( a ) = â 1 f â² ( a ) ( x â a ) {\displaystyle y-f(a)=-{\frac {1}{f'(a)}}(x-a)}
ãšãªãã
f â² ( a ) {\displaystyle f'(a)} 㯠f ( x ) {\displaystyle f(x)} ã®ç¹ ( a , f ( a ) ) {\displaystyle (a,f(a))} ã§ã®åŸããè¡šãã
ãã£ãŠã
ã§ããã
ãŸãã f â² ( a ) = 0 {\displaystyle f'(a)=0} ã§ã a {\displaystyle a} ã®ååŸã§ f â² ( x ) {\displaystyle f'(x)} ã®ç¬Šå·ã + {\displaystyle +} ãã â {\displaystyle -} ã«å€ãããªãã°ã f ( x ) {\displaystyle f(x)} ã¯ç¹ ( a , f ( a ) ) {\displaystyle (a,f(a))} ã§å¢å ããæžå°ã«è»¢ããããã®ãšãã® f ( a ) {\displaystyle f(a)} ã極倧å€(ãããã ãã¡)ãšããã ãŸãã â {\displaystyle -} ãã + {\displaystyle +} ã«å€ãããªãã°ã f ( x ) {\displaystyle f(x)} ã¯ç¹ ( a , f ( a ) ) {\displaystyle (a,f(a))} ã§æžå°ããå¢å ã«è»¢ããã®ã§ããã®ãšãã® f ( a ) {\displaystyle f(a)} ã極å°å€(ããããããã¡)ãšããã 極倧å€ãšæ¥µå°å€ããŸãšããŠæ¥µå€(ãããã¡)ãšããã f â² ( a ) = 0 {\displaystyle f'(a)=0} ã§ãã£ãŠããååŸã§ç¬Šå·ãå€ãããªããã° f ( a ) {\displaystyle f(a)} ã¯æ¥µå€ã§ã¯ãªãã
第äºæ¬¡å°é¢æ°ã®å³åœ¢çãªæå³ãèããŠã¿ãããå°é¢æ°ã¯åç¹ã§ã®æ¥ç·ã®åŸããè¡šããŠããã第äºæ¬¡å°é¢æ°ã¯å°é¢æ°ã®å°é¢æ°ã ãããæ¥ç·ã®åŸãã®å€åçãããªãã¡ã°ã©ãã®æ²ããå
·åãè¡šããŠããããšã«ãªãã第äºæ¬¡å°é¢æ°ãæ£ã®ãšãã¯åŸããå¢å ããŠããã®ã ããã°ã©ãã¯äžã«åžãè² ã®ãšãã¯äžã«åžãšãªãã
ã°ã©ãã®æ²ããå
·åãå€ããç¹ã®ããšãå€æ²ç¹(ãžãããããŠã)ãšãããäžã®èå¯ãããå€æ²ç¹ã¯ç¬¬äºæ¬¡å°é¢æ°ã®ç¬Šå·ãå€ããç¹ã§ããããšããããã極å€ã®å Žåãšåæ§ã«ãããšã f â²â² ( a ) = 0 {\displaystyle f''(a)=0} ã§ãã£ãŠãã笊å·ãå€ãããªããã°å€æ²ç¹ã§ã¯ãªãã
é¢æ°ã®ã°ã©ããæžããšãã«ã¯ãå€æ²ç¹ã®æ
å ±ã¯æ¥µå€ãšåæ§ã«éèŠãªã®ã§ãå¢æžè¡šã«ã第äºæ¬¡å°é¢æ°ã®æ¬ãã€ãããå€æ²ç¹ãèšå
¥ãããšããã
(ååŠãåç
§ã)
æ°çŽç·äžãéåããç©äœãæå» t {\displaystyle t} ã®ãšãäœçœ® x ( t ) {\displaystyle x(t)} ã«ãããšããããã®ç©äœã®é床ãæ±ããã æå»ã t {\displaystyle t} ãã t + h {\displaystyle t+h} ã«ç§»åãããšããç©äœã¯ x ( t ) {\displaystyle x(t)} ãã x ( t + h ) {\displaystyle x(t+h)} ã®äœçœ®ã«ç§»åããããã®ãšãã®å¹³åã®é床㯠Πx Î t = x ( t + h ) â x ( t ) ( t + h ) â t = x ( t + h ) â x ( t ) h {\displaystyle {\frac {\Delta x}{\Delta t}}={\frac {x(t+h)-x(t)}{(t+h)-t}}={\frac {x(t+h)-x(t)}{h}}} ããã§ã Î t = h {\displaystyle \Delta t=h} ãªã®ã§ã h {\displaystyle h} ãéããªã 0 ã«è¿ã¥ããã°ããã®ç©äœã®ç¬éã®é床ãæ±ãããããæå» t {\displaystyle t} ã®ãšãã®ç©äœã®ç¬éã®é床ã v ( t ) {\displaystyle v(t)} ãšããã°ã v ( t ) = lim h â 0 x ( t + h ) â x ( t ) h = x â² ( t ) = d x d t {\displaystyle v(t)=\lim _{h\to 0}{\frac {x(t+h)-x(t)}{h}}=x'(t)={\frac {dx}{dt}}} ã§ããã
åæ§ã«ãå é床ã«ã€ããŠããæå» t {\displaystyle t} ã®ãšãã®ç©äœã®å é床ã a ( t ) {\displaystyle a(t)} ãšããã°
a ( t ) = lim Î t â 0 Î v Î t = lim Î h â 0 x â² ( t + h ) â x â² ( t ) h = x â²â² ( t ) = d 2 x d t 2 {\displaystyle a(t)=\lim _{\Delta t\to 0}{\frac {\Delta v}{\Delta t}}=\lim _{\Delta h\to 0}{\frac {x'(t+h)-x'(t)}{h}}=x''(t)={\frac {d^{2}x}{dt^{2}}}}
ããã¯ãå¹³é¢äžãéåããç©äœã«ãæ¡åŒµã§ãããæå» t {\displaystyle t} ã®ãšãã®ç©äœã®äœçœ®ãã¯ãã«ã x â ( t ) = ( x ( t ) , y ( t ) ) {\displaystyle {\vec {x}}(t)=(x(t),y(t))} ã§äžãããããšãããã®ç©äœã®é床ãã¯ãã« v â {\displaystyle {\vec {v}}} 㯠v â = lim Î t â 0 Î x â Î t = d x â d t = ( d x d t , d y d t ) {\displaystyle {\vec {v}}=\lim _{\Delta t\to 0}{\frac {\Delta {\vec {x}}}{\Delta t}}={\frac {d{\vec {x}}}{dt}}=\left({\frac {dx}{dt}},{\frac {dy}{dt}}\right)} ã§ãããåæ§ã«å é床ãã¯ãã« a â {\displaystyle {\vec {a}}} ã«ã€ããŠãã a â = ( d 2 x d t 2 , d 2 x d t 2 ) {\displaystyle {\vec {a}}=\left({\frac {d^{2}x}{dt^{2}}},{\frac {d^{2}x}{dt^{2}}}\right)} ã
äŸãã°ãè§é床 Ï {\displaystyle \omega } ã§åç¹ãäžå¿ã«ååŸ r {\displaystyle r} ã®åéåããç©äœã t = 0 {\displaystyle t=0} 㧠x â ( 0 ) = ( r , 0 ) {\displaystyle {\vec {x}}(0)=(r,0)} ã«ãããšãããã®ç©äœã®æå» t {\displaystyle t} ã®ãšãã®äœçœ®ãã¯ãã« x â ( t ) {\displaystyle {\vec {x}}(t)} 㯠x â ( t ) = r ( cos Ï t sin Ï t ) {\displaystyle {\vec {x}}(t)=r\left({\begin{aligned}\cos \omega t\\\sin \omega t\end{aligned}}\right)} ã§ãããé床ãã¯ãã«ã¯ã v â = d x â d t = r Ï ( â sin Ï t cos Ï t ) {\displaystyle {\vec {v}}={\frac {d{\vec {x}}}{dt}}=r\omega \left({\begin{aligned}-\sin \omega t\\\cos \omega t\end{aligned}}\right)} ãå é床ãã¯ãã«ã¯ a â = d 2 x â d 2 t = â r Ï 2 ( cos Ï t sin Ï t ) = â Ï 2 x â ( t ) {\displaystyle {\vec {a}}={\frac {d^{2}{\vec {x}}}{d^{2}t}}=-r\omega ^{2}\left({\begin{aligned}\cos \omega t\\\sin \omega t\end{aligned}}\right)=-\omega ^{2}{\vec {x}}(t)} ããããããäœçœ®ãã¯ãã« x â ( t ) {\displaystyle {\vec {x}}(t)} ãšé床ãã¯ãã« v â ( t ) {\displaystyle {\vec {v}}(t)} ã¯çŽè¡ããäœçœ®ãã¯ãã« x â ( t ) {\displaystyle {\vec {x}}(t)} ãšå é床ãã¯ãã« a â ( t ) {\displaystyle {\vec {a}}(t)} ã¯éåãã§ããã | v â ( t ) | = r Ï {\displaystyle |{\vec {v}}(t)|=r\omega } ã | a â ( t ) | = r Ï 2 {\displaystyle |{\vec {a}}(t)|=r\omega ^{2}} ãæç«ããããšãåããã
ãŸããåéåã® x {\displaystyle x} æå ãŸã㯠y {\displaystyle y} æåã ãã«æ³šç®ããã°ãããã¯åæ¯åã§ããã
埮åä¿æ° f â² ( a ) {\displaystyle f'(a)} 㯠lim h â 0 f ( a + h ) â f ( a ) h = f â² ( a ) {\displaystyle \lim _{h\to 0}{\frac {f(a+h)-f(a)}{h}}=f'(a)} ãªã®ã§ã | h | {\displaystyle |h|} ãååå°ãããšãã f ( a + b ) â f ( a ) h â f â² ( a ) {\displaystyle {\frac {f(a+b)-f(a)}{h}}\fallingdotseq f'(a)} ã§ãããããªãã¡ã f ( a + h ) â f ( a ) + f â² ( a ) h {\displaystyle f(a+h)\fallingdotseq f(a)+f'(a)h} ãæãç«ã€ããããäžæ¬¡è¿äŒŒåŒãšåŒã¶ã
ãŸãã a = 0 , h = x {\displaystyle a=0,h=x} ãšãããšã | x | {\displaystyle |x|} ãå°ãããšã f ( x ) â f ( 0 ) + f â² ( 0 ) x {\displaystyle f(x)\fallingdotseq f(0)+f'(0)x} ã§ããã
g ( x ) = p x 2 + q x + r {\displaystyle g(x)=px^{2}+qx+r} ãšããã f ( a + h ) â g ( a + h ) {\displaystyle f(a+h)\fallingdotseq g(a+h)} ãšèŠåãããšã«ããã f ( a + h ) â f ( a ) + f â² ( a ) h + f â²â² ( a ) 2 h 2 {\displaystyle f(a+h)\fallingdotseq f(a)+f'(a)h+{\frac {f''(a)}{2}}h^{2}} ãåŸãããããããäºæ¬¡è¿äŒŒåŒãšåŒã¶ã
äžæ¬¡è¿äŒŒåŒãšäºæ¬¡è¿äŒŒåŒãèŠæ¯ã¹ããšãn次è¿äŒŒåŒã¯né
ç®ãŸã§ã®æéçŽæ°ã«ãªãããšãäºæ³ã§ãããããã§ãè¿äŒŒåŒã®æ¬¡æ°ãç¡éã«å€§ããããŠãããšãè¿äŒŒå€ã§ã¯ãªãçã«æ£ç¢ºãªå€ãåŸããããéã«èšããšãçã«æ£ç¢ºãªå€ãæ±ããç¡éçŽæ°ãããé
ã§æã¡åãããšã§ãè¿äŒŒåŒãšããŠæ©èœããããã®ç¡éçŽæ°ã«ã€ããŠã¯ä»¥äžã®ããã€ã©ãŒçŽæ°ããåç
§ã
é¢æ° f ( x ) {\displaystyle f(x)} 㯠[ a , b ] {\displaystyle [a,b]} ã§é£ç¶ã ( a , b ) {\displaystyle (a,b)} ã§åŸ®åå¯èœãšããã
f ( a ) = f ( b ) {\displaystyle f(a)=f(b)} ãªãã° f â² ( c ) = 0 {\displaystyle f'(c)=0} ãšãªãç¹ a < c < b {\displaystyle a<c<b} ãååšããã
蚌æ
é¢æ° f ( x ) {\displaystyle f(x)} ã«ã¯æ倧å€ãŸãã¯æå°å€ã a < x < b {\displaystyle a<x<b} ã®ç¯å²ã«äžã€ä»¥äžååšãããæ倧å€ãŸãã¯æå°å€ã§ã¯é¢æ°ã®å°é¢æ°ã¯ 0 ãªã®ã§ããã®ç¹ãéžã³ c {\displaystyle c} ãšãããšã f â² ( c ) = 0 {\displaystyle f'(c)=0} ãšãªãã
é¢æ° f ( x ) {\displaystyle f(x)} 㯠[ a , b ] {\displaystyle [a,b]} ã§é£ç¶ã ( a , b ) {\displaystyle (a,b)} ã§åŸ®åå¯èœãšããããã®ãšãã f ( b ) â f ( a ) b â a = f â² ( c ) {\displaystyle {\frac {f(b)-f(a)}{b-a}}=f'(c)} ãšãªã a < c < b {\displaystyle a<c<b} ãååšããã
蚌æ
g ( x ) = f ( x ) â A x {\displaystyle g(x)=f(x)-Ax} ãšãããå®æ° A {\displaystyle A} ã g ( a ) = g ( b ) {\displaystyle g(a)=g(b)} ãæºããããã«å®ããã
ãããã£ãŠã f ( a ) â A a = f ( b ) â A b {\displaystyle f(a)-Aa=f(b)-Ab} ããã A = f ( b ) â f ( a ) b â a {\displaystyle A={\frac {f(b)-f(a)}{b-a}}} ã§ããã
ããã§ãé¢æ° g ( x ) {\displaystyle g(x)} ã«å¯ŸããŠããã«ã®å®çãçšããããšã«ããã g â² ( c ) = 0 {\displaystyle g'(c)=0} ãšãªã a < c < b {\displaystyle a<c<b} ãååšããã g â² ( x ) = f â² ( x ) â A {\displaystyle g'(x)=f'(x)-A} ã§ããããã f â² ( c ) = A = f ( b ) â f ( a ) b â a {\displaystyle f'(c)=A={\frac {f(b)-f(a)}{b-a}}} ãšãªã a < c < b {\displaystyle a<c<b} ãååšããããšããããã
é¢æ° f ( x ) , g ( x ) {\displaystyle f(x),g(x)} 㯠[ a , b ] {\displaystyle [a,b]} ã§é£ç¶ã ( a , b ) {\displaystyle (a,b)} ã§åŸ®åå¯èœãšããããã®ãšãã { g ( b ) â g ( a ) } f â² ( c ) = { f ( b ) â f ( a ) } g â² ( c ) {\displaystyle \{g(b)-g(a)\}f'(c)=\{f(b)-f(a)\}g'(c)} ãšãªã c â ( a , b ) {\displaystyle c\in (a,b)} ãååšãããããã«ã g â² ( c ) â 0 , g ( a ) â g ( b ) {\displaystyle g'(c)\neq 0,\,g(a)\neq g(b)} ãšããã°ã f ( b ) â f ( a ) g ( b ) â g ( a ) = f â² ( c ) g â² ( c ) {\displaystyle {\frac {f(b)-f(a)}{g(b)-g(a)}}={\frac {f'(c)}{g'(c)}}} ãšãªã c â ( a , b ) {\displaystyle c\in (a,b)} ãååšããã
蚌æ
h ( t ) = { f ( b ) â f ( a ) } g ( t ) â { g ( b ) â g ( a ) } f ( t ) {\displaystyle h(t)=\{f(b)-f(a)\}g(t)-\{g(b)-g(a)\}f(t)} ãšãããããã§ã h ( t ) {\displaystyle h(t)} 㯠[ a , b ] {\displaystyle [a,b]} ã§é£ç¶ã ( a , b ) {\displaystyle (a,b)} ã§åŸ®åå¯èœã h ( a ) = h ( b ) {\displaystyle h(a)=h(b)} ãªã®ã§ããã«ã®å®çããã h â² ( c ) = 0 {\displaystyle h'(c)=0} ãšãªã c â ( a , b ) {\displaystyle c\in (a,b)} ãååšããã h â² ( c ) = 0 {\displaystyle h'(c)=0} ãå€åœ¢ã㊠{ g ( b ) â g ( a ) } f â² ( c ) = { f ( b ) â f ( a ) } g â² ( c ) {\displaystyle \{g(b)-g(a)\}f'(c)=\{f(b)-f(a)\}g'(c)} ãåŸããããã«ã g â² ( c ) â 0 , g ( a ) â g ( b ) {\displaystyle g'(c)\neq 0,\,g(a)\neq g(b)} ãªãã°ã f ( b ) â f ( a ) g ( b ) â g ( a ) = f â² ( c ) g â² ( c ) {\displaystyle {\frac {f(b)-f(a)}{g(b)-g(a)}}={\frac {f'(c)}{g'(c)}}} ã§ããã
f ( x ) {\displaystyle f(x)} ãåºé I {\displaystyle I} 㧠n {\displaystyle n} å埮åå¯èœãªé¢æ°ãšãããä»»æã® a , x â I {\displaystyle a,x\in I} ã«å¯ŸããŠã Ο {\displaystyle \xi } ã a , x {\displaystyle a,x} ã®äžéã«ååšããŠã
f ( x ) = f ( a ) + f â² ( a ) 1 ! ( x â a ) + f â²â² ( a ) 2 ! ( x â a ) 2 + ⯠+ f ( n â 1 ) ( a ) ( n â 1 ) ! ( x â a ) n â 1 + f ( n ) ( Ο ) n ! ( x â a ) n . {\displaystyle f(x)=f(a)+{\frac {f'(a)}{1!}}(x-a)+{\frac {f''(a)}{2!}}(x-a)^{2}+\cdots +{\frac {f^{(n-1)}(a)}{(n-1)!}}(x-a)^{n-1}+{\frac {f^{(n)}(\xi )}{n!}}(x-a)^{n}.}
蚌æ
F ( x ) = f ( x ) â [ f ( a ) + f â² ( a ) 1 ! ( x â a ) + f â²â² ( a ) 2 ! ( x â a ) 2 + ⯠+ f ( n â 1 ) ( a ) ( n â 1 ) ! ( x â a ) n â 1 ] {\displaystyle F(x)=f(x)-\left[f(a)+{\frac {f'(a)}{1!}}(x-a)+{\frac {f''(a)}{2!}}(x-a)^{2}+\cdots +{\frac {f^{(n-1)}(a)}{(n-1)!}}(x-a)^{n-1}\right]} ãšããã F ( x ) {\displaystyle F(x)} ãšé¢æ° ( x â a ) n {\displaystyle (x-a)^{n}} ã«å¯ŸããŠãã³ãŒã·ãŒã®å¹³åå€ã®å®çãé©çšãããšã F ( a ) = 0 {\displaystyle F(a)=0} ããã F ( x ) ( x â a ) n = F ( x ) â F ( a ) ( x â a ) n â ( a â a ) n = F â² ( x 1 ) n ( x 1 â a ) n â 1 {\displaystyle {\frac {F(x)}{(x-a)^{n}}}={\frac {F(x)-F(a)}{(x-a)^{n}-(a-a)^{n}}}={\frac {F'(x_{1})}{n(x_{1}-a)^{n-1}}}} ãšãªã x 1 {\displaystyle x_{1}} ã a , x {\displaystyle a,x} ã®äžéã«ååšããã F â² ( a ) = F â²â² ( a ) = ⯠= F ( n â 1 ) ( a ) = 0 {\displaystyle F'(a)=F''(a)=\cdots =F^{(n-1)}(a)=0} ã§ãããããå³èŸºã«ãåæ§ã«ã³ãŒã·ãŒã®å¹³åå€ã®å®çãé©çšããããšã§ã F ( x ) ( x â a ) n = F â² ( x 1 ) n ( x 1 â a ) n â 1 = F â²â² ( x 2 ) n ( n â 1 ) ( x 2 â a ) n â 2 = ⯠= F ( n ) ( Ο ) n ! {\displaystyle {\frac {F(x)}{(x-a)^{n}}}={\frac {F'(x_{1})}{n(x_{1}-a)^{n-1}}}={\frac {F''(x_{2})}{n(n-1)(x_{2}-a)^{n-2}}}=\cdots ={\frac {F^{(n)}(\xi )}{n!}}} ãšãªã x 1 , x 2 , ⯠, Ο {\displaystyle x_{1},x_{2},\cdots ,\xi } ã a , x {\displaystyle a,x} ã®äžéã«ååšããã F ( n ) ( x ) = f ( n ) ( x ) {\displaystyle F^{(n)}(x)=f^{(n)}(x)} ã ããã F ( x ) = f ( n ) ( Ο ) n ! ( x â a ) n {\displaystyle F(x)={\frac {f^{(n)}(\xi )}{n!}}(x-a)^{n}} ãåŸãã
é¢æ° g ( x ) {\displaystyle g(x)} ã«å¯ŸããŠã lim x â a f ( x ) g ( x ) = 0 {\displaystyle \lim _{x\to a}{\frac {f(x)}{g(x)}}=0} ãšãªããããªé¢æ° f ( x ) {\displaystyle f(x)} ãäžè¬ã« o g {\displaystyle og} ãšè¡šãã
ã©ã³ããŠèšå·ã«ã€ããŠæ¬¡ãæãç«ã€ã
ã©ã³ããŠã®èšå·ã¯äžè¬ã«ã¯éãé¢æ°ãåãèšå·ã§è¡šããŠããã®ã§æ³šæãå¿
èŠã§ãããäŸãã° 1. ã¯ä»»æã® f = o h , g = o h {\displaystyle f=oh,\,g=oh} ã§ããé¢æ°ã«ã€ããŠã lim x â a f + g h = 0 {\displaystyle \lim _{x\to a}{\frac {f+g}{h}}=0} ãšããæå³ã§ããã
2. 㯠f = o h {\displaystyle f=oh} ãšãããšã k f h â 0. {\displaystyle {\frac {kf}{h}}\to 0.} 3. 㯠f g â 0 , g h â 0 {\displaystyle {\frac {f}{g}}\to 0,\,{\frac {g}{h}}\to 0} ãªãã°ã f h = f g g h â 0 {\displaystyle {\frac {f}{h}}={\frac {f}{g}}{\frac {g}{h}}\to 0} ãšãªãããã f = o h . {\displaystyle f=oh.}
ã©ã³ããŠã®èšå·ã«ã€ããŠã x {\displaystyle x} ãã©ãã«è¿ã¥ãããšãã( x â a {\displaystyle x\to a} )ãšããããšã¯éèŠã ããæèããæãããªå Žåã¯çç¥ãããã
ãã€ã©ãŒã®å®çã«ãããå³èŸºæåŸã®é
ãå°äœé
ãšãããããã R n {\displaystyle R_{n}} ãšæžãã f ( n ) ( x ) {\displaystyle f^{(n)}(x)} ã x = a {\displaystyle x=a} ã§é£ç¶ãªãã°ã lim x â a R n ( x â a ) n = lim Ο â a f ( n ) ( Ο ) n ! = f ( n ) ( a ) n ! . {\displaystyle \lim _{x\to a}{\frac {R_{n}}{(x-a)^{n}}}=\lim _{\xi \to a}{\frac {f^{(n)}(\xi )}{n!}}={\frac {f^{(n)}(a)}{n!}}.}
ããã¯ã lim x â a R n â f ( n ) ( a ) n ! ( x â a ) n ( x â a ) n = 0 {\displaystyle \lim _{x\to a}{\frac {R_{n}-{\frac {f^{(n)}(a)}{n!}}(x-a)^{n}}{(x-a)^{n}}}=0} ãšæžããããã R n = f ( n ) ( a ) n ! ( x â a ) n + o ( x â a ) n . {\displaystyle R_{n}={\frac {f^{(n)}(a)}{n!}}(x-a)^{n}+o{(x-a)^{n}}.}
ããªãã¡ã
f ( x ) = f ( a ) + f â² ( a ) 1 ! ( x â a ) + f â²â² ( a ) 2 ! ( x â a ) 2 + ⯠+ f ( n ) ( a ) n ! ( x â a ) n + o ( x â a ) n {\displaystyle f(x)=f(a)+{\frac {f'(a)}{1!}}(x-a)+{\frac {f''(a)}{2!}}(x-a)^{2}+\cdots +{\frac {f^{(n)}(a)}{n!}}(x-a)^{n}+o(x-a)^{n}}
挞è¿å±éãçšãããšæ¥µéã®åé¡ãç°¡åã«è§£ãããšãåºæ¥ããäŸãã°ã lim x â 0 e x â e â x x = lim x â 0 ( 1 + x + o x ) â ( 1 â x + o x ) x = lim x â 0 2 + o x x = 2. {\displaystyle \lim _{x\to 0}{\frac {e^{x}-e^{-x}}{x}}=\lim _{x\to 0}{\frac {(1+x+ox)-(1-x+ox)}{x}}=\lim _{x\to 0}2+{\frac {ox}{x}}=2.}
äŸ
α {\displaystyle \alpha } ãå®æ°ãšããã f ( x ) = ( 1 + x ) α {\displaystyle f(x)=(1+x)^{\alpha }} ã«ã€ããŠã f ( n ) ( 0 ) = α ( α â 1 ) ⯠( α â n + 1 ) {\displaystyle f^{(n)}(0)=\alpha (\alpha -1)\cdots (\alpha -n+1)} ãªã®ã§ã
( 1 + x ) α = â k = 0 n ( α k ) x k + o x n {\displaystyle (1+x)^{\alpha }=\sum _{k=0}^{n}{\binom {\alpha }{k}}x^{k}+ox^{n}}
ãã ãã ( α k ) = α ( α â 1 ) ⯠( α â k + 1 ) k ! , ( α 0 ) = 1 {\displaystyle {\binom {\alpha }{k}}={\frac {\alpha (\alpha -1)\cdots (\alpha -k+1)}{k!}},\,{\binom {\alpha }{0}}=1} ã¯äžè¬äºé
ä¿æ°ã
äŸãã°ã
1 + x = 1 + 1 2 x + o x {\displaystyle {\sqrt {1+x}}=1+{\frac {1}{2}}x+ox}
1 1 + x = 1 â 1 2 x + o x {\displaystyle {\frac {1}{\sqrt {1+x}}}=1-{\frac {1}{2}}x+ox}
ãªã©ããããã¯è¿äŒŒå
¬åŒãšããŠããã䜿ãããã
ãã€ã©ãŒã®å®çã«ãããŠãé¢æ° f ( x ) {\displaystyle f(x)} ãåºé I {\displaystyle I} ã§ç¡éå埮åå¯èœ(ä»»æã®æ¬¡æ°ã®å°é¢æ°ãååšããããš)ã§å°äœé
ã lim n â â R n = 0 {\displaystyle \lim _{n\to \infty }R_{n}=0} ãªãã°ã
f ( x ) = â n = 0 â f ( n ) ( a ) n ! ( x â a ) n . {\displaystyle f(x)=\sum _{n=0}^{\infty }{\frac {f^{(n)}(a)}{n!}}(x-a)^{n}.}
ããããã€ã©ãŒçŽæ°ãšãããç¹ã« a = 0 {\displaystyle a=0} ã®ãã®ããã¯ããŒãªã³çŽæ°ãšããã
ããã€ãã®é¢æ°ã®ãã€ã©ãŒå±éãæ±ãããã
f ( x ) = e x {\displaystyle f(x)=e^{x}} ãšãããšã f ( n ) ( x ) = e x , f ( n ) ( 0 ) = 1 {\displaystyle f^{(n)}(x)=e^{x},f^{(n)}(0)=1} ã§ã | R n | = | e Ο n ! x n | < e | x | n ! | x | n {\displaystyle |R_{n}|=\left|{\frac {e^{\xi }}{n!}}x^{n}\right|<{\frac {e^{|x|}}{n!}}|x|^{n}} ãããä»»æã® x {\displaystyle x} ã«å¯ŸããŠã lim n â â R n = 0 {\displaystyle \lim _{n\to \infty }R_{n}=0} ãšãªããããªãã¡ã
e x = â n = 0 â 1 n ! x n . {\displaystyle e^{x}=\sum _{n=0}^{\infty }{\frac {1}{n!}}x^{n}.}
sin x , cos x {\displaystyle \sin x,\cos x} ã«ã€ããŠãåãããã«èšç®ããŠã
sin x = â n = 0 â ( â 1 ) n ( 2 n + 1 ) ! x 2 n + 1 , cos x = â n = 0 â ( â 1 ) n ( 2 n ) ! x 2 n {\displaystyle \sin x=\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{(2n+1)!}}x^{2n+1},\,\cos x=\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{(2n)!}}x^{2n}}
ãåŸãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ããã§ã¯ã埮åã»ç©åã®èãã§åŠãã 埮åã®æ§è³ªã«ã€ããŠãã詳ããæ±ããç¹ã«ãé¢æ°ã®åãå·®ãç©ãåãæŽã«åæé¢æ°ããéé¢æ°ã®å°é¢æ°ã«ã€ããŠè©³ããæ±ãããŸããäžè§é¢æ°ãªã©ã®è€éãªé¢æ°ã®åŸ®åã«ã€ããŠãããã§ãŸãšããã",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "é¢æ° f ( x ) {\\displaystyle f(x)} ãä»»æã®ç¹xã§æ¥µéå€",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ãæã€ãšããé¢æ° f ( x ) {\\displaystyle f(x)} ã¯åŸ®åå¯èœãšèšããé¢æ° f' ããé¢æ°fã®å°é¢æ°ãšåŒã¶ã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "é¢æ° f ( x ) {\\displaystyle f(x)} ã埮åå¯èœãªãã°ãé£ç¶é¢æ°ã§ããã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "(蚌æ) fã埮åå¯èœãšãããšã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ãªã®ã§ãfã¯é£ç¶ã§ããã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ããã§ã¯ãé¢æ°ã®åãå·®ãç©ãåã®åŸ®åã«ã€ããŠæ±ãããããã®æ¹æ³ã¯ä»¥éã®èšç®ã§åžžã«çšããããå
容ã§ããã®ã§ãååã«ç¿çããŠããå¿
èŠãããã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "f,gã埮åå¯èœãªé¢æ°ãšããããã®ãšããfãšgã®åã«ã€ããŠæ¬¡ãæãç«ã€ã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "ããã¯ãé¢æ°ã®åã埮åããŠåŸãããå°é¢æ°ã¯ãããããã®é¢æ°ã®åã足ãåããããã®ã«çããããšãè¡šããŠããã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "å°åº",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "次ã«ãé¢æ°ã®å®æ°åã®å°é¢æ°ã«ã€ããŠèãããé¢æ°ã®å®æ°åããããã®ã埮åãããã®ã¯ãå®æ°åããåã®é¢æ°ã«å¯Ÿããå°é¢æ°ãå®æ°åãããã®ã«ãªããå
·äœçã«ã¯æ¬¡ã®åŒãæãç«ã€ã ( a f ) â² = a f â² {\\displaystyle (af)'=af'} (aã¯å®æ°)",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "å°åº",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "ç©ã«é¢ããŠã¯ãåãå®æ°åãšæ¯ã¹ãŠèšç®çµæãããè€éã«ãªããå
·äœçã«ã¯æ¬¡ãæãç«ã€ã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "ããã¯ãããããã®é¢æ°ã®åŸ®åãšãã以å€ã®é¢æ°ãšã®ç©ãåŸããããšããããšãè¡šããŠãããããã¯å°åºãèŠãªããšãªããããªãããããããªãããç¥ããªãããããå°åºãæ€èšããããšãéèŠã§ããã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "å°åº",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "ããã§ã lim h â 0 f ( x + h ) = f ( x ) {\\displaystyle \\lim _{h\\rightarrow 0}f(x+h)=f(x)} ã«æ³šæãããšã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "æ°åŠIIã§ç¿ã£ãããã«ãnãèªç¶æ°ãšãããšãã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "ã§ããã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 22,
"tag": "p",
"text": "ããã§ã¯ãæ°åŠIIã§ã¯æ±ããªãã£ãäžåŒã®å°åºãè¡ãã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 23,
"tag": "p",
"text": "(å°åºãã®1)",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 24,
"tag": "p",
"text": "ããã§ãäºé
å®çã«ãã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 25,
"tag": "p",
"text": "ãã ã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 26,
"tag": "p",
"text": "ãªã®ã§ã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 27,
"tag": "p",
"text": "ãã®åŒããåŒ(1)ã®å³èŸºã«ä»£å
¥ãããš",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 28,
"tag": "p",
"text": "ã§ããã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 29,
"tag": "p",
"text": "(å°åºãã®2)",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 30,
"tag": "p",
"text": "[1] n = 1 {\\displaystyle n=1} ã®ãšã 巊蟺ã¯",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 31,
"tag": "p",
"text": "ã§ãããå³èŸºã¯",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 32,
"tag": "p",
"text": "ãªã®ã§ã n = 1 {\\displaystyle n=1} ã®ãšã1ã¯æãç«ã€ã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 33,
"tag": "p",
"text": "[2] n = k {\\displaystyle n=k} ã®ãšã ( x k ) â² = k x k â 1 {\\displaystyle (x^{k})'=kx^{k-1}} ãæãç«ã€ãšä»®å®ããã n = k + 1 {\\displaystyle n=k+1} ã®ãšããç©ã®å°é¢æ°ã®åŒãã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 34,
"tag": "p",
"text": "ãã£ãŠã n = k + 1 {\\displaystyle n=k+1} ã®ãšãã1ãæãç«ã€ã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 35,
"tag": "p",
"text": "[1] [2]ããããã¹ãŠã®èªç¶æ° n {\\displaystyle n} ã«ã€ããŠ1ãæãç«ã€ã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 36,
"tag": "p",
"text": "",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 37,
"tag": "p",
"text": "åã®å°é¢æ°ã«ã€ããŠã¯æ¬¡åŒãæãç«ã€ã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 38,
"tag": "p",
"text": "ãã®åŒã«ã€ããŠããããå°åºãæ€èšããããšãå¿
èŠã§ããã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 39,
"tag": "p",
"text": "å°åº",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 40,
"tag": "p",
"text": "ãŸããåã®å°é¢æ°ã®åŒãšãç©ã®å°é¢æ°ã®åŒããã次ã®å
¬åŒãå°ãããã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 41,
"tag": "p",
"text": "ãã®åŒã¯ãç©ã®åŒãšåã®åŒããçŽæ¥åŸãåŒã ããããçŸãã圢ã§ããã®ã§ãèŠããŠãããšäŸ¿å©ãªããšãããã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 42,
"tag": "p",
"text": "å°åº",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 43,
"tag": "p",
"text": "",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 44,
"tag": "p",
"text": "x a {\\displaystyle x^{a}} ã®ææ°ãèªç¶æ° n {\\displaystyle n} ã§ãããšãã ( x n ) â² = n x n â 1 {\\displaystyle (x^{n})'=nx^{n-1}} ã§ããã®ã¯æ¢ã«èšŒæããã ããã§ã¯ãææ°ãæŽæ°ã®å Žåãèããã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 45,
"tag": "p",
"text": "[1] m {\\displaystyle m} ãè² ã®æŽæ°ã®ãšã n = â m {\\displaystyle n=-m} ãšããã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 46,
"tag": "p",
"text": "ãã®ãšã n {\\displaystyle n} ã¯æ£ã®æŽæ°ã§ãåã®å°é¢æ°ã®åŒãã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 47,
"tag": "p",
"text": "ãæãç«ã€ã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 48,
"tag": "p",
"text": "[2] m = 0 {\\displaystyle m=0} ã®ãšãã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 49,
"tag": "p",
"text": "ãªã®ã§",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 50,
"tag": "p",
"text": "ãæãç«ã€ã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 51,
"tag": "p",
"text": "ãã£ãŠãæŽæ° m {\\displaystyle m} ã«ã€ã㊠( x m ) â² = m x m â 1 {\\displaystyle (x^{m})'=mx^{m-1}} ãæãç«ã€ã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 52,
"tag": "p",
"text": "",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 53,
"tag": "p",
"text": "åæé¢æ°ãšã¯ã2ã€ã®é¢æ° f , g {\\displaystyle f,g} ãçšããŠã h ( x ) = f ( g ( x ) ) {\\displaystyle h(x)=f(g(x))} ãšãã圢ã§æžãããšãã§ããé¢æ°ã®ããšã§ãããåæé¢æ°ã¯ãäžããããå€æ°ã«å¯Ÿããé¢æ°ãšèŠãããšãã§ããå°é¢æ°ãåãããšãå¯èœã§ãããå
·äœçã«ã¯ã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 54,
"tag": "p",
"text": "ãæãç«ã€ã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 55,
"tag": "p",
"text": "å°åº",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 56,
"tag": "p",
"text": "ãšãªãã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 57,
"tag": "p",
"text": "f ( x ) = x {\\displaystyle f(x)={\\sqrt {x}}} ã g ( x ) = x 2 + x + 1 {\\displaystyle g(x)=x^{2}+x+1} ãšããããã®åæé¢æ°ã¯ã f ( g ( x ) ) = x 2 + x + 1 {\\displaystyle f(g(x))={\\sqrt {x^{2}+x+1}}} ã§ããã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 58,
"tag": "p",
"text": "ãã®åæé¢æ°ã®å°é¢æ°ãæ±ããŠã¿ããã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 59,
"tag": "p",
"text": "f â² ( x ) = 1 2 x {\\displaystyle f'(x)={\\frac {1}{2{\\sqrt {x}}}}}",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 60,
"tag": "p",
"text": "g â² ( x ) = 2 x + 1 {\\displaystyle g'(x)=2x+1}",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 61,
"tag": "p",
"text": "ãªã®ã§ã f ( g ( x ) ) â² = f â² ( g ( x ) ) g â² ( x ) = 2 x + 1 2 x 2 + x + 1 {\\displaystyle {f(g(x))}'=f'(g(x))g'(x)={\\frac {2x+1}{2{\\sqrt {x^{2}+x+1}}}}}",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 62,
"tag": "p",
"text": "ã§ããã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 63,
"tag": "p",
"text": "â»é¢æ° f , g {\\displaystyle f,g} ã®åæé¢æ°ã ( f â g ) ( x ) = f ( g ( x ) ) {\\displaystyle (f\\circ g)(x)=f(g(x))} ãšæžãããšãããã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 64,
"tag": "p",
"text": "åæé¢æ°ã®åŸ®åã¯ã©ã€ããããã®èšæ³ãçšããŠã y = f ( u ) , u = g ( x ) {\\displaystyle y=f(u),u=g(x)} ã®ãšãã d y d x = f ( g ( x ) ) â² {\\displaystyle {\\frac {dy}{dx}}=f(g(x))'} ã f â² ( u ) = d y d u {\\displaystyle f'(u)={\\frac {dy}{du}}} ã g â² ( x ) = d u d x {\\displaystyle g'(x)={\\frac {du}{dx}}} ãªã®ã§ã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 65,
"tag": "p",
"text": "ãšæžãããšãã§ããã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 66,
"tag": "p",
"text": "ãŸãã以äžã®å
¬åŒãæãç«ã€ã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 67,
"tag": "p",
"text": "",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 68,
"tag": "p",
"text": "( f â 1 ( y ) ) â² = 1 ( f ( x ) ) â² {\\displaystyle (f^{-1}(y))'={\\frac {1}{(f(x))'}}}",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 69,
"tag": "p",
"text": "å°åº",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 70,
"tag": "p",
"text": "y = f ( x ) {\\displaystyle y=f(x)} ãšçœ®ããšã x = f â 1 ( y ) {\\displaystyle x=f^{-1}(y)} ã§ã y â y 0 {\\displaystyle y\\to y_{0}} ã®ãšã x â x 0 {\\displaystyle x\\to x_{0}} ã§ããããã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 71,
"tag": "p",
"text": "ãŸãã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 72,
"tag": "p",
"text": "",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 73,
"tag": "p",
"text": "x a {\\displaystyle x^{a}} ã®ææ°ãæŽæ° m {\\displaystyle m} ã®ãšãã ( x m ) â² = m x m â 1 {\\displaystyle (x^{m})'=mx^{m-1}} ãæãç«ã€ã®ã¯æ¢ã«èšŒæããã 次ã¯ã x > 0 {\\displaystyle x>0} ãšããŠææ°ãæçæ°ã®ãšããèããã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 74,
"tag": "p",
"text": "ãªããææ°ãæŽæ°ã§ããå Žåãã环ä¹ããšåŒã¶ã®ã«å¯Ÿããææ°ãæçæ°(å®æ°)ã§ããå Žåããåªä¹(ã¹ãããã)ããšåŒã¶ãæçæ°ã¯æŽæ°ãå«ãã®ã§ã环ä¹ã¯åªä¹ã®ç¹å¥ãªå Žåãæãã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 75,
"tag": "p",
"text": "[1] n {\\displaystyle n} ãèªç¶æ°ãšãããšã y = x 1 n {\\displaystyle y=x^{\\frac {1}{n}}} ã®ãšãã x = y n {\\displaystyle x=y^{n}} ãæãç«ã€ã®ã§ãéé¢æ°ã®å°é¢æ°ã®åŒãã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 76,
"tag": "p",
"text": "[2] m {\\displaystyle m} ãæŽæ°ãšãããšãæçæ° p {\\displaystyle p} ã«ã€ããŠ",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 77,
"tag": "p",
"text": "ããã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 78,
"tag": "p",
"text": "ãªã®ã§ã[1]ãšåæé¢æ°ã®å°é¢æ°ã®åŒãã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 79,
"tag": "p",
"text": "ãæãç«ã€ã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 80,
"tag": "p",
"text": "ãã£ãŠãæçæ° p {\\displaystyle p} ã«ã€ã㊠( x p ) â² = p x p â 1 {\\displaystyle (x^{p})'=px^{p-1}} ãæãç«ã€ã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 81,
"tag": "p",
"text": "",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 82,
"tag": "p",
"text": "ãšãªãã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 83,
"tag": "p",
"text": "å°åº",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 84,
"tag": "p",
"text": "",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 85,
"tag": "p",
"text": "ã«æ³šæãããšã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 86,
"tag": "p",
"text": "ãšãªããçµæãåŸãããã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 87,
"tag": "p",
"text": "tan x {\\displaystyle \\tan x} ã«ã€ããŠã¯ã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 88,
"tag": "p",
"text": "",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 89,
"tag": "p",
"text": "",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 90,
"tag": "p",
"text": "ãã㧠k = h x {\\displaystyle k={\\frac {h}{x}}} ãšçœ®ããšã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 91,
"tag": "p",
"text": "kã0ã«è¿ã¥ããŠãããšã ( 1 + k ) 1 k {\\displaystyle (1+k)^{\\frac {1}{k}}} ã¯ã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 92,
"tag": "p",
"text": "1.1 1 0.1 = 2.5937424601 {\\displaystyle 1.1^{\\frac {1}{0.1}}=2.5937424601}",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 93,
"tag": "p",
"text": "1.01 1 0.01 = 2.7048138294215260932671947108075 {\\displaystyle 1.01^{\\frac {1}{0.01}}=2.7048138294215260932671947108075}",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 94,
"tag": "p",
"text": "1.001 1 0.001 = 2.7169239322358924573830881219476 {\\displaystyle 1.001^{\\frac {1}{0.001}}=2.7169239322358924573830881219476}",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 95,
"tag": "p",
"text": "1.0001 1 0.0001 = 2.7181459268252248640376646749131 {\\displaystyle 1.0001^{\\frac {1}{0.0001}}=2.7181459268252248640376646749131}",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 96,
"tag": "p",
"text": "0.9 1 â 0.1 = 2.8679719907924413133222572312408 {\\displaystyle 0.9^{\\frac {1}{-0.1}}=2.8679719907924413133222572312408}",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 97,
"tag": "p",
"text": "0.99 1 â 0.01 = 2.7319990264290260038466717212578 {\\displaystyle 0.99^{\\frac {1}{-0.01}}=2.7319990264290260038466717212578}",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 98,
"tag": "p",
"text": "0.999 1 â 0.001 = 2.719642216442850365397553464404 {\\displaystyle 0.999^{\\frac {1}{-0.001}}=2.719642216442850365397553464404}",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 99,
"tag": "p",
"text": "0.9999 1 â 0.0001 = 2.7184177550104492651837311208356 {\\displaystyle 0.9999^{\\frac {1}{-0.0001}}=2.7184177550104492651837311208356}",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 100,
"tag": "p",
"text": "(èšç®:Windowsä»å±é»å)",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 101,
"tag": "p",
"text": "ãšãªããäžå®ã®å€ã«è¿ã¥ããŠãã(蚌æã¯æ°åŠIIIã®ç¯å²ã§ã¯ã§ããªã)ã ãã®äžå®ã®å€ãããªãã¡",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 102,
"tag": "p",
"text": "lim k â 0 ( 1 + k ) 1 k = 2.718281828... {\\displaystyle \\lim _{k\\to 0}(1+k)^{\\frac {1}{k}}=2.718281828...}",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 103,
"tag": "p",
"text": "ãeã§è¡šãããããšã lim k â 0 ( 1 + k ) 1 k = e {\\displaystyle \\lim _{k\\to 0}(1+k)^{\\frac {1}{k}}=e}",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 104,
"tag": "p",
"text": "ããããäžã®åŒã«ä»£å
¥ãããšã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 105,
"tag": "p",
"text": "ç¹ã« a = e {\\displaystyle a=e} ã®ãšãã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 106,
"tag": "p",
"text": "( log e x ) â² = 1 x {\\displaystyle (\\log _{e}x)'={\\frac {1}{x}}}",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 107,
"tag": "p",
"text": "eãåºãšãã察æ°ãèªç¶å¯Ÿæ°ãšããã eã¯ãèªç¶å¯Ÿæ°ã®åºããŸãã¯ããã€ãã¢æ°ããšåŒã°ããããšãå€ãã æ°åŠã§ã¯ã log e x {\\displaystyle \\log _{e}x} ã®eãçç¥ããŠlog xãšæžãã æ°åŠä»¥å€ã®åéã§ã¯ãåžžçšå¯Ÿæ°ãšåºå¥ããããã«ãln xãçšããããããšãããã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 108,
"tag": "p",
"text": "ãŸãã log | x | {\\displaystyle \\log |x|} ã®åŸ®åã¯ã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 109,
"tag": "p",
"text": "x>0ã®ãšã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 110,
"tag": "p",
"text": "x<0ã®ãšã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 111,
"tag": "p",
"text": "ãã£ãŠã ( log | x | ) â² = 1 x {\\displaystyle (\\log |x|)'={\\frac {1}{x}}}",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 112,
"tag": "p",
"text": "ãŸããåæé¢æ°ã®åŸ®åæ³ããã { l o g | f ( x ) | } â² = f â² ( x ) f ( x ) {\\displaystyle \\{log|f(x)|\\}'={\\frac {f'(x)}{f(x)}}} ãæãç«ã€ããšããããã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 113,
"tag": "p",
"text": "",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 114,
"tag": "p",
"text": "lim k â 0 ( 1 + k ) 1 k = e {\\displaystyle \\lim _{k\\to 0}(1+k)^{\\frac {1}{k}}=e} ãšå
ã»ã©å®çŸ©ãããããã®å®çŸ©åŒã¯ä»¥äžã®ããã«æžãæããããã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 115,
"tag": "p",
"text": "lim x â â ( 1 + 1 x ) x = e {\\displaystyle \\lim _{x\\to \\infty }(1+{\\frac {1}{x}})^{x}=e}",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 116,
"tag": "p",
"text": "lim x â â â ( 1 + 1 x ) x = e {\\displaystyle \\lim _{x\\to -\\infty }(1+{\\frac {1}{x}})^{x}=e}",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 117,
"tag": "p",
"text": "äžã®äºã€ã®åŒã¯ k = 1 x {\\displaystyle k={\\frac {1}{x}}} ãšçœ®ãæãããšããããã e {\\displaystyle e} ã®å®çŸ©åŒã®çåŽæ¥µéã®å Žåãè¡šããŠããããšããããã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 118,
"tag": "p",
"text": "ãããã®åŒãå©çšããããšã§ãä»ãŸã§è§£ããªãã£ããã¿ãŒã³ã®æ¥µéãæ±ããããããã«ãªãã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 119,
"tag": "p",
"text": "äŸé¡) lim x â 0 log ( 1 â x ) x {\\displaystyle \\lim _{x\\to 0}{\\frac {\\log(1-x)}{x}}} ã®æ¥µéãæ±ãã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 120,
"tag": "p",
"text": "解ç)",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 121,
"tag": "p",
"text": "lim x â 0 log ( 1 â x ) x = lim x â 0 log ( 1 â x ) 1 x {\\displaystyle \\lim _{x\\to 0}{\\frac {\\log(1-x)}{x}}=\\lim _{x\\to 0}\\log(1-x)^{\\frac {1}{x}}}",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 122,
"tag": "p",
"text": "â x = k {\\displaystyle -x=k} ãšãããš x â 0 {\\displaystyle x\\rightarrow 0} ã®ãšã k â 0 {\\displaystyle k\\rightarrow 0} ãªã®ã§ã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 123,
"tag": "p",
"text": "(äžåŒ) = lim k â 0 v log ( 1 + k ) â 1 k = lim k â 0 â log ( 1 + k ) 1 k {\\displaystyle =\\lim _{k\\to 0}v\\log(1+k)^{-{\\frac {1}{k}}}=\\lim _{k\\to 0}-\\log(1+k)^{\\frac {1}{k}}}",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 124,
"tag": "p",
"text": "ããã§ã察æ°é¢æ°ã¯é£ç¶é¢æ°ãªã®ã§ãlogãšlimãå
¥ãæ¿ããŠãè¯ãã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 125,
"tag": "p",
"text": "(äžåŒ) = â log { lim k â 0 ( 1 + k ) 1 k } = â log e = â 1 {\\displaystyle =-\\log\\{\\lim _{k\\to 0}(1+k)^{\\frac {1}{k}}\\}=-\\log e=-1}",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 126,
"tag": "p",
"text": "ãã£ãŠãåæããŠæ¥µéå€ã¯-1ã§ããã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 127,
"tag": "p",
"text": "",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 128,
"tag": "p",
"text": "y = a x ( a > 0 ) {\\displaystyle y=a^{x}(a>0)}",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 129,
"tag": "p",
"text": "䞡蟺ã®èªç¶å¯Ÿæ°ããšããšã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 130,
"tag": "p",
"text": "log y = x log a {\\displaystyle \\log y=x\\log a}",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 131,
"tag": "p",
"text": "䞡蟺ãxã§åŸ®åãããšã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 132,
"tag": "p",
"text": "y â² y = log a {\\displaystyle {\\frac {y'}{y}}=\\log a}",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 133,
"tag": "p",
"text": "y â² = y log a {\\displaystyle y'=y\\log a}",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 134,
"tag": "p",
"text": "y â² = a x log a {\\displaystyle y'=a^{x}\\log a}",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 135,
"tag": "p",
"text": "ç¹ã«a=eã®å Žå",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 136,
"tag": "p",
"text": "( e x ) â² = e x {\\displaystyle (e^{x})'=e^{x}}",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 137,
"tag": "p",
"text": "e x {\\displaystyle e^{x}} ã®xãç
©éãªå Žåã e x = e x p ( x ) {\\displaystyle e^{x}=exp(x)} ã®ããã«è¡šãå ŽåãããããŸãã䞡蟺ã®èªç¶å¯Ÿæ°ããšã£ãŠãã埮åããæäœã察æ°åŸ®åæ³ãšåŒã¶ã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 138,
"tag": "p",
"text": "",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 139,
"tag": "p",
"text": "埮åä¿æ°ã®å®çŸ©åŒãçšããŠæ¥µéãæ±ããããšãã§ããã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 140,
"tag": "p",
"text": "äŸé¡) lim x â 0 e x â 1 x {\\displaystyle \\lim _{x\\to 0}{\\frac {e^{x}-1}{x}}} ãæ±ãã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 141,
"tag": "p",
"text": "解ç)",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 142,
"tag": "p",
"text": "lim x â 0 e x â 1 x = lim x â 0 e x â e 0 x â 0 {\\displaystyle \\lim _{x\\to 0}{\\frac {e^{x}-1}{x}}=\\lim _{x\\to 0}{\\frac {e^{x}-e^{0}}{x-0}}}",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 143,
"tag": "p",
"text": "ããã§ã埮åä¿æ°ã®å®çŸ©åŒ f â² ( a ) = lim x â a f ( x ) â f ( a ) x â a {\\displaystyle f'(a)=\\lim _{x\\to a}{\\frac {f(x)-f(a)}{x-a}}} ããã f ( x ) = e x {\\displaystyle f(x)=e^{x}} ãšãããš f â² ( x ) = e x {\\displaystyle f'(x)=e^{x}} ã§",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 144,
"tag": "p",
"text": "(äžåŒ) = f â² ( 0 ) = e 0 = 1 {\\displaystyle =f'(0)=e^{0}=1}",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 145,
"tag": "p",
"text": "ãã£ãŠãåæããŠæ¥µéå€ã¯1ã§ããã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 146,
"tag": "p",
"text": "",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 147,
"tag": "p",
"text": "x a {\\displaystyle x^{a}} ã®ææ°ãæçæ° p {\\displaystyle p} ã®ãšãã ( x p ) â² = p x p â 1 {\\displaystyle (x^{p})'=px^{p-1}} ãæãç«ã€ã®ã¯æ¢ã«èšŒæããã æåŸã«ã x > 0 {\\displaystyle x>0} ãšããŠææ°ãå®æ°ã®ãšããèããã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 148,
"tag": "p",
"text": "y = x a {\\displaystyle y=x^{a}} ã® a {\\displaystyle a} ã¯å®æ°ã§ãããšããã 䞡蟺ã®çµ¶å¯Ÿå€ã®èªç¶å¯Ÿæ°ããšã£ãŠ",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 149,
"tag": "p",
"text": "䞡蟺ãxã§åŸ®åããŠã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 150,
"tag": "p",
"text": "ãã£ãŠ",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 151,
"tag": "p",
"text": "ãæãç«ã€ã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 152,
"tag": "p",
"text": "æåã¯ææ°ãèªç¶æ°ã®å Žåã®ã¿ã ã£ãã®ã«æ¯ã¹ãããäžè¬ã®ç¯å²ã§äžåŒãæãç«ã€ããšãããã£ãããã®ããã«ããåŒãããäžè¬ã«èšããããã«ããã®ããæ°åŠã®çºå±æ§ã§ããééå³ã§ããã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 153,
"tag": "p",
"text": "",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 154,
"tag": "p",
"text": "",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 155,
"tag": "p",
"text": "å°é¢æ°f'(x)ãf(x)ã®ç¬¬1次å°é¢æ°ãšããã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 156,
"tag": "p",
"text": "å°é¢æ°ã®å°é¢æ°ã第2次å°é¢æ°ãšããã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 157,
"tag": "p",
"text": "å°é¢æ°ã®å°é¢æ°ã®å°é¢æ°ã第3次å°é¢æ°ãšããã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 158,
"tag": "p",
"text": "äžè¬ã«ãé¢æ°f(x)ãnå埮åããŠåŸãããé¢æ°ã第n次å°é¢æ°ãšããã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 159,
"tag": "p",
"text": "y ( n ) , f ( n ) , d n y d x n , d n d x n f ( x ) {\\displaystyle y^{(n)},f^{(n)},{\\frac {d^{n}y}{dx^{n}}},{\\frac {d^{n}}{dx^{n}}}f(x)}",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 160,
"tag": "p",
"text": "ã®ããããã§è¡šãã ãŸããnã1,2,3ã®æã¯ãããã y â² , y â²â² , y â²â²â² {\\displaystyle y',y'',y'''} ã f â² ( x ) , f â²â² ( x ) , f â²â²â² ( x ) {\\displaystyle f'(x),f''(x),f'''(x)} ãšè¡šãã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 161,
"tag": "p",
"text": "2次以äžã®å°é¢æ°ãé«æ¬¡å°é¢æ°ãšããã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 162,
"tag": "p",
"text": "(äŸ) f ( x ) = x 5 {\\displaystyle f(x)=x^{5}} ã®ç¬¬3次å°é¢æ°ã¯",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 163,
"tag": "p",
"text": "f â² ( x ) = 5 x 4 {\\displaystyle f'(x)=5x^{4}}",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 164,
"tag": "p",
"text": "f â²â² ( x ) = 20 x 3 {\\displaystyle f''(x)=20x^{3}}",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 165,
"tag": "p",
"text": "f â²â²â² ( x ) = 60 x 2 {\\displaystyle f'''(x)=60x^{2}}",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 166,
"tag": "p",
"text": "ãªã®ã§ 60 x 2 {\\displaystyle 60x^{2}} ã§ããã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 167,
"tag": "p",
"text": "",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 168,
"tag": "p",
"text": "y = f ( x ) {\\displaystyle y=f(x)} ã®åœ¢ã§è¡šãããé¢æ°ãéœé¢æ°ãšåŒã¶ã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 169,
"tag": "p",
"text": "ããã«å¯Ÿã F ( x , y ) = 0 {\\displaystyle F(x,y)=0} ã®åœ¢ã§è¡šãããé¢æ°ãé°é¢æ°ãšåŒã¶ã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 170,
"tag": "p",
"text": "äŸãã°ãåã®æ¹çšåŒã¯é°é¢æ°è¡šç€ºãããé¢æ°ã§ããã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 171,
"tag": "p",
"text": "éœé¢æ°ãšé°é¢æ°ã¯äºãã«äºãã®åœ¢ãžãšå€åœ¢ã§ããããå€åœ¢ãããšåŒãç
©éã«ãªãå Žåããããããã§ã F ( x , y ) {\\displaystyle F(x,y)} ãåæé¢æ°ãšèŠåããŠåŸ®åããããšãèããã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 172,
"tag": "p",
"text": "(äŸ)åã®æ¹çšåŒ x 2 + y 2 = 4 {\\displaystyle x^{2}+y^{2}=4} ã«ã€ããŠã d d x y {\\displaystyle {\\frac {d}{dx}}y} ãæ±ããã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 173,
"tag": "p",
"text": "ãã®åŒãyã«ã€ããŠè§£ããš y = ± 4 â x 2 {\\displaystyle y=\\pm {\\sqrt {4-x^{2}}}} ã§ãããããã®åŒã埮åããããšãããšåŒãç
©éã§åä»ã§ããã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 174,
"tag": "p",
"text": "äžã®yã«ã€ããŠã®çåŒããå
ã®æ¹çšåŒã®yã¯ãxã®åŒãå¥ã®æåã§çœ®æãããã®ããšèããããã®ã§ãåæé¢æ°ã®åŸ®åæ³ãå©çšãããšå
ã®åœ¢ã®ãŸãŸåŸ®åãã§ããã å
ã®æ¹çšåŒã®äž¡èŸºãxã§åŸ®åãããšã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 175,
"tag": "p",
"text": "ãã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 176,
"tag": "p",
"text": "ãªã®ã§ã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 177,
"tag": "p",
"text": "ããªãã¡",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 178,
"tag": "p",
"text": "ã§ããã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 179,
"tag": "p",
"text": "ãªããç
©éã«ãªãã®ã§yãxã®åŒã«çŽãå¿
èŠã¯ãªãã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 180,
"tag": "p",
"text": "",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 181,
"tag": "p",
"text": "ãã¯ãã«ã§ç¿ã£ãããã«ãçŽç·ã®æ¹çšåŒã¯åªä»å€æ°tãçšããŠäžæ¬¡é¢æ° x = f ( t ) , y = g ( t ) {\\displaystyle x=f(t),y=g(t)} ã§è¡šãããããããåªä»å€æ°è¡šç€ºããšåŒãã ã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 182,
"tag": "p",
"text": "äžè¬ã«ãåªä»å€æ°è¡šç€º x = f ( t ) , y = g ( t ) {\\displaystyle x=f(t),y=g(t)} ã¯æ²ç·ãè¡šããããã§ãããæ²ç·ãã¯åã«æ²ãã£ãç·ã®ããšã§ã¯ãªããçŽç·ãå«ãäžè¬çãªç·ã®ããšã§ããã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 183,
"tag": "p",
"text": "x = f ( t ) , y = g ( t ) {\\displaystyle x=f(t),y=g(t)} ãxã§åŸ®åãããã é¢æ°f,gãäžè§é¢æ°ã®å Žåçãé«æ ¡ç¯å²ã§ã¯tãæ¶å»ã§ããªãããšãããã®ã§ãåªä»å€æ°è¡šç€ºã®ãŸãŸåŸ®åããããšãèããã y = g ( t ) ⺠t = g â 1 ( y ) {\\displaystyle y=g(t)\\iff t=g^{-1}(y)} ãããtãyã®åŒãšèãããš x = f ( t ) {\\displaystyle x=f(t)} ã¯åæé¢æ°ãšèŠåããã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 184,
"tag": "p",
"text": "ãã£ãŠãåæé¢æ°ã®åŸ®åæ³ãã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 185,
"tag": "p",
"text": "ã§ããã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 186,
"tag": "p",
"text": "ããã§ãéé¢æ°ã®åŸ®åæ³ãã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 187,
"tag": "p",
"text": "ã§ããã®ã§ã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 188,
"tag": "p",
"text": "ãæãç«ã€ã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 189,
"tag": "p",
"text": "ãªãã d 2 d x 2 y {\\displaystyle {\\frac {d^{2}}{dx^{2}}}y} 㯠d y d x {\\displaystyle {\\frac {dy}{dx}}} ã«åã³åªä»å€æ°æ²ç·ã®åŸ®åæ³ãçšããããšã§ã d d t ( d y d x ) d x d t {\\displaystyle {\\frac {{\\frac {d}{dt}}({\\frac {dy}{dx}})}{\\frac {dx}{dt}}}} ã®ããã«èšç®ã§ããã",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 190,
"tag": "p",
"text": "",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 191,
"tag": "p",
"text": "",
"title": "æ§ã
ãªå°é¢æ°"
},
{
"paragraph_id": 192,
"tag": "p",
"text": "é¢æ° f ( x ) {\\displaystyle f(x)} äžã®ç¹ ( a , f ( a ) ) {\\displaystyle (a,f(a))} ã«ãããæ¥ç·ã®åŸã㯠f â² ( a ) {\\displaystyle f'(a)} ã§ããã®ã§ãæ¥ç·ã®æ¹çšåŒã¯",
"title": "å°é¢æ°ã®å¿çš"
},
{
"paragraph_id": 193,
"tag": "p",
"text": "y â f ( a ) = f â² ( a ) ( x â a ) {\\displaystyle y-f(a)=f'(a)(x-a)}",
"title": "å°é¢æ°ã®å¿çš"
},
{
"paragraph_id": 194,
"tag": "p",
"text": "ãšãªãã",
"title": "å°é¢æ°ã®å¿çš"
},
{
"paragraph_id": 195,
"tag": "p",
"text": "ãŸããæ¥ç¹ãéãæ¥ç·ã«åçŽãªçŽç·ãæ³ç·(ã»ããã)ãšããã åçŽãªçŽç·å士ã¯åŸãã®ç¬Šå·ãéã§ãããåŸãã®çµ¶å¯Ÿå€ãéæ°ã§ããã®ã§ãæ³ç·ã®æ¹çšåŒã¯",
"title": "å°é¢æ°ã®å¿çš"
},
{
"paragraph_id": 196,
"tag": "p",
"text": "y â f ( a ) = â 1 f â² ( a ) ( x â a ) {\\displaystyle y-f(a)=-{\\frac {1}{f'(a)}}(x-a)}",
"title": "å°é¢æ°ã®å¿çš"
},
{
"paragraph_id": 197,
"tag": "p",
"text": "ãšãªãã",
"title": "å°é¢æ°ã®å¿çš"
},
{
"paragraph_id": 198,
"tag": "p",
"text": "",
"title": "å°é¢æ°ã®å¿çš"
},
{
"paragraph_id": 199,
"tag": "p",
"text": "f â² ( a ) {\\displaystyle f'(a)} 㯠f ( x ) {\\displaystyle f(x)} ã®ç¹ ( a , f ( a ) ) {\\displaystyle (a,f(a))} ã§ã®åŸããè¡šãã",
"title": "å°é¢æ°ã®å¿çš"
},
{
"paragraph_id": 200,
"tag": "p",
"text": "ãã£ãŠã",
"title": "å°é¢æ°ã®å¿çš"
},
{
"paragraph_id": 201,
"tag": "p",
"text": "ã§ããã",
"title": "å°é¢æ°ã®å¿çš"
},
{
"paragraph_id": 202,
"tag": "p",
"text": "ãŸãã f â² ( a ) = 0 {\\displaystyle f'(a)=0} ã§ã a {\\displaystyle a} ã®ååŸã§ f â² ( x ) {\\displaystyle f'(x)} ã®ç¬Šå·ã + {\\displaystyle +} ãã â {\\displaystyle -} ã«å€ãããªãã°ã f ( x ) {\\displaystyle f(x)} ã¯ç¹ ( a , f ( a ) ) {\\displaystyle (a,f(a))} ã§å¢å ããæžå°ã«è»¢ããããã®ãšãã® f ( a ) {\\displaystyle f(a)} ã極倧å€(ãããã ãã¡)ãšããã ãŸãã â {\\displaystyle -} ãã + {\\displaystyle +} ã«å€ãããªãã°ã f ( x ) {\\displaystyle f(x)} ã¯ç¹ ( a , f ( a ) ) {\\displaystyle (a,f(a))} ã§æžå°ããå¢å ã«è»¢ããã®ã§ããã®ãšãã® f ( a ) {\\displaystyle f(a)} ã極å°å€(ããããããã¡)ãšããã 極倧å€ãšæ¥µå°å€ããŸãšããŠæ¥µå€(ãããã¡)ãšããã f â² ( a ) = 0 {\\displaystyle f'(a)=0} ã§ãã£ãŠããååŸã§ç¬Šå·ãå€ãããªããã° f ( a ) {\\displaystyle f(a)} ã¯æ¥µå€ã§ã¯ãªãã",
"title": "å°é¢æ°ã®å¿çš"
},
{
"paragraph_id": 203,
"tag": "p",
"text": "第äºæ¬¡å°é¢æ°ã®å³åœ¢çãªæå³ãèããŠã¿ãããå°é¢æ°ã¯åç¹ã§ã®æ¥ç·ã®åŸããè¡šããŠããã第äºæ¬¡å°é¢æ°ã¯å°é¢æ°ã®å°é¢æ°ã ãããæ¥ç·ã®åŸãã®å€åçãããªãã¡ã°ã©ãã®æ²ããå
·åãè¡šããŠããããšã«ãªãã第äºæ¬¡å°é¢æ°ãæ£ã®ãšãã¯åŸããå¢å ããŠããã®ã ããã°ã©ãã¯äžã«åžãè² ã®ãšãã¯äžã«åžãšãªãã",
"title": "å°é¢æ°ã®å¿çš"
},
{
"paragraph_id": 204,
"tag": "p",
"text": "ã°ã©ãã®æ²ããå
·åãå€ããç¹ã®ããšãå€æ²ç¹(ãžãããããŠã)ãšãããäžã®èå¯ãããå€æ²ç¹ã¯ç¬¬äºæ¬¡å°é¢æ°ã®ç¬Šå·ãå€ããç¹ã§ããããšããããã極å€ã®å Žåãšåæ§ã«ãããšã f â²â² ( a ) = 0 {\\displaystyle f''(a)=0} ã§ãã£ãŠãã笊å·ãå€ãããªããã°å€æ²ç¹ã§ã¯ãªãã",
"title": "å°é¢æ°ã®å¿çš"
},
{
"paragraph_id": 205,
"tag": "p",
"text": "é¢æ°ã®ã°ã©ããæžããšãã«ã¯ãå€æ²ç¹ã®æ
å ±ã¯æ¥µå€ãšåæ§ã«éèŠãªã®ã§ãå¢æžè¡šã«ã第äºæ¬¡å°é¢æ°ã®æ¬ãã€ãããå€æ²ç¹ãèšå
¥ãããšããã",
"title": "å°é¢æ°ã®å¿çš"
},
{
"paragraph_id": 206,
"tag": "p",
"text": "",
"title": "å°é¢æ°ã®å¿çš"
},
{
"paragraph_id": 207,
"tag": "p",
"text": "(ååŠãåç
§ã)",
"title": "å°é¢æ°ã®å¿çš"
},
{
"paragraph_id": 208,
"tag": "p",
"text": "æ°çŽç·äžãéåããç©äœãæå» t {\\displaystyle t} ã®ãšãäœçœ® x ( t ) {\\displaystyle x(t)} ã«ãããšããããã®ç©äœã®é床ãæ±ããã æå»ã t {\\displaystyle t} ãã t + h {\\displaystyle t+h} ã«ç§»åãããšããç©äœã¯ x ( t ) {\\displaystyle x(t)} ãã x ( t + h ) {\\displaystyle x(t+h)} ã®äœçœ®ã«ç§»åããããã®ãšãã®å¹³åã®é床㯠Πx Î t = x ( t + h ) â x ( t ) ( t + h ) â t = x ( t + h ) â x ( t ) h {\\displaystyle {\\frac {\\Delta x}{\\Delta t}}={\\frac {x(t+h)-x(t)}{(t+h)-t}}={\\frac {x(t+h)-x(t)}{h}}} ããã§ã Î t = h {\\displaystyle \\Delta t=h} ãªã®ã§ã h {\\displaystyle h} ãéããªã 0 ã«è¿ã¥ããã°ããã®ç©äœã®ç¬éã®é床ãæ±ãããããæå» t {\\displaystyle t} ã®ãšãã®ç©äœã®ç¬éã®é床ã v ( t ) {\\displaystyle v(t)} ãšããã°ã v ( t ) = lim h â 0 x ( t + h ) â x ( t ) h = x â² ( t ) = d x d t {\\displaystyle v(t)=\\lim _{h\\to 0}{\\frac {x(t+h)-x(t)}{h}}=x'(t)={\\frac {dx}{dt}}} ã§ããã",
"title": "å°é¢æ°ã®å¿çš"
},
{
"paragraph_id": 209,
"tag": "p",
"text": "åæ§ã«ãå é床ã«ã€ããŠããæå» t {\\displaystyle t} ã®ãšãã®ç©äœã®å é床ã a ( t ) {\\displaystyle a(t)} ãšããã°",
"title": "å°é¢æ°ã®å¿çš"
},
{
"paragraph_id": 210,
"tag": "p",
"text": "a ( t ) = lim Î t â 0 Î v Î t = lim Î h â 0 x â² ( t + h ) â x â² ( t ) h = x â²â² ( t ) = d 2 x d t 2 {\\displaystyle a(t)=\\lim _{\\Delta t\\to 0}{\\frac {\\Delta v}{\\Delta t}}=\\lim _{\\Delta h\\to 0}{\\frac {x'(t+h)-x'(t)}{h}}=x''(t)={\\frac {d^{2}x}{dt^{2}}}}",
"title": "å°é¢æ°ã®å¿çš"
},
{
"paragraph_id": 211,
"tag": "p",
"text": "ããã¯ãå¹³é¢äžãéåããç©äœã«ãæ¡åŒµã§ãããæå» t {\\displaystyle t} ã®ãšãã®ç©äœã®äœçœ®ãã¯ãã«ã x â ( t ) = ( x ( t ) , y ( t ) ) {\\displaystyle {\\vec {x}}(t)=(x(t),y(t))} ã§äžãããããšãããã®ç©äœã®é床ãã¯ãã« v â {\\displaystyle {\\vec {v}}} 㯠v â = lim Î t â 0 Î x â Î t = d x â d t = ( d x d t , d y d t ) {\\displaystyle {\\vec {v}}=\\lim _{\\Delta t\\to 0}{\\frac {\\Delta {\\vec {x}}}{\\Delta t}}={\\frac {d{\\vec {x}}}{dt}}=\\left({\\frac {dx}{dt}},{\\frac {dy}{dt}}\\right)} ã§ãããåæ§ã«å é床ãã¯ãã« a â {\\displaystyle {\\vec {a}}} ã«ã€ããŠãã a â = ( d 2 x d t 2 , d 2 x d t 2 ) {\\displaystyle {\\vec {a}}=\\left({\\frac {d^{2}x}{dt^{2}}},{\\frac {d^{2}x}{dt^{2}}}\\right)} ã",
"title": "å°é¢æ°ã®å¿çš"
},
{
"paragraph_id": 212,
"tag": "p",
"text": "äŸãã°ãè§é床 Ï {\\displaystyle \\omega } ã§åç¹ãäžå¿ã«ååŸ r {\\displaystyle r} ã®åéåããç©äœã t = 0 {\\displaystyle t=0} 㧠x â ( 0 ) = ( r , 0 ) {\\displaystyle {\\vec {x}}(0)=(r,0)} ã«ãããšãããã®ç©äœã®æå» t {\\displaystyle t} ã®ãšãã®äœçœ®ãã¯ãã« x â ( t ) {\\displaystyle {\\vec {x}}(t)} 㯠x â ( t ) = r ( cos Ï t sin Ï t ) {\\displaystyle {\\vec {x}}(t)=r\\left({\\begin{aligned}\\cos \\omega t\\\\\\sin \\omega t\\end{aligned}}\\right)} ã§ãããé床ãã¯ãã«ã¯ã v â = d x â d t = r Ï ( â sin Ï t cos Ï t ) {\\displaystyle {\\vec {v}}={\\frac {d{\\vec {x}}}{dt}}=r\\omega \\left({\\begin{aligned}-\\sin \\omega t\\\\\\cos \\omega t\\end{aligned}}\\right)} ãå é床ãã¯ãã«ã¯ a â = d 2 x â d 2 t = â r Ï 2 ( cos Ï t sin Ï t ) = â Ï 2 x â ( t ) {\\displaystyle {\\vec {a}}={\\frac {d^{2}{\\vec {x}}}{d^{2}t}}=-r\\omega ^{2}\\left({\\begin{aligned}\\cos \\omega t\\\\\\sin \\omega t\\end{aligned}}\\right)=-\\omega ^{2}{\\vec {x}}(t)} ããããããäœçœ®ãã¯ãã« x â ( t ) {\\displaystyle {\\vec {x}}(t)} ãšé床ãã¯ãã« v â ( t ) {\\displaystyle {\\vec {v}}(t)} ã¯çŽè¡ããäœçœ®ãã¯ãã« x â ( t ) {\\displaystyle {\\vec {x}}(t)} ãšå é床ãã¯ãã« a â ( t ) {\\displaystyle {\\vec {a}}(t)} ã¯éåãã§ããã | v â ( t ) | = r Ï {\\displaystyle |{\\vec {v}}(t)|=r\\omega } ã | a â ( t ) | = r Ï 2 {\\displaystyle |{\\vec {a}}(t)|=r\\omega ^{2}} ãæç«ããããšãåããã",
"title": "å°é¢æ°ã®å¿çš"
},
{
"paragraph_id": 213,
"tag": "p",
"text": "ãŸããåéåã® x {\\displaystyle x} æå ãŸã㯠y {\\displaystyle y} æåã ãã«æ³šç®ããã°ãããã¯åæ¯åã§ããã",
"title": "å°é¢æ°ã®å¿çš"
},
{
"paragraph_id": 214,
"tag": "p",
"text": "",
"title": "å°é¢æ°ã®å¿çš"
},
{
"paragraph_id": 215,
"tag": "p",
"text": "埮åä¿æ° f â² ( a ) {\\displaystyle f'(a)} 㯠lim h â 0 f ( a + h ) â f ( a ) h = f â² ( a ) {\\displaystyle \\lim _{h\\to 0}{\\frac {f(a+h)-f(a)}{h}}=f'(a)} ãªã®ã§ã | h | {\\displaystyle |h|} ãååå°ãããšãã f ( a + b ) â f ( a ) h â f â² ( a ) {\\displaystyle {\\frac {f(a+b)-f(a)}{h}}\\fallingdotseq f'(a)} ã§ãããããªãã¡ã f ( a + h ) â f ( a ) + f â² ( a ) h {\\displaystyle f(a+h)\\fallingdotseq f(a)+f'(a)h} ãæãç«ã€ããããäžæ¬¡è¿äŒŒåŒãšåŒã¶ã",
"title": "å°é¢æ°ã®å¿çš"
},
{
"paragraph_id": 216,
"tag": "p",
"text": "ãŸãã a = 0 , h = x {\\displaystyle a=0,h=x} ãšãããšã | x | {\\displaystyle |x|} ãå°ãããšã f ( x ) â f ( 0 ) + f â² ( 0 ) x {\\displaystyle f(x)\\fallingdotseq f(0)+f'(0)x} ã§ããã",
"title": "å°é¢æ°ã®å¿çš"
},
{
"paragraph_id": 217,
"tag": "p",
"text": "g ( x ) = p x 2 + q x + r {\\displaystyle g(x)=px^{2}+qx+r} ãšããã f ( a + h ) â g ( a + h ) {\\displaystyle f(a+h)\\fallingdotseq g(a+h)} ãšèŠåãããšã«ããã f ( a + h ) â f ( a ) + f â² ( a ) h + f â²â² ( a ) 2 h 2 {\\displaystyle f(a+h)\\fallingdotseq f(a)+f'(a)h+{\\frac {f''(a)}{2}}h^{2}} ãåŸãããããããäºæ¬¡è¿äŒŒåŒãšåŒã¶ã",
"title": "å°é¢æ°ã®å¿çš"
},
{
"paragraph_id": 218,
"tag": "p",
"text": "äžæ¬¡è¿äŒŒåŒãšäºæ¬¡è¿äŒŒåŒãèŠæ¯ã¹ããšãn次è¿äŒŒåŒã¯né
ç®ãŸã§ã®æéçŽæ°ã«ãªãããšãäºæ³ã§ãããããã§ãè¿äŒŒåŒã®æ¬¡æ°ãç¡éã«å€§ããããŠãããšãè¿äŒŒå€ã§ã¯ãªãçã«æ£ç¢ºãªå€ãåŸããããéã«èšããšãçã«æ£ç¢ºãªå€ãæ±ããç¡éçŽæ°ãããé
ã§æã¡åãããšã§ãè¿äŒŒåŒãšããŠæ©èœããããã®ç¡éçŽæ°ã«ã€ããŠã¯ä»¥äžã®ããã€ã©ãŒçŽæ°ããåç
§ã",
"title": "å°é¢æ°ã®å¿çš"
},
{
"paragraph_id": 219,
"tag": "p",
"text": "",
"title": "å°é¢æ°ã®å¿çš"
},
{
"paragraph_id": 220,
"tag": "p",
"text": "é¢æ° f ( x ) {\\displaystyle f(x)} 㯠[ a , b ] {\\displaystyle [a,b]} ã§é£ç¶ã ( a , b ) {\\displaystyle (a,b)} ã§åŸ®åå¯èœãšããã",
"title": "åèäºé
"
},
{
"paragraph_id": 221,
"tag": "p",
"text": "f ( a ) = f ( b ) {\\displaystyle f(a)=f(b)} ãªãã° f â² ( c ) = 0 {\\displaystyle f'(c)=0} ãšãªãç¹ a < c < b {\\displaystyle a<c<b} ãååšããã",
"title": "åèäºé
"
},
{
"paragraph_id": 222,
"tag": "p",
"text": "蚌æ",
"title": "åèäºé
"
},
{
"paragraph_id": 223,
"tag": "p",
"text": "é¢æ° f ( x ) {\\displaystyle f(x)} ã«ã¯æ倧å€ãŸãã¯æå°å€ã a < x < b {\\displaystyle a<x<b} ã®ç¯å²ã«äžã€ä»¥äžååšãããæ倧å€ãŸãã¯æå°å€ã§ã¯é¢æ°ã®å°é¢æ°ã¯ 0 ãªã®ã§ããã®ç¹ãéžã³ c {\\displaystyle c} ãšãããšã f â² ( c ) = 0 {\\displaystyle f'(c)=0} ãšãªãã",
"title": "åèäºé
"
},
{
"paragraph_id": 224,
"tag": "p",
"text": "",
"title": "åèäºé
"
},
{
"paragraph_id": 225,
"tag": "p",
"text": "é¢æ° f ( x ) {\\displaystyle f(x)} 㯠[ a , b ] {\\displaystyle [a,b]} ã§é£ç¶ã ( a , b ) {\\displaystyle (a,b)} ã§åŸ®åå¯èœãšããããã®ãšãã f ( b ) â f ( a ) b â a = f â² ( c ) {\\displaystyle {\\frac {f(b)-f(a)}{b-a}}=f'(c)} ãšãªã a < c < b {\\displaystyle a<c<b} ãååšããã",
"title": "åèäºé
"
},
{
"paragraph_id": 226,
"tag": "p",
"text": "蚌æ",
"title": "åèäºé
"
},
{
"paragraph_id": 227,
"tag": "p",
"text": "g ( x ) = f ( x ) â A x {\\displaystyle g(x)=f(x)-Ax} ãšãããå®æ° A {\\displaystyle A} ã g ( a ) = g ( b ) {\\displaystyle g(a)=g(b)} ãæºããããã«å®ããã",
"title": "åèäºé
"
},
{
"paragraph_id": 228,
"tag": "p",
"text": "ãããã£ãŠã f ( a ) â A a = f ( b ) â A b {\\displaystyle f(a)-Aa=f(b)-Ab} ããã A = f ( b ) â f ( a ) b â a {\\displaystyle A={\\frac {f(b)-f(a)}{b-a}}} ã§ããã",
"title": "åèäºé
"
},
{
"paragraph_id": 229,
"tag": "p",
"text": "ããã§ãé¢æ° g ( x ) {\\displaystyle g(x)} ã«å¯ŸããŠããã«ã®å®çãçšããããšã«ããã g â² ( c ) = 0 {\\displaystyle g'(c)=0} ãšãªã a < c < b {\\displaystyle a<c<b} ãååšããã g â² ( x ) = f â² ( x ) â A {\\displaystyle g'(x)=f'(x)-A} ã§ããããã f â² ( c ) = A = f ( b ) â f ( a ) b â a {\\displaystyle f'(c)=A={\\frac {f(b)-f(a)}{b-a}}} ãšãªã a < c < b {\\displaystyle a<c<b} ãååšããããšããããã",
"title": "åèäºé
"
},
{
"paragraph_id": 230,
"tag": "p",
"text": "",
"title": "åèäºé
"
},
{
"paragraph_id": 231,
"tag": "p",
"text": "é¢æ° f ( x ) , g ( x ) {\\displaystyle f(x),g(x)} 㯠[ a , b ] {\\displaystyle [a,b]} ã§é£ç¶ã ( a , b ) {\\displaystyle (a,b)} ã§åŸ®åå¯èœãšããããã®ãšãã { g ( b ) â g ( a ) } f â² ( c ) = { f ( b ) â f ( a ) } g â² ( c ) {\\displaystyle \\{g(b)-g(a)\\}f'(c)=\\{f(b)-f(a)\\}g'(c)} ãšãªã c â ( a , b ) {\\displaystyle c\\in (a,b)} ãååšãããããã«ã g â² ( c ) â 0 , g ( a ) â g ( b ) {\\displaystyle g'(c)\\neq 0,\\,g(a)\\neq g(b)} ãšããã°ã f ( b ) â f ( a ) g ( b ) â g ( a ) = f â² ( c ) g â² ( c ) {\\displaystyle {\\frac {f(b)-f(a)}{g(b)-g(a)}}={\\frac {f'(c)}{g'(c)}}} ãšãªã c â ( a , b ) {\\displaystyle c\\in (a,b)} ãååšããã",
"title": "åèäºé
"
},
{
"paragraph_id": 232,
"tag": "p",
"text": "蚌æ",
"title": "åèäºé
"
},
{
"paragraph_id": 233,
"tag": "p",
"text": "h ( t ) = { f ( b ) â f ( a ) } g ( t ) â { g ( b ) â g ( a ) } f ( t ) {\\displaystyle h(t)=\\{f(b)-f(a)\\}g(t)-\\{g(b)-g(a)\\}f(t)} ãšãããããã§ã h ( t ) {\\displaystyle h(t)} 㯠[ a , b ] {\\displaystyle [a,b]} ã§é£ç¶ã ( a , b ) {\\displaystyle (a,b)} ã§åŸ®åå¯èœã h ( a ) = h ( b ) {\\displaystyle h(a)=h(b)} ãªã®ã§ããã«ã®å®çããã h â² ( c ) = 0 {\\displaystyle h'(c)=0} ãšãªã c â ( a , b ) {\\displaystyle c\\in (a,b)} ãååšããã h â² ( c ) = 0 {\\displaystyle h'(c)=0} ãå€åœ¢ã㊠{ g ( b ) â g ( a ) } f â² ( c ) = { f ( b ) â f ( a ) } g â² ( c ) {\\displaystyle \\{g(b)-g(a)\\}f'(c)=\\{f(b)-f(a)\\}g'(c)} ãåŸããããã«ã g â² ( c ) â 0 , g ( a ) â g ( b ) {\\displaystyle g'(c)\\neq 0,\\,g(a)\\neq g(b)} ãªãã°ã f ( b ) â f ( a ) g ( b ) â g ( a ) = f â² ( c ) g â² ( c ) {\\displaystyle {\\frac {f(b)-f(a)}{g(b)-g(a)}}={\\frac {f'(c)}{g'(c)}}} ã§ããã",
"title": "åèäºé
"
},
{
"paragraph_id": 234,
"tag": "p",
"text": "",
"title": "åèäºé
"
},
{
"paragraph_id": 235,
"tag": "p",
"text": "f ( x ) {\\displaystyle f(x)} ãåºé I {\\displaystyle I} 㧠n {\\displaystyle n} å埮åå¯èœãªé¢æ°ãšãããä»»æã® a , x â I {\\displaystyle a,x\\in I} ã«å¯ŸããŠã Ο {\\displaystyle \\xi } ã a , x {\\displaystyle a,x} ã®äžéã«ååšããŠã",
"title": "åèäºé
"
},
{
"paragraph_id": 236,
"tag": "p",
"text": "f ( x ) = f ( a ) + f â² ( a ) 1 ! ( x â a ) + f â²â² ( a ) 2 ! ( x â a ) 2 + ⯠+ f ( n â 1 ) ( a ) ( n â 1 ) ! ( x â a ) n â 1 + f ( n ) ( Ο ) n ! ( x â a ) n . {\\displaystyle f(x)=f(a)+{\\frac {f'(a)}{1!}}(x-a)+{\\frac {f''(a)}{2!}}(x-a)^{2}+\\cdots +{\\frac {f^{(n-1)}(a)}{(n-1)!}}(x-a)^{n-1}+{\\frac {f^{(n)}(\\xi )}{n!}}(x-a)^{n}.}",
"title": "åèäºé
"
},
{
"paragraph_id": 237,
"tag": "p",
"text": "蚌æ",
"title": "åèäºé
"
},
{
"paragraph_id": 238,
"tag": "p",
"text": "F ( x ) = f ( x ) â [ f ( a ) + f â² ( a ) 1 ! ( x â a ) + f â²â² ( a ) 2 ! ( x â a ) 2 + ⯠+ f ( n â 1 ) ( a ) ( n â 1 ) ! ( x â a ) n â 1 ] {\\displaystyle F(x)=f(x)-\\left[f(a)+{\\frac {f'(a)}{1!}}(x-a)+{\\frac {f''(a)}{2!}}(x-a)^{2}+\\cdots +{\\frac {f^{(n-1)}(a)}{(n-1)!}}(x-a)^{n-1}\\right]} ãšããã F ( x ) {\\displaystyle F(x)} ãšé¢æ° ( x â a ) n {\\displaystyle (x-a)^{n}} ã«å¯ŸããŠãã³ãŒã·ãŒã®å¹³åå€ã®å®çãé©çšãããšã F ( a ) = 0 {\\displaystyle F(a)=0} ããã F ( x ) ( x â a ) n = F ( x ) â F ( a ) ( x â a ) n â ( a â a ) n = F â² ( x 1 ) n ( x 1 â a ) n â 1 {\\displaystyle {\\frac {F(x)}{(x-a)^{n}}}={\\frac {F(x)-F(a)}{(x-a)^{n}-(a-a)^{n}}}={\\frac {F'(x_{1})}{n(x_{1}-a)^{n-1}}}} ãšãªã x 1 {\\displaystyle x_{1}} ã a , x {\\displaystyle a,x} ã®äžéã«ååšããã F â² ( a ) = F â²â² ( a ) = ⯠= F ( n â 1 ) ( a ) = 0 {\\displaystyle F'(a)=F''(a)=\\cdots =F^{(n-1)}(a)=0} ã§ãããããå³èŸºã«ãåæ§ã«ã³ãŒã·ãŒã®å¹³åå€ã®å®çãé©çšããããšã§ã F ( x ) ( x â a ) n = F â² ( x 1 ) n ( x 1 â a ) n â 1 = F â²â² ( x 2 ) n ( n â 1 ) ( x 2 â a ) n â 2 = ⯠= F ( n ) ( Ο ) n ! {\\displaystyle {\\frac {F(x)}{(x-a)^{n}}}={\\frac {F'(x_{1})}{n(x_{1}-a)^{n-1}}}={\\frac {F''(x_{2})}{n(n-1)(x_{2}-a)^{n-2}}}=\\cdots ={\\frac {F^{(n)}(\\xi )}{n!}}} ãšãªã x 1 , x 2 , ⯠, Ο {\\displaystyle x_{1},x_{2},\\cdots ,\\xi } ã a , x {\\displaystyle a,x} ã®äžéã«ååšããã F ( n ) ( x ) = f ( n ) ( x ) {\\displaystyle F^{(n)}(x)=f^{(n)}(x)} ã ããã F ( x ) = f ( n ) ( Ο ) n ! ( x â a ) n {\\displaystyle F(x)={\\frac {f^{(n)}(\\xi )}{n!}}(x-a)^{n}} ãåŸãã",
"title": "åèäºé
"
},
{
"paragraph_id": 239,
"tag": "p",
"text": "é¢æ° g ( x ) {\\displaystyle g(x)} ã«å¯ŸããŠã lim x â a f ( x ) g ( x ) = 0 {\\displaystyle \\lim _{x\\to a}{\\frac {f(x)}{g(x)}}=0} ãšãªããããªé¢æ° f ( x ) {\\displaystyle f(x)} ãäžè¬ã« o g {\\displaystyle og} ãšè¡šãã",
"title": "åèäºé
"
},
{
"paragraph_id": 240,
"tag": "p",
"text": "ã©ã³ããŠèšå·ã«ã€ããŠæ¬¡ãæãç«ã€ã",
"title": "åèäºé
"
},
{
"paragraph_id": 241,
"tag": "p",
"text": "ã©ã³ããŠã®èšå·ã¯äžè¬ã«ã¯éãé¢æ°ãåãèšå·ã§è¡šããŠããã®ã§æ³šæãå¿
èŠã§ãããäŸãã° 1. ã¯ä»»æã® f = o h , g = o h {\\displaystyle f=oh,\\,g=oh} ã§ããé¢æ°ã«ã€ããŠã lim x â a f + g h = 0 {\\displaystyle \\lim _{x\\to a}{\\frac {f+g}{h}}=0} ãšããæå³ã§ããã",
"title": "åèäºé
"
},
{
"paragraph_id": 242,
"tag": "p",
"text": "2. 㯠f = o h {\\displaystyle f=oh} ãšãããšã k f h â 0. {\\displaystyle {\\frac {kf}{h}}\\to 0.} 3. 㯠f g â 0 , g h â 0 {\\displaystyle {\\frac {f}{g}}\\to 0,\\,{\\frac {g}{h}}\\to 0} ãªãã°ã f h = f g g h â 0 {\\displaystyle {\\frac {f}{h}}={\\frac {f}{g}}{\\frac {g}{h}}\\to 0} ãšãªãããã f = o h . {\\displaystyle f=oh.}",
"title": "åèäºé
"
},
{
"paragraph_id": 243,
"tag": "p",
"text": "ã©ã³ããŠã®èšå·ã«ã€ããŠã x {\\displaystyle x} ãã©ãã«è¿ã¥ãããšãã( x â a {\\displaystyle x\\to a} )ãšããããšã¯éèŠã ããæèããæãããªå Žåã¯çç¥ãããã",
"title": "åèäºé
"
},
{
"paragraph_id": 244,
"tag": "p",
"text": "ãã€ã©ãŒã®å®çã«ãããå³èŸºæåŸã®é
ãå°äœé
ãšãããããã R n {\\displaystyle R_{n}} ãšæžãã f ( n ) ( x ) {\\displaystyle f^{(n)}(x)} ã x = a {\\displaystyle x=a} ã§é£ç¶ãªãã°ã lim x â a R n ( x â a ) n = lim Ο â a f ( n ) ( Ο ) n ! = f ( n ) ( a ) n ! . {\\displaystyle \\lim _{x\\to a}{\\frac {R_{n}}{(x-a)^{n}}}=\\lim _{\\xi \\to a}{\\frac {f^{(n)}(\\xi )}{n!}}={\\frac {f^{(n)}(a)}{n!}}.}",
"title": "åèäºé
"
},
{
"paragraph_id": 245,
"tag": "p",
"text": "ããã¯ã lim x â a R n â f ( n ) ( a ) n ! ( x â a ) n ( x â a ) n = 0 {\\displaystyle \\lim _{x\\to a}{\\frac {R_{n}-{\\frac {f^{(n)}(a)}{n!}}(x-a)^{n}}{(x-a)^{n}}}=0} ãšæžããããã R n = f ( n ) ( a ) n ! ( x â a ) n + o ( x â a ) n . {\\displaystyle R_{n}={\\frac {f^{(n)}(a)}{n!}}(x-a)^{n}+o{(x-a)^{n}}.}",
"title": "åèäºé
"
},
{
"paragraph_id": 246,
"tag": "p",
"text": "ããªãã¡ã",
"title": "åèäºé
"
},
{
"paragraph_id": 247,
"tag": "p",
"text": "f ( x ) = f ( a ) + f â² ( a ) 1 ! ( x â a ) + f â²â² ( a ) 2 ! ( x â a ) 2 + ⯠+ f ( n ) ( a ) n ! ( x â a ) n + o ( x â a ) n {\\displaystyle f(x)=f(a)+{\\frac {f'(a)}{1!}}(x-a)+{\\frac {f''(a)}{2!}}(x-a)^{2}+\\cdots +{\\frac {f^{(n)}(a)}{n!}}(x-a)^{n}+o(x-a)^{n}}",
"title": "åèäºé
"
},
{
"paragraph_id": 248,
"tag": "p",
"text": "挞è¿å±éãçšãããšæ¥µéã®åé¡ãç°¡åã«è§£ãããšãåºæ¥ããäŸãã°ã lim x â 0 e x â e â x x = lim x â 0 ( 1 + x + o x ) â ( 1 â x + o x ) x = lim x â 0 2 + o x x = 2. {\\displaystyle \\lim _{x\\to 0}{\\frac {e^{x}-e^{-x}}{x}}=\\lim _{x\\to 0}{\\frac {(1+x+ox)-(1-x+ox)}{x}}=\\lim _{x\\to 0}2+{\\frac {ox}{x}}=2.}",
"title": "åèäºé
"
},
{
"paragraph_id": 249,
"tag": "p",
"text": "äŸ",
"title": "åèäºé
"
},
{
"paragraph_id": 250,
"tag": "p",
"text": "α {\\displaystyle \\alpha } ãå®æ°ãšããã f ( x ) = ( 1 + x ) α {\\displaystyle f(x)=(1+x)^{\\alpha }} ã«ã€ããŠã f ( n ) ( 0 ) = α ( α â 1 ) ⯠( α â n + 1 ) {\\displaystyle f^{(n)}(0)=\\alpha (\\alpha -1)\\cdots (\\alpha -n+1)} ãªã®ã§ã",
"title": "åèäºé
"
},
{
"paragraph_id": 251,
"tag": "p",
"text": "( 1 + x ) α = â k = 0 n ( α k ) x k + o x n {\\displaystyle (1+x)^{\\alpha }=\\sum _{k=0}^{n}{\\binom {\\alpha }{k}}x^{k}+ox^{n}}",
"title": "åèäºé
"
},
{
"paragraph_id": 252,
"tag": "p",
"text": "ãã ãã ( α k ) = α ( α â 1 ) ⯠( α â k + 1 ) k ! , ( α 0 ) = 1 {\\displaystyle {\\binom {\\alpha }{k}}={\\frac {\\alpha (\\alpha -1)\\cdots (\\alpha -k+1)}{k!}},\\,{\\binom {\\alpha }{0}}=1} ã¯äžè¬äºé
ä¿æ°ã",
"title": "åèäºé
"
},
{
"paragraph_id": 253,
"tag": "p",
"text": "äŸãã°ã",
"title": "åèäºé
"
},
{
"paragraph_id": 254,
"tag": "p",
"text": "1 + x = 1 + 1 2 x + o x {\\displaystyle {\\sqrt {1+x}}=1+{\\frac {1}{2}}x+ox}",
"title": "åèäºé
"
},
{
"paragraph_id": 255,
"tag": "p",
"text": "1 1 + x = 1 â 1 2 x + o x {\\displaystyle {\\frac {1}{\\sqrt {1+x}}}=1-{\\frac {1}{2}}x+ox}",
"title": "åèäºé
"
},
{
"paragraph_id": 256,
"tag": "p",
"text": "ãªã©ããããã¯è¿äŒŒå
¬åŒãšããŠããã䜿ãããã",
"title": "åèäºé
"
},
{
"paragraph_id": 257,
"tag": "p",
"text": "ãã€ã©ãŒã®å®çã«ãããŠãé¢æ° f ( x ) {\\displaystyle f(x)} ãåºé I {\\displaystyle I} ã§ç¡éå埮åå¯èœ(ä»»æã®æ¬¡æ°ã®å°é¢æ°ãååšããããš)ã§å°äœé
ã lim n â â R n = 0 {\\displaystyle \\lim _{n\\to \\infty }R_{n}=0} ãªãã°ã",
"title": "åèäºé
"
},
{
"paragraph_id": 258,
"tag": "p",
"text": "f ( x ) = â n = 0 â f ( n ) ( a ) n ! ( x â a ) n . {\\displaystyle f(x)=\\sum _{n=0}^{\\infty }{\\frac {f^{(n)}(a)}{n!}}(x-a)^{n}.}",
"title": "åèäºé
"
},
{
"paragraph_id": 259,
"tag": "p",
"text": "ããããã€ã©ãŒçŽæ°ãšãããç¹ã« a = 0 {\\displaystyle a=0} ã®ãã®ããã¯ããŒãªã³çŽæ°ãšããã",
"title": "åèäºé
"
},
{
"paragraph_id": 260,
"tag": "p",
"text": "ããã€ãã®é¢æ°ã®ãã€ã©ãŒå±éãæ±ãããã",
"title": "åèäºé
"
},
{
"paragraph_id": 261,
"tag": "p",
"text": "f ( x ) = e x {\\displaystyle f(x)=e^{x}} ãšãããšã f ( n ) ( x ) = e x , f ( n ) ( 0 ) = 1 {\\displaystyle f^{(n)}(x)=e^{x},f^{(n)}(0)=1} ã§ã | R n | = | e Ο n ! x n | < e | x | n ! | x | n {\\displaystyle |R_{n}|=\\left|{\\frac {e^{\\xi }}{n!}}x^{n}\\right|<{\\frac {e^{|x|}}{n!}}|x|^{n}} ãããä»»æã® x {\\displaystyle x} ã«å¯ŸããŠã lim n â â R n = 0 {\\displaystyle \\lim _{n\\to \\infty }R_{n}=0} ãšãªããããªãã¡ã",
"title": "åèäºé
"
},
{
"paragraph_id": 262,
"tag": "p",
"text": "e x = â n = 0 â 1 n ! x n . {\\displaystyle e^{x}=\\sum _{n=0}^{\\infty }{\\frac {1}{n!}}x^{n}.}",
"title": "åèäºé
"
},
{
"paragraph_id": 263,
"tag": "p",
"text": "sin x , cos x {\\displaystyle \\sin x,\\cos x} ã«ã€ããŠãåãããã«èšç®ããŠã",
"title": "åèäºé
"
},
{
"paragraph_id": 264,
"tag": "p",
"text": "sin x = â n = 0 â ( â 1 ) n ( 2 n + 1 ) ! x 2 n + 1 , cos x = â n = 0 â ( â 1 ) n ( 2 n ) ! x 2 n {\\displaystyle \\sin x=\\sum _{n=0}^{\\infty }{\\frac {(-1)^{n}}{(2n+1)!}}x^{2n+1},\\,\\cos x=\\sum _{n=0}^{\\infty }{\\frac {(-1)^{n}}{(2n)!}}x^{2n}}",
"title": "åèäºé
"
},
{
"paragraph_id": 265,
"tag": "p",
"text": "ãåŸãã",
"title": "åèäºé
"
}
] | ããã§ã¯ã埮åã»ç©åã®èãã§åŠãã 埮åã®æ§è³ªã«ã€ããŠãã詳ããæ±ããç¹ã«ãé¢æ°ã®åãå·®ãç©ãåãæŽã«åæé¢æ°ããéé¢æ°ã®å°é¢æ°ã«ã€ããŠè©³ããæ±ãããŸããäžè§é¢æ°ãªã©ã®è€éãªé¢æ°ã®åŸ®åã«ã€ããŠãããã§ãŸãšããã | {{pathnav|é«çåŠæ ¡ã®åŠç¿|é«çåŠæ ¡æ°åŠ|é«çåŠæ ¡æ°åŠIII|pagename=埮åæ³|frame=1|small=1}}
ããã§ã¯ã[[é«çåŠæ ¡æ°åŠII/埮åã»ç©åã®èã|埮åã»ç©åã®èã]]ã§åŠãã 埮åã®æ§è³ªã«ã€ããŠãã詳ããæ±ããç¹ã«ãé¢æ°ã®åãå·®ãç©ãåãæŽã«åæé¢æ°ããéé¢æ°ã®å°é¢æ°ã«ã€ããŠè©³ããæ±ãããŸããäžè§é¢æ°ãªã©ã®è€éãªé¢æ°ã®åŸ®åã«ã€ããŠãããã§ãŸãšããã
== æ§ã
ãªå°é¢æ° ==
=== é¢æ°ã®å°é¢æ° ===
é¢æ°<math>f(x)</math>ãä»»æã®ç¹''x''ã§æ¥µéå€
:<math>
f'(x) := \lim_{h\to 0}\frac{f(x+h)-f(x)}{h}
</math>
ãæã€ãšããé¢æ°<math>f(x)</math>ã¯'''埮åå¯èœ'''ãšèšããé¢æ°'' f' '' ããé¢æ°''f''ã®'''å°é¢æ°'''ãšåŒã¶ã
==== 埮åå¯èœãªé¢æ°ã¯é£ç¶é¢æ°====
é¢æ°<math>f(x)</math>ã埮åå¯èœãªãã°ãé£ç¶é¢æ°ã§ããã
ïŒèšŒæïŒ
''f''ã埮åå¯èœãšãããšã
:<math>
\lim_{h\to 0}(f(x+h)-f(x)) = \lim_{h\to 0}\frac{f(x+h)-f(x)}{h}h =\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}\lim_{h\to 0}h = f'(x)\times 0 = 0
</math>
ãªã®ã§ã''f''ã¯é£ç¶ã§ããã
ããã§ã¯ãé¢æ°ã®åãå·®ãç©ãåã®åŸ®åã«ã€ããŠæ±ãããããã®æ¹æ³ã¯ä»¥éã®èšç®ã§åžžã«çšããããå
容ã§ããã®ã§ãååã«ç¿çããŠããå¿
èŠãããã
=== åã»å·®ã®å°é¢æ° ===
f,gã埮åå¯èœãªé¢æ°ãšããããã®ãšããfãšgã®åã«ã€ããŠæ¬¡ãæãç«ã€ã
:<math>
\{f(x) \pm g(x)\}' = f'(x) \pm g'(x)
</math>
ããã¯ãé¢æ°ã®åã埮åããŠåŸãããå°é¢æ°ã¯ãããããã®é¢æ°ã®åã足ãåããããã®ã«çããããšãè¡šããŠããã
å°åº
{|
|-
|<math>\{f(x) \pm g(x) \}'</math>
|<math>=\lim_{h\rightarrow 0} \frac {f(x+h) \pm g (x+h) - (f(x) \pm g (x))} h</math>
|-
|
|<math>=\lim_{h\rightarrow 0} \frac {f(x+h) - f(x) \pm g (x+h) \mp g (x)} h</math>
|-
|
|<math>=\lim_{h\rightarrow 0} \frac {f(x+h) - f(x)} h \pm \frac { g (x+h) - g (x)} h</math>
|-
|
|<math>= f'(x) \pm g'(x)</math>
|}
=== å®æ°åã®å°é¢æ° ===
次ã«ãé¢æ°ã®å®æ°åã®å°é¢æ°ã«ã€ããŠèãããé¢æ°ã®å®æ°åããããã®ã埮åãããã®ã¯ãå®æ°åããåã®é¢æ°ã«å¯Ÿããå°é¢æ°ãå®æ°åãããã®ã«ãªããå
·äœçã«ã¯æ¬¡ã®åŒãæãç«ã€ã<math>
(af)' = af'
</math>
(aã¯å®æ°)
å°åº
{|
|-
|<math>(af)'</math>
|<math>=\lim_{h\rightarrow 0} \frac {af(x+h) - af(x) } h</math>
|-
|
|<math>=\lim_{h\rightarrow 0} a \frac {f(x+h) - f(x) } h</math>
|-
|
|<math>=a \lim_{h\rightarrow 0} \frac {f(x+h) - f(x) } h</math>
|-
|
|<math>=af'</math>
|}
=== ç©ã®å°é¢æ° ===
ç©ã«é¢ããŠã¯ãåãå®æ°åãšæ¯ã¹ãŠèšç®çµæãããè€éã«ãªããå
·äœçã«ã¯æ¬¡ãæãç«ã€ã
:<math>
(fg)' = f'g + fg'
</math>
ããã¯ãããããã®é¢æ°ã®åŸ®åãšãã以å€ã®é¢æ°ãšã®ç©ãåŸããããšããããšãè¡šããŠãããããã¯å°åºãèŠãªããšãªããããªãããããããªãããç¥ããªãããããå°åºãæ€èšããããšãéèŠã§ããã
å°åº
{|
|-
|<math>\{f(x) g(x)\}'</math>
|<math>=\lim_{h\rightarrow 0} \frac {f(x+h) g (x+h) - (f(x) g (x))} h</math>
|-
|
|<math>=\lim_{h\rightarrow 0} \frac {f(x+h) g (x+h) -f(x+h) g (x) + f(x+h) g (x) - f(x) g (x)} h</math>
|-
|
|<math>=\lim_{h\rightarrow 0} \frac {f(x+h) (g (x+h) - g (x)) + g (x) (f(x+h)
- f(x))} h</math>
|-
|
|<math>=\lim_{h\rightarrow 0} \frac {f(x+h) (g (x+h) - g (x))} h + \frac {g (x) (f(x+h)- f(x))} h</math>
|}
ããã§ã<math>\lim_{h\rightarrow 0} f(x+h) =f(x)</math>ã«æ³šæãããšã
{|
|-
|<math>( f g)'</math>
|<math>= f'g + fg'</math>
|}
=== 环ä¹ã®å°é¢æ° I ===
æ°åŠâ
¡ã§ç¿ã£ãããã«ãnãèªç¶æ°ãšãããšãã
:<math>
\frac{d}{dx}x^n = nx^{n-1}
</math>
ã§ããã
ããã§ã¯ãæ°åŠâ
¡ã§ã¯æ±ããªãã£ãäžåŒã®å°åºãè¡ãã
ïŒå°åºãã®1ïŒ
:<math>
\frac{d}{dx}x^n =\lim_{h\to 0}\frac{(x+h)^n-x^n}{h} \qquad (1)
</math>
ããã§ãäºé
å®çã«ãã
:<math>
(x+h)^n = \sum_{k=0}^{n} {}_{n}C_{k}x^{n-k}h^k
</math>
ãã ã
:<math>
{}_{n}C_{k} := \frac{n!}{(n-k)!k!} \qquad
0! := 1
</math>
ãªã®ã§ã
:<math>
(x+h)^n = x^n + nx^{n-1}h + \sum_{k=2}^{n} {}_{n}C_{k}x^{n-k}h^k
</math>
ãã®åŒããåŒïŒïŒïŒã®å³èŸºã«ä»£å
¥ãããš
:<math>\frac{d}{dx}x^n = \lim_{h\to 0}\left(nx^{n-1} + \sum_{k=2}^{n} {}_{n}C_{k}x^{n-k}h^{k-1}\right) = nx^{n-1} </math>
ã§ããã
ïŒå°åºãã®2ïŒ
:<Math>
(x^n)' = n x^{n-1}
</Math>ãâ ãšããã
:
[1] <Math>n = 1</Math>ã®ãšã
巊蟺ã¯
:<Math>( x ^ 1 )' = 1</Math>
ã§ãããå³èŸºã¯
:<Math>1 \cdot x^0 = 1</Math>
ãªã®ã§ã<Math>n=1</Math>ã®ãšãâ ã¯æãç«ã€ã
:
[2] <Math>n=k</Math>ã®ãšã<Math>(x^k)' = k x^{k-1}</Math>ãæãç«ã€ãšä»®å®ããã
<Math>n=k+1</Math>ã®ãšããç©ã®å°é¢æ°ã®åŒãã
:<Math>( x^{k+1} )' = (x^k \cdot x)' = (x^k)' \cdot x + x^k \cdot (x)' = (kx^{k-1}) \cdot x + x^k \cdot 1 = kx^k + x^k = (k+1)x^k</Math>
ãã£ãŠã<Math>n=k+1</Math>ã®ãšããâ ãæãç«ã€ã
[1] [2]ããããã¹ãŠã®èªç¶æ°<Math>n</Math>ã«ã€ããŠâ ãæãç«ã€ã
<span id="åã®å°é¢æ°"></span>
=== åã®å°é¢æ° ===
åã®å°é¢æ°ã«ã€ããŠã¯æ¬¡åŒãæãç«ã€ã
:<math>
\left( \frac 1 f\right)' = - \frac {f ' } { (f)^2 }
</math>
ãã®åŒã«ã€ããŠããããå°åºãæ€èšããããšãå¿
èŠã§ããã
å°åº
{|
|-
|<math>\left( \frac 1 f\right)'</math>
|<math>=\lim_{h\rightarrow 0} \frac { \frac{1}{f(x+h)} - \frac{1}{f(x)} } h</math>
|-
|
|<math>=\lim_{h\rightarrow 0} \frac {\frac {f(x)-f(x+h)}{f(x+h)f(x)} } h</math>
|-
|
|<math>=\lim_{h\rightarrow 0} \frac 1 { f(x+h)f(x)} \frac {f(x)-f(x+h)}{h}</math>
|-
|
|<math>=\lim_{h\rightarrow 0} -\frac 1 { f(x+h)f(x)} \frac {f(x+h)-f(x)}{h}</math>
|-
|
|<math> = - \frac {f'} {(f)^2}</math>
|}
ãŸããåã®å°é¢æ°ã®åŒãšãç©ã®å°é¢æ°ã®åŒããã次ã®å
¬åŒãå°ãããã
:<math>\left( \frac g f\right)' = \frac {g'f - gf' } {(f)^2}</math>
ãã®åŒã¯ãç©ã®åŒãšåã®åŒããçŽæ¥åŸãåŒã ããããçŸãã圢ã§ããã®ã§ãèŠããŠãããšäŸ¿å©ãªããšãããã
å°åº
{|
|-
|<math>\left( \frac g f\right)'</math>
|<math>=\left( g \frac 1 f\right)'</math>
|-
|
|<math>= g' \frac{1}{f} + g \left( \frac 1 f\right)'</math>
|-
|
|<math>= \frac{g'}{f} - g \frac{f'}{f^2}</math>
|-
|
|<math>= \frac{g'f}{f^2} - \frac{gf'}{f^2}</math>
|-
|
|<math>= \frac {g'f - gf' } {(f)^2}</math>
|}
=== 环ä¹ã®å°é¢æ° â
¡ ===
<Math>x^a</Math>ã®ææ°ãèªç¶æ°<Math>n</Math>ã§ãããšãã<Math>(x^n)' = n x^{n-1}</Math>ã§ããã®ã¯æ¢ã«èšŒæããã
ããã§ã¯ãææ°ãæŽæ°ã®å Žåãèããã
[1] <Math>m</Math>ãè² ã®æŽæ°ã®ãšã<Math>n=-m</Math>ãšããã
ãã®ãšã<Math>n</Math>ã¯æ£ã®æŽæ°ã§ãåã®å°é¢æ°ã®åŒãã
:<Math>(x^m)' = (x^{-n})' = (\frac{1}{x^n})' = -\frac{(x^n)'}{(x^n)^2} = -\frac{nx^{n-1}}{x^{2n}} = -nx^{n-2n-1} = -nx^{-n-1} = mx^{m-1}</Math>
ãæãç«ã€ã
:
[2] <Math>m=0</Math>ã®ãšãã
:<Math>(x^m)' = (1)' = 0, mx^{m-1} = 0</Math>
ãªã®ã§
:<Math>(x^m)' = mx^{m-1}</Math>
ãæãç«ã€ã
ãã£ãŠãæŽæ°<Math>m</Math>ã«ã€ããŠ<Math>(x^m)' = mx^{m-1}</Math>ãæãç«ã€ã
=== åæé¢æ°ã®å°é¢æ° ===
åæé¢æ°ãšã¯ã2ã€ã®é¢æ°<math>f,g</math>ãçšããŠã<math>h(x) = f(g(x))</math>ãšãã圢ã§æžãããšãã§ããé¢æ°ã®ããšã§ãããåæé¢æ°ã¯ãäžããããå€æ°ã«å¯Ÿããé¢æ°ãšèŠãããšãã§ããå°é¢æ°ãåãããšãå¯èœã§ãããå
·äœçã«ã¯ã
:<math>
( f(g(x)) )'= f'(g(x)) g'(x)
</math>
ãæãç«ã€ã
<!-- % å°åº ãã®å°åºã¯ããããf,gã®æ¡ä»¶ããã¡ããšæå®ããªããš
ãããªãã®ã§ãé«æ ¡ã®ç¯å²ã§ã¯ç¡ããããªæ°ãããã-->
å°åº
{|
|-
|<math>(f(g(x)))'</math>
|<math>= \lim_{h\rightarrow 0} \frac {f(g(x+h)) - f(g(x))}{h}</math>
|-
|
|<math>= \lim_{h\rightarrow 0} \frac {f(g(x+h)) - f(g(x))}{g(x+h) -g(x)}\cdot \frac {g(x+h) -g(x)}{h}</math>
|-
|
|<math>g(x+h) - g(x) = u, g(x) = j</math>ãšãããšã<math>g(x+h) = u + j</math>ã<math>x\rightarrow 0</math>ã®ãšã<math>u \rightarrow 0</math>ãªã®ã§ã
|-
|
| <math>= \lim_{u\rightarrow 0} \frac {f(u+j) - f(j)}{u}\cdot \lim_{h\rightarrow 0}\frac {g(x+h) -g(x)}{h}</math>
|-
|<math>= f'(g(x)) g'(x)</math>
|}
ãšãªãã
<!--
%ãã®å°åºã¯å®å
šã§ã¯ãªãããšã«æ³šæã
%æåŸã®æ¥µéãåãæäœãæ£åœã§ãªãããšããã?
%ãšã¯ããããã¯ãç©çå±ã«ã¯ããããªãäžçã®è©±ãã...ã
-->
;äŸ
<math>f(x) = \sqrt x</math>ã<math>g(x) = x^2 + x + 1</math>ãšããããã®åæé¢æ°ã¯ã<math>f(g(x)) = \sqrt{x^2 + x + 1}</math>ã§ããã
ãã®åæé¢æ°ã®å°é¢æ°ãæ±ããŠã¿ããã
<math>f'(x) = \frac{1}{2 \sqrt x}</math>
<math>g'(x) = 2x + 1</math>
ãªã®ã§ã<math>{f(g(x))}' = f'(g(x))g'(x) = \frac{2x+1}{2 \sqrt{x^2 + x + 1}}</math>
ã§ããã
â»é¢æ°<math>f,g</math>ã®åæé¢æ°ã<math>(f \circ g)(x) = f(g(x))</math>ãšæžãããšãããã
åæé¢æ°ã®åŸ®åã¯ã©ã€ããããã®èšæ³ãçšããŠã<math>y = f(u),u = g(x)</math>ã®ãšãã<math>\frac{dy}{dx} = f(g(x))'</math>ã<math>f'(u) = \frac{dy}{du}</math>ã<math>g'(x) = \frac{du}{dx}</math>ãªã®ã§ã
:<math>\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}</math>
ãšæžãããšãã§ããã
ãŸãã以äžã®å
¬åŒãæãç«ã€ã
:<Math>\frac{d}{dx} f(ax+b) = af'(ax+b)</Math>
:<Math>\frac{d}{dx} \{ g(x) \}^n = n \{ g(x) \}^{n-1} g'(x)</Math>
=== éé¢æ°ã®å°é¢æ° ===
<math>( f^{-1}(y) )' = \frac{1}{( f(x) )'}</math>
å°åº
<math>y=f(x)</math>ãšçœ®ããšã<math>x=f^{-1}(y)</math>ã§ã
<math>y \to y_0</math>ã®ãšã<math>x \to x_0</math>ã§ããããã
{|
|-
|<math>( f^{-1}(y) )'</math>
|<math>= \lim_{y \to y_0} \frac{ f^{-1}(y) - f^{-1}(y_0) }{ y - y_0 }</math>
|-
|
|<math>= \lim_{x \to x_0} \frac{ x - x_0 }{ f(x) - f(x_0) }</math>
|-
|
|<math>= \lim_{x \to x_0} \frac{1}{ \frac{f(x) - f(x_0) }{x - x_0} }</math>
|-
|
|<math>= \frac{1}{( f(x) )'}</math>
|}
ãŸãã
{|
|-
|<math>( f(x) )'</math>
|<math>= \lim_{x \to x_0} \frac{ f(x) - f(x_0) }{ x - x_0 }</math>
|-
|
|<math>= \lim_{y \to y_0} \frac{ y - y_0 }{ f^{-1}(y) - f^{-1}(y_0) }</math>
|-
|
|<math>= \lim_{y \to y_0} \frac{1}{ \frac{f^{-1}(y) - f^{-1}(y_0) }{y - y_0} }</math>
|-
|
|<math>= \frac{1}{( f^{-1}(y) )'}</math>
|}
=== åªä¹ã®å°é¢æ° â
===
<Math>x^a</Math>ã®ææ°ãæŽæ°<Math>m</Math>ã®ãšãã<Math>(x^m)' = mx^{m-1}</Math>ãæãç«ã€ã®ã¯æ¢ã«èšŒæããã
次ã¯ã<Math>x>0</Math>ãšããŠææ°ãæçæ°ã®ãšããèããã
ãªããææ°ãæŽæ°ã§ããå Žåãã环ä¹ããšåŒã¶ã®ã«å¯Ÿããææ°ãæçæ°ïŒå®æ°ïŒã§ããå Žåãã'''åªä¹'''ïŒã¹ããããïŒããšåŒã¶ãæçæ°ã¯æŽæ°ãå«ãã®ã§ã环ä¹ã¯åªä¹ã®ç¹å¥ãªå Žåãæãã
[1] <Math>n</Math>ãèªç¶æ°ãšãããšã<Math>y=x^{\frac{1}{n}}</Math>ã®ãšãã<Math>x=y^n</Math>ãæãç«ã€ã®ã§ãéé¢æ°ã®å°é¢æ°ã®åŒãã
:<Math>\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} = \frac{1}{ny^{n-1}} = \frac{1}{n} \cdot \frac{1}{(x^{\frac{1}{n}})^{n-1} } = \frac{1}{n} x^{\frac{1}{n} - 1}</Math>
[2] <Math>m</Math>ãæŽæ°ãšãããšãæçæ°<Math>p</Math>ã«ã€ããŠ
:<Math>p=\frac{m}{n}</Math>
ããã
:<Math>x^p = x^{\frac{m}{n}} = (x^{\frac{1}{n}})^m</Math>
ãªã®ã§ã[1]ãšåæé¢æ°ã®å°é¢æ°ã®åŒãã
:<Math>\frac{d}{dx} x^p = \frac{d}{dx} (x^{\frac{1}{n}})^m = m(x^{\frac{1}{n}})^{m-1} \cdot (x^{\frac{1}{n}})' = mx^{\frac{m}{n} - \frac{1}{n}} \cdot \frac{1}{n} x^{\frac{1}{n}-1} = \frac{m}{n} x^{\frac{m}{n} - 1} = px^{p-1}</Math>
ãæãç«ã€ã
ãã£ãŠãæçæ°<Math>p</Math>ã«ã€ããŠ<Math>(x^p)' = px^{p-1}</Math>ãæãç«ã€ã
=== äžè§é¢æ°ã®å°é¢æ° ===
*<math>(\sin x )' = \cos x</math>
*<math>(\cos x )' = -\sin x</math>
*<math>(\tan x )' = \frac {1}{\cos^2 x}</math>
ãšãªãã
å°åº
<!--
ïŒäžè§é¢æ°ã®å æ³å®çã¯äœ¿ã£ãŠãè¯ãã®ã ããã?
ïŒç¢ºãããã¯ç¯å²å€ã«ãªã£ããããªæ°ãããã...ã
ïŒãããããããªãã«èšŒæãåºæ¥ãã®ã ããã...ã
ç¯å²å€ã«ã¯ãªã£ãŠãŸãããã
æ°åŠ2ã®æç§æžã«èŒã£ãŠããŸããã
-->
*<math>\lim_{h\rightarrow 0} \frac {\sin (\frac{h}{2})} {(\frac{h}{2})} = 1</math>
*å æ³å®ç<math>\sin(a+b)= \sin a \cos b + \cos a \sin b</math>ãš<math>\sin(a-b)= \sin a \cos b - \cos a \sin b</math>ãã<math>\sin(a+b)-\sin(a-b)=2\cos a\sin b \qquad(\mathrm{where} \quad a=x+h/2,b=h/2)</math>
ã«æ³šæãããšã
{|
|-
|<math>(\sin x )'</math>
|<math>=\lim_{h\rightarrow 0} \frac {\sin(x+h) - \sin (x) } h</math>
|-
|
|<math>=\lim_{h\rightarrow 0} \frac {2\cos (x+ \frac{h}{2}) \sin (\frac{h}{2}) } h</math>
|-
|
|<math>=\lim_{h\rightarrow 0} \cos(x+ \frac{h}{2}) \frac {\sin (\frac{h}{2})} {\frac{h}{2}}</math>
|-
|
|<math> = \cos x</math>
|}
ãšãªããçµæãåŸãããã
{|
|-
|<math>(\cos x )'</math>
|<math>= \left\{ \sin\left(x + \frac{\pi}{2}\right) \right\}'</math>
|-
|
|<math>= \cos\left(x + \frac{\pi}{2}\right)*\left(x + \frac{\pi}{2}\right)'</math>
|-
|
|<math>= \cos\left(x + \frac{\pi}{2}\right)</math>
|-
|
|<math>= - \sin x</math>
|}
<math> \tan x</math>ã«ã€ããŠã¯ã
{|
|-
|<math>(\tan x )'</math>
|<math>= \left(\frac {\sin x}{\cos x} \right)'</math>
|-
|
|<math>= \frac {\cos x \cos x - \sin x ( - \sin x ) }{\cos ^2 x}</math>
|-
|
|<math>= \frac {\sin ^2 x + \cos ^2 x }{\cos ^2 x}</math>
|-
|
|<math>= \frac {1}{\cos ^2 x} ( = \sec^2 x)</math>
|}
:ãªãã<math> \frac{1}{\tan x} \left( = \cot x \right)</math>ã«ã€ããŠã
:{|
|-
|<math>\left( \frac{1}{\tan x} \right)'</math>
|<math>= \left(\frac {\cos x}{\sin x} \right)'</math>
|-
|
|<math>= \frac { \sin x ( - \sin x ) -\cos x \cos x}{\sin ^2 x}</math>
|-
|
|<math>= - \frac {\sin ^2 x + \cos ^2 x }{\sin ^2 x}</math>
|-
|
|<math>= - \frac {1}{\sin ^2 x} </math>
|}
=== 察æ°é¢æ°ã®å°é¢æ° ===
{|
|-
|<math>(\log _a x)'</math>
|<math>= \lim_{h \to 0} \frac{\log _a (x+h) - \log _a x}{h}</math>
|-
|
|<math>= \lim_{h \to 0} \frac{\log _a \frac{x+h}{x} }{h}</math>
|-
|
|<math>= \lim_{h \to 0} \frac{\log _a \left( 1+ \frac{h}{x} \right)}{h}</math>
|}
ããã§<math>k = \frac{h}{x}</math>ãšçœ®ããšã
{|
|-
|<math>\lim_{h \to 0} \frac{\log _a \left(1+ \frac{h}{x} \right)}{h}</math>
|<math>=\lim_{k \to 0} \frac{\log _a (1+k)}{xk}</math>
|-
|
|<math>=\lim_{k \to 0} \frac{1}{xk} \log _a (1+k)</math>
|-
|
|<math>=\lim_{k \to 0} \frac{1}{x} \log _a (1+k)^{\frac{1}{k} }</math>
|-
|
|<math>=\frac{1}{x} \log _a \left(\lim_{k \to 0} (1+k)^{\frac{1}{k} }\right)</math>
|}
kã0ã«è¿ã¥ããŠãããšã<math>(1+k)^{\frac 1 k}</math>ã¯ã
<math>1.1^{\frac{1}{0.1} }=2.5937424601</math>
<math>1.01^{\frac{1}{0.01} }=2.7048138294215260932671947108075</math>
<math>1.001^{\frac{1}{0.001} }=2.7169239322358924573830881219476</math>
<math>1.0001^{\frac{1}{0.0001} }=2.7181459268252248640376646749131</math>
<math>0.9^{\frac{1}{-0.1} }=2.8679719907924413133222572312408</math>
<math>0.99^{\frac{1}{-0.01} }=2.7319990264290260038466717212578</math>
<math>0.999^{\frac{1}{-0.001} }=2.719642216442850365397553464404</math>
<math>0.9999^{\frac{1}{-0.0001} }=2.7184177550104492651837311208356</math>
(èšç®ïŒWindowsä»å±é»å)
ãšãªããäžå®ã®å€ã«è¿ã¥ããŠããïŒèšŒæã¯æ°åŠIIIã®ç¯å²ã§ã¯ã§ããªãïŒã
<!-- äžå¿ãé«æ ¡ç¯å²ã§åæã®èšŒæã¯ã§ããã¿ããã§ãã -->
ãã®äžå®ã®å€ãããªãã¡
<math>\lim_{k \to 0} (1+k)^{\frac{1}{k} } = 2.718281828... </math>
ã'''e'''ã§è¡šãããããšã
<math>\lim_{k \to 0} (1+k)^{\frac{1}{k} } = e</math>
ããããäžã®åŒã«ä»£å
¥ãããšã
{|
|-
|<math>(\log _a x)'</math>
|-
|
|<math>= \frac{1}{x} \log _a \left(\lim_{k \to 0}(1+k)^{\frac{1}{k} }\right)</math>
|-
|
|<math>= \frac{1}{x} \log _a e</math>
|}
ç¹ã«<math>a=e</math>ã®ãšãã
<math>(\log _e x)'=\frac{1}{x}</math>
eãåºãšãã察æ°ãèªç¶å¯Ÿæ°ãšããã<br>
eã¯ãèªç¶å¯Ÿæ°ã®åºããŸãã¯ããã€ãã¢æ°ããšåŒã°ããããšãå€ãã<br>
æ°åŠã§ã¯ã<math>\log _e x</math>ã®eãçç¥ããŠlog xãšæžãã<br>
æ°åŠä»¥å€ã®åéã§ã¯ãåžžçšå¯Ÿæ°ãšåºå¥ããããã«ãln xãçšããããããšãããã
ãŸãã<math>\log |x| </math>ã®åŸ®åã¯ã
xïŒ0ã®ãšã
{|
|-
|<math>(\log |x|)'</math>
|<math>=(\log x)'</math>
|-
|
|<math>=\frac{1}{x}</math>
|}
xïŒ0ã®ãšã
{|
|-
|<math>(\log |x|)'</math>
|<math>=\{ \log (-x) \} '</math>
|-
|
|<math>=\frac{1}{-x} * (-1)</math>
|-
|
|<math>=\frac{1}{x}</math>
|}
ãã£ãŠã<math>(\log |x|)' = \frac{1}{x}</math>
ãŸããåæé¢æ°ã®åŸ®åæ³ããã<Math>\{ log |f(x)| \}' = \frac{f'(x)}{f(x)}</Math>ãæãç«ã€ããšããããã
==== ãã€ãã¢æ°eã®çµ¡ã極é ====
<math>\lim_{k \to 0} (1+k)^{\frac{1}{k} } = e</math>ãšå
ã»ã©å®çŸ©ãããããã®å®çŸ©åŒã¯ä»¥äžã®ããã«æžãæããããã
<Math>\lim_{x \to \infty} (1+\frac{1}{x})^x = e</Math>
<Math>\lim_{x \to -\infty} (1+\frac{1}{x})^x = e</Math>
äžã®äºã€ã®åŒã¯<Math>k=\frac{1}{x}</Math>ãšçœ®ãæãããšããããã<Math>e</Math>ã®å®çŸ©åŒã®çåŽæ¥µéã®å Žåãè¡šããŠããããšããããã
ãããã®åŒãå©çšããããšã§ãä»ãŸã§è§£ããªãã£ããã¿ãŒã³ã®æ¥µéãæ±ããããããã«ãªãã
äŸé¡ïŒ<Math>\lim_{x \to 0} \frac{ \log(1-x) }{x}</Math>ã®æ¥µéãæ±ãã
解çïŒ
<Math>\lim_{x \to 0} \frac{\log(1-x)}{x} = \lim_{x \to 0} \log(1-x)^{\frac{1}{x}}</Math>
<Math>-x=k</Math>ãšãããš<Math>x \rightarrow 0</Math>ã®ãšã<Math>k \rightarrow 0</Math>ãªã®ã§ã
ïŒäžåŒïŒ<Math>= \lim_{k \to 0}v\log(1+k)^{-\frac{1}{k}} = \lim_{k \to 0} -\log(1+k)^{\frac{1}{k}}</Math>
ããã§ã察æ°é¢æ°ã¯é£ç¶é¢æ°ãªã®ã§ãlogãšlimãå
¥ãæ¿ããŠãè¯ãã
ïŒäžåŒïŒ<Math>= -\log \{\lim_{k \to 0} (1+k)^{\frac{1}{k}} \} = -\log e = -1</Math>
ãã£ãŠãåæããŠæ¥µéå€ã¯-1ã§ããã
=== ææ°é¢æ°ã®å°é¢æ° ===
<math>y=a^x(a>0)</math>
䞡蟺ã®èªç¶å¯Ÿæ°ããšããšã
<math>\log y = x \log a</math>
䞡蟺ãxã§åŸ®åãããšã
<math>\frac{y'}{y} = \log a</math>
<math>y' = y \log a</math>
<math>y' = a^x \log a</math>
ç¹ã«a=eã®å Žå
<math>(e^x)' = e^x</math>
<Math>e^x</Math>ã®xãç
©éãªå Žåã<Math>e^x=exp(x)</Math>ã®ããã«è¡šãå Žåãããã<br>ãŸãã䞡蟺ã®èªç¶å¯Ÿæ°ããšã£ãŠãã埮åããæäœã'''察æ°åŸ®åæ³'''ãšåŒã¶ã
==== 埮åä¿æ°ãšæ¥µé ====
埮åä¿æ°ã®å®çŸ©åŒãçšããŠæ¥µéãæ±ããããšãã§ããã
äŸé¡ïŒ<Math>\lim_{x \to 0} \frac{e^x-1}{x} </Math>ãæ±ãã
解çïŒ
<Math>\lim_{x \to 0} \frac{e^x-1}{x} = \lim_{x \to 0} \frac{e^x-e^0}{x-0}</Math>
ããã§ã埮åä¿æ°ã®å®çŸ©åŒ<Math>f'(a) = \lim_{x \to a} \frac{f(x)-f(a)}{x-a}</Math>ããã<Math>f(x) = e^x</Math>ãšãããš<Math>f'(x) = e^x</Math>ã§
ïŒäžåŒïŒ<Math>= f'(0) = e^0 = 1</Math>
ãã£ãŠãåæããŠæ¥µéå€ã¯1ã§ããã
=== åªä¹ã®å°é¢æ° â
¡ ===
<Math>x^a</Math>ã®ææ°ãæçæ°<Math>p</Math>ã®ãšãã<Math>(x^p)' = px^{p-1}</Math>ãæãç«ã€ã®ã¯æ¢ã«èšŒæããã
æåŸã«ã<Math>x>0</Math>ãšããŠææ°ãå®æ°ã®ãšããèããã
<Math>y=x^a</Math>ã®<Math>a</Math>ã¯å®æ°ã§ãããšããã
䞡蟺ã®çµ¶å¯Ÿå€ã®èªç¶å¯Ÿæ°ããšã£ãŠ
:<math>\log |y| = a \log |x|</math>
䞡蟺ãxã§åŸ®åããŠã
:<math>\frac{y'}{y}=a \cdot \frac{1}{x}</math>
ãã£ãŠ
:<Math>y' = a \cdot \frac{1}{x} \cdot x^a = ax^{a-1}</Math>
ãæãç«ã€ã
æåã¯ææ°ãèªç¶æ°ã®å Žåã®ã¿ã ã£ãã®ã«æ¯ã¹ãããäžè¬ã®ç¯å²ã§äžåŒãæãç«ã€ããšãããã£ãããã®ããã«ããåŒãããäžè¬ã«èšããããã«ããã®ããæ°åŠã®çºå±æ§ã§ããééå³ã§ããã
*åé¡äŸ
**åé¡
**#<math>\frac{d}{dx} x\,\sin x</math>
**#<math>\frac{d}{dx} e^{x}\,\cos x^2</math>
**#<math>\frac{d}{dx} \sin (\cos x)</math>
**#<math>\frac{d}{dx} x\,\log x-x</math>
**#<math>\frac{d}{dx} {{1}\over{\cos ^2x}}</math>
**#<Math>\frac{d}{dx} \frac{e^x - e^{-x}}{e^x + e^{-x}}</Math>
**#<Math>\frac{d}{dx} x^x \,(x>0)</Math>
**#<Math>\frac{d}{d\theta} \cos^{\frac{5}{7}} \theta</Math>
**#<Math>\frac{d}{dt} t^{e+\pi}</Math>
**#<Math>\lim_{x \to \infty} (1+\frac{3}{x})^x</Math>
**#<Math>\lim_{x \to \infty} (\frac{x}{x+1})^x</Math>
**#<Math>\lim_{x \to 1} \frac{\log x}{x-1}</Math>
**:ãæ±ãã
**解ç
**:ãããã
**#<math>\sin x+x\,\cos x</math>
**#<math>e^{x}\,\cos x^2-2\,x\,e^{x}\,\sin x^2</math>
**#<math>-\sin x\,\cos (\cos x)</math>
**#<math>\log x</math>
**#<math>{{2\,\sin x}\over{\cos ^3x}}</math>
**#<Math>\frac{4}{e^x + e^{-x}}</Math>
**#<Math>x^x\,(\log x +1)</Math>
**#<Math>-\frac{5 \sin \theta}{7 \sqrt [7] {\cos^2 \theta}}</Math>
**#<Math>(e+\pi) t^{e+\pi-1}</Math>
**#<Math>e^3</Math>
**#<Math>\frac{1}{e}</Math>
**#<Math>0</Math>
**:ãåŸãããã
=== é«æ¬¡å°é¢æ° ===
å°é¢æ°f'(x)ãf(x)ã®'''第1次å°é¢æ°'''ãšããã
å°é¢æ°ã®å°é¢æ°ã'''第2次å°é¢æ°'''ãšããã
å°é¢æ°ã®å°é¢æ°ã®å°é¢æ°ã'''第3次å°é¢æ°'''ãšããã
äžè¬ã«ãé¢æ°f(x)ãnå埮åããŠåŸãããé¢æ°ã'''第n次å°é¢æ°'''ãšããã
<math>y^{(n)},f^{(n)},\frac{d^n y}{d x^n},\frac{d^n}{d x^n} f(x)</math>
ã®ããããã§è¡šãã
ãŸããnã1,2,3ã®æã¯ãããã<math>y',y'',y'''</math>ã<math>f'(x),f''(x),f'''(x)</math>ãšè¡šãã
2次以äžã®å°é¢æ°ã'''é«æ¬¡å°é¢æ°'''ãšããã
(äŸ)<math>f(x)=x^5</math>ã®ç¬¬3次å°é¢æ°ã¯
<math>f'(x)=5x^4</math>
<math>f''(x)=20x^3</math>
<math>f'''(x)=60x^2</math>
ãªã®ã§<math>60x^2</math>ã§ããã
=== é°é¢æ°ã®å°é¢æ° ===
<Math>y=f(x)</Math>ã®åœ¢ã§è¡šãããé¢æ°ã'''éœé¢æ°'''ãšåŒã¶ã
ããã«å¯Ÿã<Math>F(x, y)=0</Math>ã®åœ¢ã§è¡šãããé¢æ°ã'''é°é¢æ°'''ãšåŒã¶ã
äŸãã°ãåã®æ¹çšåŒã¯é°é¢æ°è¡šç€ºãããé¢æ°ã§ããã
éœé¢æ°ãšé°é¢æ°ã¯äºãã«äºãã®åœ¢ãžãšå€åœ¢ã§ããããå€åœ¢ãããšåŒãç
©éã«ãªãå Žåããããããã§ã<Math>F(x,y)</Math>ãåæé¢æ°ãšèŠåããŠåŸ®åããããšãèããã
(äŸ)åã®æ¹çšåŒ<Math>x^2+y^2=4</Math>ã«ã€ããŠã<Math>\frac{d}{dx} y</Math>ãæ±ããã
ãã®åŒãyã«ã€ããŠè§£ããš<Math>y=\pm\sqrt{4-x^2}</Math>ã§ãããããã®åŒã埮åããããšãããšåŒãç
©éã§åä»ã§ããã
äžã®yã«ã€ããŠã®çåŒããå
ã®æ¹çšåŒã®yã¯ãxã®åŒãå¥ã®æåã§çœ®æãããã®ããšèããããã®ã§ãåæé¢æ°ã®åŸ®åæ³ãå©çšãããšå
ã®åœ¢ã®ãŸãŸåŸ®åãã§ããã
å
ã®æ¹çšåŒã®äž¡èŸºãxã§åŸ®åãããšã
:<Math>\frac{d}{dx} x^2 + \frac{d}{dx} y^2 = \frac{d}{dx} 4 </Math>
ãã
:<Math>2x + 2y \cdot \frac{d}{dx}y = 0</Math>
ãªã®ã§ã
:<Math>2y \cdot \frac{d}{dx} y = -2x</Math>
ããªãã¡
:<Math>\frac{d}{dx} y = - \frac{x}{y}</Math>
ã§ããã
ãªããç
©éã«ãªãã®ã§yãxã®åŒã«çŽãå¿
èŠã¯ãªãã
=== åªä»å€æ°æ²ç·ã®å°é¢æ° ===
[[é«çåŠæ ¡æ°åŠC/ãã¯ãã«|ãã¯ãã«]]ã§ç¿ã£ãããã«ãçŽç·ã®æ¹çšåŒã¯åªä»å€æ°tãçšããŠäžæ¬¡é¢æ°<Math>x=f(t), y=g(t)</Math>ã§è¡šãããããããåªä»å€æ°è¡šç€ºããšåŒãã ã
äžè¬ã«ãåªä»å€æ°è¡šç€º<Math>x=f(t), y=g(t)</Math>ã¯æ²ç·ãè¡šããããã§ãããæ²ç·ãã¯åã«æ²ãã£ãç·ã®ããšã§ã¯ãªããçŽç·ãå«ãäžè¬çãªç·ã®ããšã§ããã
<Math>x=f(t), y=g(t)</Math>ãxã§åŸ®åãããã
é¢æ°f,gãäžè§é¢æ°ã®å Žåçãé«æ ¡ç¯å²ã§ã¯tãæ¶å»ã§ããªãããšãããã®ã§ãåªä»å€æ°è¡šç€ºã®ãŸãŸåŸ®åããããšãèããã
<Math>y=g(t) \iff t=g^{-1}(y)</Math>ãããtãyã®åŒãšèãããš<Math>x=f(t)</Math>ã¯åæé¢æ°ãšèŠåããã
ãã£ãŠãåæé¢æ°ã®åŸ®åæ³ãã
:<Math>\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx}</Math>
ã§ããã
ããã§ãéé¢æ°ã®åŸ®åæ³ãã
:<Math>\frac{dt}{dx} = \frac{1}{\frac{dx}{dt}}</Math>
ã§ããã®ã§ã
:<Math>\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{f'(x)}{g'(x)}</Math>
ãæãç«ã€ã
ãªãã<Math>\frac{d^2}{dx^2}y</Math>ã¯<Math>\frac{dy}{dx}</Math>ã«åã³åªä»å€æ°æ²ç·ã®åŸ®åæ³ãçšããããšã§ã<Math>\frac{ \frac{d}{dt} (\frac{dy}{dx}) }{\frac{dx}{dt}}</Math>ã®ããã«èšç®ã§ããã
*åé¡
*次ã®åŒã§è¡šãããæ²ç·ã«ã€ããŠã<Math>\frac{d}{dx}y</Math>åã³<Math>\frac{d^2}{dx^2}y</Math>ãæ±ããã
**#<Math>x^2+y^2+6x-2=0</Math>
**#<Math>\frac{x^2}{25}+\frac{y^2}{36}=1</Math>
**#<Math>16x^2-9y^2=-4</Math>
**#<Math>x^{\frac{3}{5}}+y^{\frac{3}{5}}=1</Math>
**#<Math>x=3t-2, y=t^2+5</Math>
**#<Math>x=9\cos \theta, y=6\sin \theta</Math>
**#<Math>x=\frac{4}{\cos \theta}, y=7\tan \theta</Math>
**#<Math>x=t-\sin t, y=1-\cos t</Math>
==å°é¢æ°ã®å¿çš==
===æ¥ç·ãšæ³ç·===
é¢æ°<math>f(x)</math>äžã®ç¹<math>(a,f(a))</math>ã«ãããæ¥ç·ã®åŸãã¯<math>f'(a)</math>ã§ããã®ã§ãæ¥ç·ã®æ¹çšåŒã¯
<math>y-f(a)=f'(a)(x-a)</math>
ãšãªãã
ãŸããæ¥ç¹ãéãæ¥ç·ã«åçŽãªçŽç·ã'''æ³ç·'''ïŒã»ãããïŒãšããã
åçŽãªçŽç·å士ã¯åŸãã®ç¬Šå·ãéã§ãããåŸãã®çµ¶å¯Ÿå€ãéæ°ã§ããã®ã§ãæ³ç·ã®æ¹çšåŒã¯
<math>y-f(a)=- \frac{1}{f'(a)} (x-a)</math>
ãšãªãã
===é¢æ°å€ã®å¢æž===
====極å€====
<math>f'(a)</math>ã¯<math>f(x)</math>ã®ç¹<math>(a,f(a))</math>ã§ã®åŸããè¡šãã
ãã£ãŠã
*<math>f'(a)>0</math>ã®æ<math>f(a)</math>ã¯å¢å ãç¶ãã
*<math>f'(a)<0</math>ã®æ<math>f(a)</math>ã¯æžå°ãç¶ãã
*<math>f'(a)=0</math>ã®æ<math>f(a)</math>ã¯äžå®
ã§ããã
ãŸãã<math>f'(a)=0</math>ã§ã<math>a</math>ã®ååŸã§<math>f'(x)</math>ã®ç¬Šå·ã<math>+</math>ãã<math>-</math>ã«å€ãããªãã°ã<math>f(x)</math>ã¯ç¹<math>(a,f(a))</math>ã§å¢å ããæžå°ã«è»¢ããããã®ãšãã®<math>f(a)</math>ã'''極倧å€'''ïŒãããã ãã¡ïŒãšããã
ãŸãã<math>-</math>ãã<math>+</math>ã«å€ãããªãã°ã<math>f(x)</math>ã¯ç¹<math>(a,f(a))</math>ã§æžå°ããå¢å ã«è»¢ããã®ã§ããã®ãšãã®<math>f(a)</math>ã'''極å°å€'''ïŒããããããã¡ïŒãšããã
極倧å€ãšæ¥µå°å€ããŸãšããŠ'''極å€'''ïŒãããã¡ïŒãšããã
<math>f'(a)=0</math>ã§ãã£ãŠããååŸã§ç¬Šå·ãå€ãããªããã°<math>f(a)</math>ã¯æ¥µå€ã§ã¯ãªãã
====å€æ²ç¹====
第äºæ¬¡å°é¢æ°ã®å³åœ¢çãªæå³ãèããŠã¿ãããå°é¢æ°ã¯åç¹ã§ã®æ¥ç·ã®åŸããè¡šããŠããã第äºæ¬¡å°é¢æ°ã¯å°é¢æ°ã®å°é¢æ°ã ãããæ¥ç·ã®åŸãã®å€åçãããªãã¡ã°ã©ãã®æ²ããå
·åãè¡šããŠããããšã«ãªãã第äºæ¬¡å°é¢æ°ãæ£ã®ãšãã¯åŸããå¢å ããŠããã®ã ããã°ã©ãã¯äžã«åžãè² ã®ãšãã¯äžã«åžãšãªãã
ã°ã©ãã®æ²ããå
·åãå€ããç¹ã®ããšã'''å€æ²ç¹'''ïŒãžãããããŠãïŒãšãããäžã®èå¯ãããå€æ²ç¹ã¯ç¬¬äºæ¬¡å°é¢æ°ã®ç¬Šå·ãå€ããç¹ã§ããããšããããã極å€ã®å Žåãšåæ§ã«ãããšã<math>f''(a) = 0</math>ã§ãã£ãŠãã笊å·ãå€ãããªããã°å€æ²ç¹ã§ã¯ãªãã
é¢æ°ã®ã°ã©ããæžããšãã«ã¯ãå€æ²ç¹ã®æ
å ±ã¯æ¥µå€ãšåæ§ã«éèŠãªã®ã§ãå¢æžè¡šã«ã第äºæ¬¡å°é¢æ°ã®æ¬ãã€ãããå€æ²ç¹ãèšå
¥ãããšããã
===é床ãšå é床===
ïŒ[[é«çåŠæ ¡ç©ç/ååŠ|ååŠ]]ãåç
§ãïŒ
æ°çŽç·äžãéåããç©äœãæå» <math>t</math> ã®ãšãäœçœ® <math>x(t)</math> ã«ãããšããããã®ç©äœã®é床ãæ±ããã
æå»ã <math>t</math> ãã <math>t+h</math> ã«ç§»åãããšããç©äœã¯ <math>x(t)</math> ãã <math>x(t+h)</math> ã®äœçœ®ã«ç§»åãã<ref>ããã§ã <math>x</math> ã¯é¢æ°ã§ããããšã«æ³šæããã</ref>ããã®ãšãã®å¹³åã®é床㯠<math>\frac{\Delta x}{\Delta t} = \frac{x(t+h)-x(t)}{(t+h)-t} = \frac{x(t+h)-x(t)}{h}</math>
ããã§ã<math>\Delta t = h</math> ãªã®ã§ã <math>h </math> ãéããªã 0 ã«è¿ã¥ããã°ããã®ç©äœã®ç¬éã®é床ãæ±ãããããæå» <math>t</math> ã®ãšãã®ç©äœã®ç¬éã®é床ã <math>v(t)</math> ãšããã°ã
<math>v(t) = \lim_{h \to 0} \frac{x(t+h)-x(t)}{h} = x'(t) = \frac{dx}{dt}</math> ã§ããã
åæ§ã«ãå é床ã«ã€ããŠããæå» <math>t</math> ã®ãšãã®ç©äœã®å é床ã <math>a(t)</math> ãšããã°
<math> a(t) = \lim_{\Delta t \to 0}\frac{\Delta v}{\Delta t} =\lim_{\Delta h \to 0} \frac{x'(t+h)-x'(t)}{h} = x''(t) = \frac{d^2x}{dt^2}</math>
ããã¯ãå¹³é¢äžãéåããç©äœã«ãæ¡åŒµã§ãããæå» <math>t</math> ã®ãšãã®ç©äœã®äœçœ®ãã¯ãã«ã <math>\vec x(t) = (x(t),y(t))</math> ã§äžãããããšãããã®ç©äœã®é床ãã¯ãã« <math>\vec v</math> 㯠<math>\vec v = \lim_{\Delta t \to 0}\frac{\Delta \vec x}{\Delta t}=\frac{d \vec x}{dt} = \left(\frac{dx}{dt},\frac{dy}{dt}\right)</math> ã§ãããåæ§ã«å é床ãã¯ãã« <math>\vec a</math> ã«ã€ããŠãã <math>\vec a = \left(\frac{d^2x}{dt^2},\frac{d^2x}{dt^2}\right)</math>ã
äŸãã°ãè§é床 <math>\omega</math> ã§åç¹ãäžå¿ã«ååŸ <math>r</math> ã®åéåããç©äœã <math>t=0</math> 㧠<math>\vec x(0) =(r,0)</math> ã«ãããšãããã®ç©äœã®æå» <math>t</math> ã®ãšãã®äœçœ®ãã¯ãã« <math>\vec x(t)</math> 㯠<math>\vec x (t) = r\left(\begin{align} \cos \omega t \\ \sin\omega t\end{align}\right)</math> ã§ãããé床ãã¯ãã«ã¯ã<math>\vec v = \frac{d\vec x}{dt} = r\omega\left(\begin{align} -\sin \omega t \\ \cos\omega t\end{align}\right)</math>ãå é床ãã¯ãã«ã¯<math>\vec a = \frac{d^2\vec x}{d^2t} = -r\omega^2\left(\begin{align} \cos \omega t \\ \sin\omega t\end{align}\right) = -\omega^2 \vec x(t)</math>ããããããäœçœ®ãã¯ãã« <math>\vec x(t)</math> ãšé床ãã¯ãã« <math>\vec v(t)</math> ã¯çŽè¡ããäœçœ®ãã¯ãã« <math>\vec x(t)</math> ãšå é床ãã¯ãã« <math>\vec a(t)</math> ã¯éåãã§ããã<math>|\vec v(t)| = r\omega</math> ã <math>|\vec a(t)| = r\omega^2</math> ãæç«ããããšãåããã
ãŸããåéåã® <math>x</math> æå ãŸã㯠<math>y</math> æåã ãã«æ³šç®ããã°ãããã¯åæ¯åã§ããã
=== è¿äŒŒåŒ ===
埮åä¿æ°<Math>f'(a)</Math>ã¯<Math>\lim_{h \to 0} \frac{f(a+h)-f(a)}{h} = f'(a)</Math>ãªã®ã§ã<Math>|h|</Math>ãååå°ãããšãã<Math>\frac{f(a+b)-f(a)}{h} \fallingdotseq f'(a)</Math>ã§ãããããªãã¡ã<Math>f(a+h) \fallingdotseq f(a)+f'(a)h</Math>ãæãç«ã€ãããã'''äžæ¬¡è¿äŒŒåŒ'''ãšåŒã¶ã
ãŸãã<Math>a=0, h=x</Math>ãšãããšã<Math>|x|</Math>ãå°ãããšã<Math>f(x) \fallingdotseq f(0)+f'(0)x</Math>ã§ããã
<Math>g(x)=px^2+qx+r</Math>ãšããã<Math>f(a+h) \fallingdotseq g(a+h)</Math>ãšèŠåãããšã«ããã<Math>f(a+h) \fallingdotseq f(a)+f'(a)h + \frac{f''(a)}{2}h^2</Math>ãåŸããããããã'''äºæ¬¡è¿äŒŒåŒ'''ãšåŒã¶ã
äžæ¬¡è¿äŒŒåŒãšäºæ¬¡è¿äŒŒåŒãèŠæ¯ã¹ããšãn次è¿äŒŒåŒã¯né
ç®ãŸã§ã®æéçŽæ°ã«ãªãããšãäºæ³ã§ãããããã§ãè¿äŒŒåŒã®æ¬¡æ°ãç¡éã«å€§ããããŠãããšãè¿äŒŒå€ã§ã¯ãªãçã«æ£ç¢ºãªå€ãåŸããããéã«èšããšãçã«æ£ç¢ºãªå€ãæ±ããç¡éçŽæ°ãããé
ã§æã¡åãããšã§ãè¿äŒŒåŒãšããŠæ©èœããããã®ç¡éçŽæ°ã«ã€ããŠã¯ä»¥äžã®ããã€ã©ãŒçŽæ°ããåç
§ã
== åèäºé
==
=== ãã«ã®å®ç ===
é¢æ° <math>f(x)</math> 㯠<math> [a,b]</math> ã§é£ç¶ã <math>(a,b)</math> ã§åŸ®åå¯èœãšããã
<math>f(a) = f(b)</math> ãªãã° <math> f'(c) = 0</math> ãšãªãç¹ <math>a<c<b</math> ãååšããã
'''蚌æ'''
é¢æ° <math>f(x)</math> ã«ã¯æ倧å€ãŸãã¯æå°å€ã <math>a < x <b</math> ã®ç¯å²ã«äžã€ä»¥äžååšãããæ倧å€ãŸãã¯æå°å€ã§ã¯é¢æ°ã®å°é¢æ°ã¯ 0 ãªã®ã§ããã®ç¹ãéžã³ <math>c</math>ãšãããšã <math>f'(c) = 0</math> ãšãªãã
=== å¹³åå€ã®å®ç ===
é¢æ° <math>f(x)</math> 㯠<math> [a,b]</math> ã§é£ç¶ã <math>(a,b)</math> ã§åŸ®åå¯èœãšããããã®ãšãã <math>\frac{f(b)-f(a)}{b-a} = f'(c)</math> ãšãªã <math> a< c <b</math> ãååšããã
'''蚌æ'''
<math>g(x) = f(x) - Ax</math> ãšãããå®æ° <math>A</math> ã <math>g(a)=g(b)</math> ãæºããããã«å®ããã
ãããã£ãŠã <math>f(a) - Aa = f(b) - Ab </math> ããã <math>A = \frac{f(b)-f(a)}{b-a}</math> ã§ããã
ããã§ãé¢æ° <math>g(x)</math> ã«å¯ŸããŠããã«ã®å®çãçšããããšã«ããã <math> g'(c) = 0</math> ãšãªã <math>a<c<b</math> ãååšããã<math>g'(x) = f'(x)-A</math>ã§ããããã<math>f'(c) = A = \frac{f(b)-f(a)}{b-a}</math> ãšãªã <math>a<c<b</math> ãååšããããšããããã
=== ã³ãŒã·ãŒã®å¹³åå€ã®å®ç ===
é¢æ° <math>f(x),g(x)</math> 㯠<math> [a,b]</math> ã§é£ç¶ã <math>(a,b)</math> ã§åŸ®åå¯èœãšããããã®ãšãã<math> \{g(b)-g(a)\}f'(c) = \{f(b) - f(a)\}g'(c)</math> ãšãªã <math>c\in (a,b)</math> ãååšãããããã«ã <math>g'(c) \neq 0,\,g(a)\neq g(b)</math> ãšããã°ã
<math>\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(c)}{g'(c)}</math>
ãšãªã <math>c\in (a,b)</math> ãååšããã
'''蚌æ'''
<math>h(t) = \{f(b)-f(a)\}g(t) - \{g(b)-g(a)\}f(t)</math> ãšãããããã§ã <math> h(t)</math> 㯠<math> [a,b]</math> ã§é£ç¶ã <math> (a,b)</math> ã§åŸ®åå¯èœã <math> h(a) = h(b)</math> ãªã®ã§ããã«ã®å®çããã<math>h'(c)=0</math> ãšãªã <math>c\in (a,b)</math> ãååšããã<math>h'(c)=0</math> ãå€åœ¢ã㊠<math>\{g(b)-g(a)\}f'(c) = \{f(b) - f(a)\}g'(c)</math> ãåŸããããã«ã <math>g'(c) \neq 0,\,g(a)\neq g(b)</math> ãªãã°ã
<math>\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(c)}{g'(c)}</math>ã§ããã
=== ãã€ã©ãŒã®å®çïŒçºå±ïŒ ===
<math>f(x)</math> ãåºé <math>I</math> 㧠<math>n</math> å埮åå¯èœãªé¢æ°ãšãããä»»æã® <math>a,x \in I</math> ã«å¯ŸããŠã<math>\xi</math> ã <math>a,x</math> ã®äžéã«ååšããŠã
<math>f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \cdots + \frac{f^{(n-1)}(a)}{(n-1)!}(x-a)^{n-1} + \frac{f^{(n)}(\xi)}{n!}(x-a)^n.</math>
'''蚌æ'''
<math>F(x) = f(x) - \left[f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \cdots + \frac{f^{(n-1)}(a)}{(n-1)!}(x-a)^{n-1} \right] </math> ãšããã<math>F(x)</math> ãšé¢æ° <math>(x-a)^n</math> ã«å¯ŸããŠãã³ãŒã·ãŒã®å¹³åå€ã®å®çãé©çšãããšã<math>F(a) = 0</math> ããã<math>\frac{F(x)}{(x-a)^n} = \frac{F(x) - F(a)}{(x-a)^n - (a-a)^n} = \frac{F'(x_1)}{n(x_1 - a)^{n-1}}</math> ãšãªã <math>x_1</math> ã <math>a,x</math> ã®äžéã«ååšããã<math>F'(a) = F''(a) = \cdots = F^{(n-1)}(a) = 0</math> ã§ãããããå³èŸºã«ãåæ§ã«ã³ãŒã·ãŒã®å¹³åå€ã®å®çãé©çšããããšã§ã <math>\frac{F(x)}{(x-a)^n} = \frac{F'(x_1)}{n(x_1 - a)^{n-1}} = \frac{F''(x_2)}{n(n-1)(x_2-a)^{n-2}} = \cdots = \frac{F^{(n)}(\xi)}{n!}</math> ãšãªã <math>x_1,x_2,\cdots, \xi</math> ã <math>a,x</math> ã®äžéã«ååšããã<math>F^{(n)}(x) = f^{(n)}(x)</math> ã ããã <math>F(x) = \frac{f^{(n)}(\xi)} {n!} (x-a)^n</math> ãåŸãã
==== ã©ã³ããŠã®èšå· ====
é¢æ° <math>g(x) </math> ã«å¯ŸããŠã <math>\lim_{x\to a} \frac{f(x)}{g(x)} = 0 </math> ãšãªããããªé¢æ° <math>f(x) </math> ãäžè¬ã« <math>og </math> ãšè¡šãã
ã©ã³ããŠèšå·ã«ã€ããŠæ¬¡ãæãç«ã€ã
# <math>oh + oh = oh</math>
# <math>koh = oh</math> (<math>k</math> ã¯å®æ°)
# <math>f = og, g = oh</math> ãªãã°ã <math>f = oh</math>
ã©ã³ããŠã®èšå·ã¯äžè¬ã«ã¯éãé¢æ°ãåãèšå·ã§è¡šããŠããã®ã§æ³šæãå¿
èŠã§ãããäŸãã° 1. ã¯ä»»æã®<math>f = oh,\, g=oh</math> ã§ããé¢æ°ã«ã€ããŠã<math>\lim_{x\to a}\frac{f+g}{h} = 0</math> ãšããæå³ã§ããã
2. 㯠<math>f = oh</math> ãšãããšã<math>\frac{kf}{h} \to 0.</math> 3. 㯠<math>\frac f g \to 0,\, \frac g h \to 0</math> ãªãã°ã<math>\frac f h = \frac f g \frac g h \to 0 </math> ãšãªãããã<math>f = oh .</math>
ã©ã³ããŠã®èšå·ã«ã€ããŠã<math>x</math> ãã©ãã«è¿ã¥ãããšããïŒ<math>x \to a</math>ïŒãšããããšã¯éèŠã ããæèããæãããªå Žåã¯çç¥ãããã
==== 挞è¿å±é ====
ãã€ã©ãŒã®å®çã«ãããå³èŸºæåŸã®é
ãå°äœé
ãšãããããã <math>R_n</math> ãšæžãã<math>f^{(n)}(x)</math> ã <math>x = a</math> ã§é£ç¶ãªãã°ã<math>\lim_{x\to a} \frac{R_n}{(x-a)^{n}} = \lim_{\xi \to a} \frac{f^{(n)}(\xi)}{n!} = \frac{f^{(n)}(a)}{n!}.</math>
ããã¯ã <math>\lim_{x\to a} \frac{R_n - \frac{f^{(n)}(a)}{n!}(x-a)^n}{(x-a)^{n}} = 0</math> ãšæžããããã <math>R_n = \frac{f^{(n)}(a)}{n!} (x-a)^n + o{(x-a)^n}. </math>
ããªãã¡ã
<math>f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \cdots + \frac{f^{(n)}(a)}{n!}(x-a)^n + o(x-a)^n</math>
挞è¿å±éãçšãããšæ¥µéã®åé¡ãç°¡åã«è§£ãããšãåºæ¥ããäŸãã°ã <math>\lim_{x\to 0} \frac{e^x - e^{-x}}{x} = \lim_{x\to 0} \frac{(1 + x + ox) - (1 - x + ox)}{x} = \lim_{x\to 0} 2 + \frac{ox}{x} = 2. </math>
'''äŸ'''
<math>\alpha</math> ãå®æ°ãšããã<math>f(x) = (1+x)^\alpha</math> ã«ã€ããŠã <math>f^{(n)}(0) = \alpha(\alpha-1) \cdots (\alpha - n + 1) </math> ãªã®ã§ã
<math>(1+x)^\alpha = \sum_{k=0}^{n} \binom{\alpha}{k} x^k + ox^n </math>
ãã ãã<math>\binom{\alpha}{k} = \frac{\alpha(\alpha-1) \cdots (\alpha - k + 1)}{k!},\, \binom{\alpha}{0} = 1</math> ã¯äžè¬äºé
ä¿æ°ã
äŸãã°ã
<math>\sqrt{1+x} = 1 + \frac 1 2 x + ox</math>
<math>\frac{1}{\sqrt{1+x}} = 1 - \frac 1 2 x + ox</math>
ãªã©ããããã¯è¿äŒŒå
¬åŒãšããŠããã䜿ãããã
==== ãã€ã©ãŒçŽæ° ====
ãã€ã©ãŒã®å®çã«ãããŠãé¢æ° <math>f(x)</math> ãåºé <math>I</math> ã§ç¡éå埮åå¯èœïŒä»»æã®æ¬¡æ°ã®å°é¢æ°ãååšããããšïŒã§å°äœé
ã <math>\lim_{n \to \infty} R_n = 0</math> ãªãã°ã
<math>f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^n .</math>
ããããã€ã©ãŒçŽæ°ãšãããç¹ã« <math>a=0</math> ã®ãã®ããã¯ããŒãªã³çŽæ°ãšããã
ããã€ãã®é¢æ°ã®ãã€ã©ãŒå±éãæ±ãããã
<math>f(x) = e^x</math>ãšãããšã<math>f^{(n)}(x) = e^x,f^{(n)}(0) = 1</math> ã§ã<math>|R_n| = \left|\frac{e^\xi}{n!}x^n\right| < \frac{e^{|x|}}{n!}|x|^n</math> ãããä»»æã® <math>x</math> ã«å¯ŸããŠã <math>\lim_{n \to \infty} R_n = 0</math> ãšãªããããªãã¡ã
<math>e^x = \sum_{n=0}^{\infty} \frac 1 {n!} x^n.</math>
<math>\sin x,\cos x</math> ã«ã€ããŠãåãããã«èšç®ããŠã
<math>\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1},\, \cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}</math>
ãåŸãã
== è泚 ==
<references/>
{{DEFAULTSORT:ãããšããã€ããããããIII ã²ãµãã»ã}}
[[Category:é«çåŠæ ¡æ°åŠIII|ã²ãµãã»ã]]
[[Category:埮åç©ååŠ]] | 2005-05-03T05:33:14Z | 2024-03-21T12:36:40Z | [
"ãã³ãã¬ãŒã:Pathnav"
] | https://ja.wikibooks.org/wiki/%E9%AB%98%E7%AD%89%E5%AD%A6%E6%A0%A1%E6%95%B0%E5%AD%A6III/%E5%BE%AE%E5%88%86%E6%B3%95 |
1,889 | æ§èª²çš(-2012幎床)é«çåŠæ ¡æ°åŠB | 倪åæ
2003ã2012幎ã®æ°åŠBã¯
ã§æ§æãããŠããã
2012ã2021幎ã®æ°åŠ B ã¯ã
ã«ãã£ãŠæ§æãããŠããã
2022幎ãã®æ°åŠBã¯
ã§æ§æãããŠããã
ã»ã³ã¿ãŒè©Šéšã§ã¯æ°åŠ B ã«ãããŠãæ°åãã»ããã¯ãã«ãã»ã確çååžãšçµ±èšçãªæšæž¬ãã® 3 åéã®ãã¡ã®ãããã 2 åéãéžæãã解çããããšã«ãªã£ãŠããã
| [
{
"paragraph_id": 0,
"tag": "p",
"text": "倪åæ",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "2003ã2012幎ã®æ°åŠBã¯",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ã§æ§æãããŠããã",
"title": ""
},
{
"paragraph_id": 3,
"tag": "p",
"text": "2012ã2021幎ã®æ°åŠ B ã¯ã",
"title": ""
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ã«ãã£ãŠæ§æãããŠããã",
"title": ""
},
{
"paragraph_id": 5,
"tag": "p",
"text": "2022幎ãã®æ°åŠBã¯",
"title": ""
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ã§æ§æãããŠããã",
"title": ""
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ã»ã³ã¿ãŒè©Šéšã§ã¯æ°åŠ B ã«ãããŠãæ°åãã»ããã¯ãã«ãã»ã確çååžãšçµ±èšçãªæšæž¬ãã® 3 åéã®ãã¡ã®ãããã 2 åéãéžæãã解çããããšã«ãªã£ãŠããã",
"title": "åœæã®äœçœ®ä»ã"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "",
"title": "åœæã®äœçœ®ä»ã"
}
] | 倪åæ 2003ã2012幎ã®æ°åŠB㯠æ°å
ãã¯ãã«
çµ±èšãšã³ã³ãã¥ãŒã¿
床æ°ååžã»æ£åžå³
代衚å€ã»åæ£ã»æšæºåå·®ã»çžé¢ä¿æ°
æ°å€è§£æãšã³ã³ãã¥ãŒã¿
ããã°ã©ã ã»ã¢ã«ãŽãªãºã
æŽæ°èšç®ã»è¿äŒŒèšç®ã»æ°å€ç©å ã§æ§æãããŠããã 2012ã2021幎ã®æ°åŠ B ã¯ã æ°å
ãã¯ãã«
確çååžãšçµ±èšçãªæšæž¬ ã«ãã£ãŠæ§æãããŠããã 2022幎ãã®æ°åŠB㯠æ°å
çµ±èšçãªæšæž¬
æ°åŠãšç€ŸäŒç掻 ã§æ§æãããŠããã | {{pathnav|frame=1|é«çåŠæ ¡ã®åŠç¿|é«çåŠæ ¡æ°åŠ}}
2003ã2012幎ã®æ°åŠBã¯
*æ°å
*ãã¯ãã«
*çµ±èšãšã³ã³ãã¥ãŒã¿
**床æ°ååžã»æ£åžå³
**代衚å€ã»åæ£ã»æšæºåå·®ã»çžé¢ä¿æ°
*æ°å€è§£æãšã³ã³ãã¥ãŒã¿
**ããã°ã©ã ã»ã¢ã«ãŽãªãºã
**æŽæ°èšç®ã»è¿äŒŒèšç®ã»æ°å€ç©å
ã§æ§æãããŠããã
2012ã2021幎ã®æ°åŠ B ã¯ã
* [[é«çåŠæ ¡æ°åŠB/æ°å|æ°å]]
* [[é«çåŠæ ¡æ°åŠB/ãã¯ãã«|ãã¯ãã«]]
* [[é«çåŠæ ¡æ°åŠB/確çååžãšçµ±èšçãªæšæž¬|確çååžãšçµ±èšçãªæšæž¬]]
ã«ãã£ãŠæ§æãããŠããã
2022幎ãã®æ°åŠBã¯
*æ°å
*çµ±èšçãªæšæž¬
*[[é«çåŠæ ¡æ°åŠB/æ°åŠãšç€ŸäŒç掻|æ°åŠãšç€ŸäŒç掻]]
ã§æ§æãããŠããã
== åœæã®äœçœ®ä»ã ==
=== æ°åŠ B ãåŠã¶æ矩 ===
*æ°åããã¯ãã«ãçµ±èšã«ã€ããŠç解ãããåºç€çãªç¥èã®ç¿åŸãšæèœã®ç¿çãå³ãã
*äºè±¡ãæ°åŠçã«èå¯ããåŠçããèœåã䌞ã°ããšãšãã«ããããã掻çšããèœåãè²ãŠãã
=== ã»ã³ã¿ãŒè©Šéšã»äºæ¬¡è©Šéšã«ãããŠã®æ°åŠB ===
ã»ã³ã¿ãŒè©Šéšã§ã¯æ°åŠ B ã«ãããŠãæ°åãã»ããã¯ãã«ãã»ã確çååžãšçµ±èšçãªæšæž¬ãã® 3 åéã®ãã¡ã®ãããã 2 åéãéžæãã解çããããšã«ãªã£ãŠããã
{{DEFAULTSORT:æ§1 ãããšããã€ããããããB}}
[[Category:æ°åŠæè²]]
[[Category:é«çåŠæ ¡æ°åŠB|*]] | 2005-05-03T05:50:17Z | 2024-03-19T15:08:30Z | [
"ãã³ãã¬ãŒã:Pathnav"
] | https://ja.wikibooks.org/wiki/%E6%97%A7%E8%AA%B2%E7%A8%8B(-2012%E5%B9%B4%E5%BA%A6)%E9%AB%98%E7%AD%89%E5%AD%A6%E6%A0%A1%E6%95%B0%E5%AD%A6B |