Search is not available for this dataset
pipeline_tag
stringclasses 48
values | library_name
stringclasses 205
values | text
stringlengths 0
18.3M
| metadata
stringlengths 2
1.07B
| id
stringlengths 5
122
| last_modified
null | tags
sequencelengths 1
1.84k
| sha
null | created_at
stringlengths 25
25
|
---|---|---|---|---|---|---|---|---|
fill-mask | transformers |
# ALBERT Base v1
Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in
[this paper](https://arxiv.org/abs/1909.11942) and first released in
[this repository](https://github.com/google-research/albert). This model, as all ALBERT models, is uncased: it does not make a difference
between english and English.
Disclaimer: The team releasing ALBERT did not write a model card for this model so this model card has been written by
the Hugging Face team.
## Model description
ALBERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it
was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it
was pretrained with two objectives:
- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run
the entire masked sentence through the model and has to predict the masked words. This is different from traditional
recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like
GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the
sentence.
- Sentence Ordering Prediction (SOP): ALBERT uses a pretraining loss based on predicting the ordering of two consecutive segments of text.
This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard
classifier using the features produced by the ALBERT model as inputs.
ALBERT is particular in that it shares its layers across its Transformer. Therefore, all layers have the same weights. Using repeating layers results in a small memory footprint, however, the computational cost remains similar to a BERT-like architecture with the same number of hidden layers as it has to iterate through the same number of (repeating) layers.
This is the first version of the base model. Version 2 is different from version 1 due to different dropout rates, additional training data, and longer training. It has better results in nearly all downstream tasks.
This model has the following configuration:
- 12 repeating layers
- 128 embedding dimension
- 768 hidden dimension
- 12 attention heads
- 11M parameters
## Intended uses & limitations
You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to
be fine-tuned on a downstream task. See the [model hub](https://huggingface.co./models?filter=albert) to look for
fine-tuned versions on a task that interests you.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
generation you should look at model like GPT2.
### How to use
You can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='albert-base-v1')
>>> unmasker("Hello I'm a [MASK] model.")
[
{
"sequence":"[CLS] hello i'm a modeling model.[SEP]",
"score":0.05816134437918663,
"token":12807,
"token_str":"▁modeling"
},
{
"sequence":"[CLS] hello i'm a modelling model.[SEP]",
"score":0.03748830780386925,
"token":23089,
"token_str":"▁modelling"
},
{
"sequence":"[CLS] hello i'm a model model.[SEP]",
"score":0.033725276589393616,
"token":1061,
"token_str":"▁model"
},
{
"sequence":"[CLS] hello i'm a runway model.[SEP]",
"score":0.017313428223133087,
"token":8014,
"token_str":"▁runway"
},
{
"sequence":"[CLS] hello i'm a lingerie model.[SEP]",
"score":0.014405295252799988,
"token":29104,
"token_str":"▁lingerie"
}
]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import AlbertTokenizer, AlbertModel
tokenizer = AlbertTokenizer.from_pretrained('albert-base-v1')
model = AlbertModel.from_pretrained("albert-base-v1")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import AlbertTokenizer, TFAlbertModel
tokenizer = AlbertTokenizer.from_pretrained('albert-base-v1')
model = TFAlbertModel.from_pretrained("albert-base-v1")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
### Limitations and bias
Even if the training data used for this model could be characterized as fairly neutral, this model can have biased
predictions:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='albert-base-v1')
>>> unmasker("The man worked as a [MASK].")
[
{
"sequence":"[CLS] the man worked as a chauffeur.[SEP]",
"score":0.029577180743217468,
"token":28744,
"token_str":"▁chauffeur"
},
{
"sequence":"[CLS] the man worked as a janitor.[SEP]",
"score":0.028865724802017212,
"token":29477,
"token_str":"▁janitor"
},
{
"sequence":"[CLS] the man worked as a shoemaker.[SEP]",
"score":0.02581118606030941,
"token":29024,
"token_str":"▁shoemaker"
},
{
"sequence":"[CLS] the man worked as a blacksmith.[SEP]",
"score":0.01849772222340107,
"token":21238,
"token_str":"▁blacksmith"
},
{
"sequence":"[CLS] the man worked as a lawyer.[SEP]",
"score":0.01820771023631096,
"token":3672,
"token_str":"▁lawyer"
}
]
>>> unmasker("The woman worked as a [MASK].")
[
{
"sequence":"[CLS] the woman worked as a receptionist.[SEP]",
"score":0.04604868218302727,
"token":25331,
"token_str":"▁receptionist"
},
{
"sequence":"[CLS] the woman worked as a janitor.[SEP]",
"score":0.028220869600772858,
"token":29477,
"token_str":"▁janitor"
},
{
"sequence":"[CLS] the woman worked as a paramedic.[SEP]",
"score":0.0261906236410141,
"token":23386,
"token_str":"▁paramedic"
},
{
"sequence":"[CLS] the woman worked as a chauffeur.[SEP]",
"score":0.024797942489385605,
"token":28744,
"token_str":"▁chauffeur"
},
{
"sequence":"[CLS] the woman worked as a waitress.[SEP]",
"score":0.024124596267938614,
"token":13678,
"token_str":"▁waitress"
}
]
```
This bias will also affect all fine-tuned versions of this model.
## Training data
The ALBERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038
unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and
headers).
## Training procedure
### Preprocessing
The texts are lowercased and tokenized using SentencePiece and a vocabulary size of 30,000. The inputs of the model are
then of the form:
```
[CLS] Sentence A [SEP] Sentence B [SEP]
```
### Training
The ALBERT procedure follows the BERT setup.
The details of the masking procedure for each sentence are the following:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `[MASK]`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
## Evaluation results
When fine-tuned on downstream tasks, the ALBERT models achieve the following results:
| | Average | SQuAD1.1 | SQuAD2.0 | MNLI | SST-2 | RACE |
|----------------|----------|----------|----------|----------|----------|----------|
|V2 |
|ALBERT-base |82.3 |90.2/83.2 |82.1/79.3 |84.6 |92.9 |66.8 |
|ALBERT-large |85.7 |91.8/85.2 |84.9/81.8 |86.5 |94.9 |75.2 |
|ALBERT-xlarge |87.9 |92.9/86.4 |87.9/84.1 |87.9 |95.4 |80.7 |
|ALBERT-xxlarge |90.9 |94.6/89.1 |89.8/86.9 |90.6 |96.8 |86.8 |
|V1 |
|ALBERT-base |80.1 |89.3/82.3 | 80.0/77.1|81.6 |90.3 | 64.0 |
|ALBERT-large |82.4 |90.6/83.9 | 82.3/79.4|83.5 |91.7 | 68.5 |
|ALBERT-xlarge |85.5 |92.5/86.1 | 86.1/83.1|86.4 |92.4 | 74.8 |
|ALBERT-xxlarge |91.0 |94.8/89.3 | 90.2/87.4|90.8 |96.9 | 86.5 |
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-1909-11942,
author = {Zhenzhong Lan and
Mingda Chen and
Sebastian Goodman and
Kevin Gimpel and
Piyush Sharma and
Radu Soricut},
title = {{ALBERT:} {A} Lite {BERT} for Self-supervised Learning of Language
Representations},
journal = {CoRR},
volume = {abs/1909.11942},
year = {2019},
url = {http://arxiv.org/abs/1909.11942},
archivePrefix = {arXiv},
eprint = {1909.11942},
timestamp = {Fri, 27 Sep 2019 13:04:21 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-1909-11942.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
<a href="https://huggingface.co./exbert/?model=albert-base-v1">
<img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png">
</a>
| {"language": "en", "license": "apache-2.0", "tags": ["exbert"], "datasets": ["bookcorpus", "wikipedia"]} | albert/albert-base-v1 | null | [
"transformers",
"pytorch",
"tf",
"safetensors",
"albert",
"fill-mask",
"exbert",
"en",
"dataset:bookcorpus",
"dataset:wikipedia",
"arxiv:1909.11942",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
fill-mask | transformers |
# ALBERT Base v2
Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in
[this paper](https://arxiv.org/abs/1909.11942) and first released in
[this repository](https://github.com/google-research/albert). This model, as all ALBERT models, is uncased: it does not make a difference
between english and English.
Disclaimer: The team releasing ALBERT did not write a model card for this model so this model card has been written by
the Hugging Face team.
## Model description
ALBERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it
was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it
was pretrained with two objectives:
- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run
the entire masked sentence through the model and has to predict the masked words. This is different from traditional
recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like
GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the
sentence.
- Sentence Ordering Prediction (SOP): ALBERT uses a pretraining loss based on predicting the ordering of two consecutive segments of text.
This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard
classifier using the features produced by the ALBERT model as inputs.
ALBERT is particular in that it shares its layers across its Transformer. Therefore, all layers have the same weights. Using repeating layers results in a small memory footprint, however, the computational cost remains similar to a BERT-like architecture with the same number of hidden layers as it has to iterate through the same number of (repeating) layers.
This is the second version of the base model. Version 2 is different from version 1 due to different dropout rates, additional training data, and longer training. It has better results in nearly all downstream tasks.
This model has the following configuration:
- 12 repeating layers
- 128 embedding dimension
- 768 hidden dimension
- 12 attention heads
- 11M parameters
## Intended uses & limitations
You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to
be fine-tuned on a downstream task. See the [model hub](https://huggingface.co./models?filter=albert) to look for
fine-tuned versions on a task that interests you.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
generation you should look at model like GPT2.
### How to use
You can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='albert-base-v2')
>>> unmasker("Hello I'm a [MASK] model.")
[
{
"sequence":"[CLS] hello i'm a modeling model.[SEP]",
"score":0.05816134437918663,
"token":12807,
"token_str":"▁modeling"
},
{
"sequence":"[CLS] hello i'm a modelling model.[SEP]",
"score":0.03748830780386925,
"token":23089,
"token_str":"▁modelling"
},
{
"sequence":"[CLS] hello i'm a model model.[SEP]",
"score":0.033725276589393616,
"token":1061,
"token_str":"▁model"
},
{
"sequence":"[CLS] hello i'm a runway model.[SEP]",
"score":0.017313428223133087,
"token":8014,
"token_str":"▁runway"
},
{
"sequence":"[CLS] hello i'm a lingerie model.[SEP]",
"score":0.014405295252799988,
"token":29104,
"token_str":"▁lingerie"
}
]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import AlbertTokenizer, AlbertModel
tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2')
model = AlbertModel.from_pretrained("albert-base-v2")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import AlbertTokenizer, TFAlbertModel
tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2')
model = TFAlbertModel.from_pretrained("albert-base-v2")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
### Limitations and bias
Even if the training data used for this model could be characterized as fairly neutral, this model can have biased
predictions:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='albert-base-v2')
>>> unmasker("The man worked as a [MASK].")
[
{
"sequence":"[CLS] the man worked as a chauffeur.[SEP]",
"score":0.029577180743217468,
"token":28744,
"token_str":"▁chauffeur"
},
{
"sequence":"[CLS] the man worked as a janitor.[SEP]",
"score":0.028865724802017212,
"token":29477,
"token_str":"▁janitor"
},
{
"sequence":"[CLS] the man worked as a shoemaker.[SEP]",
"score":0.02581118606030941,
"token":29024,
"token_str":"▁shoemaker"
},
{
"sequence":"[CLS] the man worked as a blacksmith.[SEP]",
"score":0.01849772222340107,
"token":21238,
"token_str":"▁blacksmith"
},
{
"sequence":"[CLS] the man worked as a lawyer.[SEP]",
"score":0.01820771023631096,
"token":3672,
"token_str":"▁lawyer"
}
]
>>> unmasker("The woman worked as a [MASK].")
[
{
"sequence":"[CLS] the woman worked as a receptionist.[SEP]",
"score":0.04604868218302727,
"token":25331,
"token_str":"▁receptionist"
},
{
"sequence":"[CLS] the woman worked as a janitor.[SEP]",
"score":0.028220869600772858,
"token":29477,
"token_str":"▁janitor"
},
{
"sequence":"[CLS] the woman worked as a paramedic.[SEP]",
"score":0.0261906236410141,
"token":23386,
"token_str":"▁paramedic"
},
{
"sequence":"[CLS] the woman worked as a chauffeur.[SEP]",
"score":0.024797942489385605,
"token":28744,
"token_str":"▁chauffeur"
},
{
"sequence":"[CLS] the woman worked as a waitress.[SEP]",
"score":0.024124596267938614,
"token":13678,
"token_str":"▁waitress"
}
]
```
This bias will also affect all fine-tuned versions of this model.
## Training data
The ALBERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038
unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and
headers).
## Training procedure
### Preprocessing
The texts are lowercased and tokenized using SentencePiece and a vocabulary size of 30,000. The inputs of the model are
then of the form:
```
[CLS] Sentence A [SEP] Sentence B [SEP]
```
### Training
The ALBERT procedure follows the BERT setup.
The details of the masking procedure for each sentence are the following:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `[MASK]`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
## Evaluation results
When fine-tuned on downstream tasks, the ALBERT models achieve the following results:
| | Average | SQuAD1.1 | SQuAD2.0 | MNLI | SST-2 | RACE |
|----------------|----------|----------|----------|----------|----------|----------|
|V2 |
|ALBERT-base |82.3 |90.2/83.2 |82.1/79.3 |84.6 |92.9 |66.8 |
|ALBERT-large |85.7 |91.8/85.2 |84.9/81.8 |86.5 |94.9 |75.2 |
|ALBERT-xlarge |87.9 |92.9/86.4 |87.9/84.1 |87.9 |95.4 |80.7 |
|ALBERT-xxlarge |90.9 |94.6/89.1 |89.8/86.9 |90.6 |96.8 |86.8 |
|V1 |
|ALBERT-base |80.1 |89.3/82.3 | 80.0/77.1|81.6 |90.3 | 64.0 |
|ALBERT-large |82.4 |90.6/83.9 | 82.3/79.4|83.5 |91.7 | 68.5 |
|ALBERT-xlarge |85.5 |92.5/86.1 | 86.1/83.1|86.4 |92.4 | 74.8 |
|ALBERT-xxlarge |91.0 |94.8/89.3 | 90.2/87.4|90.8 |96.9 | 86.5 |
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-1909-11942,
author = {Zhenzhong Lan and
Mingda Chen and
Sebastian Goodman and
Kevin Gimpel and
Piyush Sharma and
Radu Soricut},
title = {{ALBERT:} {A} Lite {BERT} for Self-supervised Learning of Language
Representations},
journal = {CoRR},
volume = {abs/1909.11942},
year = {2019},
url = {http://arxiv.org/abs/1909.11942},
archivePrefix = {arXiv},
eprint = {1909.11942},
timestamp = {Fri, 27 Sep 2019 13:04:21 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-1909-11942.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
``` | {"language": "en", "license": "apache-2.0", "datasets": ["bookcorpus", "wikipedia"]} | albert/albert-base-v2 | null | [
"transformers",
"pytorch",
"tf",
"jax",
"rust",
"safetensors",
"albert",
"fill-mask",
"en",
"dataset:bookcorpus",
"dataset:wikipedia",
"arxiv:1909.11942",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
fill-mask | transformers |
# ALBERT Large v1
Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in
[this paper](https://arxiv.org/abs/1909.11942) and first released in
[this repository](https://github.com/google-research/albert). This model, as all ALBERT models, is uncased: it does not make a difference
between english and English.
Disclaimer: The team releasing ALBERT did not write a model card for this model so this model card has been written by
the Hugging Face team.
## Model description
ALBERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it
was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it
was pretrained with two objectives:
- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run
the entire masked sentence through the model and has to predict the masked words. This is different from traditional
recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like
GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the
sentence.
- Sentence Ordering Prediction (SOP): ALBERT uses a pretraining loss based on predicting the ordering of two consecutive segments of text.
This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard
classifier using the features produced by the ALBERT model as inputs.
ALBERT is particular in that it shares its layers across its Transformer. Therefore, all layers have the same weights. Using repeating layers results in a small memory footprint, however, the computational cost remains similar to a BERT-like architecture with the same number of hidden layers as it has to iterate through the same number of (repeating) layers.
This is the first version of the large model. Version 2 is different from version 1 due to different dropout rates, additional training data, and longer training. It has better results in nearly all downstream tasks.
This model has the following configuration:
- 24 repeating layers
- 128 embedding dimension
- 1024 hidden dimension
- 16 attention heads
- 17M parameters
## Intended uses & limitations
You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to
be fine-tuned on a downstream task. See the [model hub](https://huggingface.co./models?filter=albert) to look for
fine-tuned versions on a task that interests you.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
generation you should look at model like GPT2.
### How to use
You can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='albert-large-v1')
>>> unmasker("Hello I'm a [MASK] model.")
[
{
"sequence":"[CLS] hello i'm a modeling model.[SEP]",
"score":0.05816134437918663,
"token":12807,
"token_str":"â–modeling"
},
{
"sequence":"[CLS] hello i'm a modelling model.[SEP]",
"score":0.03748830780386925,
"token":23089,
"token_str":"â–modelling"
},
{
"sequence":"[CLS] hello i'm a model model.[SEP]",
"score":0.033725276589393616,
"token":1061,
"token_str":"â–model"
},
{
"sequence":"[CLS] hello i'm a runway model.[SEP]",
"score":0.017313428223133087,
"token":8014,
"token_str":"â–runway"
},
{
"sequence":"[CLS] hello i'm a lingerie model.[SEP]",
"score":0.014405295252799988,
"token":29104,
"token_str":"â–lingerie"
}
]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import AlbertTokenizer, AlbertModel
tokenizer = AlbertTokenizer.from_pretrained('albert-large-v1')
model = AlbertModel.from_pretrained("albert-large-v1")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import AlbertTokenizer, TFAlbertModel
tokenizer = AlbertTokenizer.from_pretrained('albert-large-v1')
model = TFAlbertModel.from_pretrained("albert-large-v1")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
### Limitations and bias
Even if the training data used for this model could be characterized as fairly neutral, this model can have biased
predictions:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='albert-large-v1')
>>> unmasker("The man worked as a [MASK].")
[
{
"sequence":"[CLS] the man worked as a chauffeur.[SEP]",
"score":0.029577180743217468,
"token":28744,
"token_str":"â–chauffeur"
},
{
"sequence":"[CLS] the man worked as a janitor.[SEP]",
"score":0.028865724802017212,
"token":29477,
"token_str":"â–janitor"
},
{
"sequence":"[CLS] the man worked as a shoemaker.[SEP]",
"score":0.02581118606030941,
"token":29024,
"token_str":"â–shoemaker"
},
{
"sequence":"[CLS] the man worked as a blacksmith.[SEP]",
"score":0.01849772222340107,
"token":21238,
"token_str":"â–blacksmith"
},
{
"sequence":"[CLS] the man worked as a lawyer.[SEP]",
"score":0.01820771023631096,
"token":3672,
"token_str":"â–lawyer"
}
]
>>> unmasker("The woman worked as a [MASK].")
[
{
"sequence":"[CLS] the woman worked as a receptionist.[SEP]",
"score":0.04604868218302727,
"token":25331,
"token_str":"â–receptionist"
},
{
"sequence":"[CLS] the woman worked as a janitor.[SEP]",
"score":0.028220869600772858,
"token":29477,
"token_str":"â–janitor"
},
{
"sequence":"[CLS] the woman worked as a paramedic.[SEP]",
"score":0.0261906236410141,
"token":23386,
"token_str":"â–paramedic"
},
{
"sequence":"[CLS] the woman worked as a chauffeur.[SEP]",
"score":0.024797942489385605,
"token":28744,
"token_str":"â–chauffeur"
},
{
"sequence":"[CLS] the woman worked as a waitress.[SEP]",
"score":0.024124596267938614,
"token":13678,
"token_str":"â–waitress"
}
]
```
This bias will also affect all fine-tuned versions of this model.
## Training data
The ALBERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038
unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and
headers).
## Training procedure
### Preprocessing
The texts are lowercased and tokenized using SentencePiece and a vocabulary size of 30,000. The inputs of the model are
then of the form:
```
[CLS] Sentence A [SEP] Sentence B [SEP]
```
### Training
The ALBERT procedure follows the BERT setup.
The details of the masking procedure for each sentence are the following:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `[MASK]`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
## Evaluation results
When fine-tuned on downstream tasks, the ALBERT models achieve the following results:
| | Average | SQuAD1.1 | SQuAD2.0 | MNLI | SST-2 | RACE |
|----------------|----------|----------|----------|----------|----------|----------|
|V2 |
|ALBERT-base |82.3 |90.2/83.2 |82.1/79.3 |84.6 |92.9 |66.8 |
|ALBERT-large |85.7 |91.8/85.2 |84.9/81.8 |86.5 |94.9 |75.2 |
|ALBERT-xlarge |87.9 |92.9/86.4 |87.9/84.1 |87.9 |95.4 |80.7 |
|ALBERT-xxlarge |90.9 |94.6/89.1 |89.8/86.9 |90.6 |96.8 |86.8 |
|V1 |
|ALBERT-base |80.1 |89.3/82.3 | 80.0/77.1|81.6 |90.3 | 64.0 |
|ALBERT-large |82.4 |90.6/83.9 | 82.3/79.4|83.5 |91.7 | 68.5 |
|ALBERT-xlarge |85.5 |92.5/86.1 | 86.1/83.1|86.4 |92.4 | 74.8 |
|ALBERT-xxlarge |91.0 |94.8/89.3 | 90.2/87.4|90.8 |96.9 | 86.5 |
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-1909-11942,
author = {Zhenzhong Lan and
Mingda Chen and
Sebastian Goodman and
Kevin Gimpel and
Piyush Sharma and
Radu Soricut},
title = {{ALBERT:} {A} Lite {BERT} for Self-supervised Learning of Language
Representations},
journal = {CoRR},
volume = {abs/1909.11942},
year = {2019},
url = {http://arxiv.org/abs/1909.11942},
archivePrefix = {arXiv},
eprint = {1909.11942},
timestamp = {Fri, 27 Sep 2019 13:04:21 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-1909-11942.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
``` | {"language": "en", "license": "apache-2.0", "datasets": ["bookcorpus", "wikipedia"]} | albert/albert-large-v1 | null | [
"transformers",
"pytorch",
"tf",
"albert",
"fill-mask",
"en",
"dataset:bookcorpus",
"dataset:wikipedia",
"arxiv:1909.11942",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
fill-mask | transformers |
# ALBERT Large v2
Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in
[this paper](https://arxiv.org/abs/1909.11942) and first released in
[this repository](https://github.com/google-research/albert). This model, as all ALBERT models, is uncased: it does not make a difference
between english and English.
Disclaimer: The team releasing ALBERT did not write a model card for this model so this model card has been written by
the Hugging Face team.
## Model description
ALBERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it
was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it
was pretrained with two objectives:
- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run
the entire masked sentence through the model and has to predict the masked words. This is different from traditional
recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like
GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the
sentence.
- Sentence Ordering Prediction (SOP): ALBERT uses a pretraining loss based on predicting the ordering of two consecutive segments of text.
This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard
classifier using the features produced by the ALBERT model as inputs.
ALBERT is particular in that it shares its layers across its Transformer. Therefore, all layers have the same weights. Using repeating layers results in a small memory footprint, however, the computational cost remains similar to a BERT-like architecture with the same number of hidden layers as it has to iterate through the same number of (repeating) layers.
This is the second version of the large model. Version 2 is different from version 1 due to different dropout rates, additional training data, and longer training. It has better results in nearly all downstream tasks.
This model has the following configuration:
- 24 repeating layers
- 128 embedding dimension
- 1024 hidden dimension
- 16 attention heads
- 17M parameters
## Intended uses & limitations
You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to
be fine-tuned on a downstream task. See the [model hub](https://huggingface.co./models?filter=albert) to look for
fine-tuned versions on a task that interests you.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
generation you should look at model like GPT2.
### How to use
You can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='albert-large-v2')
>>> unmasker("Hello I'm a [MASK] model.")
[
{
"sequence":"[CLS] hello i'm a modeling model.[SEP]",
"score":0.05816134437918663,
"token":12807,
"token_str":"â–modeling"
},
{
"sequence":"[CLS] hello i'm a modelling model.[SEP]",
"score":0.03748830780386925,
"token":23089,
"token_str":"â–modelling"
},
{
"sequence":"[CLS] hello i'm a model model.[SEP]",
"score":0.033725276589393616,
"token":1061,
"token_str":"â–model"
},
{
"sequence":"[CLS] hello i'm a runway model.[SEP]",
"score":0.017313428223133087,
"token":8014,
"token_str":"â–runway"
},
{
"sequence":"[CLS] hello i'm a lingerie model.[SEP]",
"score":0.014405295252799988,
"token":29104,
"token_str":"â–lingerie"
}
]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import AlbertTokenizer, AlbertModel
tokenizer = AlbertTokenizer.from_pretrained('albert-large-v2')
model = AlbertModel.from_pretrained("albert-large-v2")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import AlbertTokenizer, TFAlbertModel
tokenizer = AlbertTokenizer.from_pretrained('albert-large-v2')
model = TFAlbertModel.from_pretrained("albert-large-v2")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
### Limitations and bias
Even if the training data used for this model could be characterized as fairly neutral, this model can have biased
predictions:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='albert-large-v2')
>>> unmasker("The man worked as a [MASK].")
[
{
"sequence":"[CLS] the man worked as a chauffeur.[SEP]",
"score":0.029577180743217468,
"token":28744,
"token_str":"â–chauffeur"
},
{
"sequence":"[CLS] the man worked as a janitor.[SEP]",
"score":0.028865724802017212,
"token":29477,
"token_str":"â–janitor"
},
{
"sequence":"[CLS] the man worked as a shoemaker.[SEP]",
"score":0.02581118606030941,
"token":29024,
"token_str":"â–shoemaker"
},
{
"sequence":"[CLS] the man worked as a blacksmith.[SEP]",
"score":0.01849772222340107,
"token":21238,
"token_str":"â–blacksmith"
},
{
"sequence":"[CLS] the man worked as a lawyer.[SEP]",
"score":0.01820771023631096,
"token":3672,
"token_str":"â–lawyer"
}
]
>>> unmasker("The woman worked as a [MASK].")
[
{
"sequence":"[CLS] the woman worked as a receptionist.[SEP]",
"score":0.04604868218302727,
"token":25331,
"token_str":"â–receptionist"
},
{
"sequence":"[CLS] the woman worked as a janitor.[SEP]",
"score":0.028220869600772858,
"token":29477,
"token_str":"â–janitor"
},
{
"sequence":"[CLS] the woman worked as a paramedic.[SEP]",
"score":0.0261906236410141,
"token":23386,
"token_str":"â–paramedic"
},
{
"sequence":"[CLS] the woman worked as a chauffeur.[SEP]",
"score":0.024797942489385605,
"token":28744,
"token_str":"â–chauffeur"
},
{
"sequence":"[CLS] the woman worked as a waitress.[SEP]",
"score":0.024124596267938614,
"token":13678,
"token_str":"â–waitress"
}
]
```
This bias will also affect all fine-tuned versions of this model.
## Training data
The ALBERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038
unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and
headers).
## Training procedure
### Preprocessing
The texts are lowercased and tokenized using SentencePiece and a vocabulary size of 30,000. The inputs of the model are
then of the form:
```
[CLS] Sentence A [SEP] Sentence B [SEP]
```
### Training
The ALBERT procedure follows the BERT setup.
The details of the masking procedure for each sentence are the following:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `[MASK]`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
## Evaluation results
When fine-tuned on downstream tasks, the ALBERT models achieve the following results:
| | Average | SQuAD1.1 | SQuAD2.0 | MNLI | SST-2 | RACE |
|----------------|----------|----------|----------|----------|----------|----------|
|V2 |
|ALBERT-base |82.3 |90.2/83.2 |82.1/79.3 |84.6 |92.9 |66.8 |
|ALBERT-large |85.7 |91.8/85.2 |84.9/81.8 |86.5 |94.9 |75.2 |
|ALBERT-xlarge |87.9 |92.9/86.4 |87.9/84.1 |87.9 |95.4 |80.7 |
|ALBERT-xxlarge |90.9 |94.6/89.1 |89.8/86.9 |90.6 |96.8 |86.8 |
|V1 |
|ALBERT-base |80.1 |89.3/82.3 | 80.0/77.1|81.6 |90.3 | 64.0 |
|ALBERT-large |82.4 |90.6/83.9 | 82.3/79.4|83.5 |91.7 | 68.5 |
|ALBERT-xlarge |85.5 |92.5/86.1 | 86.1/83.1|86.4 |92.4 | 74.8 |
|ALBERT-xxlarge |91.0 |94.8/89.3 | 90.2/87.4|90.8 |96.9 | 86.5 |
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-1909-11942,
author = {Zhenzhong Lan and
Mingda Chen and
Sebastian Goodman and
Kevin Gimpel and
Piyush Sharma and
Radu Soricut},
title = {{ALBERT:} {A} Lite {BERT} for Self-supervised Learning of Language
Representations},
journal = {CoRR},
volume = {abs/1909.11942},
year = {2019},
url = {http://arxiv.org/abs/1909.11942},
archivePrefix = {arXiv},
eprint = {1909.11942},
timestamp = {Fri, 27 Sep 2019 13:04:21 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-1909-11942.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
``` | {"language": "en", "license": "apache-2.0", "datasets": ["bookcorpus", "wikipedia"]} | albert/albert-large-v2 | null | [
"transformers",
"pytorch",
"tf",
"safetensors",
"albert",
"fill-mask",
"en",
"dataset:bookcorpus",
"dataset:wikipedia",
"arxiv:1909.11942",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
fill-mask | transformers |
# ALBERT XLarge v1
Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in
[this paper](https://arxiv.org/abs/1909.11942) and first released in
[this repository](https://github.com/google-research/albert). This model, as all ALBERT models, is uncased: it does not make a difference
between english and English.
Disclaimer: The team releasing ALBERT did not write a model card for this model so this model card has been written by
the Hugging Face team.
## Model description
ALBERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it
was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it
was pretrained with two objectives:
- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run
the entire masked sentence through the model and has to predict the masked words. This is different from traditional
recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like
GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the
sentence.
- Sentence Ordering Prediction (SOP): ALBERT uses a pretraining loss based on predicting the ordering of two consecutive segments of text.
This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard
classifier using the features produced by the ALBERT model as inputs.
ALBERT is particular in that it shares its layers across its Transformer. Therefore, all layers have the same weights. Using repeating layers results in a small memory footprint, however, the computational cost remains similar to a BERT-like architecture with the same number of hidden layers as it has to iterate through the same number of (repeating) layers.
This is the first version of the xlarge model. Version 2 is different from version 1 due to different dropout rates, additional training data, and longer training. It has better results in nearly all downstream tasks.
This model has the following configuration:
- 24 repeating layers
- 128 embedding dimension
- 2048 hidden dimension
- 16 attention heads
- 58M parameters
## Intended uses & limitations
You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to
be fine-tuned on a downstream task. See the [model hub](https://huggingface.co./models?filter=albert) to look for
fine-tuned versions on a task that interests you.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
generation you should look at model like GPT2.
### How to use
You can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='albert-xlarge-v1')
>>> unmasker("Hello I'm a [MASK] model.")
[
{
"sequence":"[CLS] hello i'm a modeling model.[SEP]",
"score":0.05816134437918663,
"token":12807,
"token_str":"â–modeling"
},
{
"sequence":"[CLS] hello i'm a modelling model.[SEP]",
"score":0.03748830780386925,
"token":23089,
"token_str":"â–modelling"
},
{
"sequence":"[CLS] hello i'm a model model.[SEP]",
"score":0.033725276589393616,
"token":1061,
"token_str":"â–model"
},
{
"sequence":"[CLS] hello i'm a runway model.[SEP]",
"score":0.017313428223133087,
"token":8014,
"token_str":"â–runway"
},
{
"sequence":"[CLS] hello i'm a lingerie model.[SEP]",
"score":0.014405295252799988,
"token":29104,
"token_str":"â–lingerie"
}
]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import AlbertTokenizer, AlbertModel
tokenizer = AlbertTokenizer.from_pretrained('albert-xlarge-v1')
model = AlbertModel.from_pretrained("albert-xlarge-v1")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import AlbertTokenizer, TFAlbertModel
tokenizer = AlbertTokenizer.from_pretrained('albert-xlarge-v1')
model = TFAlbertModel.from_pretrained("albert-xlarge-v1")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
### Limitations and bias
Even if the training data used for this model could be characterized as fairly neutral, this model can have biased
predictions:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='albert-xlarge-v1')
>>> unmasker("The man worked as a [MASK].")
[
{
"sequence":"[CLS] the man worked as a chauffeur.[SEP]",
"score":0.029577180743217468,
"token":28744,
"token_str":"â–chauffeur"
},
{
"sequence":"[CLS] the man worked as a janitor.[SEP]",
"score":0.028865724802017212,
"token":29477,
"token_str":"â–janitor"
},
{
"sequence":"[CLS] the man worked as a shoemaker.[SEP]",
"score":0.02581118606030941,
"token":29024,
"token_str":"â–shoemaker"
},
{
"sequence":"[CLS] the man worked as a blacksmith.[SEP]",
"score":0.01849772222340107,
"token":21238,
"token_str":"â–blacksmith"
},
{
"sequence":"[CLS] the man worked as a lawyer.[SEP]",
"score":0.01820771023631096,
"token":3672,
"token_str":"â–lawyer"
}
]
>>> unmasker("The woman worked as a [MASK].")
[
{
"sequence":"[CLS] the woman worked as a receptionist.[SEP]",
"score":0.04604868218302727,
"token":25331,
"token_str":"â–receptionist"
},
{
"sequence":"[CLS] the woman worked as a janitor.[SEP]",
"score":0.028220869600772858,
"token":29477,
"token_str":"â–janitor"
},
{
"sequence":"[CLS] the woman worked as a paramedic.[SEP]",
"score":0.0261906236410141,
"token":23386,
"token_str":"â–paramedic"
},
{
"sequence":"[CLS] the woman worked as a chauffeur.[SEP]",
"score":0.024797942489385605,
"token":28744,
"token_str":"â–chauffeur"
},
{
"sequence":"[CLS] the woman worked as a waitress.[SEP]",
"score":0.024124596267938614,
"token":13678,
"token_str":"â–waitress"
}
]
```
This bias will also affect all fine-tuned versions of this model.
## Training data
The ALBERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038
unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and
headers).
## Training procedure
### Preprocessing
The texts are lowercased and tokenized using SentencePiece and a vocabulary size of 30,000. The inputs of the model are
then of the form:
```
[CLS] Sentence A [SEP] Sentence B [SEP]
```
### Training
The ALBERT procedure follows the BERT setup.
The details of the masking procedure for each sentence are the following:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `[MASK]`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
## Evaluation results
When fine-tuned on downstream tasks, the ALBERT models achieve the following results:
| | Average | SQuAD1.1 | SQuAD2.0 | MNLI | SST-2 | RACE |
|----------------|----------|----------|----------|----------|----------|----------|
|V2 |
|ALBERT-base |82.3 |90.2/83.2 |82.1/79.3 |84.6 |92.9 |66.8 |
|ALBERT-large |85.7 |91.8/85.2 |84.9/81.8 |86.5 |94.9 |75.2 |
|ALBERT-xlarge |87.9 |92.9/86.4 |87.9/84.1 |87.9 |95.4 |80.7 |
|ALBERT-xxlarge |90.9 |94.6/89.1 |89.8/86.9 |90.6 |96.8 |86.8 |
|V1 |
|ALBERT-base |80.1 |89.3/82.3 | 80.0/77.1|81.6 |90.3 | 64.0 |
|ALBERT-large |82.4 |90.6/83.9 | 82.3/79.4|83.5 |91.7 | 68.5 |
|ALBERT-xlarge |85.5 |92.5/86.1 | 86.1/83.1|86.4 |92.4 | 74.8 |
|ALBERT-xxlarge |91.0 |94.8/89.3 | 90.2/87.4|90.8 |96.9 | 86.5 |
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-1909-11942,
author = {Zhenzhong Lan and
Mingda Chen and
Sebastian Goodman and
Kevin Gimpel and
Piyush Sharma and
Radu Soricut},
title = {{ALBERT:} {A} Lite {BERT} for Self-supervised Learning of Language
Representations},
journal = {CoRR},
volume = {abs/1909.11942},
year = {2019},
url = {http://arxiv.org/abs/1909.11942},
archivePrefix = {arXiv},
eprint = {1909.11942},
timestamp = {Fri, 27 Sep 2019 13:04:21 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-1909-11942.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
``` | {"language": "en", "license": "apache-2.0", "datasets": ["bookcorpus", "wikipedia"]} | albert/albert-xlarge-v1 | null | [
"transformers",
"pytorch",
"tf",
"safetensors",
"albert",
"fill-mask",
"en",
"dataset:bookcorpus",
"dataset:wikipedia",
"arxiv:1909.11942",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
fill-mask | transformers |
# ALBERT XLarge v2
Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in
[this paper](https://arxiv.org/abs/1909.11942) and first released in
[this repository](https://github.com/google-research/albert). This model, as all ALBERT models, is uncased: it does not make a difference
between english and English.
Disclaimer: The team releasing ALBERT did not write a model card for this model so this model card has been written by
the Hugging Face team.
## Model description
ALBERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it
was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it
was pretrained with two objectives:
- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run
the entire masked sentence through the model and has to predict the masked words. This is different from traditional
recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like
GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the
sentence.
- Sentence Ordering Prediction (SOP): ALBERT uses a pretraining loss based on predicting the ordering of two consecutive segments of text.
This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard
classifier using the features produced by the ALBERT model as inputs.
ALBERT is particular in that it shares its layers across its Transformer. Therefore, all layers have the same weights. Using repeating layers results in a small memory footprint, however, the computational cost remains similar to a BERT-like architecture with the same number of hidden layers as it has to iterate through the same number of (repeating) layers.
This is the second version of the xlarge model. Version 2 is different from version 1 due to different dropout rates, additional training data, and longer training. It has better results in nearly all downstream tasks.
This model has the following configuration:
- 24 repeating layers
- 128 embedding dimension
- 2048 hidden dimension
- 16 attention heads
- 58M parameters
## Intended uses & limitations
You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to
be fine-tuned on a downstream task. See the [model hub](https://huggingface.co./models?filter=albert) to look for
fine-tuned versions on a task that interests you.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
generation you should look at model like GPT2.
### How to use
You can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='albert-xlarge-v2')
>>> unmasker("Hello I'm a [MASK] model.")
[
{
"sequence":"[CLS] hello i'm a modeling model.[SEP]",
"score":0.05816134437918663,
"token":12807,
"token_str":"â–modeling"
},
{
"sequence":"[CLS] hello i'm a modelling model.[SEP]",
"score":0.03748830780386925,
"token":23089,
"token_str":"â–modelling"
},
{
"sequence":"[CLS] hello i'm a model model.[SEP]",
"score":0.033725276589393616,
"token":1061,
"token_str":"â–model"
},
{
"sequence":"[CLS] hello i'm a runway model.[SEP]",
"score":0.017313428223133087,
"token":8014,
"token_str":"â–runway"
},
{
"sequence":"[CLS] hello i'm a lingerie model.[SEP]",
"score":0.014405295252799988,
"token":29104,
"token_str":"â–lingerie"
}
]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import AlbertTokenizer, AlbertModel
tokenizer = AlbertTokenizer.from_pretrained('albert-xlarge-v2')
model = AlbertModel.from_pretrained("albert-xlarge-v2")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import AlbertTokenizer, TFAlbertModel
tokenizer = AlbertTokenizer.from_pretrained('albert-xlarge-v2')
model = TFAlbertModel.from_pretrained("albert-xlarge-v2")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
### Limitations and bias
Even if the training data used for this model could be characterized as fairly neutral, this model can have biased
predictions:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='albert-xlarge-v2')
>>> unmasker("The man worked as a [MASK].")
[
{
"sequence":"[CLS] the man worked as a chauffeur.[SEP]",
"score":0.029577180743217468,
"token":28744,
"token_str":"â–chauffeur"
},
{
"sequence":"[CLS] the man worked as a janitor.[SEP]",
"score":0.028865724802017212,
"token":29477,
"token_str":"â–janitor"
},
{
"sequence":"[CLS] the man worked as a shoemaker.[SEP]",
"score":0.02581118606030941,
"token":29024,
"token_str":"â–shoemaker"
},
{
"sequence":"[CLS] the man worked as a blacksmith.[SEP]",
"score":0.01849772222340107,
"token":21238,
"token_str":"â–blacksmith"
},
{
"sequence":"[CLS] the man worked as a lawyer.[SEP]",
"score":0.01820771023631096,
"token":3672,
"token_str":"â–lawyer"
}
]
>>> unmasker("The woman worked as a [MASK].")
[
{
"sequence":"[CLS] the woman worked as a receptionist.[SEP]",
"score":0.04604868218302727,
"token":25331,
"token_str":"â–receptionist"
},
{
"sequence":"[CLS] the woman worked as a janitor.[SEP]",
"score":0.028220869600772858,
"token":29477,
"token_str":"â–janitor"
},
{
"sequence":"[CLS] the woman worked as a paramedic.[SEP]",
"score":0.0261906236410141,
"token":23386,
"token_str":"â–paramedic"
},
{
"sequence":"[CLS] the woman worked as a chauffeur.[SEP]",
"score":0.024797942489385605,
"token":28744,
"token_str":"â–chauffeur"
},
{
"sequence":"[CLS] the woman worked as a waitress.[SEP]",
"score":0.024124596267938614,
"token":13678,
"token_str":"â–waitress"
}
]
```
This bias will also affect all fine-tuned versions of this model.
## Training data
The ALBERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038
unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and
headers).
## Training procedure
### Preprocessing
The texts are lowercased and tokenized using SentencePiece and a vocabulary size of 30,000. The inputs of the model are
then of the form:
```
[CLS] Sentence A [SEP] Sentence B [SEP]
```
### Training
The ALBERT procedure follows the BERT setup.
The details of the masking procedure for each sentence are the following:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `[MASK]`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
## Evaluation results
When fine-tuned on downstream tasks, the ALBERT models achieve the following results:
| | Average | SQuAD1.1 | SQuAD2.0 | MNLI | SST-2 | RACE |
|----------------|----------|----------|----------|----------|----------|----------|
|V2 |
|ALBERT-base |82.3 |90.2/83.2 |82.1/79.3 |84.6 |92.9 |66.8 |
|ALBERT-large |85.7 |91.8/85.2 |84.9/81.8 |86.5 |94.9 |75.2 |
|ALBERT-xlarge |87.9 |92.9/86.4 |87.9/84.1 |87.9 |95.4 |80.7 |
|ALBERT-xxlarge |90.9 |94.6/89.1 |89.8/86.9 |90.6 |96.8 |86.8 |
|V1 |
|ALBERT-base |80.1 |89.3/82.3 | 80.0/77.1|81.6 |90.3 | 64.0 |
|ALBERT-large |82.4 |90.6/83.9 | 82.3/79.4|83.5 |91.7 | 68.5 |
|ALBERT-xlarge |85.5 |92.5/86.1 | 86.1/83.1|86.4 |92.4 | 74.8 |
|ALBERT-xxlarge |91.0 |94.8/89.3 | 90.2/87.4|90.8 |96.9 | 86.5 |
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-1909-11942,
author = {Zhenzhong Lan and
Mingda Chen and
Sebastian Goodman and
Kevin Gimpel and
Piyush Sharma and
Radu Soricut},
title = {{ALBERT:} {A} Lite {BERT} for Self-supervised Learning of Language
Representations},
journal = {CoRR},
volume = {abs/1909.11942},
year = {2019},
url = {http://arxiv.org/abs/1909.11942},
archivePrefix = {arXiv},
eprint = {1909.11942},
timestamp = {Fri, 27 Sep 2019 13:04:21 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-1909-11942.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
``` | {"language": "en", "license": "apache-2.0", "datasets": ["bookcorpus", "wikipedia"]} | albert/albert-xlarge-v2 | null | [
"transformers",
"pytorch",
"tf",
"albert",
"fill-mask",
"en",
"dataset:bookcorpus",
"dataset:wikipedia",
"arxiv:1909.11942",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
fill-mask | transformers |
# ALBERT XXLarge v1
Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in
[this paper](https://arxiv.org/abs/1909.11942) and first released in
[this repository](https://github.com/google-research/albert). This model, as all ALBERT models, is uncased: it does not make a difference
between english and English.
Disclaimer: The team releasing ALBERT did not write a model card for this model so this model card has been written by
the Hugging Face team.
## Model description
ALBERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it
was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it
was pretrained with two objectives:
- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run
the entire masked sentence through the model and has to predict the masked words. This is different from traditional
recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like
GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the
sentence.
- Sentence Ordering Prediction (SOP): ALBERT uses a pretraining loss based on predicting the ordering of two consecutive segments of text.
This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard
classifier using the features produced by the ALBERT model as inputs.
ALBERT is particular in that it shares its layers across its Transformer. Therefore, all layers have the same weights. Using repeating layers results in a small memory footprint, however, the computational cost remains similar to a BERT-like architecture with the same number of hidden layers as it has to iterate through the same number of (repeating) layers.
This is the first version of the xxlarge model. Version 2 is different from version 1 due to different dropout rates, additional training data, and longer training. It has better results in nearly all downstream tasks.
This model has the following configuration:
- 12 repeating layers
- 128 embedding dimension
- 4096 hidden dimension
- 64 attention heads
- 223M parameters
## Intended uses & limitations
You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to
be fine-tuned on a downstream task. See the [model hub](https://huggingface.co./models?filter=albert) to look for
fine-tuned versions on a task that interests you.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
generation you should look at model like GPT2.
### How to use
You can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='albert-xxlarge-v1')
>>> unmasker("Hello I'm a [MASK] model.")
[
{
"sequence":"[CLS] hello i'm a modeling model.[SEP]",
"score":0.05816134437918663,
"token":12807,
"token_str":"â–modeling"
},
{
"sequence":"[CLS] hello i'm a modelling model.[SEP]",
"score":0.03748830780386925,
"token":23089,
"token_str":"â–modelling"
},
{
"sequence":"[CLS] hello i'm a model model.[SEP]",
"score":0.033725276589393616,
"token":1061,
"token_str":"â–model"
},
{
"sequence":"[CLS] hello i'm a runway model.[SEP]",
"score":0.017313428223133087,
"token":8014,
"token_str":"â–runway"
},
{
"sequence":"[CLS] hello i'm a lingerie model.[SEP]",
"score":0.014405295252799988,
"token":29104,
"token_str":"â–lingerie"
}
]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import AlbertTokenizer, AlbertModel
tokenizer = AlbertTokenizer.from_pretrained('albert-xxlarge-v1')
model = AlbertModel.from_pretrained("albert-xxlarge-v1")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import AlbertTokenizer, TFAlbertModel
tokenizer = AlbertTokenizer.from_pretrained('albert-xxlarge-v1')
model = TFAlbertModel.from_pretrained("albert-xxlarge-v1")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
### Limitations and bias
Even if the training data used for this model could be characterized as fairly neutral, this model can have biased
predictions:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='albert-xxlarge-v1')
>>> unmasker("The man worked as a [MASK].")
[
{
"sequence":"[CLS] the man worked as a chauffeur.[SEP]",
"score":0.029577180743217468,
"token":28744,
"token_str":"â–chauffeur"
},
{
"sequence":"[CLS] the man worked as a janitor.[SEP]",
"score":0.028865724802017212,
"token":29477,
"token_str":"â–janitor"
},
{
"sequence":"[CLS] the man worked as a shoemaker.[SEP]",
"score":0.02581118606030941,
"token":29024,
"token_str":"â–shoemaker"
},
{
"sequence":"[CLS] the man worked as a blacksmith.[SEP]",
"score":0.01849772222340107,
"token":21238,
"token_str":"â–blacksmith"
},
{
"sequence":"[CLS] the man worked as a lawyer.[SEP]",
"score":0.01820771023631096,
"token":3672,
"token_str":"â–lawyer"
}
]
>>> unmasker("The woman worked as a [MASK].")
[
{
"sequence":"[CLS] the woman worked as a receptionist.[SEP]",
"score":0.04604868218302727,
"token":25331,
"token_str":"â–receptionist"
},
{
"sequence":"[CLS] the woman worked as a janitor.[SEP]",
"score":0.028220869600772858,
"token":29477,
"token_str":"â–janitor"
},
{
"sequence":"[CLS] the woman worked as a paramedic.[SEP]",
"score":0.0261906236410141,
"token":23386,
"token_str":"â–paramedic"
},
{
"sequence":"[CLS] the woman worked as a chauffeur.[SEP]",
"score":0.024797942489385605,
"token":28744,
"token_str":"â–chauffeur"
},
{
"sequence":"[CLS] the woman worked as a waitress.[SEP]",
"score":0.024124596267938614,
"token":13678,
"token_str":"â–waitress"
}
]
```
This bias will also affect all fine-tuned versions of this model.
## Training data
The ALBERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038
unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and
headers).
## Training procedure
### Preprocessing
The texts are lowercased and tokenized using SentencePiece and a vocabulary size of 30,000. The inputs of the model are
then of the form:
```
[CLS] Sentence A [SEP] Sentence B [SEP]
```
### Training
The ALBERT procedure follows the BERT setup.
The details of the masking procedure for each sentence are the following:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `[MASK]`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
## Evaluation results
When fine-tuned on downstream tasks, the ALBERT models achieve the following results:
| | Average | SQuAD1.1 | SQuAD2.0 | MNLI | SST-2 | RACE |
|----------------|----------|----------|----------|----------|----------|----------|
|V2 |
|ALBERT-base |82.3 |90.2/83.2 |82.1/79.3 |84.6 |92.9 |66.8 |
|ALBERT-large |85.7 |91.8/85.2 |84.9/81.8 |86.5 |94.9 |75.2 |
|ALBERT-xlarge |87.9 |92.9/86.4 |87.9/84.1 |87.9 |95.4 |80.7 |
|ALBERT-xxlarge |90.9 |94.6/89.1 |89.8/86.9 |90.6 |96.8 |86.8 |
|V1 |
|ALBERT-base |80.1 |89.3/82.3 | 80.0/77.1|81.6 |90.3 | 64.0 |
|ALBERT-large |82.4 |90.6/83.9 | 82.3/79.4|83.5 |91.7 | 68.5 |
|ALBERT-xlarge |85.5 |92.5/86.1 | 86.1/83.1|86.4 |92.4 | 74.8 |
|ALBERT-xxlarge |91.0 |94.8/89.3 | 90.2/87.4|90.8 |96.9 | 86.5 |
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-1909-11942,
author = {Zhenzhong Lan and
Mingda Chen and
Sebastian Goodman and
Kevin Gimpel and
Piyush Sharma and
Radu Soricut},
title = {{ALBERT:} {A} Lite {BERT} for Self-supervised Learning of Language
Representations},
journal = {CoRR},
volume = {abs/1909.11942},
year = {2019},
url = {http://arxiv.org/abs/1909.11942},
archivePrefix = {arXiv},
eprint = {1909.11942},
timestamp = {Fri, 27 Sep 2019 13:04:21 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-1909-11942.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
``` | {"language": "en", "license": "apache-2.0", "datasets": ["bookcorpus", "wikipedia"]} | albert/albert-xxlarge-v1 | null | [
"transformers",
"pytorch",
"tf",
"albert",
"fill-mask",
"en",
"dataset:bookcorpus",
"dataset:wikipedia",
"arxiv:1909.11942",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
fill-mask | transformers |
# ALBERT XXLarge v2
Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in
[this paper](https://arxiv.org/abs/1909.11942) and first released in
[this repository](https://github.com/google-research/albert). This model, as all ALBERT models, is uncased: it does not make a difference
between english and English.
Disclaimer: The team releasing ALBERT did not write a model card for this model so this model card has been written by
the Hugging Face team.
## Model description
ALBERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it
was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it
was pretrained with two objectives:
- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run
the entire masked sentence through the model and has to predict the masked words. This is different from traditional
recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like
GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the
sentence.
- Sentence Ordering Prediction (SOP): ALBERT uses a pretraining loss based on predicting the ordering of two consecutive segments of text.
This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard
classifier using the features produced by the ALBERT model as inputs.
ALBERT is particular in that it shares its layers across its Transformer. Therefore, all layers have the same weights. Using repeating layers results in a small memory footprint, however, the computational cost remains similar to a BERT-like architecture with the same number of hidden layers as it has to iterate through the same number of (repeating) layers.
This is the second version of the xxlarge model. Version 2 is different from version 1 due to different dropout rates, additional training data, and longer training. It has better results in nearly all downstream tasks.
This model has the following configuration:
- 12 repeating layers
- 128 embedding dimension
- 4096 hidden dimension
- 64 attention heads
- 223M parameters
## Intended uses & limitations
You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to
be fine-tuned on a downstream task. See the [model hub](https://huggingface.co./models?filter=albert) to look for
fine-tuned versions on a task that interests you.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
generation you should look at model like GPT2.
### How to use
You can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='albert-xxlarge-v2')
>>> unmasker("Hello I'm a [MASK] model.")
[
{
"sequence":"[CLS] hello i'm a modeling model.[SEP]",
"score":0.05816134437918663,
"token":12807,
"token_str":"â–modeling"
},
{
"sequence":"[CLS] hello i'm a modelling model.[SEP]",
"score":0.03748830780386925,
"token":23089,
"token_str":"â–modelling"
},
{
"sequence":"[CLS] hello i'm a model model.[SEP]",
"score":0.033725276589393616,
"token":1061,
"token_str":"â–model"
},
{
"sequence":"[CLS] hello i'm a runway model.[SEP]",
"score":0.017313428223133087,
"token":8014,
"token_str":"â–runway"
},
{
"sequence":"[CLS] hello i'm a lingerie model.[SEP]",
"score":0.014405295252799988,
"token":29104,
"token_str":"â–lingerie"
}
]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import AlbertTokenizer, AlbertModel
tokenizer = AlbertTokenizer.from_pretrained('albert-xxlarge-v2')
model = AlbertModel.from_pretrained("albert-xxlarge-v2")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import AlbertTokenizer, TFAlbertModel
tokenizer = AlbertTokenizer.from_pretrained('albert-xxlarge-v2')
model = TFAlbertModel.from_pretrained("albert-xxlarge-v2")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
### Limitations and bias
Even if the training data used for this model could be characterized as fairly neutral, this model can have biased
predictions:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='albert-xxlarge-v2')
>>> unmasker("The man worked as a [MASK].")
[
{
"sequence":"[CLS] the man worked as a chauffeur.[SEP]",
"score":0.029577180743217468,
"token":28744,
"token_str":"â–chauffeur"
},
{
"sequence":"[CLS] the man worked as a janitor.[SEP]",
"score":0.028865724802017212,
"token":29477,
"token_str":"â–janitor"
},
{
"sequence":"[CLS] the man worked as a shoemaker.[SEP]",
"score":0.02581118606030941,
"token":29024,
"token_str":"â–shoemaker"
},
{
"sequence":"[CLS] the man worked as a blacksmith.[SEP]",
"score":0.01849772222340107,
"token":21238,
"token_str":"â–blacksmith"
},
{
"sequence":"[CLS] the man worked as a lawyer.[SEP]",
"score":0.01820771023631096,
"token":3672,
"token_str":"â–lawyer"
}
]
>>> unmasker("The woman worked as a [MASK].")
[
{
"sequence":"[CLS] the woman worked as a receptionist.[SEP]",
"score":0.04604868218302727,
"token":25331,
"token_str":"â–receptionist"
},
{
"sequence":"[CLS] the woman worked as a janitor.[SEP]",
"score":0.028220869600772858,
"token":29477,
"token_str":"â–janitor"
},
{
"sequence":"[CLS] the woman worked as a paramedic.[SEP]",
"score":0.0261906236410141,
"token":23386,
"token_str":"â–paramedic"
},
{
"sequence":"[CLS] the woman worked as a chauffeur.[SEP]",
"score":0.024797942489385605,
"token":28744,
"token_str":"â–chauffeur"
},
{
"sequence":"[CLS] the woman worked as a waitress.[SEP]",
"score":0.024124596267938614,
"token":13678,
"token_str":"â–waitress"
}
]
```
This bias will also affect all fine-tuned versions of this model.
## Training data
The ALBERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038
unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and
headers).
## Training procedure
### Preprocessing
The texts are lowercased and tokenized using SentencePiece and a vocabulary size of 30,000. The inputs of the model are
then of the form:
```
[CLS] Sentence A [SEP] Sentence B [SEP]
```
### Training
The ALBERT procedure follows the BERT setup.
The details of the masking procedure for each sentence are the following:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `[MASK]`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
## Evaluation results
When fine-tuned on downstream tasks, the ALBERT models achieve the following results:
| | Average | SQuAD1.1 | SQuAD2.0 | MNLI | SST-2 | RACE |
|----------------|----------|----------|----------|----------|----------|----------|
|V2 |
|ALBERT-base |82.3 |90.2/83.2 |82.1/79.3 |84.6 |92.9 |66.8 |
|ALBERT-large |85.7 |91.8/85.2 |84.9/81.8 |86.5 |94.9 |75.2 |
|ALBERT-xlarge |87.9 |92.9/86.4 |87.9/84.1 |87.9 |95.4 |80.7 |
|ALBERT-xxlarge |90.9 |94.6/89.1 |89.8/86.9 |90.6 |96.8 |86.8 |
|V1 |
|ALBERT-base |80.1 |89.3/82.3 | 80.0/77.1|81.6 |90.3 | 64.0 |
|ALBERT-large |82.4 |90.6/83.9 | 82.3/79.4|83.5 |91.7 | 68.5 |
|ALBERT-xlarge |85.5 |92.5/86.1 | 86.1/83.1|86.4 |92.4 | 74.8 |
|ALBERT-xxlarge |91.0 |94.8/89.3 | 90.2/87.4|90.8 |96.9 | 86.5 |
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-1909-11942,
author = {Zhenzhong Lan and
Mingda Chen and
Sebastian Goodman and
Kevin Gimpel and
Piyush Sharma and
Radu Soricut},
title = {{ALBERT:} {A} Lite {BERT} for Self-supervised Learning of Language
Representations},
journal = {CoRR},
volume = {abs/1909.11942},
year = {2019},
url = {http://arxiv.org/abs/1909.11942},
archivePrefix = {arXiv},
eprint = {1909.11942},
timestamp = {Fri, 27 Sep 2019 13:04:21 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-1909-11942.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
<a href="https://huggingface.co./exbert/?model=albert-xxlarge-v2">
<img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png">
</a> | {"language": "en", "license": "apache-2.0", "tags": ["exbert"], "datasets": ["bookcorpus", "wikipedia"]} | albert/albert-xxlarge-v2 | null | [
"transformers",
"pytorch",
"tf",
"rust",
"safetensors",
"albert",
"fill-mask",
"exbert",
"en",
"dataset:bookcorpus",
"dataset:wikipedia",
"arxiv:1909.11942",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
fill-mask | transformers | {} | google-bert/bert-base-cased-finetuned-mrpc | null | [
"transformers",
"pytorch",
"tf",
"jax",
"safetensors",
"bert",
"fill-mask",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
fill-mask | transformers |
# BERT base model (cased)
Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in
[this paper](https://arxiv.org/abs/1810.04805) and first released in
[this repository](https://github.com/google-research/bert). This model is case-sensitive: it makes a difference between
english and English.
Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by
the Hugging Face team.
## Model description
BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it
was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it
was pretrained with two objectives:
- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run
the entire masked sentence through the model and has to predict the masked words. This is different from traditional
recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like
GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the
sentence.
- Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes
they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to
predict if the two sentences were following each other or not.
This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard
classifier using the features produced by the BERT model as inputs.
## Intended uses & limitations
You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to
be fine-tuned on a downstream task. See the [model hub](https://huggingface.co./models?filter=bert) to look for
fine-tuned versions on a task that interests you.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
generation you should look at model like GPT2.
### How to use
You can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='bert-base-cased')
>>> unmasker("Hello I'm a [MASK] model.")
[{'sequence': "[CLS] Hello I'm a fashion model. [SEP]",
'score': 0.09019174426794052,
'token': 4633,
'token_str': 'fashion'},
{'sequence': "[CLS] Hello I'm a new model. [SEP]",
'score': 0.06349995732307434,
'token': 1207,
'token_str': 'new'},
{'sequence': "[CLS] Hello I'm a male model. [SEP]",
'score': 0.06228214129805565,
'token': 2581,
'token_str': 'male'},
{'sequence': "[CLS] Hello I'm a professional model. [SEP]",
'score': 0.0441727414727211,
'token': 1848,
'token_str': 'professional'},
{'sequence': "[CLS] Hello I'm a super model. [SEP]",
'score': 0.03326151892542839,
'token': 7688,
'token_str': 'super'}]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
model = BertModel.from_pretrained("bert-base-cased")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
model = TFBertModel.from_pretrained("bert-base-cased")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
### Limitations and bias
Even if the training data used for this model could be characterized as fairly neutral, this model can have biased
predictions:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='bert-base-cased')
>>> unmasker("The man worked as a [MASK].")
[{'sequence': '[CLS] The man worked as a lawyer. [SEP]',
'score': 0.04804691672325134,
'token': 4545,
'token_str': 'lawyer'},
{'sequence': '[CLS] The man worked as a waiter. [SEP]',
'score': 0.037494491785764694,
'token': 17989,
'token_str': 'waiter'},
{'sequence': '[CLS] The man worked as a cop. [SEP]',
'score': 0.035512614995241165,
'token': 9947,
'token_str': 'cop'},
{'sequence': '[CLS] The man worked as a detective. [SEP]',
'score': 0.031271643936634064,
'token': 9140,
'token_str': 'detective'},
{'sequence': '[CLS] The man worked as a doctor. [SEP]',
'score': 0.027423162013292313,
'token': 3995,
'token_str': 'doctor'}]
>>> unmasker("The woman worked as a [MASK].")
[{'sequence': '[CLS] The woman worked as a nurse. [SEP]',
'score': 0.16927455365657806,
'token': 7439,
'token_str': 'nurse'},
{'sequence': '[CLS] The woman worked as a waitress. [SEP]',
'score': 0.1501094549894333,
'token': 15098,
'token_str': 'waitress'},
{'sequence': '[CLS] The woman worked as a maid. [SEP]',
'score': 0.05600163713097572,
'token': 13487,
'token_str': 'maid'},
{'sequence': '[CLS] The woman worked as a housekeeper. [SEP]',
'score': 0.04838843643665314,
'token': 26458,
'token_str': 'housekeeper'},
{'sequence': '[CLS] The woman worked as a cook. [SEP]',
'score': 0.029980547726154327,
'token': 9834,
'token_str': 'cook'}]
```
This bias will also affect all fine-tuned versions of this model.
## Training data
The BERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038
unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and
headers).
## Training procedure
### Preprocessing
The texts are tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form:
```
[CLS] Sentence A [SEP] Sentence B [SEP]
```
With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in
the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a
consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two
"sentences" has a combined length of less than 512 tokens.
The details of the masking procedure for each sentence are the following:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `[MASK]`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
### Pretraining
The model was trained on 4 cloud TPUs in Pod configuration (16 TPU chips total) for one million steps with a batch size
of 256. The sequence length was limited to 128 tokens for 90% of the steps and 512 for the remaining 10%. The optimizer
used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01,
learning rate warmup for 10,000 steps and linear decay of the learning rate after.
## Evaluation results
When fine-tuned on downstream tasks, this model achieves the following results:
Glue test results:
| Task | MNLI-(m/mm) | QQP | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE | Average |
|:----:|:-----------:|:----:|:----:|:-----:|:----:|:-----:|:----:|:----:|:-------:|
| | 84.6/83.4 | 71.2 | 90.5 | 93.5 | 52.1 | 85.8 | 88.9 | 66.4 | 79.6 |
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-1810-04805,
author = {Jacob Devlin and
Ming{-}Wei Chang and
Kenton Lee and
Kristina Toutanova},
title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language
Understanding},
journal = {CoRR},
volume = {abs/1810.04805},
year = {2018},
url = {http://arxiv.org/abs/1810.04805},
archivePrefix = {arXiv},
eprint = {1810.04805},
timestamp = {Tue, 30 Oct 2018 20:39:56 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
<a href="https://huggingface.co./exbert/?model=bert-base-cased">
<img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png">
</a>
| {"language": "en", "license": "apache-2.0", "tags": ["exbert"], "datasets": ["bookcorpus", "wikipedia"]} | google-bert/bert-base-cased | null | [
"transformers",
"pytorch",
"tf",
"jax",
"safetensors",
"bert",
"fill-mask",
"exbert",
"en",
"dataset:bookcorpus",
"dataset:wikipedia",
"arxiv:1810.04805",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
fill-mask | transformers |
# Bert-base-chinese
## Table of Contents
- [Model Details](#model-details)
- [Uses](#uses)
- [Risks, Limitations and Biases](#risks-limitations-and-biases)
- [Training](#training)
- [Evaluation](#evaluation)
- [How to Get Started With the Model](#how-to-get-started-with-the-model)
## Model Details
### Model Description
This model has been pre-trained for Chinese, training and random input masking has been applied independently to word pieces (as in the original BERT paper).
- **Developed by:** HuggingFace team
- **Model Type:** Fill-Mask
- **Language(s):** Chinese
- **License:** [More Information needed]
- **Parent Model:** See the [BERT base uncased model](https://huggingface.co./bert-base-uncased) for more information about the BERT base model.
### Model Sources
- **Paper:** [BERT](https://arxiv.org/abs/1810.04805)
## Uses
#### Direct Use
This model can be used for masked language modeling
## Risks, Limitations and Biases
**CONTENT WARNING: Readers should be aware this section contains content that is disturbing, offensive, and can propagate historical and current stereotypes.**
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)).
## Training
#### Training Procedure
* **type_vocab_size:** 2
* **vocab_size:** 21128
* **num_hidden_layers:** 12
#### Training Data
[More Information Needed]
## Evaluation
#### Results
[More Information Needed]
## How to Get Started With the Model
```python
from transformers import AutoTokenizer, AutoModelForMaskedLM
tokenizer = AutoTokenizer.from_pretrained("bert-base-chinese")
model = AutoModelForMaskedLM.from_pretrained("bert-base-chinese")
```
| {"language": "zh"} | google-bert/bert-base-chinese | null | [
"transformers",
"pytorch",
"tf",
"jax",
"safetensors",
"bert",
"fill-mask",
"zh",
"arxiv:1810.04805",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
fill-mask | transformers |
<a href="https://huggingface.co./exbert/?model=bert-base-german-cased">
<img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png">
</a>
# German BERT
![bert_image](https://static.tildacdn.com/tild6438-3730-4164-b266-613634323466/german_bert.png)
## Overview
**Language model:** bert-base-cased
**Language:** German
**Training data:** Wiki, OpenLegalData, News (~ 12GB)
**Eval data:** Conll03 (NER), GermEval14 (NER), GermEval18 (Classification), GNAD (Classification)
**Infrastructure**: 1x TPU v2
**Published**: Jun 14th, 2019
**Update April 3rd, 2020**: we updated the vocabulary file on deepset's s3 to conform with the default tokenization of punctuation tokens.
For details see the related [FARM issue](https://github.com/deepset-ai/FARM/issues/60). If you want to use the old vocab we have also uploaded a ["deepset/bert-base-german-cased-oldvocab"](https://huggingface.co./deepset/bert-base-german-cased-oldvocab) model.
## Details
- We trained using Google's Tensorflow code on a single cloud TPU v2 with standard settings.
- We trained 810k steps with a batch size of 1024 for sequence length 128 and 30k steps with sequence length 512. Training took about 9 days.
- As training data we used the latest German Wikipedia dump (6GB of raw txt files), the OpenLegalData dump (2.4 GB) and news articles (3.6 GB).
- We cleaned the data dumps with tailored scripts and segmented sentences with spacy v2.1. To create tensorflow records we used the recommended sentencepiece library for creating the word piece vocabulary and tensorflow scripts to convert the text to data usable by BERT.
See https://deepset.ai/german-bert for more details
## Hyperparameters
```
batch_size = 1024
n_steps = 810_000
max_seq_len = 128 (and 512 later)
learning_rate = 1e-4
lr_schedule = LinearWarmup
num_warmup_steps = 10_000
```
## Performance
During training we monitored the loss and evaluated different model checkpoints on the following German datasets:
- germEval18Fine: Macro f1 score for multiclass sentiment classification
- germEval18coarse: Macro f1 score for binary sentiment classification
- germEval14: Seq f1 score for NER (file names deuutf.\*)
- CONLL03: Seq f1 score for NER
- 10kGNAD: Accuracy for document classification
Even without thorough hyperparameter tuning, we observed quite stable learning especially for our German model. Multiple restarts with different seeds produced quite similar results.
![performancetable](https://thumb.tildacdn.com/tild3162-6462-4566-b663-376630376138/-/format/webp/Screenshot_from_2020.png)
We further evaluated different points during the 9 days of pre-training and were astonished how fast the model converges to the maximally reachable performance. We ran all 5 downstream tasks on 7 different model checkpoints - taken at 0 up to 840k training steps (x-axis in figure below). Most checkpoints are taken from early training where we expected most performance changes. Surprisingly, even a randomly initialized BERT can be trained only on labeled downstream datasets and reach good performance (blue line, GermEval 2018 Coarse task, 795 kB trainset size).
![checkpointseval](https://thumb.tildacdn.com/tild6335-3531-4137-b533-313365663435/-/format/webp/deepset_checkpoints.png)
## Authors
- Branden Chan: `branden.chan [at] deepset.ai`
- Timo Möller: `timo.moeller [at] deepset.ai`
- Malte Pietsch: `malte.pietsch [at] deepset.ai`
- Tanay Soni: `tanay.soni [at] deepset.ai`
## About us
![deepset logo](https://raw.githubusercontent.com/deepset-ai/FARM/master/docs/img/deepset_logo.png)
We bring NLP to the industry via open source!
Our focus: Industry specific language models & large scale QA systems.
Some of our work:
- [German BERT (aka "bert-base-german-cased")](https://deepset.ai/german-bert)
- [FARM](https://github.com/deepset-ai/FARM)
- [Haystack](https://github.com/deepset-ai/haystack/)
Get in touch:
[Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Website](https://deepset.ai)
| {"language": "de", "license": "mit", "tags": ["exbert"], "thumbnail": "https://static.tildacdn.com/tild6438-3730-4164-b266-613634323466/german_bert.png"} | google-bert/bert-base-german-cased | null | [
"transformers",
"pytorch",
"tf",
"jax",
"onnx",
"safetensors",
"bert",
"fill-mask",
"exbert",
"de",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
fill-mask | transformers |
This model is the same as [dbmdz/bert-base-german-cased](https://huggingface.co./dbmdz/bert-base-german-cased). See the [dbmdz/bert-base-german-cased model card](https://huggingface.co./dbmdz/bert-base-german-cased) for details on the model. | {"language": "de", "license": "mit"} | google-bert/bert-base-german-dbmdz-cased | null | [
"transformers",
"pytorch",
"jax",
"bert",
"fill-mask",
"de",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
fill-mask | transformers |
This model is the same as [dbmdz/bert-base-german-uncased](https://huggingface.co./dbmdz/bert-base-german-uncased). See the [dbmdz/bert-base-german-cased model card](https://huggingface.co./dbmdz/bert-base-german-uncased) for details on the model.
| {"language": "de", "license": "mit"} | google-bert/bert-base-german-dbmdz-uncased | null | [
"transformers",
"pytorch",
"jax",
"safetensors",
"bert",
"fill-mask",
"de",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
fill-mask | transformers |
# BERT multilingual base model (cased)
Pretrained model on the top 104 languages with the largest Wikipedia using a masked language modeling (MLM) objective.
It was introduced in [this paper](https://arxiv.org/abs/1810.04805) and first released in
[this repository](https://github.com/google-research/bert). This model is case sensitive: it makes a difference
between english and English.
Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by
the Hugging Face team.
## Model description
BERT is a transformers model pretrained on a large corpus of multilingual data in a self-supervised fashion. This means
it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it
was pretrained with two objectives:
- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run
the entire masked sentence through the model and has to predict the masked words. This is different from traditional
recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like
GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the
sentence.
- Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes
they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to
predict if the two sentences were following each other or not.
This way, the model learns an inner representation of the languages in the training set that can then be used to
extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a
standard classifier using the features produced by the BERT model as inputs.
## Intended uses & limitations
You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to
be fine-tuned on a downstream task. See the [model hub](https://huggingface.co./models?filter=bert) to look for
fine-tuned versions on a task that interests you.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
generation you should look at model like GPT2.
### How to use
You can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='bert-base-multilingual-cased')
>>> unmasker("Hello I'm a [MASK] model.")
[{'sequence': "[CLS] Hello I'm a model model. [SEP]",
'score': 0.10182085633277893,
'token': 13192,
'token_str': 'model'},
{'sequence': "[CLS] Hello I'm a world model. [SEP]",
'score': 0.052126359194517136,
'token': 11356,
'token_str': 'world'},
{'sequence': "[CLS] Hello I'm a data model. [SEP]",
'score': 0.048930276185274124,
'token': 11165,
'token_str': 'data'},
{'sequence': "[CLS] Hello I'm a flight model. [SEP]",
'score': 0.02036019042134285,
'token': 23578,
'token_str': 'flight'},
{'sequence': "[CLS] Hello I'm a business model. [SEP]",
'score': 0.020079681649804115,
'token': 14155,
'token_str': 'business'}]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-cased')
model = BertModel.from_pretrained("bert-base-multilingual-cased")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-cased')
model = TFBertModel.from_pretrained("bert-base-multilingual-cased")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
## Training data
The BERT model was pretrained on the 104 languages with the largest Wikipedias. You can find the complete list
[here](https://github.com/google-research/bert/blob/master/multilingual.md#list-of-languages).
## Training procedure
### Preprocessing
The texts are lowercased and tokenized using WordPiece and a shared vocabulary size of 110,000. The languages with a
larger Wikipedia are under-sampled and the ones with lower resources are oversampled. For languages like Chinese,
Japanese Kanji and Korean Hanja that don't have space, a CJK Unicode block is added around every character.
The inputs of the model are then of the form:
```
[CLS] Sentence A [SEP] Sentence B [SEP]
```
With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in
the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a
consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two
"sentences" has a combined length of less than 512 tokens.
The details of the masking procedure for each sentence are the following:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `[MASK]`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-1810-04805,
author = {Jacob Devlin and
Ming{-}Wei Chang and
Kenton Lee and
Kristina Toutanova},
title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language
Understanding},
journal = {CoRR},
volume = {abs/1810.04805},
year = {2018},
url = {http://arxiv.org/abs/1810.04805},
archivePrefix = {arXiv},
eprint = {1810.04805},
timestamp = {Tue, 30 Oct 2018 20:39:56 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
| {"language": ["multilingual", "af", "sq", "ar", "an", "hy", "ast", "az", "ba", "eu", "bar", "be", "bn", "inc", "bs", "br", "bg", "my", "ca", "ceb", "ce", "zh", "cv", "hr", "cs", "da", "nl", "en", "et", "fi", "fr", "gl", "ka", "de", "el", "gu", "ht", "he", "hi", "hu", "is", "io", "id", "ga", "it", "ja", "jv", "kn", "kk", "ky", "ko", "la", "lv", "lt", "roa", "nds", "lm", "mk", "mg", "ms", "ml", "mr", "mn", "min", "ne", "new", "nb", "nn", "oc", "fa", "pms", "pl", "pt", "pa", "ro", "ru", "sco", "sr", "hr", "scn", "sk", "sl", "aze", "es", "su", "sw", "sv", "tl", "tg", "th", "ta", "tt", "te", "tr", "uk", "ud", "uz", "vi", "vo", "war", "cy", "fry", "pnb", "yo"], "license": "apache-2.0", "datasets": ["wikipedia"]} | google-bert/bert-base-multilingual-cased | null | [
"transformers",
"pytorch",
"tf",
"jax",
"safetensors",
"bert",
"fill-mask",
"multilingual",
"af",
"sq",
"ar",
"an",
"hy",
"ast",
"az",
"ba",
"eu",
"bar",
"be",
"bn",
"inc",
"bs",
"br",
"bg",
"my",
"ca",
"ceb",
"ce",
"zh",
"cv",
"hr",
"cs",
"da",
"nl",
"en",
"et",
"fi",
"fr",
"gl",
"ka",
"de",
"el",
"gu",
"ht",
"he",
"hi",
"hu",
"is",
"io",
"id",
"ga",
"it",
"ja",
"jv",
"kn",
"kk",
"ky",
"ko",
"la",
"lv",
"lt",
"roa",
"nds",
"lm",
"mk",
"mg",
"ms",
"ml",
"mr",
"mn",
"min",
"ne",
"new",
"nb",
"nn",
"oc",
"fa",
"pms",
"pl",
"pt",
"pa",
"ro",
"ru",
"sco",
"sr",
"scn",
"sk",
"sl",
"aze",
"es",
"su",
"sw",
"sv",
"tl",
"tg",
"th",
"ta",
"tt",
"te",
"tr",
"uk",
"ud",
"uz",
"vi",
"vo",
"war",
"cy",
"fry",
"pnb",
"yo",
"dataset:wikipedia",
"arxiv:1810.04805",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
fill-mask | transformers |
# BERT multilingual base model (uncased)
Pretrained model on the top 102 languages with the largest Wikipedia using a masked language modeling (MLM) objective.
It was introduced in [this paper](https://arxiv.org/abs/1810.04805) and first released in
[this repository](https://github.com/google-research/bert). This model is uncased: it does not make a difference
between english and English.
Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by
the Hugging Face team.
## Model description
BERT is a transformers model pretrained on a large corpus of multilingual data in a self-supervised fashion. This means
it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it
was pretrained with two objectives:
- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run
the entire masked sentence through the model and has to predict the masked words. This is different from traditional
recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like
GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the
sentence.
- Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes
they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to
predict if the two sentences were following each other or not.
This way, the model learns an inner representation of the languages in the training set that can then be used to
extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a
standard classifier using the features produced by the BERT model as inputs.
## Intended uses & limitations
You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to
be fine-tuned on a downstream task. See the [model hub](https://huggingface.co./models?filter=bert) to look for
fine-tuned versions on a task that interests you.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
generation you should look at model like GPT2.
### How to use
You can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='bert-base-multilingual-uncased')
>>> unmasker("Hello I'm a [MASK] model.")
[{'sequence': "[CLS] hello i'm a top model. [SEP]",
'score': 0.1507750153541565,
'token': 11397,
'token_str': 'top'},
{'sequence': "[CLS] hello i'm a fashion model. [SEP]",
'score': 0.13075384497642517,
'token': 23589,
'token_str': 'fashion'},
{'sequence': "[CLS] hello i'm a good model. [SEP]",
'score': 0.036272723227739334,
'token': 12050,
'token_str': 'good'},
{'sequence': "[CLS] hello i'm a new model. [SEP]",
'score': 0.035954564809799194,
'token': 10246,
'token_str': 'new'},
{'sequence': "[CLS] hello i'm a great model. [SEP]",
'score': 0.028643041849136353,
'token': 11838,
'token_str': 'great'}]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-uncased')
model = BertModel.from_pretrained("bert-base-multilingual-uncased")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-uncased')
model = TFBertModel.from_pretrained("bert-base-multilingual-uncased")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
### Limitations and bias
Even if the training data used for this model could be characterized as fairly neutral, this model can have biased
predictions:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='bert-base-multilingual-uncased')
>>> unmasker("The man worked as a [MASK].")
[{'sequence': '[CLS] the man worked as a teacher. [SEP]',
'score': 0.07943806052207947,
'token': 21733,
'token_str': 'teacher'},
{'sequence': '[CLS] the man worked as a lawyer. [SEP]',
'score': 0.0629938617348671,
'token': 34249,
'token_str': 'lawyer'},
{'sequence': '[CLS] the man worked as a farmer. [SEP]',
'score': 0.03367974981665611,
'token': 36799,
'token_str': 'farmer'},
{'sequence': '[CLS] the man worked as a journalist. [SEP]',
'score': 0.03172805905342102,
'token': 19477,
'token_str': 'journalist'},
{'sequence': '[CLS] the man worked as a carpenter. [SEP]',
'score': 0.031021825969219208,
'token': 33241,
'token_str': 'carpenter'}]
>>> unmasker("The Black woman worked as a [MASK].")
[{'sequence': '[CLS] the black woman worked as a nurse. [SEP]',
'score': 0.07045423984527588,
'token': 52428,
'token_str': 'nurse'},
{'sequence': '[CLS] the black woman worked as a teacher. [SEP]',
'score': 0.05178029090166092,
'token': 21733,
'token_str': 'teacher'},
{'sequence': '[CLS] the black woman worked as a lawyer. [SEP]',
'score': 0.032601192593574524,
'token': 34249,
'token_str': 'lawyer'},
{'sequence': '[CLS] the black woman worked as a slave. [SEP]',
'score': 0.030507225543260574,
'token': 31173,
'token_str': 'slave'},
{'sequence': '[CLS] the black woman worked as a woman. [SEP]',
'score': 0.027691684663295746,
'token': 14050,
'token_str': 'woman'}]
```
This bias will also affect all fine-tuned versions of this model.
## Training data
The BERT model was pretrained on the 102 languages with the largest Wikipedias. You can find the complete list
[here](https://github.com/google-research/bert/blob/master/multilingual.md#list-of-languages).
## Training procedure
### Preprocessing
The texts are lowercased and tokenized using WordPiece and a shared vocabulary size of 110,000. The languages with a
larger Wikipedia are under-sampled and the ones with lower resources are oversampled. For languages like Chinese,
Japanese Kanji and Korean Hanja that don't have space, a CJK Unicode block is added around every character.
The inputs of the model are then of the form:
```
[CLS] Sentence A [SEP] Sentence B [SEP]
```
With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in
the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a
consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two
"sentences" has a combined length of less than 512 tokens.
The details of the masking procedure for each sentence are the following:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `[MASK]`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-1810-04805,
author = {Jacob Devlin and
Ming{-}Wei Chang and
Kenton Lee and
Kristina Toutanova},
title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language
Understanding},
journal = {CoRR},
volume = {abs/1810.04805},
year = {2018},
url = {http://arxiv.org/abs/1810.04805},
archivePrefix = {arXiv},
eprint = {1810.04805},
timestamp = {Tue, 30 Oct 2018 20:39:56 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
| {"language": ["multilingual", "af", "sq", "ar", "an", "hy", "ast", "az", "ba", "eu", "bar", "be", "bn", "inc", "bs", "br", "bg", "my", "ca", "ceb", "ce", "zh", "cv", "hr", "cs", "da", "nl", "en", "et", "fi", "fr", "gl", "ka", "de", "el", "gu", "ht", "he", "hi", "hu", "is", "io", "id", "ga", "it", "ja", "jv", "kn", "kk", "ky", "ko", "la", "lv", "lt", "roa", "nds", "lm", "mk", "mg", "ms", "ml", "mr", "min", "ne", "new", "nb", "nn", "oc", "fa", "pms", "pl", "pt", "pa", "ro", "ru", "sco", "sr", "hr", "scn", "sk", "sl", "aze", "es", "su", "sw", "sv", "tl", "tg", "ta", "tt", "te", "tr", "uk", "ud", "uz", "vi", "vo", "war", "cy", "fry", "pnb", "yo"], "license": "apache-2.0", "datasets": ["wikipedia"]} | google-bert/bert-base-multilingual-uncased | null | [
"transformers",
"pytorch",
"tf",
"jax",
"safetensors",
"bert",
"fill-mask",
"multilingual",
"af",
"sq",
"ar",
"an",
"hy",
"ast",
"az",
"ba",
"eu",
"bar",
"be",
"bn",
"inc",
"bs",
"br",
"bg",
"my",
"ca",
"ceb",
"ce",
"zh",
"cv",
"hr",
"cs",
"da",
"nl",
"en",
"et",
"fi",
"fr",
"gl",
"ka",
"de",
"el",
"gu",
"ht",
"he",
"hi",
"hu",
"is",
"io",
"id",
"ga",
"it",
"ja",
"jv",
"kn",
"kk",
"ky",
"ko",
"la",
"lv",
"lt",
"roa",
"nds",
"lm",
"mk",
"mg",
"ms",
"ml",
"mr",
"min",
"ne",
"new",
"nb",
"nn",
"oc",
"fa",
"pms",
"pl",
"pt",
"pa",
"ro",
"ru",
"sco",
"sr",
"scn",
"sk",
"sl",
"aze",
"es",
"su",
"sw",
"sv",
"tl",
"tg",
"ta",
"tt",
"te",
"tr",
"uk",
"ud",
"uz",
"vi",
"vo",
"war",
"cy",
"fry",
"pnb",
"yo",
"dataset:wikipedia",
"arxiv:1810.04805",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
fill-mask | transformers |
# BERT base model (uncased)
Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in
[this paper](https://arxiv.org/abs/1810.04805) and first released in
[this repository](https://github.com/google-research/bert). This model is uncased: it does not make a difference
between english and English.
Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by
the Hugging Face team.
## Model description
BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it
was pretrained on the raw texts only, with no humans labeling them in any way (which is why it can use lots of
publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it
was pretrained with two objectives:
- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run
the entire masked sentence through the model and has to predict the masked words. This is different from traditional
recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like
GPT which internally masks the future tokens. It allows the model to learn a bidirectional representation of the
sentence.
- Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes
they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to
predict if the two sentences were following each other or not.
This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks: if you have a dataset of labeled sentences, for instance, you can train a standard
classifier using the features produced by the BERT model as inputs.
## Model variations
BERT has originally been released in base and large variations, for cased and uncased input text. The uncased models also strips out an accent markers.
Chinese and multilingual uncased and cased versions followed shortly after.
Modified preprocessing with whole word masking has replaced subpiece masking in a following work, with the release of two models.
Other 24 smaller models are released afterward.
The detailed release history can be found on the [google-research/bert readme](https://github.com/google-research/bert/blob/master/README.md) on github.
| Model | #params | Language |
|------------------------|--------------------------------|-------|
| [`bert-base-uncased`](https://huggingface.co./bert-base-uncased) | 110M | English |
| [`bert-large-uncased`](https://huggingface.co./bert-large-uncased) | 340M | English | sub
| [`bert-base-cased`](https://huggingface.co./bert-base-cased) | 110M | English |
| [`bert-large-cased`](https://huggingface.co./bert-large-cased) | 340M | English |
| [`bert-base-chinese`](https://huggingface.co./bert-base-chinese) | 110M | Chinese |
| [`bert-base-multilingual-cased`](https://huggingface.co./bert-base-multilingual-cased) | 110M | Multiple |
| [`bert-large-uncased-whole-word-masking`](https://huggingface.co./bert-large-uncased-whole-word-masking) | 340M | English |
| [`bert-large-cased-whole-word-masking`](https://huggingface.co./bert-large-cased-whole-word-masking) | 340M | English |
## Intended uses & limitations
You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to
be fine-tuned on a downstream task. See the [model hub](https://huggingface.co./models?filter=bert) to look for
fine-tuned versions of a task that interests you.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
generation you should look at model like GPT2.
### How to use
You can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='bert-base-uncased')
>>> unmasker("Hello I'm a [MASK] model.")
[{'sequence': "[CLS] hello i'm a fashion model. [SEP]",
'score': 0.1073106899857521,
'token': 4827,
'token_str': 'fashion'},
{'sequence': "[CLS] hello i'm a role model. [SEP]",
'score': 0.08774490654468536,
'token': 2535,
'token_str': 'role'},
{'sequence': "[CLS] hello i'm a new model. [SEP]",
'score': 0.05338378623127937,
'token': 2047,
'token_str': 'new'},
{'sequence': "[CLS] hello i'm a super model. [SEP]",
'score': 0.04667217284440994,
'token': 3565,
'token_str': 'super'},
{'sequence': "[CLS] hello i'm a fine model. [SEP]",
'score': 0.027095865458250046,
'token': 2986,
'token_str': 'fine'}]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertModel.from_pretrained("bert-base-uncased")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = TFBertModel.from_pretrained("bert-base-uncased")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
### Limitations and bias
Even if the training data used for this model could be characterized as fairly neutral, this model can have biased
predictions:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='bert-base-uncased')
>>> unmasker("The man worked as a [MASK].")
[{'sequence': '[CLS] the man worked as a carpenter. [SEP]',
'score': 0.09747550636529922,
'token': 10533,
'token_str': 'carpenter'},
{'sequence': '[CLS] the man worked as a waiter. [SEP]',
'score': 0.0523831807076931,
'token': 15610,
'token_str': 'waiter'},
{'sequence': '[CLS] the man worked as a barber. [SEP]',
'score': 0.04962705448269844,
'token': 13362,
'token_str': 'barber'},
{'sequence': '[CLS] the man worked as a mechanic. [SEP]',
'score': 0.03788609802722931,
'token': 15893,
'token_str': 'mechanic'},
{'sequence': '[CLS] the man worked as a salesman. [SEP]',
'score': 0.037680890411138535,
'token': 18968,
'token_str': 'salesman'}]
>>> unmasker("The woman worked as a [MASK].")
[{'sequence': '[CLS] the woman worked as a nurse. [SEP]',
'score': 0.21981462836265564,
'token': 6821,
'token_str': 'nurse'},
{'sequence': '[CLS] the woman worked as a waitress. [SEP]',
'score': 0.1597415804862976,
'token': 13877,
'token_str': 'waitress'},
{'sequence': '[CLS] the woman worked as a maid. [SEP]',
'score': 0.1154729500412941,
'token': 10850,
'token_str': 'maid'},
{'sequence': '[CLS] the woman worked as a prostitute. [SEP]',
'score': 0.037968918681144714,
'token': 19215,
'token_str': 'prostitute'},
{'sequence': '[CLS] the woman worked as a cook. [SEP]',
'score': 0.03042375110089779,
'token': 5660,
'token_str': 'cook'}]
```
This bias will also affect all fine-tuned versions of this model.
## Training data
The BERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038
unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and
headers).
## Training procedure
### Preprocessing
The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are
then of the form:
```
[CLS] Sentence A [SEP] Sentence B [SEP]
```
With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus, and in
the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a
consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two
"sentences" has a combined length of less than 512 tokens.
The details of the masking procedure for each sentence are the following:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `[MASK]`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
### Pretraining
The model was trained on 4 cloud TPUs in Pod configuration (16 TPU chips total) for one million steps with a batch size
of 256. The sequence length was limited to 128 tokens for 90% of the steps and 512 for the remaining 10%. The optimizer
used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01,
learning rate warmup for 10,000 steps and linear decay of the learning rate after.
## Evaluation results
When fine-tuned on downstream tasks, this model achieves the following results:
Glue test results:
| Task | MNLI-(m/mm) | QQP | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE | Average |
|:----:|:-----------:|:----:|:----:|:-----:|:----:|:-----:|:----:|:----:|:-------:|
| | 84.6/83.4 | 71.2 | 90.5 | 93.5 | 52.1 | 85.8 | 88.9 | 66.4 | 79.6 |
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-1810-04805,
author = {Jacob Devlin and
Ming{-}Wei Chang and
Kenton Lee and
Kristina Toutanova},
title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language
Understanding},
journal = {CoRR},
volume = {abs/1810.04805},
year = {2018},
url = {http://arxiv.org/abs/1810.04805},
archivePrefix = {arXiv},
eprint = {1810.04805},
timestamp = {Tue, 30 Oct 2018 20:39:56 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
<a href="https://huggingface.co./exbert/?model=bert-base-uncased">
<img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png">
</a>
| {"language": "en", "license": "apache-2.0", "tags": ["exbert"], "datasets": ["bookcorpus", "wikipedia"]} | google-bert/bert-base-uncased | null | [
"transformers",
"pytorch",
"tf",
"jax",
"rust",
"coreml",
"onnx",
"safetensors",
"bert",
"fill-mask",
"exbert",
"en",
"dataset:bookcorpus",
"dataset:wikipedia",
"arxiv:1810.04805",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
question-answering | transformers |
# BERT large model (cased) whole word masking finetuned on SQuAD
Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in
[this paper](https://arxiv.org/abs/1810.04805) and first released in
[this repository](https://github.com/google-research/bert). This model is cased: it makes a difference between english and English.
Differently to other BERT models, this model was trained with a new technique: Whole Word Masking. In this case, all of the tokens corresponding to a word are masked at once. The overall masking rate remains the same.
The training is identical -- each masked WordPiece token is predicted independently.
After pre-training, this model was fine-tuned on the SQuAD dataset with one of our fine-tuning scripts. See below for more information regarding this fine-tuning.
Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by
the Hugging Face team.
## Model description
BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it
was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it
was pretrained with two objectives:
- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run
the entire masked sentence through the model and has to predict the masked words. This is different from traditional
recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like
GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the
sentence.
- Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes
they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to
predict if the two sentences were following each other or not.
This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard
classifier using the features produced by the BERT model as inputs.
This model has the following configuration:
- 24-layer
- 1024 hidden dimension
- 16 attention heads
- 336M parameters.
## Intended uses & limitations
This model should be used as a question-answering model. You may use it in a question answering pipeline, or use it to output raw results given a query and a context. You may see other use cases in the [task summary](https://huggingface.co./transformers/task_summary.html#extractive-question-answering) of the transformers documentation.## Training data
The BERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038
unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and
headers).
## Training procedure
### Preprocessing
The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are
then of the form:
```
[CLS] Sentence A [SEP] Sentence B [SEP]
```
With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in
the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a
consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two
"sentences" has a combined length of less than 512 tokens.
The details of the masking procedure for each sentence are the following:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `[MASK]`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
### Pretraining
The model was trained on 4 cloud TPUs in Pod configuration (16 TPU chips total) for one million steps with a batch size
of 256. The sequence length was limited to 128 tokens for 90% of the steps and 512 for the remaining 10%. The optimizer
used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01,
learning rate warmup for 10,000 steps and linear decay of the learning rate after.
### Fine-tuning
After pre-training, this model was fine-tuned on the SQuAD dataset with one of our fine-tuning scripts. In order to reproduce the training, you may use the following command:
```
python -m torch.distributed.launch --nproc_per_node=8 ./examples/question-answering/run_qa.py \
--model_name_or_path bert-large-cased-whole-word-masking \
--dataset_name squad \
--do_train \
--do_eval \
--learning_rate 3e-5 \
--num_train_epochs 2 \
--max_seq_length 384 \
--doc_stride 128 \
--output_dir ./examples/models/wwm_cased_finetuned_squad/ \
--per_device_eval_batch_size=3 \
--per_device_train_batch_size=3 \
```
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-1810-04805,
author = {Jacob Devlin and
Ming{-}Wei Chang and
Kenton Lee and
Kristina Toutanova},
title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language
Understanding},
journal = {CoRR},
volume = {abs/1810.04805},
year = {2018},
url = {http://arxiv.org/abs/1810.04805},
archivePrefix = {arXiv},
eprint = {1810.04805},
timestamp = {Tue, 30 Oct 2018 20:39:56 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
``` | {"language": "en", "license": "apache-2.0", "datasets": ["bookcorpus", "wikipedia"]} | google-bert/bert-large-cased-whole-word-masking-finetuned-squad | null | [
"transformers",
"pytorch",
"tf",
"jax",
"rust",
"safetensors",
"bert",
"question-answering",
"en",
"dataset:bookcorpus",
"dataset:wikipedia",
"arxiv:1810.04805",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
fill-mask | transformers |
# BERT large model (cased) whole word masking
Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in
[this paper](https://arxiv.org/abs/1810.04805) and first released in
[this repository](https://github.com/google-research/bert). This model is cased: it makes a difference between english and English.
Differently to other BERT models, this model was trained with a new technique: Whole Word Masking. In this case, all of the tokens corresponding to a word are masked at once. The overall masking rate remains the same.
The training is identical -- each masked WordPiece token is predicted independently.
Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by
the Hugging Face team.
## Model description
BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it
was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it
was pretrained with two objectives:
- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run
the entire masked sentence through the model and has to predict the masked words. This is different from traditional
recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like
GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the
sentence.
- Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes
they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to
predict if the two sentences were following each other or not.
This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard
classifier using the features produced by the BERT model as inputs.
This model has the following configuration:
- 24-layer
- 1024 hidden dimension
- 16 attention heads
- 336M parameters.
## Intended uses & limitations
You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to
be fine-tuned on a downstream task. See the [model hub](https://huggingface.co./models?filter=bert) to look for
fine-tuned versions on a task that interests you.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
generation you should look at model like GPT2.
### How to use
You can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='bert-large-cased-whole-word-masking')
>>> unmasker("Hello I'm a [MASK] model.")
[
{
"sequence":"[CLS] Hello I'm a fashion model. [SEP]",
"score":0.1474294513463974,
"token":4633,
"token_str":"fashion"
},
{
"sequence":"[CLS] Hello I'm a magazine model. [SEP]",
"score":0.05430116504430771,
"token":2435,
"token_str":"magazine"
},
{
"sequence":"[CLS] Hello I'm a male model. [SEP]",
"score":0.039395421743392944,
"token":2581,
"token_str":"male"
},
{
"sequence":"[CLS] Hello I'm a former model. [SEP]",
"score":0.036936815828084946,
"token":1393,
"token_str":"former"
},
{
"sequence":"[CLS] Hello I'm a professional model. [SEP]",
"score":0.03663451969623566,
"token":1848,
"token_str":"professional"
}
]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('bert-large-cased-whole-word-masking')
model = BertModel.from_pretrained("bert-large-cased-whole-word-masking")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('bert-large-cased-whole-word-masking')
model = TFBertModel.from_pretrained("bert-large-cased-whole-word-masking")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
### Limitations and bias
Even if the training data used for this model could be characterized as fairly neutral, this model can have biased
predictions:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='bert-large-cased-whole-word-masking')
>>> unmasker("The man worked as a [MASK].")
[
{
"sequence":"[CLS] The man worked as a carpenter. [SEP]",
"score":0.09021259099245071,
"token":25169,
"token_str":"carpenter"
},
{
"sequence":"[CLS] The man worked as a cook. [SEP]",
"score":0.08125395327806473,
"token":9834,
"token_str":"cook"
},
{
"sequence":"[CLS] The man worked as a mechanic. [SEP]",
"score":0.07524766772985458,
"token":19459,
"token_str":"mechanic"
},
{
"sequence":"[CLS] The man worked as a waiter. [SEP]",
"score":0.07397029548883438,
"token":17989,
"token_str":"waiter"
},
{
"sequence":"[CLS] The man worked as a guard. [SEP]",
"score":0.05848982185125351,
"token":3542,
"token_str":"guard"
}
]
>>> unmasker("The woman worked as a [MASK].")
[
{
"sequence":"[CLS] The woman worked as a maid. [SEP]",
"score":0.19436432421207428,
"token":13487,
"token_str":"maid"
},
{
"sequence":"[CLS] The woman worked as a waitress. [SEP]",
"score":0.16161060333251953,
"token":15098,
"token_str":"waitress"
},
{
"sequence":"[CLS] The woman worked as a nurse. [SEP]",
"score":0.14942803978919983,
"token":7439,
"token_str":"nurse"
},
{
"sequence":"[CLS] The woman worked as a secretary. [SEP]",
"score":0.10373266786336899,
"token":4848,
"token_str":"secretary"
},
{
"sequence":"[CLS] The woman worked as a cook. [SEP]",
"score":0.06384387612342834,
"token":9834,
"token_str":"cook"
}
]
```
This bias will also affect all fine-tuned versions of this model.
## Training data
The BERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038
unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and
headers).
## Training procedure
### Preprocessing
The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are
then of the form:
```
[CLS] Sentence A [SEP] Sentence B [SEP]
```
With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in
the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a
consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two
"sentences" has a combined length of less than 512 tokens.
The details of the masking procedure for each sentence are the following:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `[MASK]`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
### Pretraining
The model was trained on 4 cloud TPUs in Pod configuration (16 TPU chips total) for one million steps with a batch size
of 256. The sequence length was limited to 128 tokens for 90% of the steps and 512 for the remaining 10%. The optimizer
used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01,
learning rate warmup for 10,000 steps and linear decay of the learning rate after.
## Evaluation results
When fine-tuned on downstream tasks, this model achieves the following results:
Model | SQUAD 1.1 F1/EM | Multi NLI Accuracy
---------------------------------------- | :-------------: | :----------------:
BERT-Large, Cased (Whole Word Masking) | 92.9/86.7 | 86.46
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-1810-04805,
author = {Jacob Devlin and
Ming{-}Wei Chang and
Kenton Lee and
Kristina Toutanova},
title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language
Understanding},
journal = {CoRR},
volume = {abs/1810.04805},
year = {2018},
url = {http://arxiv.org/abs/1810.04805},
archivePrefix = {arXiv},
eprint = {1810.04805},
timestamp = {Tue, 30 Oct 2018 20:39:56 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
``` | {"language": "en", "license": "apache-2.0", "datasets": ["bookcorpus", "wikipedia"]} | google-bert/bert-large-cased-whole-word-masking | null | [
"transformers",
"pytorch",
"tf",
"jax",
"bert",
"fill-mask",
"en",
"dataset:bookcorpus",
"dataset:wikipedia",
"arxiv:1810.04805",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
fill-mask | transformers |
# BERT large model (cased)
Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in
[this paper](https://arxiv.org/abs/1810.04805) and first released in
[this repository](https://github.com/google-research/bert). This model is cased: it makes a difference
between english and English.
Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by
the Hugging Face team.
## Model description
BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it
was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it
was pretrained with two objectives:
- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run
the entire masked sentence through the model and has to predict the masked words. This is different from traditional
recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like
GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the
sentence.
- Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes
they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to
predict if the two sentences were following each other or not.
This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard
classifier using the features produced by the BERT model as inputs.
This model has the following configuration:
- 24-layer
- 1024 hidden dimension
- 16 attention heads
- 336M parameters.
## Intended uses & limitations
You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to
be fine-tuned on a downstream task. See the [model hub](https://huggingface.co./models?filter=bert) to look for
fine-tuned versions on a task that interests you.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
generation you should look at model like GPT2.
### How to use
You can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='bert-large-cased')
>>> unmasker("Hello I'm a [MASK] model.")
[
{
"sequence":"[CLS] Hello I'm a male model. [SEP]",
"score":0.22748498618602753,
"token":2581,
"token_str":"male"
},
{
"sequence":"[CLS] Hello I'm a fashion model. [SEP]",
"score":0.09146175533533096,
"token":4633,
"token_str":"fashion"
},
{
"sequence":"[CLS] Hello I'm a new model. [SEP]",
"score":0.05823173746466637,
"token":1207,
"token_str":"new"
},
{
"sequence":"[CLS] Hello I'm a super model. [SEP]",
"score":0.04488750174641609,
"token":7688,
"token_str":"super"
},
{
"sequence":"[CLS] Hello I'm a famous model. [SEP]",
"score":0.03271442651748657,
"token":2505,
"token_str":"famous"
}
]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('bert-large-cased')
model = BertModel.from_pretrained("bert-large-cased")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('bert-large-cased')
model = TFBertModel.from_pretrained("bert-large-cased")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
### Limitations and bias
Even if the training data used for this model could be characterized as fairly neutral, this model can have biased
predictions:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='bert-large-cased')
>>> unmasker("The man worked as a [MASK].")
[
{
"sequence":"[CLS] The man worked as a doctor. [SEP]",
"score":0.0645911768078804,
"token":3995,
"token_str":"doctor"
},
{
"sequence":"[CLS] The man worked as a cop. [SEP]",
"score":0.057450827211141586,
"token":9947,
"token_str":"cop"
},
{
"sequence":"[CLS] The man worked as a mechanic. [SEP]",
"score":0.04392256215214729,
"token":19459,
"token_str":"mechanic"
},
{
"sequence":"[CLS] The man worked as a waiter. [SEP]",
"score":0.03755280375480652,
"token":17989,
"token_str":"waiter"
},
{
"sequence":"[CLS] The man worked as a teacher. [SEP]",
"score":0.03458863124251366,
"token":3218,
"token_str":"teacher"
}
]
>>> unmasker("The woman worked as a [MASK].")
[
{
"sequence":"[CLS] The woman worked as a nurse. [SEP]",
"score":0.2572779953479767,
"token":7439,
"token_str":"nurse"
},
{
"sequence":"[CLS] The woman worked as a waitress. [SEP]",
"score":0.16706500947475433,
"token":15098,
"token_str":"waitress"
},
{
"sequence":"[CLS] The woman worked as a teacher. [SEP]",
"score":0.04587847739458084,
"token":3218,
"token_str":"teacher"
},
{
"sequence":"[CLS] The woman worked as a secretary. [SEP]",
"score":0.03577028587460518,
"token":4848,
"token_str":"secretary"
},
{
"sequence":"[CLS] The woman worked as a maid. [SEP]",
"score":0.03298963978886604,
"token":13487,
"token_str":"maid"
}
]
```
This bias will also affect all fine-tuned versions of this model.
## Training data
The BERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038
unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and
headers).
## Training procedure
### Preprocessing
The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are
then of the form:
```
[CLS] Sentence A [SEP] Sentence B [SEP]
```
With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in
the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a
consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two
"sentences" has a combined length of less than 512 tokens.
The details of the masking procedure for each sentence are the following:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `[MASK]`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
### Pretraining
The model was trained on 4 cloud TPUs in Pod configuration (16 TPU chips total) for one million steps with a batch size
of 256. The sequence length was limited to 128 tokens for 90% of the steps and 512 for the remaining 10%. The optimizer
used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01,
learning rate warmup for 10,000 steps and linear decay of the learning rate after.
## Evaluation results
When fine-tuned on downstream tasks, this model achieves the following results:
Model | SQUAD 1.1 F1/EM | Multi NLI Accuracy
---------------------------------------- | :-------------: | :----------------:
BERT-Large, Cased (Original) | 91.5/84.8 | 86.09
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-1810-04805,
author = {Jacob Devlin and
Ming{-}Wei Chang and
Kenton Lee and
Kristina Toutanova},
title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language
Understanding},
journal = {CoRR},
volume = {abs/1810.04805},
year = {2018},
url = {http://arxiv.org/abs/1810.04805},
archivePrefix = {arXiv},
eprint = {1810.04805},
timestamp = {Tue, 30 Oct 2018 20:39:56 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
| {"language": "en", "license": "apache-2.0", "datasets": ["bookcorpus", "wikipedia"]} | google-bert/bert-large-cased | null | [
"transformers",
"pytorch",
"tf",
"jax",
"safetensors",
"bert",
"fill-mask",
"en",
"dataset:bookcorpus",
"dataset:wikipedia",
"arxiv:1810.04805",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
question-answering | transformers |
# BERT large model (uncased) whole word masking finetuned on SQuAD
Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in
[this paper](https://arxiv.org/abs/1810.04805) and first released in
[this repository](https://github.com/google-research/bert). This model is uncased: it does not make a difference
between english and English.
Differently to other BERT models, this model was trained with a new technique: Whole Word Masking. In this case, all of the tokens corresponding to a word are masked at once. The overall masking rate remains the same.
The training is identical -- each masked WordPiece token is predicted independently.
After pre-training, this model was fine-tuned on the SQuAD dataset with one of our fine-tuning scripts. See below for more information regarding this fine-tuning.
Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by
the Hugging Face team.
## Model description
BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it
was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it
was pretrained with two objectives:
- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run
the entire masked sentence through the model and has to predict the masked words. This is different from traditional
recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like
GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the
sentence.
- Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes
they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to
predict if the two sentences were following each other or not.
This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard
classifier using the features produced by the BERT model as inputs.
This model has the following configuration:
- 24-layer
- 1024 hidden dimension
- 16 attention heads
- 336M parameters.
## Intended uses & limitations
This model should be used as a question-answering model. You may use it in a question answering pipeline, or use it to output raw results given a query and a context. You may see other use cases in the [task summary](https://huggingface.co./transformers/task_summary.html#extractive-question-answering) of the transformers documentation.## Training data
The BERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038
unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and
headers).
## Training procedure
### Preprocessing
The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are
then of the form:
```
[CLS] Sentence A [SEP] Sentence B [SEP]
```
With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in
the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a
consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two
"sentences" has a combined length of less than 512 tokens.
The details of the masking procedure for each sentence are the following:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `[MASK]`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
### Pretraining
The model was trained on 4 cloud TPUs in Pod configuration (16 TPU chips total) for one million steps with a batch size
of 256. The sequence length was limited to 128 tokens for 90% of the steps and 512 for the remaining 10%. The optimizer
used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01,
learning rate warmup for 10,000 steps and linear decay of the learning rate after.
### Fine-tuning
After pre-training, this model was fine-tuned on the SQuAD dataset with one of our fine-tuning scripts. In order to reproduce the training, you may use the following command:
```
python -m torch.distributed.launch --nproc_per_node=8 ./examples/question-answering/run_qa.py \
--model_name_or_path bert-large-uncased-whole-word-masking \
--dataset_name squad \
--do_train \
--do_eval \
--learning_rate 3e-5 \
--num_train_epochs 2 \
--max_seq_length 384 \
--doc_stride 128 \
--output_dir ./examples/models/wwm_uncased_finetuned_squad/ \
--per_device_eval_batch_size=3 \
--per_device_train_batch_size=3 \
```
## Evaluation results
The results obtained are the following:
```
f1 = 93.15
exact_match = 86.91
```
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-1810-04805,
author = {Jacob Devlin and
Ming{-}Wei Chang and
Kenton Lee and
Kristina Toutanova},
title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language
Understanding},
journal = {CoRR},
volume = {abs/1810.04805},
year = {2018},
url = {http://arxiv.org/abs/1810.04805},
archivePrefix = {arXiv},
eprint = {1810.04805},
timestamp = {Tue, 30 Oct 2018 20:39:56 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
``` | {"language": "en", "license": "apache-2.0", "datasets": ["bookcorpus", "wikipedia"]} | google-bert/bert-large-uncased-whole-word-masking-finetuned-squad | null | [
"transformers",
"pytorch",
"tf",
"jax",
"safetensors",
"bert",
"question-answering",
"en",
"dataset:bookcorpus",
"dataset:wikipedia",
"arxiv:1810.04805",
"license:apache-2.0",
"endpoints_compatible",
"has_space",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
fill-mask | transformers |
# BERT large model (uncased) whole word masking
Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in
[this paper](https://arxiv.org/abs/1810.04805) and first released in
[this repository](https://github.com/google-research/bert). This model is uncased: it does not make a difference
between english and English.
Differently to other BERT models, this model was trained with a new technique: Whole Word Masking. In this case, all of the tokens corresponding to a word are masked at once. The overall masking rate remains the same.
The training is identical -- each masked WordPiece token is predicted independently.
Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by
the Hugging Face team.
## Model description
BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it
was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it
was pretrained with two objectives:
- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run
the entire masked sentence through the model and has to predict the masked words. This is different from traditional
recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like
GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the
sentence.
- Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes
they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to
predict if the two sentences were following each other or not.
This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard
classifier using the features produced by the BERT model as inputs.
This model has the following configuration:
- 24-layer
- 1024 hidden dimension
- 16 attention heads
- 336M parameters.
## Intended uses & limitations
You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to
be fine-tuned on a downstream task. See the [model hub](https://huggingface.co./models?filter=bert) to look for
fine-tuned versions on a task that interests you.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
generation you should look at model like GPT2.
### How to use
You can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='bert-large-uncased-whole-word-masking')
>>> unmasker("Hello I'm a [MASK] model.")
[
{
'sequence': "[CLS] hello i'm a fashion model. [SEP]",
'score': 0.15813860297203064,
'token': 4827,
'token_str': 'fashion'
}, {
'sequence': "[CLS] hello i'm a cover model. [SEP]",
'score': 0.10551052540540695,
'token': 3104,
'token_str': 'cover'
}, {
'sequence': "[CLS] hello i'm a male model. [SEP]",
'score': 0.08340442180633545,
'token': 3287,
'token_str': 'male'
}, {
'sequence': "[CLS] hello i'm a super model. [SEP]",
'score': 0.036381796002388,
'token': 3565,
'token_str': 'super'
}, {
'sequence': "[CLS] hello i'm a top model. [SEP]",
'score': 0.03609578311443329,
'token': 2327,
'token_str': 'top'
}
]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('bert-large-uncased-whole-word-masking')
model = BertModel.from_pretrained("bert-large-uncased-whole-word-masking")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('bert-large-uncased-whole-word-masking')
model = TFBertModel.from_pretrained("bert-large-uncased-whole-word-masking")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
### Limitations and bias
Even if the training data used for this model could be characterized as fairly neutral, this model can have biased
predictions:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='bert-large-uncased-whole-word-masking')
>>> unmasker("The man worked as a [MASK].")
[
{
"sequence":"[CLS] the man worked as a waiter. [SEP]",
"score":0.09823174774646759,
"token":15610,
"token_str":"waiter"
},
{
"sequence":"[CLS] the man worked as a carpenter. [SEP]",
"score":0.08976428955793381,
"token":10533,
"token_str":"carpenter"
},
{
"sequence":"[CLS] the man worked as a mechanic. [SEP]",
"score":0.06550426036119461,
"token":15893,
"token_str":"mechanic"
},
{
"sequence":"[CLS] the man worked as a butcher. [SEP]",
"score":0.04142395779490471,
"token":14998,
"token_str":"butcher"
},
{
"sequence":"[CLS] the man worked as a barber. [SEP]",
"score":0.03680137172341347,
"token":13362,
"token_str":"barber"
}
]
>>> unmasker("The woman worked as a [MASK].")
[
{
"sequence":"[CLS] the woman worked as a waitress. [SEP]",
"score":0.2669651508331299,
"token":13877,
"token_str":"waitress"
},
{
"sequence":"[CLS] the woman worked as a maid. [SEP]",
"score":0.13054853677749634,
"token":10850,
"token_str":"maid"
},
{
"sequence":"[CLS] the woman worked as a nurse. [SEP]",
"score":0.07987703382968903,
"token":6821,
"token_str":"nurse"
},
{
"sequence":"[CLS] the woman worked as a prostitute. [SEP]",
"score":0.058545831590890884,
"token":19215,
"token_str":"prostitute"
},
{
"sequence":"[CLS] the woman worked as a cleaner. [SEP]",
"score":0.03834161534905434,
"token":20133,
"token_str":"cleaner"
}
]
```
This bias will also affect all fine-tuned versions of this model.
## Training data
The BERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038
unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and
headers).
## Training procedure
### Preprocessing
The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are
then of the form:
```
[CLS] Sentence A [SEP] Sentence B [SEP]
```
With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in
the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a
consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two
"sentences" has a combined length of less than 512 tokens.
The details of the masking procedure for each sentence are the following:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `[MASK]`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
### Pretraining
The model was trained on 4 cloud TPUs in Pod configuration (16 TPU chips total) for one million steps with a batch size
of 256. The sequence length was limited to 128 tokens for 90% of the steps and 512 for the remaining 10%. The optimizer
used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01,
learning rate warmup for 10,000 steps and linear decay of the learning rate after.
## Evaluation results
When fine-tuned on downstream tasks, this model achieves the following results:
Model | SQUAD 1.1 F1/EM | Multi NLI Accuracy
---------------------------------------- | :-------------: | :----------------:
BERT-Large, Uncased (Whole Word Masking) | 92.8/86.7 | 87.07
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-1810-04805,
author = {Jacob Devlin and
Ming{-}Wei Chang and
Kenton Lee and
Kristina Toutanova},
title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language
Understanding},
journal = {CoRR},
volume = {abs/1810.04805},
year = {2018},
url = {http://arxiv.org/abs/1810.04805},
archivePrefix = {arXiv},
eprint = {1810.04805},
timestamp = {Tue, 30 Oct 2018 20:39:56 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
``` | {"language": "en", "license": "apache-2.0", "datasets": ["bookcorpus", "wikipedia"]} | google-bert/bert-large-uncased-whole-word-masking | null | [
"transformers",
"pytorch",
"tf",
"jax",
"safetensors",
"bert",
"fill-mask",
"en",
"dataset:bookcorpus",
"dataset:wikipedia",
"arxiv:1810.04805",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
fill-mask | transformers |
# BERT large model (uncased)
Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in
[this paper](https://arxiv.org/abs/1810.04805) and first released in
[this repository](https://github.com/google-research/bert). This model is uncased: it does not make a difference
between english and English.
Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by
the Hugging Face team.
## Model description
BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it
was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it
was pretrained with two objectives:
- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run
the entire masked sentence through the model and has to predict the masked words. This is different from traditional
recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like
GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the
sentence.
- Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes
they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to
predict if the two sentences were following each other or not.
This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard
classifier using the features produced by the BERT model as inputs.
This model has the following configuration:
- 24-layer
- 1024 hidden dimension
- 16 attention heads
- 336M parameters.
## Intended uses & limitations
You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to
be fine-tuned on a downstream task. See the [model hub](https://huggingface.co./models?filter=bert) to look for
fine-tuned versions on a task that interests you.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
generation you should look at model like GPT2.
### How to use
You can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='bert-large-uncased')
>>> unmasker("Hello I'm a [MASK] model.")
[{'sequence': "[CLS] hello i'm a fashion model. [SEP]",
'score': 0.1886913776397705,
'token': 4827,
'token_str': 'fashion'},
{'sequence': "[CLS] hello i'm a professional model. [SEP]",
'score': 0.07157472521066666,
'token': 2658,
'token_str': 'professional'},
{'sequence': "[CLS] hello i'm a male model. [SEP]",
'score': 0.04053466394543648,
'token': 3287,
'token_str': 'male'},
{'sequence': "[CLS] hello i'm a role model. [SEP]",
'score': 0.03891477733850479,
'token': 2535,
'token_str': 'role'},
{'sequence': "[CLS] hello i'm a fitness model. [SEP]",
'score': 0.03038121573626995,
'token': 10516,
'token_str': 'fitness'}]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('bert-large-uncased')
model = BertModel.from_pretrained("bert-large-uncased")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('bert-large-uncased')
model = TFBertModel.from_pretrained("bert-large-uncased")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
### Limitations and bias
Even if the training data used for this model could be characterized as fairly neutral, this model can have biased
predictions:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='bert-large-uncased')
>>> unmasker("The man worked as a [MASK].")
[{'sequence': '[CLS] the man worked as a bartender. [SEP]',
'score': 0.10426565259695053,
'token': 15812,
'token_str': 'bartender'},
{'sequence': '[CLS] the man worked as a waiter. [SEP]',
'score': 0.10232779383659363,
'token': 15610,
'token_str': 'waiter'},
{'sequence': '[CLS] the man worked as a mechanic. [SEP]',
'score': 0.06281787157058716,
'token': 15893,
'token_str': 'mechanic'},
{'sequence': '[CLS] the man worked as a lawyer. [SEP]',
'score': 0.050936125218868256,
'token': 5160,
'token_str': 'lawyer'},
{'sequence': '[CLS] the man worked as a carpenter. [SEP]',
'score': 0.041034240275621414,
'token': 10533,
'token_str': 'carpenter'}]
>>> unmasker("The woman worked as a [MASK].")
[{'sequence': '[CLS] the woman worked as a waitress. [SEP]',
'score': 0.28473711013793945,
'token': 13877,
'token_str': 'waitress'},
{'sequence': '[CLS] the woman worked as a nurse. [SEP]',
'score': 0.11336520314216614,
'token': 6821,
'token_str': 'nurse'},
{'sequence': '[CLS] the woman worked as a bartender. [SEP]',
'score': 0.09574324637651443,
'token': 15812,
'token_str': 'bartender'},
{'sequence': '[CLS] the woman worked as a maid. [SEP]',
'score': 0.06351090222597122,
'token': 10850,
'token_str': 'maid'},
{'sequence': '[CLS] the woman worked as a secretary. [SEP]',
'score': 0.048970773816108704,
'token': 3187,
'token_str': 'secretary'}]
```
This bias will also affect all fine-tuned versions of this model.
## Training data
The BERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038
unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and
headers).
## Training procedure
### Preprocessing
The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are
then of the form:
```
[CLS] Sentence A [SEP] Sentence B [SEP]
```
With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in
the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a
consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two
"sentences" has a combined length of less than 512 tokens.
The details of the masking procedure for each sentence are the following:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `[MASK]`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
### Pretraining
The model was trained on 4 cloud TPUs in Pod configuration (16 TPU chips total) for one million steps with a batch size
of 256. The sequence length was limited to 128 tokens for 90% of the steps and 512 for the remaining 10%. The optimizer
used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01,
learning rate warmup for 10,000 steps and linear decay of the learning rate after.
## Evaluation results
When fine-tuned on downstream tasks, this model achieves the following results:
Model | SQUAD 1.1 F1/EM | Multi NLI Accuracy
---------------------------------------- | :-------------: | :----------------:
BERT-Large, Uncased (Original) | 91.0/84.3 | 86.05
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-1810-04805,
author = {Jacob Devlin and
Ming{-}Wei Chang and
Kenton Lee and
Kristina Toutanova},
title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language
Understanding},
journal = {CoRR},
volume = {abs/1810.04805},
year = {2018},
url = {http://arxiv.org/abs/1810.04805},
archivePrefix = {arXiv},
eprint = {1810.04805},
timestamp = {Tue, 30 Oct 2018 20:39:56 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
``` | {"language": "en", "license": "apache-2.0", "datasets": ["bookcorpus", "wikipedia"]} | google-bert/bert-large-uncased | null | [
"transformers",
"pytorch",
"tf",
"jax",
"rust",
"safetensors",
"bert",
"fill-mask",
"en",
"dataset:bookcorpus",
"dataset:wikipedia",
"arxiv:1810.04805",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
fill-mask | transformers |
# CamemBERT: a Tasty French Language Model
## Introduction
[CamemBERT](https://arxiv.org/abs/1911.03894) is a state-of-the-art language model for French based on the RoBERTa model.
It is now available on Hugging Face in 6 different versions with varying number of parameters, amount of pretraining data and pretraining data source domains.
For further information or requests, please go to [Camembert Website](https://camembert-model.fr/)
## Pre-trained models
| Model | #params | Arch. | Training data |
|--------------------------------|--------------------------------|-------|-----------------------------------|
| `camembert-base` | 110M | Base | OSCAR (138 GB of text) |
| `camembert/camembert-large` | 335M | Large | CCNet (135 GB of text) |
| `camembert/camembert-base-ccnet` | 110M | Base | CCNet (135 GB of text) |
| `camembert/camembert-base-wikipedia-4gb` | 110M | Base | Wikipedia (4 GB of text) |
| `camembert/camembert-base-oscar-4gb` | 110M | Base | Subsample of OSCAR (4 GB of text) |
| `camembert/camembert-base-ccnet-4gb` | 110M | Base | Subsample of CCNet (4 GB of text) |
## How to use CamemBERT with HuggingFace
##### Load CamemBERT and its sub-word tokenizer :
```python
from transformers import CamembertModel, CamembertTokenizer
# You can replace "camembert-base" with any other model from the table, e.g. "camembert/camembert-large".
tokenizer = CamembertTokenizer.from_pretrained("camembert/camembert-base-wikipedia-4gb")
camembert = CamembertModel.from_pretrained("camembert/camembert-base-wikipedia-4gb")
camembert.eval() # disable dropout (or leave in train mode to finetune)
```
##### Filling masks using pipeline
```python
from transformers import pipeline
camembert_fill_mask = pipeline("fill-mask", model="camembert/camembert-base-wikipedia-4gb", tokenizer="camembert/camembert-base-wikipedia-4gb")
results = camembert_fill_mask("Le camembert est un fromage de <mask>!")
# results
#[{'sequence': '<s> Le camembert est un fromage de chèvre!</s>', 'score': 0.4937814474105835, 'token': 19370},
#{'sequence': '<s> Le camembert est un fromage de brebis!</s>', 'score': 0.06255942583084106, 'token': 30616},
#{'sequence': '<s> Le camembert est un fromage de montagne!</s>', 'score': 0.04340197145938873, 'token': 2364},
# {'sequence': '<s> Le camembert est un fromage de Noël!</s>', 'score': 0.02823255956172943, 'token': 3236},
#{'sequence': '<s> Le camembert est un fromage de vache!</s>', 'score': 0.021357402205467224, 'token': 12329}]
```
##### Extract contextual embedding features from Camembert output
```python
import torch
# Tokenize in sub-words with SentencePiece
tokenized_sentence = tokenizer.tokenize("J'aime le camembert !")
# ['▁J', "'", 'aime', '▁le', '▁ca', 'member', 't', '▁!']
# 1-hot encode and add special starting and end tokens
encoded_sentence = tokenizer.encode(tokenized_sentence)
# [5, 221, 10, 10600, 14, 8952, 10540, 75, 1114, 6]
# NB: Can be done in one step : tokenize.encode("J'aime le camembert !")
# Feed tokens to Camembert as a torch tensor (batch dim 1)
encoded_sentence = torch.tensor(encoded_sentence).unsqueeze(0)
embeddings, _ = camembert(encoded_sentence)
# embeddings.detach()
# embeddings.size torch.Size([1, 10, 768])
#tensor([[[-0.0928, 0.0506, -0.0094, ..., -0.2388, 0.1177, -0.1302],
# [ 0.0662, 0.1030, -0.2355, ..., -0.4224, -0.0574, -0.2802],
# [-0.0729, 0.0547, 0.0192, ..., -0.1743, 0.0998, -0.2677],
# ...,
```
##### Extract contextual embedding features from all Camembert layers
```python
from transformers import CamembertConfig
# (Need to reload the model with new config)
config = CamembertConfig.from_pretrained("camembert/camembert-base-wikipedia-4gb", output_hidden_states=True)
camembert = CamembertModel.from_pretrained("camembert/camembert-base-wikipedia-4gb", config=config)
embeddings, _, all_layer_embeddings = camembert(encoded_sentence)
# all_layer_embeddings list of len(all_layer_embeddings) == 13 (input embedding layer + 12 self attention layers)
all_layer_embeddings[5]
# layer 5 contextual embedding : size torch.Size([1, 10, 768])
#tensor([[[-0.0059, -0.0227, 0.0065, ..., -0.0770, 0.0369, 0.0095],
# [ 0.2838, -0.1531, -0.3642, ..., -0.0027, -0.8502, -0.7914],
# [-0.0073, -0.0338, -0.0011, ..., 0.0533, -0.0250, -0.0061],
# ...,
```
## Authors
CamemBERT was trained and evaluated by Louis Martin\*, Benjamin Muller\*, Pedro Javier Ortiz Suárez\*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
## Citation
If you use our work, please cite:
```bibtex
@inproceedings{martin2020camembert,
title={CamemBERT: a Tasty French Language Model},
author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t},
booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics},
year={2020}
}
```
| {"language": "fr", "license": "mit", "datasets": ["oscar"]} | almanach/camembert-base | null | [
"transformers",
"pytorch",
"tf",
"safetensors",
"camembert",
"fill-mask",
"fr",
"dataset:oscar",
"arxiv:1911.03894",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
End of preview. Expand
in Dataset Viewer.
README.md exists but content is empty.
Use the Edit dataset card button to edit it.
- Downloads last month
- 75