Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
Dask
License:
File size: 8,228 Bytes
4b15773
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffef5c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b15773
 
 
 
 
 
 
7d9d0ac
 
 
4b15773
7d9d0ac
 
4b15773
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""NarrativeQA Reading Comprehension Challenge"""


import csv
import os

import datasets


_CITATION = """\
@article{kocisky-etal-2018-narrativeqa,
    title = "The {N}arrative{QA} Reading Comprehension Challenge",
    author = "Ko{\v{c}}isk{\'y}, Tom{\'a}{\v{s}}  and
      Schwarz, Jonathan  and
      Blunsom, Phil  and
      Dyer, Chris  and
      Hermann, Karl Moritz  and
      Melis, G{\'a}bor  and
      Grefenstette, Edward",
    editor = "Lee, Lillian  and
      Johnson, Mark  and
      Toutanova, Kristina  and
      Roark, Brian",
    journal = "Transactions of the Association for Computational Linguistics",
    volume = "6",
    year = "2018",
    address = "Cambridge, MA",
    publisher = "MIT Press",
    url = "https://aclanthology.org/Q18-1023",
    doi = "10.1162/tacl_a_00023",
    pages = "317--328",
    abstract = "Reading comprehension (RC){---}in contrast to information retrieval{---}requires integrating information and reasoning about events, entities, and their relations across a full document. Question answering is conventionally used to assess RC ability, in both artificial agents and children learning to read. However, existing RC datasets and tasks are dominated by questions that can be solved by selecting answers using superficial information (e.g., local context similarity or global term frequency); they thus fail to test for the essential integrative aspect of RC. To encourage progress on deeper comprehension of language, we present a new dataset and set of tasks in which the reader must answer questions about stories by reading entire books or movie scripts. These tasks are designed so that successfully answering their questions requires understanding the underlying narrative rather than relying on shallow pattern matching or salience. We show that although humans solve the tasks easily, standard RC models struggle on the tasks presented here. We provide an analysis of the dataset and the challenges it presents.",
}
"""

_DESCRIPTION = """\
The NarrativeQA dataset for question answering on long documents (movie scripts, books). It includes the list of documents with Wikipedia summaries, links to full stories, and questions and answers.
"""

# Source:
# - full_text: https://storage.googleapis.com/huggingface-nlp/datasets/narrative_qa/narrativeqa_full_text.zip
# - repo: https://github.com/deepmind/narrativeqa/archive/master.zip
_URLS = {
    "full_text": "data/narrativeqa_full_text.zip",
    "repo": "data/narrativeqa-master.zip",
}


class NarrativeQa(datasets.GeneratorBasedBuilder):
    """NarrativeQA: Question answering on long-documents"""

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            citation=_CITATION,
            features=datasets.Features(
                {
                    "document": {
                        "id": datasets.Value("string"),
                        "kind": datasets.Value("string"),
                        "url": datasets.Value("string"),
                        "file_size": datasets.Value("int32"),
                        "word_count": datasets.Value("int32"),
                        "start": datasets.Value("string"),
                        "end": datasets.Value("string"),
                        "summary": {
                            "text": datasets.Value("string"),
                            "tokens": datasets.features.Sequence(datasets.Value("string")),
                            "url": datasets.Value("string"),
                            "title": datasets.Value("string"),
                        },
                        "text": datasets.Value("string"),
                    },
                    "question": {
                        "text": datasets.Value("string"),
                        "tokens": datasets.features.Sequence(datasets.Value("string")),
                    },
                    "answers": [
                        {
                            "text": datasets.Value("string"),
                            "tokens": datasets.features.Sequence(datasets.Value("string")),
                        }
                    ],
                }
            ),
            homepage="https://github.com/deepmind/narrativeqa",
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""

        dl_dir = dl_manager.download_and_extract(_URLS)
        dl_dir["repo"] = os.path.join(dl_dir["repo"], "narrativeqa-master")

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"repo_dir": dl_dir["repo"], "full_text_dir": dl_dir["full_text"], "split": "train"},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"repo_dir": dl_dir["repo"], "full_text_dir": dl_dir["full_text"], "split": "test"},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"repo_dir": dl_dir["repo"], "full_text_dir": dl_dir["full_text"], "split": "valid"},
            ),
        ]

    def _generate_examples(self, repo_dir, full_text_dir, split):
        """Yields examples."""
        documents = {}
        with open(os.path.join(repo_dir, "documents.csv"), encoding="utf-8") as f:
            reader = csv.DictReader(f)
            for row in reader:
                if row["set"] != split:
                    continue
                documents[row["document_id"]] = row

        summaries = {}
        with open(os.path.join(repo_dir, "third_party", "wikipedia", "summaries.csv"), encoding="utf-8") as f:
            reader = csv.DictReader(f)
            for row in reader:
                if row["set"] != split:
                    continue
                summaries[row["document_id"]] = row

        with open(os.path.join(repo_dir, "qaps.csv"), encoding="utf-8") as f:
            reader = csv.DictReader(f)
            for id_, row in enumerate(reader):
                if row["set"] != split:
                    continue
                document_id = row["document_id"]
                document = documents[document_id]
                summary = summaries[document_id]
                full_text = open(os.path.join(full_text_dir, document_id + ".content"), encoding="latin-1").read()
                res = {
                    "document": {
                        "id": document["document_id"],
                        "kind": document["kind"],
                        "url": document["story_url"],
                        "file_size": document["story_file_size"],
                        "word_count": document["story_word_count"],
                        "start": document["story_start"],
                        "end": document["story_end"],
                        "summary": {
                            "text": summary["summary"],
                            "tokens": summary["summary_tokenized"].split(),
                            "url": document["wiki_url"],
                            "title": document["wiki_title"],
                        },
                        "text": full_text,
                    },
                    "question": {"text": row["question"], "tokens": row["question_tokenized"].split()},
                    "answers": [
                        {"text": row["answer1"], "tokens": row["answer1_tokenized"].split()},
                        {"text": row["answer2"], "tokens": row["answer2_tokenized"].split()},
                    ],
                }
                yield id_, res