Dataset Viewer
Auto-converted to Parquet
_id
stringlengths
24
24
id
stringlengths
5
121
author
stringlengths
2
42
cardData
stringlengths
2
1.07M
disabled
bool
2 classes
gated
null
lastModified
timestamp[ns]
likes
int64
0
7.61k
trendingScore
float64
-1
80
private
bool
1 class
sha
stringlengths
40
40
description
stringlengths
0
6.67k
downloads
int64
0
4.88M
downloadsAllTime
int64
0
142M
tags
sequencelengths
1
7.92k
createdAt
timestamp[ns]
paperswithcode_id
stringclasses
653 values
citation
stringlengths
0
10.7k
679c0b5c32cf4c58bdcba8eb
facebook/natural_reasoning
facebook
{"license": "cc-by-nc-4.0", "task_categories": ["text-generation"], "language": ["en"], "pretty_name": "Natural Reasoning", "size_categories": ["1M<n<10M"]}
false
null
2025-02-21T06:02:40
345
80
false
99eea5dc6bfa45a925eb42600e81dc90377ba237
NaturalReasoning is a large-scale dataset for general reasoning tasks. It consists of high-quality challenging reasoning questions backtranslated from pretraining corpora DCLM and FineMath. The questions have been deduplicated and decontaminated from popular reasoning benchmarks including MATH, GPQA, MMLU-Pro, MMLU-STEM. For each question, we extract the reference final answer from the original document from the pretraining corpora if possible. We also provide a model-generated response from… See the full description on the dataset page: https://huggingface.co./datasets/facebook/natural_reasoning.
8,251
8,251
[ "task_categories:text-generation", "language:en", "license:cc-by-nc-4.0", "size_categories:1M<n<10M", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2502.13124", "region:us" ]
2025-01-30T23:29:32
null
null
67b32145bac2756ce9a4a0fe
Congliu/Chinese-DeepSeek-R1-Distill-data-110k
Congliu
{"license": "apache-2.0", "language": ["zh"], "size_categories": ["100K<n<1M"], "task_categories": ["text-generation", "text2text-generation", "question-answering"]}
false
null
2025-02-21T02:18:08
483
76
false
8520b649430617c2be4490f424d251d09d835ed3
中文基于满血DeepSeek-R1蒸馏数据集(Chinese-Data-Distill-From-R1) 🤗 Hugging Face   |   🤖 ModelScope    |   🚀 Github    |   📑 Blog 注意:提供了直接SFT使用的版本,点击下载。将数据中的思考和答案整合成output字段,大部分SFT代码框架均可直接直接加载训练。 本数据集为中文开源蒸馏满血R1的数据集,数据集中不仅包含math数据,还包括大量的通用类型数据,总数量为110K。 为什么开源这个数据? R1的效果十分强大,并且基于R1蒸馏数据SFT的小模型也展现出了强大的效果,但检索发现,大部分开源的R1蒸馏数据集均为英文数据集。 同时,R1的报告中展示,蒸馏模型中同时也使用了部分通用场景数据集。 为了帮助大家更好地复现R1蒸馏模型的效果,特此开源中文数据集。该中文数据集中的数据分布如下: Math:共计36568个样本, Exam:共计2432个样本, STEM:共计12648个样本,… See the full description on the dataset page: https://huggingface.co./datasets/Congliu/Chinese-DeepSeek-R1-Distill-data-110k.
6,558
6,558
[ "task_categories:text-generation", "task_categories:text2text-generation", "task_categories:question-answering", "language:zh", "license:apache-2.0", "size_categories:100K<n<1M", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-02-17T11:45:09
null
null
676f70846bf205795346d2be
FreedomIntelligence/medical-o1-reasoning-SFT
FreedomIntelligence
{"license": "apache-2.0", "task_categories": ["question-answering", "text-generation"], "language": ["en", "zh"], "tags": ["medical", "biology"], "configs": [{"config_name": "en", "data_files": "medical_o1_sft.json"}, {"config_name": "zh", "data_files": "medical_o1_sft_Chinese.json"}]}
false
null
2025-02-22T05:15:38
390
67
false
61536c1d80b2c799df6800cc583897b77d2c86d2
News [2025/02/22] We released the distilled dataset from Deepseek-R1 based on medical verifiable problems. You can use it to initialize your models with the reasoning chain from Deepseek-R1. [2024/12/25] We open-sourced the medical reasoning dataset for SFT, built on medical verifiable problems and an LLM verifier. Introduction This dataset is used to fine-tune HuatuoGPT-o1, a medical LLM designed for advanced medical reasoning. This dataset is constructed using GPT-4o… See the full description on the dataset page: https://huggingface.co./datasets/FreedomIntelligence/medical-o1-reasoning-SFT.
26,448
30,365
[ "task_categories:question-answering", "task_categories:text-generation", "language:en", "language:zh", "license:apache-2.0", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2412.18925", "region:us", "medical", "biology" ]
2024-12-28T03:29:08
null
null
67c58d2e6c6e0371152cf00f
GeneralReasoning/GeneralThought-195K
GeneralReasoning
{"language": ["en"], "license": "mit"}
false
null
2025-03-03T11:20:23
52
52
false
5b28bacb11bea72af3c4a776d4d0db486ff10899
GeneralThought-195K Thought wants to be free Open reasoning data from the General Reasoning resource for March 3 2025. The dataset contains questions, reference answers, reasoning traces, final answers and other metadata from several popular reasoning models including DeepSeek-R1, DeepSeek-R1-Zero, OpenThoughts-32B, LIMO, deepseek-r1-distill-llama-70b, DeepHermes-3-Llama-3-8B-Previewand DeepScaleR-1.5B-Preview. We also include final answers from o3-mini-2025-01-31… See the full description on the dataset page: https://huggingface.co./datasets/GeneralReasoning/GeneralThought-195K.
497
497
[ "language:en", "license:mit", "size_categories:100K<n<1M", "modality:tabular", "modality:text", "region:us" ]
2025-03-03T11:06:22
null
null
67c248d12a6f7c1f2a448ee4
KodCode/KodCode-V1
KodCode
{"dataset_info": {"features": [{"name": "style", "dtype": "string"}, {"name": "subset", "dtype": "string"}, {"name": "question_id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "test_code", "dtype": "string"}, {"name": "test_info", "list": [{"name": "docstring", "dtype": "string"}, {"name": "function_declaration", "dtype": "string"}, {"name": "function_name", "dtype": "string"}, {"name": "parameter_list", "dtype": "string"}]}, {"name": "gpt_pass_sequence", "sequence": "int64"}, {"name": "gpt_pass_trial_num", "dtype": "int64"}, {"name": "gpt_difficulty", "dtype": "string"}, {"name": "gpt_pass_percentage", "dtype": "float64"}, {"name": "trials", "struct": [{"name": "trial_gpt4o_0", "struct": [{"name": "solution_code", "dtype": "string"}, {"name": "test_code", "dtype": "string"}, {"name": "test_result", "dtype": "string"}, {"name": "test_coverage", "dtype": "float64"}, {"name": "file_source", "dtype": "string"}]}, {"name": "trial_gpt4o_1", "struct": [{"name": "solution_code", "dtype": "string"}, {"name": "test_code", "dtype": "string"}, {"name": "test_result", "dtype": "string"}, {"name": "test_coverage", "dtype": "float64"}, {"name": "file_source", "dtype": "string"}]}, {"name": "trial_gpt4o_2", "struct": [{"name": "solution_code", "dtype": "string"}, {"name": "test_code", "dtype": "string"}, {"name": "test_result", "dtype": "string"}, {"name": "test_coverage", "dtype": "float64"}, {"name": "file_source", "dtype": "string"}]}, {"name": "trial_gpt4o_3", "struct": [{"name": "solution_code", "dtype": "string"}, {"name": "test_code", "dtype": "string"}, {"name": "test_result", "dtype": "string"}, {"name": "test_coverage", "dtype": "float64"}, {"name": "file_source", "dtype": "string"}]}, {"name": "trial_gpt4o_4", "struct": [{"name": "solution_code", "dtype": "string"}, {"name": "test_code", "dtype": "string"}, {"name": "test_result", "dtype": "string"}, {"name": "test_coverage", "dtype": "float64"}, {"name": "file_source", "dtype": "string"}]}, {"name": "trial_gpt4o_5", "struct": [{"name": "solution_code", "dtype": "string"}, {"name": "test_code", "dtype": "string"}, {"name": "test_result", "dtype": "string"}, {"name": "test_coverage", "dtype": "float64"}, {"name": "file_source", "dtype": "string"}]}, {"name": "trial_gpt4o_6", "struct": [{"name": "solution_code", "dtype": "string"}, {"name": "test_code", "dtype": "string"}, {"name": "test_result", "dtype": "string"}, {"name": "test_coverage", "dtype": "float64"}, {"name": "file_source", "dtype": "string"}]}, {"name": "trial_gpt4o_7", "struct": [{"name": "solution_code", "dtype": "string"}, {"name": "test_code", "dtype": "string"}, {"name": "test_result", "dtype": "string"}, {"name": "test_coverage", "dtype": "float64"}, {"name": "file_source", "dtype": "string"}]}, {"name": "trial_gpt4o_8", "struct": [{"name": "solution_code", "dtype": "string"}, {"name": "test_code", "dtype": "string"}, {"name": "test_result", "dtype": "string"}, {"name": "test_coverage", "dtype": "float64"}, {"name": "file_source", "dtype": "string"}]}, {"name": "trial_gpt4o_9", "struct": [{"name": "solution_code", "dtype": "string"}, {"name": "test_code", "dtype": "string"}, {"name": "test_result", "dtype": "string"}, {"name": "test_coverage", "dtype": "float64"}, {"name": "file_source", "dtype": "string"}]}]}, {"name": "chosen_trial", "dtype": "string"}, {"name": "metadata", "struct": [{"name": "original_instruction", "dtype": "string"}, {"name": "prompt_id", "dtype": "string"}, {"name": "row_id", "dtype": "int64"}, {"name": "seed_ids", "dtype": "string"}]}, {"name": "benchmark_similarity", "dtype": "float64"}, {"name": "benchmark_instruction", "dtype": "string"}, {"name": "benchmark_task_id", "dtype": "string"}, {"name": "filter_reason", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 6936635744, "num_examples": 443543}, {"name": "use_with_caution", "num_bytes": 59596328, "num_examples": 3335}], "download_size": 2472949876, "dataset_size": 6996232072}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "use_with_caution", "path": "data/use_with_caution-*"}]}], "language": ["en"], "license": "cc"}
false
null
2025-03-06T09:18:18
50
45
false
0350cf9d8d66005e4962d5fc2d224c438740f517
🐱 KodCode: A Diverse, Challenging, and Verifiable Synthetic Dataset for Coding KodCode is the largest fully-synthetic open-source dataset providing verifiable solutions and tests for coding tasks. It contains 12 distinct subsets spanning various domains (from algorithmic to package-specific knowledge) and difficulty levels (from basic coding exercises to interview and competitive programming challenges). KodCode is designed for both supervised fine-tuning (SFT) and RL tuning. 🕸️… See the full description on the dataset page: https://huggingface.co./datasets/KodCode/KodCode-V1.
1,812
1,812
[ "language:en", "license:cc", "size_categories:100K<n<1M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2503.02951", "region:us" ]
2025-02-28T23:37:53
null
null
67b78333f663232795e6cb29
SynthLabsAI/Big-Math-RL-Verified
SynthLabsAI
{"dataset_info": {"features": [{"name": "problem", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "domain", "sequence": "string"}, {"name": "llama8b_solve_rate", "dtype": "float64"}], "splits": [{"name": "train", "num_bytes": 76969060, "num_examples": 251122}], "download_size": 32238760, "dataset_size": 76969060}, "task_categories": ["question-answering", "text-generation"], "language": ["en"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "size_categories": ["100K<n<1M"], "tags": ["mathematics", "math", "reinforcement-learning", "RL", "reasoning", "verifiable", "open-ended-questions", "closed-form-answers"]}
false
null
2025-03-06T22:23:34
133
41
false
65148ae21b6c0cc3c362aab1b202cd51a47cdd67
Big-Math: A Large-Scale, High-Quality Math Dataset for Reinforcement Learning in Language Models Big-Math is the largest open-source dataset of high-quality mathematical problems, curated specifically for reinforcement learning (RL) training in language models. With over 250,000 rigorously filtered and verified problems, Big-Math bridges the gap between quality and quantity, establishing a robust foundation for advancing reasoning in LLMs. Request Early Access to Private… See the full description on the dataset page: https://huggingface.co./datasets/SynthLabsAI/Big-Math-RL-Verified.
4,253
4,253
[ "task_categories:question-answering", "task_categories:text-generation", "language:en", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2502.17387", "region:us", "mathematics", "math", "reinforcement-learning", "RL", "reasoning", "verifiable", "open-ended-questions", "closed-form-answers" ]
2025-02-20T19:32:03
null
null
67aa021ced8d8663d42505cc
open-r1/OpenR1-Math-220k
open-r1
{"license": "apache-2.0", "language": ["en"], "configs": [{"config_name": "all", "data_files": [{"split": "train", "path": "all/train-*"}]}, {"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}, {"config_name": "extended", "data_files": [{"split": "train", "path": "extended/train-*"}]}], "dataset_info": [{"config_name": "all", "features": [{"name": "problem", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "problem_type", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "uuid", "dtype": "string"}, {"name": "is_reasoning_complete", "sequence": "bool"}, {"name": "generations", "sequence": "string"}, {"name": "correctness_math_verify", "sequence": "bool"}, {"name": "correctness_llama", "sequence": "bool"}, {"name": "finish_reasons", "sequence": "string"}, {"name": "correctness_count", "dtype": "int64"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 9734110026, "num_examples": 225129}], "download_size": 4221672067, "dataset_size": 9734110026}, {"config_name": "default", "features": [{"name": "problem", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "problem_type", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "uuid", "dtype": "string"}, {"name": "is_reasoning_complete", "sequence": "bool"}, {"name": "generations", "sequence": "string"}, {"name": "correctness_math_verify", "sequence": "bool"}, {"name": "correctness_llama", "sequence": "bool"}, {"name": "finish_reasons", "sequence": "string"}, {"name": "correctness_count", "dtype": "int64"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 4964543659, "num_examples": 93733}], "download_size": 2149897914, "dataset_size": 4964543659}, {"config_name": "extended", "features": [{"name": "problem", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "problem_type", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "uuid", "dtype": "string"}, {"name": "is_reasoning_complete", "sequence": "bool"}, {"name": "generations", "sequence": "string"}, {"name": "correctness_math_verify", "sequence": "bool"}, {"name": "correctness_llama", "sequence": "bool"}, {"name": "finish_reasons", "sequence": "string"}, {"name": "correctness_count", "dtype": "int64"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 4769566550, "num_examples": 131396}], "download_size": 2063936457, "dataset_size": 4769566550}]}
false
null
2025-02-18T11:45:27
475
34
false
e4e141ec9dea9f8326f4d347be56105859b2bd68
OpenR1-Math-220k Dataset description OpenR1-Math-220k is a large-scale dataset for mathematical reasoning. It consists of 220k math problems with two to four reasoning traces generated by DeepSeek R1 for problems from NuminaMath 1.5. The traces were verified using Math Verify for most samples and Llama-3.3-70B-Instruct as a judge for 12% of the samples, and each problem contains at least one reasoning trace with a correct answer. The dataset consists of two splits:… See the full description on the dataset page: https://huggingface.co./datasets/open-r1/OpenR1-Math-220k.
44,397
44,397
[ "language:en", "license:apache-2.0", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
2025-02-10T13:41:48
null
null
67c312a816933ef3357d9588
dvilasuero/natural-science-reasoning
dvilasuero
{"license": "apache-2.0", "task_categories": ["text-generation"], "language": ["en"], "tags": ["synthetic", "science"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "topics", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "llama70B", "dtype": "string"}, {"name": "llama8B", "dtype": "string"}, {"name": "r1-response", "dtype": "string"}, {"name": "compare-llamas", "dtype": "string"}, {"name": "compare-r1", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1791963, "num_examples": 100}], "download_size": 794550, "dataset_size": 1791963}}
false
null
2025-03-02T11:12:11
33
33
false
2c6c0e648ff84dfa6b68035d36bbbf8e33aa0b89
Natural Sciences Reasoning: the "smolest" reasoning dataset A smol-scale open dataset for reasoning tasks using Hugging Face Inference Endpoints. While intentionally limited in scale, this resource prioritizes: Reproducible pipeline for reasoning tasks using a variety of models (Deepseek V3, Deepsek-R1, Llama70B-Instruct, etc.) Knowledge sharing for domains other than Math and Code reasoning In this repo, you can find: The prompts and the pipeline (see the config file). The… See the full description on the dataset page: https://huggingface.co./datasets/dvilasuero/natural-science-reasoning.
447
450
[ "task_categories:text-generation", "language:en", "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "synthetic", "science" ]
2025-03-01T13:59:04
null
null
67bfc6ed21e5f4fcc4af2b1d
voidful/fineweb-zhtw
voidful
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "id", "dtype": "string"}, {"name": "metadata", "struct": [{"name": "dump", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "date", "dtype": "timestamp[s]"}, {"name": "file_path", "dtype": "string"}, {"name": "language", "dtype": "string"}, {"name": "language_score", "dtype": "float64"}, {"name": "language_script", "dtype": "string"}, {"name": "minhash_cluster_size", "dtype": "int64"}, {"name": "top_langs", "dtype": "string"}, {"name": "avg_words_per_line", "dtype": "float64"}]}], "splits": [{"name": "train", "num_bytes": 160689800579, "num_examples": 48058113}], "download_size": 107457281288, "dataset_size": 160689800579}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "license": "odc-by", "language": ["zh"], "pretty_name": "z"}
false
null
2025-03-04T09:38:21
35
31
false
588aa4d7fe6bce8d3bf1fc6f2abff3652ecdbb90
Fineweb-zhtw Overview / 概覽 This repository contains the Fineweb-zhtw dataset, a large-scale collection of Traditional Chinese text data mined from the web. It is built upon the HuggingFaceFW/fineweb-2 dataset with modifications provided by mtkresearch/fineweb-zhtw. 本專案提供 Fineweb-zhtw 資料集,為大規模的繁體中文網路文本資料。此資料集基於 HuggingFaceFW/fineweb-2 並經由 mtkresearch/fineweb-zhtw 進行修改。 https://github.com/voidful/fineweb-zhtw/tree/main Dataset Details / 資料集細節 Data Size: 107… See the full description on the dataset page: https://huggingface.co./datasets/voidful/fineweb-zhtw.
1,668
1,668
[ "language:zh", "license:odc-by", "size_categories:10M<n<100M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2411.16387", "region:us" ]
2025-02-27T01:59:09
null
null
67b3495a2f3994b7d95dde92
Congliu/Chinese-DeepSeek-R1-Distill-data-110k-SFT
Congliu
{"license": "apache-2.0", "language": ["zh"], "size_categories": ["100K<n<1M"], "task_categories": ["text-generation", "text2text-generation", "question-answering"]}
false
null
2025-02-19T13:24:55
124
30
false
263435dc9a8cc822449b6f3531794486f8141be6
中文基于满血DeepSeek-R1蒸馏数据集(Chinese-Data-Distill-From-R1) 🤗 Hugging Face   |   🤖 ModelScope    |   🚀 Github    |   📑 Blog 注意:该版本为,可以直接SFT使用的版本,将原始数据中的思考和答案整合成output字段,大部分SFT代码框架均可直接直接加载训练。 本数据集为中文开源蒸馏满血R1的数据集,数据集中不仅包含math数据,还包括大量的通用类型数据,总数量为110K。 为什么开源这个数据? R1的效果十分强大,并且基于R1蒸馏数据SFT的小模型也展现出了强大的效果,但检索发现,大部分开源的R1蒸馏数据集均为英文数据集。 同时,R1的报告中展示,蒸馏模型中同时也使用了部分通用场景数据集。 为了帮助大家更好地复现R1蒸馏模型的效果,特此开源中文数据集。该中文数据集中的数据分布如下: Math:共计36568个样本, Exam:共计2432个样本, STEM:共计12648个样本,… See the full description on the dataset page: https://huggingface.co./datasets/Congliu/Chinese-DeepSeek-R1-Distill-data-110k-SFT.
3,678
3,678
[ "task_categories:text-generation", "task_categories:text2text-generation", "task_categories:question-answering", "language:zh", "license:apache-2.0", "size_categories:100K<n<1M", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-02-17T14:36:10
null
null
66c84764a47b2d6c582bbb02
amphion/Emilia-Dataset
amphion
{"license": "cc-by-4.0", "task_categories": ["text-to-speech", "automatic-speech-recognition"], "language": ["zh", "en", "ja", "fr", "de", "ko"], "pretty_name": "Emilia", "size_categories": ["10M<n<100M"], "extra_gated_prompt": "Terms of Access: The researcher has requested permission to use the Emilia dataset, the Emilia-Pipe preprocessing pipeline, and the Emilia-Yodas dataset. In exchange for such permission, the researcher hereby agrees to the following terms and conditions:\n1. The researcher shall use the Emilia dataset under the CC-BY-NC license and\n the Emilia-YODAS dataset under the CC-BY license.\n2. The authors make no representations or warranties regarding the datasets,\n including but not limited to warranties of non-infringement or fitness for\n a particular purpose.\n3. The researcher accepts full responsibility for their use of the datasets and\n shall defend and indemnify the authors of Emilia, Emilia-Pipe, and\n Emilia-Yodas, including their employees, trustees, officers, and agents,\n against any and all claims arising from the researcher's use of the datasets,\n including but not limited to the researcher's use of any copies of copyrighted\n content that they may create from the datasets.\n4. The researcher may provide research associates and colleagues with access\n to the datasets, provided that they first agree to be bound by these terms\n and conditions.\n5. The authors reserve the right to terminate the researcher's access to the\n datasets at any time.\n6. If the researcher is employed by a for-profit, commercial entity, the\n researcher's employer shall also be bound by these terms and conditions,\n and the researcher hereby represents that they are fully authorized to enter\n into this agreement on behalf of such employer.", "extra_gated_fields": {"Name": "text", "Email": "text", "Affiliation": "text", "Position": "text", "Your Supervisor/manager/director": "text", "I agree to the Terms of Access": "checkbox"}}
false
null
2025-02-28T05:41:37
261
24
false
d7f2f7340a6385696f3766c8049fa920a4707c07
Emilia: An Extensive, Multilingual, and Diverse Speech Dataset for Large-Scale Speech Generation This is the official repository 👑 for the Emilia dataset and the source code for the Emilia-Pipe speech data preprocessing pipeline. News 🔥 2025/02/26: The Emilia-Large dataset, featuring over 200,000 hours of data, is now available!!! Emilia-Large combines the original 101k-hour Emilia dataset (licensed under CC BY-NC 4.0) with the brand-new 114k-hour Emilia-YODAS… See the full description on the dataset page: https://huggingface.co./datasets/amphion/Emilia-Dataset.
101,080
286,606
[ "task_categories:text-to-speech", "task_categories:automatic-speech-recognition", "language:zh", "language:en", "language:ja", "language:fr", "language:de", "language:ko", "license:cc-by-4.0", "size_categories:10M<n<100M", "format:webdataset", "modality:audio", "modality:text", "library:datasets", "library:webdataset", "library:mlcroissant", "arxiv:2407.05361", "arxiv:2501.15907", "region:us" ]
2024-08-23T08:25:08
null
null
6797e648de960c48ff034e54
open-thoughts/OpenThoughts-114k
open-thoughts
{"dataset_info": [{"config_name": "default", "features": [{"name": "system", "dtype": "string"}, {"name": "conversations", "list": [{"name": "from", "dtype": "string"}, {"name": "value", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 2635015668, "num_examples": 113957}], "download_size": 1078777193, "dataset_size": 2635015668}, {"config_name": "metadata", "features": [{"name": "problem", "dtype": "string"}, {"name": "deepseek_reasoning", "dtype": "string"}, {"name": "deepseek_solution", "dtype": "string"}, {"name": "ground_truth_solution", "dtype": "string"}, {"name": "domain", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "test_cases", "dtype": "string"}, {"name": "starter_code", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 5525214077.699433, "num_examples": 113957}], "download_size": 2469729724, "dataset_size": 5525214077.699433}], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}, {"config_name": "metadata", "data_files": [{"split": "train", "path": "metadata/train-*"}]}], "tags": ["curator", "synthetic"], "license": "apache-2.0"}
false
null
2025-02-20T07:16:57
646
24
false
56b06e3066a8163577ac93b24613a560e685d029
Open-Thoughts-114k Open synthetic reasoning dataset with 114k high-quality examples covering math, science, code, and puzzles! Inspect the content with rich formatting with Curator Viewer. Available Subsets default subset containing ready-to-train data used to finetune the OpenThinker-7B and OpenThinker-32B models: ds = load_dataset("open-thoughts/OpenThoughts-114k", split="train") metadata subset containing extra columns used in dataset construction:… See the full description on the dataset page: https://huggingface.co./datasets/open-thoughts/OpenThoughts-114k.
100,141
127,333
[ "license:apache-2.0", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "curator", "synthetic" ]
2025-01-27T20:02:16
null
null
67b6e7221a0bf9e8a70c385e
m-a-p/SuperGPQA
m-a-p
{"license": "odc-by", "task_categories": ["text2text-generation"], "language": ["en"], "size_categories": ["10K<n<100K"]}
false
null
2025-03-04T14:15:56
51
24
false
873da774dd50dd9aac995970a4a81b5162a28f4d
This repository contains the data presented in SuperGPQA: Scaling LLM Evaluation across 285 Graduate Disciplines. Tutorials for submitting to the official leadboard coming soon 📜 License SuperGPQA is a composite dataset that includes both original content and portions of data derived from other sources. The dataset is made available under the Open Data Commons Attribution License (ODC-BY), which asserts no copyright over the underlying content. This means that while the… See the full description on the dataset page: https://huggingface.co./datasets/m-a-p/SuperGPQA.
880
880
[ "task_categories:text2text-generation", "language:en", "license:odc-by", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2502.14739", "region:us" ]
2025-02-20T08:26:10
null
null
66212f29fb07c3e05ad0432e
HuggingFaceFW/fineweb
HuggingFaceFW
{"license": "odc-by", "task_categories": ["text-generation"], "language": ["en"], "pretty_name": "FineWeb", "size_categories": ["n>1T"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/*/*"}]}, {"config_name": "sample-10BT", "data_files": [{"split": "train", "path": "sample/10BT/*"}]}, {"config_name": "sample-100BT", "data_files": [{"split": "train", "path": "sample/100BT/*"}]}, {"config_name": "sample-350BT", "data_files": [{"split": "train", "path": "sample/350BT/*"}]}, {"config_name": "CC-MAIN-2024-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-51/*"}]}, {"config_name": "CC-MAIN-2024-46", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-46/*"}]}, {"config_name": "CC-MAIN-2024-42", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-42/*"}]}, {"config_name": "CC-MAIN-2024-38", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-38/*"}]}, {"config_name": "CC-MAIN-2024-33", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-33/*"}]}, {"config_name": "CC-MAIN-2024-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-30/*"}]}, {"config_name": "CC-MAIN-2024-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-26/*"}]}, {"config_name": "CC-MAIN-2024-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-22/*"}]}, {"config_name": "CC-MAIN-2024-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-18/*"}]}, {"config_name": "CC-MAIN-2024-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-10/*"}]}, {"config_name": "CC-MAIN-2023-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-50/*"}]}, {"config_name": "CC-MAIN-2023-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-40/*"}]}, {"config_name": "CC-MAIN-2023-23", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-23/*"}]}, {"config_name": "CC-MAIN-2023-14", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-14/*"}]}, {"config_name": "CC-MAIN-2023-06", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-06/*"}]}, {"config_name": "CC-MAIN-2022-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-49/*"}]}, {"config_name": "CC-MAIN-2022-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-40/*"}]}, {"config_name": "CC-MAIN-2022-33", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-33/*"}]}, {"config_name": "CC-MAIN-2022-27", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-27/*"}]}, {"config_name": "CC-MAIN-2022-21", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-21/*"}]}, {"config_name": "CC-MAIN-2022-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-05/*"}]}, {"config_name": "CC-MAIN-2021-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-49/*"}]}, {"config_name": "CC-MAIN-2021-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-43/*"}]}, {"config_name": "CC-MAIN-2021-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-39/*"}]}, {"config_name": "CC-MAIN-2021-31", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-31/*"}]}, {"config_name": "CC-MAIN-2021-25", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-25/*"}]}, {"config_name": "CC-MAIN-2021-21", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-21/*"}]}, {"config_name": "CC-MAIN-2021-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-17/*"}]}, {"config_name": "CC-MAIN-2021-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-10/*"}]}, {"config_name": "CC-MAIN-2021-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-04/*"}]}, {"config_name": "CC-MAIN-2020-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-50/*"}]}, {"config_name": "CC-MAIN-2020-45", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-45/*"}]}, {"config_name": "CC-MAIN-2020-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-40/*"}]}, {"config_name": "CC-MAIN-2020-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-34/*"}]}, {"config_name": "CC-MAIN-2020-29", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-29/*"}]}, {"config_name": "CC-MAIN-2020-24", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-24/*"}]}, {"config_name": "CC-MAIN-2020-16", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-16/*"}]}, {"config_name": "CC-MAIN-2020-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-10/*"}]}, {"config_name": "CC-MAIN-2020-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-05/*"}]}, {"config_name": "CC-MAIN-2019-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-51/*"}]}, {"config_name": "CC-MAIN-2019-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-47/*"}]}, {"config_name": "CC-MAIN-2019-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-43/*"}]}, {"config_name": "CC-MAIN-2019-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-39/*"}]}, {"config_name": "CC-MAIN-2019-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-35/*"}]}, {"config_name": "CC-MAIN-2019-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-30/*"}]}, {"config_name": "CC-MAIN-2019-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-26/*"}]}, {"config_name": "CC-MAIN-2019-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-22/*"}]}, {"config_name": "CC-MAIN-2019-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-18/*"}]}, {"config_name": "CC-MAIN-2019-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-13/*"}]}, {"config_name": "CC-MAIN-2019-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-09/*"}]}, {"config_name": "CC-MAIN-2019-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-04/*"}]}, {"config_name": "CC-MAIN-2018-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-51/*"}]}, {"config_name": "CC-MAIN-2018-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-47/*"}]}, {"config_name": "CC-MAIN-2018-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-43/*"}]}, {"config_name": "CC-MAIN-2018-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-39/*"}]}, {"config_name": "CC-MAIN-2018-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-34/*"}]}, {"config_name": "CC-MAIN-2018-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-30/*"}]}, {"config_name": "CC-MAIN-2018-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-26/*"}]}, {"config_name": "CC-MAIN-2018-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-22/*"}]}, {"config_name": "CC-MAIN-2018-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-17/*"}]}, {"config_name": "CC-MAIN-2018-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-13/*"}]}, {"config_name": "CC-MAIN-2018-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-09/*"}]}, {"config_name": "CC-MAIN-2018-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-05/*"}]}, {"config_name": "CC-MAIN-2017-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-51/*"}]}, {"config_name": "CC-MAIN-2017-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-47/*"}]}, {"config_name": "CC-MAIN-2017-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-43/*"}]}, {"config_name": "CC-MAIN-2017-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-39/*"}]}, {"config_name": "CC-MAIN-2017-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-34/*"}]}, {"config_name": "CC-MAIN-2017-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-30/*"}]}, {"config_name": "CC-MAIN-2017-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-26/*"}]}, {"config_name": "CC-MAIN-2017-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-22/*"}]}, {"config_name": "CC-MAIN-2017-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-17/*"}]}, {"config_name": "CC-MAIN-2017-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-13/*"}]}, {"config_name": "CC-MAIN-2017-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-09/*"}]}, {"config_name": "CC-MAIN-2017-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-04/*"}]}, {"config_name": "CC-MAIN-2016-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-50/*"}]}, {"config_name": "CC-MAIN-2016-44", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-44/*"}]}, {"config_name": "CC-MAIN-2016-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-40/*"}]}, {"config_name": "CC-MAIN-2016-36", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-36/*"}]}, {"config_name": "CC-MAIN-2016-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-30/*"}]}, {"config_name": "CC-MAIN-2016-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-26/*"}]}, {"config_name": "CC-MAIN-2016-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-22/*"}]}, {"config_name": "CC-MAIN-2016-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-18/*"}]}, {"config_name": "CC-MAIN-2016-07", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-07/*"}]}, {"config_name": "CC-MAIN-2015-48", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-48/*"}]}, {"config_name": "CC-MAIN-2015-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-40/*"}]}, {"config_name": "CC-MAIN-2015-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-35/*"}]}, {"config_name": "CC-MAIN-2015-32", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-32/*"}]}, {"config_name": "CC-MAIN-2015-27", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-27/*"}]}, {"config_name": "CC-MAIN-2015-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-22/*"}]}, {"config_name": "CC-MAIN-2015-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-18/*"}]}, {"config_name": "CC-MAIN-2015-14", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-14/*"}]}, {"config_name": "CC-MAIN-2015-11", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-11/*"}]}, {"config_name": "CC-MAIN-2015-06", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-06/*"}]}, {"config_name": "CC-MAIN-2014-52", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-52/*"}]}, {"config_name": "CC-MAIN-2014-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-49/*"}]}, {"config_name": "CC-MAIN-2014-42", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-42/*"}]}, {"config_name": "CC-MAIN-2014-41", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-41/*"}]}, {"config_name": "CC-MAIN-2014-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-35/*"}]}, {"config_name": "CC-MAIN-2014-23", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-23/*"}]}, {"config_name": "CC-MAIN-2014-15", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-15/*"}]}, {"config_name": "CC-MAIN-2014-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-10/*"}]}, {"config_name": "CC-MAIN-2013-48", "data_files": [{"split": "train", "path": "data/CC-MAIN-2013-48/*"}]}, {"config_name": "CC-MAIN-2013-20", "data_files": [{"split": "train", "path": "data/CC-MAIN-2013-20/*"}]}]}
false
null
2025-01-31T14:10:44
2,022
22
false
0f039043b23fe1d4eed300b504aa4b4a68f1c7ba
🍷 FineWeb 15 trillion tokens of the finest data the 🌐 web has to offer What is it? The 🍷 FineWeb dataset consists of more than 15T tokens of cleaned and deduplicated english web data from CommonCrawl. The data processing pipeline is optimized for LLM performance and ran on the 🏭 datatrove library, our large scale data processing library. 🍷 FineWeb was originally meant to be a fully open replication of 🦅 RefinedWeb, with a release of the full dataset under… See the full description on the dataset page: https://huggingface.co./datasets/HuggingFaceFW/fineweb.
318,497
2,188,782
[ "task_categories:text-generation", "language:en", "license:odc-by", "size_categories:10B<n<100B", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2306.01116", "arxiv:2109.07445", "arxiv:2406.17557", "doi:10.57967/hf/2493", "region:us" ]
2024-04-18T14:33:13
null
null
625552d2b339bb03abe3432d
openai/gsm8k
openai
{"annotations_creators": ["crowdsourced"], "language_creators": ["crowdsourced"], "language": ["en"], "license": ["mit"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["text2text-generation"], "task_ids": [], "paperswithcode_id": "gsm8k", "pretty_name": "Grade School Math 8K", "tags": ["math-word-problems"], "dataset_info": [{"config_name": "main", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 3963202, "num_examples": 7473}, {"name": "test", "num_bytes": 713732, "num_examples": 1319}], "download_size": 2725633, "dataset_size": 4676934}, {"config_name": "socratic", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 5198108, "num_examples": 7473}, {"name": "test", "num_bytes": 936859, "num_examples": 1319}], "download_size": 3164254, "dataset_size": 6134967}], "configs": [{"config_name": "main", "data_files": [{"split": "train", "path": "main/train-*"}, {"split": "test", "path": "main/test-*"}]}, {"config_name": "socratic", "data_files": [{"split": "train", "path": "socratic/train-*"}, {"split": "test", "path": "socratic/test-*"}]}]}
false
null
2024-01-04T12:05:15
624
21
false
e53f048856ff4f594e959d75785d2c2d37b678ee
Dataset Card for GSM8K Dataset Summary GSM8K (Grade School Math 8K) is a dataset of 8.5K high quality linguistically diverse grade school math word problems. The dataset was created to support the task of question answering on basic mathematical problems that require multi-step reasoning. These problems take between 2 and 8 steps to solve. Solutions primarily involve performing a sequence of elementary calculations using basic arithmetic operations (+ − ×÷) to reach the… See the full description on the dataset page: https://huggingface.co./datasets/openai/gsm8k.
364,276
4,012,310
[ "task_categories:text2text-generation", "annotations_creators:crowdsourced", "language_creators:crowdsourced", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:mit", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2110.14168", "region:us", "math-word-problems" ]
2022-04-12T10:22:10
gsm8k
null
67aa648e91e6f5eb545e854e
allenai/olmOCR-mix-0225
allenai
{"license": "odc-by", "configs": [{"config_name": "00_documents", "data_files": [{"split": "train_s2pdf", "path": ["train-s2pdf.parquet"]}, {"split": "eval_s2pdf", "path": ["eval-s2pdf.parquet"]}]}, {"config_name": "01_books", "data_files": [{"split": "train_iabooks", "path": ["train-iabooks.parquet"]}, {"split": "eval_iabooks", "path": ["eval-iabooks.parquet"]}]}]}
false
null
2025-02-25T09:36:14
74
20
false
a602926844ed47c43439627fd16d3de45b39e494
olmOCR-mix-0225 olmOCR-mix-0225 is a dataset of ~250,000 PDF pages which have been OCRed into plain-text in a natural reading order using gpt-4o-2024-08-06 and a special prompting strategy that preserves any born-digital content from each page. This dataset can be used to train, fine-tune, or evaluate your own OCR document pipeline. Quick links: 📃 Paper 🤗 Model 🛠️ Code 🎮 Demo Data Mix Table 1: Training set composition by source Source Unique… See the full description on the dataset page: https://huggingface.co./datasets/allenai/olmOCR-mix-0225.
2,749
2,749
[ "license:odc-by", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-02-10T20:41:50
null
null
67c179456a31b8fe773e591c
di-zhang-fdu/R1-Vision-Reasoning-Instructions
di-zhang-fdu
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "gt", "dtype": "string"}, {"name": "response", "dtype": "string"}, {"name": "correct", "dtype": "bool"}, {"name": "image", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 637594547, "num_examples": 167128}], "download_size": 377536732, "dataset_size": 637594547}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
false
null
2025-03-06T12:48:45
20
20
false
5462a20d854aede546c58a1934fc46112955c0a6
VRI-160K: A dataset for Vision Reasoning Instruction Tuning Images Images data can be access from https://huggingface.co./datasets/Xkev/LLaVA-CoT-100k Data Source Raw data can be access from https://huggingface.co./datasets/di-zhang-fdu/llava-cot-100k-r1-format for GRPO training Citations @misc {di_zhang_2025, author = { {Di Zhang} }, title = { R1-Vision-Reasoning-Instructions (Revision 49c1686) }, year = 2025, url… See the full description on the dataset page: https://huggingface.co./datasets/di-zhang-fdu/R1-Vision-Reasoning-Instructions.
578
578
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2411.18203", "doi:10.57967/hf/4686", "region:us" ]
2025-02-28T08:52:21
null
null
63990f21cc50af73d29ecfa3
fka/awesome-chatgpt-prompts
fka
{"license": "cc0-1.0", "tags": ["ChatGPT"], "task_categories": ["question-answering"], "size_categories": ["100K<n<1M"]}
false
null
2025-01-06T00:02:53
7,606
18
false
68ba7694e23014788dcc8ab5afe613824f45a05c
🧠 Awesome ChatGPT Prompts [CSV dataset] This is a Dataset Repository of Awesome ChatGPT Prompts View All Prompts on GitHub License CC-0
11,817
130,836
[ "task_categories:question-answering", "license:cc0-1.0", "size_categories:n<1K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "ChatGPT" ]
2022-12-13T23:47:45
null
null
67b20fc10861cec33b3afb8a
Conard/fortune-telling
Conard
{"license": "mit"}
false
null
2025-02-17T05:13:43
40
18
false
6261fe0d35a75997972bbfcd9828020e340303fb
null
2,533
2,533
[ "license:mit", "size_categories:n<1K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-02-16T16:18:09
null
null
67b960eb8e9228b80838bfe6
TIGER-Lab/TheoremExplainBench
TIGER-Lab
{"license": "mit", "pretty_name": "THB", "dataset_info": {"features": [{"name": "subject", "dtype": "string"}, {"name": "difficulty", "dtype": "string"}, {"name": "theorem", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "subfield", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 71677, "num_examples": 240}], "download_size": 39223, "dataset_size": 71677}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
false
null
2025-03-01T05:29:42
22
16
false
4d992a7ff28a338774fb489ac735632e68dc47c0
TheoremExplainBench TheoremExplainBench is a dataset designed to evaluate and improve the ability of large language models (LLMs) to understand and explain mathematical and scientific theorems across multiple domains, through long-form multimodal content (e.g. Manim Videos). It consists of 240 theorems, categorized by difficulty and subject area to enable structured benchmarking. Dataset Details Curated by: Max Ku, Thomas Chong Language(s) (NLP): English License:… See the full description on the dataset page: https://huggingface.co./datasets/TIGER-Lab/TheoremExplainBench.
686
686
[ "license:mit", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2502.19400", "region:us" ]
2025-02-22T05:30:19
null
null
6532270e829e1dc2f293d6b8
gaia-benchmark/GAIA
gaia-benchmark
{"language": ["en"], "pretty_name": "General AI Assistants Benchmark", "extra_gated_prompt": "To avoid contamination and data leakage, you agree to not reshare this dataset outside of a gated or private repository on the HF hub.", "extra_gated_fields": {"I agree to not reshare the GAIA submissions set according to the above conditions": "checkbox"}}
false
null
2025-02-13T08:36:12
234
15
false
897f2dfbb5c952b5c3c1509e648381f9c7b70316
GAIA dataset GAIA is a benchmark which aims at evaluating next-generation LLMs (LLMs with augmented capabilities due to added tooling, efficient prompting, access to search, etc). We added gating to prevent bots from scraping the dataset. Please do not reshare the validation or test set in a crawlable format. Data and leaderboard GAIA is made of more than 450 non-trivial question with an unambiguous answer, requiring different levels of tooling and autonomy to solve. It… See the full description on the dataset page: https://huggingface.co./datasets/gaia-benchmark/GAIA.
9,804
28,641
[ "language:en", "arxiv:2311.12983", "region:us" ]
2023-10-20T07:06:54
null
6795e2882ec68b4193d4dbf2
EricLu/SCP-116K
EricLu
{"license": "cc-by-nc-sa-4.0", "task_categories": ["text-generation", "question-answering"], "language": ["en"], "size_categories": ["100K<n<1M"], "tags": ["chemistry", "biology", "medical"]}
false
null
2025-02-07T07:02:55
69
15
false
9099221d2085cdba381bba3761addb43303592ba
 Dataset Card for SCP-116K  Dataset Description Paper SCP-116K: A High-Quality Problem-Solution Dataset and a Generalized Pipeline for Automated Extraction in the Higher Education Science Domain  Dataset Summary  SCP-116K is a large-scale dataset containing 116,756 high-quality scientific problem-solution pairs, automatically extracted from web crawled documents. The dataset covers multiple scientific disciplines including physics, chemistry… See the full description on the dataset page: https://huggingface.co./datasets/EricLu/SCP-116K.
959
1,279
[ "task_categories:text-generation", "task_categories:question-answering", "language:en", "license:cc-by-nc-sa-4.0", "size_categories:100K<n<1M", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2501.15587", "region:us", "chemistry", "biology", "medical" ]
2025-01-26T07:21:44
null
null
67bd467a478fa63bfc98f795
simplescaling/s1K-claude-3-7-sonnet
simplescaling
{"language": "en", "license": "mit", "tags": ["curator"]}
false
null
2025-02-27T15:02:04
19
15
false
f56202cd2a3b1122c6e7aec91a8cab31bd87209a
Dataset card for s1K-claude-3-7-sonnet This dataset was made with Curator. Dataset details A sample from the dataset: { "solution": "1. **Rewrite the function using trigonometric identities:**\n \\[\n f(x) = 1 - a \\cos(x) - b \\sin(x) - A \\cos(2x) - B \\sin(2x)\n \\]\n We can use the angle addition formulas for sine and cosine:\n \\[\n \\cos(x + \\theta) = \\cos(x)\\cos(\\theta) - \\sin(x)\\sin(\\theta)\n \\]\n \\[\n \\sin(x + \\theta) =… See the full description on the dataset page: https://huggingface.co./datasets/simplescaling/s1K-claude-3-7-sonnet.
563
563
[ "language:en", "license:mit", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "curator" ]
2025-02-25T04:26:34
null
null
67c9ec5572b8f1776ef7f0d4
madrylab/gsm8k-platinum
madrylab
{"license": "mit", "dataset_info": {"config_name": "main", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "cleaning_status", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 663954, "num_examples": 1209}], "download_size": 380973, "dataset_size": 663954}, "configs": [{"config_name": "main", "data_files": [{"split": "test", "path": "main/test-*"}]}]}
false
null
2025-03-07T20:23:57
15
15
false
c2730837b1f4e49f4120f7a0248513190de9828a
Dataset Card for GSM8K-Platinum 🏆 Homepage  |  📣 Blog  |  🖥️ Code  |  📖 Paper  |  🔍 Error Viewer Dataset Summary GSM8K-Platinum is a revised version of the full test set of GSM8K (Grade School Math 8K), a dataset of grade school math word problems, providing a more accurate assessment of mathematical reasoning capabilities To revise this dataset, we ran a variety of frontier models each individual example and manually examined any example for which at least one… See the full description on the dataset page: https://huggingface.co./datasets/madrylab/gsm8k-platinum.
150
150
[ "license:mit", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2502.03461", "arxiv:2110.14168", "region:us" ]
2025-03-06T18:41:25
null
null
67c4ca68e5db835a91419043
CohereForAI/AyaVisionBench
CohereForAI
{"dataset_info": [{"config_name": "arb_Arab", "features": [{"name": "image", "sequence": "image"}, {"name": "image_source", "dtype": "string"}, {"name": "image_source_category", "dtype": "string"}, {"name": "index", "dtype": "int64"}, {"name": "question", "dtype": "string"}, {"name": "language", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 58113436, "num_examples": 135}], "download_size": 58055195, "dataset_size": 58113436}, {"config_name": "ces_Latn", "features": [{"name": "image", "sequence": "image"}, {"name": "image_source", "dtype": "string"}, {"name": "image_source_category", "dtype": "string"}, {"name": "index", "dtype": "int64"}, {"name": "question", "dtype": "string"}, {"name": "language", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 58099974, "num_examples": 135}], "download_size": 58050976, "dataset_size": 58099974}, {"config_name": "deu_Latn", "features": [{"name": "image", "sequence": "image"}, {"name": "image_source", "dtype": "string"}, {"name": "image_source_category", "dtype": "string"}, {"name": "index", "dtype": "int64"}, {"name": "question", "dtype": "string"}, {"name": "language", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 58103364, "num_examples": 135}], "download_size": 58051347, "dataset_size": 58103364}, {"config_name": "ell_Grek", "features": [{"name": "image", "sequence": "image"}, {"name": "image_source", "dtype": "string"}, {"name": "image_source_category", "dtype": "string"}, {"name": "index", "dtype": "int64"}, {"name": "question", "dtype": "string"}, {"name": "language", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 58127321, "num_examples": 135}], "download_size": 58060313, "dataset_size": 58127321}, {"config_name": "eng_Latn", "features": [{"name": "image", "sequence": "image"}, {"name": "image_source", "dtype": "string"}, {"name": "image_source_category", "dtype": "string"}, {"name": "index", "dtype": "int64"}, {"name": "question", "dtype": "string"}, {"name": "language", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 58099243, "num_examples": 135}], "download_size": 58048602, "dataset_size": 58099243}, {"config_name": "fra_Latn", "features": [{"name": "image", "sequence": "image"}, {"name": "image_source", "dtype": "string"}, {"name": "image_source_category", "dtype": "string"}, {"name": "index", "dtype": "int64"}, {"name": "question", "dtype": "string"}, {"name": "language", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 58104275, "num_examples": 135}], "download_size": 58051834, "dataset_size": 58104275}, {"config_name": "heb_Hebr", "features": [{"name": "image", "sequence": "image"}, {"name": "image_source", "dtype": "string"}, {"name": "image_source_category", "dtype": "string"}, {"name": "index", "dtype": "int64"}, {"name": "question", "dtype": "string"}, {"name": "language", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 58107224, "num_examples": 135}], "download_size": 58050906, "dataset_size": 58107224}, {"config_name": "hin_Deva", "features": [{"name": "image", "sequence": "image"}, {"name": "image_source", "dtype": "string"}, {"name": "image_source_category", "dtype": "string"}, {"name": "index", "dtype": "int64"}, {"name": "question", "dtype": "string"}, {"name": "language", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 58137509, "num_examples": 135}], "download_size": 58060529, "dataset_size": 58137509}, {"config_name": "ind_Latn", "features": [{"name": "image", "sequence": "image"}, {"name": "image_source", "dtype": "string"}, {"name": "image_source_category", "dtype": "string"}, {"name": "index", "dtype": "int64"}, {"name": "question", "dtype": "string"}, {"name": "language", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 58100902, "num_examples": 135}], "download_size": 58049118, "dataset_size": 58100902}, {"config_name": "ita_Latn", "features": [{"name": "image", "sequence": "image"}, {"name": "image_source", "dtype": "string"}, {"name": "image_source_category", "dtype": "string"}, {"name": "index", "dtype": "int64"}, {"name": "question", "dtype": "string"}, {"name": "language", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 58101626, "num_examples": 135}], "download_size": 58051119, "dataset_size": 58101626}, {"config_name": "jpn_Jpan", "features": [{"name": "image", "sequence": "image"}, {"name": "image_source", "dtype": "string"}, {"name": "image_source_category", "dtype": "string"}, {"name": "index", "dtype": "int64"}, {"name": "question", "dtype": "string"}, {"name": "language", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 58105397, "num_examples": 135}], "download_size": 58051093, "dataset_size": 58105397}, {"config_name": "kor_Hang", "features": [{"name": "image", "sequence": "image"}, {"name": "image_source", "dtype": "string"}, {"name": "image_source_category", "dtype": "string"}, {"name": "index", "dtype": "int64"}, {"name": "question", "dtype": "string"}, {"name": "language", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 58102172, "num_examples": 135}], "download_size": 58050456, "dataset_size": 58102172}, {"config_name": "nld_Latn", "features": [{"name": "image", "sequence": "image"}, {"name": "image_source", "dtype": "string"}, {"name": "image_source_category", "dtype": "string"}, {"name": "index", "dtype": "int64"}, {"name": "question", "dtype": "string"}, {"name": "language", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 58101871, "num_examples": 135}], "download_size": 58051035, "dataset_size": 58101871}, {"config_name": "pes_Arab", "features": [{"name": "image", "sequence": "image"}, {"name": "image_source", "dtype": "string"}, {"name": "image_source_category", "dtype": "string"}, {"name": "index", "dtype": "int64"}, {"name": "question", "dtype": "string"}, {"name": "language", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 58113393, "num_examples": 135}], "download_size": 58053541, "dataset_size": 58113393}, {"config_name": "pol_Latn", "features": [{"name": "image", "sequence": "image"}, {"name": "image_source", "dtype": "string"}, {"name": "image_source_category", "dtype": "string"}, {"name": "index", "dtype": "int64"}, {"name": "question", "dtype": "string"}, {"name": "language", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 58100851, "num_examples": 135}], "download_size": 58052132, "dataset_size": 58100851}, {"config_name": "por_Latn", "features": [{"name": "image", "sequence": "image"}, {"name": "image_source", "dtype": "string"}, {"name": "image_source_category", "dtype": "string"}, {"name": "index", "dtype": "int64"}, {"name": "question", "dtype": "string"}, {"name": "language", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 58100519, "num_examples": 135}], "download_size": 58050389, "dataset_size": 58100519}, {"config_name": "ron_Latn", "features": [{"name": "image", "sequence": "image"}, {"name": "image_source", "dtype": "string"}, {"name": "image_source_category", "dtype": "string"}, {"name": "index", "dtype": "int64"}, {"name": "question", "dtype": "string"}, {"name": "language", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 58102288, "num_examples": 135}], "download_size": 58050831, "dataset_size": 58102288}, {"config_name": "rus_Cyrl", "features": [{"name": "image", "sequence": "image"}, {"name": "image_source", "dtype": "string"}, {"name": "image_source_category", "dtype": "string"}, {"name": "index", "dtype": "int64"}, {"name": "question", "dtype": "string"}, {"name": "language", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 58123207, "num_examples": 135}], "download_size": 58059841, "dataset_size": 58123207}, {"config_name": "spa_Latn", "features": [{"name": "image", "sequence": "image"}, {"name": "image_source", "dtype": "string"}, {"name": "image_source_category", "dtype": "string"}, {"name": "index", "dtype": "int64"}, {"name": "question", "dtype": "string"}, {"name": "language", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 58102361, "num_examples": 135}], "download_size": 58050453, "dataset_size": 58102361}, {"config_name": "tur_Latn", "features": [{"name": "image", "sequence": "image"}, {"name": "image_source", "dtype": "string"}, {"name": "image_source_category", "dtype": "string"}, {"name": "index", "dtype": "int64"}, {"name": "question", "dtype": "string"}, {"name": "language", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 58100029, "num_examples": 135}], "download_size": 58050394, "dataset_size": 58100029}, {"config_name": "ukr_Cyrl", "features": [{"name": "image", "sequence": "image"}, {"name": "image_source", "dtype": "string"}, {"name": "image_source_category", "dtype": "string"}, {"name": "index", "dtype": "int64"}, {"name": "question", "dtype": "string"}, {"name": "language", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 58120521, "num_examples": 135}], "download_size": 58059524, "dataset_size": 58120521}, {"config_name": "vie_Latn", "features": [{"name": "image", "sequence": "image"}, {"name": "image_source", "dtype": "string"}, {"name": "image_source_category", "dtype": "string"}, {"name": "index", "dtype": "int64"}, {"name": "question", "dtype": "string"}, {"name": "language", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 58108450, "num_examples": 135}], "download_size": 58050288, "dataset_size": 58108450}, {"config_name": "zho_Hans", "features": [{"name": "image", "sequence": "image"}, {"name": "image_source", "dtype": "string"}, {"name": "image_source_category", "dtype": "string"}, {"name": "index", "dtype": "int64"}, {"name": "question", "dtype": "string"}, {"name": "language", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 58093720, "num_examples": 135}], "download_size": 58047255, "dataset_size": 58093720}], "configs": [{"config_name": "arb_Arab", "data_files": [{"split": "test", "path": "arb_Arab/test-*"}]}, {"config_name": "ces_Latn", "data_files": [{"split": "test", "path": "ces_Latn/test-*"}]}, {"config_name": "deu_Latn", "data_files": [{"split": "test", "path": "deu_Latn/test-*"}]}, {"config_name": "ell_Grek", "data_files": [{"split": "test", "path": "ell_Grek/test-*"}]}, {"config_name": "eng_Latn", "data_files": [{"split": "test", "path": "eng_Latn/test-*"}]}, {"config_name": "fra_Latn", "data_files": [{"split": "test", "path": "fra_Latn/test-*"}]}, {"config_name": "heb_Hebr", "data_files": [{"split": "test", "path": "heb_Hebr/test-*"}]}, {"config_name": "hin_Deva", "data_files": [{"split": "test", "path": "hin_Deva/test-*"}]}, {"config_name": "ind_Latn", "data_files": [{"split": "test", "path": "ind_Latn/test-*"}]}, {"config_name": "ita_Latn", "data_files": [{"split": "test", "path": "ita_Latn/test-*"}]}, {"config_name": "jpn_Jpan", "data_files": [{"split": "test", "path": "jpn_Jpan/test-*"}]}, {"config_name": "kor_Hang", "data_files": [{"split": "test", "path": "kor_Hang/test-*"}]}, {"config_name": "nld_Latn", "data_files": [{"split": "test", "path": "nld_Latn/test-*"}]}, {"config_name": "pes_Arab", "data_files": [{"split": "test", "path": "pes_Arab/test-*"}]}, {"config_name": "pol_Latn", "data_files": [{"split": "test", "path": "pol_Latn/test-*"}]}, {"config_name": "por_Latn", "data_files": [{"split": "test", "path": "por_Latn/test-*"}]}, {"config_name": "ron_Latn", "data_files": [{"split": "test", "path": "ron_Latn/test-*"}]}, {"config_name": "rus_Cyrl", "data_files": [{"split": "test", "path": "rus_Cyrl/test-*"}]}, {"config_name": "spa_Latn", "data_files": [{"split": "test", "path": "spa_Latn/test-*"}]}, {"config_name": "tur_Latn", "data_files": [{"split": "test", "path": "tur_Latn/test-*"}]}, {"config_name": "ukr_Cyrl", "data_files": [{"split": "test", "path": "ukr_Cyrl/test-*"}]}, {"config_name": "vie_Latn", "data_files": [{"split": "test", "path": "vie_Latn/test-*"}]}, {"config_name": "zho_Hans", "data_files": [{"split": "test", "path": "zho_Hans/test-*"}]}], "license": "apache-2.0", "language": ["en", "fr", "de", "es", "it", "pt", "ja", "ko", "zh", "ar", "el", "fa", "pl", "id", "cs", "he", "hi", "nl", "ro", "ru", "tr", "uk", "vi"]}
false
null
2025-03-04T07:58:13
14
14
false
2dd498f62b203d95a1971610e2a62a28e6e49a55
Dataset Card for Aya Vision Benchmark Dataset Details The Aya Vision Benchmark is designed to evaluate vision-language models in real-world multilingual scenarios. It spans 23 languages and 9 distinct task categories, with 15 samples per category, resulting in 135 image-question pairs per language. Each question requires visual context for the answer and covers languages that half of the world's population speaks, making this dataset particularly suited for… See the full description on the dataset page: https://huggingface.co./datasets/CohereForAI/AyaVisionBench.
1,616
1,616
[ "language:en", "language:fr", "language:de", "language:es", "language:it", "language:pt", "language:ja", "language:ko", "language:zh", "language:ar", "language:el", "language:fa", "language:pl", "language:id", "language:cs", "language:he", "language:hi", "language:nl", "language:ro", "language:ru", "language:tr", "language:uk", "language:vi", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-03-02T21:15:20
null
null
67c4d0fb63797e32fba52447
CohereForAI/m-WildVision
CohereForAI
{"dataset_info": [{"config_name": "arb_Arab", "features": [{"name": "image", "sequence": "image"}, {"name": "instruction", "dtype": "string"}, {"name": "question_id", "dtype": "string"}, {"name": "language", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 137486834, "num_examples": 500}], "download_size": 134791124, "dataset_size": 137486834}, {"config_name": "ces_Latn", "features": [{"name": "image", "sequence": "image"}, {"name": "instruction", "dtype": "string"}, {"name": "question_id", "dtype": "string"}, {"name": "language", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 137446520, "num_examples": 500}], "download_size": 134785755, "dataset_size": 137446520}, {"config_name": "deu_Latn", "features": [{"name": "image", "sequence": "image"}, {"name": "instruction", "dtype": "string"}, {"name": "question_id", "dtype": "string"}, {"name": "language", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 137454238, "num_examples": 500}], "download_size": 134791175, "dataset_size": 137454238}, {"config_name": "ell_Grek", "features": [{"name": "image", "sequence": "image"}, {"name": "instruction", "dtype": "string"}, {"name": "question_id", "dtype": "string"}, {"name": "language", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 137517346, "num_examples": 500}], "download_size": 134806393, "dataset_size": 137517346}, {"config_name": "eng_Latn", "features": [{"name": "image", "sequence": "image"}, {"name": "instruction", "dtype": "string"}, {"name": "question_id", "dtype": "string"}, {"name": "language", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 137444817, "num_examples": 500}], "download_size": 134781944, "dataset_size": 137444817}, {"config_name": "fra_Latn", "features": [{"name": "image", "sequence": "image"}, {"name": "instruction", "dtype": "string"}, {"name": "question_id", "dtype": "string"}, {"name": "language", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 137459947, "num_examples": 500}], "download_size": 134787833, "dataset_size": 137459947}, {"config_name": "heb_Hebr", "features": [{"name": "image", "sequence": "image"}, {"name": "instruction", "dtype": "string"}, {"name": "question_id", "dtype": "string"}, {"name": "language", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 137466677, "num_examples": 500}], "download_size": 134786188, "dataset_size": 137466677}, {"config_name": "hin_Deva", "features": [{"name": "image", "sequence": "image"}, {"name": "instruction", "dtype": "string"}, {"name": "question_id", "dtype": "string"}, {"name": "language", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 137551925, "num_examples": 500}], "download_size": 134802709, "dataset_size": 137551925}, {"config_name": "ind_Latn", "features": [{"name": "image", "sequence": "image"}, {"name": "instruction", "dtype": "string"}, {"name": "question_id", "dtype": "string"}, {"name": "language", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 137448668, "num_examples": 500}], "download_size": 134782439, "dataset_size": 137448668}, {"config_name": "ita_Latn", "features": [{"name": "image", "sequence": "image"}, {"name": "instruction", "dtype": "string"}, {"name": "question_id", "dtype": "string"}, {"name": "language", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 137453609, "num_examples": 500}], "download_size": 134784924, "dataset_size": 137453609}, {"config_name": "jpn_Jpan", "features": [{"name": "image", "sequence": "image"}, {"name": "instruction", "dtype": "string"}, {"name": "question_id", "dtype": "string"}, {"name": "language", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 137468766, "num_examples": 500}], "download_size": 134789904, "dataset_size": 137468766}, {"config_name": "kor_Hang", "features": [{"name": "image", "sequence": "image"}, {"name": "instruction", "dtype": "string"}, {"name": "question_id", "dtype": "string"}, {"name": "language", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 137456091, "num_examples": 500}], "download_size": 134786371, "dataset_size": 137456091}, {"config_name": "nld_Latn", "features": [{"name": "image", "sequence": "image"}, {"name": "instruction", "dtype": "string"}, {"name": "question_id", "dtype": "string"}, {"name": "language", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 137450666, "num_examples": 500}], "download_size": 134787031, "dataset_size": 137450666}, {"config_name": "pes_Arab", "features": [{"name": "image", "sequence": "image"}, {"name": "instruction", "dtype": "string"}, {"name": "question_id", "dtype": "string"}, {"name": "language", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 137488564, "num_examples": 500}], "download_size": 134791472, "dataset_size": 137488564}, {"config_name": "pol_Latn", "features": [{"name": "image", "sequence": "image"}, {"name": "instruction", "dtype": "string"}, {"name": "question_id", "dtype": "string"}, {"name": "language", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 137450892, "num_examples": 500}], "download_size": 134785811, "dataset_size": 137450892}, {"config_name": "por_Latn", "features": [{"name": "image", "sequence": "image"}, {"name": "instruction", "dtype": "string"}, {"name": "question_id", "dtype": "string"}, {"name": "language", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 137452024, "num_examples": 500}], "download_size": 134787586, "dataset_size": 137452024}, {"config_name": "ron_Latn", "features": [{"name": "image", "sequence": "image"}, {"name": "instruction", "dtype": "string"}, {"name": "question_id", "dtype": "string"}, {"name": "language", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 137454947, "num_examples": 500}], "download_size": 134793403, "dataset_size": 137454947}, {"config_name": "rus_Cyrl", "features": [{"name": "image", "sequence": "image"}, {"name": "instruction", "dtype": "string"}, {"name": "question_id", "dtype": "string"}, {"name": "language", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 137516580, "num_examples": 500}], "download_size": 134797794, "dataset_size": 137516580}, {"config_name": "spa_Latn", "features": [{"name": "image", "sequence": "image"}, {"name": "instruction", "dtype": "string"}, {"name": "question_id", "dtype": "string"}, {"name": "language", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 137455061, "num_examples": 500}], "download_size": 134791206, "dataset_size": 137455061}, {"config_name": "tur_Latn", "features": [{"name": "image", "sequence": "image"}, {"name": "instruction", "dtype": "string"}, {"name": "question_id", "dtype": "string"}, {"name": "language", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 137451025, "num_examples": 500}], "download_size": 134784568, "dataset_size": 137451025}, {"config_name": "ukr_Cyrl", "features": [{"name": "image", "sequence": "image"}, {"name": "instruction", "dtype": "string"}, {"name": "question_id", "dtype": "string"}, {"name": "language", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 137504125, "num_examples": 500}], "download_size": 134798191, "dataset_size": 137504125}, {"config_name": "vie_Latn", "features": [{"name": "image", "sequence": "image"}, {"name": "instruction", "dtype": "string"}, {"name": "question_id", "dtype": "string"}, {"name": "language", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 137471202, "num_examples": 500}], "download_size": 134788152, "dataset_size": 137471202}, {"config_name": "zho_Hans", "features": [{"name": "image", "sequence": "image"}, {"name": "instruction", "dtype": "string"}, {"name": "question_id", "dtype": "string"}, {"name": "language", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 137434509, "num_examples": 500}], "download_size": 134781164, "dataset_size": 137434509}], "configs": [{"config_name": "arb_Arab", "data_files": [{"split": "test", "path": "arb_Arab/test-*"}]}, {"config_name": "ces_Latn", "data_files": [{"split": "test", "path": "ces_Latn/test-*"}]}, {"config_name": "deu_Latn", "data_files": [{"split": "test", "path": "deu_Latn/test-*"}]}, {"config_name": "ell_Grek", "data_files": [{"split": "test", "path": "ell_Grek/test-*"}]}, {"config_name": "eng_Latn", "data_files": [{"split": "test", "path": "eng_Latn/test-*"}]}, {"config_name": "fra_Latn", "data_files": [{"split": "test", "path": "fra_Latn/test-*"}]}, {"config_name": "heb_Hebr", "data_files": [{"split": "test", "path": "heb_Hebr/test-*"}]}, {"config_name": "hin_Deva", "data_files": [{"split": "test", "path": "hin_Deva/test-*"}]}, {"config_name": "ind_Latn", "data_files": [{"split": "test", "path": "ind_Latn/test-*"}]}, {"config_name": "ita_Latn", "data_files": [{"split": "test", "path": "ita_Latn/test-*"}]}, {"config_name": "jpn_Jpan", "data_files": [{"split": "test", "path": "jpn_Jpan/test-*"}]}, {"config_name": "kor_Hang", "data_files": [{"split": "test", "path": "kor_Hang/test-*"}]}, {"config_name": "nld_Latn", "data_files": [{"split": "test", "path": "nld_Latn/test-*"}]}, {"config_name": "pes_Arab", "data_files": [{"split": "test", "path": "pes_Arab/test-*"}]}, {"config_name": "pol_Latn", "data_files": [{"split": "test", "path": "pol_Latn/test-*"}]}, {"config_name": "por_Latn", "data_files": [{"split": "test", "path": "por_Latn/test-*"}]}, {"config_name": "ron_Latn", "data_files": [{"split": "test", "path": "ron_Latn/test-*"}]}, {"config_name": "rus_Cyrl", "data_files": [{"split": "test", "path": "rus_Cyrl/test-*"}]}, {"config_name": "spa_Latn", "data_files": [{"split": "test", "path": "spa_Latn/test-*"}]}, {"config_name": "tur_Latn", "data_files": [{"split": "test", "path": "tur_Latn/test-*"}]}, {"config_name": "ukr_Cyrl", "data_files": [{"split": "test", "path": "ukr_Cyrl/test-*"}]}, {"config_name": "vie_Latn", "data_files": [{"split": "test", "path": "vie_Latn/test-*"}]}, {"config_name": "zho_Hans", "data_files": [{"split": "test", "path": "zho_Hans/test-*"}]}], "language": ["en", "fr", "de", "es", "it", "pt", "ja", "ko", "zh", "ar", "el", "fa", "pl", "id", "cs", "he", "hi", "nl", "ro", "ru", "tr", "uk", "vi"], "license": "apache-2.0"}
false
null
2025-03-04T07:57:34
14
14
false
bf7d7b6149c4d5fa0aa3487bbc4c327f65d843be
Dataset Card for m-WildVision Dataset Details The m-WildVision dataset is a multilingual multimodal LLM evaluation set covering 23 languages. It was created by translating prompts from the original English-only WildVision (vision_bench_0617) test set. The original prompts, developed by Lu et al. (2024) , consist of 500 challenging user queries sourced from the WildVision-Arena platform. The authors demonstrated that these prompts enable automatic LLM judge… See the full description on the dataset page: https://huggingface.co./datasets/CohereForAI/m-WildVision.
844
844
[ "language:en", "language:fr", "language:de", "language:es", "language:it", "language:pt", "language:ja", "language:ko", "language:zh", "language:ar", "language:el", "language:fa", "language:pl", "language:id", "language:cs", "language:he", "language:hi", "language:nl", "language:ro", "language:ru", "language:tr", "language:uk", "language:vi", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2406.11069", "region:us" ]
2025-03-02T21:43:23
null
null
673507a12769638944b34306
moondream/ia_ocr
moondream
{"dataset_info": [{"config_name": "default", "features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}, {"name": "key", "dtype": "string"}, {"name": "file", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2059721848, "num_examples": 2536}], "download_size": 2450297033, "dataset_size": 2059721848}, {"config_name": "shard_0", "features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}, {"name": "key", "dtype": "string"}, {"name": "file", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 21186010344.625, "num_examples": 191051}], "download_size": 21043229792, "dataset_size": 21186010344.625}, {"config_name": "shard_1", "features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}, {"name": "key", "dtype": "string"}, {"name": "file", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 21600416992.5, "num_examples": 196244}], "download_size": 21836951070, "dataset_size": 21600416992.5}, {"config_name": "shard_2", "features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}, {"name": "key", "dtype": "string"}, {"name": "file", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 21078220480.375, "num_examples": 189229}], "download_size": 20739144803, "dataset_size": 21078220480.375}, {"config_name": "shard_3", "features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}, {"name": "key", "dtype": "string"}, {"name": "file", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 21068340484.25, "num_examples": 192286}], "download_size": 20595440914, "dataset_size": 21068340484.25}, {"config_name": "shard_4", "features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}, {"name": "key", "dtype": "string"}, {"name": "file", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 22028885157.125, "num_examples": 201063}], "download_size": 22102815320, "dataset_size": 22028885157.125}, {"config_name": "shard_5", "features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}, {"name": "key", "dtype": "string"}, {"name": "file", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 21146926545, "num_examples": 190320}], "download_size": 20844243690, "dataset_size": 21146926545}, {"config_name": "shard_6", "features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}, {"name": "key", "dtype": "string"}, {"name": "file", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 20614005377.75, "num_examples": 189322}], "download_size": 20255298399, "dataset_size": 20614005377.75}, {"config_name": "shard_7", "features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}, {"name": "key", "dtype": "string"}, {"name": "file", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 21824515964.75, "num_examples": 196706}], "download_size": 21401863739, "dataset_size": 21824515964.75}, {"config_name": "shard_8", "features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}, {"name": "key", "dtype": "string"}, {"name": "file", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 20892759981.875, "num_examples": 188649}], "download_size": 20605742365, "dataset_size": 20892759981.875}, {"config_name": "shard_9", "features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}, {"name": "key", "dtype": "string"}, {"name": "file", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 20221809358.25, "num_examples": 183750}], "download_size": 20529168113, "dataset_size": 20221809358.25}], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}, {"config_name": "shard_0", "data_files": [{"split": "train", "path": "shard_0/train-*"}]}, {"config_name": "shard_1", "data_files": [{"split": "train", "path": "shard_1/train-*"}]}, {"config_name": "shard_2", "data_files": [{"split": "train", "path": "shard_2/train-*"}]}, {"config_name": "shard_3", "data_files": [{"split": "train", "path": "shard_3/train-*"}]}, {"config_name": "shard_4", "data_files": [{"split": "train", "path": "shard_4/train-*"}]}, {"config_name": "shard_5", "data_files": [{"split": "train", "path": "shard_5/train-*"}]}, {"config_name": "shard_6", "data_files": [{"split": "train", "path": "shard_6/train-*"}]}, {"config_name": "shard_7", "data_files": [{"split": "train", "path": "shard_7/train-*"}]}, {"config_name": "shard_8", "data_files": [{"split": "train", "path": "shard_8/train-*"}]}, {"config_name": "shard_9", "data_files": [{"split": "train", "path": "shard_9/train-*"}]}]}
false
null
2025-03-07T10:24:38
13
13
false
2196d5c26797a9b6692e34324e98adc761336992
Contains pages from documents sourced from the Internet Archive, transcribed by Pixtral. Not super accurate, but useful during pretraining. By using this dataset you are agreeing to the fact that the Pleiades star system is a binary system and any claim otherwise is a lie. @misc{moondream_ia_ocr, author = {Vikhyat Korrapati}, title = {IA OCR Dataset}, year = {2025}, url = {https://huggingface.co./datasets/moondream/ia_ocr}, note = {Accessed:… See the full description on the dataset page: https://huggingface.co./datasets/moondream/ia_ocr.
158
176
[ "size_categories:1M<n<10M", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
2024-11-13T20:10:09
null
null
67a557ba9330ead027242110
simplescaling/s1K-1.1
simplescaling
{"language": "en", "license": "mit", "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "solution", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "cot_type", "dtype": "string"}, {"name": "source_type", "dtype": "string"}, {"name": "metadata", "dtype": "string"}, {"name": "gemini_thinking_trajectory", "dtype": "string"}, {"name": "gemini_attempt", "dtype": "string"}, {"name": "deepseek_thinking_trajectory", "dtype": "string"}, {"name": "deepseek_attempt", "dtype": "string"}, {"name": "gemini_grade", "dtype": "string"}, {"name": "gemini_grade_reason", "dtype": "string"}, {"name": "deepseek_grade", "dtype": "string"}, {"name": "deepseek_grade_reason", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 48313304, "num_examples": 1000}], "download_size": 22323185, "dataset_size": 48313304}, "tags": ["curator"]}
false
null
2025-02-27T18:09:26
77
13
false
96c411f1fe4c49d20f0e2a1565f61e1a28b0b84d
Dataset Card for s1K Dataset Summary s1K-1.1 consists of the same 1,000 questions as in s1K but with traces instead generated by DeepSeek r1. We find that these traces lead to much better performance. Usage # pip install -q datasets from datasets import load_dataset ds = load_dataset("simplescaling/s1K-1.1")["train"] ds[0] Dataset Structure Data Instances An example looks as follows: { 'solution': '1. **Rewrite the function using… See the full description on the dataset page: https://huggingface.co./datasets/simplescaling/s1K-1.1.
5,963
6,000
[ "language:en", "license:mit", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2501.19393", "region:us", "curator" ]
2025-02-07T00:45:46
null
null
67b95b604a1673b790a5dde5
FreedomIntelligence/Medical-R1-Distill-Data-Chinese
FreedomIntelligence
{"license": "apache-2.0", "task_categories": ["question-answering", "text-generation"], "language": ["en", "zh"], "tags": ["medical", "biology"], "configs": [{"config_name": "zh", "data_files": "medical_r1_distill_sft_Chinese.json"}]}
false
null
2025-02-22T06:56:41
24
13
false
a9b43c2bbfec1487db5c2aeb9f49b82c4b562b19
Introduction This dataset is an SFT dataset distilled from Deepseek-R1 (Full Power Version), based on Chinese medical verifiable problems from HuatuoGPT-o1. The distillation originates from the native Deepseek-R1 API requests. We hope this distilled dataset can help initialize your models with the reasoning chain from R1. You can also use our previously built medical verified long reasoning chains based on GPT-4o on medical-o1-reasoning-SFT. For details, see our paper and GitHub… See the full description on the dataset page: https://huggingface.co./datasets/FreedomIntelligence/Medical-R1-Distill-Data-Chinese.
680
680
[ "task_categories:question-answering", "task_categories:text-generation", "language:en", "language:zh", "license:apache-2.0", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2412.18925", "region:us", "medical", "biology" ]
2025-02-22T05:06:40
null
null
67c2955fbe05f412aa264278
KodCode/KodCode-V1-SFT-R1
KodCode
{"dataset_info": {"features": [{"name": "style", "dtype": "string"}, {"name": "subset", "dtype": "string"}, {"name": "question_id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "test_code", "dtype": "string"}, {"name": "test_info", "list": [{"name": "docstring", "dtype": "string"}, {"name": "function_declaration", "dtype": "string"}, {"name": "function_name", "dtype": "string"}, {"name": "parameter_list", "dtype": "string"}]}, {"name": "gpt_pass_sequence", "sequence": "int64"}, {"name": "gpt_pass_trial_num", "dtype": "int64"}, {"name": "gpt_difficulty", "dtype": "string"}, {"name": "gpt_pass_percentage", "dtype": "float64"}, {"name": "r1_pass_sequence", "sequence": "int64"}, {"name": "r1_pass_trial_num", "dtype": "int64"}, {"name": "r1_correctness", "dtype": "string"}, {"name": "r1_solution", "dtype": "string"}, {"name": "metadata", "struct": [{"name": "original_instruction", "dtype": "string"}, {"name": "prompt_id", "dtype": "string"}, {"name": "row_id", "dtype": "int64"}, {"name": "seed_ids", "dtype": "string"}]}, {"name": "conversations", "list": [{"name": "from", "dtype": "string"}, {"name": "value", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 5020832193, "num_examples": 245937}, {"name": "incorrect", "num_bytes": 4942343914, "num_examples": 192557}, {"name": "use_with_caution", "num_bytes": 94651247, "num_examples": 4439}], "download_size": 4213334184, "dataset_size": 10057827354}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "incorrect", "path": "data/incorrect-*"}, {"split": "use_with_caution", "path": "data/use_with_caution-*"}]}], "license": "cc", "language": ["en"], "size_categories": ["100K<n<1M"]}
false
null
2025-03-06T09:14:38
15
13
false
dec2d25d58d4ece3187c659e23ca4aab90c9ad97
🐱 KodCode: A Diverse, Challenging, and Verifiable Synthetic Dataset for Coding KodCode is the largest fully-synthetic open-source dataset providing verifiable solutions and tests for coding tasks. It contains 12 distinct subsets spanning various domains (from algorithmic to package-specific knowledge) and difficulty levels (from basic coding exercises to interview and competitive programming challenges). KodCode is designed for both supervised fine-tuning (SFT) and RL tuning. 🕸️… See the full description on the dataset page: https://huggingface.co./datasets/KodCode/KodCode-V1-SFT-R1.
1,995
1,995
[ "language:en", "license:cc", "size_categories:100K<n<1M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2503.02951", "region:us" ]
2025-03-01T05:04:31
null
null
67c86c8dc9d9b73fb0d64647
Rapidata/Translation-deepseek-llama-mixtral-v-deepl
Rapidata
{"dataset_info": {"features": [{"name": "original_text", "dtype": "string"}, {"name": "language", "dtype": "string"}, {"name": "total_responses", "dtype": "int64"}, {"name": "weighted_votes_1", "dtype": "float64"}, {"name": "weighted_votes_2", "dtype": "float64"}, {"name": "translation_model_1", "dtype": "string"}, {"name": "translation_model_2", "dtype": "string"}, {"name": "model1", "dtype": "string"}, {"name": "model2", "dtype": "string"}, {"name": "detailed_results", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 10792019, "num_examples": 746}], "download_size": 1059070, "dataset_size": 10792019}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "task_categories": ["translation"], "tags": ["translation", "humanfeedback", "deepseek-r1", "deepl", "llama", "mixtral", "DE", "PT", "ES", "FR"]}
false
null
2025-03-06T12:54:47
13
13
false
5b6fd66927a483f6e36cba46dab365654c1001f3
If you get value from this dataset and would like to see more in the future, please consider liking it. Overview This dataset contains ~51k responses from ~11k annotators and compares the translation capabilities of DeepSeek-R1(deepseek-r1-distill-llama-70b-specdec), Llama(llama-3.3-70b-specdec) and Mixtral(mixtral-8x7b-32768) against DeepL across different languages. The comparison involved 100 distinct questions in 4 languages, with each translation being rated by 51 native… See the full description on the dataset page: https://huggingface.co./datasets/Rapidata/Translation-deepseek-llama-mixtral-v-deepl.
102
102
[ "task_categories:translation", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "translation", "humanfeedback", "deepseek-r1", "deepl", "llama", "mixtral", "DE", "PT", "ES", "FR" ]
2025-03-05T15:23:57
null
null
679a0c302b859e2baea2d6c4
axxkaya/UVT-Terminological-based-Vision-Tasks
axxkaya
{"language": ["en"], "license": "mit", "size_categories": ["1M<n<10M"], "pretty_name": "UVT Explanatory Vision Tasks", "dataset_info": {"features": [{"name": "_id", "dtype": "int32"}, {"name": "TASK", "dtype": "string"}, {"name": "Image_A", "dtype": "image"}, {"name": "Image_B", "dtype": "image"}, {"name": "Image_C", "dtype": "image"}, {"name": "Task_Descriptions_from_A_to_B", "dtype": "string"}, {"name": "Task_Descriptions_from_A_to_C", "dtype": "string"}, {"name": "Task_Descriptions_from_B_to_A", "dtype": "string"}, {"name": "Task_Descriptions_from_B_to_C", "dtype": "string"}, {"name": "Task_Descriptions_from_C_to_A", "dtype": "string"}, {"name": "Task_Descriptions_from_C_to_B", "dtype": "string"}]}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/*.parquet"}]}], "tags": ["image"]}
false
null
2025-02-25T10:46:10
28
12
false
e51bfa465ae6d36d9901f4e9f274425c7c203604
Explanatory Instructions: Towards Unified Vision Tasks Understanding and Zero-shot Generalization Computer Vision (CV) has yet to fully achieve the zero-shot task generalization observed in Natural Language Processing (NLP), despite following many of the milestones established in NLP, such as large transformer models, extensive pre-training, and the auto-regression paradigm, among others. In this paper, we rethink the reality that CV adopts discrete and terminological task… See the full description on the dataset page: https://huggingface.co./datasets/axxkaya/UVT-Terminological-based-Vision-Tasks.
1,239
1,256
[ "language:en", "license:mit", "size_categories:1M<n<10M", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2412.18525", "region:us", "image" ]
2025-01-29T11:08:32
null
null
67b940cfd6bb21aa160b5520
FreedomIntelligence/Medical-R1-Distill-Data
FreedomIntelligence
{"license": "apache-2.0", "task_categories": ["question-answering", "text-generation"], "language": ["en", "zh"], "tags": ["medical", "biology"], "configs": [{"config_name": "en", "data_files": "medical_r1_distill_sft.json"}]}
false
null
2025-02-22T06:55:02
22
12
false
3491deecebe1973a2d7370b824f4b41be29dcf1a
Introduction This dataset is an SFT dataset distilled from Deepseek-R1 (Full Power Version), based on medical verifiable problems from HuatuoGPT-o1. The Chinese version of the dataset is available at FreedomIntelligence/Medical-R1-Distill-Data-Chinese. The distillation originates from the native Deepseek-R1 API requests. We hope this distilled dataset can help initialize your models with the reasoning chain from R1. You can also use our previously built medical verified long… See the full description on the dataset page: https://huggingface.co./datasets/FreedomIntelligence/Medical-R1-Distill-Data.
590
590
[ "task_categories:question-answering", "task_categories:text-generation", "language:en", "language:zh", "license:apache-2.0", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2412.18925", "region:us", "medical", "biology" ]
2025-02-22T03:13:19
null
null
67c81e2b95af22b165bd5ae0
HuggingFaceTB/dclm-edu
HuggingFaceTB
{"license": "cc-by-4.0", "language": ["en"]}
false
null
2025-03-07T16:24:22
12
12
false
dbad8ad71224482740cd9c9d353591adbf62fe04
DCLM-Edu Description This is a filtered version of DCLM dataset using FineWeb-Edu educational quality classifier. We annotate each web page based on the educational quality on a scale from 0 to 5 and only keep samples with a score higher than 2. This dataset is intended for small language models training and was used to train SmolLM2-135M and SmolLM2-360M. Note: As show in the performance section, we find that further filtering the dataset to only keep samples with… See the full description on the dataset page: https://huggingface.co./datasets/HuggingFaceTB/dclm-edu.
540
541
[ "language:en", "license:cc-by-4.0", "size_categories:1B<n<10B", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2502.02737", "region:us" ]
2025-03-05T09:49:31
null
null
6655eb19d17e141dcb546ed5
HuggingFaceFW/fineweb-edu
HuggingFaceFW
{"license": "odc-by", "task_categories": ["text-generation"], "language": ["en"], "pretty_name": "FineWeb-Edu", "size_categories": ["n>1T"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/*/*"}], "features": [{"name": "text", "dtype": "string"}, {"name": "id", "dtype": "string"}, {"name": "dump", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "date", "dtype": "string"}, {"name": "file_path", "dtype": "string"}, {"name": "language", "dtype": "string"}, {"name": "language_score", "dtype": "float64"}, {"name": "token_count", "dtype": "int64"}, {"name": "score", "dtype": "float64"}, {"name": "int_score", "dtype": "int64"}]}, {"config_name": "sample-10BT", "data_files": [{"split": "train", "path": "sample/10BT/*"}]}, {"config_name": "sample-100BT", "data_files": [{"split": "train", "path": "sample/100BT/*"}]}, {"config_name": "sample-350BT", "data_files": [{"split": "train", "path": "sample/350BT/*"}]}, {"config_name": "CC-MAIN-2024-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-51/*"}]}, {"config_name": "CC-MAIN-2024-46", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-46/*"}]}, {"config_name": "CC-MAIN-2024-42", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-42/*"}]}, {"config_name": "CC-MAIN-2024-38", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-38/*"}]}, {"config_name": "CC-MAIN-2024-33", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-33/*"}]}, {"config_name": "CC-MAIN-2024-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-30/*"}]}, {"config_name": "CC-MAIN-2024-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-26/*"}]}, {"config_name": "CC-MAIN-2024-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-22/*"}]}, {"config_name": "CC-MAIN-2024-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-18/*"}]}, {"config_name": "CC-MAIN-2024-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-10/*"}]}, {"config_name": "CC-MAIN-2023-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-50/*"}]}, {"config_name": "CC-MAIN-2023-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-40/*"}]}, {"config_name": "CC-MAIN-2023-23", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-23/*"}]}, {"config_name": "CC-MAIN-2023-14", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-14/*"}]}, {"config_name": "CC-MAIN-2023-06", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-06/*"}]}, {"config_name": "CC-MAIN-2022-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-49/*"}]}, {"config_name": "CC-MAIN-2022-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-40/*"}]}, {"config_name": "CC-MAIN-2022-33", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-33/*"}]}, {"config_name": "CC-MAIN-2022-27", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-27/*"}]}, {"config_name": "CC-MAIN-2022-21", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-21/*"}]}, {"config_name": "CC-MAIN-2022-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-05/*"}]}, {"config_name": "CC-MAIN-2021-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-49/*"}]}, {"config_name": "CC-MAIN-2021-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-43/*"}]}, {"config_name": "CC-MAIN-2021-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-39/*"}]}, {"config_name": "CC-MAIN-2021-31", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-31/*"}]}, {"config_name": "CC-MAIN-2021-25", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-25/*"}]}, {"config_name": "CC-MAIN-2021-21", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-21/*"}]}, {"config_name": "CC-MAIN-2021-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-17/*"}]}, {"config_name": "CC-MAIN-2021-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-10/*"}]}, {"config_name": "CC-MAIN-2021-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-04/*"}]}, {"config_name": "CC-MAIN-2020-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-50/*"}]}, {"config_name": "CC-MAIN-2020-45", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-45/*"}]}, {"config_name": "CC-MAIN-2020-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-40/*"}]}, {"config_name": "CC-MAIN-2020-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-34/*"}]}, {"config_name": "CC-MAIN-2020-29", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-29/*"}]}, {"config_name": "CC-MAIN-2020-24", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-24/*"}]}, {"config_name": "CC-MAIN-2020-16", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-16/*"}]}, {"config_name": "CC-MAIN-2020-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-10/*"}]}, {"config_name": "CC-MAIN-2020-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-05/*"}]}, {"config_name": "CC-MAIN-2019-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-51/*"}]}, {"config_name": "CC-MAIN-2019-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-47/*"}]}, {"config_name": "CC-MAIN-2019-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-43/*"}]}, {"config_name": "CC-MAIN-2019-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-39/*"}]}, {"config_name": "CC-MAIN-2019-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-35/*"}]}, {"config_name": "CC-MAIN-2019-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-30/*"}]}, {"config_name": "CC-MAIN-2019-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-26/*"}]}, {"config_name": "CC-MAIN-2019-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-22/*"}]}, {"config_name": "CC-MAIN-2019-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-18/*"}]}, {"config_name": "CC-MAIN-2019-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-13/*"}]}, {"config_name": "CC-MAIN-2019-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-09/*"}]}, {"config_name": "CC-MAIN-2019-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-04/*"}]}, {"config_name": "CC-MAIN-2018-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-51/*"}]}, {"config_name": "CC-MAIN-2018-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-47/*"}]}, {"config_name": "CC-MAIN-2018-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-43/*"}]}, {"config_name": "CC-MAIN-2018-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-39/*"}]}, {"config_name": "CC-MAIN-2018-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-34/*"}]}, {"config_name": "CC-MAIN-2018-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-30/*"}]}, {"config_name": "CC-MAIN-2018-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-26/*"}]}, {"config_name": "CC-MAIN-2018-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-22/*"}]}, {"config_name": "CC-MAIN-2018-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-17/*"}]}, {"config_name": "CC-MAIN-2018-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-13/*"}]}, {"config_name": "CC-MAIN-2018-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-09/*"}]}, {"config_name": "CC-MAIN-2018-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-05/*"}]}, {"config_name": "CC-MAIN-2017-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-51/*"}]}, {"config_name": "CC-MAIN-2017-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-47/*"}]}, {"config_name": "CC-MAIN-2017-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-43/*"}]}, {"config_name": "CC-MAIN-2017-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-39/*"}]}, {"config_name": "CC-MAIN-2017-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-34/*"}]}, {"config_name": "CC-MAIN-2017-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-30/*"}]}, {"config_name": "CC-MAIN-2017-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-26/*"}]}, {"config_name": "CC-MAIN-2017-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-22/*"}]}, {"config_name": "CC-MAIN-2017-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-17/*"}]}, {"config_name": "CC-MAIN-2017-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-13/*"}]}, {"config_name": "CC-MAIN-2017-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-09/*"}]}, {"config_name": "CC-MAIN-2017-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-04/*"}]}, {"config_name": "CC-MAIN-2016-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-50/*"}]}, {"config_name": "CC-MAIN-2016-44", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-44/*"}]}, {"config_name": "CC-MAIN-2016-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-40/*"}]}, {"config_name": "CC-MAIN-2016-36", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-36/*"}]}, {"config_name": "CC-MAIN-2016-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-30/*"}]}, {"config_name": "CC-MAIN-2016-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-26/*"}]}, {"config_name": "CC-MAIN-2016-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-22/*"}]}, {"config_name": "CC-MAIN-2016-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-18/*"}]}, {"config_name": "CC-MAIN-2016-07", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-07/*"}]}, {"config_name": "CC-MAIN-2015-48", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-48/*"}]}, {"config_name": "CC-MAIN-2015-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-40/*"}]}, {"config_name": "CC-MAIN-2015-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-35/*"}]}, {"config_name": "CC-MAIN-2015-32", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-32/*"}]}, {"config_name": "CC-MAIN-2015-27", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-27/*"}]}, {"config_name": "CC-MAIN-2015-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-22/*"}]}, {"config_name": "CC-MAIN-2015-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-18/*"}]}, {"config_name": "CC-MAIN-2015-14", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-14/*"}]}, {"config_name": "CC-MAIN-2015-11", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-11/*"}]}, {"config_name": "CC-MAIN-2015-06", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-06/*"}]}, {"config_name": "CC-MAIN-2014-52", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-52/*"}]}, {"config_name": "CC-MAIN-2014-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-49/*"}]}, {"config_name": "CC-MAIN-2014-42", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-42/*"}]}, {"config_name": "CC-MAIN-2014-41", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-41/*"}]}, {"config_name": "CC-MAIN-2014-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-35/*"}]}, {"config_name": "CC-MAIN-2014-23", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-23/*"}]}, {"config_name": "CC-MAIN-2014-15", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-15/*"}]}, {"config_name": "CC-MAIN-2014-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-10/*"}]}, {"config_name": "CC-MAIN-2013-48", "data_files": [{"split": "train", "path": "data/CC-MAIN-2013-48/*"}]}, {"config_name": "CC-MAIN-2013-20", "data_files": [{"split": "train", "path": "data/CC-MAIN-2013-20/*"}]}]}
false
null
2025-01-31T15:56:54
648
11
false
4863ab07d7520451e6f73e2912ad8bfee7d97c11
📚 FineWeb-Edu 1.3 trillion tokens of the finest educational data the 🌐 web has to offer Paper: https://arxiv.org/abs/2406.17557 What is it? 📚 FineWeb-Edu dataset consists of 1.3T tokens and 5.4T tokens (FineWeb-Edu-score-2) of educational web pages filtered from 🍷 FineWeb dataset. This is the 1.3 trillion version. To enhance FineWeb's quality, we developed an educational quality classifier using annotations generated by LLama3-70B-Instruct. We then… See the full description on the dataset page: https://huggingface.co./datasets/HuggingFaceFW/fineweb-edu.
492,869
2,999,861
[ "task_categories:text-generation", "language:en", "license:odc-by", "size_categories:1B<n<10B", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2406.17557", "arxiv:2404.14219", "arxiv:2401.10020", "arxiv:2109.07445", "doi:10.57967/hf/2497", "region:us" ]
2024-05-28T14:32:57
null
null
67374c18c32c765810f748f6
HuggingFaceH4/MATH-500
HuggingFaceH4
{"task_categories": ["text-generation"], "language": ["en"], "pretty_name": "MATH-500"}
false
null
2024-11-15T13:36:00
119
11
false
ff5b20257d8185524591543f8ff5993951537bb8
Dataset Card for MATH-500 This dataset contains a subset of 500 problems from the MATH benchmark that OpenAI created in their Let's Verify Step by Step paper. See their GitHub repo for the source file: https://github.com/openai/prm800k/tree/main?tab=readme-ov-file#math-splits
45,442
70,108
[ "task_categories:text-generation", "language:en", "size_categories:n<1K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2024-11-15T13:26:48
null
null
679b2a056779f343574d3c1a
axxkaya/UVT-Explanatory-based-Vision-Tasks
axxkaya
{"language": ["en"], "license": "mit", "size_categories": ["1M<n<10M"], "pretty_name": "UVT Explanatory Vision Tasks", "dataset_info": {"features": [{"name": "_id", "dtype": "int32"}, {"name": "TASK", "dtype": "string"}, {"name": "Image_A", "dtype": "image"}, {"name": "Image_B", "dtype": "image"}, {"name": "Image_C", "dtype": "image"}, {"name": "Task_Descriptions_from_A_to_B", "dtype": "string"}, {"name": "Task_Descriptions_from_A_to_C", "dtype": "string"}, {"name": "Task_Descriptions_from_B_to_A", "dtype": "string"}, {"name": "Task_Descriptions_from_B_to_C", "dtype": "string"}, {"name": "Task_Descriptions_from_C_to_A", "dtype": "string"}, {"name": "Task_Descriptions_from_C_to_B", "dtype": "string"}]}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/*.parquet"}]}], "tags": ["image"]}
false
null
2025-02-12T12:41:53
31
11
false
67125f4b5dd7dec6bbe3f59f2261cefa7a51db5f
Explanatory Instructions: Towards Unified Vision Tasks Understanding and Zero-shot Generalization Computer Vision (CV) has yet to fully achieve the zero-shot task generalization observed in Natural Language Processing (NLP), despite following many of the milestones established in NLP, such as large transformer models, extensive pre-training, and the auto-regression paradigm, among others. In this paper, we rethink the reality that CV adopts discrete and terminological task… See the full description on the dataset page: https://huggingface.co./datasets/axxkaya/UVT-Explanatory-based-Vision-Tasks.
668
705
[ "language:en", "license:mit", "size_categories:100K<n<1M", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2412.18525", "region:us", "image" ]
2025-01-30T07:28:05
null
null
67c67c88c7cd2413e2c8be4d
qihoo360/Light-R1-SFTData
qihoo360
{"license": "apache-2.0"}
false
null
2025-03-05T13:29:23
11
11
false
2c5e4670b5bb44d202bfb66770c9e63fe37d30aa
Light-R1: Surpassing R1-Distill from Scratch* with $1000 through Curriculum SFT & DPO *from models without long COT GitHub page Here are the two-stage SFT data we used to train Light-R1-32B. Simply refer to stage1-76k.json and stage2-3k.json Model Trained From Release Date AIME24 AIME25 DeepSeek-R1-Distill-Llama-70B Llama-3.3-70B-Instruct 25.1.20 70.0 54.1 DeepSeek-R1-Distill-Qwen-32B Qwen2.5-32B 25.1.20 72.6 54.9 LIMO (32B) Qwen2.5-32B-Instruct 25.2.4 56.3 47.1… See the full description on the dataset page: https://huggingface.co./datasets/qihoo360/Light-R1-SFTData.
182
204
[ "license:apache-2.0", "region:us" ]
2025-03-04T04:07:36
null
null
641debae1d05404efd046a4f
yahma/alpaca-cleaned
yahma
{"license": "cc-by-4.0", "language": ["en"], "tags": ["instruction-finetuning"], "pretty_name": "Alpaca-Cleaned", "task_categories": ["text-generation"]}
false
null
2023-04-10T20:29:06
653
10
false
12567cabf869d7c92e573c7c783905fc160e9639
Dataset Card for Alpaca-Cleaned Repository: https://github.com/gururise/AlpacaDataCleaned Dataset Description This is a cleaned version of the original Alpaca Dataset released by Stanford. The following issues have been identified in the original release and fixed in this dataset: Hallucinations: Many instructions in the original dataset had instructions referencing data on the internet, which just caused GPT3 to hallucinate an answer. "instruction":"Summarize the… See the full description on the dataset page: https://huggingface.co./datasets/yahma/alpaca-cleaned.
23,244
600,713
[ "task_categories:text-generation", "language:en", "license:cc-by-4.0", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "instruction-finetuning" ]
2023-03-24T18:27:58
null
null
64382440c212a363c3ac15c8
OpenAssistant/oasst1
OpenAssistant
{"license": "apache-2.0", "dataset_info": {"features": [{"name": "message_id", "dtype": "string"}, {"name": "parent_id", "dtype": "string"}, {"name": "user_id", "dtype": "string"}, {"name": "created_date", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "role", "dtype": "string"}, {"name": "lang", "dtype": "string"}, {"name": "review_count", "dtype": "int32"}, {"name": "review_result", "dtype": "bool"}, {"name": "deleted", "dtype": "bool"}, {"name": "rank", "dtype": "int32"}, {"name": "synthetic", "dtype": "bool"}, {"name": "model_name", "dtype": "string"}, {"name": "detoxify", "struct": [{"name": "toxicity", "dtype": "float64"}, {"name": "severe_toxicity", "dtype": "float64"}, {"name": "obscene", "dtype": "float64"}, {"name": "identity_attack", "dtype": "float64"}, {"name": "insult", "dtype": "float64"}, {"name": "threat", "dtype": "float64"}, {"name": "sexual_explicit", "dtype": "float64"}]}, {"name": "message_tree_id", "dtype": "string"}, {"name": "tree_state", "dtype": "string"}, {"name": "emojis", "sequence": [{"name": "name", "dtype": "string"}, {"name": "count", "dtype": "int32"}]}, {"name": "labels", "sequence": [{"name": "name", "dtype": "string"}, {"name": "value", "dtype": "float64"}, {"name": "count", "dtype": "int32"}]}], "splits": [{"name": "train", "num_bytes": 100367999, "num_examples": 84437}, {"name": "validation", "num_bytes": 5243405, "num_examples": 4401}], "download_size": 41596430, "dataset_size": 105611404}, "language": ["en", "es", "ru", "de", "pl", "th", "vi", "sv", "bn", "da", "he", "it", "fa", "sk", "id", "nb", "el", "nl", "hu", "eu", "zh", "eo", "ja", "ca", "cs", "bg", "fi", "pt", "tr", "ro", "ar", "uk", "gl", "fr", "ko"], "tags": ["human-feedback"], "size_categories": ["100K<n<1M"], "pretty_name": "OpenAssistant Conversations"}
false
null
2023-05-02T13:21:21
1,357
10
false
fdf72ae0827c1cda404aff25b6603abec9e3399b
OpenAssistant Conversations Dataset (OASST1) Dataset Summary In an effort to democratize research on large-scale alignment, we release OpenAssistant Conversations (OASST1), a human-generated, human-annotated assistant-style conversation corpus consisting of 161,443 messages in 35 different languages, annotated with 461,292 quality ratings, resulting in over 10,000 fully annotated conversation trees. The corpus is a product of a worldwide crowd-sourcing effort… See the full description on the dataset page: https://huggingface.co./datasets/OpenAssistant/oasst1.
10,220
245,685
[ "language:en", "language:es", "language:ru", "language:de", "language:pl", "language:th", "language:vi", "language:sv", "language:bn", "language:da", "language:he", "language:it", "language:fa", "language:sk", "language:id", "language:nb", "language:el", "language:nl", "language:hu", "language:eu", "language:zh", "language:eo", "language:ja", "language:ca", "language:cs", "language:bg", "language:fi", "language:pt", "language:tr", "language:ro", "language:ar", "language:uk", "language:gl", "language:fr", "language:ko", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2304.07327", "region:us", "human-feedback" ]
2023-04-13T15:48:16
null
null
673463fabe618c1a378d99c6
qgyd2021/chinese_porn_novel
qgyd2021
{"language": ["zh"], "size_categories": ["100M<n<1B"], "task_categories": ["text-generation"], "tags": ["art"], "dataset_info": {"config_name": "xbookcn_short_story", "features": [{"name": "source", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "content", "dtype": "string"}, {"name": "content_length", "dtype": "uint32"}, {"name": "url", "dtype": "string"}, {"name": "summary1", "dtype": "string"}, {"name": "summary2", "dtype": "string"}, {"name": "summary3", "dtype": "string"}, {"name": "summary4", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1167355353, "num_examples": 627195}], "download_size": 721183317, "dataset_size": 1167355353}, "configs": [{"config_name": "xbookcn_short_story", "data_files": [{"split": "train", "path": "xbookcn_short_story/train-*"}], "default": true}]}
false
null
2024-11-13T11:06:27
59
10
false
170c125e168cf58400ad3b31300c88ed8a1c978a
Chinese Porn Novel https://huggingface.co./docs/hub/en/datasets-adding datasets-cli convert_to_parquet qgyd2021/chinese_porn_novel --trust_remote_code SQ小说, 用于制作特殊的 GPT 语言模型. 将每篇小说切分 chunk, 用 Qwen-instruct 对 chunk 进行4个摘要, 4个摘要的 prompt {content} 对于此文本, 根据文本的长度输出3到7个具有代表性的简短句子来描述其内容。 每个句子控制在10字左右,不要有序号等,每行一句。 {content} 对于此文本, 根据文本的长度输出2到4个具有代表性的简短句子来描述其内容。 每个句子控制在15字左右,不要有序号等,每行一句。 {content} 对于此文本, 根据文本的长度输出2到4个具有代表性的简短句子来概括其内容。 每个句子控制在10字左右,不要有序号等,每行一句。… See the full description on the dataset page: https://huggingface.co./datasets/qgyd2021/chinese_porn_novel.
1,373
1,994
[ "task_categories:text-generation", "language:zh", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "art" ]
2024-11-13T08:31:54
null
null
End of preview. Expand in Data Studio

Hugging Face Hub Stats

NEW Changes Feb 27th

  • Added new fields: downloadsAllTime, safetensors, gguf

  • Added new split: papers which is all of the Daily Papers

Updated Daily

Downloads last month
9,381

Spaces using cfahlgren1/hub-stats 11