name
stringlengths
12
16
split
stringclasses
1 value
informal_prefix
stringlengths
50
384
formal_statement
stringlengths
55
344
goal
stringlengths
18
313
header
stringclasses
20 values
nl_statement
stringlengths
43
377
header_no_import
stringclasses
20 values
exercise_1_6_4
valid
/-- Prove that the multiplicative groups $\mathbb{R}-\{0\}$ and $\mathbb{C}-\{0\}$ are not isomorphic.-/
theorem exercise_1_6_4 : IsEmpty (Multiplicative ℝ ≃* Multiplicative ℂ):= sorry
⊢ IsEmpty (Multiplicative ℝ ≃* Multiplicative ℂ)
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
Prove that the multiplicative groups $\mathbb{R}-\{0\}$ and $\mathbb{C}-\{0\}$ are not isomorphic.
open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_1_6_17
valid
/-- Let $G$ be any group. Prove that the map from $G$ to itself defined by $g \mapsto g^{-1}$ is a homomorphism if and only if $G$ is abelian.-/
theorem exercise_1_6_17 {G : Type*} [Group G] (f : G → G) (hf : f = λ g => g⁻¹) : ∀ x y : G, f x * f y = f (x*y) ↔ ∀ x y : G, x*y = y*x:= sorry
G : Type u_1 inst✝ : Group G f : G → G hf : f = fun g => g⁻¹ ⊢ ∀ (x y : G), f x * f y = f (x * y) ↔ ∀ (x y : G), x * y = y * x
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
Let $G$ be any group. Prove that the map from $G$ to itself defined by $g \mapsto g^{-1}$ is a homomorphism if and only if $G$ is abelian.
open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_2_1_5
valid
/-- Prove that $G$ cannot have a subgroup $H$ with $|H|=n-1$, where $n=|G|>2$.-/
theorem exercise_2_1_5 {G : Type*} [Group G] [Fintype G] (hG : card G > 2) (H : Subgroup G) [Fintype H] : card H ≠ card G - 1:= sorry
G : Type u_1 inst✝² : Group G inst✝¹ : Fintype G hG : card G > 2 H : Subgroup G inst✝ : Fintype ↥H ⊢ card ↥H ≠ card G - 1
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
Prove that $G$ cannot have a subgroup $H$ with $|H|=n-1$, where $n=|G|>2$.
open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_2_4_4
valid
/-- Prove that if $H$ is a subgroup of $G$ then $H$ is generated by the set $H-\{1\}$.-/
theorem exercise_2_4_4 {G : Type*} [Group G] (H : Subgroup G) : closure ((H : Set G) \ {1}) = ⊤:= sorry
G : Type u_1 inst✝ : Group G H : Subgroup G ⊢ Subgroup.closure (↑H \ {1}) = ⊤
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
Prove that if $H$ is a subgroup of $G$ then $H$ is generated by the set $H-\{1\}$.
open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_2_4_16b
valid
/-- Show that the subgroup of all rotations in a dihedral group is a maximal subgroup.-/
theorem exercise_2_4_16b {n : ℕ} {hn : n ≠ 0} {R : Subgroup (DihedralGroup n)} (hR : R = Subgroup.closure {DihedralGroup.r 1}) : R ≠ ⊤ ∧ ∀ K : Subgroup (DihedralGroup n), R ≤ K → K = R ∨ K = ⊤:= sorry
n : ℕ hn : n ≠ 0 R : Subgroup (DihedralGroup n) hR : R = Subgroup.closure {DihedralGroup.r 1} ⊢ R ≠ ⊤ ∧ ∀ (K : Subgroup (DihedralGroup n)), R ≤ K → K = R ∨ K = ⊤
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
Show that the subgroup of all rotations in a dihedral group is a maximal subgroup.
open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_3_1_3a
valid
/-- Let $A$ be an abelian group and let $B$ be a subgroup of $A$. Prove that $A / B$ is abelian.-/
theorem exercise_3_1_3a {A : Type*} [CommGroup A] (B : Subgroup A) : ∀ a b : A ⧸ B, a*b = b*a:= sorry
A : Type u_1 inst✝ : CommGroup A B : Subgroup A ⊢ ∀ (a b : A ⧸ B), a * b = b * a
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
Let $A$ be an abelian group and let $B$ be a subgroup of $A$. Prove that $A / B$ is abelian.
open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_3_1_22b
valid
/-- Prove that the intersection of an arbitrary nonempty collection of normal subgroups of a group is a normal subgroup (do not assume the collection is countable).-/
theorem exercise_3_1_22b {G : Type*} [Group G] (I : Type*) (H : I → Subgroup G) (hH : ∀ i : I, Normal (H i)) : Normal (⨅ (i : I), H i):= sorry
G : Type u_1 inst✝ : Group G I : Type u_2 H : I → Subgroup G hH : ∀ (i : I), (H i).Normal ⊢ (⨅ i, H i).Normal
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
Prove that the intersection of an arbitrary nonempty collection of normal subgroups of a group is a normal subgroup (do not assume the collection is countable).
open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_3_2_11
valid
/-- Let $H \leq K \leq G$. Prove that $|G: H|=|G: K| \cdot|K: H|$ (do not assume $G$ is finite).-/
theorem exercise_3_2_11 {G : Type*} [Group G] {H K : Subgroup G} (hHK : H ≤ K) : H.index = K.index * H.relindex K:= sorry
G : Type u_1 inst✝ : Group G H K : Subgroup G hHK : H ≤ K ⊢ H.index = K.index * H.relindex K
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
Let $H \leq K \leq G$. Prove that $|G: H|=|G: K| \cdot|K: H|$ (do not assume $G$ is finite).
open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_3_2_21a
valid
/-- Prove that $\mathbb{Q}$ has no proper subgroups of finite index.-/
theorem exercise_3_2_21a (H : AddSubgroup ℚ) (hH : H ≠ ⊤) : H.index = 0:= sorry
H : AddSubgroup ℚ hH : H ≠ ⊤ ⊢ H.index = 0
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
Prove that $\mathbb{Q}$ has no proper subgroups of finite index.
open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_3_4_1
valid
/-- Prove that if $G$ is an abelian simple group then $G \cong Z_{p}$ for some prime $p$ (do not assume $G$ is a finite group).-/
theorem exercise_3_4_1 (G : Type*) [CommGroup G] [IsSimpleGroup G] : IsCyclic G ∧ ∃ G_fin : Fintype G, Nat.Prime (@card G G_fin):= sorry
G : Type u_1 inst✝¹ : CommGroup G inst✝ : IsSimpleGroup G ⊢ IsCyclic G ∧ ∃ G_fin, (card G).Prime
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
Prove that if $G$ is an abelian simple group then $G \cong Z_{p}$ for some prime $p$ (do not assume $G$ is a finite group).
open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_3_4_5a
valid
/-- Prove that subgroups of a solvable group are solvable.-/
theorem exercise_3_4_5a {G : Type*} [Group G] (H : Subgroup G) [IsSolvable G] : IsSolvable H:= sorry
G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : IsSolvable G ⊢ IsSolvable ↥H
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
Prove that subgroups of a solvable group are solvable.
open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_3_4_11
valid
/-- Prove that if $H$ is a nontrivial normal subgroup of the solvable group $G$ then there is a nontrivial subgroup $A$ of $H$ with $A \unlhd G$ and $A$ abelian.-/
theorem exercise_3_4_11 {G : Type*} [Group G] [IsSolvable G] {H : Subgroup G} (hH : H ≠ ⊥) [H.Normal] : ∃ A ≤ H, A.Normal ∧ ∀ a b : A, a*b = b*a:= sorry
G : Type u_1 inst✝² : Group G inst✝¹ : IsSolvable G H : Subgroup G hH : H ≠ ⊥ inst✝ : H.Normal ⊢ ∃ A ≤ H, A.Normal ∧ ∀ (a b : ↥A), a * b = b * a
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
Prove that if $H$ is a nontrivial normal subgroup of the solvable group $G$ then there is a nontrivial subgroup $A$ of $H$ with $A \unlhd G$ and $A$ abelian.
open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_4_3_26
valid
/-- Let $G$ be a transitive permutation group on the finite set $A$ with $|A|>1$. Show that there is some $\sigma \in G$ such that $\sigma(a) \neq a$ for all $a \in A$.-/
theorem exercise_4_3_26 {α : Type*} [Fintype α] (ha : card α > 1) (h_tran : ∀ a b: α, ∃ σ : Equiv.Perm α, σ a = b) : ∃ σ : Equiv.Perm α, ∀ a : α, σ a ≠ a:= sorry
α : Type u_1 inst✝ : Fintype α ha : card α > 1 h_tran : ∀ (a b : α), ∃ σ, σ a = b ⊢ ∃ σ, ∀ (a : α), σ a ≠ a
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
Let $G$ be a transitive permutation group on the finite set $A$ with $|A|>1$. Show that there is some $\sigma \in G$ such that $\sigma(a) \neq a$ for all $a \in A$.
open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_4_2_14
valid
/-- Let $G$ be a finite group of composite order $n$ with the property that $G$ has a subgroup of order $k$ for each positive integer $k$ dividing $n$. Prove that $G$ is not simple.-/
theorem exercise_4_2_14 {G : Type*} [Fintype G] [Group G] (hG : ¬ (card G).Prime) (hG1 : ∀ k : ℕ, k ∣ card G → ∃ (H : Subgroup G) (fH : Fintype H), @card H fH = k) : ¬ IsSimpleGroup G:= sorry
G : Type u_1 inst✝¹ : Fintype G inst✝ : Group G hG : ¬(card G).Prime hG1 : ∀ (k : ℕ), k ∣ card G → ∃ H fH, card ↥H = k ⊢ ¬IsSimpleGroup G
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
Let $G$ be a finite group of composite order $n$ with the property that $G$ has a subgroup of order $k$ for each positive integer $k$ dividing $n$. Prove that $G$ is not simple.
open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_4_4_6a
valid
/-- Prove that characteristic subgroups are normal.-/
theorem exercise_4_4_6a {G : Type*} [Group G] (H : Subgroup G) [Characteristic H] : Normal H:= sorry
G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : H.Characteristic ⊢ H.Normal
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
Prove that characteristic subgroups are normal.
open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_4_4_7
valid
/-- If $H$ is the unique subgroup of a given order in a group $G$ prove $H$ is characteristic in $G$.-/
theorem exercise_4_4_7 {G : Type*} [Group G] {H : Subgroup G} [Fintype H] (hH : ∀ (K : Subgroup G) (fK : Fintype K), card H = @card K fK → H = K) : H.Characteristic:= sorry
G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Fintype ↥H hH : ∀ (K : Subgroup G) (fK : Fintype ↥K), card ↥H = card ↥K → H = K ⊢ H.Characteristic
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
If $H$ is the unique subgroup of a given order in a group $G$ prove $H$ is characteristic in $G$.
open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_4_5_1a
valid
/-- Prove that if $P \in \operatorname{Syl}_{p}(G)$ and $H$ is a subgroup of $G$ containing $P$ then $P \in \operatorname{Syl}_{p}(H)$.-/
theorem exercise_4_5_1a {p : ℕ} {G : Type*} [Group G] {P : Subgroup G} (hP : IsPGroup p P) (H : Subgroup G) (hH : P ≤ H) : IsPGroup p H:= sorry
p : ℕ G : Type u_1 inst✝ : Group G P : Subgroup G hP : IsPGroup p ↥P H : Subgroup G hH : P ≤ H ⊢ IsPGroup p ↥H
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
Prove that if $P \in \operatorname{Syl}_{p}(G)$ and $H$ is a subgroup of $G$ containing $P$ then $P \in \operatorname{Syl}_{p}(H)$.
open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_4_5_14
valid
/-- Prove that a group of order 312 has a normal Sylow $p$-subgroup for some prime $p$ dividing its order.-/
theorem exercise_4_5_14 {G : Type*} [Group G] [Fintype G] (hG : card G = 312) : ∃ (p : ℕ) (P : Sylow p G), P.Normal:= sorry
G : Type u_1 inst✝¹ : Group G inst✝ : Fintype G hG : card G = 312 ⊢ ∃ p P, (↑P).Normal
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
Prove that a group of order 312 has a normal Sylow $p$-subgroup for some prime $p$ dividing its order.
open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_4_5_16
valid
/-- Let $|G|=p q r$, where $p, q$ and $r$ are primes with $p<q<r$. Prove that $G$ has a normal Sylow subgroup for either $p, q$ or $r$.-/
theorem exercise_4_5_16 {p q r : ℕ} {G : Type*} [Group G] [Fintype G] (hpqr : p < q ∧ q < r) (hpqr1 : p.Prime ∧ q.Prime ∧ r.Prime)(hG : card G = p*q*r) : Nonempty (Sylow p G) ∨ Nonempty (Sylow q G) ∨ Nonempty (Sylow r G):= sorry
p q r : ℕ G : Type u_1 inst✝¹ : Group G inst✝ : Fintype G hpqr : p < q ∧ q < r hpqr1 : p.Prime ∧ q.Prime ∧ r.Prime hG : card G = p * q * r ⊢ Nonempty (Sylow p G) ∨ Nonempty (Sylow q G) ∨ Nonempty (Sylow r G)
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
Let $|G|=p q r$, where $p, q$ and $r$ are primes with $p<q<r$. Prove that $G$ has a normal Sylow subgroup for either $p, q$ or $r$.
open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_4_5_18
valid
/-- Prove that a group of order 200 has a normal Sylow 5-subgroup.-/
theorem exercise_4_5_18 {G : Type*} [Fintype G] [Group G] (hG : card G = 200) : ∃ N : Sylow 5 G, N.Normal:= sorry
G : Type u_1 inst✝¹ : Fintype G inst✝ : Group G hG : card G = 200 ⊢ ∃ N, (↑N).Normal
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
Prove that a group of order 200 has a normal Sylow 5-subgroup.
open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_4_5_20
valid
/-- Prove that if $|G|=1365$ then $G$ is not simple.-/
theorem exercise_4_5_20 {G : Type*} [Fintype G] [Group G] (hG : card G = 1365) : ¬ IsSimpleGroup G:= sorry
G : Type u_1 inst✝¹ : Fintype G inst✝ : Group G hG : card G = 1365 ⊢ ¬IsSimpleGroup G
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
Prove that if $|G|=1365$ then $G$ is not simple.
open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_4_5_22
valid
/-- Prove that if $|G|=132$ then $G$ is not simple.-/
theorem exercise_4_5_22 {G : Type*} [Fintype G] [Group G] (hG : card G = 132) : ¬ IsSimpleGroup G:= sorry
G : Type u_1 inst✝¹ : Fintype G inst✝ : Group G hG : card G = 132 ⊢ ¬IsSimpleGroup G
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
Prove that if $|G|=132$ then $G$ is not simple.
open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_4_5_28
valid
/-- Let $G$ be a group of order 105. Prove that if a Sylow 3-subgroup of $G$ is normal then $G$ is abelian.-/
def exercise_4_5_28 {G : Type*} [Group G] [Fintype G] (hG : card G = 105) (P : Sylow 3 G) [hP : P.Normal] : CommGroup G:= sorry
G : Type u_1 inst✝¹ : Group G inst✝ : Fintype G hG : card G = 105 P : Sylow 3 G hP : (↑P).Normal ⊢ CommGroup G
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
Let $G$ be a group of order 105. Prove that if a Sylow 3-subgroup of $G$ is normal then $G$ is abelian.
open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_5_4_2
valid
/-- Prove that a subgroup $H$ of $G$ is normal if and only if $[G, H] \leq H$.-/
theorem exercise_5_4_2 {G : Type*} [Group G] (H : Subgroup G) : H.Normal ↔ ⁅(⊤ : Subgroup G), H⁆ ≤ H:= sorry
G : Type u_1 inst✝ : Group G H : Subgroup G ⊢ H.Normal ↔ ⁅⊤, H⁆ ≤ H
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
Prove that a subgroup $H$ of $G$ is normal if and only if $[G, H] \leq H$.
open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_7_1_11
valid
/-- Prove that if $R$ is an integral domain and $x^{2}=1$ for some $x \in R$ then $x=\pm 1$.-/
theorem exercise_7_1_11 {R : Type*} [Ring R] [IsDomain R] {x : R} (hx : x^2 = 1) : x = 1 ∨ x = -1:= sorry
R : Type u_1 inst✝¹ : Ring R inst✝ : IsDomain R x : R hx : x ^ 2 = 1 ⊢ x = 1 ∨ x = -1
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
Prove that if $R$ is an integral domain and $x^{2}=1$ for some $x \in R$ then $x=\pm 1$.
open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_7_1_15
valid
/-- A ring $R$ is called a Boolean ring if $a^{2}=a$ for all $a \in R$. Prove that every Boolean ring is commutative.-/
def exercise_7_1_15 {R : Type*} [Ring R] (hR : ∀ a : R, a^2 = a) : CommRing R:= sorry
R : Type u_1 inst✝ : Ring R hR : ∀ (a : R), a ^ 2 = a ⊢ CommRing R
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
A ring $R$ is called a Boolean ring if $a^{2}=a$ for all $a \in R$. Prove that every Boolean ring is commutative.
open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_7_2_12
valid
/-- Let $G=\left\{g_{1}, \ldots, g_{n}\right\}$ be a finite group. Prove that the element $N=g_{1}+g_{2}+\ldots+g_{n}$ is in the center of the group ring $R G$.-/
theorem exercise_7_2_12 {R G : Type*} [Ring R] [Group G] [Fintype G] : ∑ g : G, MonoidAlgebra.of R G g ∈ center (MonoidAlgebra R G):= sorry
R : Type u_1 G : Type u_2 inst✝² : Ring R inst✝¹ : Group G inst✝ : Fintype G ⊢ ∑ g : G, (MonoidAlgebra.of R G) g ∈ Set.center (MonoidAlgebra R G)
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
Let $G=\left\{g_{1}, \ldots, g_{n}\right\}$ be a finite group. Prove that the element $N=g_{1}+g_{2}+\ldots+g_{n}$ is in the center of the group ring $R G$.
open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_7_3_37
valid
/-- An ideal $N$ is called nilpotent if $N^{n}$ is the zero ideal for some $n \geq 1$. Prove that the ideal $p \mathbb{Z} / p^{m} \mathbb{Z}$ is a nilpotent ideal in the ring $\mathbb{Z} / p^{m} \mathbb{Z}$.-/
theorem exercise_7_3_37 {p m : ℕ} (hp : p.Prime) : IsNilpotent (span ({↑p} : Set $ ZMod $ p^m) : Ideal $ ZMod $ p^m):= sorry
p m : ℕ hp : p.Prime ⊢ IsNilpotent (span {↑p})
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
An ideal $N$ is called nilpotent if $N^{n}$ is the zero ideal for some $n \geq 1$. Prove that the ideal $p \mathbb{Z} / p^{m} \mathbb{Z}$ is a nilpotent ideal in the ring $\mathbb{Z} / p^{m} \mathbb{Z}$.
open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_8_1_12
valid
/-- Let $N$ be a positive integer. Let $M$ be an integer relatively prime to $N$ and let $d$ be an integer relatively prime to $\varphi(N)$, where $\varphi$ denotes Euler's $\varphi$-function. Prove that if $M_{1} \equiv M^{d} \pmod N$ then $M \equiv M_{1}^{d^{\prime}} \pmod N$ where $d^{\prime}$ is the inverse of $d \bmod \varphi(N)$: $d d^{\prime} \equiv 1 \pmod {\varphi(N)}$.-/
theorem exercise_8_1_12 {N : ℕ} (hN : N > 0) {M M': ℤ} {d : ℕ} (hMN : M.gcd N = 1) (hMd : d.gcd N.totient = 1) (hM' : M' ≡ M^d [ZMOD N]) : ∃ d' : ℕ, d' * d ≡ 1 [ZMOD N.totient] ∧ M ≡ M'^d' [ZMOD N]:= sorry
N : ℕ hN : N > 0 M M' : ℤ d : ℕ hMN : M.gcd ↑N = 1 hMd : d.gcd N.totient = 1 hM' : M' ≡ M ^ d [ZMOD ↑N] ⊢ ∃ d', ↑d' * ↑d ≡ 1 [ZMOD ↑N.totient] ∧ M ≡ M' ^ d' [ZMOD ↑N]
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
Let $N$ be a positive integer. Let $M$ be an integer relatively prime to $N$ and let $d$ be an integer relatively prime to $\varphi(N)$, where $\varphi$ denotes Euler's $\varphi$-function. Prove that if $M_{1} \equiv M^{d} \pmod N$ then $M \equiv M_{1}^{d^{\prime}} \pmod N$ where $d^{\prime}$ is the inverse of $d \bmod \varphi(N)$: $d d^{\prime} \equiv 1 \pmod {\varphi(N)}$.
open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_8_3_4
valid
/-- Prove that if an integer is the sum of two rational squares, then it is the sum of two integer squares.-/
theorem exercise_8_3_4 {R : Type*} {n : ℤ} {r s : ℚ} (h : r^2 + s^2 = n) : ∃ a b : ℤ, a^2 + b^2 = n:= sorry
R : Type u_1 n : ℤ r s : ℚ h : r ^ 2 + s ^ 2 = ↑n ⊢ ∃ a b, a ^ 2 + b ^ 2 = n
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
Prove that if an integer is the sum of two rational squares, then it is the sum of two integer squares.
open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_8_3_6a
valid
/-- Prove that the quotient ring $\mathbb{Z}[i] /(1+i)$ is a field of order 2.-/
theorem exercise_8_3_6a {R : Type} [Ring R] (hR : R = (GaussianInt ⧸ span ({⟨0, 1⟩} : Set GaussianInt))) : IsField R ∧ ∃ finR : Fintype R, @card R finR = 2:= sorry
R : Type inst✝ : Ring R hR : R = (GaussianInt ⧸ span {{ re := 0, im := 1 }}) ⊢ IsField R ∧ ∃ finR, card R = 2
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
Prove that the quotient ring $\mathbb{Z}[i] /(1+i)$ is a field of order 2.
open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_9_1_6
valid
/-- Prove that $(x, y)$ is not a principal ideal in $\mathbb{Q}[x, y]$.-/
theorem exercise_9_1_6 : ¬ Submodule.IsPrincipal (span ({MvPolynomial.X 0, MvPolynomial.X 1} : Set (MvPolynomial (Fin 2) ℚ))):= sorry
⊢ ¬Submodule.IsPrincipal (span {MvPolynomial.X 0, MvPolynomial.X 1})
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
Prove that $(x, y)$ is not a principal ideal in $\mathbb{Q}[x, y]$.
open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_9_3_2
valid
/-- Prove that if $f(x)$ and $g(x)$ are polynomials with rational coefficients whose product $f(x) g(x)$ has integer coefficients, then the product of any coefficient of $g(x)$ with any coefficient of $f(x)$ is an integer.-/
theorem exercise_9_3_2 {f g : Polynomial ℚ} (i j : ℕ) (hfg : ∀ n : ℕ, ∃ a : ℤ, (f*g).coeff = a) : ∃ a : ℤ, f.coeff i * g.coeff j = a:= sorry
f g : ℚ[X] i j : ℕ hfg : ℕ → ∃ a, (f * g).coeff = ↑a ⊢ ∃ a, f.coeff i * g.coeff j = ↑a
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
Prove that if $f(x)$ and $g(x)$ are polynomials with rational coefficients whose product $f(x) g(x)$ has integer coefficients, then the product of any coefficient of $g(x)$ with any coefficient of $f(x)$ is an integer.
open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_9_4_2b
valid
/-- Prove that $x^6+30x^5-15x^3 + 6x-120$ is irreducible in $\mathbb{Z}[x]$.-/
theorem exercise_9_4_2b : Irreducible (X^6 + 30*X^5 - 15*X^3 + 6*X - 120 : Polynomial ℤ):= sorry
⊢ Irreducible (X ^ 6 + 30 * X ^ 5 - 15 * X ^ 3 + 6 * X - 120)
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
Prove that $x^6+30x^5-15x^3 + 6x-120$ is irreducible in $\mathbb{Z}[x]$.
open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_9_4_2d
valid
/-- Prove that $\frac{(x+2)^p-2^p}{x}$, where $p$ is an odd prime, is irreducible in $\mathbb{Z}[x]$.-/
theorem exercise_9_4_2d {p : ℕ} (hp : p.Prime ∧ p > 2) {f : Polynomial ℤ} (hf : f = (X + 2)^p): Irreducible (∑ n in (f.support \ {0}), (f.coeff n : Polynomial ℤ) * X ^ (n-1) : Polynomial ℤ):= sorry
p : ℕ hp : p.Prime ∧ p > 2 f : ℤ[X] hf : f = (X + 2) ^ p ⊢ Irreducible (∑ n ∈ f.support \ {0}, ↑(f.coeff n) * X ^ (n - 1))
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
Prove that $\frac{(x+2)^p-2^p}{x}$, where $p$ is an odd prime, is irreducible in $\mathbb{Z}[x]$.
open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_9_4_11
valid
/-- Prove that $x^2+y^2-1$ is irreducible in $\mathbb{Q}[x,y]$.-/
theorem exercise_9_4_11 : Irreducible ((MvPolynomial.X 0)^2 + (MvPolynomial.X 1)^2 - 1 : MvPolynomial (Fin 2) ℚ):= sorry
⊢ Irreducible (MvPolynomial.X 0 ^ 2 + MvPolynomial.X 1 ^ 2 - 1)
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
Prove that $x^2+y^2-1$ is irreducible in $\mathbb{Q}[x,y]$.
open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_13_1
valid
/-- Let $X$ be a topological space; let $A$ be a subset of $X$. Suppose that for each $x \in A$ there is an open set $U$ containing $x$ such that $U \subset A$. Show that $A$ is open in $X$.-/
theorem exercise_13_1 (X : Type*) [TopologicalSpace X] (A : Set X) (h1 : ∀ x ∈ A, ∃ U : Set X, x ∈ U ∧ IsOpen U ∧ U ⊆ A) : IsOpen A:= sorry
X : Type u_1 inst✝ : TopologicalSpace X A : Set X h1 : ∀ x ∈ A, ∃ U, x ∈ U ∧ IsOpen U ∧ U ⊆ A ⊢ IsOpen A
import Mathlib open Filter Set TopologicalSpace open scoped Topology
Let $X$ be a topological space; let $A$ be a subset of $X$. Suppose that for each $x \in A$ there is an open set $U$ containing $x$ such that $U \subset A$. Show that $A$ is open in $X$.
open Filter Set TopologicalSpace open scoped Topology
exercise_13_4a1
valid
/-- If $\mathcal{T}_\alpha$ is a family of topologies on $X$, show that $\bigcap \mathcal{T}_\alpha$ is a topology on $X$.-/
theorem exercise_13_4a1 (X I : Type*) (T : I → Set (Set X)) (h : ∀ i, is_topology X (T i)) : is_topology X (⋂ i : I, T i):= sorry
X : Type u_1 I : Type u_2 T : I → Set (Set X) h : ∀ (i : I), is_topology X (T i) ⊢ is_topology X (⋂ i, T i)
import Mathlib open Filter Set TopologicalSpace open scoped Topology def is_topology (X : Type*) (T : Set (Set X)) := univ ∈ T ∧ (∀ s t, s ∈ T → t ∈ T → s ∩ t ∈ T) ∧ (∀s, (∀t ∈ s, t ∈ T) → sUnion s ∈ T)
If $\mathcal{T}_\alpha$ is a family of topologies on $X$, show that $\bigcap \mathcal{T}_\alpha$ is a topology on $X$.
open Filter Set TopologicalSpace open scoped Topology def is_topology (X : Type*) (T : Set (Set X)) := univ ∈ T ∧ (∀ s t, s ∈ T → t ∈ T → s ∩ t ∈ T) ∧ (∀s, (∀t ∈ s, t ∈ T) → sUnion s ∈ T)
exercise_13_4b1
valid
/-- Let $\mathcal{T}_\alpha$ be a family of topologies on $X$. Show that there is a unique smallest topology on $X$ containing all the collections $\mathcal{T}_\alpha$.-/
theorem exercise_13_4b1 (X I : Type*) (T : I → Set (Set X)) (h : ∀ i, is_topology X (T i)) : ∃! T', is_topology X T' ∧ (∀ i, T i ⊆ T') ∧ ∀ T'', is_topology X T'' → (∀ i, T i ⊆ T'') → T'' ⊆ T':= sorry
X : Type u_1 I : Type u_2 T : I → Set (Set X) h : ∀ (i : I), is_topology X (T i) ⊢ ∃! T', is_topology X T' ∧ (∀ (i : I), T i ⊆ T') ∧ ∀ (T'' : Set (Set X)), is_topology X T'' → (∀ (i : I), T i ⊆ T'') → T'' ⊆ T'
import Mathlib open Filter Set TopologicalSpace open scoped Topology def is_topology (X : Type*) (T : Set (Set X)) := univ ∈ T ∧ (∀ s t, s ∈ T → t ∈ T → s ∩ t ∈ T) ∧ (∀s, (∀t ∈ s, t ∈ T) → sUnion s ∈ T)
Let $\mathcal{T}_\alpha$ be a family of topologies on $X$. Show that there is a unique smallest topology on $X$ containing all the collections $\mathcal{T}_\alpha$.
open Filter Set TopologicalSpace open scoped Topology def is_topology (X : Type*) (T : Set (Set X)) := univ ∈ T ∧ (∀ s t, s ∈ T → t ∈ T → s ∩ t ∈ T) ∧ (∀s, (∀t ∈ s, t ∈ T) → sUnion s ∈ T)
exercise_13_5a
valid
/-- Show that if $\mathcal{A}$ is a basis for a topology on $X$, then the topology generated by $\mathcal{A}$ equals the intersection of all topologies on $X$ that contain $\mathcal{A}$.-/
theorem exercise_13_5a {X : Type*} [TopologicalSpace X] (A : Set (Set X)) (hA : IsTopologicalBasis A) : generateFrom A = generateFrom (sInter {T | is_topology X T ∧ A ⊆ T}):= sorry
X : Type u_1 inst✝ : TopologicalSpace X A : Set (Set X) hA : IsTopologicalBasis A ⊢ generateFrom A = generateFrom (⋂₀ {T | is_topology X T ∧ A ⊆ T})
import Mathlib open Filter Set TopologicalSpace open scoped Topology def is_topology (X : Type*) (T : Set (Set X)) := univ ∈ T ∧ (∀ s t, s ∈ T → t ∈ T → s ∩ t ∈ T) ∧ (∀s, (∀t ∈ s, t ∈ T) → sUnion s ∈ T)
Show that if $\mathcal{A}$ is a basis for a topology on $X$, then the topology generated by $\mathcal{A}$ equals the intersection of all topologies on $X$ that contain $\mathcal{A}$.
open Filter Set TopologicalSpace open scoped Topology def is_topology (X : Type*) (T : Set (Set X)) := univ ∈ T ∧ (∀ s t, s ∈ T → t ∈ T → s ∩ t ∈ T) ∧ (∀s, (∀t ∈ s, t ∈ T) → sUnion s ∈ T)
exercise_13_6
valid
/-- Show that the lower limit topology $\mathbb{R}_l$ and $K$-topology $\mathbb{R}_K$ are not comparable.-/
theorem exercise_13_6 : ¬ (∀ U, Rl.IsOpen U → K_topology.IsOpen U) ∧ ¬ (∀ U, K_topology.IsOpen U → Rl.IsOpen U):= sorry
⊢ (¬∀ (U : Set ℝ), TopologicalSpace.IsOpen U → TopologicalSpace.IsOpen U) ∧ ¬∀ (U : Set ℝ), TopologicalSpace.IsOpen U → TopologicalSpace.IsOpen U
import Mathlib open Filter Set TopologicalSpace open scoped Topology def lower_limit_topology (X : Type) [Preorder X] := generateFrom {S : Set X | ∃ a b, a < b ∧ S = Ico a b} def Rl := lower_limit_topology ℝ def K : Set ℝ := {r | ∃ n : ℕ, r = 1 / n} def K_topology := generateFrom ({S : Set ℝ | ∃ a b, a < b ∧ S = Ioo a b} ∪ {S : Set ℝ | ∃ a b, a < b ∧ S = Ioo a b \ K})
Show that the lower limit topology $\mathbb{R}_l$ and $K$-topology $\mathbb{R}_K$ are not comparable.
open Filter Set TopologicalSpace open scoped Topology def lower_limit_topology (X : Type) [Preorder X] := generateFrom {S : Set X | ∃ a b, a < b ∧ S = Ico a b} def Rl := lower_limit_topology ℝ def K : Set ℝ := {r | ∃ n : ℕ, r = 1 / n} def K_topology := generateFrom ({S : Set ℝ | ∃ a b, a < b ∧ S = Ioo a b} ∪ {S : Set ℝ | ∃ a b, a < b ∧ S = Ioo a b \ K})
exercise_13_8b
valid
/-- Show that the collection $\{(a,b) \mid a < b, a \text{ and } b \text{ rational}\}$ is a basis that generates a topology different from the lower limit topology on $\mathbb{R}$.-/
theorem exercise_13_8b : (generateFrom {S : Set ℝ | ∃ a b : ℚ, a < b ∧ S = Ico ↑a ↑b}).IsOpen ≠ (lower_limit_topology ℝ).IsOpen:= sorry
⊢ TopologicalSpace.IsOpen ≠ TopologicalSpace.IsOpen
import Mathlib open Filter Set TopologicalSpace open scoped Topology def lower_limit_topology (X : Type) [Preorder X] := generateFrom {S : Set X | ∃ a b, a < b ∧ S = Ico a b}
Show that the collection $\{(a,b) \mid a < b, a \text{ and } b \text{ rational}\}$ is a basis that generates a topology different from the lower limit topology on $\mathbb{R}$.
open Filter Set TopologicalSpace open scoped Topology def lower_limit_topology (X : Type) [Preorder X] := generateFrom {S : Set X | ∃ a b, a < b ∧ S = Ico a b}
exercise_16_4
valid
/-- A map $f: X \rightarrow Y$ is said to be an open map if for every open set $U$ of $X$, the set $f(U)$ is open in $Y$. Show that $\pi_{1}: X \times Y \rightarrow X$ and $\pi_{2}: X \times Y \rightarrow Y$ are open maps.-/
theorem exercise_16_4 {X Y : Type*} [TopologicalSpace X] [TopologicalSpace Y] (π₁ : X × Y → X) (π₂ : X × Y → Y) (h₁ : π₁ = Prod.fst) (h₂ : π₂ = Prod.snd) : IsOpenMap π₁ ∧ IsOpenMap π₂:= sorry
X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y π₁ : X × Y → X π₂ : X × Y → Y h₁ : π₁ = Prod.fst h₂ : π₂ = Prod.snd ⊢ IsOpenMap π₁ ∧ IsOpenMap π₂
import Mathlib open Filter Set TopologicalSpace open scoped Topology
A map $f: X \rightarrow Y$ is said to be an open map if for every open set $U$ of $X$, the set $f(U)$ is open in $Y$. Show that $\pi_{1}: X \times Y \rightarrow X$ and $\pi_{2}: X \times Y \rightarrow Y$ are open maps.
open Filter Set TopologicalSpace open scoped Topology
exercise_17_4
valid
/-- Show that if $U$ is open in $X$ and $A$ is closed in $X$, then $U-A$ is open in $X$, and $A-U$ is closed in $X$.-/
theorem exercise_17_4 {X : Type*} [TopologicalSpace X] (U A : Set X) (hU : IsOpen U) (hA : IsClosed A) : IsOpen (U \ A) ∧ IsClosed (A \ U):= sorry
X : Type u_1 inst✝ : TopologicalSpace X U A : Set X hU : IsOpen U hA : IsClosed A ⊢ IsOpen (U \ A) ∧ IsClosed (A \ U)
import Mathlib open Filter Set TopologicalSpace open scoped Topology
Show that if $U$ is open in $X$ and $A$ is closed in $X$, then $U-A$ is open in $X$, and $A-U$ is closed in $X$.
open Filter Set TopologicalSpace open scoped Topology
exercise_18_8b
valid
/-- Let $Y$ be an ordered set in the order topology. Let $f, g: X \rightarrow Y$ be continuous. Let $h: X \rightarrow Y$ be the function $h(x)=\min \{f(x), g(x)\}.$ Show that $h$ is continuous.-/
theorem exercise_18_8b {X Y : Type*} [TopologicalSpace X] [TopologicalSpace Y] [LinearOrder Y] [OrderTopology Y] {f g : X → Y} (hf : Continuous f) (hg : Continuous g) : Continuous (λ x => min (f x) (g x)):= sorry
X : Type u_1 Y : Type u_2 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : LinearOrder Y inst✝ : OrderTopology Y f g : X → Y hf : Continuous f hg : Continuous g ⊢ Continuous fun x => min (f x) (g x)
import Mathlib open Filter Set TopologicalSpace open scoped Topology
Let $Y$ be an ordered set in the order topology. Let $f, g: X \rightarrow Y$ be continuous. Let $h: X \rightarrow Y$ be the function $h(x)=\min \{f(x), g(x)\}.$ Show that $h$ is continuous.
open Filter Set TopologicalSpace open scoped Topology
exercise_19_6a
valid
/-- Let $\mathbf{x}_1, \mathbf{x}_2, \ldots$ be a sequence of the points of the product space $\prod X_\alpha$. Show that this sequence converges to the point $\mathbf{x}$ if and only if the sequence $\pi_\alpha(\mathbf{x}_i)$ converges to $\pi_\alpha(\mathbf{x})$ for each $\alpha$.-/
theorem exercise_19_6a {n : ℕ} {f : Fin n → Type*} {x : ℕ → Πa, f a} (y : Πi, f i) [Πa, TopologicalSpace (f a)] : Tendsto x atTop (𝓝 y) ↔ ∀ i, Tendsto (λ j => (x j) i) atTop (𝓝 (y i)):= sorry
n : ℕ f : Fin n → Type u_1 x : ℕ → (a : Fin n) → f a y : (i : Fin n) → f i inst✝ : (a : Fin n) → TopologicalSpace (f a) ⊢ Tendsto x atTop (𝓝 y) ↔ ∀ (i : Fin n), Tendsto (fun j => x j i) atTop (𝓝 (y i))
import Mathlib open Filter Set TopologicalSpace open scoped Topology
Let $\mathbf{x}_1, \mathbf{x}_2, \ldots$ be a sequence of the points of the product space $\prod X_\alpha$. Show that this sequence converges to the point $\mathbf{x}$ if and only if the sequence $\pi_\alpha(\mathbf{x}_i)$ converges to $\pi_\alpha(\mathbf{x})$ for each $\alpha$.
open Filter Set TopologicalSpace open scoped Topology
exercise_21_6a
valid
/-- Define $f_{n}:[0,1] \rightarrow \mathbb{R}$ by the equation $f_{n}(x)=x^{n}$. Show that the sequence $\left(f_{n}(x)\right)$ converges for each $x \in[0,1]$.-/
theorem exercise_21_6a (f : ℕ → I → ℝ ) (h : ∀ x n, f n x = x ^ n) : ∀ x, ∃ y, Tendsto (λ n => f n x) atTop (𝓝 y):= sorry
f : ℕ → ↑I → ℝ h : ∀ (x : ↑I) (n : ℕ), f n x = ↑x ^ n ⊢ ∀ (x : ↑I), ∃ y, Tendsto (fun n => f n x) atTop (𝓝 y)
import Mathlib open Filter Set TopologicalSpace open scoped Topology abbrev I : Set ℝ := Icc 0 1
Define $f_{n}:[0,1] \rightarrow \mathbb{R}$ by the equation $f_{n}(x)=x^{n}$. Show that the sequence $\left(f_{n}(x)\right)$ converges for each $x \in[0,1]$.
open Filter Set TopologicalSpace open scoped Topology abbrev I : Set ℝ := Icc 0 1
exercise_21_8
valid
/-- Let $X$ be a topological space and let $Y$ be a metric space. Let $f_{n}: X \rightarrow Y$ be a sequence of continuous functions. Let $x_{n}$ be a sequence of points of $X$ converging to $x$. Show that if the sequence $\left(f_{n}\right)$ converges uniformly to $f$, then $\left(f_{n}\left(x_{n}\right)\right)$ converges to $f(x)$.-/
theorem exercise_21_8 {X : Type*} [TopologicalSpace X] {Y : Type*} [MetricSpace Y] {f : ℕ → X → Y} {x : ℕ → X} (hf : ∀ n, Continuous (f n)) (x₀ : X) (hx : Tendsto x atTop (𝓝 x₀)) (f₀ : X → Y) (hh : TendstoUniformly f f₀ atTop) : Tendsto (λ n => f n (x n)) atTop (𝓝 (f₀ x₀)):= sorry
X : Type u_1 inst✝¹ : TopologicalSpace X Y : Type u_2 inst✝ : MetricSpace Y f : ℕ → X → Y x : ℕ → X hf : ∀ (n : ℕ), Continuous (f n) x₀ : X hx : Tendsto x atTop (𝓝 x₀) f₀ : X → Y hh : TendstoUniformly f f₀ atTop ⊢ Tendsto (fun n => f n (x n)) atTop (𝓝 (f₀ x₀))
import Mathlib open Filter Set TopologicalSpace open scoped Topology
Let $X$ be a topological space and let $Y$ be a metric space. Let $f_{n}: X \rightarrow Y$ be a sequence of continuous functions. Let $x_{n}$ be a sequence of points of $X$ converging to $x$. Show that if the sequence $\left(f_{n}\right)$ converges uniformly to $f$, then $\left(f_{n}\left(x_{n}\right)\right)$ converges to $f(x)$.
open Filter Set TopologicalSpace open scoped Topology
exercise_23_2
valid
/-- Let $\left\{A_{n}\right\}$ be a sequence of connected subspaces of $X$, such that $A_{n} \cap A_{n+1} \neq \varnothing$ for all $n$. Show that $\bigcup A_{n}$ is connected.-/
theorem exercise_23_2 {X : Type*} [TopologicalSpace X] {A : ℕ → Set X} (hA : ∀ n, IsConnected (A n)) (hAn : ∀ n, A n ∩ A (n + 1) ≠ ∅) : IsConnected (⋃ n, A n):= sorry
X : Type u_1 inst✝ : TopologicalSpace X A : ℕ → Set X hA : ∀ (n : ℕ), IsConnected (A n) hAn : ∀ (n : ℕ), A n ∩ A (n + 1) ≠ ∅ ⊢ IsConnected (⋃ n, A n)
import Mathlib open Filter Set TopologicalSpace open scoped Topology
Let $\left\{A_{n}\right\}$ be a sequence of connected subspaces of $X$, such that $A_{n} \cap A_{n+1} \neq \varnothing$ for all $n$. Show that $\bigcup A_{n}$ is connected.
open Filter Set TopologicalSpace open scoped Topology
exercise_23_4
valid
/-- Show that if $X$ is an infinite set, it is connected in the finite complement topology.-/
theorem exercise_23_4 {X : Type*} [TopologicalSpace X] [CofiniteTopology X] (s : Set X) : Infinite s → IsConnected s:= sorry
X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CofiniteTopology X s : Set X ⊢ Infinite ↑s → IsConnected s
import Mathlib open Filter Set TopologicalSpace open scoped Topology set_option checkBinderAnnotations false
Show that if $X$ is an infinite set, it is connected in the finite complement topology.
open Filter Set TopologicalSpace open scoped Topology set_option checkBinderAnnotations false
exercise_23_9
valid
/-- Let $A$ be a proper subset of $X$, and let $B$ be a proper subset of $Y$. If $X$ and $Y$ are connected, show that $(X \times Y)-(A \times B)$ is connected.-/
theorem exercise_23_9 {X Y : Type*} [TopologicalSpace X] [TopologicalSpace Y] (A₁ A₂ : Set X) (B₁ B₂ : Set Y) (hA : A₁ ⊂ A₂) (hB : B₁ ⊂ B₂) (hA : IsConnected A₂) (hB : IsConnected B₂) : IsConnected ({x | ∃ a b, x = (a, b) ∧ a ∈ A₂ ∧ b ∈ B₂} \ {x | ∃ a b, x = (a, b) ∧ a ∈ A₁ ∧ b ∈ B₁}):= sorry
X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y A₁ A₂ : Set X B₁ B₂ : Set Y hA✝ : A₁ ⊂ A₂ hB✝ : B₁ ⊂ B₂ hA : IsConnected A₂ hB : IsConnected B₂ ⊢ IsConnected ({x | ∃ a b, x = (a, b) ∧ a ∈ A₂ ∧ b ∈ B₂} \ {x | ∃ a b, x = (a, b) ∧ a ∈ A₁ ∧ b ∈ B₁})
import Mathlib open Filter Set TopologicalSpace open scoped Topology
Let $A$ be a proper subset of $X$, and let $B$ be a proper subset of $Y$. If $X$ and $Y$ are connected, show that $(X \times Y)-(A \times B)$ is connected.
open Filter Set TopologicalSpace open scoped Topology
exercise_24_2
valid
/-- Let $f: S^{1} \rightarrow \mathbb{R}$ be a continuous map. Show there exists a point $x$ of $S^{1}$ such that $f(x)=f(-x)$.-/
theorem exercise_24_2 {f : (Metric.sphere 0 1 : Set ℝ) → ℝ} (hf : Continuous f) : ∃ x, f x = f (-x):= sorry
f : ↑(Metric.sphere 0 1) → ℝ hf : Continuous f ⊢ ∃ x, f x = f (-x)
import Mathlib open Filter Set TopologicalSpace open scoped Topology
Let $f: S^{1} \rightarrow \mathbb{R}$ be a continuous map. Show there exists a point $x$ of $S^{1}$ such that $f(x)=f(-x)$.
open Filter Set TopologicalSpace open scoped Topology
exercise_25_4
valid
/-- Let $X$ be locally path connected. Show that every connected open set in $X$ is path connected.-/
theorem exercise_25_4 {X : Type*} [TopologicalSpace X] [LocPathConnectedSpace X] (U : Set X) (hU : IsOpen U) (hcU : IsConnected U) : IsPathConnected U:= sorry
X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : LocPathConnectedSpace X U : Set X hU : IsOpen U hcU : IsConnected U ⊢ IsPathConnected U
import Mathlib open Filter Set TopologicalSpace open scoped Topology
Let $X$ be locally path connected. Show that every connected open set in $X$ is path connected.
open Filter Set TopologicalSpace open scoped Topology
exercise_26_11
valid
/-- Let $X$ be a compact Hausdorff space. Let $\mathcal{A}$ be a collection of closed connected subsets of $X$ that is simply ordered by proper inclusion. Then $Y=\bigcap_{A \in \mathcal{A}} A$ is connected.-/
theorem exercise_26_11 {X : Type*} [TopologicalSpace X] [CompactSpace X] [T2Space X] (A : Set (Set X)) (hA : ∀ (a b : Set X), a ∈ A → b ∈ A → a ⊆ b ∨ b ⊆ a) (hA' : ∀ a ∈ A, IsClosed a) (hA'' : ∀ a ∈ A, IsConnected a) : IsConnected (⋂₀ A):= sorry
X : Type u_1 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X A : Set (Set X) hA : ∀ (a b : Set X), a ∈ A → b ∈ A → a ⊆ b ∨ b ⊆ a hA' : ∀ a ∈ A, IsClosed a hA'' : ∀ a ∈ A, IsConnected a ⊢ IsConnected (⋂₀ A)
import Mathlib open Filter Set TopologicalSpace open scoped Topology
Let $X$ be a compact Hausdorff space. Let $\mathcal{A}$ be a collection of closed connected subsets of $X$ that is simply ordered by proper inclusion. Then $Y=\bigcap_{A \in \mathcal{A}} A$ is connected.
open Filter Set TopologicalSpace open scoped Topology
exercise_27_4
valid
/-- Show that a connected metric space having more than one point is uncountable.-/
theorem exercise_27_4 {X : Type*} [MetricSpace X] [ConnectedSpace X] (hX : ∃ x y : X, x ≠ y) : ¬ Countable (univ : Set X):= sorry
X : Type u_1 inst✝¹ : MetricSpace X inst✝ : ConnectedSpace X hX : ∃ x y, x ≠ y ⊢ ¬Countable ↑univ
import Mathlib open Filter Set TopologicalSpace open scoped Topology
Show that a connected metric space having more than one point is uncountable.
open Filter Set TopologicalSpace open scoped Topology
exercise_28_5
valid
/-- Show that X is countably compact if and only if every nested sequence $C_1 \supset C_2 \supset \cdots$ of closed nonempty sets of X has a nonempty intersection.-/
theorem exercise_28_5 (X : Type*) [TopologicalSpace X] : countably_compact X ↔ ∀ (C : ℕ → Set X), (∀ n, IsClosed (C n)) ∧ (∀ n, C n ≠ ∅) ∧ (∀ n, C n ⊆ C (n + 1)) → ∃ x, ∀ n, x ∈ C n:= sorry
X : Type u_1 inst✝ : TopologicalSpace X ⊢ countably_compact X ↔ ∀ (C : ℕ → Set X), ((∀ (n : ℕ), IsClosed (C n)) ∧ (∀ (n : ℕ), C n ≠ ∅) ∧ ∀ (n : ℕ), C n ⊆ C (n + 1)) → ∃ x, ∀ (n : ℕ), x ∈ C n
import Mathlib open Filter Set TopologicalSpace open scoped Topology def countably_compact (X : Type*) [TopologicalSpace X] := ∀ U : ℕ → Set X, (∀ i, IsOpen (U i)) ∧ ((univ : Set X) ⊆ ⋃ i, U i) → (∃ t : Finset ℕ, (univ : Set X) ⊆ ⋃ i ∈ t, U i)
Show that X is countably compact if and only if every nested sequence $C_1 \supset C_2 \supset \cdots$ of closed nonempty sets of X has a nonempty intersection.
open Filter Set TopologicalSpace open scoped Topology def countably_compact (X : Type*) [TopologicalSpace X] := ∀ U : ℕ → Set X, (∀ i, IsOpen (U i)) ∧ ((univ : Set X) ⊆ ⋃ i, U i) → (∃ t : Finset ℕ, (univ : Set X) ⊆ ⋃ i ∈ t, U i)
exercise_29_1
valid
/-- Show that the rationals $\mathbb{Q}$ are not locally compact.-/
theorem exercise_29_1 : ¬ LocallyCompactSpace ℚ:= sorry
⊢ ¬LocallyCompactSpace ℚ
import Mathlib open Filter Set TopologicalSpace open scoped Topology
Show that the rationals $\mathbb{Q}$ are not locally compact.
open Filter Set TopologicalSpace open scoped Topology
exercise_29_10
valid
/-- Show that if $X$ is a Hausdorff space that is locally compact at the point $x$, then for each neighborhood $U$ of $x$, there is a neighborhood $V$ of $x$ such that $\bar{V}$ is compact and $\bar{V} \subset U$.-/
theorem exercise_29_10 {X : Type*} [TopologicalSpace X] [T2Space X] (x : X) (hx : ∃ U : Set X, x ∈ U ∧ IsOpen U ∧ (∃ K : Set X, U ⊂ K ∧ IsCompact K)) (U : Set X) (hU : IsOpen U) (hxU : x ∈ U) : ∃ (V : Set X), IsOpen V ∧ x ∈ V ∧ IsCompact (closure V) ∧ closure V ⊆ U:= sorry
X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : T2Space X x : X hx : ∃ U, x ∈ U ∧ IsOpen U ∧ ∃ K, U ⊂ K ∧ IsCompact K U : Set X hU : IsOpen U hxU : x ∈ U ⊢ ∃ V, IsOpen V ∧ x ∈ V ∧ IsCompact (closure V) ∧ closure V ⊆ U
import Mathlib open Filter Set TopologicalSpace open scoped Topology
Show that if $X$ is a Hausdorff space that is locally compact at the point $x$, then for each neighborhood $U$ of $x$, there is a neighborhood $V$ of $x$ such that $\bar{V}$ is compact and $\bar{V} \subset U$.
open Filter Set TopologicalSpace open scoped Topology
exercise_30_13
valid
/-- Show that if $X$ has a countable dense subset, every collection of disjoint open sets in $X$ is countable.-/
theorem exercise_30_13 {X : Type*} [TopologicalSpace X] (h : ∃ (s : Set X), Countable s ∧ Dense s) (U : Set (Set X)) (hU : ∀ (x y : Set X), x ∈ U → y ∈ U → x ≠ y → x ∩ y = ∅) : Countable U:= sorry
X : Type u_1 inst✝ : TopologicalSpace X h : ∃ s, Countable ↑s ∧ Dense s U : Set (Set X) hU : ∀ (x y : Set X), x ∈ U → y ∈ U → x ≠ y → x ∩ y = ∅ ⊢ Countable ↑U
import Mathlib open Filter Set TopologicalSpace open scoped Topology
Show that if $X$ has a countable dense subset, every collection of disjoint open sets in $X$ is countable.
open Filter Set TopologicalSpace open scoped Topology
exercise_31_2
valid
/-- Show that if $X$ is normal, every pair of disjoint closed sets have neighborhoods whose closures are disjoint.-/
theorem exercise_31_2 {X : Type*} [TopologicalSpace X] [NormalSpace X] {A B : Set X} (hA : IsClosed A) (hB : IsClosed B) (hAB : Disjoint A B) : ∃ (U V : Set X), IsOpen U ∧ IsOpen V ∧ A ⊆ U ∧ B ⊆ V ∧ closure U ∩ closure V = ∅:= sorry
X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : NormalSpace X A B : Set X hA : IsClosed A hB : IsClosed B hAB : Disjoint A B ⊢ ∃ U V, IsOpen U ∧ IsOpen V ∧ A ⊆ U ∧ B ⊆ V ∧ closure U ∩ closure V = ∅
import Mathlib open Filter Set TopologicalSpace open scoped Topology
Show that if $X$ is normal, every pair of disjoint closed sets have neighborhoods whose closures are disjoint.
open Filter Set TopologicalSpace open scoped Topology
exercise_32_1
valid
/-- Show that a closed subspace of a normal space is normal.-/
theorem exercise_32_1 {X : Type*} [TopologicalSpace X] (hX : NormalSpace X) (A : Set X) (hA : IsClosed A) : NormalSpace {x // x ∈ A}:= sorry
X : Type u_1 inst✝ : TopologicalSpace X hX : NormalSpace X A : Set X hA : IsClosed A ⊢ NormalSpace { x // x ∈ A }
import Mathlib open Filter Set TopologicalSpace open scoped Topology
Show that a closed subspace of a normal space is normal.
open Filter Set TopologicalSpace open scoped Topology
exercise_32_2b
valid
/-- Show that if $\prod X_\alpha$ is regular, then so is $X_\alpha$. Assume that each $X_\alpha$ is nonempty.-/
theorem exercise_32_2b {ι : Type*} {X : ι → Type*} [∀ i, TopologicalSpace (X i)] (h : ∀ i, Nonempty (X i)) (h2 : RegularSpace (Π i, X i)) : ∀ i, RegularSpace (X i):= sorry
ι : Type u_1 X : ι → Type u_2 inst✝ : (i : ι) → TopologicalSpace (X i) h : ∀ (i : ι), Nonempty (X i) h2 : RegularSpace ((i : ι) → X i) ⊢ ∀ (i : ι), RegularSpace (X i)
import Mathlib open Filter Set TopologicalSpace open scoped Topology
Show that if $\prod X_\alpha$ is regular, then so is $X_\alpha$. Assume that each $X_\alpha$ is nonempty.
open Filter Set TopologicalSpace open scoped Topology
exercise_32_3
valid
/-- Show that every locally compact Hausdorff space is regular.-/
theorem exercise_32_3 {X : Type*} [TopologicalSpace X] (hX : LocallyCompactSpace X) (hX' : T2Space X) : RegularSpace X:= sorry
X : Type u_1 inst✝ : TopologicalSpace X hX : LocallyCompactSpace X hX' : T2Space X ⊢ RegularSpace X
import Mathlib open Filter Set TopologicalSpace open scoped Topology
Show that every locally compact Hausdorff space is regular.
open Filter Set TopologicalSpace open scoped Topology
exercise_33_8
valid
/-- Let $X$ be completely regular, let $A$ and $B$ be disjoint closed subsets of $X$. Show that if $A$ is compact, there is a continuous function $f \colon X \rightarrow [0, 1]$ such that $f(A) = \{0\}$ and $f(B) = \{1\}$.-/
theorem exercise_33_8 (X : Type*) [TopologicalSpace X] [RegularSpace X] (h : ∀ x A, IsClosed A ∧ ¬ x ∈ A → ∃ (f : X → I), Continuous f ∧ f x = (1 : I) ∧ f '' A = {0}) (A B : Set X) (hA : IsClosed A) (hB : IsClosed B) (hAB : Disjoint A B) (hAc : IsCompact A) : ∃ (f : X → I), Continuous f ∧ f '' A = {0} ∧ f '' B = {1}:= sorry
X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : RegularSpace X h : ∀ (x : X) (A : Set X), IsClosed A ∧ x ∉ A → ∃ f, Continuous f ∧ f x = 1 ∧ f '' A = {0} A B : Set X hA : IsClosed A hB : IsClosed B hAB : Disjoint A B hAc : IsCompact A ⊢ ∃ f, Continuous f ∧ f '' A = {0} ∧ f '' B = {1}
import Mathlib open Filter Set TopologicalSpace open scoped Topology abbrev I : Set ℝ := Icc 0 1
Let $X$ be completely regular, let $A$ and $B$ be disjoint closed subsets of $X$. Show that if $A$ is compact, there is a continuous function $f \colon X \rightarrow [0, 1]$ such that $f(A) = \{0\}$ and $f(B) = \{1\}$.
open Filter Set TopologicalSpace open scoped Topology abbrev I : Set ℝ := Icc 0 1
exercise_38_6
valid
/-- Let $X$ be completely regular. Show that $X$ is connected if and only if the Stone-Čech compactification of $X$ is connected.-/
theorem exercise_38_6 {X : Type*} (X : Type*) [TopologicalSpace X] [RegularSpace X] (h : ∀ x A, IsClosed A ∧ ¬ x ∈ A → ∃ (f : X → I), Continuous f ∧ f x = (1 : I) ∧ f '' A = {0}) : IsConnected (univ : Set X) ↔ IsConnected (univ : Set (StoneCech X)):= sorry
X✝ : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : RegularSpace X h : ∀ (x : X) (A : Set X), IsClosed A ∧ x ∉ A → ∃ f, Continuous f ∧ f x = 1 ∧ f '' A = {0} ⊢ IsConnected univ ↔ IsConnected univ
import Mathlib open Filter Set TopologicalSpace open scoped Topology abbrev I : Set ℝ := Icc 0 1
Let $X$ be completely regular. Show that $X$ is connected if and only if the Stone-Čech compactification of $X$ is connected.
open Filter Set TopologicalSpace open scoped Topology abbrev I : Set ℝ := Icc 0 1
exercise_1_27
valid
/-- For all odd $n$ show that $8 \mid n^{2}-1$.-/
theorem exercise_1_27 {n : ℕ} (hn : Odd n) : 8 ∣ (n^2 - 1):= sorry
n : ℕ hn : Odd n ⊢ 8 ∣ n ^ 2 - 1
import Mathlib open Real open scoped BigOperators
For all odd $n$ show that $8 \mid n^{2}-1$.
open Real open scoped BigOperators
exercise_1_31
valid
/-- Show that 2 is divisible by $(1+i)^{2}$ in $\mathbb{Z}[i]$.-/
theorem exercise_1_31 : (⟨1, 1⟩ : GaussianInt) ^ 2 ∣ 2:= sorry
⊢ { re := 1, im := 1 } ^ 2 ∣ 2
import Mathlib open Real open scoped BigOperators
Show that 2 is divisible by $(1+i)^{2}$ in $\mathbb{Z}[i]$.
open Real open scoped BigOperators
exercise_2_21
valid
/-- Define $\wedge(n)=\log p$ if $n$ is a power of $p$ and zero otherwise. Prove that $\sum_{A \mid n} \mu(n / d) \log d$ $=\wedge(n)$.-/
theorem exercise_2_21 {l : ℕ → ℝ} (hl : ∀ p n : ℕ, p.Prime → l (p^n) = log p ) (hl1 : ∀ m : ℕ, ¬ IsPrimePow m → l m = 0) : l = λ n => ∑ d : Nat.divisors n, ArithmeticFunction.moebius (n/d) * log d:= sorry
l : ℕ → ℝ hl : ∀ (p n : ℕ), p.Prime → l (p ^ n) = (↑p).log hl1 : ∀ (m : ℕ), ¬IsPrimePow m → l m = 0 ⊢ l = fun n => ∑ d : { x // x ∈ n.divisors }, ↑(ArithmeticFunction.moebius (n / ↑d)) * (↑↑d).log
import Mathlib open Real open scoped BigOperators
Define $\wedge(n)=\log p$ if $n$ is a power of $p$ and zero otherwise. Prove that $\sum_{A \mid n} \mu(n / d) \log d$ $=\wedge(n)$.
open Real open scoped BigOperators
exercise_3_1
valid
/-- Show that there are infinitely many primes congruent to $-1$ modulo 6 .-/
theorem exercise_3_1 : Infinite {p : Nat.Primes // p ≡ -1 [ZMOD 6]}:= sorry
⊢ Infinite { p // ↑↑p ≡ -1 [ZMOD 6] }
import Mathlib open Real open scoped BigOperators
Show that there are infinitely many primes congruent to $-1$ modulo 6 .
open Real open scoped BigOperators
exercise_3_5
valid
/-- Show that the equation $7 x^{3}+2=y^{3}$ has no solution in integers.-/
theorem exercise_3_5 : ¬ ∃ x y : ℤ, 7*x^3 + 2 = y^3:= sorry
⊢ ¬∃ x y, 7 * x ^ 3 + 2 = y ^ 3
import Mathlib open Real open scoped BigOperators
Show that the equation $7 x^{3}+2=y^{3}$ has no solution in integers.
open Real open scoped BigOperators
exercise_3_14
valid
/-- Let $p$ and $q$ be distinct odd primes such that $p-1$ divides $q-1$. If $(n, p q)=1$, show that $n^{q-1} \equiv 1(p q)$.-/
theorem exercise_3_14 {p q n : ℕ} (hp0 : p.Prime ∧ p > 2) (hq0 : q.Prime ∧ q > 2) (hpq0 : p ≠ q) (hpq1 : p - 1 ∣ q - 1) (hn : n.gcd (p*q) = 1) : n^(q-1) ≡ 1 [MOD p*q]:= sorry
p q n : ℕ hp0 : p.Prime ∧ p > 2 hq0 : q.Prime ∧ q > 2 hpq0 : p ≠ q hpq1 : p - 1 ∣ q - 1 hn : n.gcd (p * q) = 1 ⊢ n ^ (q - 1) ≡ 1 [MOD p * q]
import Mathlib open Real open scoped BigOperators
Let $p$ and $q$ be distinct odd primes such that $p-1$ divides $q-1$. If $(n, p q)=1$, show that $n^{q-1} \equiv 1(p q)$.
open Real open scoped BigOperators
exercise_4_5
valid
/-- Consider a prime $p$ of the form $4 t+3$. Show that $a$ is a primitive root modulo $p$ iff $-a$ has order $(p-1) / 2$.-/
theorem exercise_4_5 {p t : ℕ} (hp0 : p.Prime) (hp1 : p = 4*t + 3) (a : ZMod p) : IsPrimitiveRoot a p ↔ ((-a) ^ ((p-1)/2) = 1 ∧ ∀ (k : ℕ), k < (p-1)/2 → (-a)^k ≠ 1):= sorry
p t : ℕ hp0 : p.Prime hp1 : p = 4 * t + 3 a : ZMod p ⊢ IsPrimitiveRoot a p ↔ (-a) ^ ((p - 1) / 2) = 1 ∧ ∀ k < (p - 1) / 2, (-a) ^ k ≠ 1
import Mathlib open Real open scoped BigOperators
Consider a prime $p$ of the form $4 t+3$. Show that $a$ is a primitive root modulo $p$ iff $-a$ has order $(p-1) / 2$.
open Real open scoped BigOperators
exercise_4_8
valid
/-- Let $p$ be an odd prime. Show that $a$ is a primitive root modulo $p$ iff $a^{(p-1) / q} \not \equiv 1(p)$ for all prime divisors $q$ of $p-1$.-/
theorem exercise_4_8 {p a : ℕ} (hp : Odd p) : IsPrimitiveRoot a p ↔ (∀ q : ℕ, q ∣ (p-1) → q.Prime → ¬ a^(p-1) ≡ 1 [MOD p]):= sorry
p a : ℕ hp : Odd p ⊢ IsPrimitiveRoot a p ↔ ∀ (q : ℕ), q ∣ p - 1 → q.Prime → ¬a ^ (p - 1) ≡ 1 [MOD p]
import Mathlib open Real open scoped BigOperators
Let $p$ be an odd prime. Show that $a$ is a primitive root modulo $p$ iff $a^{(p-1) / q} \not \equiv 1(p)$ for all prime divisors $q$ of $p-1$.
open Real open scoped BigOperators
exercise_5_13
valid
/-- Show that any prime divisor of $x^{4}-x^{2}+1$ is congruent to 1 modulo 12 .-/
theorem exercise_5_13 {p x: ℤ} (hp : Prime p) (hpx : p ∣ (x^4 - x^2 + 1)) : p ≡ 1 [ZMOD 12]:= sorry
p x : ℤ hp : Prime p hpx : p ∣ x ^ 4 - x ^ 2 + 1 ⊢ p ≡ 1 [ZMOD 12]
import Mathlib open Real open scoped BigOperators
Show that any prime divisor of $x^{4}-x^{2}+1$ is congruent to 1 modulo 12 .
open Real open scoped BigOperators
exercise_5_37
valid
/-- Show that if $a$ is negative then $p \equiv q(4 a) together with p\not | a$ imply $(a / p)=(a / q)$.-/
theorem exercise_5_37 {p q : ℕ} [Fact (p.Prime)] [Fact (q.Prime)] {a : ℤ} (ha : a < 0) (h0 : p ≡ q [ZMOD 4*a]) (h1 : ¬ ((p : ℤ) ∣ a)) : legendreSym p a = legendreSym q a:= sorry
p q : ℕ inst✝¹ : Fact p.Prime inst✝ : Fact q.Prime a : ℤ ha : a < 0 h0 : ↑p ≡ ↑q [ZMOD 4 * a] h1 : ¬↑p ∣ a ⊢ legendreSym p a = legendreSym q a
import Mathlib open Real open scoped BigOperators
Show that if $a$ is negative then $p \equiv q(4 a) together with p\not | a$ imply $(a / p)=(a / q)$.
open Real open scoped BigOperators
exercise_18_4
valid
/-- Show that 1729 is the smallest positive integer expressible as the sum of two different integral cubes in two ways.-/
theorem exercise_18_4 {n : ℕ} (hn : ∃ x y z w : ℤ, x^3 + y^3 = n ∧ z^3 + w^3 = n ∧ x ≠ z ∧ x ≠ w ∧ y ≠ z ∧ y ≠ w) : n ≥ 1729:= sorry
n : ℕ hn : ∃ x y z w, x ^ 3 + y ^ 3 = ↑n ∧ z ^ 3 + w ^ 3 = ↑n ∧ x ≠ z ∧ x ≠ w ∧ y ≠ z ∧ y ≠ w ⊢ n ≥ 1729
import Mathlib open Real open scoped BigOperators
Show that 1729 is the smallest positive integer expressible as the sum of two different integral cubes in two ways.
open Real open scoped BigOperators
exercise_2020_b5
valid
/-- For $j \in\{1,2,3,4\}$, let $z_{j}$ be a complex number with $\left|z_{j}\right|=1$ and $z_{j} \neq 1$. Prove that $3-z_{1}-z_{2}-z_{3}-z_{4}+z_{1} z_{2} z_{3} z_{4} \neq 0 .$-/
theorem exercise_2020_b5 (z : Fin 4 → ℂ) (hz0 : ∀ n, ‖z n‖ < 1) (hz1 : ∀ n : Fin 4, z n ≠ 1) : 3 - z 0 - z 1 - z 2 - z 3 + (z 0) * (z 1) * (z 2) * (z 3) ≠ 0:= sorry
z : Fin 4 → ℂ hz0 : ∀ (n : Fin 4), ‖z n‖ < 1 hz1 : ∀ (n : Fin 4), z n ≠ 1 ⊢ 3 - z 0 - z 1 - z 2 - z 3 + z 0 * z 1 * z 2 * z 3 ≠ 0
import Mathlib open scoped BigOperators open scoped BigOperators
For $j \in\{1,2,3,4\}$, let $z_{j}$ be a complex number with $\left|z_{j}\right|=1$ and $z_{j} \neq 1$. Prove that $3-z_{1}-z_{2}-z_{3}-z_{4}+z_{1} z_{2} z_{3} z_{4} \neq 0 .$
open scoped BigOperators open scoped BigOperators
exercise_2018_b2
valid
/-- Let $n$ be a positive integer, and let $f_{n}(z)=n+(n-1) z+$ $(n-2) z^{2}+\cdots+z^{n-1}$. Prove that $f_{n}$ has no roots in the closed unit disk $\{z \in \mathbb{C}:|z| \leq 1\}$.-/
theorem exercise_2018_b2 (n : ℕ) (hn : n > 0) (f : ℕ → ℂ → ℂ) (hf : ∀ n : ℕ, f n = λ (z : ℂ) => (∑ i : Fin n, (n-i)* z^(i : ℕ))) : ¬ (∃ z : ℂ, ‖z‖ ≤ 1 ∧ f n z = 0):= sorry
n : ℕ hn : n > 0 f : ℕ → ℂ → ℂ hf : ∀ (n : ℕ), f n = fun z => ∑ i : Fin n, (↑n - ↑↑i) * z ^ ↑i ⊢ ¬∃ z, ‖z‖ ≤ 1 ∧ f n z = 0
import Mathlib open scoped BigOperators
Let $n$ be a positive integer, and let $f_{n}(z)=n+(n-1) z+$ $(n-2) z^{2}+\cdots+z^{n-1}$. Prove that $f_{n}$ has no roots in the closed unit disk $\{z \in \mathbb{C}:|z| \leq 1\}$.
open scoped BigOperators
exercise_2017_b3
valid
/-- Suppose that $f(x)=\sum_{i=0}^{\infty} c_{i} x^{i}$ is a power series for which each coefficient $c_{i}$ is 0 or 1 . Show that if $f(2 / 3)=3 / 2$, then $f(1 / 2)$ must be irrational.-/
theorem exercise_2017_b3 (f : ℝ → ℝ) (c : ℕ → ℝ) (hf : f = λ x => (∑' (i : ℕ), (c i) * x^i)) (hc : ∀ n, c n = 0 ∨ c n = 1) (hf1 : f (2/3) = 3/2) : Irrational (f (1/2)):= sorry
f : ℝ → ℝ c : ℕ → ℝ hf : f = fun x => ∑' (i : ℕ), c i * x ^ i hc : ∀ (n : ℕ), c n = 0 ∨ c n = 1 hf1 : f (2 / 3) = 3 / 2 ⊢ Irrational (f (1 / 2))
import Mathlib open scoped BigOperators
Suppose that $f(x)=\sum_{i=0}^{\infty} c_{i} x^{i}$ is a power series for which each coefficient $c_{i}$ is 0 or 1 . Show that if $f(2 / 3)=3 / 2$, then $f(1 / 2)$ must be irrational.
open scoped BigOperators
exercise_2010_a4
valid
/-- Prove that for each positive integer $n$, the number $10^{10^{10^n}}+10^{10^n}+10^n-1$ is not prime.-/
theorem exercise_2010_a4 (n : ℕ) : ¬ Nat.Prime (10^10^10^n + 10^10^n + 10^n - 1):= sorry
n : ℕ ⊢ ¬(10 ^ 10 ^ 10 ^ n + 10 ^ 10 ^ n + 10 ^ n - 1).Prime
import Mathlib open scoped BigOperators
Prove that for each positive integer $n$, the number $10^{10^{10^n}}+10^{10^n}+10^n-1$ is not prime.
open scoped BigOperators
exercise_2000_a2
valid
/-- Prove that there exist infinitely many integers $n$ such that $n, n+1, n+2$ are each the sum of the squares of two integers.-/
theorem exercise_2000_a2 : ∀ N : ℕ, ∃ n : ℕ, n > N ∧ ∃ i : Fin 6 → ℕ, n = (i 0)^2 + (i 1)^2 ∧ n + 1 = (i 2)^2 + (i 3)^2 ∧ n + 2 = (i 4)^2 + (i 5)^2:= sorry
⊢ ∀ (N : ℕ), ∃ n > N, ∃ i, n = i 0 ^ 2 + i 1 ^ 2 ∧ n + 1 = i 2 ^ 2 + i 3 ^ 2 ∧ n + 2 = i 4 ^ 2 + i 5 ^ 2
import Mathlib open scoped BigOperators
Prove that there exist infinitely many integers $n$ such that $n, n+1, n+2$ are each the sum of the squares of two integers.
open scoped BigOperators
exercise_1998_a3
valid
/-- Let $f$ be a real function on the real line with continuous third derivative. Prove that there exists a point $a$ such that-/
theorem exercise_1998_a3 (f : ℝ → ℝ) (hf : ContDiff ℝ 3 f) : ∃ a : ℝ, (f a) * (deriv f a) * (iteratedDeriv 2 f a) * (iteratedDeriv 3 f a) ≥ 0:= sorry
f : ℝ → ℝ hf : ContDiff ℝ 3 f ⊢ ∃ a, f a * deriv f a * iteratedDeriv 2 f a * iteratedDeriv 3 f a ≥ 0
import Mathlib open scoped BigOperators
Let $f$ be a real function on the real line with continuous third derivative. Prove that there exists a point $a$ such that
open scoped BigOperators