Datasets:

Modalities:
Image
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
License:
Dataset Viewer
Auto-converted to Parquet
image
imagewidth (px)
512
512
image_crop
imagewidth (px)
256
256
dr8_id
stringlengths
7
11
galaxy_size
int64
1.09k
248k
613985_1104
14,556
209368_47
6,444
309525_2743
2,627
498228_3002
9,694
607876_871
22,646
634336_832
6,474
308819_3574
6,573
196341_6105
11,783
657490_2388
7,527
483739_187
8,280
503515_3682
10,975
489848_3137
10,049
249231_1262
8,550
218990_5318
3,361
539296_1027
5,638
390051_3146
5,583
578980_3491
20,881
420099_3293
6,558
381137_1130
8,678
607783_329
8,174
326610_696
18,614
545908_1369
11,041
590011_2130
10,950
129449_2305
1,916
596894_566
3,883
643507_1561
3,741
517733_850
5,807
609795_4320
12,033
444679_2781
5,761
428916_1260
5,168
651165_3463
10,907
481797_3128
11,266
440752_2661
4,928
468348_3369
17,692
606693_1744
12,150
223015_1471
14,086
531282_3474
4,567
480097_4912
14,552
71228_2888
8,981
260194_1266
7,305
552563_3600
21,792
64106_1551
7,283
498752_98
4,776
524410_784
8,253
438408_3622
9,599
615264_1028
2,809
369092_771
9,849
206982_2730
20,815
365515_11
1,952
634903_407
6,783
357062_1693
5,057
271503_1336
12,794
338159_127
3,074
65937_2086
6,113
542343_1546
9,749
475998_2960
12,753
624600_1793
2,681
591601_1843
6,307
450273_3964
6,622
438928_955
12,008
492043_242
6,600
584554_3773
9,177
616242_3395
29,309
500645_907
12,375
270312_1288
245,406
394867_2446
14,292
474381_3527
9,799
174361_4182
10,335
437537_3876
9,473
601767_3501
17,088
548235_1049
14,905
213693_1665
7,712
170300_2944
4,172
388634_2085
14,268
538041_1138
9,583
314720_2086
6,457
401903_1094
4,468
278886_1677
6,910
97990_1631
5,441
268986_4729
5,537
444316_1015
9,020
114641_5108
9,997
591890_3252
16,221
49435_846
7,819
436520_1343
12,485
231142_4148
8,132
397049_3484
13,607
530191_1815
6,315
530242_3379
92,030
472193_556
8,588
324892_2161
5,475
547023_671
11,463
463038_759
17,847
479210_4740
7,343
591622_1819
8,433
456369_3346
10,053
330242_5245
6,266
473613_507
10,231
433098_3640
21,200
72875_841
6,994
End of preview. Expand in Data Studio

Galaxies for training astroPT

Here we have ~8.5 million galaxy cutouts from the DESI legacy survey DR8. The cut outs are 512x512 pixel jpg images centred on the galaxy source.

I've split away 1% of the images into a test set, and 1% into a validation set. The remaining 98% of the images comprise the training set.

There is also accompanying metadata! To combine the metadata with the galaxy images you can do (for example):

from datasets import load_dataset, concatenate_datasets

# Load the `galaxies' dataset with metadata
galaxies = load_dataset("Smith42/galaxies", streaming=True)
metadata = load_dataset("Smith42/galaxies_metadata", streaming=True).remove_columns("dr8_id")
combined = concatenate_datasets([galaxies['train'], metadata['train']], axis=1)

The metadata is also available in parquet format in the root dir of this repo. You can link the metadata with the galaxies via their dr8_id.

Useful links

Paper here: https://arxiv.org/abs/2405.14930

Models here: https://huggingface.co./Smith42/astroPT

Code here: https://github.com/smith42/astroPT

Upstream catalogue is on Zenodo and paper describing the catalogue is available as Walmsley+2023.

If you find this dataset useful please consider citing the sources below 🚀🚀:

@article{ref_dey2019,
    author = {Dey, A. and Schlegel, D. J. and Lang, D. and Blum, R. and Burleigh, K. and Fan, X. and Findlay, J. R. and Finkbeiner, D. and Herrera, D. and Juneau, S. and others},
    title = {{Overview of the DESI Legacy Imaging Surveys}},
    journal = {Astronomical Journal},
    volume = {157},
    number = {5},
    pages = {168},
    year = {2019},
    issn = {1538-3881},
    publisher = {The American Astronomical Society},
    doi = {10.3847/1538-3881/ab089d}
}
@article{ref_walmsley2023,
    author = {Walmsley, M. and G{\ifmmode\acute{e}\else\'{e}\fi}ron, T. and Kruk, S. and Scaife, A. M. M. and Lintott, C. and Masters, K. L. and Dawson, J. M. and Dickinson, H. and Fortson, L. and Garland, I. L. and others},
    title = {{Galaxy Zoo DESI: Detailed morphology measurements for 8.7M galaxies in the DESI Legacy Imaging Surveys}},
    journal = {Monthly Notices of the Royal Astronomical Society},
    volume = {526},
    number = {3},
    pages = {4768--4786},
    year = {2023},
    issn = {0035-8711},
    publisher = {Oxford Academic},
    doi = {10.1093/mnras/stad2919}
}
@article{ref_smith2024,
    author = {Smith, M. J. and Roberts, R. J. and Angeloudi, E. and Huertas-Company, M.},
    title = {{AstroPT: Scaling Large Observation Models for Astronomy}},
    journal = {ArXiv e-prints},
    year = {2024},
    eprint = {2405.14930},
    doi = {10.48550/arXiv.2405.14930}
}
Downloads last month
4,298

Models trained or fine-tuned on Smith42/galaxies

Collection including Smith42/galaxies