hyperedge
int64
1
577k
nodes
stringlengths
3
29
timestamp
float64
0
191B
1
[1, 2, 3, 4]
9,952,566,473
2
[5, 6, 7]
9,952,584,210
3
[8, 9, 10]
9,952,733,626
5
[8, 15]
9,953,199,816
7
[20, 21]
9,953,388,390
8
[22]
9,953,474,096
9
[24, 7, 23]
9,953,508,836
11
[8, 9, 29, 15]
9,953,628,973
12
[22]
9,954,350,830
15
[8, 9, 34, 33]
9,954,599,730
17
[35, 36]
9,954,968,763
19
[38]
9,955,273,166
20
[39, 23]
9,955,304,566
22
[8, 9, 10]
9,955,714,286
23
[40, 9]
9,955,860,006
24
[41, 10]
9,956,296,976
25
[33, 42, 43, 44]
9,956,821,496
26
[41]
9,956,892,680
27
[45, 46]
9,957,438,553
28
[8, 47]
9,957,936,973
29
[5, 23]
9,958,666,790
31
[8, 5]
9,959,592,883
33
[8, 9, 34, 50]
9,960,047,100
35
[52, 7]
9,961,268,546
37
[22]
9,961,518,113
38
[53]
9,963,060,913
39
[8, 40, 54, 55]
9,963,855,283
42
[59, 60, 61, 22]
9,965,015,283
43
[42, 38]
9,967,036,170
45
[62]
9,968,727,310
47
[22]
9,969,440,676
50
[65, 66, 23]
9,970,752,223
51
[8, 67]
9,972,062,210
52
[34, 68]
9,973,374,053
53
[8, 40, 69, 66]
9,975,041,290
54
[70]
9,975,246,960
55
[38, 47]
9,977,896,090
56
[42, 22]
9,979,099,923
59
[72, 73, 5]
9,988,008,293
60
[8, 9, 41]
9,990,520,706
61
[74, 15]
9,993,382,780
62
[8, 41, 75, 9]
9,995,969,520
63
[76, 23]
9,997,752,833
67
[81, 39]
10,004,399,546
69
[84]
10,014,171,153
71
[5]
10,016,042,416
72
[23, 7, 39]
10,017,396,470
73
[38]
10,017,835,313
76
[8, 41, 40, 86]
10,027,530,680
77
[8, 9, 41]
10,030,174,510
78
[87]
10,031,970,053
81
[8, 41, 9, 75, 84]
10,040,028,586
82
[91, 7, 39]
10,041,007,113
84
[72, 92]
10,045,454,783
85
[93, 5]
10,046,719,466
86
[1, 3]
10,050,194,270
87
[2, 84, 94, 95]
10,054,342,806
89
[97, 98]
10,059,097,163
90
[99, 100, 22]
10,059,232,230
91
[1]
10,060,282,960
92
[33]
10,060,444,343
97
[32, 1, 105]
10,072,176,073
101
[8, 9, 40, 108]
10,087,268,380
102
[9, 109, 110, 39]
10,088,476,613
105
[8, 41, 75, 9]
10,099,790,016
106
[112, 1, 53]
10,100,058,103
109
[53, 5]
10,117,155,720
110
[9, 117]
10,131,367,863
111
[118]
10,134,594,770
112
[120, 82, 119]
10,134,998,263
113
[58, 22]
10,150,543,613
115
[81, 37, 39]
10,154,274,946
118
[113, 122, 123, 124]
10,155,760,106
119
[65, 43]
10,157,006,183
120
[125, 20, 101, 102]
10,157,175,760
121
[128, 126, 38, 127]
10,157,528,596
123
[8, 9, 77, 41]
10,170,262,043
124
[2, 126, 38, 23]
10,172,583,573
125
[20]
10,174,661,870
126
[8, 9, 130]
10,188,655,676
127
[108, 93, 5]
10,191,802,990
130
[124]
10,192,397,786
131
[91]
10,193,676,846
133
[72, 2, 22]
10,205,303,836
138
[136, 114, 22, 135]
10,210,031,690
139
[2]
10,212,104,460
140
[137]
10,218,181,770
141
[113]
10,227,903,786
142
[138]
10,229,601,453
143
[138]
10,233,430,243
144
[72]
10,234,153,693
145
[139, 108]
10,238,949,086
146
[22]
10,239,691,006
148
[142, 5, 22, 141]
10,240,068,310
149
[143]
10,246,361,480
150
[34, 5, 22]
10,247,621,230
152
[130, 77]
10,269,039,146
154
[147]
10,284,647,893
155
[8, 9, 34, 148]
10,304,758,446
156
[72, 18]
10,306,651,846

Source Paper: https://arxiv.org/abs/1802.06916

Usage

from torch_geometric.datasets.cornell import CornellTemporalHyperGraphDataset

dataset = CornellTemporalHyperGraphDataset(root = "./", name="tags-math-sx", split="train")

Citation

@article{Benson-2018-simplicial,
 author = {Benson, Austin R. and Abebe, Rediet and Schaub, Michael T. and Jadbabaie, Ali and Kleinberg, Jon},
 title = {Simplicial closure and higher-order link prediction},
 year = {2018},
 doi = {10.1073/pnas.1800683115},
 publisher = {National Academy of Sciences},
 issn = {0027-8424},
 journal = {Proceedings of the National Academy of Sciences}
}
Downloads last month
68

Models trained or fine-tuned on SauravMaheshkar/tags-math-sx

Collection including SauravMaheshkar/tags-math-sx