title
stringlengths 1
185
| diff
stringlengths 0
32.2M
| body
stringlengths 0
123k
⌀ | url
stringlengths 57
58
| created_at
stringlengths 20
20
| closed_at
stringlengths 20
20
| merged_at
stringlengths 20
20
⌀ | updated_at
stringlengths 20
20
|
---|---|---|---|---|---|---|---|
clarified the documentation for DF.drop_duplicates | diff --git a/pandas/core/frame.py b/pandas/core/frame.py
index 78c9f2aa96472..ade05ab27093e 100644
--- a/pandas/core/frame.py
+++ b/pandas/core/frame.py
@@ -4625,7 +4625,8 @@ def dropna(self, axis=0, how='any', thresh=None, subset=None,
def drop_duplicates(self, subset=None, keep='first', inplace=False):
"""
Return DataFrame with duplicate rows removed, optionally only
- considering certain columns.
+ considering certain columns. Indexes, including time indexes
+ are ignored.
Parameters
----------
| I hit an issue with a time series index where I wanted to keep duplicate data with different time values and only delete rows with the same time and columns. This documentation change would have saved me a lot of time.
- [ ] closes #xxxx
- [ ] tests added / passed
- [ ] passes `git diff upstream/master -u -- "*.py" | flake8 --diff`
- [ ] whatsnew entry
| https://api.github.com/repos/pandas-dev/pandas/pulls/25056 | 2019-01-31T17:14:09Z | 2019-02-01T18:24:37Z | 2019-02-01T18:24:37Z | 2019-02-02T14:50:36Z |
Clarification of docstring for value_counts | diff --git a/doc/source/user_guide/io.rst b/doc/source/user_guide/io.rst
index 58e1b2370c7c8..b23a0f10e9e2b 100644
--- a/doc/source/user_guide/io.rst
+++ b/doc/source/user_guide/io.rst
@@ -989,6 +989,36 @@ a single date rather than the entire array.
os.remove('tmp.csv')
+
+.. _io.csv.mixed_timezones:
+
+Parsing a CSV with mixed Timezones
+++++++++++++++++++++++++++++++++++
+
+Pandas cannot natively represent a column or index with mixed timezones. If your CSV
+file contains columns with a mixture of timezones, the default result will be
+an object-dtype column with strings, even with ``parse_dates``.
+
+
+.. ipython:: python
+
+ content = """\
+ a
+ 2000-01-01T00:00:00+05:00
+ 2000-01-01T00:00:00+06:00"""
+ df = pd.read_csv(StringIO(content), parse_dates=['a'])
+ df['a']
+
+To parse the mixed-timezone values as a datetime column, pass a partially-applied
+:func:`to_datetime` with ``utc=True`` as the ``date_parser``.
+
+.. ipython:: python
+
+ df = pd.read_csv(StringIO(content), parse_dates=['a'],
+ date_parser=lambda col: pd.to_datetime(col, utc=True))
+ df['a']
+
+
.. _io.dayfirst:
diff --git a/doc/source/whatsnew/v0.24.0.rst b/doc/source/whatsnew/v0.24.0.rst
index fc963fce37a5b..a49ea2cf493a6 100644
--- a/doc/source/whatsnew/v0.24.0.rst
+++ b/doc/source/whatsnew/v0.24.0.rst
@@ -6,7 +6,8 @@ What's New in 0.24.0 (January 25, 2019)
.. warning::
The 0.24.x series of releases will be the last to support Python 2. Future feature
- releases will support Python 3 only. See :ref:`install.dropping-27` for more.
+ releases will support Python 3 only. See :ref:`install.dropping-27` for more
+ details.
{{ header }}
@@ -244,7 +245,7 @@ the new extension arrays that back interval and period data.
Joining with two multi-indexes
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-:func:`DataFrame.merge` and :func:`DataFrame.join` can now be used to join multi-indexed ``Dataframe`` instances on the overlaping index levels (:issue:`6360`)
+:func:`DataFrame.merge` and :func:`DataFrame.join` can now be used to join multi-indexed ``Dataframe`` instances on the overlapping index levels (:issue:`6360`)
See the :ref:`Merge, join, and concatenate
<merging.Join_with_two_multi_indexes>` documentation section.
@@ -647,6 +648,52 @@ that the dates have been converted to UTC
pd.to_datetime(["2015-11-18 15:30:00+05:30",
"2015-11-18 16:30:00+06:30"], utc=True)
+
+.. _whatsnew_0240.api_breaking.read_csv_mixed_tz:
+
+Parsing mixed-timezones with :func:`read_csv`
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+:func:`read_csv` no longer silently converts mixed-timezone columns to UTC (:issue:`24987`).
+
+*Previous Behavior*
+
+.. code-block:: python
+
+ >>> import io
+ >>> content = """\
+ ... a
+ ... 2000-01-01T00:00:00+05:00
+ ... 2000-01-01T00:00:00+06:00"""
+ >>> df = pd.read_csv(io.StringIO(content), parse_dates=['a'])
+ >>> df.a
+ 0 1999-12-31 19:00:00
+ 1 1999-12-31 18:00:00
+ Name: a, dtype: datetime64[ns]
+
+*New Behavior*
+
+.. ipython:: python
+
+ import io
+ content = """\
+ a
+ 2000-01-01T00:00:00+05:00
+ 2000-01-01T00:00:00+06:00"""
+ df = pd.read_csv(io.StringIO(content), parse_dates=['a'])
+ df.a
+
+As can be seen, the ``dtype`` is object; each value in the column is a string.
+To convert the strings to an array of datetimes, the ``date_parser`` argument
+
+.. ipython:: python
+
+ df = pd.read_csv(io.StringIO(content), parse_dates=['a'],
+ date_parser=lambda col: pd.to_datetime(col, utc=True))
+ df.a
+
+See :ref:`whatsnew_0240.api.timezone_offset_parsing` for more.
+
.. _whatsnew_0240.api_breaking.period_end_time:
Time values in ``dt.end_time`` and ``to_timestamp(how='end')``
diff --git a/doc/source/whatsnew/v0.24.1.rst b/doc/source/whatsnew/v0.24.1.rst
index ee4b7ab62b31a..047404e93914b 100644
--- a/doc/source/whatsnew/v0.24.1.rst
+++ b/doc/source/whatsnew/v0.24.1.rst
@@ -15,6 +15,15 @@ Whats New in 0.24.1 (February XX, 2019)
These are the changes in pandas 0.24.1. See :ref:`release` for a full changelog
including other versions of pandas.
+.. _whatsnew_0241.regressions:
+
+Fixed Regressions
+^^^^^^^^^^^^^^^^^
+
+- Bug in :meth:`DataFrame.itertuples` with ``records`` orient raising an ``AttributeError`` when the ``DataFrame`` contained more than 255 columns (:issue:`24939`)
+- Bug in :meth:`DataFrame.itertuples` orient converting integer column names to strings prepended with an underscore (:issue:`24940`)
+- Fixed regression in :class:`Index.intersection` incorrectly sorting the values by default (:issue:`24959`).
+- Fixed regression in :func:`merge` when merging an empty ``DataFrame`` with multiple timezone-aware columns on one of the timezone-aware columns (:issue:`25014`).
.. _whatsnew_0241.enhancements:
@@ -58,11 +67,19 @@ Bug Fixes
-
**Timedelta**
-
+- Bug in :func:`to_timedelta` with `box=False` incorrectly returning a ``datetime64`` object instead of a ``timedelta64`` object (:issue:`24961`)
-
-
-
+**Reshaping**
+
+- Bug in :meth:`DataFrame.groupby` with :class:`Grouper` when there is a time change (DST) and grouping frequency is ``'1d'`` (:issue:`24972`)
+
+**Visualization**
+
+- Fixed the warning for implicitly registered matplotlib converters not showing. See :ref:`whatsnew_0211.converters` for more (:issue:`24963`).
+
**Other**
diff --git a/pandas/core/arrays/numpy_.py b/pandas/core/arrays/numpy_.py
index 47517782e2bbf..791ff44303e96 100644
--- a/pandas/core/arrays/numpy_.py
+++ b/pandas/core/arrays/numpy_.py
@@ -222,7 +222,7 @@ def __getitem__(self, item):
item = item._ndarray
result = self._ndarray[item]
- if not lib.is_scalar(result):
+ if not lib.is_scalar(item):
result = type(self)(result)
return result
diff --git a/pandas/core/base.py b/pandas/core/base.py
index c02ba88ea7fda..7b3152595e4b2 100644
--- a/pandas/core/base.py
+++ b/pandas/core/base.py
@@ -1234,7 +1234,7 @@ def value_counts(self, normalize=False, sort=True, ascending=False,
If True then the object returned will contain the relative
frequencies of the unique values.
sort : boolean, default True
- Sort by values.
+ Sort by frequencies.
ascending : boolean, default False
Sort in ascending order.
bins : integer, optional
diff --git a/pandas/core/frame.py b/pandas/core/frame.py
index b4f79bda25517..28c6f3c23a3ce 100644
--- a/pandas/core/frame.py
+++ b/pandas/core/frame.py
@@ -847,7 +847,7 @@ def itertuples(self, index=True, name="Pandas"):
----------
index : bool, default True
If True, return the index as the first element of the tuple.
- name : str, default "Pandas"
+ name : str or None, default "Pandas"
The name of the returned namedtuples or None to return regular
tuples.
@@ -1290,23 +1290,26 @@ def to_dict(self, orient='dict', into=dict):
('columns', self.columns.tolist()),
('data', [
list(map(com.maybe_box_datetimelike, t))
- for t in self.itertuples(index=False)]
- )))
+ for t in self.itertuples(index=False, name=None)
+ ])))
elif orient.lower().startswith('s'):
return into_c((k, com.maybe_box_datetimelike(v))
for k, v in compat.iteritems(self))
elif orient.lower().startswith('r'):
+ columns = self.columns.tolist()
+ rows = (dict(zip(columns, row))
+ for row in self.itertuples(index=False, name=None))
return [
into_c((k, com.maybe_box_datetimelike(v))
- for k, v in compat.iteritems(row._asdict()))
- for row in self.itertuples(index=False)]
+ for k, v in compat.iteritems(row))
+ for row in rows]
elif orient.lower().startswith('i'):
if not self.index.is_unique:
raise ValueError(
"DataFrame index must be unique for orient='index'."
)
return into_c((t[0], dict(zip(self.columns, t[1:])))
- for t in self.itertuples())
+ for t in self.itertuples(name=None))
else:
raise ValueError("orient '{o}' not understood".format(o=orient))
diff --git a/pandas/core/indexes/base.py b/pandas/core/indexes/base.py
index 767da81c5c43a..3d176012df22b 100644
--- a/pandas/core/indexes/base.py
+++ b/pandas/core/indexes/base.py
@@ -2333,7 +2333,7 @@ def union(self, other, sort=True):
def _wrap_setop_result(self, other, result):
return self._constructor(result, name=get_op_result_name(self, other))
- def intersection(self, other, sort=True):
+ def intersection(self, other, sort=False):
"""
Form the intersection of two Index objects.
@@ -2342,11 +2342,15 @@ def intersection(self, other, sort=True):
Parameters
----------
other : Index or array-like
- sort : bool, default True
+ sort : bool, default False
Sort the resulting index if possible
.. versionadded:: 0.24.0
+ .. versionchanged:: 0.24.1
+
+ Changed the default from ``True`` to ``False``.
+
Returns
-------
intersection : Index
diff --git a/pandas/core/indexes/datetimes.py b/pandas/core/indexes/datetimes.py
index cc373c06efcc9..ef941ab87ba12 100644
--- a/pandas/core/indexes/datetimes.py
+++ b/pandas/core/indexes/datetimes.py
@@ -594,7 +594,7 @@ def _wrap_setop_result(self, other, result):
name = get_op_result_name(self, other)
return self._shallow_copy(result, name=name, freq=None, tz=self.tz)
- def intersection(self, other, sort=True):
+ def intersection(self, other, sort=False):
"""
Specialized intersection for DatetimeIndex objects. May be much faster
than Index.intersection
@@ -602,6 +602,14 @@ def intersection(self, other, sort=True):
Parameters
----------
other : DatetimeIndex or array-like
+ sort : bool, default True
+ Sort the resulting index if possible.
+
+ .. versionadded:: 0.24.0
+
+ .. versionchanged:: 0.24.1
+
+ Changed the default from ``True`` to ``False``.
Returns
-------
diff --git a/pandas/core/indexes/interval.py b/pandas/core/indexes/interval.py
index 0210560aaa21f..736de94991181 100644
--- a/pandas/core/indexes/interval.py
+++ b/pandas/core/indexes/interval.py
@@ -1093,8 +1093,8 @@ def equals(self, other):
def overlaps(self, other):
return self._data.overlaps(other)
- def _setop(op_name):
- def func(self, other, sort=True):
+ def _setop(op_name, sort=True):
+ def func(self, other, sort=sort):
other = self._as_like_interval_index(other)
# GH 19016: ensure set op will not return a prohibited dtype
@@ -1128,7 +1128,7 @@ def is_all_dates(self):
return False
union = _setop('union')
- intersection = _setop('intersection')
+ intersection = _setop('intersection', sort=False)
difference = _setop('difference')
symmetric_difference = _setop('symmetric_difference')
diff --git a/pandas/core/indexes/multi.py b/pandas/core/indexes/multi.py
index e4d01a40bd181..16af3fe8eef26 100644
--- a/pandas/core/indexes/multi.py
+++ b/pandas/core/indexes/multi.py
@@ -2910,7 +2910,7 @@ def union(self, other, sort=True):
return MultiIndex.from_arrays(lzip(*uniq_tuples), sortorder=0,
names=result_names)
- def intersection(self, other, sort=True):
+ def intersection(self, other, sort=False):
"""
Form the intersection of two MultiIndex objects.
@@ -2922,6 +2922,10 @@ def intersection(self, other, sort=True):
.. versionadded:: 0.24.0
+ .. versionchanged:: 0.24.1
+
+ Changed the default from ``True`` to ``False``.
+
Returns
-------
Index
diff --git a/pandas/core/indexes/range.py b/pandas/core/indexes/range.py
index ebf5b279563cf..e17a6a682af40 100644
--- a/pandas/core/indexes/range.py
+++ b/pandas/core/indexes/range.py
@@ -343,7 +343,7 @@ def equals(self, other):
return super(RangeIndex, self).equals(other)
- def intersection(self, other, sort=True):
+ def intersection(self, other, sort=False):
"""
Form the intersection of two Index objects.
@@ -355,6 +355,10 @@ def intersection(self, other, sort=True):
.. versionadded:: 0.24.0
+ .. versionchanged:: 0.24.1
+
+ Changed the default from ``True`` to ``False``.
+
Returns
-------
intersection : Index
diff --git a/pandas/core/internals/concat.py b/pandas/core/internals/concat.py
index 4a16707a376e9..640587b7f9f31 100644
--- a/pandas/core/internals/concat.py
+++ b/pandas/core/internals/concat.py
@@ -183,7 +183,7 @@ def get_reindexed_values(self, empty_dtype, upcasted_na):
is_datetime64tz_dtype(empty_dtype)):
if self.block is None:
array = empty_dtype.construct_array_type()
- return array(np.full(self.shape[1], fill_value),
+ return array(np.full(self.shape[1], fill_value.value),
dtype=empty_dtype)
pass
elif getattr(self.block, 'is_categorical', False):
@@ -335,8 +335,10 @@ def get_empty_dtype_and_na(join_units):
elif 'category' in upcast_classes:
return np.dtype(np.object_), np.nan
elif 'datetimetz' in upcast_classes:
+ # GH-25014. We use NaT instead of iNaT, since this eventually
+ # ends up in DatetimeArray.take, which does not allow iNaT.
dtype = upcast_classes['datetimetz']
- return dtype[0], tslibs.iNaT
+ return dtype[0], tslibs.NaT
elif 'datetime' in upcast_classes:
return np.dtype('M8[ns]'), tslibs.iNaT
elif 'timedelta' in upcast_classes:
diff --git a/pandas/core/resample.py b/pandas/core/resample.py
index 6822225273906..7723827ff478a 100644
--- a/pandas/core/resample.py
+++ b/pandas/core/resample.py
@@ -30,8 +30,7 @@
from pandas.core.indexes.timedeltas import TimedeltaIndex, timedelta_range
from pandas.tseries.frequencies import to_offset
-from pandas.tseries.offsets import (
- DateOffset, Day, Nano, Tick, delta_to_nanoseconds)
+from pandas.tseries.offsets import DateOffset, Day, Nano, Tick
_shared_docs_kwargs = dict()
@@ -1613,20 +1612,20 @@ def _get_timestamp_range_edges(first, last, offset, closed='left', base=0):
A tuple of length 2, containing the adjusted pd.Timestamp objects.
"""
if isinstance(offset, Tick):
- is_day = isinstance(offset, Day)
- day_nanos = delta_to_nanoseconds(timedelta(1))
-
- # #1165 and #24127
- if (is_day and not offset.nanos % day_nanos) or not is_day:
- first, last = _adjust_dates_anchored(first, last, offset,
- closed=closed, base=base)
- if is_day and first.tz is not None:
- # _adjust_dates_anchored assumes 'D' means 24H, but first/last
- # might contain a DST transition (23H, 24H, or 25H).
- # Ensure first/last snap to midnight.
- first = first.normalize()
- last = last.normalize()
- return first, last
+ if isinstance(offset, Day):
+ # _adjust_dates_anchored assumes 'D' means 24H, but first/last
+ # might contain a DST transition (23H, 24H, or 25H).
+ # So "pretend" the dates are naive when adjusting the endpoints
+ tz = first.tz
+ first = first.tz_localize(None)
+ last = last.tz_localize(None)
+
+ first, last = _adjust_dates_anchored(first, last, offset,
+ closed=closed, base=base)
+ if isinstance(offset, Day):
+ first = first.tz_localize(tz)
+ last = last.tz_localize(tz)
+ return first, last
else:
first = first.normalize()
diff --git a/pandas/core/tools/timedeltas.py b/pandas/core/tools/timedeltas.py
index e3428146b91d8..ddd21d0f62d08 100644
--- a/pandas/core/tools/timedeltas.py
+++ b/pandas/core/tools/timedeltas.py
@@ -120,7 +120,8 @@ def _coerce_scalar_to_timedelta_type(r, unit='ns', box=True, errors='raise'):
try:
result = Timedelta(r, unit)
if not box:
- result = result.asm8
+ # explicitly view as timedelta64 for case when result is pd.NaT
+ result = result.asm8.view('timedelta64[ns]')
except ValueError:
if errors == 'raise':
raise
diff --git a/pandas/io/parsers.py b/pandas/io/parsers.py
index b31d3f665f47f..4163a571df800 100755
--- a/pandas/io/parsers.py
+++ b/pandas/io/parsers.py
@@ -203,9 +203,14 @@
* dict, e.g. {{'foo' : [1, 3]}} -> parse columns 1, 3 as date and call
result 'foo'
- If a column or index contains an unparseable date, the entire column or
- index will be returned unaltered as an object data type. For non-standard
- datetime parsing, use ``pd.to_datetime`` after ``pd.read_csv``
+ If a column or index cannot be represented as an array of datetimes,
+ say because of an unparseable value or a mixture of timezones, the column
+ or index will be returned unaltered as an object data type. For
+ non-standard datetime parsing, use ``pd.to_datetime`` after
+ ``pd.read_csv``. To parse an index or column with a mixture of timezones,
+ specify ``date_parser`` to be a partially-applied
+ :func:`pandas.to_datetime` with ``utc=True``. See
+ :ref:`io.csv.mixed_timezones` for more.
Note: A fast-path exists for iso8601-formatted dates.
infer_datetime_format : bool, default False
diff --git a/pandas/plotting/_core.py b/pandas/plotting/_core.py
index e543ab88f53b2..85549bafa8dc0 100644
--- a/pandas/plotting/_core.py
+++ b/pandas/plotting/_core.py
@@ -39,7 +39,7 @@
else:
_HAS_MPL = True
if get_option('plotting.matplotlib.register_converters'):
- _converter.register(explicit=True)
+ _converter.register(explicit=False)
def _raise_if_no_mpl():
diff --git a/pandas/tests/extension/numpy_/__init__.py b/pandas/tests/extension/numpy_/__init__.py
new file mode 100644
index 0000000000000..e69de29bb2d1d
diff --git a/pandas/tests/extension/numpy_/conftest.py b/pandas/tests/extension/numpy_/conftest.py
new file mode 100644
index 0000000000000..daa93571c2957
--- /dev/null
+++ b/pandas/tests/extension/numpy_/conftest.py
@@ -0,0 +1,38 @@
+import numpy as np
+import pytest
+
+from pandas.core.arrays.numpy_ import PandasArray
+
+
[email protected]
+def allow_in_pandas(monkeypatch):
+ """
+ A monkeypatch to tell pandas to let us in.
+
+ By default, passing a PandasArray to an index / series / frame
+ constructor will unbox that PandasArray to an ndarray, and treat
+ it as a non-EA column. We don't want people using EAs without
+ reason.
+
+ The mechanism for this is a check against ABCPandasArray
+ in each constructor.
+
+ But, for testing, we need to allow them in pandas. So we patch
+ the _typ of PandasArray, so that we evade the ABCPandasArray
+ check.
+ """
+ with monkeypatch.context() as m:
+ m.setattr(PandasArray, '_typ', 'extension')
+ yield
+
+
[email protected]
+def na_value():
+ return np.nan
+
+
[email protected]
+def na_cmp():
+ def cmp(a, b):
+ return np.isnan(a) and np.isnan(b)
+ return cmp
diff --git a/pandas/tests/extension/test_numpy.py b/pandas/tests/extension/numpy_/test_numpy.py
similarity index 84%
rename from pandas/tests/extension/test_numpy.py
rename to pandas/tests/extension/numpy_/test_numpy.py
index 7ca6882c7441b..4c93d5ee0b9d7 100644
--- a/pandas/tests/extension/test_numpy.py
+++ b/pandas/tests/extension/numpy_/test_numpy.py
@@ -6,7 +6,7 @@
from pandas.core.arrays.numpy_ import PandasArray, PandasDtype
import pandas.util.testing as tm
-from . import base
+from .. import base
@pytest.fixture
@@ -14,28 +14,6 @@ def dtype():
return PandasDtype(np.dtype('float'))
[email protected]
-def allow_in_pandas(monkeypatch):
- """
- A monkeypatch to tells pandas to let us in.
-
- By default, passing a PandasArray to an index / series / frame
- constructor will unbox that PandasArray to an ndarray, and treat
- it as a non-EA column. We don't want people using EAs without
- reason.
-
- The mechanism for this is a check against ABCPandasArray
- in each constructor.
-
- But, for testing, we need to allow them in pandas. So we patch
- the _typ of PandasArray, so that we evade the ABCPandasArray
- check.
- """
- with monkeypatch.context() as m:
- m.setattr(PandasArray, '_typ', 'extension')
- yield
-
-
@pytest.fixture
def data(allow_in_pandas, dtype):
return PandasArray(np.arange(1, 101, dtype=dtype._dtype))
@@ -46,18 +24,6 @@ def data_missing(allow_in_pandas):
return PandasArray(np.array([np.nan, 1.0]))
[email protected]
-def na_value():
- return np.nan
-
-
[email protected]
-def na_cmp():
- def cmp(a, b):
- return np.isnan(a) and np.isnan(b)
- return cmp
-
-
@pytest.fixture
def data_for_sorting(allow_in_pandas):
"""Length-3 array with a known sort order.
diff --git a/pandas/tests/extension/numpy_/test_numpy_nested.py b/pandas/tests/extension/numpy_/test_numpy_nested.py
new file mode 100644
index 0000000000000..cf9b34dd08798
--- /dev/null
+++ b/pandas/tests/extension/numpy_/test_numpy_nested.py
@@ -0,0 +1,286 @@
+"""
+Tests for PandasArray with nested data. Users typically won't create
+these objects via `pd.array`, but they can show up through `.array`
+on a Series with nested data.
+
+We partition these tests into their own file, as many of the base
+tests fail, as they aren't appropriate for nested data. It is easier
+to have a seperate file with its own data generating fixtures, than
+trying to skip based upon the value of a fixture.
+"""
+import pytest
+
+import pandas as pd
+from pandas.core.arrays.numpy_ import PandasArray, PandasDtype
+
+from .. import base
+
+# For NumPy <1.16, np.array([np.nan, (1,)]) raises
+# ValueError: setting an array element with a sequence.
+np = pytest.importorskip('numpy', minversion='1.16.0')
+
+
[email protected]
+def dtype():
+ return PandasDtype(np.dtype('object'))
+
+
[email protected]
+def data(allow_in_pandas, dtype):
+ return pd.Series([(i,) for i in range(100)]).array
+
+
[email protected]
+def data_missing(allow_in_pandas):
+ return PandasArray(np.array([np.nan, (1,)]))
+
+
[email protected]
+def data_for_sorting(allow_in_pandas):
+ """Length-3 array with a known sort order.
+
+ This should be three items [B, C, A] with
+ A < B < C
+ """
+ # Use an empty tuple for first element, then remove,
+ # to disable np.array's shape inference.
+ return PandasArray(
+ np.array([(), (2,), (3,), (1,)])[1:]
+ )
+
+
[email protected]
+def data_missing_for_sorting(allow_in_pandas):
+ """Length-3 array with a known sort order.
+
+ This should be three items [B, NA, A] with
+ A < B and NA missing.
+ """
+ return PandasArray(
+ np.array([(1,), np.nan, (0,)])
+ )
+
+
[email protected]
+def data_for_grouping(allow_in_pandas):
+ """Data for factorization, grouping, and unique tests.
+
+ Expected to be like [B, B, NA, NA, A, A, B, C]
+
+ Where A < B < C and NA is missing
+ """
+ a, b, c = (1,), (2,), (3,)
+ return PandasArray(np.array(
+ [b, b, np.nan, np.nan, a, a, b, c]
+ ))
+
+
+skip_nested = pytest.mark.skip(reason="Skipping for nested PandasArray")
+
+
+class BaseNumPyTests(object):
+ pass
+
+
+class TestCasting(BaseNumPyTests, base.BaseCastingTests):
+
+ @skip_nested
+ def test_astype_str(self, data):
+ pass
+
+
+class TestConstructors(BaseNumPyTests, base.BaseConstructorsTests):
+ @pytest.mark.skip(reason="We don't register our dtype")
+ # We don't want to register. This test should probably be split in two.
+ def test_from_dtype(self, data):
+ pass
+
+ @skip_nested
+ def test_array_from_scalars(self, data):
+ pass
+
+
+class TestDtype(BaseNumPyTests, base.BaseDtypeTests):
+
+ @pytest.mark.skip(reason="Incorrect expected.")
+ # we unsurprisingly clash with a NumPy name.
+ def test_check_dtype(self, data):
+ pass
+
+
+class TestGetitem(BaseNumPyTests, base.BaseGetitemTests):
+
+ @skip_nested
+ def test_getitem_scalar(self, data):
+ pass
+
+ @skip_nested
+ def test_take_series(self, data):
+ pass
+
+
+class TestGroupby(BaseNumPyTests, base.BaseGroupbyTests):
+ @skip_nested
+ def test_groupby_extension_apply(self, data_for_grouping, op):
+ pass
+
+
+class TestInterface(BaseNumPyTests, base.BaseInterfaceTests):
+ @skip_nested
+ def test_array_interface(self, data):
+ # NumPy array shape inference
+ pass
+
+
+class TestMethods(BaseNumPyTests, base.BaseMethodsTests):
+
+ @pytest.mark.skip(reason="TODO: remove?")
+ def test_value_counts(self, all_data, dropna):
+ pass
+
+ @pytest.mark.skip(reason="Incorrect expected")
+ # We have a bool dtype, so the result is an ExtensionArray
+ # but expected is not
+ def test_combine_le(self, data_repeated):
+ super(TestMethods, self).test_combine_le(data_repeated)
+
+ @skip_nested
+ def test_combine_add(self, data_repeated):
+ # Not numeric
+ pass
+
+ @skip_nested
+ def test_shift_fill_value(self, data):
+ # np.array shape inference. Shift implementation fails.
+ super().test_shift_fill_value(data)
+
+ @skip_nested
+ def test_unique(self, data, box, method):
+ # Fails creating expected
+ pass
+
+ @skip_nested
+ def test_fillna_copy_frame(self, data_missing):
+ # The "scalar" for this array isn't a scalar.
+ pass
+
+ @skip_nested
+ def test_fillna_copy_series(self, data_missing):
+ # The "scalar" for this array isn't a scalar.
+ pass
+
+ @skip_nested
+ def test_hash_pandas_object_works(self, data, as_frame):
+ # ndarray of tuples not hashable
+ pass
+
+ @skip_nested
+ def test_searchsorted(self, data_for_sorting, as_series):
+ # Test setup fails.
+ pass
+
+ @skip_nested
+ def test_where_series(self, data, na_value, as_frame):
+ # Test setup fails.
+ pass
+
+ @skip_nested
+ def test_repeat(self, data, repeats, as_series, use_numpy):
+ # Fails creating expected
+ pass
+
+
+class TestPrinting(BaseNumPyTests, base.BasePrintingTests):
+ pass
+
+
+class TestMissing(BaseNumPyTests, base.BaseMissingTests):
+
+ @skip_nested
+ def test_fillna_scalar(self, data_missing):
+ # Non-scalar "scalar" values.
+ pass
+
+ @skip_nested
+ def test_fillna_series_method(self, data_missing, method):
+ # Non-scalar "scalar" values.
+ pass
+
+ @skip_nested
+ def test_fillna_series(self, data_missing):
+ # Non-scalar "scalar" values.
+ pass
+
+ @skip_nested
+ def test_fillna_frame(self, data_missing):
+ # Non-scalar "scalar" values.
+ pass
+
+
+class TestReshaping(BaseNumPyTests, base.BaseReshapingTests):
+
+ @pytest.mark.skip("Incorrect parent test")
+ # not actually a mixed concat, since we concat int and int.
+ def test_concat_mixed_dtypes(self, data):
+ super(TestReshaping, self).test_concat_mixed_dtypes(data)
+
+ @skip_nested
+ def test_merge(self, data, na_value):
+ # Fails creating expected
+ pass
+
+ @skip_nested
+ def test_merge_on_extension_array(self, data):
+ # Fails creating expected
+ pass
+
+ @skip_nested
+ def test_merge_on_extension_array_duplicates(self, data):
+ # Fails creating expected
+ pass
+
+
+class TestSetitem(BaseNumPyTests, base.BaseSetitemTests):
+
+ @skip_nested
+ def test_setitem_scalar_series(self, data, box_in_series):
+ pass
+
+ @skip_nested
+ def test_setitem_sequence(self, data, box_in_series):
+ pass
+
+ @skip_nested
+ def test_setitem_sequence_mismatched_length_raises(self, data, as_array):
+ pass
+
+ @skip_nested
+ def test_setitem_sequence_broadcasts(self, data, box_in_series):
+ pass
+
+ @skip_nested
+ def test_setitem_loc_scalar_mixed(self, data):
+ pass
+
+ @skip_nested
+ def test_setitem_loc_scalar_multiple_homogoneous(self, data):
+ pass
+
+ @skip_nested
+ def test_setitem_iloc_scalar_mixed(self, data):
+ pass
+
+ @skip_nested
+ def test_setitem_iloc_scalar_multiple_homogoneous(self, data):
+ pass
+
+ @skip_nested
+ def test_setitem_mask_broadcast(self, data, setter):
+ pass
+
+ @skip_nested
+ def test_setitem_scalar_key_sequence_raise(self, data):
+ pass
+
+
+# Skip Arithmetics, NumericReduce, BooleanReduce, Parsing
diff --git a/pandas/tests/frame/test_convert_to.py b/pandas/tests/frame/test_convert_to.py
index ddf85136126a1..7b98395dd6dec 100644
--- a/pandas/tests/frame/test_convert_to.py
+++ b/pandas/tests/frame/test_convert_to.py
@@ -488,3 +488,17 @@ def test_to_dict_index_dtypes(self, into, expected):
result = DataFrame.from_dict(result, orient='index')[cols]
expected = DataFrame.from_dict(expected, orient='index')[cols]
tm.assert_frame_equal(result, expected)
+
+ def test_to_dict_numeric_names(self):
+ # https://github.com/pandas-dev/pandas/issues/24940
+ df = DataFrame({str(i): [i] for i in range(5)})
+ result = set(df.to_dict('records')[0].keys())
+ expected = set(df.columns)
+ assert result == expected
+
+ def test_to_dict_wide(self):
+ # https://github.com/pandas-dev/pandas/issues/24939
+ df = DataFrame({('A_{:d}'.format(i)): [i] for i in range(256)})
+ result = df.to_dict('records')[0]
+ expected = {'A_{:d}'.format(i): i for i in range(256)}
+ assert result == expected
diff --git a/pandas/tests/indexes/test_base.py b/pandas/tests/indexes/test_base.py
index f3e9d835c7391..20e439de46bde 100644
--- a/pandas/tests/indexes/test_base.py
+++ b/pandas/tests/indexes/test_base.py
@@ -765,6 +765,11 @@ def test_intersect_str_dates(self, sort):
assert len(result) == 0
+ def test_intersect_nosort(self):
+ result = pd.Index(['c', 'b', 'a']).intersection(['b', 'a'])
+ expected = pd.Index(['b', 'a'])
+ tm.assert_index_equal(result, expected)
+
@pytest.mark.parametrize("sort", [True, False])
def test_chained_union(self, sort):
# Chained unions handles names correctly
@@ -1595,20 +1600,27 @@ def test_drop_tuple(self, values, to_drop):
for drop_me in to_drop[1], [to_drop[1]]:
pytest.raises(KeyError, removed.drop, drop_me)
- @pytest.mark.parametrize("method,expected", [
+ @pytest.mark.parametrize("method,expected,sort", [
+ ('intersection', np.array([(1, 'A'), (2, 'A'), (1, 'B'), (2, 'B')],
+ dtype=[('num', int), ('let', 'a1')]),
+ False),
+
('intersection', np.array([(1, 'A'), (1, 'B'), (2, 'A'), (2, 'B')],
- dtype=[('num', int), ('let', 'a1')])),
+ dtype=[('num', int), ('let', 'a1')]),
+ True),
+
('union', np.array([(1, 'A'), (1, 'B'), (1, 'C'), (2, 'A'), (2, 'B'),
- (2, 'C')], dtype=[('num', int), ('let', 'a1')]))
+ (2, 'C')], dtype=[('num', int), ('let', 'a1')]),
+ True)
])
- def test_tuple_union_bug(self, method, expected):
+ def test_tuple_union_bug(self, method, expected, sort):
index1 = Index(np.array([(1, 'A'), (2, 'A'), (1, 'B'), (2, 'B')],
dtype=[('num', int), ('let', 'a1')]))
index2 = Index(np.array([(1, 'A'), (2, 'A'), (1, 'B'),
(2, 'B'), (1, 'C'), (2, 'C')],
dtype=[('num', int), ('let', 'a1')]))
- result = getattr(index1, method)(index2)
+ result = getattr(index1, method)(index2, sort=sort)
assert result.ndim == 1
expected = Index(expected)
diff --git a/pandas/tests/resample/test_datetime_index.py b/pandas/tests/resample/test_datetime_index.py
index 73995cbe79ecd..b743aeecdc756 100644
--- a/pandas/tests/resample/test_datetime_index.py
+++ b/pandas/tests/resample/test_datetime_index.py
@@ -1276,6 +1276,21 @@ def test_resample_across_dst():
assert_frame_equal(result, expected)
+def test_groupby_with_dst_time_change():
+ # GH 24972
+ index = pd.DatetimeIndex([1478064900001000000, 1480037118776792000],
+ tz='UTC').tz_convert('America/Chicago')
+
+ df = pd.DataFrame([1, 2], index=index)
+ result = df.groupby(pd.Grouper(freq='1d')).last()
+ expected_index_values = pd.date_range('2016-11-02', '2016-11-24',
+ freq='d', tz='America/Chicago')
+
+ index = pd.DatetimeIndex(expected_index_values)
+ expected = pd.DataFrame([1.0] + ([np.nan] * 21) + [2.0], index=index)
+ assert_frame_equal(result, expected)
+
+
def test_resample_dst_anchor():
# 5172
dti = DatetimeIndex([datetime(2012, 11, 4, 23)], tz='US/Eastern')
diff --git a/pandas/tests/reshape/merge/test_merge.py b/pandas/tests/reshape/merge/test_merge.py
index f0a3ddc8ce8a4..1e60fdbebfeb3 100644
--- a/pandas/tests/reshape/merge/test_merge.py
+++ b/pandas/tests/reshape/merge/test_merge.py
@@ -616,6 +616,24 @@ def test_merge_on_datetime64tz(self):
assert result['value_x'].dtype == 'datetime64[ns, US/Eastern]'
assert result['value_y'].dtype == 'datetime64[ns, US/Eastern]'
+ def test_merge_on_datetime64tz_empty(self):
+ # https://github.com/pandas-dev/pandas/issues/25014
+ dtz = pd.DatetimeTZDtype(tz='UTC')
+ right = pd.DataFrame({'date': [pd.Timestamp('2018', tz=dtz.tz)],
+ 'value': [4.0],
+ 'date2': [pd.Timestamp('2019', tz=dtz.tz)]},
+ columns=['date', 'value', 'date2'])
+ left = right[:0]
+ result = left.merge(right, on='date')
+ expected = pd.DataFrame({
+ 'value_x': pd.Series(dtype=float),
+ 'date2_x': pd.Series(dtype=dtz),
+ 'date': pd.Series(dtype=dtz),
+ 'value_y': pd.Series(dtype=float),
+ 'date2_y': pd.Series(dtype=dtz),
+ }, columns=['value_x', 'date2_x', 'date', 'value_y', 'date2_y'])
+ tm.assert_frame_equal(result, expected)
+
def test_merge_datetime64tz_with_dst_transition(self):
# GH 18885
df1 = pd.DataFrame(pd.date_range(
diff --git a/pandas/tests/scalar/timedelta/test_timedelta.py b/pandas/tests/scalar/timedelta/test_timedelta.py
index 9b5fdfb06a9fa..e1838e0160fec 100644
--- a/pandas/tests/scalar/timedelta/test_timedelta.py
+++ b/pandas/tests/scalar/timedelta/test_timedelta.py
@@ -309,8 +309,13 @@ def test_iso_conversion(self):
assert to_timedelta('P0DT0H0M1S') == expected
def test_nat_converters(self):
- assert to_timedelta('nat', box=False).astype('int64') == iNaT
- assert to_timedelta('nan', box=False).astype('int64') == iNaT
+ result = to_timedelta('nat', box=False)
+ assert result.dtype.kind == 'm'
+ assert result.astype('int64') == iNaT
+
+ result = to_timedelta('nan', box=False)
+ assert result.dtype.kind == 'm'
+ assert result.astype('int64') == iNaT
@pytest.mark.parametrize('units, np_unit',
[(['Y', 'y'], 'Y'),
| - [ ] closes #xxxx
- [ ] tests added / passed
- [ ] passes `git diff upstream/master -u -- "*.py" | flake8 --diff`
- [ ] whatsnew entry
| https://api.github.com/repos/pandas-dev/pandas/pulls/25055 | 2019-01-31T17:05:55Z | 2019-01-31T20:30:20Z | null | 2019-01-31T20:30:20Z |
Backport PR #25039 on branch 0.24.x (BUG: avoid usage in_qtconsole for recent IPython versions) | diff --git a/doc/source/whatsnew/v0.24.1.rst b/doc/source/whatsnew/v0.24.1.rst
index 047404e93914b..521319c55a503 100644
--- a/doc/source/whatsnew/v0.24.1.rst
+++ b/doc/source/whatsnew/v0.24.1.rst
@@ -83,7 +83,7 @@ Bug Fixes
**Other**
--
+- Fixed AttributeError when printing a DataFrame's HTML repr after accessing the IPython config object (:issue:`25036`)
-
.. _whatsnew_0.241.contributors:
diff --git a/pandas/core/frame.py b/pandas/core/frame.py
index 28c6f3c23a3ce..5b462b949abf9 100644
--- a/pandas/core/frame.py
+++ b/pandas/core/frame.py
@@ -17,6 +17,7 @@
import itertools
import sys
import warnings
+from distutils.version import LooseVersion
from textwrap import dedent
import numpy as np
@@ -646,9 +647,15 @@ def _repr_html_(self):
# XXX: In IPython 3.x and above, the Qt console will not attempt to
# display HTML, so this check can be removed when support for
# IPython 2.x is no longer needed.
- if console.in_qtconsole():
- # 'HTML output is disabled in QtConsole'
- return None
+ try:
+ import IPython
+ except ImportError:
+ pass
+ else:
+ if LooseVersion(IPython.__version__) < LooseVersion('3.0'):
+ if console.in_qtconsole():
+ # 'HTML output is disabled in QtConsole'
+ return None
if self._info_repr():
buf = StringIO(u(""))
diff --git a/pandas/tests/io/formats/test_format.py b/pandas/tests/io/formats/test_format.py
index 5d922ccaf1fd5..b0cf5a2f17609 100644
--- a/pandas/tests/io/formats/test_format.py
+++ b/pandas/tests/io/formats/test_format.py
@@ -12,6 +12,7 @@
import os
import re
import sys
+import textwrap
import warnings
import dateutil
@@ -2777,3 +2778,17 @@ def test_format_percentiles():
fmt.format_percentiles([2, 0.1, 0.5])
with pytest.raises(ValueError, match=msg):
fmt.format_percentiles([0.1, 0.5, 'a'])
+
+
+def test_repr_html_ipython_config(ip):
+ code = textwrap.dedent("""\
+ import pandas as pd
+ df = pd.DataFrame({"A": [1, 2]})
+ df._repr_html_()
+
+ cfg = get_ipython().config
+ cfg['IPKernelApp']['parent_appname']
+ df._repr_html_()
+ """)
+ result = ip.run_cell(code)
+ assert not result.error_in_exec
| Backport PR #25039: BUG: avoid usage in_qtconsole for recent IPython versions | https://api.github.com/repos/pandas-dev/pandas/pulls/25054 | 2019-01-31T16:03:27Z | 2019-01-31T20:17:47Z | 2019-01-31T20:17:47Z | 2019-01-31T20:17:47Z |
DEPR: remove PanelGroupBy, disable DataFrame.to_panel | diff --git a/doc/source/whatsnew/v0.25.0.rst b/doc/source/whatsnew/v0.25.0.rst
index 09626be713c4f..a3fb1c575e7f1 100644
--- a/doc/source/whatsnew/v0.25.0.rst
+++ b/doc/source/whatsnew/v0.25.0.rst
@@ -51,7 +51,7 @@ Deprecations
Removal of prior version deprecations/changes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
+- Removed (parts of) :class:`Panel` (:issue:`25047`)
-
-
-
diff --git a/pandas/core/frame.py b/pandas/core/frame.py
index afc4194e71eb1..ad4709fb3b870 100644
--- a/pandas/core/frame.py
+++ b/pandas/core/frame.py
@@ -1974,45 +1974,7 @@ def to_panel(self):
-------
panel : Panel
"""
- # only support this kind for now
- if (not isinstance(self.index, MultiIndex) or # pragma: no cover
- len(self.index.levels) != 2):
- raise NotImplementedError('Only 2-level MultiIndex are supported.')
-
- if not self.index.is_unique:
- raise ValueError("Can't convert non-uniquely indexed "
- "DataFrame to Panel")
-
- self._consolidate_inplace()
-
- # minor axis must be sorted
- if self.index.lexsort_depth < 2:
- selfsorted = self.sort_index(level=0)
- else:
- selfsorted = self
-
- major_axis, minor_axis = selfsorted.index.levels
- major_codes, minor_codes = selfsorted.index.codes
- shape = len(major_axis), len(minor_axis)
-
- # preserve names, if any
- major_axis = major_axis.copy()
- major_axis.name = self.index.names[0]
-
- minor_axis = minor_axis.copy()
- minor_axis.name = self.index.names[1]
-
- # create new axes
- new_axes = [selfsorted.columns, major_axis, minor_axis]
-
- # create new manager
- new_mgr = selfsorted._data.reshape_nd(axes=new_axes,
- labels=[major_codes,
- minor_codes],
- shape=shape,
- ref_items=selfsorted.columns)
-
- return self._constructor_expanddim(new_mgr)
+ raise NotImplementedError("Panel is being removed in pandas 0.25.0.")
@deprecate_kwarg(old_arg_name='encoding', new_arg_name=None)
def to_stata(self, fname, convert_dates=None, write_index=True,
diff --git a/pandas/core/groupby/__init__.py b/pandas/core/groupby/__init__.py
index 9c15a5ebfe0f2..ac35f3825e5e8 100644
--- a/pandas/core/groupby/__init__.py
+++ b/pandas/core/groupby/__init__.py
@@ -1,4 +1,4 @@
from pandas.core.groupby.groupby import GroupBy # noqa: F401
from pandas.core.groupby.generic import ( # noqa: F401
- SeriesGroupBy, DataFrameGroupBy, PanelGroupBy)
+ SeriesGroupBy, DataFrameGroupBy)
from pandas.core.groupby.grouper import Grouper # noqa: F401
diff --git a/pandas/core/groupby/generic.py b/pandas/core/groupby/generic.py
index 78aa6d13a9e02..c8ea9ce689871 100644
--- a/pandas/core/groupby/generic.py
+++ b/pandas/core/groupby/generic.py
@@ -1,5 +1,5 @@
"""
-Define the SeriesGroupBy, DataFrameGroupBy, and PanelGroupBy
+Define the SeriesGroupBy and DataFrameGroupBy
classes that hold the groupby interfaces (and some implementations).
These are user facing as the result of the ``df.groupby(...)`` operations,
@@ -39,7 +39,6 @@
from pandas.core.index import CategoricalIndex, Index, MultiIndex
import pandas.core.indexes.base as ibase
from pandas.core.internals import BlockManager, make_block
-from pandas.core.panel import Panel
from pandas.core.series import Series
from pandas.plotting._core import boxplot_frame_groupby
@@ -1586,90 +1585,3 @@ def groupby_series(obj, col=None):
return results
boxplot = boxplot_frame_groupby
-
-
-class PanelGroupBy(NDFrameGroupBy):
-
- def aggregate(self, arg, *args, **kwargs):
- return super(PanelGroupBy, self).aggregate(arg, *args, **kwargs)
-
- agg = aggregate
-
- def _iterate_slices(self):
- if self.axis == 0:
- # kludge
- if self._selection is None:
- slice_axis = self._selected_obj.items
- else:
- slice_axis = self._selection_list
- slicer = lambda x: self._selected_obj[x]
- else:
- raise NotImplementedError("axis other than 0 is not supported")
-
- for val in slice_axis:
- if val in self.exclusions:
- continue
-
- yield val, slicer(val)
-
- def aggregate(self, arg, *args, **kwargs):
- """
- Aggregate using input function or dict of {column -> function}
-
- Parameters
- ----------
- arg : function or dict
- Function to use for aggregating groups. If a function, must either
- work when passed a Panel or when passed to Panel.apply. If
- pass a dict, the keys must be DataFrame column names
-
- Returns
- -------
- aggregated : Panel
- """
- if isinstance(arg, compat.string_types):
- return getattr(self, arg)(*args, **kwargs)
-
- return self._aggregate_generic(arg, *args, **kwargs)
-
- def _wrap_generic_output(self, result, obj):
- if self.axis == 0:
- new_axes = list(obj.axes)
- new_axes[0] = self.grouper.result_index
- elif self.axis == 1:
- x, y, z = obj.axes
- new_axes = [self.grouper.result_index, z, x]
- else:
- x, y, z = obj.axes
- new_axes = [self.grouper.result_index, y, x]
-
- result = Panel._from_axes(result, new_axes)
-
- if self.axis == 1:
- result = result.swapaxes(0, 1).swapaxes(0, 2)
- elif self.axis == 2:
- result = result.swapaxes(0, 2)
-
- return result
-
- def _aggregate_item_by_item(self, func, *args, **kwargs):
- obj = self._obj_with_exclusions
- result = {}
-
- if self.axis > 0:
- for item in obj:
- try:
- itemg = DataFrameGroupBy(obj[item],
- axis=self.axis - 1,
- grouper=self.grouper)
- result[item] = itemg.aggregate(func, *args, **kwargs)
- except (ValueError, TypeError):
- raise
- new_axes = list(obj.axes)
- new_axes[self.axis] = self.grouper.result_index
- return Panel._from_axes(result, new_axes)
- else:
- raise ValueError("axis value must be greater than 0")
-
- def _wrap_aggregated_output(self, output, names=None):
- raise AbstractMethodError(self)
diff --git a/pandas/core/panel.py b/pandas/core/panel.py
index c8afafde48ac2..de535eeea4b5e 100644
--- a/pandas/core/panel.py
+++ b/pandas/core/panel.py
@@ -917,9 +917,7 @@ def groupby(self, function, axis='major'):
-------
grouped : PanelGroupBy
"""
- from pandas.core.groupby import PanelGroupBy
- axis = self._get_axis_number(axis)
- return PanelGroupBy(self, function, axis=axis)
+ raise NotImplementedError("Panel is removed in pandas 0.25.0")
def to_frame(self, filter_observations=True):
"""
diff --git a/pandas/core/resample.py b/pandas/core/resample.py
index a7204fcd9dd20..fbddc9ff29ce9 100644
--- a/pandas/core/resample.py
+++ b/pandas/core/resample.py
@@ -20,7 +20,7 @@
import pandas.core.algorithms as algos
from pandas.core.generic import _shared_docs
from pandas.core.groupby.base import GroupByMixin
-from pandas.core.groupby.generic import PanelGroupBy, SeriesGroupBy
+from pandas.core.groupby.generic import SeriesGroupBy
from pandas.core.groupby.groupby import (
GroupBy, _GroupBy, _pipe_template, groupby)
from pandas.core.groupby.grouper import Grouper
@@ -340,12 +340,7 @@ def _groupby_and_aggregate(self, how, grouper=None, *args, **kwargs):
obj = self._selected_obj
- try:
- grouped = groupby(obj, by=None, grouper=grouper, axis=self.axis)
- except TypeError:
-
- # panel grouper
- grouped = PanelGroupBy(obj, grouper=grouper, axis=self.axis)
+ grouped = groupby(obj, by=None, grouper=grouper, axis=self.axis)
try:
if isinstance(obj, ABCDataFrame) and compat.callable(how):
diff --git a/pandas/io/pytables.py b/pandas/io/pytables.py
index 2ab6ddb5b25c7..00fa01bb23c8c 100644
--- a/pandas/io/pytables.py
+++ b/pandas/io/pytables.py
@@ -31,7 +31,7 @@
PeriodIndex, Series, SparseDataFrame, SparseSeries, TimedeltaIndex, compat,
concat, isna, to_datetime)
from pandas.core import config
-from pandas.core.algorithms import match, unique
+from pandas.core.algorithms import unique
from pandas.core.arrays.categorical import (
Categorical, _factorize_from_iterables)
from pandas.core.arrays.sparse import BlockIndex, IntIndex
@@ -3944,29 +3944,7 @@ def read(self, where=None, columns=None, **kwargs):
objs.append(obj)
else:
- warnings.warn(duplicate_doc, DuplicateWarning, stacklevel=5)
-
- # reconstruct
- long_index = MultiIndex.from_arrays(
- [i.values for i in self.index_axes])
-
- for c in self.values_axes:
- lp = DataFrame(c.data, index=long_index, columns=c.values)
-
- # need a better algorithm
- tuple_index = long_index.values
-
- unique_tuples = unique(tuple_index)
- unique_tuples = com.asarray_tuplesafe(unique_tuples)
-
- indexer = match(unique_tuples, tuple_index)
- indexer = ensure_platform_int(indexer)
-
- new_index = long_index.take(indexer)
- new_values = lp.values.take(indexer, axis=0)
-
- lp = DataFrame(new_values, index=new_index, columns=lp.columns)
- objs.append(lp.to_panel())
+ raise NotImplementedError("Panel is removed in pandas 0.25.0")
# create the composite object
if len(objs) == 1:
@@ -4875,16 +4853,3 @@ def select_coords(self):
return self.coordinates
return np.arange(start, stop)
-
-# utilities ###
-
-
-def timeit(key, df, fn=None, remove=True, **kwargs):
- if fn is None:
- fn = 'timeit.h5'
- store = HDFStore(fn, mode='w')
- store.append(key, df, **kwargs)
- store.close()
-
- if remove:
- os.remove(fn)
diff --git a/pandas/tests/dtypes/test_generic.py b/pandas/tests/dtypes/test_generic.py
index 1622088d05f4d..2bb3559d56d61 100644
--- a/pandas/tests/dtypes/test_generic.py
+++ b/pandas/tests/dtypes/test_generic.py
@@ -1,6 +1,6 @@
# -*- coding: utf-8 -*-
-from warnings import catch_warnings, simplefilter
+from warnings import catch_warnings
import numpy as np
@@ -39,9 +39,6 @@ def test_abc_types(self):
assert isinstance(pd.Int64Index([1, 2, 3]), gt.ABCIndexClass)
assert isinstance(pd.Series([1, 2, 3]), gt.ABCSeries)
assert isinstance(self.df, gt.ABCDataFrame)
- with catch_warnings(record=True):
- simplefilter('ignore', FutureWarning)
- assert isinstance(self.df.to_panel(), gt.ABCPanel)
assert isinstance(self.sparse_series, gt.ABCSparseSeries)
assert isinstance(self.sparse_array, gt.ABCSparseArray)
assert isinstance(self.sparse_frame, gt.ABCSparseDataFrame)
diff --git a/pandas/tests/frame/test_subclass.py b/pandas/tests/frame/test_subclass.py
index 4f0747c0d6945..2e3696e7e04cc 100644
--- a/pandas/tests/frame/test_subclass.py
+++ b/pandas/tests/frame/test_subclass.py
@@ -6,7 +6,7 @@
import pytest
import pandas as pd
-from pandas import DataFrame, Index, MultiIndex, Panel, Series
+from pandas import DataFrame, Index, MultiIndex, Series
from pandas.tests.frame.common import TestData
import pandas.util.testing as tm
@@ -125,29 +125,6 @@ def test_indexing_sliced(self):
tm.assert_series_equal(res, exp)
assert isinstance(res, tm.SubclassedSeries)
- @pytest.mark.filterwarnings("ignore:\\nPanel:FutureWarning")
- def test_to_panel_expanddim(self):
- # GH 9762
-
- class SubclassedFrame(DataFrame):
-
- @property
- def _constructor_expanddim(self):
- return SubclassedPanel
-
- class SubclassedPanel(Panel):
- pass
-
- index = MultiIndex.from_tuples([(0, 0), (0, 1), (0, 2)])
- df = SubclassedFrame({'X': [1, 2, 3], 'Y': [4, 5, 6]}, index=index)
- result = df.to_panel()
- assert isinstance(result, SubclassedPanel)
- expected = SubclassedPanel([[[1, 2, 3]], [[4, 5, 6]]],
- items=['X', 'Y'], major_axis=[0],
- minor_axis=[0, 1, 2],
- dtype='int64')
- tm.assert_panel_equal(result, expected)
-
def test_subclass_attr_err_propagation(self):
# GH 11808
class A(DataFrame):
diff --git a/pandas/tests/groupby/test_groupby.py b/pandas/tests/groupby/test_groupby.py
index 98c917a6eca3c..0bfc7ababd18a 100644
--- a/pandas/tests/groupby/test_groupby.py
+++ b/pandas/tests/groupby/test_groupby.py
@@ -1239,31 +1239,6 @@ def _check_work(gp):
# _check_work(panel.groupby(lambda x: x.month, axis=1))
[email protected]("ignore:\\nPanel:FutureWarning")
-def test_panel_groupby():
- panel = tm.makePanel()
- tm.add_nans(panel)
- grouped = panel.groupby({'ItemA': 0, 'ItemB': 0, 'ItemC': 1},
- axis='items')
- agged = grouped.mean()
- agged2 = grouped.agg(lambda x: x.mean('items'))
-
- tm.assert_panel_equal(agged, agged2)
-
- tm.assert_index_equal(agged.items, Index([0, 1]))
-
- grouped = panel.groupby(lambda x: x.month, axis='major')
- agged = grouped.mean()
-
- exp = Index(sorted(list(set(panel.major_axis.month))))
- tm.assert_index_equal(agged.major_axis, exp)
-
- grouped = panel.groupby({'A': 0, 'B': 0, 'C': 1, 'D': 1},
- axis='minor')
- agged = grouped.mean()
- tm.assert_index_equal(agged.minor_axis, Index([0, 1]))
-
-
def test_groupby_2d_malformed():
d = DataFrame(index=lrange(2))
d['group'] = ['g1', 'g2']
diff --git a/pandas/tests/groupby/test_grouping.py b/pandas/tests/groupby/test_grouping.py
index a509a7cb57c97..44b5bd5f13992 100644
--- a/pandas/tests/groupby/test_grouping.py
+++ b/pandas/tests/groupby/test_grouping.py
@@ -14,8 +14,7 @@
from pandas.core.groupby.grouper import Grouping
import pandas.util.testing as tm
from pandas.util.testing import (
- assert_almost_equal, assert_frame_equal, assert_panel_equal,
- assert_series_equal)
+ assert_almost_equal, assert_frame_equal, assert_series_equal)
# selection
# --------------------------------
@@ -563,17 +562,7 @@ def test_list_grouper_with_nat(self):
# --------------------------------
class TestGetGroup():
-
- @pytest.mark.filterwarnings("ignore:\\nPanel:FutureWarning")
def test_get_group(self):
- wp = tm.makePanel()
- grouped = wp.groupby(lambda x: x.month, axis='major')
-
- gp = grouped.get_group(1)
- expected = wp.reindex(
- major=[x for x in wp.major_axis if x.month == 1])
- assert_panel_equal(gp, expected)
-
# GH 5267
# be datelike friendly
df = DataFrame({'DATE': pd.to_datetime(
@@ -755,19 +744,6 @@ def test_multi_iter_frame(self, three_group):
for key, group in grouped:
pass
- @pytest.mark.filterwarnings("ignore:\\nPanel:FutureWarning")
- def test_multi_iter_panel(self):
- wp = tm.makePanel()
- grouped = wp.groupby([lambda x: x.month, lambda x: x.weekday()],
- axis=1)
-
- for (month, wd), group in grouped:
- exp_axis = [x
- for x in wp.major_axis
- if x.month == month and x.weekday() == wd]
- expected = wp.reindex(major=exp_axis)
- assert_panel_equal(group, expected)
-
def test_dictify(self, df):
dict(iter(df.groupby('A')))
dict(iter(df.groupby(['A', 'B'])))
diff --git a/pandas/tests/io/test_pytables.py b/pandas/tests/io/test_pytables.py
index 9430011288f27..c339c33751b5f 100644
--- a/pandas/tests/io/test_pytables.py
+++ b/pandas/tests/io/test_pytables.py
@@ -3050,29 +3050,6 @@ def test_select_with_dups(self):
result = store.select('df', columns=['B', 'A'])
assert_frame_equal(result, expected, by_blocks=True)
- @pytest.mark.filterwarnings(
- "ignore:\\nduplicate:pandas.io.pytables.DuplicateWarning"
- )
- def test_wide_table_dups(self):
- with ensure_clean_store(self.path) as store:
- with catch_warnings(record=True):
-
- wp = tm.makePanel()
- store.put('panel', wp, format='table')
- store.put('panel', wp, format='table', append=True)
-
- recons = store['panel']
-
- assert_panel_equal(recons, wp)
-
- def test_long(self):
- def _check(left, right):
- assert_panel_equal(left.to_panel(), right.to_panel())
-
- with catch_warnings(record=True):
- wp = tm.makePanel()
- self._check_roundtrip(wp.to_frame(), _check)
-
def test_overwrite_node(self):
with ensure_clean_store(self.path) as store:
diff --git a/pandas/tests/resample/test_datetime_index.py b/pandas/tests/resample/test_datetime_index.py
index 856c4df5380e5..ceccb48194f85 100644
--- a/pandas/tests/resample/test_datetime_index.py
+++ b/pandas/tests/resample/test_datetime_index.py
@@ -1,6 +1,5 @@
from datetime import datetime, timedelta
from functools import partial
-from warnings import catch_warnings, simplefilter
import numpy as np
import pytest
@@ -10,7 +9,7 @@
from pandas.errors import UnsupportedFunctionCall
import pandas as pd
-from pandas import DataFrame, Panel, Series, Timedelta, Timestamp, isna, notna
+from pandas import DataFrame, Series, Timedelta, Timestamp, isna, notna
from pandas.core.indexes.datetimes import date_range
from pandas.core.indexes.period import Period, period_range
from pandas.core.resample import (
@@ -692,56 +691,6 @@ def test_resample_axis1():
tm.assert_frame_equal(result, expected)
-def test_resample_panel():
- rng = date_range('1/1/2000', '6/30/2000')
- n = len(rng)
-
- with catch_warnings(record=True):
- simplefilter("ignore", FutureWarning)
- panel = Panel(np.random.randn(3, n, 5),
- items=['one', 'two', 'three'],
- major_axis=rng,
- minor_axis=['a', 'b', 'c', 'd', 'e'])
-
- result = panel.resample('M', axis=1).mean()
-
- def p_apply(panel, f):
- result = {}
- for item in panel.items:
- result[item] = f(panel[item])
- return Panel(result, items=panel.items)
-
- expected = p_apply(panel, lambda x: x.resample('M').mean())
- tm.assert_panel_equal(result, expected)
-
- panel2 = panel.swapaxes(1, 2)
- result = panel2.resample('M', axis=2).mean()
- expected = p_apply(panel2,
- lambda x: x.resample('M', axis=1).mean())
- tm.assert_panel_equal(result, expected)
-
-
[email protected]("ignore:\\nPanel:FutureWarning")
-def test_resample_panel_numpy():
- rng = date_range('1/1/2000', '6/30/2000')
- n = len(rng)
-
- with catch_warnings(record=True):
- panel = Panel(np.random.randn(3, n, 5),
- items=['one', 'two', 'three'],
- major_axis=rng,
- minor_axis=['a', 'b', 'c', 'd', 'e'])
-
- result = panel.resample('M', axis=1).apply(lambda x: x.mean(1))
- expected = panel.resample('M', axis=1).mean()
- tm.assert_panel_equal(result, expected)
-
- panel = panel.swapaxes(1, 2)
- result = panel.resample('M', axis=2).apply(lambda x: x.mean(2))
- expected = panel.resample('M', axis=2).mean()
- tm.assert_panel_equal(result, expected)
-
-
def test_resample_anchored_ticks():
# If a fixed delta (5 minute, 4 hour) evenly divides a day, we should
# "anchor" the origin at midnight so we get regular intervals rather
diff --git a/pandas/tests/resample/test_time_grouper.py b/pandas/tests/resample/test_time_grouper.py
index a4eb7933738c0..2f330d1f2484b 100644
--- a/pandas/tests/resample/test_time_grouper.py
+++ b/pandas/tests/resample/test_time_grouper.py
@@ -5,7 +5,7 @@
import pytest
import pandas as pd
-from pandas import DataFrame, Panel, Series
+from pandas import DataFrame, Series
from pandas.core.indexes.datetimes import date_range
from pandas.core.resample import TimeGrouper
import pandas.util.testing as tm
@@ -79,27 +79,6 @@ def f(df):
tm.assert_index_equal(result.index, df.index)
[email protected]("ignore:\\nPanel:FutureWarning")
-def test_panel_aggregation():
- ind = pd.date_range('1/1/2000', periods=100)
- data = np.random.randn(2, len(ind), 4)
-
- wp = Panel(data, items=['Item1', 'Item2'], major_axis=ind,
- minor_axis=['A', 'B', 'C', 'D'])
-
- tg = TimeGrouper('M', axis=1)
- _, grouper, _ = tg._get_grouper(wp)
- bingrouped = wp.groupby(grouper)
- binagg = bingrouped.mean()
-
- def f(x):
- assert (isinstance(x, Panel))
- return x.mean(1)
-
- result = bingrouped.agg(f)
- tm.assert_panel_equal(result, binagg)
-
-
@pytest.mark.parametrize('name, func', [
('Int64Index', tm.makeIntIndex),
('Index', tm.makeUnicodeIndex),
diff --git a/pandas/tests/test_panel.py b/pandas/tests/test_panel.py
index ba0ad72e624f7..6b20acc844829 100644
--- a/pandas/tests/test_panel.py
+++ b/pandas/tests/test_panel.py
@@ -1653,61 +1653,6 @@ def test_transpose_copy(self):
panel.values[0, 1, 1] = np.nan
assert notna(result.values[1, 0, 1])
- def test_to_frame(self):
- # filtered
- filtered = self.panel.to_frame()
- expected = self.panel.to_frame().dropna(how='any')
- assert_frame_equal(filtered, expected)
-
- # unfiltered
- unfiltered = self.panel.to_frame(filter_observations=False)
- assert_panel_equal(unfiltered.to_panel(), self.panel)
-
- # names
- assert unfiltered.index.names == ('major', 'minor')
-
- # unsorted, round trip
- df = self.panel.to_frame(filter_observations=False)
- unsorted = df.take(np.random.permutation(len(df)))
- pan = unsorted.to_panel()
- assert_panel_equal(pan, self.panel)
-
- # preserve original index names
- df = DataFrame(np.random.randn(6, 2),
- index=[['a', 'a', 'b', 'b', 'c', 'c'],
- [0, 1, 0, 1, 0, 1]],
- columns=['one', 'two'])
- df.index.names = ['foo', 'bar']
- df.columns.name = 'baz'
-
- rdf = df.to_panel().to_frame()
- assert rdf.index.names == df.index.names
- assert rdf.columns.names == df.columns.names
-
- def test_to_frame_mixed(self):
- panel = self.panel.fillna(0)
- panel['str'] = 'foo'
- panel['bool'] = panel['ItemA'] > 0
-
- lp = panel.to_frame()
- wp = lp.to_panel()
- assert wp['bool'].values.dtype == np.bool_
- # Previously, this was mutating the underlying
- # index and changing its name
- assert_frame_equal(wp['bool'], panel['bool'], check_names=False)
-
- # GH 8704
- # with categorical
- df = panel.to_frame()
- df['category'] = df['str'].astype('category')
-
- # to_panel
- # TODO: this converts back to object
- p = df.to_panel()
- expected = panel.copy()
- expected['category'] = 'foo'
- assert_panel_equal(p, expected)
-
def test_to_frame_multi_major(self):
idx = MultiIndex.from_tuples(
[(1, 'one'), (1, 'two'), (2, 'one'), (2, 'two')])
@@ -1808,22 +1753,6 @@ def test_to_frame_multi_drop_level(self):
expected = DataFrame({'i1': [1., 2], 'i2': [1., 2]}, index=exp_idx)
assert_frame_equal(result, expected)
- def test_to_panel_na_handling(self):
- df = DataFrame(np.random.randint(0, 10, size=20).reshape((10, 2)),
- index=[[0, 0, 0, 0, 0, 0, 1, 1, 1, 1],
- [0, 1, 2, 3, 4, 5, 2, 3, 4, 5]])
-
- panel = df.to_panel()
- assert isna(panel[0].loc[1, [0, 1]]).all()
-
- def test_to_panel_duplicates(self):
- # #2441
- df = DataFrame({'a': [0, 0, 1], 'b': [1, 1, 1], 'c': [1, 2, 3]})
- idf = df.set_index(['a', 'b'])
-
- with pytest.raises(ValueError, match='non-uniquely indexed'):
- idf.to_panel()
-
def test_panel_dups(self):
# GH 4960
@@ -2121,14 +2050,6 @@ def test_get_attr(self):
self.panel['i'] = self.panel['ItemA']
assert_frame_equal(self.panel['i'], self.panel.i)
- def test_from_frame_level1_unsorted(self):
- tuples = [('MSFT', 3), ('MSFT', 2), ('AAPL', 2), ('AAPL', 1),
- ('MSFT', 1)]
- midx = MultiIndex.from_tuples(tuples)
- df = DataFrame(np.random.rand(5, 4), index=midx)
- p = df.to_panel()
- assert_frame_equal(p.minor_xs(2), df.xs(2, level=1).sort_index())
-
def test_to_excel(self):
try:
import xlwt # noqa
@@ -2404,40 +2325,11 @@ def setup_method(self, method):
self.panel = panel.to_frame()
self.unfiltered_panel = panel.to_frame(filter_observations=False)
- def test_ops_differently_indexed(self):
- # trying to set non-identically indexed panel
- wp = self.panel.to_panel()
- wp2 = wp.reindex(major=wp.major_axis[:-1])
- lp2 = wp2.to_frame()
-
- result = self.panel + lp2
- assert_frame_equal(result.reindex(lp2.index), lp2 * 2)
-
- # careful, mutation
- self.panel['foo'] = lp2['ItemA']
- assert_series_equal(self.panel['foo'].reindex(lp2.index),
- lp2['ItemA'],
- check_names=False)
-
def test_ops_scalar(self):
result = self.panel.mul(2)
expected = DataFrame.__mul__(self.panel, 2)
assert_frame_equal(result, expected)
- def test_combineFrame(self):
- wp = self.panel.to_panel()
- result = self.panel.add(wp['ItemA'].stack(), axis=0)
- assert_frame_equal(result.to_panel()['ItemA'], wp['ItemA'] * 2)
-
- def test_combinePanel(self):
- wp = self.panel.to_panel()
- result = self.panel.add(self.panel)
- wide_result = result.to_panel()
- assert_frame_equal(wp['ItemA'] * 2, wide_result['ItemA'])
-
- # one item
- result = self.panel.add(self.panel.filter(['ItemA']))
-
def test_combine_scalar(self):
result = self.panel.mul(2)
expected = DataFrame(self.panel._data) * 2
@@ -2454,34 +2346,6 @@ def test_combine_series(self):
expected = DataFrame.add(self.panel, s, axis=1)
assert_frame_equal(result, expected)
- def test_operators(self):
- wp = self.panel.to_panel()
- result = (self.panel + 1).to_panel()
- assert_frame_equal(wp['ItemA'] + 1, result['ItemA'])
-
- def test_arith_flex_panel(self):
- ops = ['add', 'sub', 'mul', 'div',
- 'truediv', 'pow', 'floordiv', 'mod']
- if not compat.PY3:
- aliases = {}
- else:
- aliases = {'div': 'truediv'}
- self.panel = self.panel.to_panel()
-
- for n in [np.random.randint(-50, -1), np.random.randint(1, 50), 0]:
- for op in ops:
- alias = aliases.get(op, op)
- f = getattr(operator, alias)
- exp = f(self.panel, n)
- result = getattr(self.panel, op)(n)
- assert_panel_equal(result, exp, check_panel_type=True)
-
- # rops
- r_f = lambda x, y: f(y, x)
- exp = r_f(self.panel, n)
- result = getattr(self.panel, 'r' + op)(n)
- assert_panel_equal(result, exp)
-
def test_sort(self):
def is_sorted(arr):
return (arr[1:] > arr[:-1]).any()
@@ -2502,45 +2366,6 @@ def test_to_sparse(self):
with pytest.raises(NotImplementedError, match=msg):
self.panel.to_sparse
- def test_truncate(self):
- dates = self.panel.index.levels[0]
- start, end = dates[1], dates[5]
-
- trunced = self.panel.truncate(start, end).to_panel()
- expected = self.panel.to_panel()['ItemA'].truncate(start, end)
-
- # TODO truncate drops index.names
- assert_frame_equal(trunced['ItemA'], expected, check_names=False)
-
- trunced = self.panel.truncate(before=start).to_panel()
- expected = self.panel.to_panel()['ItemA'].truncate(before=start)
-
- # TODO truncate drops index.names
- assert_frame_equal(trunced['ItemA'], expected, check_names=False)
-
- trunced = self.panel.truncate(after=end).to_panel()
- expected = self.panel.to_panel()['ItemA'].truncate(after=end)
-
- # TODO truncate drops index.names
- assert_frame_equal(trunced['ItemA'], expected, check_names=False)
-
- # truncate on dates that aren't in there
- wp = self.panel.to_panel()
- new_index = wp.major_axis[::5]
-
- wp2 = wp.reindex(major=new_index)
-
- lp2 = wp2.to_frame()
- lp_trunc = lp2.truncate(wp.major_axis[2], wp.major_axis[-2])
-
- wp_trunc = wp2.truncate(wp.major_axis[2], wp.major_axis[-2])
-
- assert_panel_equal(wp_trunc, lp_trunc.to_panel())
-
- # throw proper exception
- pytest.raises(Exception, lp2.truncate, wp.major_axis[-2],
- wp.major_axis[2])
-
def test_axis_dummies(self):
from pandas.core.reshape.reshape import make_axis_dummies
@@ -2567,20 +2392,6 @@ def test_get_dummies(self):
dummies = get_dummies(self.panel['Label'])
tm.assert_numpy_array_equal(dummies.values, minor_dummies.values)
- def test_mean(self):
- means = self.panel.mean(level='minor')
-
- # test versus Panel version
- wide_means = self.panel.to_panel().mean('major')
- assert_frame_equal(means, wide_means)
-
- def test_sum(self):
- sums = self.panel.sum(level='minor')
-
- # test versus Panel version
- wide_sums = self.panel.to_panel().sum('major')
- assert_frame_equal(sums, wide_sums)
-
def test_count(self):
index = self.panel.index
| My understanding is that we're removing Panel in 0.25.0. A local attempt to do this all-at-once got messy quick (largely due to io.pytables and io.msgpack). This gets the ball rolling by removing only PanelGroupBy and DataFrame.to_panel, followed by all of the code+tests that rely on either of these. | https://api.github.com/repos/pandas-dev/pandas/pulls/25047 | 2019-01-31T03:50:28Z | 2019-02-06T03:47:26Z | 2019-02-06T03:47:26Z | 2019-02-09T08:53:29Z |
ENH: Support fold argument in Timestamp.replace | diff --git a/doc/source/whatsnew/v0.25.0.rst b/doc/source/whatsnew/v0.25.0.rst
index a9fa8b2174dd0..8e1fc352ba4f7 100644
--- a/doc/source/whatsnew/v0.25.0.rst
+++ b/doc/source/whatsnew/v0.25.0.rst
@@ -19,7 +19,7 @@ including other versions of pandas.
Other Enhancements
^^^^^^^^^^^^^^^^^^
--
+- :meth:`Timestamp.replace` now supports the ``fold`` argument to disambiguate DST transition times (:issue:`25017`)
-
-
diff --git a/pandas/_libs/tslibs/nattype.pyx b/pandas/_libs/tslibs/nattype.pyx
index a55d15a7c4e85..c719bcb2ef135 100644
--- a/pandas/_libs/tslibs/nattype.pyx
+++ b/pandas/_libs/tslibs/nattype.pyx
@@ -669,7 +669,6 @@ class NaTType(_NaT):
nanosecond : int, optional
tzinfo : tz-convertible, optional
fold : int, optional, default is 0
- added in 3.6, NotImplemented
Returns
-------
diff --git a/pandas/_libs/tslibs/timestamps.pyx b/pandas/_libs/tslibs/timestamps.pyx
index fe0564cb62c30..85d94f822056b 100644
--- a/pandas/_libs/tslibs/timestamps.pyx
+++ b/pandas/_libs/tslibs/timestamps.pyx
@@ -1,4 +1,5 @@
# -*- coding: utf-8 -*-
+import sys
import warnings
from cpython cimport (PyObject_RichCompareBool, PyObject_RichCompare,
@@ -43,10 +44,11 @@ from pandas._libs.tslibs.timezones import UTC
# Constants
_zero_time = datetime_time(0, 0)
_no_input = object()
-
+PY36 = sys.version_info >= (3, 6)
# ----------------------------------------------------------------------
+
def maybe_integer_op_deprecated(obj):
# GH#22535 add/sub of integers and int-arrays is deprecated
if obj.freq is not None:
@@ -1195,7 +1197,6 @@ class Timestamp(_Timestamp):
nanosecond : int, optional
tzinfo : tz-convertible, optional
fold : int, optional, default is 0
- added in 3.6, NotImplemented
Returns
-------
@@ -1252,12 +1253,16 @@ class Timestamp(_Timestamp):
# see GH#18319
ts_input = _tzinfo.localize(datetime(dts.year, dts.month, dts.day,
dts.hour, dts.min, dts.sec,
- dts.us))
+ dts.us),
+ is_dst=not bool(fold))
_tzinfo = ts_input.tzinfo
else:
- ts_input = datetime(dts.year, dts.month, dts.day,
- dts.hour, dts.min, dts.sec, dts.us,
- tzinfo=_tzinfo)
+ kwargs = {'year': dts.year, 'month': dts.month, 'day': dts.day,
+ 'hour': dts.hour, 'minute': dts.min, 'second': dts.sec,
+ 'microsecond': dts.us, 'tzinfo': _tzinfo}
+ if PY36:
+ kwargs['fold'] = fold
+ ts_input = datetime(**kwargs)
ts = convert_datetime_to_tsobject(ts_input, _tzinfo)
value = ts.value + (dts.ps // 1000)
diff --git a/pandas/tests/scalar/timestamp/test_unary_ops.py b/pandas/tests/scalar/timestamp/test_unary_ops.py
index 3f9a30d254126..adcf66200a672 100644
--- a/pandas/tests/scalar/timestamp/test_unary_ops.py
+++ b/pandas/tests/scalar/timestamp/test_unary_ops.py
@@ -8,7 +8,7 @@
from pandas._libs.tslibs import conversion
from pandas._libs.tslibs.frequencies import INVALID_FREQ_ERR_MSG
-from pandas.compat import PY3
+from pandas.compat import PY3, PY36
import pandas.util._test_decorators as td
from pandas import NaT, Timestamp
@@ -329,6 +329,19 @@ def test_replace_dst_border(self):
expected = Timestamp('2013-11-3 03:00:00', tz='America/Chicago')
assert result == expected
+ @pytest.mark.skipif(not PY36, reason='Fold not available until PY3.6')
+ @pytest.mark.parametrize('fold', [0, 1])
+ @pytest.mark.parametrize('tz', ['dateutil/Europe/London', 'Europe/London'])
+ def test_replace_dst_fold(self, fold, tz):
+ # GH 25017
+ d = datetime(2019, 10, 27, 2, 30)
+ ts = Timestamp(d, tz=tz)
+ result = ts.replace(hour=1, fold=fold)
+ expected = Timestamp(datetime(2019, 10, 27, 1, 30)).tz_localize(
+ tz, ambiguous=not fold
+ )
+ assert result == expected
+
# --------------------------------------------------------------
# Timestamp.normalize
| - [x] closes #25017
- [x] tests added / passed
- [x] passes `git diff upstream/master -u -- "*.py" | flake8 --diff`
- [x] whatsnew entry
Since `Timestamp` has its own `replace` method, I think we can still introduce this while still supporting PY3.5 (`datetime.replace` gained the `fold` argument in 3.6) while it mimics the functionality in PY3.6 | https://api.github.com/repos/pandas-dev/pandas/pulls/25046 | 2019-01-31T01:54:09Z | 2019-02-01T18:40:56Z | 2019-02-01T18:40:56Z | 2019-02-01T18:51:05Z |
PERF: use new to_records() argument in to_stata() | diff --git a/doc/source/whatsnew/v0.25.0.rst b/doc/source/whatsnew/v0.25.0.rst
index 939fb8b9415bd..130477f588c26 100644
--- a/doc/source/whatsnew/v0.25.0.rst
+++ b/doc/source/whatsnew/v0.25.0.rst
@@ -23,14 +23,6 @@ Other Enhancements
-
-
-.. _whatsnew_0250.performance:
-
-Performance Improvements
-~~~~~~~~~~~~~~~~~~~~~~~~
- - Significant speedup in `SparseArray` initialization that benefits most operations, fixing performance regression introduced in v0.20.0 (:issue:`24985`)
-
-
-
.. _whatsnew_0250.api_breaking:
Backwards incompatible API changes
@@ -69,8 +61,8 @@ Removal of prior version deprecations/changes
Performance Improvements
~~~~~~~~~~~~~~~~~~~~~~~~
--
--
+- Significant speedup in `SparseArray` initialization that benefits most operations, fixing performance regression introduced in v0.20.0 (:issue:`24985`)
+- `DataFrame.to_stata()` is now faster when outputting data with any string or non-native endian columns (:issue:`25045`)
-
diff --git a/pandas/io/stata.py b/pandas/io/stata.py
index 1b0660171ecac..0bd084f4e5df7 100644
--- a/pandas/io/stata.py
+++ b/pandas/io/stata.py
@@ -2385,32 +2385,22 @@ def _prepare_data(self):
data = self._convert_strls(data)
# 3. Convert bad string data to '' and pad to correct length
- dtypes = []
- data_cols = []
- has_strings = False
+ dtypes = {}
native_byteorder = self._byteorder == _set_endianness(sys.byteorder)
for i, col in enumerate(data):
typ = typlist[i]
if typ <= self._max_string_length:
- has_strings = True
data[col] = data[col].fillna('').apply(_pad_bytes, args=(typ,))
stype = 'S{type}'.format(type=typ)
- dtypes.append(('c' + str(i), stype))
- string = data[col].str.encode(self._encoding)
- data_cols.append(string.values.astype(stype))
+ dtypes[col] = stype
+ data[col] = data[col].str.encode(self._encoding).astype(stype)
else:
- values = data[col].values
dtype = data[col].dtype
if not native_byteorder:
dtype = dtype.newbyteorder(self._byteorder)
- dtypes.append(('c' + str(i), dtype))
- data_cols.append(values)
- dtypes = np.dtype(dtypes)
+ dtypes[col] = dtype
- if has_strings or not native_byteorder:
- self.data = np.fromiter(zip(*data_cols), dtype=dtypes)
- else:
- self.data = data.to_records(index=False)
+ self.data = data.to_records(index=False, column_dtypes=dtypes)
def _write_data(self):
data = self.data
| The `to_stata()` function spends ~25-50% of its time massaging string/different endian data and creating a `np.recarray` in a roundabout way. Using `column_dtypes` in `to_records()` allows some cleanup and for a decent performance bump:
```
$ asv compare upstream/master HEAD -s --sort ratio
Benchmarks that have improved:
before after ratio
[4cbee179] [9bf67cc5]
<to_stata~1> <to_stata>
- 709±9ms 552±20ms 0.78 io.stata.Stata.time_write_stata('tw')
- 409±30ms 233±30ms 0.57 io.stata.Stata.time_write_stata('tq')
- 402±20ms 227±30ms 0.56 io.stata.Stata.time_write_stata('tc')
- 398±9ms 222±30ms 0.56 io.stata.Stata.time_write_stata('th')
- 420±20ms 231±30ms 0.55 io.stata.Stata.time_write_stata('tm')
- 396±10ms 214±3ms 0.54 io.stata.Stata.time_write_stata('ty')
- 389±8ms 207±10ms 0.53 io.stata.Stata.time_write_stata('td')
Benchmarks that have stayed the same:
before after ratio
[4cbee179] [9bf67cc5]
<to_stata~1> <to_stata>
527±6ms 563±30ms 1.07 io.stata.Stata.time_read_stata('th')
507±20ms 531±9ms 1.05 io.stata.Stata.time_read_stata('ty')
519±10ms 543±30ms 1.05 io.stata.Stata.time_read_stata('tm')
484±10ms 504±10ms 1.04 io.stata.Stata.time_read_stata('tw')
149±6ms 152±2ms 1.02 io.stata.Stata.time_read_stata('tc')
152±3ms 153±8ms 1.01 io.stata.Stata.time_read_stata('td')
533±20ms 533±6ms 1.00 io.stata.Stata.time_read_stata('tq')
```
- [ ] closes #xxxx
- [ ] tests added / passed
- [ ] passes `git diff upstream/master -u -- "*.py" | flake8 --diff`
- [ ] whatsnew entry
| https://api.github.com/repos/pandas-dev/pandas/pulls/25045 | 2019-01-30T23:41:47Z | 2019-02-01T20:56:06Z | 2019-02-01T20:56:06Z | 2019-02-01T20:56:09Z |
CLN: to_pickle internals | diff --git a/pandas/compat/pickle_compat.py b/pandas/compat/pickle_compat.py
index 61295b8249f58..8f16f8154b952 100644
--- a/pandas/compat/pickle_compat.py
+++ b/pandas/compat/pickle_compat.py
@@ -201,7 +201,7 @@ def load_newobj_ex(self):
pass
-def load(fh, encoding=None, compat=False, is_verbose=False):
+def load(fh, encoding=None, is_verbose=False):
"""load a pickle, with a provided encoding
if compat is True:
@@ -212,7 +212,6 @@ def load(fh, encoding=None, compat=False, is_verbose=False):
----------
fh : a filelike object
encoding : an optional encoding
- compat : provide Series compatibility mode, boolean, default False
is_verbose : show exception output
"""
diff --git a/pandas/io/pickle.py b/pandas/io/pickle.py
index 789f55a62dc58..ab4a266853a78 100644
--- a/pandas/io/pickle.py
+++ b/pandas/io/pickle.py
@@ -1,8 +1,7 @@
""" pickle compat """
import warnings
-import numpy as np
-from numpy.lib.format import read_array, write_array
+from numpy.lib.format import read_array
from pandas.compat import PY3, BytesIO, cPickle as pkl, pickle_compat as pc
@@ -76,6 +75,7 @@ def to_pickle(obj, path, compression='infer', protocol=pkl.HIGHEST_PROTOCOL):
try:
f.write(pkl.dumps(obj, protocol=protocol))
finally:
+ f.close()
for _f in fh:
_f.close()
@@ -138,63 +138,32 @@ def read_pickle(path, compression='infer'):
>>> os.remove("./dummy.pkl")
"""
path = _stringify_path(path)
+ f, fh = _get_handle(path, 'rb', compression=compression, is_text=False)
+
+ # 1) try with cPickle
+ # 2) try with the compat pickle to handle subclass changes
+ # 3) pass encoding only if its not None as py2 doesn't handle the param
- def read_wrapper(func):
- # wrapper file handle open/close operation
- f, fh = _get_handle(path, 'rb',
- compression=compression,
- is_text=False)
- try:
- return func(f)
- finally:
- for _f in fh:
- _f.close()
-
- def try_read(path, encoding=None):
- # try with cPickle
- # try with current pickle, if we have a Type Error then
- # try with the compat pickle to handle subclass changes
- # pass encoding only if its not None as py2 doesn't handle
- # the param
-
- # cpickle
- # GH 6899
- try:
- with warnings.catch_warnings(record=True):
- # We want to silence any warnings about, e.g. moved modules.
- warnings.simplefilter("ignore", Warning)
- return read_wrapper(lambda f: pkl.load(f))
- except Exception: # noqa: E722
- # reg/patched pickle
- # compat not used in pandas/compat/pickle_compat.py::load
- # TODO: remove except block OR modify pc.load to use compat
- try:
- return read_wrapper(
- lambda f: pc.load(f, encoding=encoding, compat=False))
- # compat pickle
- except Exception: # noqa: E722
- return read_wrapper(
- lambda f: pc.load(f, encoding=encoding, compat=True))
try:
- return try_read(path)
+ with warnings.catch_warnings(record=True):
+ # We want to silence any warnings about, e.g. moved modules.
+ warnings.simplefilter("ignore", Warning)
+ return pkl.load(f)
except Exception: # noqa: E722
- if PY3:
- return try_read(path, encoding='latin1')
- raise
-
+ try:
+ return pc.load(f, encoding=None)
+ except Exception: # noqa: E722
+ if PY3:
+ return pc.load(f, encoding='latin1')
+ raise
+ finally:
+ f.close()
+ for _f in fh:
+ _f.close()
# compat with sparse pickle / unpickle
-def _pickle_array(arr):
- arr = arr.view(np.ndarray)
-
- buf = BytesIO()
- write_array(buf, arr)
-
- return buf.getvalue()
-
-
def _unpickle_array(bytes):
arr = read_array(BytesIO(bytes))
| - [x] tests added / passed
- [x] passes `git diff upstream/master -u -- "*.py" | flake8 --diff`
| https://api.github.com/repos/pandas-dev/pandas/pulls/25044 | 2019-01-30T23:27:07Z | 2019-02-01T18:50:36Z | 2019-02-01T18:50:36Z | 2019-02-01T18:51:56Z |
Backport PR #24993 on branch 0.24.x (Test nested PandasArray) | diff --git a/pandas/core/arrays/numpy_.py b/pandas/core/arrays/numpy_.py
index 47517782e2bbf..791ff44303e96 100644
--- a/pandas/core/arrays/numpy_.py
+++ b/pandas/core/arrays/numpy_.py
@@ -222,7 +222,7 @@ def __getitem__(self, item):
item = item._ndarray
result = self._ndarray[item]
- if not lib.is_scalar(result):
+ if not lib.is_scalar(item):
result = type(self)(result)
return result
diff --git a/pandas/tests/extension/numpy_/__init__.py b/pandas/tests/extension/numpy_/__init__.py
new file mode 100644
index 0000000000000..e69de29bb2d1d
diff --git a/pandas/tests/extension/numpy_/conftest.py b/pandas/tests/extension/numpy_/conftest.py
new file mode 100644
index 0000000000000..daa93571c2957
--- /dev/null
+++ b/pandas/tests/extension/numpy_/conftest.py
@@ -0,0 +1,38 @@
+import numpy as np
+import pytest
+
+from pandas.core.arrays.numpy_ import PandasArray
+
+
[email protected]
+def allow_in_pandas(monkeypatch):
+ """
+ A monkeypatch to tell pandas to let us in.
+
+ By default, passing a PandasArray to an index / series / frame
+ constructor will unbox that PandasArray to an ndarray, and treat
+ it as a non-EA column. We don't want people using EAs without
+ reason.
+
+ The mechanism for this is a check against ABCPandasArray
+ in each constructor.
+
+ But, for testing, we need to allow them in pandas. So we patch
+ the _typ of PandasArray, so that we evade the ABCPandasArray
+ check.
+ """
+ with monkeypatch.context() as m:
+ m.setattr(PandasArray, '_typ', 'extension')
+ yield
+
+
[email protected]
+def na_value():
+ return np.nan
+
+
[email protected]
+def na_cmp():
+ def cmp(a, b):
+ return np.isnan(a) and np.isnan(b)
+ return cmp
diff --git a/pandas/tests/extension/test_numpy.py b/pandas/tests/extension/numpy_/test_numpy.py
similarity index 84%
rename from pandas/tests/extension/test_numpy.py
rename to pandas/tests/extension/numpy_/test_numpy.py
index 7ca6882c7441b..4c93d5ee0b9d7 100644
--- a/pandas/tests/extension/test_numpy.py
+++ b/pandas/tests/extension/numpy_/test_numpy.py
@@ -6,7 +6,7 @@
from pandas.core.arrays.numpy_ import PandasArray, PandasDtype
import pandas.util.testing as tm
-from . import base
+from .. import base
@pytest.fixture
@@ -14,28 +14,6 @@ def dtype():
return PandasDtype(np.dtype('float'))
[email protected]
-def allow_in_pandas(monkeypatch):
- """
- A monkeypatch to tells pandas to let us in.
-
- By default, passing a PandasArray to an index / series / frame
- constructor will unbox that PandasArray to an ndarray, and treat
- it as a non-EA column. We don't want people using EAs without
- reason.
-
- The mechanism for this is a check against ABCPandasArray
- in each constructor.
-
- But, for testing, we need to allow them in pandas. So we patch
- the _typ of PandasArray, so that we evade the ABCPandasArray
- check.
- """
- with monkeypatch.context() as m:
- m.setattr(PandasArray, '_typ', 'extension')
- yield
-
-
@pytest.fixture
def data(allow_in_pandas, dtype):
return PandasArray(np.arange(1, 101, dtype=dtype._dtype))
@@ -46,18 +24,6 @@ def data_missing(allow_in_pandas):
return PandasArray(np.array([np.nan, 1.0]))
[email protected]
-def na_value():
- return np.nan
-
-
[email protected]
-def na_cmp():
- def cmp(a, b):
- return np.isnan(a) and np.isnan(b)
- return cmp
-
-
@pytest.fixture
def data_for_sorting(allow_in_pandas):
"""Length-3 array with a known sort order.
diff --git a/pandas/tests/extension/numpy_/test_numpy_nested.py b/pandas/tests/extension/numpy_/test_numpy_nested.py
new file mode 100644
index 0000000000000..cf9b34dd08798
--- /dev/null
+++ b/pandas/tests/extension/numpy_/test_numpy_nested.py
@@ -0,0 +1,286 @@
+"""
+Tests for PandasArray with nested data. Users typically won't create
+these objects via `pd.array`, but they can show up through `.array`
+on a Series with nested data.
+
+We partition these tests into their own file, as many of the base
+tests fail, as they aren't appropriate for nested data. It is easier
+to have a seperate file with its own data generating fixtures, than
+trying to skip based upon the value of a fixture.
+"""
+import pytest
+
+import pandas as pd
+from pandas.core.arrays.numpy_ import PandasArray, PandasDtype
+
+from .. import base
+
+# For NumPy <1.16, np.array([np.nan, (1,)]) raises
+# ValueError: setting an array element with a sequence.
+np = pytest.importorskip('numpy', minversion='1.16.0')
+
+
[email protected]
+def dtype():
+ return PandasDtype(np.dtype('object'))
+
+
[email protected]
+def data(allow_in_pandas, dtype):
+ return pd.Series([(i,) for i in range(100)]).array
+
+
[email protected]
+def data_missing(allow_in_pandas):
+ return PandasArray(np.array([np.nan, (1,)]))
+
+
[email protected]
+def data_for_sorting(allow_in_pandas):
+ """Length-3 array with a known sort order.
+
+ This should be three items [B, C, A] with
+ A < B < C
+ """
+ # Use an empty tuple for first element, then remove,
+ # to disable np.array's shape inference.
+ return PandasArray(
+ np.array([(), (2,), (3,), (1,)])[1:]
+ )
+
+
[email protected]
+def data_missing_for_sorting(allow_in_pandas):
+ """Length-3 array with a known sort order.
+
+ This should be three items [B, NA, A] with
+ A < B and NA missing.
+ """
+ return PandasArray(
+ np.array([(1,), np.nan, (0,)])
+ )
+
+
[email protected]
+def data_for_grouping(allow_in_pandas):
+ """Data for factorization, grouping, and unique tests.
+
+ Expected to be like [B, B, NA, NA, A, A, B, C]
+
+ Where A < B < C and NA is missing
+ """
+ a, b, c = (1,), (2,), (3,)
+ return PandasArray(np.array(
+ [b, b, np.nan, np.nan, a, a, b, c]
+ ))
+
+
+skip_nested = pytest.mark.skip(reason="Skipping for nested PandasArray")
+
+
+class BaseNumPyTests(object):
+ pass
+
+
+class TestCasting(BaseNumPyTests, base.BaseCastingTests):
+
+ @skip_nested
+ def test_astype_str(self, data):
+ pass
+
+
+class TestConstructors(BaseNumPyTests, base.BaseConstructorsTests):
+ @pytest.mark.skip(reason="We don't register our dtype")
+ # We don't want to register. This test should probably be split in two.
+ def test_from_dtype(self, data):
+ pass
+
+ @skip_nested
+ def test_array_from_scalars(self, data):
+ pass
+
+
+class TestDtype(BaseNumPyTests, base.BaseDtypeTests):
+
+ @pytest.mark.skip(reason="Incorrect expected.")
+ # we unsurprisingly clash with a NumPy name.
+ def test_check_dtype(self, data):
+ pass
+
+
+class TestGetitem(BaseNumPyTests, base.BaseGetitemTests):
+
+ @skip_nested
+ def test_getitem_scalar(self, data):
+ pass
+
+ @skip_nested
+ def test_take_series(self, data):
+ pass
+
+
+class TestGroupby(BaseNumPyTests, base.BaseGroupbyTests):
+ @skip_nested
+ def test_groupby_extension_apply(self, data_for_grouping, op):
+ pass
+
+
+class TestInterface(BaseNumPyTests, base.BaseInterfaceTests):
+ @skip_nested
+ def test_array_interface(self, data):
+ # NumPy array shape inference
+ pass
+
+
+class TestMethods(BaseNumPyTests, base.BaseMethodsTests):
+
+ @pytest.mark.skip(reason="TODO: remove?")
+ def test_value_counts(self, all_data, dropna):
+ pass
+
+ @pytest.mark.skip(reason="Incorrect expected")
+ # We have a bool dtype, so the result is an ExtensionArray
+ # but expected is not
+ def test_combine_le(self, data_repeated):
+ super(TestMethods, self).test_combine_le(data_repeated)
+
+ @skip_nested
+ def test_combine_add(self, data_repeated):
+ # Not numeric
+ pass
+
+ @skip_nested
+ def test_shift_fill_value(self, data):
+ # np.array shape inference. Shift implementation fails.
+ super().test_shift_fill_value(data)
+
+ @skip_nested
+ def test_unique(self, data, box, method):
+ # Fails creating expected
+ pass
+
+ @skip_nested
+ def test_fillna_copy_frame(self, data_missing):
+ # The "scalar" for this array isn't a scalar.
+ pass
+
+ @skip_nested
+ def test_fillna_copy_series(self, data_missing):
+ # The "scalar" for this array isn't a scalar.
+ pass
+
+ @skip_nested
+ def test_hash_pandas_object_works(self, data, as_frame):
+ # ndarray of tuples not hashable
+ pass
+
+ @skip_nested
+ def test_searchsorted(self, data_for_sorting, as_series):
+ # Test setup fails.
+ pass
+
+ @skip_nested
+ def test_where_series(self, data, na_value, as_frame):
+ # Test setup fails.
+ pass
+
+ @skip_nested
+ def test_repeat(self, data, repeats, as_series, use_numpy):
+ # Fails creating expected
+ pass
+
+
+class TestPrinting(BaseNumPyTests, base.BasePrintingTests):
+ pass
+
+
+class TestMissing(BaseNumPyTests, base.BaseMissingTests):
+
+ @skip_nested
+ def test_fillna_scalar(self, data_missing):
+ # Non-scalar "scalar" values.
+ pass
+
+ @skip_nested
+ def test_fillna_series_method(self, data_missing, method):
+ # Non-scalar "scalar" values.
+ pass
+
+ @skip_nested
+ def test_fillna_series(self, data_missing):
+ # Non-scalar "scalar" values.
+ pass
+
+ @skip_nested
+ def test_fillna_frame(self, data_missing):
+ # Non-scalar "scalar" values.
+ pass
+
+
+class TestReshaping(BaseNumPyTests, base.BaseReshapingTests):
+
+ @pytest.mark.skip("Incorrect parent test")
+ # not actually a mixed concat, since we concat int and int.
+ def test_concat_mixed_dtypes(self, data):
+ super(TestReshaping, self).test_concat_mixed_dtypes(data)
+
+ @skip_nested
+ def test_merge(self, data, na_value):
+ # Fails creating expected
+ pass
+
+ @skip_nested
+ def test_merge_on_extension_array(self, data):
+ # Fails creating expected
+ pass
+
+ @skip_nested
+ def test_merge_on_extension_array_duplicates(self, data):
+ # Fails creating expected
+ pass
+
+
+class TestSetitem(BaseNumPyTests, base.BaseSetitemTests):
+
+ @skip_nested
+ def test_setitem_scalar_series(self, data, box_in_series):
+ pass
+
+ @skip_nested
+ def test_setitem_sequence(self, data, box_in_series):
+ pass
+
+ @skip_nested
+ def test_setitem_sequence_mismatched_length_raises(self, data, as_array):
+ pass
+
+ @skip_nested
+ def test_setitem_sequence_broadcasts(self, data, box_in_series):
+ pass
+
+ @skip_nested
+ def test_setitem_loc_scalar_mixed(self, data):
+ pass
+
+ @skip_nested
+ def test_setitem_loc_scalar_multiple_homogoneous(self, data):
+ pass
+
+ @skip_nested
+ def test_setitem_iloc_scalar_mixed(self, data):
+ pass
+
+ @skip_nested
+ def test_setitem_iloc_scalar_multiple_homogoneous(self, data):
+ pass
+
+ @skip_nested
+ def test_setitem_mask_broadcast(self, data, setter):
+ pass
+
+ @skip_nested
+ def test_setitem_scalar_key_sequence_raise(self, data):
+ pass
+
+
+# Skip Arithmetics, NumericReduce, BooleanReduce, Parsing
| Backport PR #24993: Test nested PandasArray | https://api.github.com/repos/pandas-dev/pandas/pulls/25042 | 2019-01-30T21:18:28Z | 2019-01-30T22:28:45Z | 2019-01-30T22:28:45Z | 2019-01-30T22:28:46Z |
Backport PR #25033 on branch 0.24.x (BUG: Fixed merging on tz-aware) | diff --git a/doc/source/whatsnew/v0.24.1.rst b/doc/source/whatsnew/v0.24.1.rst
index 57fdff041db28..047404e93914b 100644
--- a/doc/source/whatsnew/v0.24.1.rst
+++ b/doc/source/whatsnew/v0.24.1.rst
@@ -23,6 +23,7 @@ Fixed Regressions
- Bug in :meth:`DataFrame.itertuples` with ``records`` orient raising an ``AttributeError`` when the ``DataFrame`` contained more than 255 columns (:issue:`24939`)
- Bug in :meth:`DataFrame.itertuples` orient converting integer column names to strings prepended with an underscore (:issue:`24940`)
- Fixed regression in :class:`Index.intersection` incorrectly sorting the values by default (:issue:`24959`).
+- Fixed regression in :func:`merge` when merging an empty ``DataFrame`` with multiple timezone-aware columns on one of the timezone-aware columns (:issue:`25014`).
.. _whatsnew_0241.enhancements:
diff --git a/pandas/core/internals/concat.py b/pandas/core/internals/concat.py
index 4a16707a376e9..640587b7f9f31 100644
--- a/pandas/core/internals/concat.py
+++ b/pandas/core/internals/concat.py
@@ -183,7 +183,7 @@ def get_reindexed_values(self, empty_dtype, upcasted_na):
is_datetime64tz_dtype(empty_dtype)):
if self.block is None:
array = empty_dtype.construct_array_type()
- return array(np.full(self.shape[1], fill_value),
+ return array(np.full(self.shape[1], fill_value.value),
dtype=empty_dtype)
pass
elif getattr(self.block, 'is_categorical', False):
@@ -335,8 +335,10 @@ def get_empty_dtype_and_na(join_units):
elif 'category' in upcast_classes:
return np.dtype(np.object_), np.nan
elif 'datetimetz' in upcast_classes:
+ # GH-25014. We use NaT instead of iNaT, since this eventually
+ # ends up in DatetimeArray.take, which does not allow iNaT.
dtype = upcast_classes['datetimetz']
- return dtype[0], tslibs.iNaT
+ return dtype[0], tslibs.NaT
elif 'datetime' in upcast_classes:
return np.dtype('M8[ns]'), tslibs.iNaT
elif 'timedelta' in upcast_classes:
diff --git a/pandas/tests/reshape/merge/test_merge.py b/pandas/tests/reshape/merge/test_merge.py
index f0a3ddc8ce8a4..1e60fdbebfeb3 100644
--- a/pandas/tests/reshape/merge/test_merge.py
+++ b/pandas/tests/reshape/merge/test_merge.py
@@ -616,6 +616,24 @@ def test_merge_on_datetime64tz(self):
assert result['value_x'].dtype == 'datetime64[ns, US/Eastern]'
assert result['value_y'].dtype == 'datetime64[ns, US/Eastern]'
+ def test_merge_on_datetime64tz_empty(self):
+ # https://github.com/pandas-dev/pandas/issues/25014
+ dtz = pd.DatetimeTZDtype(tz='UTC')
+ right = pd.DataFrame({'date': [pd.Timestamp('2018', tz=dtz.tz)],
+ 'value': [4.0],
+ 'date2': [pd.Timestamp('2019', tz=dtz.tz)]},
+ columns=['date', 'value', 'date2'])
+ left = right[:0]
+ result = left.merge(right, on='date')
+ expected = pd.DataFrame({
+ 'value_x': pd.Series(dtype=float),
+ 'date2_x': pd.Series(dtype=dtz),
+ 'date': pd.Series(dtype=dtz),
+ 'value_y': pd.Series(dtype=float),
+ 'date2_y': pd.Series(dtype=dtz),
+ }, columns=['value_x', 'date2_x', 'date', 'value_y', 'date2_y'])
+ tm.assert_frame_equal(result, expected)
+
def test_merge_datetime64tz_with_dst_transition(self):
# GH 18885
df1 = pd.DataFrame(pd.date_range(
| Backport PR #25033: BUG: Fixed merging on tz-aware | https://api.github.com/repos/pandas-dev/pandas/pulls/25041 | 2019-01-30T21:17:40Z | 2019-01-30T22:27:20Z | 2019-01-30T22:27:20Z | 2019-01-30T22:27:20Z |
BUG: to_clipboard text truncated for Python 3 on Windows for UTF-16 text | diff --git a/doc/source/whatsnew/v0.25.0.rst b/doc/source/whatsnew/v0.25.0.rst
index a9fa8b2174dd0..880eaed3b5dfb 100644
--- a/doc/source/whatsnew/v0.25.0.rst
+++ b/doc/source/whatsnew/v0.25.0.rst
@@ -163,6 +163,7 @@ MultiIndex
I/O
^^^
+- Fixed bug in missing text when using :meth:`to_clipboard` if copying utf-16 characters in Python 3 on Windows (:issue:`25040`)
-
-
-
diff --git a/pandas/io/clipboard/windows.py b/pandas/io/clipboard/windows.py
index 3d979a61b5f2d..4f5275af693b7 100644
--- a/pandas/io/clipboard/windows.py
+++ b/pandas/io/clipboard/windows.py
@@ -29,6 +29,7 @@ def init_windows_clipboard():
HINSTANCE, HMENU, BOOL, UINT, HANDLE)
windll = ctypes.windll
+ msvcrt = ctypes.CDLL('msvcrt')
safeCreateWindowExA = CheckedCall(windll.user32.CreateWindowExA)
safeCreateWindowExA.argtypes = [DWORD, LPCSTR, LPCSTR, DWORD, INT, INT,
@@ -71,6 +72,10 @@ def init_windows_clipboard():
safeGlobalUnlock.argtypes = [HGLOBAL]
safeGlobalUnlock.restype = BOOL
+ wcslen = CheckedCall(msvcrt.wcslen)
+ wcslen.argtypes = [c_wchar_p]
+ wcslen.restype = UINT
+
GMEM_MOVEABLE = 0x0002
CF_UNICODETEXT = 13
@@ -129,13 +134,13 @@ def copy_windows(text):
# If the hMem parameter identifies a memory object,
# the object must have been allocated using the
# function with the GMEM_MOVEABLE flag.
- count = len(text) + 1
+ count = wcslen(text) + 1
handle = safeGlobalAlloc(GMEM_MOVEABLE,
count * sizeof(c_wchar))
locked_handle = safeGlobalLock(handle)
- ctypes.memmove(c_wchar_p(locked_handle),
- c_wchar_p(text), count * sizeof(c_wchar))
+ ctypes.memmove(c_wchar_p(locked_handle), c_wchar_p(text),
+ count * sizeof(c_wchar))
safeGlobalUnlock(handle)
safeSetClipboardData(CF_UNICODETEXT, handle)
diff --git a/pandas/tests/io/test_clipboard.py b/pandas/tests/io/test_clipboard.py
index 8eb26d9f3dec5..565db92210b0a 100644
--- a/pandas/tests/io/test_clipboard.py
+++ b/pandas/tests/io/test_clipboard.py
@@ -12,6 +12,7 @@
from pandas.util import testing as tm
from pandas.util.testing import makeCustomDataframe as mkdf
+from pandas.io.clipboard import clipboard_get, clipboard_set
from pandas.io.clipboard.exceptions import PyperclipException
try:
@@ -30,8 +31,8 @@ def build_kwargs(sep, excel):
return kwargs
[email protected](params=['delims', 'utf8', 'string', 'long', 'nonascii',
- 'colwidth', 'mixed', 'float', 'int'])
[email protected](params=['delims', 'utf8', 'utf16', 'string', 'long',
+ 'nonascii', 'colwidth', 'mixed', 'float', 'int'])
def df(request):
data_type = request.param
@@ -41,6 +42,10 @@ def df(request):
elif data_type == 'utf8':
return pd.DataFrame({'a': ['µasd', 'Ωœ∑´'],
'b': ['øπ∆˚¬', 'œ∑´®']})
+ elif data_type == 'utf16':
+ return pd.DataFrame({'a': ['\U0001f44d\U0001f44d',
+ '\U0001f44d\U0001f44d'],
+ 'b': ['abc', 'def']})
elif data_type == 'string':
return mkdf(5, 3, c_idx_type='s', r_idx_type='i',
c_idx_names=[None], r_idx_names=[None])
@@ -225,3 +230,14 @@ def test_invalid_encoding(self, df):
@pytest.mark.parametrize('enc', ['UTF-8', 'utf-8', 'utf8'])
def test_round_trip_valid_encodings(self, enc, df):
self.check_round_trip_frame(df, encoding=enc)
+
+
[email protected]
[email protected]
[email protected](not _DEPS_INSTALLED,
+ reason="clipboard primitives not installed")
[email protected]('data', [u'\U0001f44d...', u'Ωœ∑´...', 'abcd...'])
+def test_raw_roundtrip(data):
+ # PR #25040 wide unicode wasn't copied correctly on PY3 on windows
+ clipboard_set(data)
+ assert data == clipboard_get()
| - [ ] closes #xxxx
- [x] tests added / passed
- [x] passes `git diff upstream/master -u -- "*.py" | flake8 --diff`
- [ ] whatsnew entry
For windows users where Python is compiled with UCS-4 (Python 3 primarily), tables copied to clipboard are missing data from the end when there are any unicode characters in the dataframe that have a 4-byte representation in UTF-16 (i.e. in the U+010000 to U+10FFFF range). The bug can be reproduced here:
```python
import pandas
obj=pandas.DataFrame([u'\U0001f44d\U0001f44d',
u'12345'])
obj.to_clipboard()
```
where the clipboard text results in
```
0
0 👍👍
1 1234
```
One character is chopped from the end of the clipboard string for each 4-byte unicode character copied.
or more to the point:
```python
pandas.io.clipboard.clipboard_set(u'\U0001f44d 12345')
```
produces
```
👍 1234
```
The cause of this issue is that ```len(u'\U0001f44d')==1``` when python is in UCS-4, and Pandas allocates 2 bytes per python character in the clipboard buffer but the character consumes 4 bytes, displacing another character at the end of the string to be copied. In UCS-2 (most Python 2 builds), ```len(u'\U0001f44d')==2``` and so 4 bytes are allocated and consumed by the character.
My proposed change (affecting only windows clipboard operations) first converts the text to UTF-16 little endian because that is the format used by windows, then measures the length of the resulting byte string, rather than using Python's ```len(text) * 2``` to measure how many bytes should be allocated to the clipboard buffer.
I've tested this change in python 3.6 and 2.7 on windows 7 x64. I don't expect this causing other issues with other versions of windows but I would appreciate if anyone on older versions of windows would double check.
| https://api.github.com/repos/pandas-dev/pandas/pulls/25040 | 2019-01-30T21:17:08Z | 2019-02-01T20:53:57Z | 2019-02-01T20:53:56Z | 2019-02-01T20:53:59Z |
BUG: avoid usage in_qtconsole for recent IPython versions | diff --git a/doc/source/whatsnew/v0.24.1.rst b/doc/source/whatsnew/v0.24.1.rst
index 047404e93914b..521319c55a503 100644
--- a/doc/source/whatsnew/v0.24.1.rst
+++ b/doc/source/whatsnew/v0.24.1.rst
@@ -83,7 +83,7 @@ Bug Fixes
**Other**
--
+- Fixed AttributeError when printing a DataFrame's HTML repr after accessing the IPython config object (:issue:`25036`)
-
.. _whatsnew_0.241.contributors:
diff --git a/pandas/core/frame.py b/pandas/core/frame.py
index 2049a8aa960bf..78c9f2aa96472 100644
--- a/pandas/core/frame.py
+++ b/pandas/core/frame.py
@@ -17,6 +17,7 @@
import itertools
import sys
import warnings
+from distutils.version import LooseVersion
from textwrap import dedent
import numpy as np
@@ -646,9 +647,15 @@ def _repr_html_(self):
# XXX: In IPython 3.x and above, the Qt console will not attempt to
# display HTML, so this check can be removed when support for
# IPython 2.x is no longer needed.
- if console.in_qtconsole():
- # 'HTML output is disabled in QtConsole'
- return None
+ try:
+ import IPython
+ except ImportError:
+ pass
+ else:
+ if LooseVersion(IPython.__version__) < LooseVersion('3.0'):
+ if console.in_qtconsole():
+ # 'HTML output is disabled in QtConsole'
+ return None
if self._info_repr():
buf = StringIO(u(""))
diff --git a/pandas/tests/io/formats/test_format.py b/pandas/tests/io/formats/test_format.py
index 5d922ccaf1fd5..b0cf5a2f17609 100644
--- a/pandas/tests/io/formats/test_format.py
+++ b/pandas/tests/io/formats/test_format.py
@@ -12,6 +12,7 @@
import os
import re
import sys
+import textwrap
import warnings
import dateutil
@@ -2777,3 +2778,17 @@ def test_format_percentiles():
fmt.format_percentiles([2, 0.1, 0.5])
with pytest.raises(ValueError, match=msg):
fmt.format_percentiles([0.1, 0.5, 'a'])
+
+
+def test_repr_html_ipython_config(ip):
+ code = textwrap.dedent("""\
+ import pandas as pd
+ df = pd.DataFrame({"A": [1, 2]})
+ df._repr_html_()
+
+ cfg = get_ipython().config
+ cfg['IPKernelApp']['parent_appname']
+ df._repr_html_()
+ """)
+ result = ip.run_cell(code)
+ assert not result.error_in_exec
| I've verified this manually with qtconsole 4.4.0, but if others want to check that'd be helpful.
![screen shot 2019-01-30 at 2 22 06 pm](https://user-images.githubusercontent.com/1312546/52010178-794a8080-249a-11e9-9376-a9254ce6bbf9.png)
What release should this be done in? 0.24.1, 0.24.2 or 0.25.0?
Closes https://github.com/pandas-dev/pandas/issues/25036 | https://api.github.com/repos/pandas-dev/pandas/pulls/25039 | 2019-01-30T20:23:35Z | 2019-01-31T16:02:38Z | 2019-01-31T16:02:37Z | 2019-01-31T16:02:38Z |
DOC: fix error in documentation #24981 | diff --git a/doc/source/user_guide/groupby.rst b/doc/source/user_guide/groupby.rst
index 953f40d1afebe..2c2e5c5425216 100644
--- a/doc/source/user_guide/groupby.rst
+++ b/doc/source/user_guide/groupby.rst
@@ -15,7 +15,7 @@ steps:
Out of these, the split step is the most straightforward. In fact, in many
situations we may wish to split the data set into groups and do something with
-those groups. In the apply step, we might wish to one of the
+those groups. In the apply step, we might wish to do one of the
following:
* **Aggregation**: compute a summary statistic (or statistics) for each
| Added "do" in the last sentence of the second paragraph.
- [ ] closes #xxxx
- [ ] tests added / passed
- [ ] passes `git diff upstream/master -u -- "*.py" | flake8 --diff`
- [ ] whatsnew entry
| https://api.github.com/repos/pandas-dev/pandas/pulls/25038 | 2019-01-30T20:06:46Z | 2019-01-30T21:56:44Z | 2019-01-30T21:56:44Z | 2019-01-30T21:56:47Z |
DOC: Example from docstring was proposing wrong interpolation order | diff --git a/pandas/core/generic.py b/pandas/core/generic.py
index a351233a77465..cff685c2ad7cb 100644
--- a/pandas/core/generic.py
+++ b/pandas/core/generic.py
@@ -6601,7 +6601,7 @@ def replace(self, to_replace=None, value=None, inplace=False, limit=None,
'barycentric', 'polynomial': Passed to
`scipy.interpolate.interp1d`. Both 'polynomial' and 'spline'
require that you also specify an `order` (int),
- e.g. ``df.interpolate(method='polynomial', order=4)``.
+ e.g. ``df.interpolate(method='polynomial', order=5)``.
These use the numerical values of the index.
* 'krogh', 'piecewise_polynomial', 'spline', 'pchip', 'akima':
Wrappers around the SciPy interpolation methods of similar
| Currently doctring explaining interpolation proposes using polynomial interpolation with order equal to 4. Unfortunately, scipy does not allow that value to be used, throwing an ValueError from here: https://github.com/scipy/scipy/blob/5875fd397eb4e6adcfa0c65f7b9006424c066cb0/scipy/interpolate/_bsplines.py#L583
Looking at the blame, last edit was 5 years ago so that rather do not depend on any reasonable scipy version.
Interpolations with order equal to 2 that are spread around docstrings (and doctests) do not pass through the method throwing that exception so they are okay.
- [-] closes #xxxx
- [x] tests added / passed
- [x] passes `git diff upstream/master -u -- "*.py" | flake8 --diff`
- [-] whatsnew entry
| https://api.github.com/repos/pandas-dev/pandas/pulls/25035 | 2019-01-30T17:55:28Z | 2019-01-31T12:25:55Z | 2019-01-31T12:25:55Z | 2019-01-31T12:25:57Z |
BUG: Fixed merging on tz-aware | diff --git a/doc/source/whatsnew/v0.24.1.rst b/doc/source/whatsnew/v0.24.1.rst
index 57fdff041db28..047404e93914b 100644
--- a/doc/source/whatsnew/v0.24.1.rst
+++ b/doc/source/whatsnew/v0.24.1.rst
@@ -23,6 +23,7 @@ Fixed Regressions
- Bug in :meth:`DataFrame.itertuples` with ``records`` orient raising an ``AttributeError`` when the ``DataFrame`` contained more than 255 columns (:issue:`24939`)
- Bug in :meth:`DataFrame.itertuples` orient converting integer column names to strings prepended with an underscore (:issue:`24940`)
- Fixed regression in :class:`Index.intersection` incorrectly sorting the values by default (:issue:`24959`).
+- Fixed regression in :func:`merge` when merging an empty ``DataFrame`` with multiple timezone-aware columns on one of the timezone-aware columns (:issue:`25014`).
.. _whatsnew_0241.enhancements:
diff --git a/pandas/core/internals/concat.py b/pandas/core/internals/concat.py
index 4a16707a376e9..640587b7f9f31 100644
--- a/pandas/core/internals/concat.py
+++ b/pandas/core/internals/concat.py
@@ -183,7 +183,7 @@ def get_reindexed_values(self, empty_dtype, upcasted_na):
is_datetime64tz_dtype(empty_dtype)):
if self.block is None:
array = empty_dtype.construct_array_type()
- return array(np.full(self.shape[1], fill_value),
+ return array(np.full(self.shape[1], fill_value.value),
dtype=empty_dtype)
pass
elif getattr(self.block, 'is_categorical', False):
@@ -335,8 +335,10 @@ def get_empty_dtype_and_na(join_units):
elif 'category' in upcast_classes:
return np.dtype(np.object_), np.nan
elif 'datetimetz' in upcast_classes:
+ # GH-25014. We use NaT instead of iNaT, since this eventually
+ # ends up in DatetimeArray.take, which does not allow iNaT.
dtype = upcast_classes['datetimetz']
- return dtype[0], tslibs.iNaT
+ return dtype[0], tslibs.NaT
elif 'datetime' in upcast_classes:
return np.dtype('M8[ns]'), tslibs.iNaT
elif 'timedelta' in upcast_classes:
diff --git a/pandas/tests/reshape/merge/test_merge.py b/pandas/tests/reshape/merge/test_merge.py
index c17c301968269..a0a20d1da6cef 100644
--- a/pandas/tests/reshape/merge/test_merge.py
+++ b/pandas/tests/reshape/merge/test_merge.py
@@ -616,6 +616,24 @@ def test_merge_on_datetime64tz(self):
assert result['value_x'].dtype == 'datetime64[ns, US/Eastern]'
assert result['value_y'].dtype == 'datetime64[ns, US/Eastern]'
+ def test_merge_on_datetime64tz_empty(self):
+ # https://github.com/pandas-dev/pandas/issues/25014
+ dtz = pd.DatetimeTZDtype(tz='UTC')
+ right = pd.DataFrame({'date': [pd.Timestamp('2018', tz=dtz.tz)],
+ 'value': [4.0],
+ 'date2': [pd.Timestamp('2019', tz=dtz.tz)]},
+ columns=['date', 'value', 'date2'])
+ left = right[:0]
+ result = left.merge(right, on='date')
+ expected = pd.DataFrame({
+ 'value_x': pd.Series(dtype=float),
+ 'date2_x': pd.Series(dtype=dtz),
+ 'date': pd.Series(dtype=dtz),
+ 'value_y': pd.Series(dtype=float),
+ 'date2_y': pd.Series(dtype=dtz),
+ }, columns=['value_x', 'date2_x', 'date', 'value_y', 'date2_y'])
+ tm.assert_frame_equal(result, expected)
+
def test_merge_datetime64tz_with_dst_transition(self):
# GH 18885
df1 = pd.DataFrame(pd.date_range(
| Closes https://github.com/pandas-dev/pandas/issues/25014
| https://api.github.com/repos/pandas-dev/pandas/pulls/25033 | 2019-01-30T16:05:41Z | 2019-01-30T21:17:31Z | 2019-01-30T21:17:31Z | 2019-01-30T21:17:35Z |
(Closes #25029) Removed extra bracket from cheatsheet code example. | diff --git a/doc/cheatsheet/Pandas_Cheat_Sheet.pdf b/doc/cheatsheet/Pandas_Cheat_Sheet.pdf
index 696ed288cf7a6..d50896dc5ccc5 100644
Binary files a/doc/cheatsheet/Pandas_Cheat_Sheet.pdf and b/doc/cheatsheet/Pandas_Cheat_Sheet.pdf differ
diff --git a/doc/cheatsheet/Pandas_Cheat_Sheet.pptx b/doc/cheatsheet/Pandas_Cheat_Sheet.pptx
index f8b98a6f1f8e4..95f2771017db5 100644
Binary files a/doc/cheatsheet/Pandas_Cheat_Sheet.pptx and b/doc/cheatsheet/Pandas_Cheat_Sheet.pptx differ
diff --git a/doc/cheatsheet/Pandas_Cheat_Sheet_JA.pdf b/doc/cheatsheet/Pandas_Cheat_Sheet_JA.pdf
index daa65a944e68a..05e4b87f6a210 100644
Binary files a/doc/cheatsheet/Pandas_Cheat_Sheet_JA.pdf and b/doc/cheatsheet/Pandas_Cheat_Sheet_JA.pdf differ
diff --git a/doc/cheatsheet/Pandas_Cheat_Sheet_JA.pptx b/doc/cheatsheet/Pandas_Cheat_Sheet_JA.pptx
index 6270a71e20ee8..cb0f058db5448 100644
Binary files a/doc/cheatsheet/Pandas_Cheat_Sheet_JA.pptx and b/doc/cheatsheet/Pandas_Cheat_Sheet_JA.pptx differ
| Closes #25029
There was an additional bracket present under the "Create DataFrame with a MultiIndex" code example.
I removed this in both the English and Japanese versions of the cheatsheet. | https://api.github.com/repos/pandas-dev/pandas/pulls/25032 | 2019-01-30T15:58:02Z | 2019-02-09T17:26:39Z | 2019-02-09T17:26:39Z | 2019-02-09T17:26:42Z |
ENH: Support index=True for io.sql.get_schema | diff --git a/doc/source/whatsnew/v0.24.1.rst b/doc/source/whatsnew/v0.24.1.rst
index 222963a7ff71a..0923b05d41479 100644
--- a/doc/source/whatsnew/v0.24.1.rst
+++ b/doc/source/whatsnew/v0.24.1.rst
@@ -31,7 +31,6 @@ Fixed Regressions
Enhancements
^^^^^^^^^^^^
-
.. _whatsnew_0241.bug_fixes:
Bug Fixes
diff --git a/doc/source/whatsnew/v0.25.0.rst b/doc/source/whatsnew/v0.25.0.rst
index 939fb8b9415bd..052f052420e41 100644
--- a/doc/source/whatsnew/v0.25.0.rst
+++ b/doc/source/whatsnew/v0.25.0.rst
@@ -165,7 +165,7 @@ MultiIndex
I/O
^^^
--
+- :func:`get_schema` now accepts an `index` parameter (default: `False`) that includes the index in the generated schema. (:issue:`9084`)
-
-
diff --git a/pandas/io/sql.py b/pandas/io/sql.py
index aaface5415384..7e4cefddc2746 100644
--- a/pandas/io/sql.py
+++ b/pandas/io/sql.py
@@ -1223,8 +1223,9 @@ def drop_table(self, table_name, schema=None):
self.get_table(table_name, schema).drop()
self.meta.clear()
- def _create_sql_schema(self, frame, table_name, keys=None, dtype=None):
- table = SQLTable(table_name, self, frame=frame, index=False, keys=keys,
+ def _create_sql_schema(self, frame, table_name, keys=None, dtype=None,
+ index=False):
+ table = SQLTable(table_name, self, frame=frame, index=index, keys=keys,
dtype=dtype)
return str(table.sql_schema())
@@ -1565,13 +1566,14 @@ def drop_table(self, name, schema=None):
name=_get_valid_sqlite_name(name))
self.execute(drop_sql)
- def _create_sql_schema(self, frame, table_name, keys=None, dtype=None):
- table = SQLiteTable(table_name, self, frame=frame, index=False,
+ def _create_sql_schema(self, frame, table_name, keys=None, dtype=None,
+ index=False):
+ table = SQLiteTable(table_name, self, frame=frame, index=index,
keys=keys, dtype=dtype)
return str(table.sql_schema())
-def get_schema(frame, name, keys=None, con=None, dtype=None):
+def get_schema(frame, name, keys=None, con=None, dtype=None, index=False):
"""
Get the SQL db table schema for the given frame.
@@ -1589,8 +1591,11 @@ def get_schema(frame, name, keys=None, con=None, dtype=None):
dtype : dict of column name to SQL type, default None
Optional specifying the datatype for columns. The SQL type should
be a SQLAlchemy type, or a string for sqlite3 fallback connection.
+ index : boolean, default False
+ Whether to include DataFrame index as a column
"""
pandas_sql = pandasSQL_builder(con=con)
- return pandas_sql._create_sql_schema(frame, name, keys=keys, dtype=dtype)
+ return pandas_sql._create_sql_schema(
+ frame, name, keys=keys, dtype=dtype, index=index)
diff --git a/pandas/tests/io/test_sql.py b/pandas/tests/io/test_sql.py
index 75a6d8d009083..e37921441596b 100644
--- a/pandas/tests/io/test_sql.py
+++ b/pandas/tests/io/test_sql.py
@@ -823,6 +823,21 @@ def test_get_schema_keys(self):
constraint_sentence = 'CONSTRAINT test_pk PRIMARY KEY ("A", "B")'
assert constraint_sentence in create_sql
+ @pytest.mark.parametrize("index_arg, expected", [
+ ({}, False),
+ ({"index": False}, False),
+ ({"index": True}, True),
+ ])
+ def test_get_schema_with_index(self, index_arg, expected):
+ frame = DataFrame({
+ 'one': pd.Series([1, 2, 3], index=['a', 'b', 'c']),
+ 'two': pd.Series([1, 2, 3], index=['a', 'b', 'c'])
+ })
+ frame.index.name = 'alphabet'
+
+ create_sql = sql.get_schema(frame, 'test', con=self.conn, **index_arg)
+ assert ('alphabet' in create_sql) == expected
+
def test_chunksize_read(self):
df = DataFrame(np.random.randn(22, 5), columns=list('abcde'))
df.to_sql('test_chunksize', self.conn, index=False)
| Closes pandas-dev/pandas#9084
- Decided to keep the default as `index=False` to keep the API consistent. `to_sql` has `index=True`.
- Tempted to name the parameter `include_dataframe_index` as "index" has
a different meaning in a SQL context.
- [x] passes `git diff upstream/master -u -- "*.py" | flake8 --diff`
- [x] whatsnew entry
| https://api.github.com/repos/pandas-dev/pandas/pulls/25030 | 2019-01-30T15:46:49Z | 2019-05-03T05:37:19Z | null | 2019-05-03T05:37:20Z |
CLN: typo fixups | diff --git a/pandas/_libs/interval.pyx b/pandas/_libs/interval.pyx
index 3147f36dcc835..eb511b1adb28a 100644
--- a/pandas/_libs/interval.pyx
+++ b/pandas/_libs/interval.pyx
@@ -18,7 +18,6 @@ cnp.import_array()
cimport pandas._libs.util as util
-util.import_array()
from pandas._libs.hashtable cimport Int64Vector, Int64VectorData
diff --git a/pandas/_libs/tslibs/nattype.pyx b/pandas/_libs/tslibs/nattype.pyx
index a55d15a7c4e85..92cbcce6c7042 100644
--- a/pandas/_libs/tslibs/nattype.pyx
+++ b/pandas/_libs/tslibs/nattype.pyx
@@ -382,7 +382,7 @@ class NaTType(_NaT):
)
combine = _make_error_func('combine', # noqa:E128
"""
- Timsetamp.combine(date, time)
+ Timestamp.combine(date, time)
date, time -> datetime with same date and time fields
"""
diff --git a/pandas/_libs/tslibs/timestamps.pyx b/pandas/_libs/tslibs/timestamps.pyx
index fe0564cb62c30..3e6763e226a4a 100644
--- a/pandas/_libs/tslibs/timestamps.pyx
+++ b/pandas/_libs/tslibs/timestamps.pyx
@@ -197,7 +197,7 @@ def round_nsint64(values, mode, freq):
# This is PITA. Because we inherit from datetime, which has very specific
# construction requirements, we need to do object instantiation in python
-# (see Timestamp class above). This will serve as a C extension type that
+# (see Timestamp class below). This will serve as a C extension type that
# shadows the python class, where we do any heavy lifting.
cdef class _Timestamp(datetime):
@@ -670,7 +670,7 @@ class Timestamp(_Timestamp):
@classmethod
def combine(cls, date, time):
"""
- Timsetamp.combine(date, time)
+ Timestamp.combine(date, time)
date, time -> datetime with same date and time fields
"""
diff --git a/pandas/core/internals/blocks.py b/pandas/core/internals/blocks.py
index df764aa4ba666..36144c31dfef9 100644
--- a/pandas/core/internals/blocks.py
+++ b/pandas/core/internals/blocks.py
@@ -2072,17 +2072,9 @@ def get_values(self, dtype=None):
return object dtype as boxed values, such as Timestamps/Timedelta
"""
if is_object_dtype(dtype):
- values = self.values
-
- if self.ndim > 1:
- values = values.ravel()
-
- values = lib.map_infer(values, self._box_func)
-
- if self.ndim > 1:
- values = values.reshape(self.values.shape)
-
- return values
+ values = self.values.ravel()
+ result = self._holder(values).astype(object)
+ return result.reshape(self.values.shape)
return self.values
| Also edit DatetimeLikeBlockMixin.get_values to be much simpler. | https://api.github.com/repos/pandas-dev/pandas/pulls/25028 | 2019-01-30T14:57:35Z | 2019-01-31T12:27:49Z | 2019-01-31T12:27:49Z | 2020-04-05T17:36:54Z |
DOC: 0.24.1 whatsnew | diff --git a/doc/source/index.rst.template b/doc/source/index.rst.template
index 51487c0d325b5..df2a29a76f3c5 100644
--- a/doc/source/index.rst.template
+++ b/doc/source/index.rst.template
@@ -39,7 +39,7 @@ See the :ref:`overview` for more detail about what's in the library.
{% endif %}
{% if not single_doc -%}
- What's New in 0.24.0 <whatsnew/v0.24.0>
+ What's New in 0.24.1 <whatsnew/v0.24.1>
install
getting_started/index
user_guide/index
| This PR has the documentation changes that are just for 0.24.x. I'll have another PR later with changes to 0.24.1.rst that should go to master first, before being backported. | https://api.github.com/repos/pandas-dev/pandas/pulls/25027 | 2019-01-30T14:52:06Z | 2019-02-01T20:09:00Z | 2019-02-01T20:09:00Z | 2019-02-01T20:09:03Z |
DOC: Start 0.24.2.rst | diff --git a/doc/source/whatsnew/v0.24.2.rst b/doc/source/whatsnew/v0.24.2.rst
new file mode 100644
index 0000000000000..cba21ce7ee1e6
--- /dev/null
+++ b/doc/source/whatsnew/v0.24.2.rst
@@ -0,0 +1,99 @@
+:orphan:
+
+.. _whatsnew_0242:
+
+Whats New in 0.24.2 (February XX, 2019)
+---------------------------------------
+
+.. warning::
+
+ The 0.24.x series of releases will be the last to support Python 2. Future feature
+ releases will support Python 3 only. See :ref:`install.dropping-27` for more.
+
+{{ header }}
+
+These are the changes in pandas 0.24.2. See :ref:`release` for a full changelog
+including other versions of pandas.
+
+.. _whatsnew_0242.regressions:
+
+Fixed Regressions
+^^^^^^^^^^^^^^^^^
+
+-
+-
+-
+
+.. _whatsnew_0242.enhancements:
+
+Enhancements
+^^^^^^^^^^^^
+
+-
+-
+
+.. _whatsnew_0242.bug_fixes:
+
+Bug Fixes
+~~~~~~~~~
+
+**Conversion**
+
+-
+-
+-
+
+**Indexing**
+
+-
+-
+-
+
+**I/O**
+
+-
+-
+-
+
+**Categorical**
+
+-
+-
+-
+
+**Timezones**
+
+-
+-
+-
+
+**Timedelta**
+
+-
+-
+-
+
+**Reshaping**
+
+-
+-
+-
+
+**Visualization**
+
+-
+-
+-
+
+**Other**
+
+-
+-
+-
+
+.. _whatsnew_0.242.contributors:
+
+Contributors
+~~~~~~~~~~~~
+
+.. contributors:: v0.24.1..v0.24.2
\ No newline at end of file
| [ci skip]
| https://api.github.com/repos/pandas-dev/pandas/pulls/25026 | 2019-01-30T14:18:55Z | 2019-02-01T12:27:16Z | 2019-02-01T12:27:16Z | 2019-02-01T12:27:16Z |
Backport PR #24961 on branch 0.24.x (fix+test to_timedelta('NaT', box=False)) | diff --git a/doc/source/whatsnew/v0.24.1.rst b/doc/source/whatsnew/v0.24.1.rst
index 8f4c3982c745f..82885f851e86b 100644
--- a/doc/source/whatsnew/v0.24.1.rst
+++ b/doc/source/whatsnew/v0.24.1.rst
@@ -65,7 +65,7 @@ Bug Fixes
-
**Timedelta**
-
+- Bug in :func:`to_timedelta` with `box=False` incorrectly returning a ``datetime64`` object instead of a ``timedelta64`` object (:issue:`24961`)
-
-
-
diff --git a/pandas/core/tools/timedeltas.py b/pandas/core/tools/timedeltas.py
index e3428146b91d8..ddd21d0f62d08 100644
--- a/pandas/core/tools/timedeltas.py
+++ b/pandas/core/tools/timedeltas.py
@@ -120,7 +120,8 @@ def _coerce_scalar_to_timedelta_type(r, unit='ns', box=True, errors='raise'):
try:
result = Timedelta(r, unit)
if not box:
- result = result.asm8
+ # explicitly view as timedelta64 for case when result is pd.NaT
+ result = result.asm8.view('timedelta64[ns]')
except ValueError:
if errors == 'raise':
raise
diff --git a/pandas/tests/scalar/timedelta/test_timedelta.py b/pandas/tests/scalar/timedelta/test_timedelta.py
index 9b5fdfb06a9fa..e1838e0160fec 100644
--- a/pandas/tests/scalar/timedelta/test_timedelta.py
+++ b/pandas/tests/scalar/timedelta/test_timedelta.py
@@ -309,8 +309,13 @@ def test_iso_conversion(self):
assert to_timedelta('P0DT0H0M1S') == expected
def test_nat_converters(self):
- assert to_timedelta('nat', box=False).astype('int64') == iNaT
- assert to_timedelta('nan', box=False).astype('int64') == iNaT
+ result = to_timedelta('nat', box=False)
+ assert result.dtype.kind == 'm'
+ assert result.astype('int64') == iNaT
+
+ result = to_timedelta('nan', box=False)
+ assert result.dtype.kind == 'm'
+ assert result.astype('int64') == iNaT
@pytest.mark.parametrize('units, np_unit',
[(['Y', 'y'], 'Y'),
| Backport PR #24961: fix+test to_timedelta('NaT', box=False) | https://api.github.com/repos/pandas-dev/pandas/pulls/25025 | 2019-01-30T12:43:22Z | 2019-01-30T13:18:39Z | 2019-01-30T13:18:39Z | 2019-01-30T13:20:24Z |
REGR: fix read_sql delegation for queries on MySQL/pymysql | diff --git a/doc/source/whatsnew/v0.24.1.rst b/doc/source/whatsnew/v0.24.1.rst
index 828c35c10e958..defb84f438e3a 100644
--- a/doc/source/whatsnew/v0.24.1.rst
+++ b/doc/source/whatsnew/v0.24.1.rst
@@ -22,6 +22,7 @@ Fixed Regressions
- Bug in :meth:`DataFrame.itertuples` with ``records`` orient raising an ``AttributeError`` when the ``DataFrame`` contained more than 255 columns (:issue:`24939`)
- Bug in :meth:`DataFrame.itertuples` orient converting integer column names to strings prepended with an underscore (:issue:`24940`)
+- Fixed regression in :func:`read_sql` when passing certain queries with MySQL/pymysql (:issue:`24988`).
- Fixed regression in :class:`Index.intersection` incorrectly sorting the values by default (:issue:`24959`).
.. _whatsnew_0241.enhancements:
diff --git a/pandas/io/sql.py b/pandas/io/sql.py
index 5d1163b3e0024..aaface5415384 100644
--- a/pandas/io/sql.py
+++ b/pandas/io/sql.py
@@ -381,7 +381,8 @@ def read_sql(sql, con, index_col=None, coerce_float=True, params=None,
try:
_is_table_name = pandas_sql.has_table(sql)
- except (ImportError, AttributeError):
+ except Exception:
+ # using generic exception to catch errors from sql drivers (GH24988)
_is_table_name = False
if _is_table_name:
| Closes #24988, see discussion there regarding lack of test. | https://api.github.com/repos/pandas-dev/pandas/pulls/25024 | 2019-01-30T09:49:43Z | 2019-01-31T21:24:58Z | 2019-01-31T21:24:57Z | 2019-01-31T21:24:58Z |
BUG: to_datetime(strs, utc=True) used previous UTC offset | diff --git a/doc/source/whatsnew/v0.25.0.rst b/doc/source/whatsnew/v0.25.0.rst
index 867007b2ba7f5..24e3b42859416 100644
--- a/doc/source/whatsnew/v0.25.0.rst
+++ b/doc/source/whatsnew/v0.25.0.rst
@@ -103,7 +103,7 @@ Timedelta
Timezones
^^^^^^^^^
--
+- Bug in :func:`to_datetime` with ``utc=True`` and datetime strings that would apply previously parsed UTC offsets to subsequent arguments (:issue:`24992`)
-
-
diff --git a/pandas/_libs/tslib.pyx b/pandas/_libs/tslib.pyx
index 798e338d5581b..f932e236b5218 100644
--- a/pandas/_libs/tslib.pyx
+++ b/pandas/_libs/tslib.pyx
@@ -645,6 +645,8 @@ cpdef array_to_datetime(ndarray[object] values, str errors='raise',
out_tzoffset_vals.add(out_tzoffset * 60.)
tz = pytz.FixedOffset(out_tzoffset)
value = tz_convert_single(value, tz, UTC)
+ out_local = 0
+ out_tzoffset = 0
else:
# Add a marker for naive string, to track if we are
# parsing mixed naive and aware strings
diff --git a/pandas/tests/indexes/datetimes/test_tools.py b/pandas/tests/indexes/datetimes/test_tools.py
index 38f5eab15041f..b94935d2521eb 100644
--- a/pandas/tests/indexes/datetimes/test_tools.py
+++ b/pandas/tests/indexes/datetimes/test_tools.py
@@ -714,6 +714,29 @@ def test_iso_8601_strings_with_different_offsets(self):
NaT], tz='UTC')
tm.assert_index_equal(result, expected)
+ def test_iss8601_strings_mixed_offsets_with_naive(self):
+ # GH 24992
+ result = pd.to_datetime([
+ '2018-11-28T00:00:00',
+ '2018-11-28T00:00:00+12:00',
+ '2018-11-28T00:00:00',
+ '2018-11-28T00:00:00+06:00',
+ '2018-11-28T00:00:00'
+ ], utc=True)
+ expected = pd.to_datetime([
+ '2018-11-28T00:00:00',
+ '2018-11-27T12:00:00',
+ '2018-11-28T00:00:00',
+ '2018-11-27T18:00:00',
+ '2018-11-28T00:00:00'
+ ], utc=True)
+ tm.assert_index_equal(result, expected)
+
+ items = ['2018-11-28T00:00:00+12:00', '2018-11-28T00:00:00']
+ result = pd.to_datetime(items, utc=True)
+ expected = pd.to_datetime(list(reversed(items)), utc=True)[::-1]
+ tm.assert_index_equal(result, expected)
+
def test_non_iso_strings_with_tz_offset(self):
result = to_datetime(['March 1, 2018 12:00:00+0400'] * 2)
expected = DatetimeIndex([datetime(2018, 3, 1, 12,
| - [x] closes #24992
- [x] tests added / passed
- [x] passes `git diff upstream/master -u -- "*.py" | flake8 --diff`
- [x] whatsnew entry
| https://api.github.com/repos/pandas-dev/pandas/pulls/25020 | 2019-01-30T07:04:27Z | 2019-01-31T12:29:33Z | 2019-01-31T12:29:32Z | 2019-01-31T15:59:28Z |
CLN: do not use .repeat asv setting for storing benchmark data | diff --git a/asv_bench/benchmarks/strings.py b/asv_bench/benchmarks/strings.py
index e9f2727f64e15..b5b2c955f0133 100644
--- a/asv_bench/benchmarks/strings.py
+++ b/asv_bench/benchmarks/strings.py
@@ -102,10 +102,10 @@ def setup(self, repeats):
N = 10**5
self.s = Series(tm.makeStringIndex(N))
repeat = {'int': 1, 'array': np.random.randint(1, 3, N)}
- self.repeat = repeat[repeats]
+ self.values = repeat[repeats]
def time_repeat(self, repeats):
- self.s.str.repeat(self.repeat)
+ self.s.str.repeat(self.values)
class Cat(object):
| `asv` uses `.repeat` to specify the number of times a benchmark should be repeated; our `strings.Replace` benchmark inadvertently uses this to store benchmark data. This doesn't cause issues until after the first parameter:
```
[ 99.87%] ··· strings.Repeat.time_repeat 1/2 failed
[ 99.87%] ··· ========= ===========
repeats
--------- -----------
int 151±0.9ms
array failed
========= ===========
[ 99.87%] ···· For parameters: 'array'
Traceback (most recent call last):
File "/home/chris/code/asv/asv/benchmark.py", line 595, in run
min_repeat, max_repeat, max_time = self.repeat
ValueError: too many values to unpack (expected 3)
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/home/chris/code/asv/asv/benchmark.py", line 1170, in main_run_server
main_run(run_args)
File "/home/chris/code/asv/asv/benchmark.py", line 1044, in main_run
result = benchmark.do_run()
File "/home/chris/code/asv/asv/benchmark.py", line 523, in do_run
return self.run(*self._current_params)
File "/home/chris/code/asv/asv/benchmark.py", line 597, in run
if self.repeat == 0:
ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()
```
With this PR, both parameters now succeed:
```
[ 0.00%] · For pandas commit 8825f78e <repeat>:
[ 0.00%] ·· Benchmarking conda-py3.6-Cython-matplotlib-numexpr-numpy-openpyxl-pytables-pytest-scipy-sqlalchemy-xlrd-xlsxwriter-xlwt
[ 50.00%] ··· Running (strings.Repeat.time_repeat--).
[100.00%] ··· strings.Repeat.time_repeat ok
[100.00%] ··· ========= ===========
repeats
--------- -----------
int 152±1ms
array 150±0.6ms
========= ===========
```
- [ ] closes #xxxx
- [ ] tests added / passed
- [ ] passes `git diff upstream/master -u -- "*.py" | flake8 --diff`
- [ ] whatsnew entry
| https://api.github.com/repos/pandas-dev/pandas/pulls/25015 | 2019-01-29T23:21:55Z | 2019-01-30T05:48:52Z | 2019-01-30T05:48:52Z | 2019-01-30T05:48:59Z |
Backport PR #24967 on branch 0.24.x (REGR: Preserve order by default in Index.difference) | diff --git a/doc/source/whatsnew/v0.24.1.rst b/doc/source/whatsnew/v0.24.1.rst
index 8f4c3982c745f..828c35c10e958 100644
--- a/doc/source/whatsnew/v0.24.1.rst
+++ b/doc/source/whatsnew/v0.24.1.rst
@@ -22,6 +22,7 @@ Fixed Regressions
- Bug in :meth:`DataFrame.itertuples` with ``records`` orient raising an ``AttributeError`` when the ``DataFrame`` contained more than 255 columns (:issue:`24939`)
- Bug in :meth:`DataFrame.itertuples` orient converting integer column names to strings prepended with an underscore (:issue:`24940`)
+- Fixed regression in :class:`Index.intersection` incorrectly sorting the values by default (:issue:`24959`).
.. _whatsnew_0241.enhancements:
diff --git a/pandas/core/indexes/base.py b/pandas/core/indexes/base.py
index 767da81c5c43a..3d176012df22b 100644
--- a/pandas/core/indexes/base.py
+++ b/pandas/core/indexes/base.py
@@ -2333,7 +2333,7 @@ def union(self, other, sort=True):
def _wrap_setop_result(self, other, result):
return self._constructor(result, name=get_op_result_name(self, other))
- def intersection(self, other, sort=True):
+ def intersection(self, other, sort=False):
"""
Form the intersection of two Index objects.
@@ -2342,11 +2342,15 @@ def intersection(self, other, sort=True):
Parameters
----------
other : Index or array-like
- sort : bool, default True
+ sort : bool, default False
Sort the resulting index if possible
.. versionadded:: 0.24.0
+ .. versionchanged:: 0.24.1
+
+ Changed the default from ``True`` to ``False``.
+
Returns
-------
intersection : Index
diff --git a/pandas/core/indexes/datetimes.py b/pandas/core/indexes/datetimes.py
index cc373c06efcc9..ef941ab87ba12 100644
--- a/pandas/core/indexes/datetimes.py
+++ b/pandas/core/indexes/datetimes.py
@@ -594,7 +594,7 @@ def _wrap_setop_result(self, other, result):
name = get_op_result_name(self, other)
return self._shallow_copy(result, name=name, freq=None, tz=self.tz)
- def intersection(self, other, sort=True):
+ def intersection(self, other, sort=False):
"""
Specialized intersection for DatetimeIndex objects. May be much faster
than Index.intersection
@@ -602,6 +602,14 @@ def intersection(self, other, sort=True):
Parameters
----------
other : DatetimeIndex or array-like
+ sort : bool, default True
+ Sort the resulting index if possible.
+
+ .. versionadded:: 0.24.0
+
+ .. versionchanged:: 0.24.1
+
+ Changed the default from ``True`` to ``False``.
Returns
-------
diff --git a/pandas/core/indexes/interval.py b/pandas/core/indexes/interval.py
index 0210560aaa21f..736de94991181 100644
--- a/pandas/core/indexes/interval.py
+++ b/pandas/core/indexes/interval.py
@@ -1093,8 +1093,8 @@ def equals(self, other):
def overlaps(self, other):
return self._data.overlaps(other)
- def _setop(op_name):
- def func(self, other, sort=True):
+ def _setop(op_name, sort=True):
+ def func(self, other, sort=sort):
other = self._as_like_interval_index(other)
# GH 19016: ensure set op will not return a prohibited dtype
@@ -1128,7 +1128,7 @@ def is_all_dates(self):
return False
union = _setop('union')
- intersection = _setop('intersection')
+ intersection = _setop('intersection', sort=False)
difference = _setop('difference')
symmetric_difference = _setop('symmetric_difference')
diff --git a/pandas/core/indexes/multi.py b/pandas/core/indexes/multi.py
index e4d01a40bd181..16af3fe8eef26 100644
--- a/pandas/core/indexes/multi.py
+++ b/pandas/core/indexes/multi.py
@@ -2910,7 +2910,7 @@ def union(self, other, sort=True):
return MultiIndex.from_arrays(lzip(*uniq_tuples), sortorder=0,
names=result_names)
- def intersection(self, other, sort=True):
+ def intersection(self, other, sort=False):
"""
Form the intersection of two MultiIndex objects.
@@ -2922,6 +2922,10 @@ def intersection(self, other, sort=True):
.. versionadded:: 0.24.0
+ .. versionchanged:: 0.24.1
+
+ Changed the default from ``True`` to ``False``.
+
Returns
-------
Index
diff --git a/pandas/core/indexes/range.py b/pandas/core/indexes/range.py
index ebf5b279563cf..e17a6a682af40 100644
--- a/pandas/core/indexes/range.py
+++ b/pandas/core/indexes/range.py
@@ -343,7 +343,7 @@ def equals(self, other):
return super(RangeIndex, self).equals(other)
- def intersection(self, other, sort=True):
+ def intersection(self, other, sort=False):
"""
Form the intersection of two Index objects.
@@ -355,6 +355,10 @@ def intersection(self, other, sort=True):
.. versionadded:: 0.24.0
+ .. versionchanged:: 0.24.1
+
+ Changed the default from ``True`` to ``False``.
+
Returns
-------
intersection : Index
diff --git a/pandas/tests/indexes/test_base.py b/pandas/tests/indexes/test_base.py
index f3e9d835c7391..20e439de46bde 100644
--- a/pandas/tests/indexes/test_base.py
+++ b/pandas/tests/indexes/test_base.py
@@ -765,6 +765,11 @@ def test_intersect_str_dates(self, sort):
assert len(result) == 0
+ def test_intersect_nosort(self):
+ result = pd.Index(['c', 'b', 'a']).intersection(['b', 'a'])
+ expected = pd.Index(['b', 'a'])
+ tm.assert_index_equal(result, expected)
+
@pytest.mark.parametrize("sort", [True, False])
def test_chained_union(self, sort):
# Chained unions handles names correctly
@@ -1595,20 +1600,27 @@ def test_drop_tuple(self, values, to_drop):
for drop_me in to_drop[1], [to_drop[1]]:
pytest.raises(KeyError, removed.drop, drop_me)
- @pytest.mark.parametrize("method,expected", [
+ @pytest.mark.parametrize("method,expected,sort", [
+ ('intersection', np.array([(1, 'A'), (2, 'A'), (1, 'B'), (2, 'B')],
+ dtype=[('num', int), ('let', 'a1')]),
+ False),
+
('intersection', np.array([(1, 'A'), (1, 'B'), (2, 'A'), (2, 'B')],
- dtype=[('num', int), ('let', 'a1')])),
+ dtype=[('num', int), ('let', 'a1')]),
+ True),
+
('union', np.array([(1, 'A'), (1, 'B'), (1, 'C'), (2, 'A'), (2, 'B'),
- (2, 'C')], dtype=[('num', int), ('let', 'a1')]))
+ (2, 'C')], dtype=[('num', int), ('let', 'a1')]),
+ True)
])
- def test_tuple_union_bug(self, method, expected):
+ def test_tuple_union_bug(self, method, expected, sort):
index1 = Index(np.array([(1, 'A'), (2, 'A'), (1, 'B'), (2, 'B')],
dtype=[('num', int), ('let', 'a1')]))
index2 = Index(np.array([(1, 'A'), (2, 'A'), (1, 'B'),
(2, 'B'), (1, 'C'), (2, 'C')],
dtype=[('num', int), ('let', 'a1')]))
- result = getattr(index1, method)(index2)
+ result = getattr(index1, method)(index2, sort=sort)
assert result.ndim == 1
expected = Index(expected)
| Backport PR #24967: REGR: Preserve order by default in Index.difference | https://api.github.com/repos/pandas-dev/pandas/pulls/25013 | 2019-01-29T21:43:34Z | 2019-01-30T12:50:04Z | 2019-01-30T12:50:04Z | 2019-01-30T12:50:04Z |
BUG-24212 fix when other_index has incompatible dtype | diff --git a/doc/source/whatsnew/v0.25.0.rst b/doc/source/whatsnew/v0.25.0.rst
index b2a379d9fe6f5..bb7fdf97c9383 100644
--- a/doc/source/whatsnew/v0.25.0.rst
+++ b/doc/source/whatsnew/v0.25.0.rst
@@ -399,7 +399,7 @@ Reshaping
^^^^^^^^^
- Bug in :func:`pandas.merge` adds a string of ``None``, if ``None`` is assigned in suffixes instead of remain the column name as-is (:issue:`24782`).
-- Bug in :func:`merge` when merging by index name would sometimes result in an incorrectly numbered index (:issue:`24212`)
+- Bug in :func:`merge` when merging by index name would sometimes result in an incorrectly numbered index (missing index values are now assigned NA) (:issue:`24212`, :issue:`25009`)
- :func:`to_records` now accepts dtypes to its ``column_dtypes`` parameter (:issue:`24895`)
- Bug in :func:`concat` where order of ``OrderedDict`` (and ``dict`` in Python 3.6+) is not respected, when passed in as ``objs`` argument (:issue:`21510`)
- Bug in :func:`pivot_table` where columns with ``NaN`` values are dropped even if ``dropna`` argument is ``False``, when the ``aggfunc`` argument contains a ``list`` (:issue:`22159`)
diff --git a/pandas/core/reshape/merge.py b/pandas/core/reshape/merge.py
index 0837186e33267..78309ce9c863c 100644
--- a/pandas/core/reshape/merge.py
+++ b/pandas/core/reshape/merge.py
@@ -803,22 +803,18 @@ def _create_join_index(self, index, other_index, indexer,
-------
join_index
"""
- join_index = index.take(indexer)
if (self.how in (how, 'outer') and
not isinstance(other_index, MultiIndex)):
# if final index requires values in other_index but not target
# index, indexer may hold missing (-1) values, causing Index.take
- # to take the final value in target index
+ # to take the final value in target index. So, we set the last
+ # element to be the desired fill value. We do not use allow_fill
+ # and fill_value because it throws a ValueError on integer indices
mask = indexer == -1
if np.any(mask):
- # if values missing (-1) from target index,
- # take from other_index instead
- join_list = join_index.to_numpy()
- other_list = other_index.take(other_indexer).to_numpy()
- join_list[mask] = other_list[mask]
- join_index = Index(join_list, dtype=join_index.dtype,
- name=join_index.name)
- return join_index
+ fill_value = na_value_for_dtype(index.dtype, compat=False)
+ index = index.append(Index([fill_value]))
+ return index.take(indexer)
def _get_merge_keys(self):
"""
diff --git a/pandas/tests/reshape/merge/test_merge.py b/pandas/tests/reshape/merge/test_merge.py
index b4a58628faa4d..8bc68cc7f8fc2 100644
--- a/pandas/tests/reshape/merge/test_merge.py
+++ b/pandas/tests/reshape/merge/test_merge.py
@@ -15,7 +15,8 @@
import pandas as pd
from pandas import (
Categorical, CategoricalIndex, DataFrame, DatetimeIndex, Float64Index,
- Int64Index, MultiIndex, RangeIndex, Series, UInt64Index)
+ Int64Index, IntervalIndex, MultiIndex, PeriodIndex, RangeIndex, Series,
+ TimedeltaIndex, UInt64Index)
from pandas.api.types import CategoricalDtype as CDT
from pandas.core.reshape.concat import concat
from pandas.core.reshape.merge import MergeError, merge
@@ -1034,11 +1035,30 @@ def test_merge_two_empty_df_no_division_error(self):
merge(a, a, on=('a', 'b'))
@pytest.mark.parametrize('how', ['right', 'outer'])
- def test_merge_on_index_with_more_values(self, how):
+ @pytest.mark.parametrize(
+ 'index,expected_index',
+ [(CategoricalIndex([1, 2, 4]),
+ CategoricalIndex([1, 2, 4, None, None, None])),
+ (DatetimeIndex(['2001-01-01', '2002-02-02', '2003-03-03']),
+ DatetimeIndex(['2001-01-01', '2002-02-02', '2003-03-03',
+ pd.NaT, pd.NaT, pd.NaT])),
+ (Float64Index([1, 2, 3]),
+ Float64Index([1, 2, 3, None, None, None])),
+ (Int64Index([1, 2, 3]),
+ Float64Index([1, 2, 3, None, None, None])),
+ (IntervalIndex.from_tuples([(1, 2), (2, 3), (3, 4)]),
+ IntervalIndex.from_tuples([(1, 2), (2, 3), (3, 4),
+ np.nan, np.nan, np.nan])),
+ (PeriodIndex(['2001-01-01', '2001-01-02', '2001-01-03'], freq='D'),
+ PeriodIndex(['2001-01-01', '2001-01-02', '2001-01-03',
+ pd.NaT, pd.NaT, pd.NaT], freq='D')),
+ (TimedeltaIndex(['1d', '2d', '3d']),
+ TimedeltaIndex(['1d', '2d', '3d', pd.NaT, pd.NaT, pd.NaT]))])
+ def test_merge_on_index_with_more_values(self, how, index, expected_index):
# GH 24212
# pd.merge gets [0, 1, 2, -1, -1, -1] as left_indexer, ensure that
# -1 is interpreted as a missing value instead of the last element
- df1 = pd.DataFrame({'a': [1, 2, 3], 'key': [0, 2, 2]})
+ df1 = pd.DataFrame({'a': [1, 2, 3], 'key': [0, 2, 2]}, index=index)
df2 = pd.DataFrame({'b': [1, 2, 3, 4, 5]})
result = df1.merge(df2, left_on='key', right_index=True, how=how)
expected = pd.DataFrame([[1.0, 0, 1],
@@ -1048,7 +1068,7 @@ def test_merge_on_index_with_more_values(self, how):
[np.nan, 3, 4],
[np.nan, 4, 5]],
columns=['a', 'key', 'b'])
- expected.set_index(Int64Index([0, 1, 2, 1, 3, 4]), inplace=True)
+ expected.set_index(expected_index, inplace=True)
assert_frame_equal(result, expected)
def test_merge_right_index_right(self):
@@ -1062,11 +1082,27 @@ def test_merge_right_index_right(self):
'key': [0, 1, 1, 2],
'b': [1, 2, 2, 3]},
columns=['a', 'key', 'b'],
- index=[0, 1, 2, 2])
+ index=[0, 1, 2, np.nan])
result = left.merge(right, left_on='key', right_index=True,
how='right')
tm.assert_frame_equal(result, expected)
+ def test_merge_take_missing_values_from_index_of_other_dtype(self):
+ # GH 24212
+ left = pd.DataFrame({'a': [1, 2, 3],
+ 'key': pd.Categorical(['a', 'a', 'b'],
+ categories=list('abc'))})
+ right = pd.DataFrame({'b': [1, 2, 3]},
+ index=pd.CategoricalIndex(['a', 'b', 'c']))
+ result = left.merge(right, left_on='key',
+ right_index=True, how='right')
+ expected = pd.DataFrame({'a': [1, 2, 3, None],
+ 'key': pd.Categorical(['a', 'a', 'b', 'c']),
+ 'b': [1, 1, 2, 3]},
+ index=[0, 1, 2, np.nan])
+ expected = expected.reindex(columns=['a', 'key', 'b'])
+ tm.assert_frame_equal(result, expected)
+
def _check_merge(x, y):
for how in ['inner', 'left', 'outer']:
| - [X] closes #25001
- [X] tests added / passed
- [X] passes `git diff upstream/master -u -- "*.py" | flake8 --diff`
- [ ] whatsnew entry
Followup to #24916, addresses the case when the other index has an incompatible dtype, so we cannot take directly from it. Currently, this PR ~naively replaces the missing index values with the number of the rows in the other index that caused them~ replaces the missing index values with the appropriate NA value.
~Still working on adding cases when it is possible to combine indices of sparse/categorical dtypes without densifying.~ | https://api.github.com/repos/pandas-dev/pandas/pulls/25009 | 2019-01-29T19:32:15Z | 2019-05-05T21:21:55Z | 2019-05-05T21:21:55Z | 2019-05-05T21:22:00Z |
require Return section only if return is not None nor commentary | diff --git a/scripts/tests/test_validate_docstrings.py b/scripts/tests/test_validate_docstrings.py
index bb58449843096..6f78b91653a3f 100644
--- a/scripts/tests/test_validate_docstrings.py
+++ b/scripts/tests/test_validate_docstrings.py
@@ -229,6 +229,27 @@ def good_imports(self):
"""
pass
+ def no_returns(self):
+ """
+ Say hello and have no returns.
+ """
+ pass
+
+ def empty_returns(self):
+ """
+ Say hello and always return None.
+
+ Since this function never returns a value, this
+ docstring doesn't need a return section.
+ """
+ def say_hello():
+ return "Hello World!"
+ say_hello()
+ if True:
+ return
+ else:
+ return None
+
class BadGenericDocStrings(object):
"""Everything here has a bad docstring
@@ -783,7 +804,7 @@ def test_good_class(self, capsys):
@pytest.mark.parametrize("func", [
'plot', 'sample', 'random_letters', 'sample_values', 'head', 'head1',
- 'contains', 'mode', 'good_imports'])
+ 'contains', 'mode', 'good_imports', 'no_returns', 'empty_returns'])
def test_good_functions(self, capsys, func):
errors = validate_one(self._import_path(
klass='GoodDocStrings', func=func))['errors']
diff --git a/scripts/validate_docstrings.py b/scripts/validate_docstrings.py
index bce33f7e78daa..446cd60968312 100755
--- a/scripts/validate_docstrings.py
+++ b/scripts/validate_docstrings.py
@@ -26,6 +26,8 @@
import importlib
import doctest
import tempfile
+import ast
+import textwrap
import flake8.main.application
@@ -490,9 +492,45 @@ def yields(self):
@property
def method_source(self):
try:
- return inspect.getsource(self.obj)
+ source = inspect.getsource(self.obj)
except TypeError:
return ''
+ return textwrap.dedent(source)
+
+ @property
+ def method_returns_something(self):
+ '''
+ Check if the docstrings method can return something.
+
+ Bare returns, returns valued None and returns from nested functions are
+ disconsidered.
+
+ Returns
+ -------
+ bool
+ Whether the docstrings method can return something.
+ '''
+
+ def get_returns_not_on_nested_functions(node):
+ returns = [node] if isinstance(node, ast.Return) else []
+ for child in ast.iter_child_nodes(node):
+ # Ignore nested functions and its subtrees.
+ if not isinstance(child, ast.FunctionDef):
+ child_returns = get_returns_not_on_nested_functions(child)
+ returns.extend(child_returns)
+ return returns
+
+ tree = ast.parse(self.method_source).body
+ if tree:
+ returns = get_returns_not_on_nested_functions(tree[0])
+ return_values = [r.value for r in returns]
+ # Replace NameConstant nodes valued None for None.
+ for i, v in enumerate(return_values):
+ if isinstance(v, ast.NameConstant) and v.value is None:
+ return_values[i] = None
+ return any(return_values)
+ else:
+ return False
@property
def first_line_ends_in_dot(self):
@@ -691,7 +729,7 @@ def get_validation_data(doc):
if doc.is_function_or_method:
if not doc.returns:
- if 'return' in doc.method_source:
+ if doc.method_returns_something:
errs.append(error('RT01'))
else:
if len(doc.returns) == 1 and doc.returns[0][1]:
| - [ ] closes #23488
Updated return lookup at source in validate_docstrings.py:
- ignore "return None"
- ignore empty return
- ignore the word "return" on commentaries
Updated test_validate_docstrings.py:
- added a test which contains the "returns" listed above and has a valid docstring with no Return section | https://api.github.com/repos/pandas-dev/pandas/pulls/25008 | 2019-01-29T18:23:09Z | 2019-03-11T12:02:05Z | 2019-03-11T12:02:04Z | 2019-03-11T12:02:05Z |
API: Change default for Index.union sort | diff --git a/doc/source/whatsnew/v0.24.1.rst b/doc/source/whatsnew/v0.24.1.rst
index 047404e93914b..948350df140eb 100644
--- a/doc/source/whatsnew/v0.24.1.rst
+++ b/doc/source/whatsnew/v0.24.1.rst
@@ -15,10 +15,84 @@ Whats New in 0.24.1 (February XX, 2019)
These are the changes in pandas 0.24.1. See :ref:`release` for a full changelog
including other versions of pandas.
+.. _whatsnew_0241.api:
+
+API Changes
+~~~~~~~~~~~
+
+Changing the ``sort`` parameter for :meth:`Index.union`
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+The default ``sort`` value for :meth:`Index.union` has changed from ``True`` to ``None`` (:issue:`24959`).
+The default *behavior* remains the same: The result is sorted, unless
+
+1. ``self`` and ``other`` are identical
+2. ``self`` or ``other`` is empty
+3. ``self`` or ``other`` contain values that can not be compared (a ``RuntimeWarning`` is raised).
+
+This allows ``sort=True`` to now mean "always sort". A ``TypeError`` is raised if the values cannot be compared.
+
+**Behavior in 0.24.0**
+
+.. ipython:: python
+
+ In [1]: idx = pd.Index(['b', 'a'])
+
+ In [2]: idx.union(idx) # sort=True was the default.
+ Out[2]: Index(['b', 'a'], dtype='object')
+
+ In [3]: idx.union(idx, sort=True) # result is still not sorted.
+ Out[32]: Index(['b', 'a'], dtype='object')
+
+**New Behavior**
+
+.. ipython:: python
+
+ idx = pd.Index(['b', 'a'])
+ idx.union(idx) # sort=None is the default. Don't sort identical operands.
+
+ idx.union(idx, sort=True)
+
+The same change applies to :meth:`Index.difference` and :meth:`Index.symmetric_difference`, which
+would previously not sort the result when ``sort=True`` but the values could not be compared.
+
+Changed the behavior of :meth:`Index.intersection` with ``sort=True``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+When ``sort=True`` is provided to :meth:`Index.intersection`, the values are always sorted. In 0.24.0,
+the values would not be sorted when ``self`` and ``other`` were identical. Pass ``sort=False`` to not
+sort the values. This matches the behavior of pandas 0.23.4 and earlier.
+
+**Behavior in 0.23.4**
+
+.. ipython:: python
+
+ In [2]: idx = pd.Index(['b', 'a'])
+
+ In [3]: idx.intersection(idx) # sort was not a keyword.
+ Out[3]: Index(['b', 'a'], dtype='object')
+
+**Behavior in 0.24.0**
+
+.. ipython:: python
+
+ In [5]: idx.intersection(idx) # sort=True by default. Don't sort identical.
+ Out[5]: Index(['b', 'a'], dtype='object')
+
+ In [6]: idx.intersection(idx, sort=True)
+ Out[6]: Index(['b', 'a'], dtype='object')
+
+**New Behavior**
+
+.. ipython:: python
+
+ idx.intersection(idx) # sort=False by default
+ idx.intersection(idx, sort=True)
+
.. _whatsnew_0241.regressions:
Fixed Regressions
-^^^^^^^^^^^^^^^^^
+~~~~~~~~~~~~~~~~~
- Bug in :meth:`DataFrame.itertuples` with ``records`` orient raising an ``AttributeError`` when the ``DataFrame`` contained more than 255 columns (:issue:`24939`)
- Bug in :meth:`DataFrame.itertuples` orient converting integer column names to strings prepended with an underscore (:issue:`24940`)
@@ -28,7 +102,7 @@ Fixed Regressions
.. _whatsnew_0241.enhancements:
Enhancements
-^^^^^^^^^^^^
+~~~~~~~~~~~~
.. _whatsnew_0241.bug_fixes:
diff --git a/pandas/_libs/lib.pyx b/pandas/_libs/lib.pyx
index 4a3440e14ba14..c9473149d8a84 100644
--- a/pandas/_libs/lib.pyx
+++ b/pandas/_libs/lib.pyx
@@ -233,11 +233,14 @@ def fast_unique_multiple(list arrays, sort: bool=True):
if val not in table:
table[val] = stub
uniques.append(val)
- if sort:
+ if sort is None:
try:
uniques.sort()
except Exception:
+ # TODO: RuntimeWarning?
pass
+ elif sort:
+ uniques.sort()
return uniques
diff --git a/pandas/core/indexes/base.py b/pandas/core/indexes/base.py
index 3d176012df22b..12880ed93cc2a 100644
--- a/pandas/core/indexes/base.py
+++ b/pandas/core/indexes/base.py
@@ -2245,18 +2245,34 @@ def _get_reconciled_name_object(self, other):
return self._shallow_copy(name=name)
return self
- def union(self, other, sort=True):
+ def union(self, other, sort=None):
"""
Form the union of two Index objects.
Parameters
----------
other : Index or array-like
- sort : bool, default True
- Sort the resulting index if possible
+ sort : bool or None, default None
+ Whether to sort the resulting Index.
+
+ * None : Sort the result, except when
+
+ 1. `self` and `other` are equal.
+ 2. `self` or `other` has length 0.
+ 3. Some values in `self` or `other` cannot be compared.
+ A RuntimeWarning is issued in this case.
+
+ * True : sort the result. A TypeError is raised when the
+ values cannot be compared.
+ * False : do not sort the result.
.. versionadded:: 0.24.0
+ .. versionchanged:: 0.24.1
+
+ Changed the default `sort` to None, matching the
+ behavior of pandas 0.23.4 and earlier.
+
Returns
-------
union : Index
@@ -2273,10 +2289,16 @@ def union(self, other, sort=True):
other = ensure_index(other)
if len(other) == 0 or self.equals(other):
- return self._get_reconciled_name_object(other)
+ result = self._get_reconciled_name_object(other)
+ if sort:
+ result = result.sort_values()
+ return result
if len(self) == 0:
- return other._get_reconciled_name_object(self)
+ result = other._get_reconciled_name_object(self)
+ if sort:
+ result = result.sort_values()
+ return result
# TODO: is_dtype_union_equal is a hack around
# 1. buggy set ops with duplicates (GH #13432)
@@ -2319,13 +2341,16 @@ def union(self, other, sort=True):
else:
result = lvals
- if sort:
+ if sort is None:
try:
result = sorting.safe_sort(result)
except TypeError as e:
warnings.warn("{}, sort order is undefined for "
"incomparable objects".format(e),
RuntimeWarning, stacklevel=3)
+ elif sort:
+ # raise if not sortable.
+ result = sorting.safe_sort(result)
# for subclasses
return self._wrap_setop_result(other, result)
@@ -2342,8 +2367,12 @@ def intersection(self, other, sort=False):
Parameters
----------
other : Index or array-like
- sort : bool, default False
- Sort the resulting index if possible
+ sort : bool or None, default False
+ Whether to sort the resulting index.
+
+ * False : do not sort the result.
+ * True : sort the result. A TypeError is raised when the
+ values cannot be compared.
.. versionadded:: 0.24.0
@@ -2367,7 +2396,10 @@ def intersection(self, other, sort=False):
other = ensure_index(other)
if self.equals(other):
- return self._get_reconciled_name_object(other)
+ result = self._get_reconciled_name_object(other)
+ if sort:
+ result = result.sort_values()
+ return result
if not is_dtype_equal(self.dtype, other.dtype):
this = self.astype('O')
@@ -2415,7 +2447,7 @@ def intersection(self, other, sort=False):
return taken
- def difference(self, other, sort=True):
+ def difference(self, other, sort=None):
"""
Return a new Index with elements from the index that are not in
`other`.
@@ -2425,11 +2457,24 @@ def difference(self, other, sort=True):
Parameters
----------
other : Index or array-like
- sort : bool, default True
- Sort the resulting index if possible
+ sort : bool or None, default None
+ Whether to sort the resulting index. By default, the
+ values are attempted to be sorted, but any TypeError from
+ incomparable elements is caught by pandas.
+
+ * None : Attempt to sort the result, but catch any TypeErrors
+ from comparing incomparable elements.
+ * False : Do not sort the result.
+ * True : Sort the result, raising a TypeError if any elements
+ cannot be compared.
.. versionadded:: 0.24.0
+ .. versionchanged:: 0.24.1
+
+ Added the `None` option, which matches the behavior of
+ pandas 0.23.4 and earlier.
+
Returns
-------
difference : Index
@@ -2460,15 +2505,17 @@ def difference(self, other, sort=True):
label_diff = np.setdiff1d(np.arange(this.size), indexer,
assume_unique=True)
the_diff = this.values.take(label_diff)
- if sort:
+ if sort is None:
try:
the_diff = sorting.safe_sort(the_diff)
except TypeError:
pass
+ elif sort:
+ the_diff = sorting.safe_sort(the_diff)
return this._shallow_copy(the_diff, name=result_name, freq=None)
- def symmetric_difference(self, other, result_name=None, sort=True):
+ def symmetric_difference(self, other, result_name=None, sort=None):
"""
Compute the symmetric difference of two Index objects.
@@ -2476,11 +2523,24 @@ def symmetric_difference(self, other, result_name=None, sort=True):
----------
other : Index or array-like
result_name : str
- sort : bool, default True
- Sort the resulting index if possible
+ sort : bool or None, default None
+ Whether to sort the resulting index. By default, the
+ values are attempted to be sorted, but any TypeError from
+ incomparable elements is caught by pandas.
+
+ * None : Attempt to sort the result, but catch any TypeErrors
+ from comparing incomparable elements.
+ * False : Do not sort the result.
+ * True : Sort the result, raising a TypeError if any elements
+ cannot be compared.
.. versionadded:: 0.24.0
+ .. versionchanged:: 0.24.1
+
+ Added the `None` option, which matches the behavior of
+ pandas 0.23.4 and earlier.
+
Returns
-------
symmetric_difference : Index
@@ -2524,11 +2584,13 @@ def symmetric_difference(self, other, result_name=None, sort=True):
right_diff = other.values.take(right_indexer)
the_diff = _concat._concat_compat([left_diff, right_diff])
- if sort:
+ if sort is None:
try:
the_diff = sorting.safe_sort(the_diff)
except TypeError:
pass
+ elif sort:
+ the_diff = sorting.safe_sort(the_diff)
attribs = self._get_attributes_dict()
attribs['name'] = result_name
diff --git a/pandas/core/indexes/multi.py b/pandas/core/indexes/multi.py
index 16af3fe8eef26..32a5a09359019 100644
--- a/pandas/core/indexes/multi.py
+++ b/pandas/core/indexes/multi.py
@@ -2879,18 +2879,34 @@ def equal_levels(self, other):
return False
return True
- def union(self, other, sort=True):
+ def union(self, other, sort=None):
"""
Form the union of two MultiIndex objects
Parameters
----------
other : MultiIndex or array / Index of tuples
- sort : bool, default True
- Sort the resulting MultiIndex if possible
+ sort : bool or None, default None
+ Whether to sort the resulting Index.
+
+ * None : Sort the result, except when
+
+ 1. `self` and `other` are equal.
+ 2. `self` has length 0.
+ 3. Some values in `self` or `other` cannot be compared.
+ A RuntimeWarning is issued in this case.
+
+ * True : sort the result. A TypeError is raised when the
+ values cannot be compared.
+ * False : do not sort the result.
.. versionadded:: 0.24.0
+ .. versionchanged:: 0.24.1
+
+ Changed the default `sort` to None, matching the
+ behavior of pandas 0.23.4 and earlier.
+
Returns
-------
Index
@@ -2901,8 +2917,12 @@ def union(self, other, sort=True):
other, result_names = self._convert_can_do_setop(other)
if len(other) == 0 or self.equals(other):
+ if sort:
+ return self.sort_values()
return self
+ # TODO: Index.union returns other when `len(self)` is 0.
+
uniq_tuples = lib.fast_unique_multiple([self._ndarray_values,
other._ndarray_values],
sort=sort)
@@ -2917,7 +2937,7 @@ def intersection(self, other, sort=False):
Parameters
----------
other : MultiIndex or array / Index of tuples
- sort : bool, default True
+ sort : bool, default False
Sort the resulting MultiIndex if possible
.. versionadded:: 0.24.0
@@ -2934,6 +2954,8 @@ def intersection(self, other, sort=False):
other, result_names = self._convert_can_do_setop(other)
if self.equals(other):
+ if sort:
+ return self.sort_values()
return self
self_tuples = self._ndarray_values
@@ -2951,7 +2973,7 @@ def intersection(self, other, sort=False):
return MultiIndex.from_arrays(lzip(*uniq_tuples), sortorder=0,
names=result_names)
- def difference(self, other, sort=True):
+ def difference(self, other, sort=None):
"""
Compute set difference of two MultiIndex objects
@@ -2971,6 +2993,8 @@ def difference(self, other, sort=True):
other, result_names = self._convert_can_do_setop(other)
if len(other) == 0:
+ if sort:
+ return self.sort_values()
return self
if self.equals(other):
diff --git a/pandas/tests/indexes/multi/test_set_ops.py b/pandas/tests/indexes/multi/test_set_ops.py
index 208d6cf1c639f..6a42e29aa8f5c 100644
--- a/pandas/tests/indexes/multi/test_set_ops.py
+++ b/pandas/tests/indexes/multi/test_set_ops.py
@@ -174,7 +174,10 @@ def test_difference(idx, sort):
# name from empty array
result = first.difference([], sort=sort)
- assert first.equals(result)
+ if sort:
+ assert first.sort_values().equals(result)
+ else:
+ assert first.equals(result)
assert first.names == result.names
# name from non-empty array
@@ -189,6 +192,36 @@ def test_difference(idx, sort):
first.difference([1, 2, 3, 4, 5], sort=sort)
+def test_difference_sort_special():
+ idx = pd.MultiIndex.from_product([[1, 0], ['a', 'b']])
+ # sort=None, the default
+ result = idx.difference([])
+ tm.assert_index_equal(result, idx)
+
+ result = idx.difference([], sort=True)
+ expected = pd.MultiIndex.from_product([[0, 1], ['a', 'b']])
+ tm.assert_index_equal(result, expected)
+
+
+def test_difference_sort_incomparable():
+ idx = pd.MultiIndex.from_product([[1, pd.Timestamp('2000'), 2],
+ ['a', 'b']])
+
+ other = pd.MultiIndex.from_product([[3, pd.Timestamp('2000'), 4],
+ ['c', 'd']])
+ # sort=None, the default
+ # result = idx.difference(other)
+ # tm.assert_index_equal(result, idx)
+
+ # sort=False
+ result = idx.difference(other)
+ tm.assert_index_equal(result, idx)
+
+ # sort=True, raises
+ with pytest.raises(TypeError):
+ idx.difference(other, sort=True)
+
+
@pytest.mark.parametrize("sort", [True, False])
def test_union(idx, sort):
piece1 = idx[:5][::-1]
@@ -203,10 +236,16 @@ def test_union(idx, sort):
# corner case, pass self or empty thing:
the_union = idx.union(idx, sort=sort)
- assert the_union is idx
+ if sort:
+ tm.assert_index_equal(the_union, idx.sort_values())
+ else:
+ assert the_union is idx
the_union = idx.union(idx[:0], sort=sort)
- assert the_union is idx
+ if sort:
+ tm.assert_index_equal(the_union, idx.sort_values())
+ else:
+ assert the_union is idx
# won't work in python 3
# tuples = _index.values
@@ -238,7 +277,10 @@ def test_intersection(idx, sort):
# corner case, pass self
the_int = idx.intersection(idx, sort=sort)
- assert the_int is idx
+ if sort:
+ tm.assert_index_equal(the_int, idx.sort_values())
+ else:
+ assert the_int is idx
# empty intersection: disjoint
empty = idx[:2].intersection(idx[2:], sort=sort)
@@ -249,3 +291,47 @@ def test_intersection(idx, sort):
# tuples = _index.values
# result = _index & tuples
# assert result.equals(tuples)
+
+
+def test_intersect_equal_sort():
+ idx = pd.MultiIndex.from_product([[1, 0], ['a', 'b']])
+ sorted_ = pd.MultiIndex.from_product([[0, 1], ['a', 'b']])
+ tm.assert_index_equal(idx.intersection(idx, sort=False), idx)
+ tm.assert_index_equal(idx.intersection(idx, sort=True), sorted_)
+
+
[email protected]('slice_', [slice(None), slice(0)])
+def test_union_sort_other_empty(slice_):
+ # https://github.com/pandas-dev/pandas/issues/24959
+ idx = pd.MultiIndex.from_product([[1, 0], ['a', 'b']])
+
+ # default, sort=None
+ other = idx[slice_]
+ tm.assert_index_equal(idx.union(other), idx)
+ # MultiIndex does not special case empty.union(idx)
+ # tm.assert_index_equal(other.union(idx), idx)
+
+ # sort=False
+ tm.assert_index_equal(idx.union(other, sort=False), idx)
+
+ # sort=True
+ result = idx.union(other, sort=True)
+ expected = pd.MultiIndex.from_product([[0, 1], ['a', 'b']])
+ tm.assert_index_equal(result, expected)
+
+
+def test_union_sort_other_incomparable():
+ # https://github.com/pandas-dev/pandas/issues/24959
+ idx = pd.MultiIndex.from_product([[1, pd.Timestamp('2000')], ['a', 'b']])
+
+ # default, sort=None
+ result = idx.union(idx[:1])
+ tm.assert_index_equal(result, idx)
+
+ # sort=False
+ result = idx.union(idx[:1], sort=False)
+ tm.assert_index_equal(result, idx)
+
+ # sort=True
+ with pytest.raises(TypeError, match='Cannot compare'):
+ idx.union(idx[:1], sort=True)
diff --git a/pandas/tests/indexes/test_base.py b/pandas/tests/indexes/test_base.py
index 20e439de46bde..4e8555cbe1aab 100644
--- a/pandas/tests/indexes/test_base.py
+++ b/pandas/tests/indexes/test_base.py
@@ -3,6 +3,7 @@
from collections import defaultdict
from datetime import datetime, timedelta
import math
+import operator
import sys
import numpy as np
@@ -695,7 +696,10 @@ def test_intersection(self, sort):
# Corner cases
inter = first.intersection(first, sort=sort)
- assert inter is first
+ if sort:
+ tm.assert_index_equal(inter, first.sort_values())
+ else:
+ assert inter is first
@pytest.mark.parametrize("index2,keeps_name", [
(Index([3, 4, 5, 6, 7], name="index"), True), # preserve same name
@@ -770,6 +774,12 @@ def test_intersect_nosort(self):
expected = pd.Index(['b', 'a'])
tm.assert_index_equal(result, expected)
+ def test_intersect_equal_sort(self):
+ idx = pd.Index(['c', 'a', 'b'])
+ sorted_ = pd.Index(['a', 'b', 'c'])
+ tm.assert_index_equal(idx.intersection(idx, sort=False), idx)
+ tm.assert_index_equal(idx.intersection(idx, sort=True), sorted_)
+
@pytest.mark.parametrize("sort", [True, False])
def test_chained_union(self, sort):
# Chained unions handles names correctly
@@ -799,6 +809,41 @@ def test_union(self, sort):
tm.assert_index_equal(union, everything.sort_values())
assert tm.equalContents(union, everything)
+ @pytest.mark.parametrize('slice_', [slice(None), slice(0)])
+ def test_union_sort_other_special(self, slice_):
+ # https://github.com/pandas-dev/pandas/issues/24959
+
+ idx = pd.Index([1, 0, 2])
+ # default, sort=None
+ other = idx[slice_]
+ tm.assert_index_equal(idx.union(other), idx)
+ tm.assert_index_equal(other.union(idx), idx)
+
+ # sort=False
+ tm.assert_index_equal(idx.union(other, sort=False), idx)
+
+ # sort=True
+ result = idx.union(other, sort=True)
+ expected = pd.Index([0, 1, 2])
+ tm.assert_index_equal(result, expected)
+
+ def test_union_sort_other_incomparable(self):
+ # https://github.com/pandas-dev/pandas/issues/24959
+ idx = pd.Index([1, pd.Timestamp('2000')])
+ # default, sort=None
+ with tm.assert_produces_warning(RuntimeWarning):
+ result = idx.union(idx[:1])
+
+ tm.assert_index_equal(result, idx)
+
+ # sort=True
+ with pytest.raises(TypeError, match='.*'):
+ idx.union(idx[:1], sort=True)
+
+ # sort=False
+ result = idx.union(idx[:1], sort=False)
+ tm.assert_index_equal(result, idx)
+
@pytest.mark.parametrize("klass", [
np.array, Series, list])
@pytest.mark.parametrize("sort", [True, False])
@@ -815,19 +860,20 @@ def test_union_from_iterables(self, klass, sort):
tm.assert_index_equal(result, everything.sort_values())
assert tm.equalContents(result, everything)
- @pytest.mark.parametrize("sort", [True, False])
+ @pytest.mark.parametrize("sort", [None, True, False])
def test_union_identity(self, sort):
# TODO: replace with fixturesult
first = self.strIndex[5:20]
union = first.union(first, sort=sort)
- assert union is first
+ # i.e. identity is not preserved when sort is True
+ assert (union is first) is (not sort)
union = first.union([], sort=sort)
- assert union is first
+ assert (union is first) is (not sort)
union = Index([]).union(first, sort=sort)
- assert union is first
+ assert (union is first) is (not sort)
@pytest.mark.parametrize("first_list", [list('ba'), list()])
@pytest.mark.parametrize("second_list", [list('ab'), list()])
@@ -1054,6 +1100,29 @@ def test_symmetric_difference(self, sort):
assert tm.equalContents(result, expected)
assert result.name is None
+ @pytest.mark.parametrize('opname', ['difference', 'symmetric_difference'])
+ def test_difference_incomparable(self, opname):
+ a = pd.Index([3, pd.Timestamp('2000'), 1])
+ b = pd.Index([2, pd.Timestamp('1999'), 1])
+ op = operator.methodcaller(opname, b)
+
+ # sort=None, the default
+ result = op(a)
+ expected = pd.Index([3, pd.Timestamp('2000'), 2, pd.Timestamp('1999')])
+ if opname == 'difference':
+ expected = expected[:2]
+ tm.assert_index_equal(result, expected)
+
+ # sort=False
+ op = operator.methodcaller(opname, b, sort=False)
+ result = op(a)
+ tm.assert_index_equal(result, expected)
+
+ # sort=True, raises
+ op = operator.methodcaller(opname, b, sort=True)
+ with pytest.raises(TypeError, match='Cannot compare'):
+ op(a)
+
@pytest.mark.parametrize("sort", [True, False])
def test_symmetric_difference_mi(self, sort):
index1 = MultiIndex.from_tuples(self.tuples)
| Closes https://github.com/pandas-dev/pandas/issues/24959
Haven't done MultiIndex yet, just opening for discussion on *if* we should do this for 0.24.1. | https://api.github.com/repos/pandas-dev/pandas/pulls/25007 | 2019-01-29T18:02:12Z | 2019-02-04T22:12:40Z | null | 2019-02-04T22:12:43Z |
Backport PR #24973: fix for BUG: grouping with tz-aware: Values falls… | diff --git a/doc/source/whatsnew/v0.24.1.rst b/doc/source/whatsnew/v0.24.1.rst
index 7647e199030d2..8f4c3982c745f 100644
--- a/doc/source/whatsnew/v0.24.1.rst
+++ b/doc/source/whatsnew/v0.24.1.rst
@@ -70,6 +70,9 @@ Bug Fixes
-
-
+**Reshaping**
+
+- Bug in :meth:`DataFrame.groupby` with :class:`Grouper` when there is a time change (DST) and grouping frequency is ``'1d'`` (:issue:`24972`)
**Visualization**
diff --git a/pandas/core/resample.py b/pandas/core/resample.py
index 6822225273906..7723827ff478a 100644
--- a/pandas/core/resample.py
+++ b/pandas/core/resample.py
@@ -30,8 +30,7 @@
from pandas.core.indexes.timedeltas import TimedeltaIndex, timedelta_range
from pandas.tseries.frequencies import to_offset
-from pandas.tseries.offsets import (
- DateOffset, Day, Nano, Tick, delta_to_nanoseconds)
+from pandas.tseries.offsets import DateOffset, Day, Nano, Tick
_shared_docs_kwargs = dict()
@@ -1613,20 +1612,20 @@ def _get_timestamp_range_edges(first, last, offset, closed='left', base=0):
A tuple of length 2, containing the adjusted pd.Timestamp objects.
"""
if isinstance(offset, Tick):
- is_day = isinstance(offset, Day)
- day_nanos = delta_to_nanoseconds(timedelta(1))
-
- # #1165 and #24127
- if (is_day and not offset.nanos % day_nanos) or not is_day:
- first, last = _adjust_dates_anchored(first, last, offset,
- closed=closed, base=base)
- if is_day and first.tz is not None:
- # _adjust_dates_anchored assumes 'D' means 24H, but first/last
- # might contain a DST transition (23H, 24H, or 25H).
- # Ensure first/last snap to midnight.
- first = first.normalize()
- last = last.normalize()
- return first, last
+ if isinstance(offset, Day):
+ # _adjust_dates_anchored assumes 'D' means 24H, but first/last
+ # might contain a DST transition (23H, 24H, or 25H).
+ # So "pretend" the dates are naive when adjusting the endpoints
+ tz = first.tz
+ first = first.tz_localize(None)
+ last = last.tz_localize(None)
+
+ first, last = _adjust_dates_anchored(first, last, offset,
+ closed=closed, base=base)
+ if isinstance(offset, Day):
+ first = first.tz_localize(tz)
+ last = last.tz_localize(tz)
+ return first, last
else:
first = first.normalize()
diff --git a/pandas/tests/resample/test_datetime_index.py b/pandas/tests/resample/test_datetime_index.py
index 73995cbe79ecd..b743aeecdc756 100644
--- a/pandas/tests/resample/test_datetime_index.py
+++ b/pandas/tests/resample/test_datetime_index.py
@@ -1276,6 +1276,21 @@ def test_resample_across_dst():
assert_frame_equal(result, expected)
+def test_groupby_with_dst_time_change():
+ # GH 24972
+ index = pd.DatetimeIndex([1478064900001000000, 1480037118776792000],
+ tz='UTC').tz_convert('America/Chicago')
+
+ df = pd.DataFrame([1, 2], index=index)
+ result = df.groupby(pd.Grouper(freq='1d')).last()
+ expected_index_values = pd.date_range('2016-11-02', '2016-11-24',
+ freq='d', tz='America/Chicago')
+
+ index = pd.DatetimeIndex(expected_index_values)
+ expected = pd.DataFrame([1.0] + ([np.nan] * 21) + [2.0], index=index)
+ assert_frame_equal(result, expected)
+
+
def test_resample_dst_anchor():
# 5172
dti = DatetimeIndex([datetime(2012, 11, 4, 23)], tz='US/Eastern')
| … after last bin
| https://api.github.com/repos/pandas-dev/pandas/pulls/25005 | 2019-01-29T16:12:28Z | 2019-01-29T16:46:52Z | 2019-01-29T16:46:52Z | 2019-01-29T16:46:56Z |
End of preview. Expand
in Dataset Viewer.
No dataset card yet
New: Create and edit this dataset card directly on the website!
Contribute a Dataset Card- Downloads last month
- 58