|
|
|
|
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import jsonlines |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@inproceedings{huguet-cabot-et-al-2023-redfm-dataset, |
|
title = "RED$^{\rm FM}$: a Filtered and Multilingual Relation Extraction Dataset", |
|
author = "Huguet Cabot, Pere-Lluís and Tedeschi, Simone and Ngonga Ngomo, Axel-Cyrille and |
|
Navigli, Roberto", |
|
booktitle = "Proc. of the 61st Annual Meeting of the Association for Computational Linguistics: ACL 2023", |
|
month = jul, |
|
year = "2023", |
|
address = "Toronto, Canada", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/2306.09802", |
|
} |
|
""" |
|
|
|
_DATASETNAME = "sredfm" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
SREDFM is an automatically annotated dataset for relation extraction task covering 18 languages, 400 relation types, 13 entity types, totaling more than 40 million triplet instances. SREDFM includes Vietnamnese. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/babelscape/rebel" |
|
|
|
_LANGUAGES = ["vie"] |
|
|
|
_LICENSE = Licenses.CC_BY_SA_4_0.value |
|
|
|
_LOCAL = False |
|
|
|
_URLS = { |
|
"train": "https://huggingface.co./datasets/Babelscape/SREDFM/resolve/main/data/train.vi.jsonl", |
|
"dev": "https://huggingface.co./datasets/Babelscape/SREDFM/resolve/main/data/dev.vi.jsonl", |
|
"test": "https://huggingface.co./datasets/Babelscape/SREDFM/resolve/main/data/test.vi.jsonl", |
|
"relations_url": "https://huggingface.co./datasets/Babelscape/SREDFM/raw/main/relations.tsv", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.RELATION_EXTRACTION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class SREDFMDataset(datasets.GeneratorBasedBuilder): |
|
"""SREDFM is an automatically annotated dataset for relation extraction task. |
|
Relation Extraction (RE) is a task that identifies relationships between entities in a text, |
|
enabling the acquisition of relational facts and bridging the gap between natural language |
|
and structured knowledge. SREDFM covers 400 relation types, 13 entity types, |
|
totaling more than 40 million triplet instances.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_kb", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema="seacrowd_kb", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"docid": datasets.Value("string"), |
|
"title": datasets.Value("string"), |
|
"uri": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"entities": [ |
|
{ |
|
"uri": datasets.Value(dtype="string"), |
|
"surfaceform": datasets.Value(dtype="string"), |
|
"type": datasets.Value(dtype="string"), |
|
"start": datasets.Value(dtype="int32"), |
|
"end": datasets.Value(dtype="int32"), |
|
} |
|
], |
|
"relations": [ |
|
{ |
|
"subject": datasets.Value(dtype="int32"), |
|
"predicate": datasets.Value(dtype="string"), |
|
"object": datasets.Value(dtype="int32"), |
|
} |
|
], |
|
} |
|
) |
|
|
|
elif self.config.schema == "seacrowd_kb": |
|
features = schemas.kb_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
data_dir = dl_manager.download_and_extract(_URLS) |
|
|
|
relation_names = dict() |
|
relation_path = data_dir["relations_url"] |
|
with open(relation_path, encoding="utf-8") as f: |
|
for row in f: |
|
rel_code, rel_name, _, _ = row.strip().split("\t") |
|
relation_names[rel_code] = rel_name |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": data_dir["train"], "relation_names": relation_names}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": data_dir["test"], "relation_names": relation_names}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"filepath": data_dir["dev"], "relation_names": relation_names}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, relation_names: dict) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
if self.config.schema == "source": |
|
with jsonlines.open(filepath) as f: |
|
skip = set() |
|
for example in f.iter(): |
|
if example["docid"] in skip: |
|
continue |
|
skip.add(example["docid"]) |
|
|
|
entities = [] |
|
for entity in example["entities"]: |
|
entities.append( |
|
{ |
|
"uri": entity["uri"], |
|
"surfaceform": entity["surfaceform"], |
|
"start": entity["boundaries"][0], |
|
"end": entity["boundaries"][1], |
|
"type": entity["type"], |
|
} |
|
) |
|
|
|
relations = [] |
|
for relation in example["relations"]: |
|
if relation["predicate"]["uri"] not in relation_names or relation["confidence"] <= 0.75: |
|
continue |
|
|
|
relations.append( |
|
{ |
|
"subject": entities.index( |
|
{ |
|
"uri": relation["subject"]["uri"], |
|
"surfaceform": relation["subject"]["surfaceform"], |
|
"start": relation["subject"]["boundaries"][0], |
|
"end": relation["subject"]["boundaries"][1], |
|
"type": relation["subject"]["type"], |
|
} |
|
), |
|
"predicate": relation_names[relation["predicate"]["uri"]], |
|
"object": entities.index( |
|
{ |
|
"uri": relation["object"]["uri"], |
|
"surfaceform": relation["object"]["surfaceform"], |
|
"start": relation["object"]["boundaries"][0], |
|
"end": relation["object"]["boundaries"][1], |
|
"type": relation["object"]["type"], |
|
} |
|
), |
|
} |
|
) |
|
|
|
if len(relations) == 0: |
|
continue |
|
|
|
yield example["docid"], { |
|
"docid": example["docid"], |
|
"title": example["title"], |
|
"uri": example["uri"], |
|
"text": example["text"], |
|
"entities": entities, |
|
"relations": relations, |
|
} |
|
|
|
elif self.config.schema == "seacrowd_kb": |
|
with jsonlines.open(filepath) as f: |
|
skip = set() |
|
i = 0 |
|
for example in f.iter(): |
|
if example["docid"] in skip: |
|
continue |
|
skip.add(example["docid"]) |
|
|
|
i += 1 |
|
processed_text = example["text"].replace("\n", " ") |
|
passages = [ |
|
{ |
|
"id": f"{i}-{example['uri']}", |
|
"type": "text", |
|
"text": [processed_text], |
|
"offsets": [[0, len(processed_text)]], |
|
} |
|
] |
|
|
|
entities = [] |
|
for entity in example["entities"]: |
|
entities.append( |
|
{ |
|
"id": entity["uri"], |
|
"type": entity["type"], |
|
"text": [entity["surfaceform"]], |
|
"offsets": [entity["boundaries"]], |
|
"normalized": {"db_name": "", "db_id": ""}, |
|
} |
|
) |
|
|
|
relations = [] |
|
for relation in example["relations"]: |
|
if relation["predicate"]["uri"] not in relation_names or relation["confidence"] <= 0.75: |
|
continue |
|
|
|
i += 1 |
|
sub = relation["subject"] |
|
pred = relation["predicate"] |
|
obj = relation["object"] |
|
relations.append( |
|
{ |
|
"id": f"{i}-{sub['uri']}-{pred['uri']}-{obj['uri']}", |
|
"type": relation_names[pred["uri"]], |
|
"arg1_id": str( |
|
entities.index( |
|
{ |
|
"id": sub["uri"], |
|
"type": sub["type"], |
|
"text": [sub["surfaceform"]], |
|
"offsets": [sub["boundaries"]], |
|
"normalized": {"db_name": "", "db_id": ""}, |
|
} |
|
) |
|
), |
|
"arg2_id": str( |
|
entities.index( |
|
{ |
|
"id": obj["uri"], |
|
"type": obj["type"], |
|
"text": [obj["surfaceform"]], |
|
"offsets": [obj["boundaries"]], |
|
"normalized": {"db_name": "", "db_id": ""}, |
|
} |
|
) |
|
), |
|
"normalized": {"db_name": "", "db_id": ""}, |
|
} |
|
) |
|
|
|
for entity in entities: |
|
i += 1 |
|
entity["id"] = f"{i}-{entity['id']}" |
|
|
|
if len(relations) == 0: |
|
continue |
|
|
|
yield example["docid"], { |
|
"id": example["docid"], |
|
"passages": passages, |
|
"entities": entities, |
|
"relations": relations, |
|
"events": [], |
|
"coreferences": [], |
|
} |
|
|