holylovenia
commited on
Upload sredfm.py with huggingface_hub
Browse files
sredfm.py
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Some code referenced from https://huggingface.co/datasets/Babelscape/SREDFM/blob/main/SREDFM.py
|
2 |
+
|
3 |
+
from pathlib import Path
|
4 |
+
from typing import Dict, List, Tuple
|
5 |
+
|
6 |
+
import datasets
|
7 |
+
import jsonlines
|
8 |
+
|
9 |
+
from seacrowd.utils import schemas
|
10 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
11 |
+
from seacrowd.utils.constants import Licenses, Tasks
|
12 |
+
|
13 |
+
_CITATION = """\
|
14 |
+
@inproceedings{huguet-cabot-et-al-2023-redfm-dataset,
|
15 |
+
title = "RED$^{\rm FM}$: a Filtered and Multilingual Relation Extraction Dataset",
|
16 |
+
author = "Huguet Cabot, Pere-Lluís and Tedeschi, Simone and Ngonga Ngomo, Axel-Cyrille and
|
17 |
+
Navigli, Roberto",
|
18 |
+
booktitle = "Proc. of the 61st Annual Meeting of the Association for Computational Linguistics: ACL 2023",
|
19 |
+
month = jul,
|
20 |
+
year = "2023",
|
21 |
+
address = "Toronto, Canada",
|
22 |
+
publisher = "Association for Computational Linguistics",
|
23 |
+
url = "https://arxiv.org/abs/2306.09802",
|
24 |
+
}
|
25 |
+
"""
|
26 |
+
|
27 |
+
_DATASETNAME = "sredfm"
|
28 |
+
|
29 |
+
|
30 |
+
_DESCRIPTION = """\
|
31 |
+
SREDFM is an automatically annotated dataset for relation extraction task covering 18 languages, 400 relation types, 13 entity types, totaling more than 40 million triplet instances. SREDFM includes Vietnamnese.
|
32 |
+
"""
|
33 |
+
|
34 |
+
_HOMEPAGE = "https://github.com/babelscape/rebel"
|
35 |
+
|
36 |
+
_LANGUAGES = ["vie"]
|
37 |
+
|
38 |
+
_LICENSE = Licenses.CC_BY_SA_4_0.value
|
39 |
+
|
40 |
+
_LOCAL = False
|
41 |
+
|
42 |
+
_URLS = {
|
43 |
+
"train": "https://huggingface.co/datasets/Babelscape/SREDFM/resolve/main/data/train.vi.jsonl",
|
44 |
+
"dev": "https://huggingface.co/datasets/Babelscape/SREDFM/resolve/main/data/dev.vi.jsonl",
|
45 |
+
"test": "https://huggingface.co/datasets/Babelscape/SREDFM/resolve/main/data/test.vi.jsonl",
|
46 |
+
"relations_url": "https://huggingface.co/datasets/Babelscape/SREDFM/raw/main/relations.tsv",
|
47 |
+
}
|
48 |
+
|
49 |
+
_SUPPORTED_TASKS = [Tasks.RELATION_EXTRACTION]
|
50 |
+
|
51 |
+
_SOURCE_VERSION = "1.0.0"
|
52 |
+
|
53 |
+
_SEACROWD_VERSION = "2024.06.20"
|
54 |
+
|
55 |
+
|
56 |
+
class SREDFMDataset(datasets.GeneratorBasedBuilder):
|
57 |
+
"""SREDFM is an automatically annotated dataset for relation extraction task.
|
58 |
+
Relation Extraction (RE) is a task that identifies relationships between entities in a text,
|
59 |
+
enabling the acquisition of relational facts and bridging the gap between natural language
|
60 |
+
and structured knowledge. SREDFM covers 400 relation types, 13 entity types,
|
61 |
+
totaling more than 40 million triplet instances."""
|
62 |
+
|
63 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
64 |
+
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
65 |
+
|
66 |
+
BUILDER_CONFIGS = [
|
67 |
+
SEACrowdConfig(
|
68 |
+
name=f"{_DATASETNAME}_source",
|
69 |
+
version=SOURCE_VERSION,
|
70 |
+
description=f"{_DATASETNAME} source schema",
|
71 |
+
schema="source",
|
72 |
+
subset_id=f"{_DATASETNAME}",
|
73 |
+
),
|
74 |
+
SEACrowdConfig(
|
75 |
+
name=f"{_DATASETNAME}_seacrowd_kb",
|
76 |
+
version=SEACROWD_VERSION,
|
77 |
+
description=f"{_DATASETNAME} SEACrowd schema",
|
78 |
+
schema="seacrowd_kb",
|
79 |
+
subset_id=f"{_DATASETNAME}",
|
80 |
+
),
|
81 |
+
]
|
82 |
+
|
83 |
+
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
|
84 |
+
|
85 |
+
def _info(self) -> datasets.DatasetInfo:
|
86 |
+
if self.config.schema == "source":
|
87 |
+
features = datasets.Features(
|
88 |
+
{
|
89 |
+
"docid": datasets.Value("string"),
|
90 |
+
"title": datasets.Value("string"),
|
91 |
+
"uri": datasets.Value("string"),
|
92 |
+
"text": datasets.Value("string"),
|
93 |
+
"entities": [
|
94 |
+
{
|
95 |
+
"uri": datasets.Value(dtype="string"),
|
96 |
+
"surfaceform": datasets.Value(dtype="string"),
|
97 |
+
"type": datasets.Value(dtype="string"),
|
98 |
+
"start": datasets.Value(dtype="int32"),
|
99 |
+
"end": datasets.Value(dtype="int32"),
|
100 |
+
}
|
101 |
+
],
|
102 |
+
"relations": [
|
103 |
+
{
|
104 |
+
"subject": datasets.Value(dtype="int32"),
|
105 |
+
"predicate": datasets.Value(dtype="string"),
|
106 |
+
"object": datasets.Value(dtype="int32"),
|
107 |
+
}
|
108 |
+
],
|
109 |
+
}
|
110 |
+
)
|
111 |
+
|
112 |
+
elif self.config.schema == "seacrowd_kb":
|
113 |
+
features = schemas.kb_features
|
114 |
+
|
115 |
+
return datasets.DatasetInfo(
|
116 |
+
description=_DESCRIPTION,
|
117 |
+
features=features,
|
118 |
+
homepage=_HOMEPAGE,
|
119 |
+
license=_LICENSE,
|
120 |
+
citation=_CITATION,
|
121 |
+
)
|
122 |
+
|
123 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
124 |
+
"""Returns SplitGenerators."""
|
125 |
+
data_dir = dl_manager.download_and_extract(_URLS)
|
126 |
+
|
127 |
+
relation_names = dict()
|
128 |
+
relation_path = data_dir["relations_url"]
|
129 |
+
with open(relation_path, encoding="utf-8") as f:
|
130 |
+
for row in f:
|
131 |
+
rel_code, rel_name, _, _ = row.strip().split("\t")
|
132 |
+
relation_names[rel_code] = rel_name
|
133 |
+
|
134 |
+
return [
|
135 |
+
datasets.SplitGenerator(
|
136 |
+
name=datasets.Split.TRAIN,
|
137 |
+
gen_kwargs={"filepath": data_dir["train"], "relation_names": relation_names},
|
138 |
+
),
|
139 |
+
datasets.SplitGenerator(
|
140 |
+
name=datasets.Split.TEST,
|
141 |
+
gen_kwargs={"filepath": data_dir["test"], "relation_names": relation_names},
|
142 |
+
),
|
143 |
+
datasets.SplitGenerator(
|
144 |
+
name=datasets.Split.VALIDATION,
|
145 |
+
gen_kwargs={"filepath": data_dir["dev"], "relation_names": relation_names},
|
146 |
+
),
|
147 |
+
]
|
148 |
+
|
149 |
+
def _generate_examples(self, filepath: Path, relation_names: dict) -> Tuple[int, Dict]:
|
150 |
+
"""Yields examples as (key, example) tuples."""
|
151 |
+
|
152 |
+
if self.config.schema == "source":
|
153 |
+
with jsonlines.open(filepath) as f:
|
154 |
+
skip = set()
|
155 |
+
for example in f.iter():
|
156 |
+
if example["docid"] in skip:
|
157 |
+
continue
|
158 |
+
skip.add(example["docid"])
|
159 |
+
|
160 |
+
entities = []
|
161 |
+
for entity in example["entities"]:
|
162 |
+
entities.append(
|
163 |
+
{
|
164 |
+
"uri": entity["uri"],
|
165 |
+
"surfaceform": entity["surfaceform"],
|
166 |
+
"start": entity["boundaries"][0],
|
167 |
+
"end": entity["boundaries"][1],
|
168 |
+
"type": entity["type"],
|
169 |
+
}
|
170 |
+
)
|
171 |
+
|
172 |
+
relations = []
|
173 |
+
for relation in example["relations"]:
|
174 |
+
if relation["predicate"]["uri"] not in relation_names or relation["confidence"] <= 0.75:
|
175 |
+
continue
|
176 |
+
|
177 |
+
relations.append(
|
178 |
+
{
|
179 |
+
"subject": entities.index(
|
180 |
+
{
|
181 |
+
"uri": relation["subject"]["uri"],
|
182 |
+
"surfaceform": relation["subject"]["surfaceform"],
|
183 |
+
"start": relation["subject"]["boundaries"][0],
|
184 |
+
"end": relation["subject"]["boundaries"][1],
|
185 |
+
"type": relation["subject"]["type"],
|
186 |
+
}
|
187 |
+
),
|
188 |
+
"predicate": relation_names[relation["predicate"]["uri"]],
|
189 |
+
"object": entities.index(
|
190 |
+
{
|
191 |
+
"uri": relation["object"]["uri"],
|
192 |
+
"surfaceform": relation["object"]["surfaceform"],
|
193 |
+
"start": relation["object"]["boundaries"][0],
|
194 |
+
"end": relation["object"]["boundaries"][1],
|
195 |
+
"type": relation["object"]["type"],
|
196 |
+
}
|
197 |
+
),
|
198 |
+
}
|
199 |
+
)
|
200 |
+
|
201 |
+
if len(relations) == 0:
|
202 |
+
continue
|
203 |
+
|
204 |
+
yield example["docid"], {
|
205 |
+
"docid": example["docid"],
|
206 |
+
"title": example["title"],
|
207 |
+
"uri": example["uri"],
|
208 |
+
"text": example["text"],
|
209 |
+
"entities": entities,
|
210 |
+
"relations": relations,
|
211 |
+
}
|
212 |
+
|
213 |
+
elif self.config.schema == "seacrowd_kb":
|
214 |
+
with jsonlines.open(filepath) as f:
|
215 |
+
skip = set()
|
216 |
+
i = 0
|
217 |
+
for example in f.iter():
|
218 |
+
if example["docid"] in skip:
|
219 |
+
continue
|
220 |
+
skip.add(example["docid"])
|
221 |
+
|
222 |
+
i += 1
|
223 |
+
processed_text = example["text"].replace("\n", " ")
|
224 |
+
passages = [
|
225 |
+
{
|
226 |
+
"id": f"{i}-{example['uri']}",
|
227 |
+
"type": "text",
|
228 |
+
"text": [processed_text],
|
229 |
+
"offsets": [[0, len(processed_text)]],
|
230 |
+
}
|
231 |
+
]
|
232 |
+
|
233 |
+
entities = []
|
234 |
+
for entity in example["entities"]:
|
235 |
+
entities.append(
|
236 |
+
{
|
237 |
+
"id": entity["uri"],
|
238 |
+
"type": entity["type"],
|
239 |
+
"text": [entity["surfaceform"]],
|
240 |
+
"offsets": [entity["boundaries"]],
|
241 |
+
"normalized": {"db_name": "", "db_id": ""},
|
242 |
+
}
|
243 |
+
)
|
244 |
+
|
245 |
+
relations = []
|
246 |
+
for relation in example["relations"]:
|
247 |
+
if relation["predicate"]["uri"] not in relation_names or relation["confidence"] <= 0.75:
|
248 |
+
continue
|
249 |
+
|
250 |
+
i += 1
|
251 |
+
sub = relation["subject"]
|
252 |
+
pred = relation["predicate"]
|
253 |
+
obj = relation["object"]
|
254 |
+
relations.append(
|
255 |
+
{
|
256 |
+
"id": f"{i}-{sub['uri']}-{pred['uri']}-{obj['uri']}",
|
257 |
+
"type": relation_names[pred["uri"]],
|
258 |
+
"arg1_id": str(
|
259 |
+
entities.index(
|
260 |
+
{
|
261 |
+
"id": sub["uri"],
|
262 |
+
"type": sub["type"],
|
263 |
+
"text": [sub["surfaceform"]],
|
264 |
+
"offsets": [sub["boundaries"]],
|
265 |
+
"normalized": {"db_name": "", "db_id": ""},
|
266 |
+
}
|
267 |
+
)
|
268 |
+
),
|
269 |
+
"arg2_id": str(
|
270 |
+
entities.index(
|
271 |
+
{
|
272 |
+
"id": obj["uri"],
|
273 |
+
"type": obj["type"],
|
274 |
+
"text": [obj["surfaceform"]],
|
275 |
+
"offsets": [obj["boundaries"]],
|
276 |
+
"normalized": {"db_name": "", "db_id": ""},
|
277 |
+
}
|
278 |
+
)
|
279 |
+
),
|
280 |
+
"normalized": {"db_name": "", "db_id": ""},
|
281 |
+
}
|
282 |
+
)
|
283 |
+
|
284 |
+
for entity in entities:
|
285 |
+
i += 1
|
286 |
+
entity["id"] = f"{i}-{entity['id']}"
|
287 |
+
|
288 |
+
if len(relations) == 0:
|
289 |
+
continue
|
290 |
+
|
291 |
+
yield example["docid"], {
|
292 |
+
"id": example["docid"],
|
293 |
+
"passages": passages,
|
294 |
+
"entities": entities,
|
295 |
+
"relations": relations,
|
296 |
+
"events": [],
|
297 |
+
"coreferences": [],
|
298 |
+
}
|