Datasets:

Languages:
Vietnamese
ArXiv:
License:
holylovenia commited on
Commit
5b19c86
·
verified ·
1 Parent(s): edfc5d0

Upload sredfm.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. sredfm.py +298 -0
sredfm.py ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Some code referenced from https://huggingface.co/datasets/Babelscape/SREDFM/blob/main/SREDFM.py
2
+
3
+ from pathlib import Path
4
+ from typing import Dict, List, Tuple
5
+
6
+ import datasets
7
+ import jsonlines
8
+
9
+ from seacrowd.utils import schemas
10
+ from seacrowd.utils.configs import SEACrowdConfig
11
+ from seacrowd.utils.constants import Licenses, Tasks
12
+
13
+ _CITATION = """\
14
+ @inproceedings{huguet-cabot-et-al-2023-redfm-dataset,
15
+ title = "RED$^{\rm FM}$: a Filtered and Multilingual Relation Extraction Dataset",
16
+ author = "Huguet Cabot, Pere-Lluís and Tedeschi, Simone and Ngonga Ngomo, Axel-Cyrille and
17
+ Navigli, Roberto",
18
+ booktitle = "Proc. of the 61st Annual Meeting of the Association for Computational Linguistics: ACL 2023",
19
+ month = jul,
20
+ year = "2023",
21
+ address = "Toronto, Canada",
22
+ publisher = "Association for Computational Linguistics",
23
+ url = "https://arxiv.org/abs/2306.09802",
24
+ }
25
+ """
26
+
27
+ _DATASETNAME = "sredfm"
28
+
29
+
30
+ _DESCRIPTION = """\
31
+ SREDFM is an automatically annotated dataset for relation extraction task covering 18 languages, 400 relation types, 13 entity types, totaling more than 40 million triplet instances. SREDFM includes Vietnamnese.
32
+ """
33
+
34
+ _HOMEPAGE = "https://github.com/babelscape/rebel"
35
+
36
+ _LANGUAGES = ["vie"]
37
+
38
+ _LICENSE = Licenses.CC_BY_SA_4_0.value
39
+
40
+ _LOCAL = False
41
+
42
+ _URLS = {
43
+ "train": "https://huggingface.co/datasets/Babelscape/SREDFM/resolve/main/data/train.vi.jsonl",
44
+ "dev": "https://huggingface.co/datasets/Babelscape/SREDFM/resolve/main/data/dev.vi.jsonl",
45
+ "test": "https://huggingface.co/datasets/Babelscape/SREDFM/resolve/main/data/test.vi.jsonl",
46
+ "relations_url": "https://huggingface.co/datasets/Babelscape/SREDFM/raw/main/relations.tsv",
47
+ }
48
+
49
+ _SUPPORTED_TASKS = [Tasks.RELATION_EXTRACTION]
50
+
51
+ _SOURCE_VERSION = "1.0.0"
52
+
53
+ _SEACROWD_VERSION = "2024.06.20"
54
+
55
+
56
+ class SREDFMDataset(datasets.GeneratorBasedBuilder):
57
+ """SREDFM is an automatically annotated dataset for relation extraction task.
58
+ Relation Extraction (RE) is a task that identifies relationships between entities in a text,
59
+ enabling the acquisition of relational facts and bridging the gap between natural language
60
+ and structured knowledge. SREDFM covers 400 relation types, 13 entity types,
61
+ totaling more than 40 million triplet instances."""
62
+
63
+ SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
64
+ SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
65
+
66
+ BUILDER_CONFIGS = [
67
+ SEACrowdConfig(
68
+ name=f"{_DATASETNAME}_source",
69
+ version=SOURCE_VERSION,
70
+ description=f"{_DATASETNAME} source schema",
71
+ schema="source",
72
+ subset_id=f"{_DATASETNAME}",
73
+ ),
74
+ SEACrowdConfig(
75
+ name=f"{_DATASETNAME}_seacrowd_kb",
76
+ version=SEACROWD_VERSION,
77
+ description=f"{_DATASETNAME} SEACrowd schema",
78
+ schema="seacrowd_kb",
79
+ subset_id=f"{_DATASETNAME}",
80
+ ),
81
+ ]
82
+
83
+ DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
84
+
85
+ def _info(self) -> datasets.DatasetInfo:
86
+ if self.config.schema == "source":
87
+ features = datasets.Features(
88
+ {
89
+ "docid": datasets.Value("string"),
90
+ "title": datasets.Value("string"),
91
+ "uri": datasets.Value("string"),
92
+ "text": datasets.Value("string"),
93
+ "entities": [
94
+ {
95
+ "uri": datasets.Value(dtype="string"),
96
+ "surfaceform": datasets.Value(dtype="string"),
97
+ "type": datasets.Value(dtype="string"),
98
+ "start": datasets.Value(dtype="int32"),
99
+ "end": datasets.Value(dtype="int32"),
100
+ }
101
+ ],
102
+ "relations": [
103
+ {
104
+ "subject": datasets.Value(dtype="int32"),
105
+ "predicate": datasets.Value(dtype="string"),
106
+ "object": datasets.Value(dtype="int32"),
107
+ }
108
+ ],
109
+ }
110
+ )
111
+
112
+ elif self.config.schema == "seacrowd_kb":
113
+ features = schemas.kb_features
114
+
115
+ return datasets.DatasetInfo(
116
+ description=_DESCRIPTION,
117
+ features=features,
118
+ homepage=_HOMEPAGE,
119
+ license=_LICENSE,
120
+ citation=_CITATION,
121
+ )
122
+
123
+ def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
124
+ """Returns SplitGenerators."""
125
+ data_dir = dl_manager.download_and_extract(_URLS)
126
+
127
+ relation_names = dict()
128
+ relation_path = data_dir["relations_url"]
129
+ with open(relation_path, encoding="utf-8") as f:
130
+ for row in f:
131
+ rel_code, rel_name, _, _ = row.strip().split("\t")
132
+ relation_names[rel_code] = rel_name
133
+
134
+ return [
135
+ datasets.SplitGenerator(
136
+ name=datasets.Split.TRAIN,
137
+ gen_kwargs={"filepath": data_dir["train"], "relation_names": relation_names},
138
+ ),
139
+ datasets.SplitGenerator(
140
+ name=datasets.Split.TEST,
141
+ gen_kwargs={"filepath": data_dir["test"], "relation_names": relation_names},
142
+ ),
143
+ datasets.SplitGenerator(
144
+ name=datasets.Split.VALIDATION,
145
+ gen_kwargs={"filepath": data_dir["dev"], "relation_names": relation_names},
146
+ ),
147
+ ]
148
+
149
+ def _generate_examples(self, filepath: Path, relation_names: dict) -> Tuple[int, Dict]:
150
+ """Yields examples as (key, example) tuples."""
151
+
152
+ if self.config.schema == "source":
153
+ with jsonlines.open(filepath) as f:
154
+ skip = set()
155
+ for example in f.iter():
156
+ if example["docid"] in skip:
157
+ continue
158
+ skip.add(example["docid"])
159
+
160
+ entities = []
161
+ for entity in example["entities"]:
162
+ entities.append(
163
+ {
164
+ "uri": entity["uri"],
165
+ "surfaceform": entity["surfaceform"],
166
+ "start": entity["boundaries"][0],
167
+ "end": entity["boundaries"][1],
168
+ "type": entity["type"],
169
+ }
170
+ )
171
+
172
+ relations = []
173
+ for relation in example["relations"]:
174
+ if relation["predicate"]["uri"] not in relation_names or relation["confidence"] <= 0.75:
175
+ continue
176
+
177
+ relations.append(
178
+ {
179
+ "subject": entities.index(
180
+ {
181
+ "uri": relation["subject"]["uri"],
182
+ "surfaceform": relation["subject"]["surfaceform"],
183
+ "start": relation["subject"]["boundaries"][0],
184
+ "end": relation["subject"]["boundaries"][1],
185
+ "type": relation["subject"]["type"],
186
+ }
187
+ ),
188
+ "predicate": relation_names[relation["predicate"]["uri"]],
189
+ "object": entities.index(
190
+ {
191
+ "uri": relation["object"]["uri"],
192
+ "surfaceform": relation["object"]["surfaceform"],
193
+ "start": relation["object"]["boundaries"][0],
194
+ "end": relation["object"]["boundaries"][1],
195
+ "type": relation["object"]["type"],
196
+ }
197
+ ),
198
+ }
199
+ )
200
+
201
+ if len(relations) == 0:
202
+ continue
203
+
204
+ yield example["docid"], {
205
+ "docid": example["docid"],
206
+ "title": example["title"],
207
+ "uri": example["uri"],
208
+ "text": example["text"],
209
+ "entities": entities,
210
+ "relations": relations,
211
+ }
212
+
213
+ elif self.config.schema == "seacrowd_kb":
214
+ with jsonlines.open(filepath) as f:
215
+ skip = set()
216
+ i = 0
217
+ for example in f.iter():
218
+ if example["docid"] in skip:
219
+ continue
220
+ skip.add(example["docid"])
221
+
222
+ i += 1
223
+ processed_text = example["text"].replace("\n", " ")
224
+ passages = [
225
+ {
226
+ "id": f"{i}-{example['uri']}",
227
+ "type": "text",
228
+ "text": [processed_text],
229
+ "offsets": [[0, len(processed_text)]],
230
+ }
231
+ ]
232
+
233
+ entities = []
234
+ for entity in example["entities"]:
235
+ entities.append(
236
+ {
237
+ "id": entity["uri"],
238
+ "type": entity["type"],
239
+ "text": [entity["surfaceform"]],
240
+ "offsets": [entity["boundaries"]],
241
+ "normalized": {"db_name": "", "db_id": ""},
242
+ }
243
+ )
244
+
245
+ relations = []
246
+ for relation in example["relations"]:
247
+ if relation["predicate"]["uri"] not in relation_names or relation["confidence"] <= 0.75:
248
+ continue
249
+
250
+ i += 1
251
+ sub = relation["subject"]
252
+ pred = relation["predicate"]
253
+ obj = relation["object"]
254
+ relations.append(
255
+ {
256
+ "id": f"{i}-{sub['uri']}-{pred['uri']}-{obj['uri']}",
257
+ "type": relation_names[pred["uri"]],
258
+ "arg1_id": str(
259
+ entities.index(
260
+ {
261
+ "id": sub["uri"],
262
+ "type": sub["type"],
263
+ "text": [sub["surfaceform"]],
264
+ "offsets": [sub["boundaries"]],
265
+ "normalized": {"db_name": "", "db_id": ""},
266
+ }
267
+ )
268
+ ),
269
+ "arg2_id": str(
270
+ entities.index(
271
+ {
272
+ "id": obj["uri"],
273
+ "type": obj["type"],
274
+ "text": [obj["surfaceform"]],
275
+ "offsets": [obj["boundaries"]],
276
+ "normalized": {"db_name": "", "db_id": ""},
277
+ }
278
+ )
279
+ ),
280
+ "normalized": {"db_name": "", "db_id": ""},
281
+ }
282
+ )
283
+
284
+ for entity in entities:
285
+ i += 1
286
+ entity["id"] = f"{i}-{entity['id']}"
287
+
288
+ if len(relations) == 0:
289
+ continue
290
+
291
+ yield example["docid"], {
292
+ "id": example["docid"],
293
+ "passages": passages,
294
+ "entities": entities,
295
+ "relations": relations,
296
+ "events": [],
297
+ "coreferences": [],
298
+ }