Dataset Preview
Full Screen
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 1 new columns ({'lighting_condition'}) and 1 missing columns ({'glare'}).

This happened while the csv dataset builder was generating data using

hf://datasets/NUS-UAL/global-streetscapes/manual_labels/train/lighting_condition.csv (at revision f32c31dffab66fec8a032cd2ee17c6610eb301c3)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1869, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 580, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2292, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2240, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              uuid: string
              source: string
              orig_id: int64
              lighting_condition: string
              url: string
              label_method: string
              city: string
              city_id: int64
              country: string
              continent: string
              lat: double
              lon: double
              datetime_local: string
              sequence_index: int64
              sequence_id: string
              split: string
              img_path: string
              -- schema metadata --
              pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 2225
              to
              {'uuid': Value(dtype='string', id=None), 'source': Value(dtype='string', id=None), 'orig_id': Value(dtype='int64', id=None), 'glare': Value(dtype='string', id=None), 'url': Value(dtype='string', id=None), 'label_method': Value(dtype='string', id=None), 'city': Value(dtype='string', id=None), 'city_id': Value(dtype='int64', id=None), 'country': Value(dtype='string', id=None), 'continent': Value(dtype='string', id=None), 'lat': Value(dtype='float64', id=None), 'lon': Value(dtype='float64', id=None), 'datetime_local': Value(dtype='string', id=None), 'sequence_index': Value(dtype='int64', id=None), 'sequence_id': Value(dtype='string', id=None), 'split': Value(dtype='string', id=None), 'img_path': Value(dtype='string', id=None)}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1387, in compute_config_parquet_and_info_response
                  parquet_operations, partial, estimated_dataset_info = stream_convert_to_parquet(
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 980, in stream_convert_to_parquet
                  builder._prepare_split(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1740, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1871, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 1 new columns ({'lighting_condition'}) and 1 missing columns ({'glare'}).
              
              This happened while the csv dataset builder was generating data using
              
              hf://datasets/NUS-UAL/global-streetscapes/manual_labels/train/lighting_condition.csv (at revision f32c31dffab66fec8a032cd2ee17c6610eb301c3)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

uuid
string
source
string
orig_id
int64
glare
string
url
string
label_method
string
city
string
city_id
int64
country
string
continent
string
lat
float64
lon
float64
datetime_local
string
sequence_index
int64
sequence_id
string
split
string
img_path
string
1978a821-d39f-4d98-8d8b-a9975d497385
Mapillary
976,482,762,890,327
no
https://www.mapillary.com/app/?pKey=976482762890327&focus=photo
random sample and manual label
Tarazona de Aragón
1,724,796,233
Spain
Europe
41.790652
-1.766745
2018-08-05 11:33:53.319000+02:00
12
J63JR0B5QM6pfhxWwj9IWA
train
img/3/1978a821-d39f-4d98-8d8b-a9975d497385.jpeg
12731198-74b8-448e-bec8-faa96b024a2c
Mapillary
246,917,197,222,492
no
https://www.mapillary.com/app/?pKey=246917197222492&focus=photo
random sample and manual label
Tarazona de Aragón
1,724,796,233
Spain
Europe
41.785087
-1.766823
2017-07-02 14:03:01.745000+02:00
33
eo1Pec9DyI5lxwa4KhvwXw
train
img/6/12731198-74b8-448e-bec8-faa96b024a2c.jpeg
ad798a8c-649a-4ff8-b9a2-f2932dc228ff
Mapillary
2,970,430,033,242,379
no
https://www.mapillary.com/app/?pKey=2970430033242379&focus=photo
random sample and manual label
Tarazona de Aragón
1,724,796,233
Spain
Europe
41.790926
-1.766326
2016-11-01 16:57:17.295000+01:00
35
K-ILLX1_HQqfj3Z1pNCB9Q
train
img/3/ad798a8c-649a-4ff8-b9a2-f2932dc228ff.jpeg
2d1f6cba-f083-4308-ae6d-35402709ac4e
Mapillary
568,930,494,081,380
no
https://www.mapillary.com/app/?pKey=568930494081380&focus=photo
random sample and manual label
Tarazona de Aragón
1,724,796,233
Spain
Europe
41.784608
-1.762885
2017-07-02 14:03:25.934000+02:00
57
eo1Pec9DyI5lxwa4KhvwXw
train
img/5/2d1f6cba-f083-4308-ae6d-35402709ac4e.jpeg
ba75d911-58e3-4319-ba02-75b8f5af8837
Mapillary
457,198,638,702,420
no
https://www.mapillary.com/app/?pKey=457198638702420&focus=photo
random sample and manual label
Tarazona de Aragón
1,724,796,233
Spain
Europe
41.784535
-1.760188
2017-07-02 14:03:46.049000+02:00
77
eo1Pec9DyI5lxwa4KhvwXw
train
img/3/ba75d911-58e3-4319-ba02-75b8f5af8837.jpeg
83bfeed5-c3fd-4972-bd5c-dc8d99f5eff9
Mapillary
3,431,244,766,975,759
no
https://www.mapillary.com/app/?pKey=3431244766975759&focus=photo
random sample and manual label
Tarazona de Aragón
1,724,796,233
Spain
Europe
41.78455
-1.760757
2017-07-02 14:03:42.029000+02:00
73
eo1Pec9DyI5lxwa4KhvwXw
train
img/2/83bfeed5-c3fd-4972-bd5c-dc8d99f5eff9.jpeg
32de4a41-4471-4e82-a7d2-52303eba3dab
Mapillary
292,827,205,713,670
no
https://www.mapillary.com/app/?pKey=292827205713670&focus=photo
random sample and manual label
Tarazona de Aragón
1,724,796,233
Spain
Europe
41.790525
-1.75981
2016-11-01 12:00:15.479000+01:00
396
19cpum69akigj5podygolw
train
img/4/32de4a41-4471-4e82-a7d2-52303eba3dab.jpeg
52a51d9d-1d73-4656-a32c-c0bd08af8e22
Mapillary
893,070,377,931,574
no
https://www.mapillary.com/app/?pKey=893070377931574&focus=photo
random sample and manual label
Tarazona de Aragón
1,724,796,233
Spain
Europe
41.789633
-1.767905
2016-11-01 12:01:27.281000+01:00
431
19cpum69akigj5podygolw
train
img/3/52a51d9d-1d73-4656-a32c-c0bd08af8e22.jpeg
e5933b92-9815-4b62-b66a-e0399cddf780
Mapillary
569,454,580,702,017
no
https://www.mapillary.com/app/?pKey=569454580702017&focus=photo
random sample and manual label
Tarazona de Aragón
1,724,796,233
Spain
Europe
41.790759
-1.766591
2018-08-05 11:33:52.184000+02:00
11
J63JR0B5QM6pfhxWwj9IWA
train
img/6/e5933b92-9815-4b62-b66a-e0399cddf780.jpeg
df44af56-3592-4b6f-af2b-2c88a37cec74
Mapillary
289,703,232,821,034
no
https://www.mapillary.com/app/?pKey=289703232821034&focus=photo
random sample and manual label
Tarazona de Aragón
1,724,796,233
Spain
Europe
41.785076
-1.766477
2017-07-02 14:03:03.764000+02:00
35
eo1Pec9DyI5lxwa4KhvwXw
train
img/6/df44af56-3592-4b6f-af2b-2c88a37cec74.jpeg
fdd50149-4736-4946-8fcd-e066c56f6ac9
Mapillary
971,359,846,736,761
no
https://www.mapillary.com/app/?pKey=971359846736761&focus=photo
random sample and manual label
Tarazona de Aragón
1,724,796,233
Spain
Europe
41.790066
-1.767521
2016-11-01 16:57:08.387000+01:00
26
K-ILLX1_HQqfj3Z1pNCB9Q
train
img/3/fdd50149-4736-4946-8fcd-e066c56f6ac9.jpeg
141fd713-5bbc-48ce-a95d-8ec503919be5
Mapillary
825,568,588,354,414
no
https://www.mapillary.com/app/?pKey=825568588354414&focus=photo
random sample and manual label
Tarazona de Aragón
1,724,796,233
Spain
Europe
41.784521
-1.760031
2017-07-02 14:03:47.115000+02:00
78
eo1Pec9DyI5lxwa4KhvwXw
train
img/3/141fd713-5bbc-48ce-a95d-8ec503919be5.jpeg
5eb9a153-81c2-437c-a7c2-494ab474dad2
Mapillary
270,036,261,481,904
no
https://www.mapillary.com/app/?pKey=270036261481904&focus=photo
random sample and manual label
Tarazona de Aragón
1,724,796,233
Spain
Europe
41.784555
-1.76113
2017-07-02 14:03:39.031000+02:00
70
eo1Pec9DyI5lxwa4KhvwXw
train
img/1/5eb9a153-81c2-437c-a7c2-494ab474dad2.jpeg
6707bb77-44cd-41bb-bebc-83fea443d9db
Mapillary
825,708,831,675,475
no
https://www.mapillary.com/app/?pKey=825708831675475&focus=photo
random sample and manual label
Tarazona de Aragón
1,724,796,233
Spain
Europe
41.791134
-1.766039
2016-11-01 16:57:19.262000+01:00
37
K-ILLX1_HQqfj3Z1pNCB9Q
train
img/6/6707bb77-44cd-41bb-bebc-83fea443d9db.jpeg
0ef75504-f5c2-4c86-811d-39aca429291f
Mapillary
373,767,707,225,320
no
https://www.mapillary.com/app/?pKey=373767707225320&focus=photo
random sample and manual label
Tarazona de Aragón
1,724,796,233
Spain
Europe
41.790222
-1.767087
2016-11-01 12:01:18.774000+01:00
427
19cpum69akigj5podygolw
train
img/4/0ef75504-f5c2-4c86-811d-39aca429291f.jpeg
42e8c905-c180-4cf7-99ba-f8195aeb3be5
Mapillary
146,806,674,059,957
no
https://www.mapillary.com/app/?pKey=146806674059957&focus=photo
random sample and manual label
Tarazona de Aragón
1,724,796,233
Spain
Europe
41.790896
-1.761716
2016-11-01 12:00:25.840000+01:00
401
19cpum69akigj5podygolw
train
img/5/42e8c905-c180-4cf7-99ba-f8195aeb3be5.jpeg
84807902-c117-49cf-857d-d63541ed137b
Mapillary
798,385,614,447,860
no
https://www.mapillary.com/app/?pKey=798385614447860&focus=photo
random sample and manual label
Tarazona de Aragón
1,724,796,233
Spain
Europe
41.790222
-1.767342
2018-08-05 11:33:58.213000+02:00
16
J63JR0B5QM6pfhxWwj9IWA
train
img/5/84807902-c117-49cf-857d-d63541ed137b.jpeg
1dacc914-cd74-4970-9a89-20b440c2ea5c
Mapillary
304,339,664,403,173
no
https://www.mapillary.com/app/?pKey=304339664403173&focus=photo
random sample and manual label
Tarazona de Aragón
1,724,796,233
Spain
Europe
41.784861
-1.764948
2017-07-02 14:03:12.794000+02:00
44
eo1Pec9DyI5lxwa4KhvwXw
train
img/4/1dacc914-cd74-4970-9a89-20b440c2ea5c.jpeg
b6516ab0-da81-4fe9-8d42-cb77c9937bf2
Mapillary
215,515,886,644,180
no
https://www.mapillary.com/app/?pKey=215515886644180&focus=photo
random sample and manual label
Tarazona de Aragón
1,724,796,233
Spain
Europe
41.784752
-1.764151
2017-07-02 14:03:17.798000+02:00
49
eo1Pec9DyI5lxwa4KhvwXw
train
img/6/b6516ab0-da81-4fe9-8d42-cb77c9937bf2.jpeg
e19781ee-c0b7-40a0-8357-8f8abbb4bece
Mapillary
207,663,590,941,956
no
https://www.mapillary.com/app/?pKey=207663590941956&focus=photo
random sample and manual label
Tarazona de Aragón
1,724,796,233
Spain
Europe
41.790154
-1.767386
2016-11-01 16:57:09.421000+01:00
27
K-ILLX1_HQqfj3Z1pNCB9Q
train
img/3/e19781ee-c0b7-40a0-8357-8f8abbb4bece.jpeg
7680f8b9-6b9b-48c7-ab73-e18537ec7336
Mapillary
1,107,543,566,418,319
no
https://www.mapillary.com/app/?pKey=1107543566418319&focus=photo
random sample and manual label
Northallerton
1,826,697,671
United Kingdom
Europe
54.326377
-1.400904
2018-05-23 15:26:02.529000+01:00
630
924f2559-43c3-478e-b52a-bad0a1e78967
train
img/6/7680f8b9-6b9b-48c7-ab73-e18537ec7336.jpeg
f4a6495c-9899-4b87-913c-58f044135562
Mapillary
157,589,106,369,935
no
https://www.mapillary.com/app/?pKey=157589106369935&focus=photo
random sample and manual label
Northallerton
1,826,697,671
United Kingdom
Europe
54.326032
-1.399915
2018-05-23 15:25:58.529000+01:00
626
924f2559-43c3-478e-b52a-bad0a1e78967
train
img/6/f4a6495c-9899-4b87-913c-58f044135562.jpeg
65a28401-03df-4ed8-8fa3-825255be0fa2
Mapillary
487,109,565,864,184
no
https://www.mapillary.com/app/?pKey=487109565864184&focus=photo
random sample and manual label
Northallerton
1,826,697,671
United Kingdom
Europe
54.326308
-1.400644
2018-05-23 15:26:01.529000+01:00
629
924f2559-43c3-478e-b52a-bad0a1e78967
train
img/4/65a28401-03df-4ed8-8fa3-825255be0fa2.jpeg
10bf6ad1-a3bc-4281-a2a0-56e51172c365
Mapillary
313,601,323,534,233
no
https://www.mapillary.com/app/?pKey=313601323534233&focus=photo
random sample and manual label
Northallerton
1,826,697,671
United Kingdom
Europe
54.325386
-1.39644
2018-05-23 15:25:44.530000+01:00
612
924f2559-43c3-478e-b52a-bad0a1e78967
train
img/2/10bf6ad1-a3bc-4281-a2a0-56e51172c365.jpeg
3b60ab1b-1e73-48e0-9583-2a15a8d44321
Mapillary
246,478,903,924,447
no
https://www.mapillary.com/app/?pKey=246478903924447&focus=photo
random sample and manual label
Northallerton
1,826,697,671
United Kingdom
Europe
54.325788
-1.39916
2018-05-23 15:25:55.529000+01:00
623
924f2559-43c3-478e-b52a-bad0a1e78967
train
img/4/3b60ab1b-1e73-48e0-9583-2a15a8d44321.jpeg
29200d65-7724-4b15-83b8-54a525f5596f
Mapillary
862,169,824,334,527
no
https://www.mapillary.com/app/?pKey=862169824334527&focus=photo
random sample and manual label
Northallerton
1,826,697,671
United Kingdom
Europe
54.326443
-1.401146
2018-05-23 15:26:03.529000+01:00
631
924f2559-43c3-478e-b52a-bad0a1e78967
train
img/5/29200d65-7724-4b15-83b8-54a525f5596f.jpeg
ea70082a-9ec4-4ece-8504-5084f3883471
Mapillary
802,672,190,683,499
no
https://www.mapillary.com/app/?pKey=802672190683499&focus=photo
random sample and manual label
Northallerton
1,826,697,671
United Kingdom
Europe
54.325657
-1.398363
2018-05-23 15:25:52.529000+01:00
620
924f2559-43c3-478e-b52a-bad0a1e78967
train
img/3/ea70082a-9ec4-4ece-8504-5084f3883471.jpeg
ed24d625-9831-472c-bf70-4ee5384d9a05
Mapillary
183,449,380,312,477
no
https://www.mapillary.com/app/?pKey=183449380312477&focus=photo
random sample and manual label
Northallerton
1,826,697,671
United Kingdom
Europe
54.324945
-1.39567
2018-05-23 15:25:40.529000+01:00
608
924f2559-43c3-478e-b52a-bad0a1e78967
train
img/2/ed24d625-9831-472c-bf70-4ee5384d9a05.jpeg
0db6166d-2c15-43f3-b102-c2333d330c1d
Mapillary
1,410,685,509,292,358
no
https://www.mapillary.com/app/?pKey=1410685509292358&focus=photo
random sample and manual label
Northallerton
1,826,697,671
United Kingdom
Europe
54.326226
-1.400373
2018-05-23 15:26:00.529000+01:00
628
924f2559-43c3-478e-b52a-bad0a1e78967
train
img/5/0db6166d-2c15-43f3-b102-c2333d330c1d.jpeg
adb29d75-518b-4624-be5c-6d7f0aefceb8
Mapillary
490,878,362,031,890
no
https://www.mapillary.com/app/?pKey=490878362031890&focus=photo
random sample and manual label
Northallerton
1,826,697,671
United Kingdom
Europe
54.32548
-1.396653
2018-05-23 15:25:45.530000+01:00
613
924f2559-43c3-478e-b52a-bad0a1e78967
train
img/2/adb29d75-518b-4624-be5c-6d7f0aefceb8.jpeg
8cfedd0e-2bf6-49d0-97e7-939270bd4d65
Mapillary
148,004,727,295,582
no
https://www.mapillary.com/app/?pKey=148004727295582&focus=photo
random sample and manual label
Northallerton
1,826,697,671
United Kingdom
Europe
54.32568
-1.398631
2018-05-23 15:25:53.529000+01:00
621
924f2559-43c3-478e-b52a-bad0a1e78967
train
img/6/8cfedd0e-2bf6-49d0-97e7-939270bd4d65.jpeg
91e8af0b-52f8-4c4e-9a96-58e0ba496091
Mapillary
152,595,283,499,193
no
https://www.mapillary.com/app/?pKey=152595283499193&focus=photo
random sample and manual label
Northallerton
1,826,697,671
United Kingdom
Europe
54.32517
-1.396052
2018-05-23 15:25:42.530000+01:00
610
924f2559-43c3-478e-b52a-bad0a1e78967
train
img/4/91e8af0b-52f8-4c4e-9a96-58e0ba496091.jpeg
1341eb2b-86a3-4039-8a92-ac643cf4d663
Mapillary
589,254,562,463,489
no
https://www.mapillary.com/app/?pKey=589254562463489&focus=photo
random sample and manual label
Northallerton
1,826,697,671
United Kingdom
Europe
54.325053
-1.395853
2018-05-23 15:25:41.530000+01:00
609
924f2559-43c3-478e-b52a-bad0a1e78967
train
img/1/1341eb2b-86a3-4039-8a92-ac643cf4d663.jpeg
51f94ad7-64ae-423b-b0c0-7f6c38707673
Mapillary
1,893,685,710,795,509
no
https://www.mapillary.com/app/?pKey=1893685710795509&focus=photo
random sample and manual label
Northallerton
1,826,697,671
United Kingdom
Europe
54.325874
-1.399415
2018-05-23 15:25:56.529000+01:00
624
924f2559-43c3-478e-b52a-bad0a1e78967
train
img/3/51f94ad7-64ae-423b-b0c0-7f6c38707673.jpeg
34b5765b-d540-40a9-97a9-040fac67fe9b
Mapillary
144,570,840,982,973
no
https://www.mapillary.com/app/?pKey=144570840982973&focus=photo
random sample and manual label
Northallerton
1,826,697,671
United Kingdom
Europe
54.325657
-1.398095
2018-05-23 15:25:51.529000+01:00
619
924f2559-43c3-478e-b52a-bad0a1e78967
train
img/1/34b5765b-d540-40a9-97a9-040fac67fe9b.jpeg
344cfc79-e839-4a25-b8bf-a1683c399431
Mapillary
589,979,889,071,874
no
https://www.mapillary.com/app/?pKey=589979889071874&focus=photo
random sample and manual label
Northallerton
1,826,697,671
United Kingdom
Europe
54.326109
-1.400153
2018-05-23 15:25:59.529000+01:00
627
924f2559-43c3-478e-b52a-bad0a1e78967
train
img/2/344cfc79-e839-4a25-b8bf-a1683c399431.jpeg
23671806-354f-4e4a-b562-d45d8599d558
Mapillary
1,187,015,858,408,081
no
https://www.mapillary.com/app/?pKey=1187015858408081&focus=photo
random sample and manual label
Diego de Almagro
1,152,585,849
Chile
South America
-26.94132
-69.027472
2020-03-08 11:34:15.824000-03:00
93
b1a10y0215fx4lcq05cbs9
train
img/1/23671806-354f-4e4a-b562-d45d8599d558.jpeg
fc4d27cb-96fe-4216-95a6-2d3788988130
Mapillary
776,308,026,609,745
no
https://www.mapillary.com/app/?pKey=776308026609745&focus=photo
random sample and manual label
Diego de Almagro
1,152,585,849
Chile
South America
-26.940172
-69.026643
2020-03-08 11:34:24.848000-03:00
101
b1a10y0215fx4lcq05cbs9
train
img/2/fc4d27cb-96fe-4216-95a6-2d3788988130.jpeg
078b3e17-1958-4311-b0cd-9a56e7f2ff38
Mapillary
2,834,691,673,447,367
no
https://www.mapillary.com/app/?pKey=2834691673447367&focus=photo
random sample and manual label
Diego de Almagro
1,152,585,849
Chile
South America
-26.940408
-69.026814
2020-03-08 11:34:22.661000-03:00
99
b1a10y0215fx4lcq05cbs9
train
img/4/078b3e17-1958-4311-b0cd-9a56e7f2ff38.jpeg
3e6c47c0-0037-4975-9543-e1a0976bf9de
Mapillary
137,476,115,036,772
no
https://www.mapillary.com/app/?pKey=137476115036772&focus=photo
random sample and manual label
Diego de Almagro
1,152,585,849
Chile
South America
-26.941014
-69.027254
2020-03-08 11:34:18.031000-03:00
95
b1a10y0215fx4lcq05cbs9
train
img/4/3e6c47c0-0037-4975-9543-e1a0976bf9de.jpeg
d860cf05-a360-4944-84f7-74119e951c6a
Mapillary
372,993,500,804,918
no
https://www.mapillary.com/app/?pKey=372993500804918&focus=photo
random sample and manual label
Diego de Almagro
1,152,585,849
Chile
South America
-26.939852
-69.026421
2020-03-08 11:34:28.193000-03:00
104
b1a10y0215fx4lcq05cbs9
train
img/2/d860cf05-a360-4944-84f7-74119e951c6a.jpeg
525eab8e-a252-4c1d-83ae-718122ca07ba
Mapillary
314,245,133,403,370
no
https://www.mapillary.com/app/?pKey=314245133403370&focus=photo
random sample and manual label
Diego de Almagro
1,152,585,849
Chile
South America
-26.941928
-69.027908
2020-03-08 11:34:11.384000-03:00
89
b1a10y0215fx4lcq05cbs9
train
img/5/525eab8e-a252-4c1d-83ae-718122ca07ba.jpeg
ec6b0fee-1c3b-4a5e-ab39-f541bace672b
Mapillary
162,337,479,174,809
no
https://www.mapillary.com/app/?pKey=162337479174809&focus=photo
random sample and manual label
Diego de Almagro
1,152,585,849
Chile
South America
-26.940679
-69.027012
2020-03-08 11:34:20.488000-03:00
97
b1a10y0215fx4lcq05cbs9
train
img/1/ec6b0fee-1c3b-4a5e-ab39-f541bace672b.jpeg
e42c10e5-5c50-4fa4-bbeb-87e18c5b3ca9
Mapillary
222,493,512,641,912
no
https://www.mapillary.com/app/?pKey=222493512641912&focus=photo
random sample and manual label
Diego de Almagro
1,152,585,849
Chile
South America
-26.940539
-69.02691
2020-03-08 11:34:21.558000-03:00
98
b1a10y0215fx4lcq05cbs9
train
img/3/e42c10e5-5c50-4fa4-bbeb-87e18c5b3ca9.jpeg
63cefc7c-6a45-4323-a0bb-4ef592a90959
Mapillary
673,607,083,434,957
no
https://www.mapillary.com/app/?pKey=673607083434957&focus=photo
random sample and manual label
Diego de Almagro
1,152,585,849
Chile
South America
-26.941472
-69.027581
2020-03-08 11:34:14.721000-03:00
92
b1a10y0215fx4lcq05cbs9
train
img/1/63cefc7c-6a45-4323-a0bb-4ef592a90959.jpeg
8c71ae95-4477-4c21-a10b-2b3b823499e7
Mapillary
226,839,982,132,294
no
https://www.mapillary.com/app/?pKey=226839982132294&focus=photo
random sample and manual label
Diego de Almagro
1,152,585,849
Chile
South America
-26.942077
-69.028012
2020-03-08 11:34:10.293000-03:00
88
b1a10y0215fx4lcq05cbs9
train
img/2/8c71ae95-4477-4c21-a10b-2b3b823499e7.jpeg
f7ff7c33-0b00-4f3f-9a5d-1623dbc2588c
Mapillary
328,364,788,704,472
no
https://www.mapillary.com/app/?pKey=328364788704472&focus=photo
random sample and manual label
Diego de Almagro
1,152,585,849
Chile
South America
-26.939951
-69.02649
2020-03-08 11:34:27.079000-03:00
103
b1a10y0215fx4lcq05cbs9
train
img/3/f7ff7c33-0b00-4f3f-9a5d-1623dbc2588c.jpeg
a33226c8-6791-4226-b884-c2d9db0c306f
Mapillary
1,062,304,020,965,452
no
https://www.mapillary.com/app/?pKey=1062304020965452&focus=photo
random sample and manual label
Diego de Almagro
1,152,585,849
Chile
South America
-26.940862
-69.027145
2020-03-08 11:34:19.118000-03:00
96
b1a10y0215fx4lcq05cbs9
train
img/6/a33226c8-6791-4226-b884-c2d9db0c306f.jpeg
b90c5bff-9294-4b02-aeba-24ae97cbbf45
Mapillary
386,487,156,034,164
no
https://www.mapillary.com/app/?pKey=386487156034164&focus=photo
random sample and manual label
Diego de Almagro
1,152,585,849
Chile
South America
-26.939673
-69.026289
2020-03-08 11:34:30.383000-03:00
106
b1a10y0215fx4lcq05cbs9
train
img/4/b90c5bff-9294-4b02-aeba-24ae97cbbf45.jpeg
ad74f76a-1733-44d9-ae3c-346f7b0f7530
Mapillary
566,971,930,934,876
no
https://www.mapillary.com/app/?pKey=566971930934876&focus=photo
random sample and manual label
Diego de Almagro
1,152,585,849
Chile
South America
-26.940057
-69.026562
2020-03-08 11:34:25.986000-03:00
102
b1a10y0215fx4lcq05cbs9
train
img/2/ad74f76a-1733-44d9-ae3c-346f7b0f7530.jpeg
08f90444-f6e7-4e22-a3e2-b7334e59ac0e
Mapillary
1,179,928,785,792,813
no
https://www.mapillary.com/app/?pKey=1179928785792813&focus=photo
random sample and manual label
Diego de Almagro
1,152,585,849
Chile
South America
-26.941623
-69.027689
2020-03-08 11:34:13.619000-03:00
91
b1a10y0215fx4lcq05cbs9
train
img/5/08f90444-f6e7-4e22-a3e2-b7334e59ac0e.jpeg
e796e615-8e7a-48e4-b24f-57871b0bca80
Mapillary
2,230,769,243,726,162
no
https://www.mapillary.com/app/?pKey=2230769243726162&focus=photo
random sample and manual label
Diego de Almagro
1,152,585,849
Chile
South America
-26.941771
-69.027796
2020-03-08 11:34:12.533000-03:00
90
b1a10y0215fx4lcq05cbs9
train
img/1/e796e615-8e7a-48e4-b24f-57871b0bca80.jpeg
ca2d565f-d567-4b96-a5bb-7b481e0faae3
Mapillary
299,381,561,741,730
no
https://www.mapillary.com/app/?pKey=299381561741730&focus=photo
random sample and manual label
Diego de Almagro
1,152,585,849
Chile
South America
-26.939763
-69.026355
2020-03-08 11:34:29.280000-03:00
105
b1a10y0215fx4lcq05cbs9
train
img/4/ca2d565f-d567-4b96-a5bb-7b481e0faae3.jpeg
10a3d5c8-7b4d-471b-8252-26620849b96a
Mapillary
472,341,480,694,575
no
https://www.mapillary.com/app/?pKey=472341480694575&focus=photo
random sample and manual label
Diego de Almagro
1,152,585,849
Chile
South America
-26.941168
-69.027364
2020-03-08 11:34:16.927000-03:00
94
b1a10y0215fx4lcq05cbs9
train
img/1/10a3d5c8-7b4d-471b-8252-26620849b96a.jpeg
9c3c8431-e002-4156-aa01-97578a51a6c8
Mapillary
2,989,949,317,912,042
no
https://www.mapillary.com/app/?pKey=2989949317912042&focus=photo
random sample and manual label
Diego de Almagro
1,152,585,849
Chile
South America
-26.940284
-69.026724
2020-03-08 11:34:23.798000-03:00
100
b1a10y0215fx4lcq05cbs9
train
img/4/9c3c8431-e002-4156-aa01-97578a51a6c8.jpeg
d91aa51d-698c-4640-b7a9-2d2d9a81dceb
Mapillary
445,746,653,393,222
no
https://www.mapillary.com/app/?pKey=445746653393222&focus=photo
random sample and manual label
Zevenaar
1,528,993,139
Netherlands
Europe
51.939453
6.056633
2017-01-25 14:32:28+01:00
362
r6Yg1awvf9r55_7BzKhbHw
train
img/2/d91aa51d-698c-4640-b7a9-2d2d9a81dceb.jpeg
66ca0c7e-06e5-4d0d-8f84-d207bddb1de7
Mapillary
1,991,049,161,070,737
no
https://www.mapillary.com/app/?pKey=1991049161070737&focus=photo
random sample and manual label
La Banda
1,032,317,566
Argentina
South America
-27.755321
-64.267196
2019-12-07 19:20:56.809000-03:00
57
rrmvd772t0ugqagqe8nkli
train
img/3/66ca0c7e-06e5-4d0d-8f84-d207bddb1de7.jpeg
6513e96e-964a-47fa-8936-04f6bb78a056
Mapillary
140,759,084,706,540
no
https://www.mapillary.com/app/?pKey=140759084706540&focus=photo
random sample and manual label
Santiago del Estero
1,032,492,280
Argentina
South America
-27.755931
-64.267466
2019-12-07 19:20:50.882000-03:00
54
rrmvd772t0ugqagqe8nkli
train
img/5/6513e96e-964a-47fa-8936-04f6bb78a056.jpeg
eb72852c-7403-4bf4-b997-4eb495457504
Mapillary
328,315,691,972,787
no
https://www.mapillary.com/app/?pKey=328315691972787&focus=photo
random sample and manual label
Santiago del Estero
1,032,492,280
Argentina
South America
-27.756539
-64.267856
2019-12-07 19:20:44.887000-03:00
51
rrmvd772t0ugqagqe8nkli
train
img/5/eb72852c-7403-4bf4-b997-4eb495457504.jpeg
d4128464-7f65-49ad-8baa-40fbe4416dc5
Mapillary
194,211,242,443,515
no
https://www.mapillary.com/app/?pKey=194211242443515&focus=photo
random sample and manual label
La Banda
1,032,317,566
Argentina
South America
-27.755134
-64.267141
2019-12-07 19:20:58.858000-03:00
58
rrmvd772t0ugqagqe8nkli
train
img/3/d4128464-7f65-49ad-8baa-40fbe4416dc5.jpeg
0c907f6a-eacc-4a7e-8a1f-7e1c8f60dd33
Mapillary
794,360,608,140,867
no
https://www.mapillary.com/app/?pKey=794360608140867&focus=photo
random sample and manual label
Santiago del Estero
1,032,492,280
Argentina
South America
-27.756364
-64.267737
2019-12-07 19:20:46.735000-03:00
52
rrmvd772t0ugqagqe8nkli
train
img/1/0c907f6a-eacc-4a7e-8a1f-7e1c8f60dd33.jpeg
0dcb1428-bfdd-49be-87e3-8e27366d6a6a
Mapillary
396,201,244,889,620
no
https://www.mapillary.com/app/?pKey=396201244889620&focus=photo
random sample and manual label
La Banda
1,032,317,566
Argentina
South America
-27.755734
-64.267361
2019-12-07 19:20:52.712000-03:00
55
rrmvd772t0ugqagqe8nkli
train
img/4/0dcb1428-bfdd-49be-87e3-8e27366d6a6a.jpeg
fc096580-70d5-45ad-954f-f1510253e1db
Mapillary
466,867,207,712,589
no
https://www.mapillary.com/app/?pKey=466867207712589&focus=photo
random sample and manual label
Santiago del Estero
1,032,492,280
Argentina
South America
-27.756153
-64.267602
2019-12-07 19:20:48.809000-03:00
53
rrmvd772t0ugqagqe8nkli
train
img/4/fc096580-70d5-45ad-954f-f1510253e1db.jpeg
a8a1f331-7991-4999-b7a2-bdae2a67b356
Mapillary
4,290,765,970,980,868
no
https://www.mapillary.com/app/?pKey=4290765970980868&focus=photo
random sample and manual label
La Banda
1,032,317,566
Argentina
South America
-27.755524
-64.267264
2019-12-07 19:20:54.743000-03:00
56
rrmvd772t0ugqagqe8nkli
train
img/5/a8a1f331-7991-4999-b7a2-bdae2a67b356.jpeg
6553f862-a7e1-4ee2-902d-78b3cf4950a6
Mapillary
177,212,604,287,368
no
https://www.mapillary.com/app/?pKey=177212604287368&focus=photo
random sample and manual label
Lavāsān
1,364,266,184
Iran
Asia
36.175699
51.314296
2019-07-03 22:26:58.272000+04:30
312
p8dkgr1jyss78nbi3z9jy6
train
img/5/6553f862-a7e1-4ee2-902d-78b3cf4950a6.jpeg
efae1f6b-cc95-4298-88c9-f0bb989b9359
Mapillary
490,550,372,186,873
no
https://www.mapillary.com/app/?pKey=490550372186873&focus=photo
random sample and manual label
Lavāsān
1,364,266,184
Iran
Asia
36.175471
51.314505
2019-07-03 22:26:55.948000+04:30
296
p8dkgr1jyss78nbi3z9jy6
train
img/3/efae1f6b-cc95-4298-88c9-f0bb989b9359.jpeg
0cbf16e4-7c28-4630-a210-f074ac4fc57f
Mapillary
492,847,705,290,269
no
https://www.mapillary.com/app/?pKey=492847705290269&focus=photo
random sample and manual label
Lavāsān
1,364,266,184
Iran
Asia
36.176811
51.314602
2019-07-03 22:27:06.048000+04:30
378
p8dkgr1jyss78nbi3z9jy6
train
img/2/0cbf16e4-7c28-4630-a210-f074ac4fc57f.jpeg
929cd75e-d14b-4d09-a60f-fac1c2d00c69
Mapillary
802,422,840,388,852
no
https://www.mapillary.com/app/?pKey=802422840388852&focus=photo
random sample and manual label
Lavāsān
1,364,266,184
Iran
Asia
36.176136
51.314257
2019-07-03 22:27:01.546000+04:30
337
p8dkgr1jyss78nbi3z9jy6
train
img/6/929cd75e-d14b-4d09-a60f-fac1c2d00c69.jpeg
7b122b5e-092e-4c97-a612-59873c760dce
Mapillary
465,823,671,377,372
no
https://www.mapillary.com/app/?pKey=465823671377372&focus=photo
random sample and manual label
Lavāsān
1,364,266,184
Iran
Asia
36.174634
51.315115
2019-07-03 22:26:48.605000+04:30
241
p8dkgr1jyss78nbi3z9jy6
train
img/1/7b122b5e-092e-4c97-a612-59873c760dce.jpeg
4adffbff-55a5-4d8f-aae2-415b6166fc39
Mapillary
287,701,232,792,827
no
https://www.mapillary.com/app/?pKey=287701232792827&focus=photo
random sample and manual label
Lavāsān
1,364,266,184
Iran
Asia
36.176991
51.314614
2019-07-03 22:27:06.648000+04:30
388
p8dkgr1jyss78nbi3z9jy6
train
img/3/4adffbff-55a5-4d8f-aae2-415b6166fc39.jpeg
ac62c362-018d-4f43-bc18-81b3f486b756
Mapillary
797,326,607,870,365
no
https://www.mapillary.com/app/?pKey=797326607870365&focus=photo
random sample and manual label
Lavāsān
1,364,266,184
Iran
Asia
36.1761
51.314243
2018-12-05 09:17:25.422000+03:30
39
ki0cdixivdofra56yj6dvw
train
img/6/ac62c362-018d-4f43-bc18-81b3f486b756.jpeg
bfaa9b3e-83ca-43a9-9f4d-ded2b3f433f7
Mapillary
832,471,700,683,937
no
https://www.mapillary.com/app/?pKey=832471700683937&focus=photo
random sample and manual label
Lavāsān
1,364,266,184
Iran
Asia
36.174745
51.315052
2019-07-03 22:26:49.415000+04:30
248
p8dkgr1jyss78nbi3z9jy6
train
img/5/bfaa9b3e-83ca-43a9-9f4d-ded2b3f433f7.jpeg
fdf17967-046e-4fb8-9bfc-bf696ab37278
Mapillary
1,837,012,539,793,453
no
https://www.mapillary.com/app/?pKey=1837012539793453&focus=photo
random sample and manual label
Lavāsān
1,364,266,184
Iran
Asia
36.177316
51.314895
2019-07-03 22:27:09.160000+04:30
414
p8dkgr1jyss78nbi3z9jy6
train
img/1/fdf17967-046e-4fb8-9bfc-bf696ab37278.jpeg
4da54df9-2c83-4598-aa43-288401221c0e
Mapillary
225,768,142,245,135
no
https://www.mapillary.com/app/?pKey=225768142245135&focus=photo
random sample and manual label
Lavāsān
1,364,266,184
Iran
Asia
36.175652
51.31433
2019-07-03 22:26:57.829000+04:30
309
p8dkgr1jyss78nbi3z9jy6
train
img/5/4da54df9-2c83-4598-aa43-288401221c0e.jpeg
53657d0e-9568-40f3-890f-0dce48dce0e4
Mapillary
938,627,560,272,189
no
https://www.mapillary.com/app/?pKey=938627560272189&focus=photo
random sample and manual label
Lavāsān
1,364,266,184
Iran
Asia
36.176398
51.314338
2019-07-03 22:27:03.282000+04:30
352
p8dkgr1jyss78nbi3z9jy6
train
img/4/53657d0e-9568-40f3-890f-0dce48dce0e4.jpeg
9e788c80-353f-41c6-8d69-649e34f87b69
Mapillary
157,854,502,950,885
no
https://www.mapillary.com/app/?pKey=157854502950885&focus=photo
random sample and manual label
Lavāsān
1,364,266,184
Iran
Asia
36.175699
51.314318
2018-12-07 11:55:10.007000+03:30
234
8DL_SUCXSFS6V28z86I05g
train
img/4/9e788c80-353f-41c6-8d69-649e34f87b69.jpeg
a8e609ac-c05d-46e5-b054-a6118753c110
Mapillary
371,005,134,311,065
no
https://www.mapillary.com/app/?pKey=371005134311065&focus=photo
random sample and manual label
Lavāsān
1,364,266,184
Iran
Asia
36.174738
51.315098
2018-12-07 11:55:01.707000+03:30
230
8DL_SUCXSFS6V28z86I05g
train
img/6/a8e609ac-c05d-46e5-b054-a6118753c110.jpeg
ec75d0cd-5cb7-4456-8673-db6d9c9a5059
Mapillary
506,001,950,758,557
no
https://www.mapillary.com/app/?pKey=506001950758557&focus=photo
random sample and manual label
Lavāsān
1,364,266,184
Iran
Asia
36.175288
51.314623
2019-07-03 22:26:54.372000+04:30
284
p8dkgr1jyss78nbi3z9jy6
train
img/5/ec75d0cd-5cb7-4456-8673-db6d9c9a5059.jpeg
f6d28c50-583f-48ec-b5cc-b433feeb6255
Mapillary
1,241,267,469,624,826
no
https://www.mapillary.com/app/?pKey=1241267469624826&focus=photo
random sample and manual label
Lavāsān
1,364,266,184
Iran
Asia
36.177414
51.315082
2019-07-03 22:27:10.539000+04:30
425
p8dkgr1jyss78nbi3z9jy6
train
img/1/f6d28c50-583f-48ec-b5cc-b433feeb6255.jpeg
a7182672-b3aa-4095-b284-fd028601dbee
Mapillary
334,357,738,032,528
no
https://www.mapillary.com/app/?pKey=334357738032528&focus=photo
random sample and manual label
Debrecen
1,348,460,698
Hungary
Europe
47.529854
21.639075
2017-12-02 13:36:08.161000+01:00
592
6zpr8o7931caqflwdwvqyh
train
img/6/a7182672-b3aa-4095-b284-fd028601dbee.jpeg
639f1218-842f-40fb-8e92-7c6e951ec665
Mapillary
956,566,868,345,917
no
https://www.mapillary.com/app/?pKey=956566868345917&focus=photo
random sample and manual label
West Haven
1,840,004,852
United States
North America
41.275093
-72.969314
2021-07-11 06:03:56.697000-04:00
379
T9fD17IVwsiJFXevk2zOQC
train
img/5/639f1218-842f-40fb-8e92-7c6e951ec665.jpeg
35d17b46-ac0a-4dea-a680-3ac2429b79fd
Mapillary
2,971,229,786,468,848
no
https://www.mapillary.com/app/?pKey=2971229786468848&focus=photo
random sample and manual label
Marmagao
1,356,764,529
India
Asia
15.409954
73.794828
2019-03-20 10:31:29.489000+05:30
334
hRHJfe-vSpW09EHd-mZdfw
train
img/5/35d17b46-ac0a-4dea-a680-3ac2429b79fd.jpeg
d9928106-88a5-4aef-b941-2ae883b94c11
Mapillary
1,904,562,149,694,398
no
https://www.mapillary.com/app/?pKey=1904562149694398&focus=photo
random sample and manual label
Brandon
1,840,014,151
United States
North America
27.937607
-82.307736
2014-08-22 10:57:19.266000-04:00
35
W2d4fILDRvmCNFGYAdZRMA
train
img/1/d9928106-88a5-4aef-b941-2ae883b94c11.jpeg
39b5fc03-d89d-46e2-9570-267c8adf6722
Mapillary
295,566,248,851,356
no
https://www.mapillary.com/app/?pKey=295566248851356&focus=photo
random sample and manual label
Hanau
1,276,550,409
Germany
Europe
50.129585
8.913147
2014-05-10 12:10:08+02:00
7
T4fa3llpBHUx4tssFSKY8g
train
img/4/39b5fc03-d89d-46e2-9570-267c8adf6722.jpeg
7f439743-bb56-4432-bb69-41526862a9f0
Mapillary
1,060,462,924,871,678
no
https://www.mapillary.com/app/?pKey=1060462924871678&focus=photo
random sample and manual label
Gravatá
1,076,214,495
Brazil
South America
-8.196656
-35.556843
2022-05-09 12:55:41.750000-03:00
196
NAFJRE5ibGt3SxhkcPu7zp
train
img/6/7f439743-bb56-4432-bb69-41526862a9f0.jpeg
0fc9c547-6889-4d9f-a824-63fac7c5c487
Mapillary
532,858,918,093,055
no
https://www.mapillary.com/app/?pKey=532858918093055&focus=photo
random sample and manual label
Kansas City
1,840,008,535
United States
North America
39.120784
-94.564594
2018-10-06 15:59:41.631000-05:00
354
pwvgr0x6j7t98r5mgz10iu
train
img/2/0fc9c547-6889-4d9f-a824-63fac7c5c487.jpeg
ed93f81e-49f7-4c45-a0a7-37e9c2b1c55d
Mapillary
278,652,547,253,159
no
https://www.mapillary.com/app/?pKey=278652547253159&focus=photo
random sample and manual label
Hanau
1,276,550,409
Germany
Europe
50.127292
8.909284
2014-06-03 13:02:29+02:00
105
0IX5Le4znvAsThyCpr-lEA
train
img/4/ed93f81e-49f7-4c45-a0a7-37e9c2b1c55d.jpeg
8f9ea558-cfad-468b-a3bf-5ec694a20c8f
Mapillary
494,139,672,000,209
no
https://www.mapillary.com/app/?pKey=494139672000209&focus=photo
random sample and manual label
Dearborn
1,840,003,969
United States
North America
42.310621
-83.226446
2017-11-07 14:10:02.085000-05:00
137
ji1xns2yADqHzy0QSbo5qA
train
img/6/8f9ea558-cfad-468b-a3bf-5ec694a20c8f.jpeg
8449bd63-b4d9-4bc1-ab45-96100e1aca13
Mapillary
303,878,937,877,062
no
https://www.mapillary.com/app/?pKey=303878937877062&focus=photo
random sample and manual label
Cancún
1,484,010,310
Mexico
North America
21.154357
-86.84377
2020-09-22 08:04:17-05:00
168
brm2czcd21tfc961qqzijc
train
img/5/8449bd63-b4d9-4bc1-ab45-96100e1aca13.jpeg
c022c452-038a-4996-8528-7124b5850487
Mapillary
985,639,815,306,934
no
https://www.mapillary.com/app/?pKey=985639815306934&focus=photo
random sample and manual label
Helsinki
1,246,177,997
Finland
Europe
60.184795
24.933316
2018-07-16 17:38:29+03:00
781
bGfHXwPiEbBpwhBGdy5AJQ
train
img/6/c022c452-038a-4996-8528-7124b5850487.jpeg
161f0b09-9d27-40e8-bafb-a81c649b8395
Mapillary
525,030,598,525,906
no
https://www.mapillary.com/app/?pKey=525030598525906&focus=photo
random sample and manual label
Monterrey
1,484,559,591
Mexico
North America
25.66423
-100.302681
2020-03-02 11:38:57.590000-06:00
1
4h7wwyp75397fq9fhb3wd5
train
img/1/161f0b09-9d27-40e8-bafb-a81c649b8395.jpeg
5765de71-a626-4fb7-a958-1b2f8f520db9
Mapillary
222,088,019,335,040
no
https://www.mapillary.com/app/?pKey=222088019335040&focus=photo
random sample and manual label
Monterrey
1,484,559,591
Mexico
North America
25.670965
-100.30215
2020-02-27 11:09:03.590000-06:00
50
dsr0e3fpbmebuqdok7gkzn
train
img/5/5765de71-a626-4fb7-a958-1b2f8f520db9.jpeg
d92e7d05-743b-4aa5-902f-6b912298aa3f
Mapillary
255,923,762,987,787
no
https://www.mapillary.com/app/?pKey=255923762987787&focus=photo
random sample and manual label
Moscow
1,643,318,494
Russia
Europe
55.762155
37.624172
2020-08-04 09:00:31.320000+03:00
64
8nltapnyqijt9gy0c1godw
train
img/2/d92e7d05-743b-4aa5-902f-6b912298aa3f.jpeg
5069bc14-817d-4903-be63-1838451fc02a
Mapillary
3,831,013,896,997,692
no
https://www.mapillary.com/app/?pKey=3831013896997692&focus=photo
random sample and manual label
Orléans
1,250,441,405
France
Europe
47.906371
1.910022
2020-09-18 17:45:32.734000+02:00
498
emszjijqrfe4q6j92z272e
train
img/3/5069bc14-817d-4903-be63-1838451fc02a.jpeg
5358d5b0-e8fc-47db-b358-6653357aa028
Mapillary
513,854,883,289,741
no
https://www.mapillary.com/app/?pKey=513854883289741&focus=photo
random sample and manual label
Philadelphia
1,840,000,673
United States
North America
40.000272
-75.142429
2018-08-28 15:11:24.296000-04:00
238
6pwhicb6bibv8pgtug1hwa
train
img/5/5358d5b0-e8fc-47db-b358-6653357aa028.jpeg
688e8214-a78f-4a64-9367-75b058d1ac10
Mapillary
781,757,492,512,428
no
https://www.mapillary.com/app/?pKey=781757492512428&focus=photo
random sample and manual label
Redmond
1,840,019,835
United States
North America
47.670803
-122.106836
2018-07-31 08:10:42.582000-07:00
117
1px35d4t4rxujmfm37mcw5
train
img/2/688e8214-a78f-4a64-9367-75b058d1ac10.jpeg
c1a438cb-f031-44e6-a880-994a1b0a066e
Mapillary
794,251,901,520,558
no
https://www.mapillary.com/app/?pKey=794251901520558&focus=photo
random sample and manual label
Amsterdam
1,528,355,309
Netherlands
Europe
52.373592
4.881508
2017-03-04 16:55:00.575000+01:00
458
I92ZRcEgYjCcSPgPuVZyUA
train
img/6/c1a438cb-f031-44e6-a880-994a1b0a066e.jpeg
00de81fc-d5d7-463b-82f2-0ab1b9f2f6d3
Mapillary
155,626,406,521,648
no
https://www.mapillary.com/app/?pKey=155626406521648&focus=photo
random sample and manual label
Donostia
1,724,910,555
Spain
Europe
43.31852
-1.979218
2020-04-23 08:44:48.736000+02:00
56
8stts5inztcuh3yilgzlei
train
img/3/00de81fc-d5d7-463b-82f2-0ab1b9f2f6d3.jpeg
6c8d3fca-d9da-4e41-8aad-608b13a5a810
Mapillary
520,744,618,938,239
no
https://www.mapillary.com/app/?pKey=520744618938239&focus=photo
random sample and manual label
Zemun
1,688,453,076
Serbia
Europe
44.851804
20.395619
2019-01-29 14:34:04+01:00
16
nMqJT1fl2h4sIFuUhOk8ig
train
img/5/6c8d3fca-d9da-4e41-8aad-608b13a5a810.jpeg
84ae4416-6642-4110-9e04-43e43684a610
Mapillary
181,639,447,171,385
no
https://www.mapillary.com/app/?pKey=181639447171385&focus=photo
random sample and manual label
Moscow
1,643,318,494
Russia
Europe
55.757615
37.628496
2020-09-02 14:06:54.965000+03:00
195
fbhgwys31ahzkkmgj2e1yl
train
img/4/84ae4416-6642-4110-9e04-43e43684a610.jpeg
End of preview.

Global Streetscapes

Repository for the tabular portion of the Global Streetscapes dataset by the Urban Analytics Lab (UAL) at the National University of Singapore (NUS).

Content Breakdown

Global Streetscapes (62+ GB)
├── data/ (37 GB)
│   ├── 21 CSV files with 346 unique features in total and 10M rows each
├── manual_labels/ (23 GB)
│   ├── train/
│   │   ├── 8 CSV files with manual labels for contextual attributes (training)
│   ├── test/
│   │   ├── 8 CSV files with manual labels for contextual attributes (testing)
│   ├── img/
│       ├── 7 tar.gz files containing images for training and testing
├── models/ (2.8 GB)
│   ├── Trained models in checkpoint format
├── cities688.csv
│   ├── Basic information for the 688 cities including population, continent, and image count
├── info.csv
    ├── Overview of CSV files in `/data/` with description of each feature

Download Instructions

Please follow this guide from Hugging Face for download instructions. Please avoid using 'git clone' to download the repo as Git stores the files twice and will double the disk space usage to 124+ GB.

We have also provided a script download_folder.py to download a specifc folder from this dataset, instead of just a single file or the entire dataset.

To download the imagery portion (10 million images, ~6TB), please follow the code and documentation in our GitHub repo. Our Wiki contains instructions and a demo on how to filter the dataset for a subset of data of your interest and download the image files for them.

Contribution Guide

We welcome contributions to this dataset! Please follow these steps:

  1. Propose changes:

    • Open a discussion in the repository to describe your proposed changes or additions.
    • We will revert with specifics on how we would like your contributions to be incorporated (e.g. which folder to add your files), to maintain a neat organisation.
  2. File naming:

    • Use meaningful and descriptive file names.
  3. Submit changes:

    • Fork the repository, implement your changes, and submit a pull request (PR). In your PR, include an informative description of your changes (e.g. explaining their structure, features, and purpose) and how you would like to be credited.

Upon merging your PR, we will update the Changelog and Content Breakdown on this Dataset Card accordingly to reflect the changes and contributors.

For any questions, please contact us via Discussions.

Changelog

YYYY-MM-DD

Read More

Read more about this project on its website, which includes an overview of this effort together with the background, paper, examples, and FAQ.

A free version (postprint / author-accepted manuscript) can be downloaded here.

Citation

To cite this work, please refer to the paper:

Hou Y, Quintana M, Khomiakov M, Yap W, Ouyang J, Ito K, Wang Z, Zhao T, Biljecki F (2024): Global Streetscapes — A comprehensive dataset of 10 million street-level images across 688 cities for urban science and analytics. ISPRS Journal of Photogrammetry and Remote Sensing 215: 216-238. doi:10.1016/j.isprsjprs.2024.06.023

BibTeX:

@article{2024_global_streetscapes,
 author = {Hou, Yujun and Quintana, Matias and Khomiakov, Maxim and Yap, Winston and Ouyang, Jiani and Ito, Koichi and Wang, Zeyu and Zhao, Tianhong and Biljecki, Filip},
 doi = {10.1016/j.isprsjprs.2024.06.023},
 journal = {ISPRS Journal of Photogrammetry and Remote Sensing},
 pages = {216-238},
 title = {Global Streetscapes -- A comprehensive dataset of 10 million street-level images across 688 cities for urban science and analytics},
 volume = {215},
 year = {2024}
}
Downloads last month
797