The dataset viewer is not available for this dataset.
Error code: ConfigNamesError Exception: ImportError Message: To be able to use InstaDeepAI/plant-multi-species-genomes, you need to install the following dependency: Bio. Please install it using 'pip install biopython' for instance. Traceback: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/dataset/config_names.py", line 66, in compute_config_names_response config_names = get_dataset_config_names( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 347, in get_dataset_config_names dataset_module = dataset_module_factory( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1914, in dataset_module_factory raise e1 from None File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1880, in dataset_module_factory return HubDatasetModuleFactoryWithScript( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1504, in get_module local_imports = _download_additional_modules( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 354, in _download_additional_modules raise ImportError( ImportError: To be able to use InstaDeepAI/plant-multi-species-genomes, you need to install the following dependency: Bio. Please install it using 'pip install biopython' for instance.
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
Paper: A Foundational Large Language Model for Edible Plant Genomes
Dataset Summary
The Plant Multi Species dataset was constructed by parsing plant genomes available on NCBI. In total there are 48 different plant species contained in the dataset.
This dataset has been used as a pre-training corpus for the AgroNT model. Each sequence is 6,200 base pase pairs long. If the dataset is iterated without being shuffled, the first 100 nucleotides of a sequence are the same as the last 100 base pairs of the previous sequence, and the last 100 nucleotides are the same as the first 100 base pairs of the next sequence. During training, this allows for randomly selecting a nucleotide between the first 200 nucleotides of the sequence and start the tokenization from this nucleotide. That way, all the chromosome is covered and the model sees different tokens for a given sequence at each epoch.
Example Usage
from datasets import load_dataset
dataset = load_dataset('InstaDeepAI/plant-multi-species-genomes') ### Will use the default chunk length of 6000bp
# or
chunk_length = 10000
dataset = load_dataset('InstaDeepAI/plant-multi-species-genomes',chunk_length=chunk_length) ### Will use your desired chunk length(in this case 10000bp)
Data Instances
For each instance, there is a string representing the sequence, a string indicating the description of the sequence, two integers representing the index of the first and last nucleotide respectively. An instance is shown below:
{'sequence': 'CCAAATAGTTGATACTACTTGCCCATGGGTTTCAAAGGTATTTGTTTCCCTTTTCTATCAGAGTAGAGAATAAGGTCTTGGATTTCCCTTGAATATCTTTTTCATAAATAATGTGTTAATTTCCACTAAAGGTCTGGAACTCTGTTGAGAAGCACAAGAAGGGTGATTACACTTCAATCATACATGGTAAATATTCACACGAAGAGACTATTGCAACAGCCTCATTTGCAGGAAGATATATTGTCGTAAAGAACATGACTGAGGTAACGATTTGTTAATTAATAATCAGTTTATTGTGAATCATATTTACAAATAAACGTTTTTTACTACCATTTTCTGTTAAAAAAACAGGCAATGTATGTATGCGATTACATTCTTGGTGGGGAATTAGATGGGTCTAGCTCTACAAGAGAAGCATTTCTTGAGGTATATTGATTCTTTTCTTCCATAATATTTGCACAAAAGAAAATAAGATTTAAAAATGTGTCCATGTGTTGCAGAAATTCAAAAACGCTATTTCTGCGGGATTTGATCCAGATGTTGACTTAGCTAAAGTTGGCATTGCAAATCAAACCACGATGCTCAAGGGTGAAACAGAGGAGATAGGTAAGTTTAATGTTTGCAATGCTTACTGTTTCTATCCAATTCTAAATATAGTGTTCAAGTAAACACTGAAATTTCAGGTAAATTGGTTGAGAAGACCATGATGCGCAAACACGGTGTAGAGAATGCCAATGATCATTTTGTCAGCTTCAACACCATATGTGATGCTACCCAGGTAGGCTTACTGATTTTTTTTTTTCCTTTTTTGTTTTTCTAATTGGAATATTCAATTCAAAATTTAAACTGCTAAGGTATTGTTTTTCTCCTTTACATTTTGTTAAATCCATGCAATTCACTCATTCCCACTTTTTCATAACCTTTTAAACCTCATTTATCATACCATCTACTTACTCTTTAGATTTGCAAATTAGAGCACTGCAATTTCTGTGGAAGTGAACCAAAAGCGAAAGGGGATAGAATACTTTCATGTGATTGAATTTTATAGTCCCTTTTGTATTAATCTATTCAATTGCTGGTTTAGTTTCCCCTTATCACATTCTCTTGCACAACTTCAGGAAAGGCAAGATGCTATGTTCAAGCTGGTGGAAGAGAAACTCGATCTTATTCTGGTCGTTGGTGGGTGGAACTCCAGTAATACTTCACATCTCCAAGAGATCGCAGAGCTCAAGGGAATCCCGTCCTACTGGATTGACAATGAACAGAGAATTGGACCAGGAAACAAGATCACCTATAAGTTAAATGTATGTTGTACACGCGCAGTTTGTATAATTATTTATATTGCGAACTTGATGATTTTAATTATCATCTTATCTGTTTGTACAAACGCAGCATGGAGAGCTGGTCGAGAAAGAAAATTGGCTTCCTGCTGGACCAATCACTATTGGTGTCACCTCAGGGGCTTCTACTCCTGACAAGGTATATATATTAATTCAAGAGTTGAAAAATCCCTTGGTTAAAGTATTAAGTCGCGGGATCTCCTTCATCTTATTAACAATTTCCACATGGCTTATGCAGGTCGTGGAGGAAGCATTGGGCAAGGTCTTTGACATTAAAAGCCAAGAAGCTCTGCAAGCGGCATAAATTGAGAGGACTTGAGCAGTGTTTTGAGCTGAAGTATCACTATCGCTTAACTTGTACGGTACTAGAAATGGGATTGCATAAGAGCACTCCCTTATCGACAGGAAATGCTGCAGTCCAAAATCTATCCTGCCATTATTATTTTATTTTATTTTATTTTGTTTTGTTTTATTTTTGTGTTGTGACATTAATTTATGCATGCTGGTCAAGGCCTGGTTGAGCCCAGCGAGTTCTCTCACCCAATCCATTTTACAAAATGGTCTGATAAAGTTATGATATTGTTTTGCGGTTTAATTATCCGGATTCCAGCAGCATCCTTGTTATGATATTATCATTTTAACAGTAAAAAAATAAAATAAAGTGTGTTATATTTAAAATAAAGAGATATTGCATTAAATACATTTTTTTTAAAAAAAACATTATGATAATTTGAATTATGCTAACTTAATTATAACGGGTGAAACTTAAGAATCACATATAATCAGTGGTGGATCTAGATAAAAAAAGAAGAGGGTATTAGAAGAAAAGAATTGAAGTTTGTCTTCCTTCACTATCCGACTGTAGCATATTAATAGAATTTTTTAAAAACAAGAGGTACTCAAGCACATCTCCGCGCTCCTAGATCCATCACTGCATATAACAACAATGAAATAAATCATTTTACTTTTTTTCATCAACTCTCCATTTGCTTAACGTTAGCCGTATAAGATAGCACGTGATGGAGAGCTTCTCGATTTTTTAAATTATTTTGTAAGAGCCATAAAATATTATTTAAATTAAATAATTATTTTATATTTAAAAATAATGATTTATTTTTTAAAAAAGAACTAGAGAGCGAGAGACAGCGTACAGGATTCTTTTTCTAATTATTCCGGCCCAGAAACCTGCTTCTTCGAGTTATTAGAGGGACCCTCAGCTTACCTTATACGGAGAGCAGCCTGGACGGTGTCTGAACGAGAACGGAGAAAGATGCAAAGCCAGCGAACAACACAAAACAAAGGCCGAGATCTCCAAACCCCATAACCCTACCTTAAACCCATGATCACAACTAGATTCTTCCCTCATTCGCGTTTCTTCCTCCCCTCGCACCTGCCCACTCTCTGCCGGCCCATCCACTCCGGCGCTGCCCACCCCCGCATCACCAGATCTGAGCTCGTCGACCGGATATGCCGCATCCTCACCCTCGAGCGCTTCCACGCCATTCCCAAGCTTCCCTTCCGCTTCTCCGACGATCTCCTCGACGCCGTCCTCGTCAGGCTGCGCCTCGACGCCGACGCCTGCCTGGGCTTCTTCCGGATCGCACTGAGGCAGCAGTACTTCAGGCCCAACGCGGAATCTTATTGCAGAATTGTCCACATTTTGTCTCGAGCACGCATGTTCGACGATGCGAGAGGGTTGTTGAGGGAATTGGTGGCGATGATGAGCTCGGCTAGCCCGGAGCCGTCTGTCTCTTTTGTTTTTGATCGGATGGTTAAGGTGTACAAGGAGTTCACTTTCTCTCCTACGGTGTTTGACATGCTCCTGAAGGCTTATGCTGAGGGTGGATTGCGAAAGGAGGCTCTTTTTGTGTTTGATAATATGGGGAAATGCGGATGTCAGCCTAGTTTGAAGTCCTGCAACAGCCTTTTGAGTAGTTTGGTTAAAGGAGGGGATATTAACGCGGCAATTCTAGTTTATGAACAGATGTGCAAAGCTGGGATATTACCTGATGTTTTCACAACGTCTATAATAGTTAATGCCTATTGTAAGGGTGGAAATCTAGAGAAAGCCTTGAGCTTTGTGGCAGAGATGGAAAGGAAGGGGTTTGATGTTAATATTGTGACTTTCCATTCTCTGATCAATGGGTACTGTAGTTTGGGCCAGACGGAAGCGGCACTCAAGGTGTTCGACATGATGACTAAAAGAGGGATTTTGCCAAATGTTGTCTCTTTTACTTTGTTGATTAAGGGTTACTGCAAAGAAGGCAAGGTTAAGGAAGCCGAGAAAGCCCTTGTTGACATGAAACAGCTCCATGGTTTGAGTCCTGACGAAGTTGCTTACGGTGTGCTAATTAACATTCATTGCCAAATGGGGGGAATGGATGATGCAATGAGAATCCGGGATAAAATGTTGAGTGAAGGGATGAAGGAAAACATATTTATTTGTAATGCAATGATCAATGGGTATTGCAAGTCCGGAAGAATTGAGGAAGCAGAGATTTTGCTTTTCGATATGGAGAAGGGTCATCTAAAACCAGACTCCTACAGTTACAATTCTCTATTAGATGGGTATTGCAAGAAGGGTCTTATGAGAGATGCTTTTGGAATATGTGACAGGATGATAAGGAATGGAGTCGAAGTTACAGTTATAACTTATAATGCACTATTTAAAGGCTTTTGTCTGTCAGGTGCAATAGATCATGCCCTGAACTTGTGGTTTTTGATGCTGAAAAGAGCTGTTGCTCCAAATGAGATTAGCTGTTCCACATTGTTGGATGGGTTCTTCAAATCAAGGAATTATGAACAAGCCTTGAAATTTTGGAATGAGATACTAGCTAGGGGATTCACAAAGAACCAAATAACATTCAATACAGTGATAAATGGTTTTTGTAAAGCAGGGAAAATATCTGAGGCGGTGAATATTATGGAAAAGATGAAGGCCTGGGGATGTCCTCCTGATAGCATTACTTACAGGACATTGATTGACGGTTATTGTAAACTTGGTGATGTGGAGCAAGCTCTTAAGTTATGGAATGAGATGGAACCTTCTGGGTTTTCTCCTTCAATCGAAATGTTCAATTCTCTTATTTCTGGGCACTTCATAGCTAATGGTTCTGATAGGATTGATGGCCTTCTAACTAATATGCACAAGAGTGGACTGACTCCCAACATAGTTACTTATGGAATTCTGATTGCTGGATGGTGCAGAGAAGGAATGTTGGATAGGGCTTTTGATATATATTTTGAAATGGTTGCCAAAGGCTTAACTCCAAATACATACATATGCAGTGCCCTTGTTAGTGGTCTTTATAGACAGGGTAAGATTGACGAGGCAAATGCTATATTGGCAAAAATTGTGGATGCTAGCATGCTTCCAAAGTATGAAAATTCTGATAAGTACCTTAAGTGTGTTACGAACAATATCTACCATCACGAAATCACAAATCTGCTCGCTCAGTCTAAAAATGAGAATCTCCTGCCTAACAACATTATCTATAATGTTATTATTTGCGGTCTTTGCAAATCTGGAAGGATTTTGGATGCAAAACAATTTTTTGCAGACTTGTTGCAGAGGGGTTTTGTTCCAGACAATTTTACTTACAGTAATCTTATTCATGGCTATTCAGCAGCTGGCAATATAGATCAGGCTTTTCAATTAAGGGATGAAATGATTAAAAAGGGCCTCTTTCCCAATATTATAACATACAATTCTCTCATCAATGGTCTCTGCATATCTGGAAATTTAGATAGAGCTGTCAATCTATTCAACAAGCTGCAGTCAAAAGGTTTAGCACCGAATGTTATTACATTCAACACATTGATTGATGGATTCTGCAGAGTTGGTAATCTAACAGAAGCATTCAAGCTGAAATATAAGATGATAGAGGCAGGAATTTATCCCAATGTTGTTACGTATTCTACACTAATTAATGGCCTTTGTTGCCAAGGGGAAATGGAAGCATCCATCAAACTCCTGGATCAAATGATTAGTAGTGGCGTGGATCCTAATTATGTTACGTATAGCACGTTGATCCACGGTTATATCAAATCTGGAGAAATGCATGAGATACCAGAACTATACGAAGAAATGCATATACGTGGGCTTTTGCCAGTGTCTAATTTCAGAGGAAACATGAGTCCAACACCTGTAACTATAAAAACAAGGCAGATAAATAGTGCTGAACAATTAGATGTATCAATACATTCTGAAGGGTAGCTTCTTTGTTGGAAATTCTGCTCTAGATTGTTGATCTTTCATATTGCAACTCTTAAAGGCACTAAAACAATCCTTATCCTGCTTCATGCTGATTCGAAAGTCCAGATTACAATTTCAACAGGAACAATTTAGTAATTCTCCATAAAATTCACAATTATTTCATATTCTTCAAACATACTGATTTCATTCCATGAATTTATTAGGGTAACGTACACAATCATTATCAGTTTTATCCTGGTATCTTCTCCAAAGTCATTCACATTAGCTCACTTTACCTTTGTGGTTCAGGAGATCCACATTGACTTTGTGAAGATGCACATGCAACCACATTATGCTGGGTATTCTTGTTCTGAAACCATGAGGTACTTTACTGAGATTATCTTTACGTCATCATGGATTCATTTTATTCTTGTGCTATCTAGCATGGTACTCTAATTCTGTTTTATTATAGATTTATTTATTGGTAAAAATAATGCTGTGGATGACACCACCTGTGCATTTGTGGTTTAGGGGGAAAATTGATTCAATGTATTTGAATTTCATTATAAAAAAATTGACCAATTCTGTTGTTTTCTTTGTGGATCTTCCTTTAGAGGCTAGTGTAGTTTTCATCTTCACACACACAAAAATAGAGCAGACAGTTC',
'description': 'NC_055986.1 Zingiber officinale cultivar Zhangliang chromosome 1B, Zo_v1.1, whole genome shotgun sequence',
'start_pos': 0,
'end_pos': 6200,
}
Data Fields
sequence
: a string containing a DNA sequence from one of the 48 plant genomesdescription
: a string indicating the species of the sequence as well as the NCBI id.start_pos
: an integer indicating the index of the sequence's first nucleotideend_pos
: an integer indicating the index of the sequence's last nucleotide
Data Splits
The Plant Multi Species Genomes dataset has 3 splits: train, validation, and test.
Citation
@article{mendoza2023foundational,
title={A Foundational Large Language Model for Edible Plant Genomes},
author={Mendoza-Revilla, Javier and Trop, Evan and Gonzalez, Liam and Roller, Masa and Dalla-Torre, Hugo and de Almeida, Bernardo P and Richard, Guillaume and Caton, Jonathan and Lopez Carranza, Nicolas and Skwark, Marcin and others},
journal={bioRxiv},
pages={2023--10},
year={2023},
publisher={Cold Spring Harbor Laboratory}
}
- Downloads last month
- 51