text
stringlengths 27
185
|
---|
dis_img_path,dis_type,ref_img_path,score |
A57/images/dst_imgs/horse/A/horse.FLT.bmp,Quantization_Noise,A57/images/src_imgs/horse.bmp,0.525 |
A57/images/dst_imgs/horse/A/horse.JPG.bmp,JPEG,A57/images/src_imgs/horse.bmp,0.108 |
A57/images/dst_imgs/horse/A/horse.JP2.bmp,JP2K,A57/images/src_imgs/horse.bmp,0.187 |
A57/images/dst_imgs/horse/A/horse.DCQ.bmp,Multiply Dist.,A57/images/src_imgs/horse.bmp,0.137 |
A57/images/dst_imgs/horse/A/horse.BLR.bmp,GBLUR,A57/images/src_imgs/horse.bmp,0.191 |
A57/images/dst_imgs/horse/A/horse.NOZ.bmp,AWGN,A57/images/src_imgs/horse.bmp,0.327 |
A57/images/dst_imgs/horse/B/horse.FLT.bmp,Quantization_Noise,A57/images/src_imgs/horse.bmp,0.681 |
A57/images/dst_imgs/horse/B/horse.JPG.bmp,JPEG,A57/images/src_imgs/horse.bmp,0.533 |
A57/images/dst_imgs/horse/B/horse.JP2.bmp,JP2K,A57/images/src_imgs/horse.bmp,0.508 |
A57/images/dst_imgs/horse/B/horse.DCQ.bmp,Multiply Dist.,A57/images/src_imgs/horse.bmp,0.165 |
A57/images/dst_imgs/horse/B/horse.BLR.bmp,GBLUR,A57/images/src_imgs/horse.bmp,0.267 |
A57/images/dst_imgs/horse/B/horse.NOZ.bmp,AWGN,A57/images/src_imgs/horse.bmp,0.367 |
A57/images/dst_imgs/horse/C/horse.FLT.bmp,Quantization_Noise,A57/images/src_imgs/horse.bmp,0.979 |
A57/images/dst_imgs/horse/C/horse.JPG.bmp,JPEG,A57/images/src_imgs/horse.bmp,0.871 |
A57/images/dst_imgs/horse/C/horse.JP2.bmp,JP2K,A57/images/src_imgs/horse.bmp,0.827 |
A57/images/dst_imgs/horse/C/horse.DCQ.bmp,Multiply Dist.,A57/images/src_imgs/horse.bmp,0.802 |
A57/images/dst_imgs/horse/C/horse.BLR.bmp,GBLUR,A57/images/src_imgs/horse.bmp,0.849 |
A57/images/dst_imgs/horse/C/horse.NOZ.bmp,AWGN,A57/images/src_imgs/horse.bmp,0.446 |
A57/images/dst_imgs/harbour/A/harbour.FLT.bmp,Quantization_Noise,A57/images/src_imgs/harbour.bmp,0.619 |
A57/images/dst_imgs/harbour/A/harbour.JPG.bmp,JPEG,A57/images/src_imgs/harbour.bmp,0.112 |
A57/images/dst_imgs/harbour/A/harbour.JP2.bmp,JP2K,A57/images/src_imgs/harbour.bmp,0.339 |
A57/images/dst_imgs/harbour/A/harbour.DCQ.bmp,Multiply Dist.,A57/images/src_imgs/harbour.bmp,0.112 |
A57/images/dst_imgs/harbour/A/harbour.BLR.bmp,GBLUR,A57/images/src_imgs/harbour.bmp,0.164 |
A57/images/dst_imgs/harbour/A/harbour.NOZ.bmp,AWGN,A57/images/src_imgs/harbour.bmp,0.28 |
A57/images/dst_imgs/harbour/B/harbour.FLT.bmp,Quantization_Noise,A57/images/src_imgs/harbour.bmp,0.836 |
A57/images/dst_imgs/harbour/B/harbour.JPG.bmp,JPEG,A57/images/src_imgs/harbour.bmp,0.336 |
A57/images/dst_imgs/harbour/B/harbour.JP2.bmp,JP2K,A57/images/src_imgs/harbour.bmp,0.589 |
A57/images/dst_imgs/harbour/B/harbour.DCQ.bmp,Multiply Dist.,A57/images/src_imgs/harbour.bmp,0.168 |
A57/images/dst_imgs/harbour/B/harbour.BLR.bmp,GBLUR,A57/images/src_imgs/harbour.bmp,0.28 |
A57/images/dst_imgs/harbour/B/harbour.NOZ.bmp,AWGN,A57/images/src_imgs/harbour.bmp,0.372 |
A57/images/dst_imgs/harbour/C/harbour.FLT.bmp,Quantization_Noise,A57/images/src_imgs/harbour.bmp,1 |
A57/images/dst_imgs/harbour/C/harbour.JPG.bmp,JPEG,A57/images/src_imgs/harbour.bmp,0.664 |
A57/images/dst_imgs/harbour/C/harbour.JP2.bmp,JP2K,A57/images/src_imgs/harbour.bmp,0.701 |
A57/images/dst_imgs/harbour/C/harbour.DCQ.bmp,Multiply Dist.,A57/images/src_imgs/harbour.bmp,0.418 |
A57/images/dst_imgs/harbour/C/harbour.BLR.bmp,GBLUR,A57/images/src_imgs/harbour.bmp,0.503 |
A57/images/dst_imgs/harbour/C/harbour.NOZ.bmp,AWGN,A57/images/src_imgs/harbour.bmp,0.51 |
A57/images/dst_imgs/baby/A/baby.FLT.bmp,Quantization_Noise,A57/images/src_imgs/baby.bmp,0.233 |
A57/images/dst_imgs/baby/A/baby.JPG.bmp,JPEG,A57/images/src_imgs/baby.bmp,0.15 |
A57/images/dst_imgs/baby/A/baby.JP2.bmp,JP2K,A57/images/src_imgs/baby.bmp,0.143 |
A57/images/dst_imgs/baby/A/baby.DCQ.bmp,Multiply Dist.,A57/images/src_imgs/baby.bmp,0.145 |
A57/images/dst_imgs/baby/A/baby.BLR.bmp,GBLUR,A57/images/src_imgs/baby.bmp,0.268 |
A57/images/dst_imgs/baby/A/baby.NOZ.bmp,AWGN,A57/images/src_imgs/baby.bmp,0.089 |
A57/images/dst_imgs/baby/B/baby.FLT.bmp,Quantization_Noise,A57/images/src_imgs/baby.bmp,0.396 |
A57/images/dst_imgs/baby/B/baby.JPG.bmp,JPEG,A57/images/src_imgs/baby.bmp,0.418 |
A57/images/dst_imgs/baby/B/baby.JP2.bmp,JP2K,A57/images/src_imgs/baby.bmp,0.283 |
A57/images/dst_imgs/baby/B/baby.DCQ.bmp,Multiply Dist.,A57/images/src_imgs/baby.bmp,0.349 |
A57/images/dst_imgs/baby/B/baby.BLR.bmp,GBLUR,A57/images/src_imgs/baby.bmp,0.38 |
A57/images/dst_imgs/baby/B/baby.NOZ.bmp,AWGN,A57/images/src_imgs/baby.bmp,0.141 |
A57/images/dst_imgs/baby/C/baby.FLT.bmp,Quantization_Noise,A57/images/src_imgs/baby.bmp,0.598 |
A57/images/dst_imgs/baby/C/baby.JPG.bmp,JPEG,A57/images/src_imgs/baby.bmp,0.63 |
A57/images/dst_imgs/baby/C/baby.JP2.bmp,JP2K,A57/images/src_imgs/baby.bmp,0.612 |
A57/images/dst_imgs/baby/C/baby.DCQ.bmp,Multiply Dist.,A57/images/src_imgs/baby.bmp,0.474 |
A57/images/dst_imgs/baby/C/baby.BLR.bmp,GBLUR,A57/images/src_imgs/baby.bmp,0.473 |
A57/images/dst_imgs/baby/C/baby.NOZ.bmp,AWGN,A57/images/src_imgs/baby.bmp,0.206 |
dis_img_path,dis_type,score |
CID2013/IS1/co1/IS_I_C01_D01.jpg,Authentic,3.34364303351907 |
CID2013/IS1/co1/IS_I_C01_D02.jpg,Authentic,71.1818902079248 |
CID2013/IS1/co1/IS_I_C01_D03.jpg,Authentic,45.581094755566 |
CID2013/IS1/co1/IS_I_C01_D04.jpg,Authentic,3.60486438564329 |
CID2013/IS1/co1/IS_I_C01_D05.jpg,Authentic,25.2523542201857 |
CID2013/IS1/co1/IS_I_C01_D06.jpg,Authentic,20.307932539178 |
CID2013/IS1/co1/IS_I_C01_D07.jpg,Authentic,9.88964655415763 |
CID2013/IS1/co1/IS_I_C01_D08.jpg,Authentic,49.0633665821789 |
CID2013/IS1/co1/IS_I_C01_D09.jpg,Authentic,47.8527634276209 |
CID2013/IS1/co1/IS_I_C01_D10.jpg,Authentic,52.1761524530069 |
CID2013/IS1/co1/IS_I_C01_D11.jpg,Authentic,73.5651284538055 |
CID2013/IS1/co1/IS_I_C01_D12.jpg,Authentic,25.2409277095327 |
CID2013/IS1/co1/IS_I_C01_D13.jpg,Authentic,60.6821208795548 |
CID2013/IS1/co1/IS_I_C01_D14.jpg,Authentic,55.712411055437 |
CID2013/IS1/co2/IS_I_C02_D01.jpg,Authentic,28.5963300104152 |
CID2013/IS1/co2/IS_I_C02_D02.jpg,Authentic,58.0406571932505 |
CID2013/IS1/co2/IS_I_C02_D03.jpg,Authentic,28.1809404445844 |
CID2013/IS1/co2/IS_I_C02_D04.jpg,Authentic,28.0510117821647 |
CID2013/IS1/co2/IS_I_C02_D05.jpg,Authentic,29.1089158525708 |
CID2013/IS1/co2/IS_I_C02_D06.jpg,Authentic,18.5525112621487 |
CID2013/IS1/co2/IS_I_C02_D07.jpg,Authentic,26.3227998643204 |
CID2013/IS1/co2/IS_I_C02_D08.jpg,Authentic,43.6686393110421 |
CID2013/IS1/co2/IS_I_C02_D09.jpg,Authentic,53.4522893575262 |
CID2013/IS1/co2/IS_I_C02_D10.jpg,Authentic,42.3706071978319 |
CID2013/IS1/co2/IS_I_C02_D11.jpg,Authentic,54.4059477047769 |
CID2013/IS1/co2/IS_I_C02_D12.jpg,Authentic,20.7370330231321 |
CID2013/IS1/co2/IS_I_C02_D13.jpg,Authentic,52.8454559662388 |
CID2013/IS1/co2/IS_I_C02_D14.jpg,Authentic,44.5750487698004 |
CID2013/IS1/co3/IS_I_C03_D01.jpg,Authentic,16.5277672837329 |
CID2013/IS1/co3/IS_I_C03_D02.jpg,Authentic,50.8640155872224 |
CID2013/IS1/co3/IS_I_C03_D03.jpg,Authentic,19.7063506017642 |
CID2013/IS1/co3/IS_I_C03_D04.jpg,Authentic,7.37052887234148 |
CID2013/IS1/co3/IS_I_C03_D05.jpg,Authentic,12.7713238361835 |
CID2013/IS1/co3/IS_I_C03_D06.jpg,Authentic,2.72206538320867 |
CID2013/IS1/co3/IS_I_C03_D07.jpg,Authentic,12.8549034235037 |
CID2013/IS1/co3/IS_I_C03_D08.jpg,Authentic,24.0280758492009 |
CID2013/IS1/co3/IS_I_C03_D09.jpg,Authentic,48.2907808883764 |
CID2013/IS1/co3/IS_I_C03_D10.jpg,Authentic,29.6478757171602 |
CID2013/IS1/co3/IS_I_C03_D11.jpg,Authentic,39.2234186317494 |
CID2013/IS1/co3/IS_I_C03_D12.jpg,Authentic,4.63970974590334 |
CID2013/IS1/co3/IS_I_C03_D13.jpg,Authentic,45.6829842795049 |
CID2013/IS1/co3/IS_I_C03_D14.jpg,Authentic,35.8852131975314 |
CID2013/IS1/co4/IS_I_C04_D01.jpg,Authentic,63.6576024280957 |
CID2013/IS1/co4/IS_I_C04_D02.jpg,Authentic,75.224933897784 |
End of preview. Expand
in Dataset Viewer.
YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co./docs/hub/datasets-cards)
A Unified Interface for IQA Datasets
This repository contains a unified interface for downloading and loading 20 popular Image Quality Assessment (IQA) datasets. We provide codes for both general Python and PyTorch.
Citation
This repository is part of our Bayesian IQA project where we present an overview of IQA methods from a Bayesian perspective. More detailed summaries of both IQA models and datasets can be found in this interactive webpage.
If you find our project useful, please cite our paper
@article{duanmu2021biqa,
author = {Duanmu, Zhengfang and Liu, Wentao and Wang, Zhongling and Wang, Zhou},
title = {Quantifying Visual Image Quality: A Bayesian View},
journal = {Annual Review of Vision Science},
volume = {7},
number = {1},
pages = {437-464},
year = {2021}
}
Supported Datasets
Dataset | Dis Img | Ref Img | MOS | DMOS |
---|---|---|---|---|
LIVE | β | β | β | |
A57 | β | β | β | |
LIVE_MD | β | β | β | |
MDID2013 | β | β | β | |
CSIQ | β | β | β | |
KADID-10k | β | β | β(Note) ~~~~ | |
TID2008 | β | β | β | |
TID2013 | β | β | β | |
CIDIQ_MOS100 | β | β | β | |
CIDIQ_MOS50 | β | β | β | |
MDID2016 | β | β | β | |
SDIVL | β | β | β | |
MDIVL | β | β | β | |
Toyama | β | β | β | |
PDAP-HDDS | β | β | β | |
VCLFER | β | β | β | |
LIVE_Challenge | β | β | ||
CID2013 | β | β | ||
KonIQ-10k | β | β | ||
SPAQ | β | β | ||
Waterloo_Exploration | β | β | ||
β (code only) | β |
Basic Usage
Prerequisites
pip install wget
General Python (please refer
demo.py
)from load_dataset import load_dataset dataset = load_dataset("LIVE")
PyTorch (please refer
demo_pytorch.py
)from load_dataset import load_dataset_pytorch dataset = load_dataset_pytorch("LIVE")
Advanced Usage
General Python (please refer
demo.py
)from load_dataset import load_dataset dataset = load_dataset("LIVE", dataset_root="data", attributes=["dis_img_path", "dis_type", "ref_img_path", "score"], download=True)
PyTorch (please refer
demo_pytorch.py
)from load_dataset import load_dataset_pytorch transform = transforms.Compose([transforms.RandomCrop(size=64), transforms.ToTensor()]) dataset = load_dataset_pytorch("LIVE", dataset_root="data", attributes=["dis_img_path", "dis_type", "ref_img_path", "score"], download=True, transform=transform)
TODO
- Add more datasets: PaQ-2-PiQ, AVA, PIPAL, AADB, FLIVE, BIQ2021, IVC
- PyPI package
- HuggingFace dataset
- Provide more attributes
-
Add TensorFlow support -
Add MATLAB support
Star History
- Downloads last month
- 11