Datasets:
AI4M
/

text
stringlengths
0
3.34M
informal statement If $k \geq 2$ and $\mathbf{x} \in R^{k}$, prove that there exists $\mathbf{y} \in R^{k}$ such that $\mathbf{y} \neq 0$ but $\mathbf{x} \cdot \mathbf{y}=0$formal statement theorem exercise_1_19 (n : β„•) (a b c x : euclidean_space ℝ (fin n)) (r : ℝ) (h₁ : r > 0) (hβ‚‚ : 3 β€’ c = 4 β€’ b - a) (h₃ : 3 * r = 2 * β€–x - bβ€–) : β€–x - aβ€– = 2 * β€–x - bβ€– ↔ β€–x - cβ€– = r :=
informal statement Prove that $-(-v) = v$ for every $v \in V$.formal statement theorem exercise_1_6 : βˆƒ U : set (ℝ Γ— ℝ), (U β‰  βˆ…) ∧ (βˆ€ (u v : ℝ Γ— ℝ), u ∈ U ∧ v ∈ U β†’ u + v ∈ U) ∧ (βˆ€ (u : ℝ Γ— ℝ), u ∈ U β†’ -u ∈ U) ∧ (βˆ€ U' : submodule ℝ (ℝ Γ— ℝ), U β‰  ↑U') :=
informal statement Show that X is countably compact if and only if every nested sequence $C_1 \supset C_2 \supset \cdots$ of closed nonempty sets of X has a nonempty intersection.formal statement theorem exercise_29_1 : Β¬ locally_compact_space β„š :=
informal statement Show that $\int_0^1 \log(\sin \pi x) dx = - \log 2$.formal statement theorem exercise_3_22 (D : set β„‚) (hD : D = ball 0 1) (f : β„‚ β†’ β„‚) (hf : differentiable_on β„‚ f D) (hfc : continuous_on f (closure D)) : Β¬ βˆ€ z ∈ (sphere (0 : β„‚) 1), f z = 1 / z :=
theorem Q1007 (r : β„€ β†’ β„€ β†’ Prop) [is_equiv β„€ r] (h₁ : βˆ€ n : β„€, r n (n + 5)) (hβ‚‚ : βˆ€ n : β„€, r n (n + 8)) (x y : β„€) : r x y := sorry
informal statement If $A \subset X$, a retraction of $X$ onto $A$ is a continuous map $r: X \rightarrow A$ such that $r(a)=a$ for each $a \in A$. Show that a retraction is a quotient map.formal statement theorem exercise_22_2b {X : Type*} [topological_space X] {A : set X} (r : X β†’ A) (hr : continuous r) (h : βˆ€ x : A, r x = x) : quotient_map r :=
informal statement If $f$ is defined on $E$, the graph of $f$ is the set of points $(x, f(x))$, for $x \in E$. In particular, if $E$ is a set of real numbers, and $f$ is real-valued, the graph of $f$ is a subset of the plane. Suppose $E$ is compact, and prove that $f$ is continuous on $E$ if and only if its graph is compact.formal statement theorem exercise_4_6 (f : ℝ β†’ ℝ) (E : set ℝ) (G : set (ℝ Γ— ℝ)) (h₁ : is_compact E) (hβ‚‚ : G = {(x, f x) | x ∈ E}) : continuous_on f E ↔ is_compact G :=
informal statement Suppose that $S, T \in \mathcal{L}(V)$ are such that $S T=T S$. Prove that $\operatorname{null} (T-\lambda I)$ is invariant under $S$ for every $\lambda \in \mathbf{F}$.formal statement theorem exercise_5_12 {F V : Type*} [add_comm_group V] [field F] [module F V] {S : End F V} (hS : βˆ€ v : V, βˆƒ c : F, v ∈ eigenspace S c) : βˆƒ c : F, S = c β€’ id :=
import topology.instances.real open filter real open_locale topological_space theorem problem_5 (a : ℝ) (f : β„• β†’ ℝ) : (βˆƒ N, βˆ€ Ξ΅ > 0, βˆ€ n β‰₯ N, abs (f n - a) < Ξ΅) ↔ (βˆƒ N, βˆ€ n β‰₯ N, f n = a) := begin sorry end
open tactic lemma a1 : true := begin sleep 20000, trivial end lemma a2 : true := begin sleep 10000, trivial end
informal statement Show that if $X$ is a Hausdorff space that is locally compact at the point $x$, then for each neighborhood $U$ of $x$, there is a neighborhood $V$ of $x$ such that $\bar{V}$ is compact and $\bar{V} \subset U$.formal statement theorem exercise_30_13 {X : Type*} [topological_space X] (h : βˆƒ (s : set X), countable s ∧ dense s) (U : set (set X)) (hU : βˆ€ (x y : set X), x ∈ U β†’ y ∈ U β†’ x β‰  y β†’ x ∩ y = βˆ…) : countable U :=
informal statement If $\Sigma a_{n}$ converges, and if $\left\{b_{n}\right\}$ is monotonic and bounded, prove that $\Sigma a_{n} b_{n}$ converges.formal statement theorem exercise_3_20 {X : Type*} [metric_space X] (p : β„• β†’ X) (l : β„•) (r : X) (hp : cauchy_seq p) (hpl : tendsto (Ξ» n, p (l * n)) at_top (𝓝 r)) : tendsto p at_top (𝓝 r) :=
informal statement Prove that if $R$ is an integral domain and $x^{2}=1$ for some $x \in R$ then $x=\pm 1$.formal statement theorem exercise_7_1_11 {R : Type*} [ring R] [is_domain R] {x : R} (hx : x^2 = 1) : x = 1 ∨ x = -1 :=
informal statement Prove that $\lim_{n \rightarrow \infty} \sum_{i<n} a_i = \infty$, where $a_i = \sqrt{i + 1} -\sqrt{i}$.formal statement theorem exercise_3_8 (a b : β„• β†’ ℝ) (h1 : βˆƒ y, (tendsto (Ξ» n, (βˆ‘ i in (finset.range n), a i)) at_top (𝓝 y))) (h2 : monotone b) (h3 : metric.bounded (set.range b)) : βˆƒ y, tendsto (Ξ» n, (βˆ‘ i in (finset.range n), (a i) * (b i))) at_top (𝓝 y) :=
informal statement Prove that if a group contains exactly one element of order 2 , then that element is in the center of the group.formal statement theorem exercise_2_11_3 {G : Type*} [group G] [fintype G] (hG : even (card G)) : βˆƒ x : G, order_of x = 2 :=
open Classical theorem dne (p : Prop) (h : ¬¬p) : p := Or.elim (em p) (fun (hp : p) => hp) (fun (hnp: ¬p) => absurd hnp h) theorem step (p : Prop) (h : ¬(p ∨ ¬ p)) : ¬p := fun (hp : p) => h (Or.intro_left (¬p) (hp)) theorem exclmid (p : Prop) : p ∨ ¬p := dne (p ∨ ¬p) ( fun (h : ¬(p ∨ ¬p)) => h (Or.intro_right (p) (step p h)) )
informal statement If $s_{1}=\sqrt{2}$, and $s_{n+1}=\sqrt{2+\sqrt{s_{n}}} \quad(n=1,2,3, \ldots),$ prove that $\left\{s_{n}\right\}$ converges, and that $s_{n}<2$ for $n=1,2,3, \ldots$.formal statement theorem exercise_3_3 : βˆƒ (x : ℝ), tendsto f at_top (𝓝 x) ∧ βˆ€ n, f n < 2 :=
informal statement Let $\Omega$ be a bounded open subset of $\mathbb{C}$, and $\varphi: \Omega \rightarrow \Omega$ a holomorphic function. Prove that if there exists a point $z_{0} \in \Omega$ such that $\varphi\left(z_{0}\right)=z_{0} \quad \text { and } \quad \varphi^{\prime}\left(z_{0}\right)=1$ then $\varphi$ is linear.formal statement theorem exercise_2_9 {f : β„‚ β†’ β„‚} (Ξ© : set β„‚) (b : metric.bounded Ξ©) (h : is_open Ξ©) (hf : differentiable_on β„‚ f Ξ©) (z ∈ Ξ©) (hz : f z = z) (h'z : deriv f z = 1) : βˆƒ (f_lin : β„‚ β†’L[β„‚] β„‚), βˆ€ x ∈ Ξ©, f x = f_lin x :=
informal statement Show that if $X$ is an infinite set, it is connected in the finite complement topology.formal statement theorem exercise_23_4 {X : Type*} [topological_space X] [cofinite_topology X] (s : set X) : set.infinite s β†’ is_connected s :=
informal statement Let $Y$ be an ordered set in the order topology. Let $f, g: X \rightarrow Y$ be continuous. Let $h: X \rightarrow Y$ be the function $h(x)=\min \{f(x), g(x)\}.$ Show that $h$ is continuous.formal statement theorem exercise_18_8b {X Y : Type*} [topological_space X] [topological_space Y] [linear_order Y] [order_topology Y] {f g : X β†’ Y} (hf : continuous f) (hg : continuous g) : continuous (Ξ» x, min (f x) (g x)) :=
informal statement Prove that if $P \in \operatorname{Syl}_{p}(G)$ and $H$ is a subgroup of $G$ containing $P$ then $P \in \operatorname{Syl}_{p}(H)$.formal statement theorem exercise_4_5_14 {G : Type*} [group G] [fintype G] (hG : card G = 312) : βˆƒ (p : β„•) (P : sylow p G), P.normal :=
informal statement Let $\mathcal{T}$ be the collection of open subsets of a metric space $\mathrm{M}$, and $\mathcal{K}$ the collection of closed subsets. Show that there is a bijection from $\mathcal{T}$ onto $\mathcal{K}$.formal statement theorem exercise_2_41 (m : β„•) {X : Type*} [normed_space ℝ ((fin m) β†’ ℝ)] : is_compact (metric.closed_ball 0 1) :=
informal statement Prove that $\mathbb{Q}$ has no proper subgroups of finite index.formal statement theorem exercise_3_4_1 (G : Type*) [comm_group G] [is_simple_group G] : is_cyclic G ∧ βˆƒ G_fin : fintype G, nat.prime (@card G G_fin) :=
informal statement Prove that subgroups of a solvable group are solvable.formal statement theorem exercise_3_4_5a {G : Type*} [group G] (H : subgroup G) [is_solvable G] : is_solvable H :=
informal statement Suppose $T \in \mathcal{L}(V)$ is such that every vector in $V$ is an eigenvector of $T$. Prove that $T$ is a scalar multiple of the identity operator.formal statement theorem exercise_5_20 {F V : Type*} [add_comm_group V] [field F] [module F V] [finite_dimensional F V] {S T : End F V} (h1 : @card T.eigenvalues (eigenvalues.fintype T) = finrank F V) (h2 : βˆ€ v : V, βˆƒ c : F, v ∈ eigenspace S c ↔ βˆƒ c : F, v ∈ eigenspace T c) : S * T = T * S :=
informal statement If $f$ is defined on $E$, the graph of $f$ is the set of points $(x, f(x))$, for $x \in E$. In particular, if $E$ is a set of real numbers, and $f$ is real-valued, the graph of $f$ is a subset of the plane. Suppose $E$ is compact, and prove that $f$ is continuous on $E$ if and only if its graph is compact.formal statement theorem exercise_4_8b (E : set ℝ) : βˆƒ f : ℝ β†’ ℝ, uniform_continuous_on f E ∧ Β¬ metric.bounded (set.image f E) :=
informal statement Let $f$ be a real function on the real line with continuous third derivative. Prove that there exists a point $a$ such thatformal statement theorem exercise_1998_a3 (f : ℝ β†’ ℝ) (hf : cont_diff ℝ 3 f) : βˆƒ a : ℝ, (f a) * (deriv f a) * (iterated_deriv 2 f a) * (iterated_deriv 3 f a) β‰₯ 0 :=
informal statement Prove that the power series $\sum zn/n^2$ converges at every point of the unit circle.formal statement theorem exercise_1_26 (f F₁ Fβ‚‚ : β„‚ β†’ β„‚) (Ξ© : set β„‚) (h1 : is_open Ξ©) (h2 : is_connected Ξ©) (hF₁ : differentiable_on β„‚ F₁ Ξ©) (hFβ‚‚ : differentiable_on β„‚ Fβ‚‚ Ξ©) (hdF₁ : βˆ€ x ∈ Ξ©, deriv F₁ x = f x) (hdFβ‚‚ : βˆ€ x ∈ Ξ©, deriv Fβ‚‚ x = f x) : βˆƒ c : β„‚, βˆ€ x, F₁ x = Fβ‚‚ x + c :=
informal statement Prove that $\frac{(x+2)^p-2^p}{x}$, where $p$ is an odd prime, is irreducible in $\mathbb{Z}[x]$.formal statement theorem exercise_9_4_11 : irreducible ((X 0)^2 + (X 1)^2 - 1 : mv_polynomial (fin 2) β„š) :=
informal statement Prove that there is no rational number whose square is $12$.formal statement theorem exercise_1_2 : Β¬ βˆƒ (x : β„š), ( x ^ 2 = 12 ) :=
informal statement Suppose $f$ is continuous in a region $\Omega$. Prove that any two primitives of $f$ (if they exist) differ by a constant.formal statement theorem exercise_2_9 {f : β„‚ β†’ β„‚} (Ξ© : set β„‚) (b : metric.bounded Ξ©) (h : is_open Ξ©) (hf : differentiable_on β„‚ f Ξ©) (z ∈ Ξ©) (hz : f z = z) (h'z : deriv f z = 1) : βˆƒ (f_lin : β„‚ β†’L[β„‚] β„‚), βˆ€ x ∈ Ξ©, f x = f_lin x :=
informal statement Prove that $x^3 - 3x - 1$ is irreducible over $\mathbb{Q}$.formal statement theorem exercise_5_5_2 : irreducible (X^3 - 3*X - 1 : polynomial β„š) :=
informal statement Prove that if $H$ is a subgroup of $G$ then $H$ is generated by the set $H-\{1\}$.formal statement theorem exercise_2_4_16b {n : β„•} {hn : n β‰  0} {R : subgroup (dihedral_group n)} (hR : R = subgroup.closure {dihedral_group.r 1}) : R β‰  ⊀ ∧ βˆ€ K : subgroup (dihedral_group n), R ≀ K β†’ K = R ∨ K = ⊀ :=
informal statement Prove that if $x^{2}=1$ for all $x \in G$ then $G$ is abelian.formal statement theorem exercise_1_1_34 {G : Type*} [group G] {x : G} (hx_inf : order_of x = 0) (n m : β„€) : x ^ n β‰  x ^ m :=
informal statement Prove that $x^3 - 3x - 1$ is irreducible over $\mathbb{Q}$.formal statement theorem exercise_2_2_9 {G : Type*} [group G] {a b : G} (h : a * b = b * a) : βˆ€ x y : closure {x | x = a ∨ x = b}, x*y = y*x :=
informal statement Show that the collection $\{(a,b) \mid a < b, a \text{ and } b \text{ rational}\}$ is a basis that generates a topology different from the lower limit topology on $\mathbb{R}$.formal statement theorem exercise_13_8b : (topological_space.generate_from {S : set ℝ | βˆƒ a b : β„š, a < b ∧ S = Ico a b}).is_open β‰  (lower_limit_topology ℝ).is_open :=
informal statement Prove that the quotient ring $\mathbb{Z}[i] /(1+i)$ is a field of order 2.formal statement theorem exercise_8_3_6a {R : Type*} [ring R] (hR : R = (gaussian_int β§Έ ideal.span ({⟨0, 1⟩} : set gaussian_int))) : is_field R ∧ βˆƒ finR : fintype R, @card R finR = 2 :=
informal statement Let $H \leq K \leq G$. Prove that $|G: H|=|G: K| \cdot|K: H|$ (do not assume $G$ is finite).formal statement theorem exercise_3_2_21a (H : add_subgroup β„š) (hH : H β‰  ⊀) : H.index = 0 :=
import data.real.basic open classical attribute [instance] prop_decidable /- Rigorous definition of a limit For a sequence x_n, we say that \lim_{n \to \infty} x_n = l if βˆ€ Ξ΅ > 0, βˆƒ N, n β‰₯ N β†’ |x_n - l| < Ξ΅ -/ def lim_to_inf (x : β„• β†’ ℝ) (l : ℝ) := βˆ€ Ξ΅ > 0, βˆƒ N, βˆ€ n β‰₯ N, abs (x n - l) < Ξ΅ theorem exercise_1p3 (x y : β„• β†’ ℝ) (l : ℝ) (h₁ : βˆ€ n, abs (x n - l) ≀ y n) (hβ‚‚ : lim_to_inf y 0) : lim_to_inf x l := begin intros Ξ΅ Ξ΅_pos, rcases hβ‚‚ Ξ΅ Ξ΅_pos with ⟨N, hN⟩, use N, intros n hn, specialize h₁ n, specialize hN n hn, calc abs (x n - l) ≀ y n : h₁ ... ≀ abs (y n) : le_abs_self (y n) ... ≀ abs (y n - 0) : by rw sub_zero (y n) ... < Ξ΅ : hN, end
informal statement A uniformly continuous function of a uniformly continuous function is uniformly continuous.formal statement theorem exercise_4_12 {Ξ± Ξ² Ξ³ : Type*} [uniform_space Ξ±] [uniform_space Ξ²] [uniform_space Ξ³] {f : Ξ± β†’ Ξ²} {g : Ξ² β†’ Ξ³} (hf : uniform_continuous f) (hg : uniform_continuous g) : uniform_continuous (g ∘ f) :=
informal statement Let $N$ be a positive integer. Let $M$ be an integer relatively prime to $N$ and let $d$ be an integer relatively prime to $\varphi(N)$, where $\varphi$ denotes Euler's $\varphi$-function. Prove that if $M_{1} \equiv M^{d} \pmod N$ then $M \equiv M_{1}^{d^{\prime}} \pmod N$ where $d^{\prime}$ is the inverse of $d \bmod \varphi(N)$: $d d^{\prime} \equiv 1 \pmod {\varphi(N)}$.formal statement theorem exercise_8_1_12 {N : β„•} (hN : N > 0) {M M': β„€} {d : β„•} (hMN : M.gcd N = 1) (hMd : d.gcd N.totient = 1) (hM' : M' ≑ M^d [ZMOD N]) : βˆƒ d' : β„•, d' * d ≑ 1 [ZMOD N.totient] ∧ M ≑ M'^d' [ZMOD N] :=
informal statement If $k \geq 2$ and $\mathbf{x} \in R^{k}$, prove that there exists $\mathbf{y} \in R^{k}$ such that $\mathbf{y} \neq 0$ but $\mathbf{x} \cdot \mathbf{y}=0$formal statement theorem exercise_1_18a (n : β„•) (h : n > 1) (x : euclidean_space ℝ (fin n)) -- R^n : βˆƒ (y : euclidean_space ℝ (fin n)), y β‰  0 ∧ (inner x y) = (0 : ℝ) :=
informal statement Let $\|\cdot\|$ be any norm on $\mathbb{R}^{m}$ and let $B=\left\{x \in \mathbb{R}^{m}:\|x\| \leq 1\right\}$. Prove that $B$ is compact.formal statement theorem exercise_2_57 {X : Type*} [topological_space X] : βˆƒ (S : set X), is_connected S ∧ Β¬ is_connected (interior S) :=
informal statement Let $G=\left\{g_{1}, \ldots, g_{n}\right\}$ be a finite group. Prove that the element $N=g_{1}+g_{2}+\ldots+g_{n}$ is in the center of the group ring $R G$.formal statement theorem exercise_7_2_12 {R G : Type*} [ring R] [group G] [fintype G] : βˆ‘ g : G, monoid_algebra.of R G g ∈ center (monoid_algebra R G) :=
informal statement If $x$ and $g$ are elements of the group $G$, prove that $|x|=\left|g^{-1} x g\right|$.formal statement theorem exercise_1_1_22a {G : Type*} [group G] (x g : G) : order_of x = order_of (g⁻¹ * x * g) :=
def f {Ξ±} (a b : Ξ±) := a theorem f_Eq {Ξ±} (a b : Ξ±) : f a b = a := rfl theorem ex1 (a b c : Ξ±) : f (f a b) c = a := by simp [f_Eq] #print ex1 theorem ex2 (p : Nat β†’ Bool) (x : Nat) (h : p x = true) : (if p x then 1 else 2) = 1 := by simp [h] #print ex2
informal statement If $H$ is the unique subgroup of a given order in a group $G$ prove $H$ is characteristic in $G$.formal statement theorem exercise_4_4_7 {G : Type*} [group G] {H : subgroup G} [fintype H] (hH : βˆ€ (K : subgroup G) (fK : fintype K), card H = @card K fK β†’ H = K) : H.characteristic :=
informal statement Let $R$ be a ring in which $x^3 = x$ for every $x \in R$. Prove that $R$ is commutative.formal statement theorem exercise_4_2_5 {R : Type*} [ring R] (h : βˆ€ x : R, x ^ 3 = x) : comm_ring R :=
informal statement Let $A$ be an abelian group and let $B$ be a subgroup of $A$. Prove that $A / B$ is abelian.formal statement theorem exercise_3_1_3a {A : Type*} [comm_group A] (B : subgroup A) : βˆ€ a b : A β§Έ B, a*b = b*a :=
informal statement Let $A$ be an abelian group and let $B$ be a subgroup of $A$. Prove that $A / B$ is abelian.formal statement theorem exercise_3_1_22b {G : Type*} [group G] (I : Type*) (H : I β†’ subgroup G) (hH : βˆ€ i : I, subgroup.normal (H i)) : subgroup.normal (β¨… (i : I), H i):=
informal statement Let $N$ be a positive integer. Let $M$ be an integer relatively prime to $N$ and let $d$ be an integer relatively prime to $\varphi(N)$, where $\varphi$ denotes Euler's $\varphi$-function. Prove that if $M_{1} \equiv M^{d} \pmod N$ then $M \equiv M_{1}^{d^{\prime}} \pmod N$ where $d^{\prime}$ is the inverse of $d \bmod \varphi(N)$: $d d^{\prime} \equiv 1 \pmod {\varphi(N)}$.formal statement theorem exercise_8_3_4 {R : Type*} {n : β„€} {r s : β„š} (h : r^2 + s^2 = n) : βˆƒ a b : β„€, a^2 + b^2 = n :=
/- Copyright (c) 2020 Kevin Lacker. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kevin Lacker -/ import Mathlib.Algebra.Divisibility.Basic import Mathlib.Tactic.Ring import Mathlib.Data.Nat.Prime /-! # IMO 1959 Q1 Prove that the fraction `(21n+4)/(14n+3)` is irreducible for every natural number `n`. Since Lean doesn't have a concept of "irreducible fractions" per se, we just formalize this as saying the numerator and denominator are relatively prime. -/ lemma calculation (n k : β„•) (h1 : k ∣ 21 * n + 4) (h2 : k ∣ 14 * n + 3) : k ∣ 1 := by have h3 : k ∣ 2 * (21 * n + 4) := h1.mul_left 2 have h4 : k ∣ 3 * (14 * n + 3) := h2.mul_left 3 have h5 : 3 * (14 * n + 3) = 2 * (21 * n + 4) + 1 := by ring exact (Nat.dvd_add_right h3).mp (h5 β–Έ h4) theorem imo1959_q1 : βˆ€ n : β„•, Nat.coprime (21 * n + 4) (14 * n + 3) := fun n => Nat.coprime_of_dvd' <| Ξ» k _ h1 h2 => calculation n k h1 h2
informal statement Prove that if $H$ is a nontrivial normal subgroup of the solvable group $G$ then there is a nontrivial subgroup $A$ of $H$ with $A \unlhd G$ and $A$ abelian.formal statement theorem exercise_4_3_26 {Ξ± : Type*} [fintype Ξ±] (ha : fintype.card Ξ± > 1) (h_tran : βˆ€ a b: Ξ±, βˆƒ Οƒ : equiv.perm Ξ±, Οƒ a = b) : βˆƒ Οƒ : equiv.perm Ξ±, βˆ€ a : Ξ±, Οƒ a β‰  a :=
informal statement Prove that if $x^{2}=1$ for all $x \in G$ then $G$ is abelian.formal statement theorem exercise_1_1_25 {G : Type*} [group G] (h : βˆ€ x : G, x ^ 2 = 1) : βˆ€ a b : G, a*b = b*a :=
informal statement Suppose $\left\{p_{n}\right\}$ is a Cauchy sequence in a metric space $X$, and some sequence $\left\{p_{n l}\right\}$ converges to a point $p \in X$. Prove that the full sequence $\left\{p_{n}\right\}$ converges to $p$.formal statement theorem exercise_3_22 (X : Type*) [metric_space X] [complete_space X] (G : β„• β†’ set X) (hG : βˆ€ n, is_open (G n) ∧ dense (G n)) : βˆƒ x, βˆ€ n, x ∈ G n :=
informal statement Prove that a group of even order contains an element of order $2 .$formal statement theorem exercise_2_11_3 {G : Type*} [group G] [fintype G] (hG : even (card G)) : βˆƒ x : G, order_of x = 2 :=
import tactic --hide lemma not_iff_imp_false (P : Prop) : Β¬ P ↔ P β†’ false := iff.rfl -- hide /-Hint : Hint Try using `rw not_iff_imp_false,`. -/ /-Lemma If $P$ is a logical statement then $P \implies Β¬ Β¬P$. -/ lemma P_not_not_P (P : Prop) : P β†’ Β¬ (Β¬ P) := begin intro P, rw not_iff_imp_false, intro hp, apply hp, exact P, end
informal statement Show that X is countably compact if and only if every nested sequence $C_1 \supset C_2 \supset \cdots$ of closed nonempty sets of X has a nonempty intersection.formal statement theorem exercise_28_5 (X : Type*) [topological_space X] : countably_compact X ↔ βˆ€ (C : β„• β†’ set X), (βˆ€ n, is_closed (C n)) ∧ (βˆ€ n, C n β‰  βˆ…) ∧ (βˆ€ n, C n βŠ† C (n + 1)) β†’ βˆƒ x, βˆ€ n, x ∈ C n :=
informal statement If $x, y$ are complex, prove that $||x|-|y|| \leq |x-y|$.formal statement theorem exercise_1_16a (n : β„•) (d r : ℝ) (x y z : euclidean_space ℝ (fin n)) -- R^n (h₁ : n β‰₯ 3) (hβ‚‚ : β€–x - yβ€– = d) (h₃ : d > 0) (hβ‚„ : r > 0) (hβ‚… : 2 * r > d) : set.infinite {z : euclidean_space ℝ (fin n) | β€–z - xβ€– = r ∧ β€–z - yβ€– = r} :=
informal statement If $G$ is a finite group, prove that there is an integer $m > 0$ such that $a^m = e$ for all $a \in G$.formal statement theorem exercise_2_1_27 {G : Type*} [group G] [fintype G] : βˆƒ (m : β„•), βˆ€ (a : G), a ^ m = 1 :=
informal statement Suppose (a) $f$ is continuous for $x \geq 0$, (b) $f^{\prime}(x)$ exists for $x>0$, (c) $f(0)=0$, (d) $f^{\prime}$ is monotonically increasing. Put $g(x)=\frac{f(x)}{x} \quad(x>0)$ and prove that $g$ is monotonically increasing.formal statement theorem exercise_5_15 {f : ℝ β†’ ℝ} (a M0 M1 M2 : ℝ) (hf' : differentiable_on ℝ f (set.Ici a)) (hf'' : differentiable_on ℝ (deriv f) (set.Ici a)) (hM0 : M0 = Sup {(| f x | )| x ∈ (set.Ici a)}) (hM1 : M1 = Sup {(| deriv f x | )| x ∈ (set.Ici a)}) (hM2 : M2 = Sup {(| deriv (deriv f) x | )| x ∈ (set.Ici a)}) : (M1 ^ 2) ≀ 4 * M0 * M2 :=
import Smt theorem triv (p : Prop) : p β†’ p := by smt
informal statement If $G$ is a finite group, prove that there is an integer $m > 0$ such that $a^m = e$ for all $a \in G$.formal statement theorem exercise_2_2_5 {G : Type*} [group G] (h : βˆ€ (a b : G), (a * b) ^ 3 = a ^ 3 * b ^ 3 ∧ (a * b) ^ 5 = a ^ 5 * b ^ 5) : comm_group G :=
import tactic open function theorem challenge4 (X Y Z : Type) (f : X β†’ Y) (g : Y β†’ Z) : surjective (g ∘ f) β†’ surjective g := begin intro h, intro z, cases h z with a ha, use f a, assumption, end
informal statement Let $p$ be an odd prime. Show that $a$ is a primitive root modulo $p$ iff $a^{(p-1) / q} \not \equiv 1(p)$ for all prime divisors $q$ of $p-1$.formal statement theorem exercise_4_8 {p a : β„•} (hp : odd p) : is_primitive_root a p ↔ (βˆ€ q ∣ (p-1), q.prime β†’ Β¬ a^(p-1) ≑ 1 [MOD p]) :=
informal statement Let $X$ be completely regular, let $A$ and $B$ be disjoint closed subsets of $X$. Show that if $A$ is compact, there is a continuous function $f \colon X \rightarrow [0, 1]$ such that $f(A) = \{0\}$ and $f(B) = \{1\}$.formal statement theorem exercise_33_8 (X : Type*) [topological_space X] [regular_space X] (h : βˆ€ x A, is_closed A ∧ Β¬ x ∈ A β†’ βˆƒ (f : X β†’ I), continuous f ∧ f x = (1 : I) ∧ f '' A = {0}) (A B : set X) (hA : is_closed A) (hB : is_closed B) (hAB : disjoint A B) (hAc : is_compact A) : βˆƒ (f : X β†’ I), continuous f ∧ f '' A = {0} ∧ f '' B = {1} :=
informal statement Prove that $x^3 + 6x + 12$ is irreducible in $\mathbb{Q}$.formal statement theorem exercise_11_4_1b {F : Type*} [field F] [fintype F] (hF : card F = 2) : irreducible (12 + 6 * X + X ^ 3 : polynomial F) :=
informal statement Suppose that $f(x)=\sum_{i=0}^{\infty} c_{i} x^{i}$ is a power series for which each coefficient $c_{i}$ is 0 or 1 . Show that if $f(2 / 3)=3 / 2$, then $f(1 / 2)$ must be irrational.formal statement theorem exercise_2010_a4 (n : β„•) : Β¬ nat.prime (10^10^10^n + 10^10^n + 10^n - 1) :=
informal statement Let $F = \mathbb{Z}_p$ be the field of integers $\mod p$, where $p$ is a prime, and let $q(x) \in F[x]$ be irreducible of degree $n$. Show that $F[x]/(q(x))$ is a field having at exactly $p^n$ elements.formal statement theorem exercise_4_5_16 {p n: β„•} (hp : nat.prime p) {q : polynomial (zmod p)} (hq : irreducible q) (hn : q.degree = n) : βˆƒ is_fin : fintype $ polynomial (zmod p) β§Έ ideal.span ({q} : set (polynomial $ zmod p)), @card (polynomial (zmod p) β§Έ ideal.span {q}) is_fin = p ^ n ∧ is_field (polynomial $ zmod p):=
informal statement Prove that $x^3 + 6x + 12$ is irreducible in $\mathbb{Q}$.formal statement theorem exercise_11_4_6b {F : Type*} [field F] [fintype F] (hF : card F = 31) : irreducible (X ^ 3 - 9 : polynomial F) :=
informal statement Suppose that $E$ is an uncountable subset of $\mathbb{R}$. Prove that there exists a point $p \in \mathbb{R}$ at which $E$ condenses.formal statement theorem exercise_2_126 {E : set ℝ} (hE : Β¬ set.countable E) : βˆƒ (p : ℝ), cluster_pt p (π“Ÿ E) :=
informal statement Prove that $\sum 1/k(\log(k))^p$ diverges when $p \leq 1$.formal statement theorem exercise_2_1_21 (G : Type*) [group G] [fintype G] (hG : card G = 5) : comm_group G :=
/- Copyright (c) 2017 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura -/ prelude import Init.Data.Option.Basic universe u v theorem Option.eqOfEqSome {Ξ± : Type u} : βˆ€ {x y : Option Ξ±}, (βˆ€z, x = some z ↔ y = some z) β†’ x = y | none, none, h => rfl | none, some z, h => Option.noConfusion ((h z).2 rfl) | some z, none, h => Option.noConfusion ((h z).1 rfl) | some z, some w, h => Option.noConfusion ((h w).2 rfl) (congrArg some) theorem Option.eqNoneOfIsNone {Ξ± : Type u} : βˆ€ {o : Option Ξ±}, o.isNone β†’ o = none | none, h => rfl
informal statement Let $f$ and $g$ be continuous mappings of a metric space $X$ into a metric space $Y$, and let $E$ be a dense subset of $X$. Prove that $f(E)$ is dense in $f(X)$.formal statement theorem exercise_4_5a (f : ℝ β†’ ℝ) (E : set ℝ) (h₁ : is_closed E) (hβ‚‚ : continuous_on f E) : βˆƒ (g : ℝ β†’ ℝ), continuous g ∧ βˆ€ x ∈ E, f x = g x :=
informal statement Prove that $x^2+y^2-1$ is irreducible in $\mathbb{Q}[x,y]$.formal statement theorem exercise_1_1a (x : ℝ) (y : β„š) : ( irrational x ) -> irrational ( x + y ) :=
informal statement Prove that $x^2+1$ is irreducible in $\mathbb{F}_7$formal statement theorem exercise_11_4_8 {p : β„•} (hp : prime p) (n : β„•) : irreducible (X ^ n - p : polynomial β„š) :=
informal statement Let $G$ be a group of order 105. Prove that if a Sylow 3-subgroup of $G$ is normal then $G$ is abelian.formal statement theorem exercise_5_4_2 {G : Type*} [group G] (H : subgroup G) : H.normal ↔ ⁅(⊀ : subgroup G), H⁆ ≀ H :=
import Smt theorem addition (p q : Prop) : p β†’ p ∨ q := by smt
informal statement Let $\left\{A_{n}\right\}$ be a sequence of connected subspaces of $X$, such that $A_{n} \cap A_{n+1} \neq \varnothing$ for all $n$. Show that $\bigcup A_{n}$ is connected.formal statement theorem exercise_23_4 {X : Type*} [topological_space X] [cofinite_topology X] (s : set X) : set.infinite s β†’ is_connected s :=
informal statement Suppose that $S, T \in \mathcal{L}(V)$ are such that $S T=T S$. Prove that $\operatorname{null} (T-\lambda I)$ is invariant under $S$ for every $\lambda \in \mathbf{F}$.formal statement theorem exercise_5_4 {F V : Type*} [add_comm_group V] [field F] [module F V] (S T : V β†’β‚—[F] V) (hST : S ∘ T = T ∘ S) (c : F): map S (T - c β€’ id).ker = (T - c β€’ id).ker :=
informal statement Prove that the intersection of any collection of subspaces of $V$ is a subspace of $V$.formal statement theorem exercise_3_1 {F V : Type*} [add_comm_group V] [field F] [module F V] [finite_dimensional F V] (T : V β†’β‚—[F] V) (hT : finrank F V = 1) : βˆƒ c : F, βˆ€ v : V, T v = c β€’ v:=
informal statement Prove that the addition of residue classes $\mathbb{Z}/n\mathbb{Z}$ is associative.formal statement theorem exercise_1_1_5 (n : β„•) (hn : 1 < n) : is_empty (group (zmod n)) :=
informal statement If $p$ is a prime, show that $q(x) = 1 + x + x^2 + \cdots x^{p - 1}$ is irreducible in $Q[x]$.formal statement theorem exercise_4_6_3 : infinite {a : β„€ | irreducible (X^7 + 15*X^2 - 30*X + a : polynomial β„š)} :=
informal statement Show that there is no holomorphic function $f$ in the unit disc $D$ that extends continuously to $\partial D$ such that $f(z) = 1/z$ for $z \in \partial D$.formal statement theorem exercise_3_22 (D : set β„‚) (hD : D = ball 0 1) (f : β„‚ β†’ β„‚) (hf : differentiable_on β„‚ f D) (hfc : continuous_on f (closure D)) : Β¬ βˆ€ z ∈ (sphere (0 : β„‚) 1), f z = 1 / z :=
informal statement Suppose that $T \in \mathcal{L}(V)$ has $\operatorname{dim} V$ distinct eigenvalues and that $S \in \mathcal{L}(V)$ has the same eigenvectors as $T$ (not necessarily with the same eigenvalues). Prove that $S T=T S$.formal statement theorem exercise_5_20 {F V : Type*} [add_comm_group V] [field F] [module F V] [finite_dimensional F V] {S T : End F V} (h1 : @card T.eigenvalues (eigenvalues.fintype T) = finrank F V) (h2 : βˆ€ v : V, βˆƒ c : F, v ∈ eigenspace S c ↔ βˆƒ c : F, v ∈ eigenspace T c) : S * T = T * S :=
import data.finset.basic import data.finset.lattice import data.nat.basic import data.nat.gcd.basic import data.pnat.basic /- Indian Mathematical Olympiad 1998, Problem 8. Let M be a positive integer and consider the set S = { n ∈ β„• : MΒ² ≀ n < (M + 1)Β² }. Prove that the products of the form a * b with a,b ∈ S are all distinct. -/ theorem lemma_1 (M : β„•) (hM : 0 < M) (a b c d : {x : β„• // M^2 ≀ x ∧ x < (M + 1)^2}) (h_ne : ({a, b}: finset β„•) β‰  {c, d}) (h_wlog : a < c ∧ a < d) : a.val * b.val β‰  c.val * d.val := begin intro heq, let p := nat.gcd a c, -- let q = a / p and r = c / p -- then gcd(q,r) = 1 -- Since q ∣(ab/p) = cd / p = rd, we have q∣d. -- Now let s = d/q so that b = cd /a = rs. -- Therefore, a = pq, b = rs, c = pr, d = qs for some positive integers p,q,r,s. -- Since c > a, r > q, and r β‰₯ q + 1. -- Since d > a, s > p, and s β‰₯ p + 1. -- Therefore,, -- b = rs β‰₯ (p + 1)(q + 1) = pq + p + q + 1 -- β‰₯ pq + 2 sqrt(pq) + 1 = a + 2 sqrt(a) + 1 -- β‰₯ M^2 + 2 M + 1 = (M + 1)^2 -- Then b is not in S, a contradiction. sorry end theorem india1998_q8 (M : β„•) (hM : 0 < M) (a b c d : {x : β„• // M^2 ≀ x ∧ x < (M + 1)^2}) (h_ne : ({a, b}: finset β„•) β‰  {c, d}) : a.val * b.val β‰  c.val * d.val := begin let m : option β„• := finset.min {a,b,c,d}, -- delegate to lemma_1 ... sorry, end
informal statement Show that there is an infinite number of solutions to $x^2 = -1$ in the quaternions.formal statement theorem exercise_4_2_5 {R : Type*} [ring R] (h : βˆ€ x : R, x ^ 3 = x) : comm_ring R :=
informal statement Suppose $\left\{p_{n}\right\}$ is a Cauchy sequence in a metric space $X$, and some sequence $\left\{p_{n l}\right\}$ converges to a point $p \in X$. Prove that the full sequence $\left\{p_{n}\right\}$ converges to $p$.formal statement theorem exercise_3_20 {X : Type*} [metric_space X] (p : β„• β†’ X) (l : β„•) (r : X) (hp : cauchy_seq p) (hpl : tendsto (Ξ» n, p (l * n)) at_top (𝓝 r)) : tendsto p at_top (𝓝 r) :=
import data.real.basic open classical attribute [instance] prop_decidable /- Rigorous definition of a limit For a sequence x_n, we say that \lim_{n \to \infty} x_n = l if βˆ€ Ξ΅ > 0, βˆƒ N, n β‰₯ N β†’ |x_n - l| < Ξ΅ -/ def lim_to_inf (x : β„• β†’ ℝ) (l : ℝ) := βˆ€ Ξ΅ > 0, βˆƒ N, βˆ€ n β‰₯ N, abs (x n - l) < Ξ΅ theorem exercise_1p4 (x : β„• β†’ ℝ) (l : ℝ) (h₁ : lim_to_inf x l) : lim_to_inf (Ξ» n, abs (x n)) (abs l) := begin intros Ξ΅ Ξ΅_pos, rcases h₁ Ξ΅ Ξ΅_pos with ⟨N, hN⟩, use N, intros n hn, calc abs (abs (x n) - abs l) ≀ abs ((x n) - l) : abs_abs_sub_le_abs_sub (x n) l ... < Ξ΅ : hN n hn end
informal statement If $x$ is an element of infinite order in $G$, prove that the elements $x^{n}, n \in \mathbb{Z}$ are all distinct.formal statement theorem exercise_1_1_34 {G : Type*} [group G] {x : G} (hx_inf : order_of x = 0) (n m : β„€) : x ^ n β‰  x ^ m :=
informal statement Suppose $f$ is a real function with domain $R^{1}$ which has the intermediate value property: if $f(a)<c<f(b)$, then $f(x)=c$ for some $x$ between $a$ and $b$. Suppose also, for every rational $r$, that the set of all $x$ with $f(x)=r$ is closed. Prove that $f$ is continuous.formal statement theorem exercise_4_19 {f : ℝ β†’ ℝ} (hf : βˆ€ a b c, a < b β†’ f a < c β†’ c < f b β†’ βˆƒ x, a < x ∧ x < b ∧ f x = c) (hg : βˆ€ r : β„š, is_closed {x | f x = r}) : continuous f :=
informal statement Let $G$ be a finite group of composite order $n$ with the property that $G$ has a subgroup of order $k$ for each positive integer $k$ dividing $n$. Prove that $G$ is not simple.formal statement theorem exercise_4_4_6a {G : Type*} [group G] (H : subgroup G) [subgroup.characteristic H] : subgroup.normal H :=
informal statement Prove that a subgroup $H$ of $G$ is normal if and only if $[G, H] \leq H$.formal statement theorem exercise_5_4_2 {G : Type*} [group G] (H : subgroup G) : H.normal ↔ ⁅(⊀ : subgroup G), H⁆ ≀ H :=
informal statement If $A \subset X$, a retraction of $X$ onto $A$ is a continuous map $r: X \rightarrow A$ such that $r(a)=a$ for each $a \in A$. Show that a retraction is a quotient map.formal statement theorem exercise_23_2 {X : Type*} [topological_space X] {A : β„• β†’ set X} (hA : βˆ€ n, is_connected (A n)) (hAn : βˆ€ n, A n ∩ A (n + 1) β‰  βˆ…) : is_connected (⋃ n, A n) :=
open classical theorem Ex007(a b : Prop): (( a β†’ b) β†’ a) β†’ a := assume H1:( a β†’ b) β†’ a, have A:¬¬a,from not.intro ( assume H2:Β¬a, have B:a, from H1 ( assume H3:a, show b, from absurd H3 H2 ), show false, from H2 B ), by_contradiction ( assume C:Β¬a, show false, from A C )
informal statement Prove that $x^2+1$ is irreducible in $\mathbb{F}_7$formal statement theorem exercise_11_4_6b {F : Type*} [field F] [fintype F] (hF : card F = 31) : irreducible (X ^ 3 - 9 : polynomial F) :=
informal statement If $G_1$ and $G_2$ are cyclic groups of orders $m$ and $n$, respectively, prove that $G_1 \times G_2$ is cyclic if and only if $m$ and $n$ are relatively prime.formal statement theorem exercise_2_11_6 {G : Type*} [group G] {p : β„•} (hp : nat.prime p) {P : sylow p G} (hP : P.normal) : βˆ€ (Q : sylow p G), P = Q :=
informal statement Let $H$ be the subgroup generated by two elements $a, b$ of a group $G$. Prove that if $a b=b a$, then $H$ is an abelian group.formal statement theorem exercise_2_4_19 {G : Type*} [group G] {x : G} (hx : order_of x = 2) (hx1 : βˆ€ y, order_of y = 2 β†’ y = x) : x ∈ center G :=
informal statement Prove that if $P \in \operatorname{Syl}_{p}(G)$ and $H$ is a subgroup of $G$ containing $P$ then $P \in \operatorname{Syl}_{p}(H)$.formal statement theorem exercise_4_5_1a {p : β„•} {G : Type*} [group G] {P : subgroup G} (hP : is_p_group p P) (H : subgroup G) (hH : P ≀ H) : is_p_group p H :=
informal statement Suppose $k \geq 3, x, y \in \mathbb{R}^k, |x - y| = d > 0$, and $r > 0$. Prove that if $2r > d$, there are infinitely many $z \in \mathbb{R}^k$ such that $|z-x|=|z-y|=r$.formal statement theorem exercise_1_16a (n : β„•) (d r : ℝ) (x y z : euclidean_space ℝ (fin n)) -- R^n (h₁ : n β‰₯ 3) (hβ‚‚ : β€–x - yβ€– = d) (h₃ : d > 0) (hβ‚„ : r > 0) (hβ‚… : 2 * r > d) : set.infinite {z : euclidean_space ℝ (fin n) | β€–z - xβ€– = r ∧ β€–z - yβ€– = r} :=