metadata
language:
- en
license: mit
library_name: transformers
tags:
- generated_from_trainer
datasets:
- squad_v2
metrics:
- exact_match
- f1
base_model: roberta-base
model-index:
- name: dangkhoa99/roberta-base-finetuned-squad-v2
results: []
roberta-base-finetuned-squad-v2
This model is a fine-tuned version of roberta-base on the squad_v2 dataset. It achieves the following results on the evaluation set:
- Loss: 0.9173
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 0.8796 | 1.0 | 8239 | 0.8010 |
| 0.6474 | 2.0 | 16478 | 0.8260 |
| 0.5056 | 3.0 | 24717 | 0.9173 |
Performance
Evaluated on the SQuAD 2.0 dev set with the QuestionAnsweringEvaluator
'exact': 80.28299503074201
'f1': 83.54728996177538
'total': 11873
'HasAns_exact': 78.77867746288798
'HasAns_f1': 85.31662849462904
'HasAns_total': 5928
'NoAns_exact': 81.7830109335576
'NoAns_f1': 81.7830109335576
'NoAns_total': 5945
'best_exact': 80.28299503074201
'best_exact_thresh': 0.9989414811134338
'best_f1': 83.54728996177576
'best_f1_thresh': 0.9989414811134338
'total_time_in_seconds': 220.1965392809998
'samples_per_second': 53.92001181657305
'latency_in_seconds': 0.01854599000092645
Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3