Model Card for MNIST-MLP

This is a simple MLP trained on the MNIST dataset.

Its primary use is to be a very simple reference model to test quantization.

Inputs preprocessing

The MNIST images must be normalized and flattened as follows:

from torchvision import datasets, transforms


transform=transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.1307,), (0.3081,)),
        transforms.Lambda(lambda x: torch.flatten(x)),
])
test_set = datasets.MNIST('../data', train=False, download=True,
                          transform=transform)
Downloads last month
347
Safetensors
Model size
269k params
Tensor type
F32
·
Inference Examples
Inference API (serverless) does not yet support model repos that contain custom code.