metadata
license: llama3
language:
- tr
- en
base_model: meta-llama/Meta-Llama-3-8B-Instruct
model-index:
- name: MARS
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge TR v0.2
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc
value: 46.08
name: accuracy
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU TR v0.2
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 47.02
name: accuracy
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA TR v0.2
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: acc
name: accuracy
value: 49.38
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande TR v0.2
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 53.71
name: accuracy
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k TR v0.2
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 53.08
name: accuracy
pipeline_tag: text-generation
MARS
MARS is the first iteration of Curiosity Technology models, based on Llama 3 8B.
We have trained MARS on in-house Turkish dataset, as well as several open-source datasets and their Turkish translations. It is our intention to release Turkish translations in near future for community to have their go on them.
MARS have been trained for 3 days on 4xA100.
Model Details
- Base Model: Meta Llama 3 8B Instruct
- Training Dataset: In-house & Translated Open Source Turkish Datasets
- Training Method: LoRA Fine Tuning
How to use
You can run conversational inference using the Transformers pipeline abstraction, or by leveraging the Auto classes with the generate()
function. Let's see examples of both.
Transformers pipeline
import transformers
import torch
model_id = "curiositytech/MARS"
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device_map="auto",
)
messages = [
{"role": "system", "content": "Sen korsan gibi konuşan bir korsan chatbotsun!"},
{"role": "user", "content": "Sen kimsin?"},
]
terminators = [
pipeline.tokenizer.eos_token_id,
pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = pipeline(
messages,
max_new_tokens=256,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
print(outputs[0]["generated_text"][-1])
Transformers AutoModelForCausalLM
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_id = "curiositytech/MARS"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
)
messages = [
{"role": "system", "content": "Sen korsan gibi konuşan bir korsan chatbotsun!"},
{"role": "user", "content": "Sen kimsin?"},
]
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = model.generate(
input_ids,
max_new_tokens=256,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
response = outputs[0][input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))