Introduction
This repo contains pre-trained model using https://github.com/k2-fsa/icefall/pull/219.
It is trained on AIShell dataset using modified transducer from optimized_transducer.
How to clone this repo
sudo apt-get install git-lfs
git clone https://huggingface.co./csukuangfj/icefall-aishell-transducer-stateless-modified-2022-03-01
cd icefall-aishell-transducer-stateless-modified-2022-03-01
git lfs pull
Catuion: You have to run git lfs pull
. Otherwise, you will be SAD later.
The model in this repo is trained using the commit TODO
.
You can use
git clone https://github.com/k2-fsa/icefall
cd icefall
git checkout TODO
to download icefall
.
You can find the model information by visiting https://github.com/k2-fsa/icefall/blob/TODO/egs/aishell/ASR/transducer_stateless_modified/train.py#L232.
In short, the encoder is a Conformer model with 8 heads, 12 encoder layers, 512-dim attention, 2048-dim feedforward; the decoder contains a 512-dim embedding layer and a Conv1d with kernel size 2.
The decoder architecture is modified from Rnn-Transducer with Stateless Prediction Network. A Conv1d layer is placed right after the input embedding layer.
Description
This repo provides pre-trained transducer Conformer model for the AIShell dataset using icefall. There are no RNNs in the decoder. The decoder is stateless and contains only an embedding layer and a Conv1d.
The commands for training are:
cd egs/aishell/ASR
./prepare.sh --stop-stage 6
export CUDA_VISIBLE_DEVICES="0,1,2"
./transducer_stateless_modified/train.py \
--world-size 3 \
--num-epochs 90 \
--start-epoch 0 \
--exp-dir transducer_stateless_modified/exp-4 \
--max-duration 250 \
--lr-factor 2.0 \
--context-size 2 \
--modified-transducer-prob 0.25
The tensorboard training log can be found at https://tensorboard.dev/experiment/C27M8YxRQCa1t2XglTqlWg
The commands for decoding are
# greedy search
for epoch in 64; do
for avg in 33; do
./transducer_stateless_modified-2/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir transducer_stateless_modified/exp-4 \
--max-duration 100 \
--context-size 2 \
--decoding-method greedy_search \
--max-sym-per-frame 1
done
done
# modified beam search
for epoch in 64; do
for avg in 33; do
./transducer_stateless_modified/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir transducer_stateless_modified/exp-4 \
--max-duration 100 \
--context-size 2 \
--decoding-method modified_beam_search \
--beam-size 4
done
done
You can find the decoding log for the above command in this repo (in the folder log).
The WER for the test dataset is
test | comment | |
---|---|---|
greedy search | 5.22 | --epoch 64, --avg 33, --max-duration 100, --max-sym-per-frame 1 |
modified beam search | 5.02 | --epoch 64, --avg 33, --max-duration 100 --beam-size 4 |
File description
- log, this directory contains the decoding log and decoding results
- test_wavs, this directory contains wave files for testing the pre-trained model
- data, this directory contains files generated by prepare.sh
- exp, this directory contains only one file:
preprained.pt
exp/pretrained.pt
is generated by the following command:
epoch=64
avg=33
./transducer_stateless_modified/export.py \
--exp-dir ./transducer_stateless_modified/exp-4 \
--lang-dir ./data/lang_char \
--epoch $epoch \
--avg $avg
HINT: To use pretrained.pt
to compute the WER for the test
dataset,
just do the following:
cp icefall-aishell-transducer-stateless-modified-2022-03-01/exp/pretrained.pt \
/path/to/icefall/egs/aishell/ASR/transducer_stateless_modified/exp/epoch-999.pt
and pass --epoch 999 --avg 1
to transducer_stateless_modified/decode.py
.