ViT-GPT2-FlowerCaptioner
This model is a fine-tuned version of nlpconnect/vit-gpt2-image-captioning on the FlowerEvolver-dataset dataset. It achieves the following results on the evaluation set:
- Loss: 0.4930
- Rouge1: 68.3498
- Rouge2: 46.7534
- Rougel: 62.3763
- Rougelsum: 65.9575
- Gen Len: 49.82
sample running code
with python
from transformers import pipeline
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
FlowerCaptioner = pipeline("image-to-text", model="cristianglezm/ViT-GPT2-FlowerCaptioner", device=device)
FlowerCaptioner(["flower1.png"])
# A flower with 12 petals in a smooth gradient of green and blue.
# The center is green with black accents. The stem is long and green.
with javascript
import { pipeline } from '@xenova/transformers';
// Allocate a pipeline for image-to-text
let pipe = await pipeline('image-to-text', 'cristianglezm/ViT-GPT2-FlowerCaptioner-ONNX');
let out = await pipe('flower image url');
// A flower with 12 petals in a smooth gradient of green and blue.
// The center is green with black accents. The stem is long and green.
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 25
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
0.6986 | 1.0 | 100 | 0.5339 | 64.9813 | 42.4686 | 58.2586 | 63.3933 | 47.25 |
0.3408 | 2.0 | 200 | 0.3263 | 67.5461 | 46.5219 | 62.7962 | 65.6509 | 47.39 |
0.2797 | 3.0 | 300 | 0.2829 | 65.0704 | 42.0682 | 58.4268 | 63.2368 | 56.8 |
0.2584 | 4.0 | 400 | 0.2588 | 65.5074 | 45.227 | 60.2469 | 63.4253 | 52.25 |
0.2589 | 5.0 | 500 | 0.2607 | 66.7346 | 45.8264 | 61.7373 | 64.8857 | 50.64 |
0.2179 | 6.0 | 600 | 0.2697 | 63.8334 | 42.997 | 58.1585 | 61.7704 | 52.43 |
0.1662 | 7.0 | 700 | 0.2631 | 68.6188 | 48.3329 | 63.9474 | 66.6006 | 46.94 |
0.161 | 8.0 | 800 | 0.2749 | 69.0046 | 48.1421 | 63.7844 | 66.8317 | 49.74 |
0.1207 | 9.0 | 900 | 0.3117 | 70.0357 | 48.9002 | 64.416 | 67.7582 | 48.66 |
0.0909 | 10.0 | 1000 | 0.3408 | 65.9578 | 45.2324 | 60.2838 | 63.7493 | 46.92 |
0.0749 | 11.0 | 1100 | 0.3516 | 67.4244 | 46.1985 | 61.6408 | 65.5371 | 46.61 |
0.0665 | 12.0 | 1200 | 0.3730 | 68.6911 | 47.7089 | 63.0381 | 66.6956 | 47.89 |
0.0522 | 13.0 | 1300 | 0.3891 | 67.2365 | 45.4165 | 61.4063 | 64.857 | 48.91 |
0.0355 | 14.0 | 1400 | 0.4128 | 69.1494 | 47.9278 | 63.3334 | 66.5969 | 50.55 |
0.0309 | 15.0 | 1500 | 0.4221 | 66.2447 | 44.937 | 60.1403 | 63.8541 | 50.71 |
0.0265 | 16.0 | 1600 | 0.4343 | 67.8178 | 46.7084 | 61.8173 | 65.4375 | 50.85 |
0.0158 | 17.0 | 1700 | 0.4577 | 67.9846 | 45.9562 | 61.6353 | 65.7207 | 50.81 |
0.0166 | 18.0 | 1800 | 0.4731 | 69.0971 | 47.7001 | 62.856 | 66.7796 | 50.01 |
0.0121 | 19.0 | 1900 | 0.4657 | 68.1397 | 46.4258 | 62.2696 | 65.9332 | 49.15 |
0.0095 | 20.0 | 2000 | 0.4793 | 68.6497 | 47.9446 | 63.0466 | 66.5409 | 50.96 |
0.0086 | 21.0 | 2100 | 0.4780 | 68.4363 | 46.7296 | 62.359 | 66.2626 | 50.02 |
0.0068 | 22.0 | 2200 | 0.4863 | 67.5415 | 46.0821 | 61.57 | 65.4613 | 49.5 |
0.0061 | 23.0 | 2300 | 0.4892 | 68.1283 | 46.5802 | 62.0832 | 66.0203 | 50.21 |
0.006 | 24.0 | 2400 | 0.4912 | 68.1723 | 46.3239 | 62.2007 | 65.6725 | 49.89 |
0.0057 | 25.0 | 2500 | 0.4930 | 68.3498 | 46.7534 | 62.3763 | 65.9575 | 49.82 |
Framework versions
- Transformers 4.43.4
- Pytorch 2.4.1+cu124
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 10
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for cristianglezm/ViT-GPT2-FlowerCaptioner
Base model
nlpconnect/vit-gpt2-image-captioning