TenaliAI-FinTech-v1

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8315

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss
2.3436 1.0 3809 1.9815
1.2453 2.0 7618 1.1621
0.9853 3.0 11427 0.9375
0.8483 4.0 15236 0.9018
0.8195 5.0 19045 0.8538
0.7579 6.0 22854 0.8540
0.7123 7.0 26663 0.8397
0.7064 8.0 30472 0.8405
0.6987 9.0 34281 0.8315
0.676 10.0 38090 0.8530
0.6566 11.0 41899 0.8504
0.6411 12.0 45708 0.8501
0.6432 13.0 49517 0.8545
0.6483 14.0 53326 0.8624
0.6447 15.0 57135 0.8635
0.6077 16.0 60944 0.8782
0.6208 17.0 64753 0.8925
0.624 18.0 68562 0.8834
0.6298 19.0 72371 0.9000
0.6488 20.0 76180 0.8922
0.6019 21.0 79989 0.9025
0.6412 22.0 83798 0.8963
0.6078 23.0 87607 0.9045
0.6163 24.0 91416 0.8898
0.6275 25.0 95225 0.9036

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
95
Safetensors
Model size
110M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for credentek/TenaliAI-FinTech-v1

Finetuned
(2309)
this model