cnfusion/Llama-3.1-Nemotron-70B-Reward-HF-Q2-mlx
The Model cnfusion/Llama-3.1-Nemotron-70B-Reward-HF-Q2-mlx was converted to MLX format from nvidia/Llama-3.1-Nemotron-70B-Reward-HF using mlx-lm version 0.19.2.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("cnfusion/Llama-3.1-Nemotron-70B-Reward-HF-Q2-mlx")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
- Downloads last month
- 4
Model tree for cnfusion/Llama-3.1-Nemotron-70B-Reward-HF-mlx-2bit
Base model
meta-llama/Llama-3.1-70B
Finetuned
meta-llama/Llama-3.1-70B-Instruct
Finetuned
nvidia/Llama-3.1-Nemotron-70B-Reward-HF