Phoenix_DPO_60B / README.md
leaderboard-pr-bot's picture
Adding Evaluation Results
23b7364 verified
|
raw
history blame
3.8 kB
metadata
license: other
tags:
  - yi
  - moe
license_name: yi-license
license_link: https://huggingface.co./01-ai/Yi-34B-200K/blob/main/LICENSE
model-index:
  - name: Phoenix_DPO_60B
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 71.16
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=cloudyu/Phoenix_DPO_60B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 85.46
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=cloudyu/Phoenix_DPO_60B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 77.66
            name: accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=cloudyu/Phoenix_DPO_60B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 63.84
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=cloudyu/Phoenix_DPO_60B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 84.93
            name: accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=cloudyu/Phoenix_DPO_60B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 69.83
            name: accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=cloudyu/Phoenix_DPO_60B
          name: Open LLM Leaderboard

this is a DPO fine-tuned MoE model with 60B parameter.

DPO Trainer
TRL supports the DPO Trainer for training language models from preference data, as described in the paper Direct Preference Optimization: Your Language Model is Secretly a Reward Model by Rafailov et al., 2023. 

GGUF format is ready at cloudyu/Phoenix_DPO_60B_gguf

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 75.48
AI2 Reasoning Challenge (25-Shot) 71.16
HellaSwag (10-Shot) 85.46
MMLU (5-Shot) 77.66
TruthfulQA (0-shot) 63.84
Winogrande (5-shot) 84.93
GSM8k (5-shot) 69.83