choiruzzia's picture
Training fold 1
3ccd0e2 verified
metadata
license: mit
base_model: ayameRushia/bert-base-indonesian-1.5G-sentiment-analysis-smsa
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: best_bert_model_fold_1
    results: []

best_bert_model_fold_1

This model is a fine-tuned version of ayameRushia/bert-base-indonesian-1.5G-sentiment-analysis-smsa on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2379
  • Accuracy: 0.8469
  • Precision: 0.8335
  • Recall: 0.8102
  • F1: 0.8194

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 1.0 251 0.4965 0.8270 0.8015 0.7727 0.7833
0.5228 2.0 502 0.5798 0.7932 0.7579 0.7603 0.7583
0.5228 3.0 753 0.9632 0.8290 0.8267 0.7803 0.7969
0.1728 4.0 1004 1.3744 0.7714 0.7453 0.7690 0.7476
0.1728 5.0 1255 1.1893 0.8072 0.7791 0.7798 0.7772
0.0483 6.0 1506 1.2379 0.8469 0.8335 0.8102 0.8194
0.0483 7.0 1757 1.3635 0.8370 0.8185 0.8044 0.8081
0.0075 8.0 2008 1.3300 0.8370 0.8168 0.8008 0.8074
0.0075 9.0 2259 1.3591 0.8410 0.8249 0.8074 0.8142
0.0026 10.0 2510 1.3548 0.8350 0.8169 0.8008 0.8072

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.1.2
  • Datasets 2.19.2
  • Tokenizers 0.19.1