choiruzzia's picture
Training fold 3
a71ea31 verified
metadata
license: mit
base_model: ayameRushia/bert-base-indonesian-1.5G-sentiment-analysis-smsa
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: 22best_berita_bert_model_fold_3
    results: []

Visualize in Weights & Biases

22best_berita_bert_model_fold_3

This model is a fine-tuned version of ayameRushia/bert-base-indonesian-1.5G-sentiment-analysis-smsa on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6989
  • Accuracy: 0.7915
  • Precision: 0.8007
  • Recall: 0.8070
  • F1: 0.7911

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 1.0 106 0.5874 0.7346 0.7387 0.7359 0.7275
No log 2.0 212 0.8650 0.7678 0.7865 0.7559 0.7646
No log 3.0 318 1.0826 0.7725 0.7782 0.7795 0.7730
No log 4.0 424 2.0331 0.6967 0.7339 0.7168 0.6891
0.3602 5.0 530 1.6682 0.7678 0.7803 0.7796 0.7682
0.3602 6.0 636 1.6989 0.7915 0.8007 0.8070 0.7911
0.3602 7.0 742 1.7597 0.7725 0.7742 0.7811 0.7709
0.3602 8.0 848 1.8278 0.7725 0.7742 0.7811 0.7709
0.3602 9.0 954 1.8531 0.7725 0.7742 0.7811 0.7709
0.0126 10.0 1060 1.8599 0.7725 0.7742 0.7811 0.7709

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1