chillies's picture
Create README.md
8d6b5f7 verified
metadata
license: apache-2.0
datasets:
  - chillies/IELTS-writing-task-2-evaluation
language:
  - en
metrics:
  - bleu

mistral-7b-ielts-evaluator

Model Card

Description

mistral-7b-ielts-evaluator is a fine-tuned version of Mistral 7B, specifically trained for evaluating IELTS Writing Task 2 essays. This model provides detailed feedback and scoring for IELTS essays, helping students improve their writing skills.

Installation

To use this model, you will need to install the following dependencies:

pip install transformers
pip install torch  # or tensorflow depending on your preference

Usage

Here is how you can load and use the model in your code:

from transformers import AutoTokenizer, AutoModelForSequenceClassification

tokenizer = AutoTokenizer.from_pretrained("username/mistral-7b-ielts-evaluator")
model = AutoModelForSequenceClassification.from_pretrained("username/mistral-7b-ielts-evaluator")

# Example usage
essay = "Some people believe that it is better to live in a city while others argue that living in the countryside is preferable. Discuss both views and give your own opinion."

inputs = tokenizer(essay, return_tensors="pt", padding=True, truncation=True)
outputs = model(**inputs)

# Assuming the model outputs a score
score = outputs.logits.argmax(dim=-1).item()

print(f"IELTS Task 2 Evaluation Score: {score}")

Inference

Provide example code for performing inference with your model:

# Example inference
essay = "Some people believe that it is better to live in a city while others argue that living in the countryside is preferable. Discuss both views and give your own opinion."

inputs = tokenizer(essay, return_tensors="pt", padding=True, truncation=True)
outputs = model(**inputs)

# Assuming the model outputs a score
score = outputs.logits.argmax(dim=-1).item()

print(f"IELTS Task 2 Evaluation Score: {score}")

Training

If your model can be trained further, provide instructions for training:

# Example training code
from transformers import Trainer, TrainingArguments

training_args = TrainingArguments(
    output_dir="./results",
    evaluation_strategy="epoch",
    per_device_train_batch_size=8,
    per_device_eval_batch_size=8,
    num_train_epochs=3,
    weight_decay=0.01,
)

trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=train_dataset,
    eval_dataset=eval_dataset,
)

trainer.train()

Training Details

Training Data

The model was fine-tuned on a dataset of IELTS Writing Task 2 essays, which includes a diverse range of topics and responses. The dataset is labeled with scores and feedback to train the model effectively.

Training Procedure

The model was fine-tuned using a standard training approach, optimizing for accurate scoring and feedback generation. Training was conducted on [describe hardware, e.g., GPUs, TPUs] over [number of epochs] epochs with [any relevant hyperparameters].

Evaluation

Metrics

The model was evaluated using the following metrics:

  • Accuracy: X%
  • Precision: Y%
  • Recall: Z%
  • F1 Score: W%

Comparison

The performance of mistral-7b-ielts-evaluator was benchmarked against other essay evaluation models, demonstrating superior accuracy and feedback quality in the IELTS Writing Task 2 domain.

Limitations and Biases

While mistral-7b-ielts-evaluator is highly effective, it may have limitations in the following areas:

  • It may not capture the full complexity of human scoring.
  • There may be biases present in the training data that could affect responses.

How to Contribute

We welcome contributions! Please see our contributing guidelines for more information on how to contribute to this project.

License

This model is licensed under the MIT License.

Acknowledgements

We would like to thank the contributors and the creators of the datasets used for training this model.


### Tips for Completing the Template

1. **Replace placeholders** (like `username`, `training data`, `evaluation metrics`) with your actual data.
2. **Include any additional information** specific to your model or training process.
3. **Keep the document updated** as the model evolves or more information becomes available.