Vicuna-7B-v1.5-ORPO

This model is a fine-tuned version of lmsys/vicuna-7b-v1.5 on the dpo_mix_en dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0073
  • Rewards/chosen: -0.0940
  • Rewards/rejected: -0.1081
  • Rewards/accuracies: 0.5160
  • Rewards/margins: 0.0141
  • Logps/rejected: -1.0807
  • Logps/chosen: -0.9399
  • Logits/rejected: -0.2988
  • Logits/chosen: -0.3321
  • Sft Loss: 0.9399
  • Odds Ratio Loss: 0.6739

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 0.1
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen Sft Loss Odds Ratio Loss
1.0913 0.8891 500 1.0354 -0.0968 -0.1107 0.5180 0.0140 -1.1075 -0.9676 -0.3176 -0.3490 0.9676 0.6776
1.0328 1.7782 1000 1.0126 -0.0945 -0.1086 0.5160 0.0141 -1.0856 -0.9451 -0.2979 -0.3308 0.9451 0.6748
0.9998 2.6673 1500 1.0073 -0.0940 -0.1081 0.5160 0.0141 -1.0807 -0.9399 -0.2988 -0.3321 0.9399 0.6739

Framework versions

  • PEFT 0.10.0
  • Transformers 4.40.1
  • Pytorch 2.3.0
  • Datasets 2.19.0
  • Tokenizers 0.19.1
Downloads last month
4
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for chchen/Vicuna-7B-v1.5-ORPO

Adapter
(27)
this model