Edit model card

ner-fine-tune-roberta

This model is a fine-tuned version of roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3622
  • Precision: 0.2958
  • Recall: 0.2972
  • F1: 0.2965
  • Accuracy: 0.9462

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 105 0.2178 0.2884 0.3278 0.3068 0.9468
No log 2.0 210 0.2681 0.2599 0.2642 0.2620 0.9448
No log 3.0 315 0.2576 0.2824 0.2877 0.2850 0.9475
No log 4.0 420 0.2884 0.2608 0.2571 0.2589 0.9467
0.0235 5.0 525 0.2929 0.2565 0.3019 0.2774 0.9432
0.0235 6.0 630 0.2993 0.3127 0.2618 0.2850 0.9528
0.0235 7.0 735 0.3014 0.2792 0.3160 0.2965 0.9449
0.0235 8.0 840 0.3349 0.2671 0.3042 0.2845 0.9426
0.0235 9.0 945 0.3303 0.2930 0.3373 0.3136 0.9455
0.0083 10.0 1050 0.3573 0.3047 0.2759 0.2896 0.9479
0.0083 11.0 1155 0.3500 0.2729 0.2665 0.2697 0.9464
0.0083 12.0 1260 0.3626 0.2947 0.2995 0.2971 0.9462
0.0083 13.0 1365 0.3522 0.2954 0.2877 0.2915 0.9466
0.0083 14.0 1470 0.3610 0.2930 0.2972 0.2951 0.9462
0.0042 15.0 1575 0.3622 0.2958 0.2972 0.2965 0.9462

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for cehongw/ner-fine-tune-roberta

Finetuned
(1285)
this model