TimeLMs
Collection
Language Models specialised on social media, trained on different time periods.
โข
15 items
โข
Updated
This is a RoBERTa-base model trained on 115.46M tweets until the end of June 2021. More details and performance scores are available in the TimeLMs paper.
Below, we provide some usage examples using the standard Transformers interface. For another interface more suited to comparing predictions and perplexity scores between models trained at different temporal intervals, check the TimeLMs repository.
For other models trained until different periods, check this table.
Replace usernames and links for placeholders: "@user" and "http". If you're interested in retaining verified users which were also retained during training, you may keep the users listed here.
def preprocess(text):
preprocessed_text = []
for t in text.split():
if len(t) > 1:
t = '@user' if t[0] == '@' and t.count('@') == 1 else t
t = 'http' if t.startswith('http') else t
preprocessed_text.append(t)
return ' '.join(preprocessed_text)
from transformers import pipeline, AutoTokenizer
MODEL = "cardiffnlp/twitter-roberta-base-jun2021"
fill_mask = pipeline("fill-mask", model=MODEL, tokenizer=MODEL)
tokenizer = AutoTokenizer.from_pretrained(MODEL)
def pprint(candidates, n):
for i in range(n):
token = tokenizer.decode(candidates[i]['token'])
score = candidates[i]['score']
print("%d) %.5f %s" % (i+1, score, token))
texts = [
"So glad I'm <mask> vaccinated.",
"I keep forgetting to bring a <mask>.",
"Looking forward to watching <mask> Game tonight!",
]
for text in texts:
t = preprocess(text)
print(f"{'-'*30}\n{t}")
candidates = fill_mask(t)
pprint(candidates, 5)
Output:
------------------------------
So glad I'm <mask> vaccinated.
1) 0.45169 fully
2) 0.22353 getting
3) 0.18540 not
4) 0.02392 still
5) 0.02231 already
------------------------------
I keep forgetting to bring a <mask>.
1) 0.06331 mask
2) 0.05423 book
3) 0.04505 knife
4) 0.03742 laptop
5) 0.03456 bag
------------------------------
Looking forward to watching <mask> Game tonight!
1) 0.69811 the
2) 0.14435 The
3) 0.02396 this
4) 0.00932 Championship
5) 0.00785 End
from transformers import AutoTokenizer, AutoModel, TFAutoModel
import numpy as np
from scipy.spatial.distance import cosine
from collections import Counter
def get_embedding(text): # naive approach for demonstration
text = preprocess(text)
encoded_input = tokenizer(text, return_tensors='pt')
features = model(**encoded_input)
features = features[0].detach().cpu().numpy()
return np.mean(features[0], axis=0)
MODEL = "cardiffnlp/twitter-roberta-base-jun2021"
tokenizer = AutoTokenizer.from_pretrained(MODEL)
model = AutoModel.from_pretrained(MODEL)
query = "The book was awesome"
tweets = ["I just ordered fried chicken ๐ฃ",
"The movie was great",
"What time is the next game?",
"Just finished reading 'Embeddings in NLP'"]
sims = Counter()
for tweet in tweets:
sim = 1 - cosine(get_embedding(query), get_embedding(tweet))
sims[tweet] = sim
print('Most similar to: ', query)
print(f"{'-'*30}")
for idx, (tweet, sim) in enumerate(sims.most_common()):
print("%d) %.5f %s" % (idx+1, sim, tweet))
Output:
Most similar to: The book was awesome
------------------------------
1) 0.99014 The movie was great
2) 0.96346 Just finished reading 'Embeddings in NLP'
3) 0.95836 I just ordered fried chicken ๐ฃ
4) 0.95051 What time is the next game?
from transformers import AutoTokenizer, AutoModel, TFAutoModel
import numpy as np
MODEL = "cardiffnlp/twitter-roberta-base-jun2021"
tokenizer = AutoTokenizer.from_pretrained(MODEL)
text = "Good night ๐"
text = preprocess(text)
# Pytorch
model = AutoModel.from_pretrained(MODEL)
encoded_input = tokenizer(text, return_tensors='pt')
features = model(**encoded_input)
features = features[0].detach().cpu().numpy()
features_mean = np.mean(features[0], axis=0)
#features_max = np.max(features[0], axis=0)
# # Tensorflow
# model = TFAutoModel.from_pretrained(MODEL)
# encoded_input = tokenizer(text, return_tensors='tf')
# features = model(encoded_input)
# features = features[0].numpy()
# features_mean = np.mean(features[0], axis=0)
# #features_max = np.max(features[0], axis=0)