sentence-transformers/clip-ViT-B-32-multilingual-v1-onnx
This is a multi-lingual version of the OpenAI CLIP-ViT-B32 model converted to ONNX. You can map text (in 50+ languages) and images to a common dense vector space such that images and the matching texts are close. This model can be used for image search (users search through a large collection of images) and for multi-lingual zero-shot image classification (image labels are defined as text).
Usage (Sentence-Transformers)
Using this model becomes easy when you have sentence-transformers installed:
pip install -U sentence-transformers
Then you can use the model like this:
from sentence_transformers import SentenceTransformer, util
from PIL import Image, ImageFile
import requests
import torch
# We use the original clip-ViT-B-32 for encoding images
img_model = SentenceTransformer('clip-ViT-B-32')
# Our text embedding model is aligned to the img_model and maps 50+
# languages to the same vector space
text_model = SentenceTransformer('sentence-transformers/clip-ViT-B-32-multilingual-v1')
# Now we load and encode the images
def load_image(url_or_path):
if url_or_path.startswith("http://") or url_or_path.startswith("https://"):
return Image.open(requests.get(url_or_path, stream=True).raw)
else:
return Image.open(url_or_path)
# We load 3 images. You can either pass URLs or
# a path on your disc
img_paths = [
# Dog image
"https://unsplash.com/photos/QtxgNsmJQSs/download?ixid=MnwxMjA3fDB8MXxhbGx8fHx8fHx8fHwxNjM1ODQ0MjY3&w=640",
# Cat image
"https://unsplash.com/photos/9UUoGaaHtNE/download?ixid=MnwxMjA3fDB8MXxzZWFyY2h8Mnx8Y2F0fHwwfHx8fDE2MzU4NDI1ODQ&w=640",
# Beach image
"https://unsplash.com/photos/Siuwr3uCir0/download?ixid=MnwxMjA3fDB8MXxzZWFyY2h8NHx8YmVhY2h8fDB8fHx8MTYzNTg0MjYzMg&w=640"
]
images = [load_image(img) for img in img_paths]
# Map images to the vector space
img_embeddings = img_model.encode(images)
# Now we encode our text:
texts = [
"A dog in the snow",
"Eine Katze", # German: A cat
"Una playa con palmeras." # Spanish: a beach with palm trees
]
text_embeddings = text_model.encode(texts)
# Compute cosine similarities:
cos_sim = util.cos_sim(text_embeddings, img_embeddings)
for text, scores in zip(texts, cos_sim):
max_img_idx = torch.argmax(scores)
print("Text:", text)
print("Score:", scores[max_img_idx] )
print("Path:", img_paths[max_img_idx], "\n")
Multilingual Image Search - Demo
For a demo of multilingual image search, have a look at: Image_Search-multilingual.ipynb ( Colab version )
For more details on image search and zero-shot image classification, have a look at the documentation on SBERT.net.
Training
This model has been created using Multilingual Knowledge Distillation. As teacher model, we used the original clip-ViT-B-32
and then trained a multilingual DistilBERT model as student model. Using parallel data, the multilingual student model learns to align the teachers vector space across many languages. As a result, you get an text embedding model that works for 50+ languages.
The image encoder from CLIP is unchanged, i.e. you can use the original CLIP image encoder to encode images.
Have a look at the SBERT.net - Multilingual-Models documentation on more details and for training code.
We used the following 50+ languages to align the vector spaces: ar, bg, ca, cs, da, de, el, es, et, fa, fi, fr, fr-ca, gl, gu, he, hi, hr, hu, hy, id, it, ja, ka, ko, ku, lt, lv, mk, mn, mr, ms, my, nb, nl, pl, pt, pt, pt-br, ro, ru, sk, sl, sq, sr, sv, th, tr, uk, ur, vi, zh-cn, zh-tw.
The original multilingual DistilBERT supports 100+ lanugages. The model also work for these languages, but might not yield the best results.
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
(2): Dense({'in_features': 768, 'out_features': 512, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
)
Citing & Authors
This model was trained by sentence-transformers.
If you find this model helpful, feel free to cite our publication Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks:
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "http://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 14