FwF-Qwen-7B-0.2 / README.md
bunnycore's picture
Adding Evaluation Results (#1)
dd1f20b verified
---
library_name: transformers
tags:
- mergekit
- merge
base_model:
- bunnycore/FuseQwQen-7B
- prithivMLmods/QwQ-LCoT-7B-Instruct
- qingy2024/UwU-7B-Instruct
- fblgit/cybertron-v4-qw7B-UNAMGS
model-index:
- name: FwF-Qwen-7B-0.2
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 44.79
name: strict accuracy
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/FwF-Qwen-7B-0.2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 37.67
name: normalized accuracy
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/FwF-Qwen-7B-0.2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 22.36
name: exact match
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/FwF-Qwen-7B-0.2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 5.37
name: acc_norm
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/FwF-Qwen-7B-0.2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 12.29
name: acc_norm
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/FwF-Qwen-7B-0.2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 37.58
name: accuracy
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/FwF-Qwen-7B-0.2
name: Open LLM Leaderboard
---
FwF-Qwen-7B-0.2 is a large language model that is created by merging three other models. These models are specialized for reasoning, long thinking, roleplay, and general tasks, respectively.
## Merge Details
### Merge Method
This model was merged using the [linear](https://arxiv.org/abs/2203.05482) merge method.
### Models Merged
The following models were included in the merge:
* [bunnycore/FuseQwQen-7B](https://huggingface.co./bunnycore/FuseQwQen-7B)
* [prithivMLmods/QwQ-LCoT-7B-Instruct](https://huggingface.co./prithivMLmods/QwQ-LCoT-7B-Instruct)
* [qingy2024/UwU-7B-Instruct](https://huggingface.co./qingy2024/UwU-7B-Instruct)
* [fblgit/cybertron-v4-qw7B-UNAMGS](https://huggingface.co./fblgit/cybertron-v4-qw7B-UNAMGS)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
models:
- model: bunnycore/FuseQwQen-7B
parameters:
weight: 0.9
- model: qingy2024/UwU-7B-Instruct
parameters:
weight: 0.9
- model: prithivMLmods/QwQ-LCoT-7B-Instruct
parameters:
weight: 0.5
- model: fblgit/cybertron-v4-qw7B-UNAMGS
parameters:
weight: 0.5
merge_method: linear
normalize: false
int8_mask: true
dtype: bfloat16
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/bunnycore__FwF-Qwen-7B-0.2-details)
| Metric |Value|
|-------------------|----:|
|Avg. |26.68|
|IFEval (0-Shot) |44.79|
|BBH (3-Shot) |37.67|
|MATH Lvl 5 (4-Shot)|22.36|
|GPQA (0-shot) | 5.37|
|MuSR (0-shot) |12.29|
|MMLU-PRO (5-shot) |37.58|